Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* Xtensa-specific support for 32-bit ELF. |
b3adc24a | 2 | Copyright (C) 2003-2020 Free Software Foundation, Inc. |
e0001a05 NC |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or | |
7 | modify it under the terms of the GNU General Public License as | |
cd123cb7 | 8 | published by the Free Software Foundation; either version 3 of the |
e0001a05 NC |
9 | License, or (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, but | |
12 | WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
3e110533 | 18 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA |
53e09e0a | 19 | 02110-1301, USA. */ |
e0001a05 | 20 | |
e0001a05 | 21 | #include "sysdep.h" |
3db64b00 | 22 | #include "bfd.h" |
e0001a05 | 23 | |
e0001a05 | 24 | #include <stdarg.h> |
e0001a05 NC |
25 | #include <strings.h> |
26 | ||
27 | #include "bfdlink.h" | |
28 | #include "libbfd.h" | |
29 | #include "elf-bfd.h" | |
30 | #include "elf/xtensa.h" | |
4c2af04f | 31 | #include "splay-tree.h" |
e0001a05 NC |
32 | #include "xtensa-isa.h" |
33 | #include "xtensa-config.h" | |
34 | ||
bb294208 AM |
35 | /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */ |
36 | #define OCTETS_PER_BYTE(ABFD, SEC) 1 | |
37 | ||
43cd72b9 BW |
38 | #define XTENSA_NO_NOP_REMOVAL 0 |
39 | ||
7a77f1ac MF |
40 | #ifndef XSHAL_ABI |
41 | #define XSHAL_ABI 0 | |
42 | #endif | |
43 | ||
44 | #ifndef XTHAL_ABI_UNDEFINED | |
45 | #define XTHAL_ABI_UNDEFINED -1 | |
46 | #endif | |
47 | ||
48 | #ifndef XTHAL_ABI_WINDOWED | |
49 | #define XTHAL_ABI_WINDOWED 0 | |
50 | #endif | |
51 | ||
52 | #ifndef XTHAL_ABI_CALL0 | |
53 | #define XTHAL_ABI_CALL0 1 | |
54 | #endif | |
55 | ||
e0001a05 NC |
56 | /* Local helper functions. */ |
57 | ||
f0e6fdb2 | 58 | static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int); |
2db662be | 59 | static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4); |
e0001a05 | 60 | static bfd_reloc_status_type bfd_elf_xtensa_reloc |
7fa3d080 | 61 | (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
43cd72b9 | 62 | static bfd_boolean do_fix_for_relocatable_link |
7fa3d080 | 63 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *); |
e0001a05 | 64 | static void do_fix_for_final_link |
7fa3d080 | 65 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *); |
e0001a05 NC |
66 | |
67 | /* Local functions to handle Xtensa configurability. */ | |
68 | ||
7fa3d080 BW |
69 | static bfd_boolean is_indirect_call_opcode (xtensa_opcode); |
70 | static bfd_boolean is_direct_call_opcode (xtensa_opcode); | |
71 | static bfd_boolean is_windowed_call_opcode (xtensa_opcode); | |
72 | static xtensa_opcode get_const16_opcode (void); | |
73 | static xtensa_opcode get_l32r_opcode (void); | |
74 | static bfd_vma l32r_offset (bfd_vma, bfd_vma); | |
75 | static int get_relocation_opnd (xtensa_opcode, int); | |
76 | static int get_relocation_slot (int); | |
e0001a05 | 77 | static xtensa_opcode get_relocation_opcode |
7fa3d080 | 78 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
e0001a05 | 79 | static bfd_boolean is_l32r_relocation |
7fa3d080 BW |
80 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
81 | static bfd_boolean is_alt_relocation (int); | |
82 | static bfd_boolean is_operand_relocation (int); | |
43cd72b9 | 83 | static bfd_size_type insn_decode_len |
7fa3d080 | 84 | (bfd_byte *, bfd_size_type, bfd_size_type); |
e0d0c518 MF |
85 | static int insn_num_slots |
86 | (bfd_byte *, bfd_size_type, bfd_size_type); | |
43cd72b9 | 87 | static xtensa_opcode insn_decode_opcode |
7fa3d080 | 88 | (bfd_byte *, bfd_size_type, bfd_size_type, int); |
43cd72b9 | 89 | static bfd_boolean check_branch_target_aligned |
7fa3d080 | 90 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
43cd72b9 | 91 | static bfd_boolean check_loop_aligned |
7fa3d080 BW |
92 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
93 | static bfd_boolean check_branch_target_aligned_address (bfd_vma, int); | |
43cd72b9 | 94 | static bfd_size_type get_asm_simplify_size |
7fa3d080 | 95 | (bfd_byte *, bfd_size_type, bfd_size_type); |
e0001a05 NC |
96 | |
97 | /* Functions for link-time code simplifications. */ | |
98 | ||
43cd72b9 | 99 | static bfd_reloc_status_type elf_xtensa_do_asm_simplify |
7fa3d080 | 100 | (bfd_byte *, bfd_vma, bfd_vma, char **); |
e0001a05 | 101 | static bfd_reloc_status_type contract_asm_expansion |
7fa3d080 BW |
102 | (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **); |
103 | static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode); | |
104 | static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *); | |
e0001a05 NC |
105 | |
106 | /* Access to internal relocations, section contents and symbols. */ | |
107 | ||
108 | static Elf_Internal_Rela *retrieve_internal_relocs | |
7fa3d080 BW |
109 | (bfd *, asection *, bfd_boolean); |
110 | static void pin_internal_relocs (asection *, Elf_Internal_Rela *); | |
111 | static void release_internal_relocs (asection *, Elf_Internal_Rela *); | |
112 | static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean); | |
113 | static void pin_contents (asection *, bfd_byte *); | |
114 | static void release_contents (asection *, bfd_byte *); | |
115 | static Elf_Internal_Sym *retrieve_local_syms (bfd *); | |
e0001a05 NC |
116 | |
117 | /* Miscellaneous utility functions. */ | |
118 | ||
f0e6fdb2 BW |
119 | static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int); |
120 | static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int); | |
7fa3d080 | 121 | static asection *get_elf_r_symndx_section (bfd *, unsigned long); |
e0001a05 | 122 | static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry |
7fa3d080 BW |
123 | (bfd *, unsigned long); |
124 | static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long); | |
125 | static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *); | |
126 | static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma); | |
127 | static bfd_boolean xtensa_is_property_section (asection *); | |
1d25768e | 128 | static bfd_boolean xtensa_is_insntable_section (asection *); |
7fa3d080 | 129 | static bfd_boolean xtensa_is_littable_section (asection *); |
1d25768e | 130 | static bfd_boolean xtensa_is_proptable_section (asection *); |
7fa3d080 BW |
131 | static int internal_reloc_compare (const void *, const void *); |
132 | static int internal_reloc_matches (const void *, const void *); | |
51c8ebc1 | 133 | static asection *xtensa_get_property_section (asection *, const char *); |
7fa3d080 | 134 | static flagword xtensa_get_property_predef_flags (asection *); |
e0001a05 NC |
135 | |
136 | /* Other functions called directly by the linker. */ | |
137 | ||
138 | typedef void (*deps_callback_t) | |
7fa3d080 | 139 | (asection *, bfd_vma, asection *, bfd_vma, void *); |
e0001a05 | 140 | extern bfd_boolean xtensa_callback_required_dependence |
7fa3d080 | 141 | (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *); |
e0001a05 NC |
142 | |
143 | ||
43cd72b9 BW |
144 | /* Globally visible flag for choosing size optimization of NOP removal |
145 | instead of branch-target-aware minimization for NOP removal. | |
146 | When nonzero, narrow all instructions and remove all NOPs possible | |
147 | around longcall expansions. */ | |
7fa3d080 | 148 | |
43cd72b9 BW |
149 | int elf32xtensa_size_opt; |
150 | ||
151 | ||
152 | /* The "new_section_hook" is used to set up a per-section | |
153 | "xtensa_relax_info" data structure with additional information used | |
154 | during relaxation. */ | |
e0001a05 | 155 | |
7fa3d080 | 156 | typedef struct xtensa_relax_info_struct xtensa_relax_info; |
e0001a05 | 157 | |
43cd72b9 | 158 | |
43cd72b9 BW |
159 | /* The GNU tools do not easily allow extending interfaces to pass around |
160 | the pointer to the Xtensa ISA information, so instead we add a global | |
161 | variable here (in BFD) that can be used by any of the tools that need | |
162 | this information. */ | |
163 | ||
164 | xtensa_isa xtensa_default_isa; | |
165 | ||
166 | ||
e0001a05 NC |
167 | /* When this is true, relocations may have been modified to refer to |
168 | symbols from other input files. The per-section list of "fix" | |
169 | records needs to be checked when resolving relocations. */ | |
170 | ||
171 | static bfd_boolean relaxing_section = FALSE; | |
172 | ||
43cd72b9 BW |
173 | /* When this is true, during final links, literals that cannot be |
174 | coalesced and their relocations may be moved to other sections. */ | |
175 | ||
176 | int elf32xtensa_no_literal_movement = 1; | |
177 | ||
8255c61b MF |
178 | /* Place property records for a section into individual property section |
179 | with xt.prop. prefix. */ | |
180 | ||
181 | bfd_boolean elf32xtensa_separate_props = FALSE; | |
182 | ||
7a77f1ac MF |
183 | /* Xtensa ABI. It affects PLT entry code. */ |
184 | ||
185 | int elf32xtensa_abi = XTHAL_ABI_UNDEFINED; | |
186 | ||
b0dddeec AM |
187 | /* Rename one of the generic section flags to better document how it |
188 | is used here. */ | |
189 | /* Whether relocations have been processed. */ | |
190 | #define reloc_done sec_flg0 | |
e0001a05 NC |
191 | \f |
192 | static reloc_howto_type elf_howto_table[] = | |
193 | { | |
6346d5ca | 194 | HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont, |
e0001a05 | 195 | bfd_elf_xtensa_reloc, "R_XTENSA_NONE", |
e5f131d1 | 196 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
197 | HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
198 | bfd_elf_xtensa_reloc, "R_XTENSA_32", | |
199 | TRUE, 0xffffffff, 0xffffffff, FALSE), | |
e5f131d1 | 200 | |
e0001a05 NC |
201 | /* Replace a 32-bit value with a value from the runtime linker (only |
202 | used by linker-generated stub functions). The r_addend value is | |
203 | special: 1 means to substitute a pointer to the runtime linker's | |
204 | dynamic resolver function; 2 means to substitute the link map for | |
205 | the shared object. */ | |
206 | HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
e5f131d1 BW |
207 | NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE), |
208 | ||
e0001a05 NC |
209 | HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
210 | bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", | |
e5f131d1 | 211 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
212 | HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
213 | bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", | |
e5f131d1 | 214 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
215 | HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
216 | bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", | |
e5f131d1 | 217 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
218 | HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
219 | bfd_elf_xtensa_reloc, "R_XTENSA_PLT", | |
e5f131d1 BW |
220 | FALSE, 0, 0xffffffff, FALSE), |
221 | ||
e0001a05 | 222 | EMPTY_HOWTO (7), |
e5f131d1 BW |
223 | |
224 | /* Old relocations for backward compatibility. */ | |
e0001a05 | 225 | HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 226 | bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE), |
e0001a05 | 227 | HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 228 | bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE), |
e0001a05 | 229 | HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 BW |
230 | bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE), |
231 | ||
e0001a05 NC |
232 | /* Assembly auto-expansion. */ |
233 | HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 234 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE), |
e0001a05 NC |
235 | /* Relax assembly auto-expansion. */ |
236 | HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 BW |
237 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE), |
238 | ||
e0001a05 | 239 | EMPTY_HOWTO (13), |
1bbb5f21 BW |
240 | |
241 | HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, | |
242 | bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL", | |
243 | FALSE, 0, 0xffffffff, TRUE), | |
e5f131d1 | 244 | |
e0001a05 NC |
245 | /* GNU extension to record C++ vtable hierarchy. */ |
246 | HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
07d6d2b8 | 247 | NULL, "R_XTENSA_GNU_VTINHERIT", |
e5f131d1 | 248 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
249 | /* GNU extension to record C++ vtable member usage. */ |
250 | HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
07d6d2b8 | 251 | _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", |
e5f131d1 | 252 | FALSE, 0, 0, FALSE), |
43cd72b9 BW |
253 | |
254 | /* Relocations for supporting difference of symbols. */ | |
1058c753 | 255 | HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed, |
e5f131d1 | 256 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE), |
1058c753 | 257 | HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed, |
e5f131d1 | 258 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE), |
1058c753 | 259 | HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, |
e5f131d1 | 260 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE), |
43cd72b9 BW |
261 | |
262 | /* General immediate operand relocations. */ | |
263 | HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 264 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 265 | HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 266 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 267 | HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 268 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 269 | HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 270 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 271 | HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 272 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 273 | HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 274 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 275 | HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 276 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 277 | HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 278 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 279 | HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 280 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 281 | HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 282 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 283 | HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 284 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 285 | HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 286 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 287 | HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 288 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 289 | HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 290 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 291 | HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 292 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE), |
43cd72b9 BW |
293 | |
294 | /* "Alternate" relocations. The meaning of these is opcode-specific. */ | |
295 | HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 296 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 297 | HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 298 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 299 | HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 300 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 301 | HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 302 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 303 | HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 304 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 305 | HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 306 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 307 | HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 308 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 309 | HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 310 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 311 | HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 312 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 313 | HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 314 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 315 | HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 316 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 317 | HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 318 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 319 | HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 320 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 321 | HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 322 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 323 | HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 324 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE), |
28dbbc02 BW |
325 | |
326 | /* TLS relocations. */ | |
327 | HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
328 | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN", | |
329 | FALSE, 0, 0xffffffff, FALSE), | |
330 | HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
331 | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG", | |
332 | FALSE, 0, 0xffffffff, FALSE), | |
333 | HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
334 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF", | |
335 | FALSE, 0, 0xffffffff, FALSE), | |
336 | HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
337 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF", | |
338 | FALSE, 0, 0xffffffff, FALSE), | |
339 | HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
340 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC", | |
341 | FALSE, 0, 0, FALSE), | |
342 | HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
343 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG", | |
344 | FALSE, 0, 0, FALSE), | |
345 | HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
346 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL", | |
347 | FALSE, 0, 0, FALSE), | |
30ce8e47 MF |
348 | |
349 | HOWTO (R_XTENSA_PDIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, | |
350 | bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF8", FALSE, 0, 0xff, FALSE), | |
351 | HOWTO (R_XTENSA_PDIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, | |
352 | bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF16", FALSE, 0, 0xffff, FALSE), | |
353 | HOWTO (R_XTENSA_PDIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
354 | bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF32", FALSE, 0, 0xffffffff, FALSE), | |
355 | ||
356 | HOWTO (R_XTENSA_NDIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, | |
357 | bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF8", FALSE, 0, 0xff, FALSE), | |
358 | HOWTO (R_XTENSA_NDIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, | |
359 | bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF16", FALSE, 0, 0xffff, FALSE), | |
360 | HOWTO (R_XTENSA_NDIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
361 | bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF32", FALSE, 0, 0xffffffff, FALSE), | |
e0001a05 NC |
362 | }; |
363 | ||
43cd72b9 | 364 | #if DEBUG_GEN_RELOC |
e0001a05 NC |
365 | #define TRACE(str) \ |
366 | fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) | |
367 | #else | |
368 | #define TRACE(str) | |
369 | #endif | |
370 | ||
371 | static reloc_howto_type * | |
7fa3d080 BW |
372 | elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
373 | bfd_reloc_code_real_type code) | |
e0001a05 NC |
374 | { |
375 | switch (code) | |
376 | { | |
377 | case BFD_RELOC_NONE: | |
378 | TRACE ("BFD_RELOC_NONE"); | |
379 | return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; | |
380 | ||
381 | case BFD_RELOC_32: | |
382 | TRACE ("BFD_RELOC_32"); | |
383 | return &elf_howto_table[(unsigned) R_XTENSA_32 ]; | |
384 | ||
1bbb5f21 BW |
385 | case BFD_RELOC_32_PCREL: |
386 | TRACE ("BFD_RELOC_32_PCREL"); | |
387 | return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ]; | |
388 | ||
43cd72b9 BW |
389 | case BFD_RELOC_XTENSA_DIFF8: |
390 | TRACE ("BFD_RELOC_XTENSA_DIFF8"); | |
391 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ]; | |
392 | ||
393 | case BFD_RELOC_XTENSA_DIFF16: | |
394 | TRACE ("BFD_RELOC_XTENSA_DIFF16"); | |
395 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ]; | |
396 | ||
397 | case BFD_RELOC_XTENSA_DIFF32: | |
398 | TRACE ("BFD_RELOC_XTENSA_DIFF32"); | |
399 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ]; | |
400 | ||
30ce8e47 MF |
401 | case BFD_RELOC_XTENSA_PDIFF8: |
402 | TRACE ("BFD_RELOC_XTENSA_PDIFF8"); | |
403 | return &elf_howto_table[(unsigned) R_XTENSA_PDIFF8 ]; | |
404 | ||
405 | case BFD_RELOC_XTENSA_PDIFF16: | |
406 | TRACE ("BFD_RELOC_XTENSA_PDIFF16"); | |
407 | return &elf_howto_table[(unsigned) R_XTENSA_PDIFF16 ]; | |
408 | ||
409 | case BFD_RELOC_XTENSA_PDIFF32: | |
410 | TRACE ("BFD_RELOC_XTENSA_PDIFF32"); | |
411 | return &elf_howto_table[(unsigned) R_XTENSA_PDIFF32 ]; | |
412 | ||
413 | case BFD_RELOC_XTENSA_NDIFF8: | |
414 | TRACE ("BFD_RELOC_XTENSA_NDIFF8"); | |
415 | return &elf_howto_table[(unsigned) R_XTENSA_NDIFF8 ]; | |
416 | ||
417 | case BFD_RELOC_XTENSA_NDIFF16: | |
418 | TRACE ("BFD_RELOC_XTENSA_NDIFF16"); | |
419 | return &elf_howto_table[(unsigned) R_XTENSA_NDIFF16 ]; | |
420 | ||
421 | case BFD_RELOC_XTENSA_NDIFF32: | |
422 | TRACE ("BFD_RELOC_XTENSA_NDIFF32"); | |
423 | return &elf_howto_table[(unsigned) R_XTENSA_NDIFF32 ]; | |
424 | ||
e0001a05 NC |
425 | case BFD_RELOC_XTENSA_RTLD: |
426 | TRACE ("BFD_RELOC_XTENSA_RTLD"); | |
427 | return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; | |
428 | ||
429 | case BFD_RELOC_XTENSA_GLOB_DAT: | |
430 | TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); | |
431 | return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; | |
432 | ||
433 | case BFD_RELOC_XTENSA_JMP_SLOT: | |
434 | TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); | |
435 | return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; | |
436 | ||
437 | case BFD_RELOC_XTENSA_RELATIVE: | |
438 | TRACE ("BFD_RELOC_XTENSA_RELATIVE"); | |
439 | return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; | |
440 | ||
441 | case BFD_RELOC_XTENSA_PLT: | |
442 | TRACE ("BFD_RELOC_XTENSA_PLT"); | |
443 | return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; | |
444 | ||
445 | case BFD_RELOC_XTENSA_OP0: | |
446 | TRACE ("BFD_RELOC_XTENSA_OP0"); | |
447 | return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
448 | ||
449 | case BFD_RELOC_XTENSA_OP1: | |
450 | TRACE ("BFD_RELOC_XTENSA_OP1"); | |
451 | return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; | |
452 | ||
453 | case BFD_RELOC_XTENSA_OP2: | |
454 | TRACE ("BFD_RELOC_XTENSA_OP2"); | |
455 | return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; | |
456 | ||
457 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
458 | TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); | |
459 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; | |
460 | ||
461 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
462 | TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); | |
463 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; | |
464 | ||
465 | case BFD_RELOC_VTABLE_INHERIT: | |
466 | TRACE ("BFD_RELOC_VTABLE_INHERIT"); | |
467 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; | |
468 | ||
469 | case BFD_RELOC_VTABLE_ENTRY: | |
470 | TRACE ("BFD_RELOC_VTABLE_ENTRY"); | |
471 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; | |
472 | ||
28dbbc02 BW |
473 | case BFD_RELOC_XTENSA_TLSDESC_FN: |
474 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN"); | |
475 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ]; | |
476 | ||
477 | case BFD_RELOC_XTENSA_TLSDESC_ARG: | |
478 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG"); | |
479 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ]; | |
480 | ||
481 | case BFD_RELOC_XTENSA_TLS_DTPOFF: | |
482 | TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF"); | |
483 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ]; | |
484 | ||
485 | case BFD_RELOC_XTENSA_TLS_TPOFF: | |
486 | TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF"); | |
487 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ]; | |
488 | ||
489 | case BFD_RELOC_XTENSA_TLS_FUNC: | |
490 | TRACE ("BFD_RELOC_XTENSA_TLS_FUNC"); | |
491 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ]; | |
492 | ||
493 | case BFD_RELOC_XTENSA_TLS_ARG: | |
494 | TRACE ("BFD_RELOC_XTENSA_TLS_ARG"); | |
495 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ]; | |
496 | ||
497 | case BFD_RELOC_XTENSA_TLS_CALL: | |
498 | TRACE ("BFD_RELOC_XTENSA_TLS_CALL"); | |
499 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ]; | |
500 | ||
e0001a05 | 501 | default: |
43cd72b9 BW |
502 | if (code >= BFD_RELOC_XTENSA_SLOT0_OP |
503 | && code <= BFD_RELOC_XTENSA_SLOT14_OP) | |
504 | { | |
505 | unsigned n = (R_XTENSA_SLOT0_OP + | |
506 | (code - BFD_RELOC_XTENSA_SLOT0_OP)); | |
507 | return &elf_howto_table[n]; | |
508 | } | |
509 | ||
510 | if (code >= BFD_RELOC_XTENSA_SLOT0_ALT | |
511 | && code <= BFD_RELOC_XTENSA_SLOT14_ALT) | |
512 | { | |
513 | unsigned n = (R_XTENSA_SLOT0_ALT + | |
514 | (code - BFD_RELOC_XTENSA_SLOT0_ALT)); | |
515 | return &elf_howto_table[n]; | |
516 | } | |
517 | ||
e0001a05 NC |
518 | break; |
519 | } | |
520 | ||
f3185997 | 521 | /* xgettext:c-format */ |
e8f5af78 | 522 | _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code); |
f3185997 | 523 | bfd_set_error (bfd_error_bad_value); |
e0001a05 NC |
524 | TRACE ("Unknown"); |
525 | return NULL; | |
526 | } | |
527 | ||
157090f7 AM |
528 | static reloc_howto_type * |
529 | elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, | |
530 | const char *r_name) | |
531 | { | |
532 | unsigned int i; | |
533 | ||
534 | for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) | |
535 | if (elf_howto_table[i].name != NULL | |
536 | && strcasecmp (elf_howto_table[i].name, r_name) == 0) | |
537 | return &elf_howto_table[i]; | |
538 | ||
539 | return NULL; | |
540 | } | |
541 | ||
e0001a05 NC |
542 | |
543 | /* Given an ELF "rela" relocation, find the corresponding howto and record | |
544 | it in the BFD internal arelent representation of the relocation. */ | |
545 | ||
f3185997 | 546 | static bfd_boolean |
0aa13fee | 547 | elf_xtensa_info_to_howto_rela (bfd *abfd, |
7fa3d080 BW |
548 | arelent *cache_ptr, |
549 | Elf_Internal_Rela *dst) | |
e0001a05 NC |
550 | { |
551 | unsigned int r_type = ELF32_R_TYPE (dst->r_info); | |
552 | ||
5860e3f8 NC |
553 | if (r_type >= (unsigned int) R_XTENSA_max) |
554 | { | |
695344c0 | 555 | /* xgettext:c-format */ |
0aa13fee AM |
556 | _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
557 | abfd, r_type); | |
f3185997 NC |
558 | bfd_set_error (bfd_error_bad_value); |
559 | return FALSE; | |
5860e3f8 | 560 | } |
e0001a05 | 561 | cache_ptr->howto = &elf_howto_table[r_type]; |
f3185997 | 562 | return TRUE; |
e0001a05 NC |
563 | } |
564 | ||
565 | \f | |
566 | /* Functions for the Xtensa ELF linker. */ | |
567 | ||
568 | /* The name of the dynamic interpreter. This is put in the .interp | |
569 | section. */ | |
570 | ||
571 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" | |
572 | ||
573 | /* The size in bytes of an entry in the procedure linkage table. | |
574 | (This does _not_ include the space for the literals associated with | |
575 | the PLT entry.) */ | |
576 | ||
577 | #define PLT_ENTRY_SIZE 16 | |
578 | ||
579 | /* For _really_ large PLTs, we may need to alternate between literals | |
580 | and code to keep the literals within the 256K range of the L32R | |
581 | instructions in the code. It's unlikely that anyone would ever need | |
582 | such a big PLT, but an arbitrary limit on the PLT size would be bad. | |
583 | Thus, we split the PLT into chunks. Since there's very little | |
584 | overhead (2 extra literals) for each chunk, the chunk size is kept | |
585 | small so that the code for handling multiple chunks get used and | |
586 | tested regularly. With 254 entries, there are 1K of literals for | |
587 | each chunk, and that seems like a nice round number. */ | |
588 | ||
589 | #define PLT_ENTRIES_PER_CHUNK 254 | |
590 | ||
591 | /* PLT entries are actually used as stub functions for lazy symbol | |
592 | resolution. Once the symbol is resolved, the stub function is never | |
593 | invoked. Note: the 32-byte frame size used here cannot be changed | |
594 | without a corresponding change in the runtime linker. */ | |
595 | ||
f7e16c2a | 596 | static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] = |
e0001a05 | 597 | { |
f7e16c2a MF |
598 | { |
599 | 0x6c, 0x10, 0x04, /* entry sp, 32 */ | |
600 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
601 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
602 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
603 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
604 | 0 /* unused */ | |
605 | }, | |
606 | { | |
607 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
608 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
609 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
610 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
611 | 0 /* unused */ | |
612 | } | |
e0001a05 NC |
613 | }; |
614 | ||
f7e16c2a | 615 | static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] = |
e0001a05 | 616 | { |
f7e16c2a MF |
617 | { |
618 | 0x36, 0x41, 0x00, /* entry sp, 32 */ | |
619 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
620 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
621 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
622 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
623 | 0 /* unused */ | |
624 | }, | |
625 | { | |
626 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
627 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
628 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
629 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
630 | 0 /* unused */ | |
631 | } | |
e0001a05 NC |
632 | }; |
633 | ||
28dbbc02 BW |
634 | /* The size of the thread control block. */ |
635 | #define TCB_SIZE 8 | |
636 | ||
637 | struct elf_xtensa_link_hash_entry | |
638 | { | |
639 | struct elf_link_hash_entry elf; | |
640 | ||
641 | bfd_signed_vma tlsfunc_refcount; | |
642 | ||
643 | #define GOT_UNKNOWN 0 | |
644 | #define GOT_NORMAL 1 | |
645 | #define GOT_TLS_GD 2 /* global or local dynamic */ | |
646 | #define GOT_TLS_IE 4 /* initial or local exec */ | |
647 | #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE) | |
648 | unsigned char tls_type; | |
649 | }; | |
650 | ||
651 | #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent)) | |
652 | ||
653 | struct elf_xtensa_obj_tdata | |
654 | { | |
655 | struct elf_obj_tdata root; | |
656 | ||
657 | /* tls_type for each local got entry. */ | |
658 | char *local_got_tls_type; | |
659 | ||
660 | bfd_signed_vma *local_tlsfunc_refcounts; | |
661 | }; | |
662 | ||
663 | #define elf_xtensa_tdata(abfd) \ | |
664 | ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any) | |
665 | ||
666 | #define elf_xtensa_local_got_tls_type(abfd) \ | |
667 | (elf_xtensa_tdata (abfd)->local_got_tls_type) | |
668 | ||
669 | #define elf_xtensa_local_tlsfunc_refcounts(abfd) \ | |
670 | (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts) | |
671 | ||
672 | #define is_xtensa_elf(bfd) \ | |
673 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ | |
674 | && elf_tdata (bfd) != NULL \ | |
4dfe6ac6 | 675 | && elf_object_id (bfd) == XTENSA_ELF_DATA) |
28dbbc02 BW |
676 | |
677 | static bfd_boolean | |
678 | elf_xtensa_mkobject (bfd *abfd) | |
679 | { | |
680 | return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata), | |
4dfe6ac6 | 681 | XTENSA_ELF_DATA); |
28dbbc02 BW |
682 | } |
683 | ||
f0e6fdb2 BW |
684 | /* Xtensa ELF linker hash table. */ |
685 | ||
686 | struct elf_xtensa_link_hash_table | |
687 | { | |
688 | struct elf_link_hash_table elf; | |
689 | ||
690 | /* Short-cuts to get to dynamic linker sections. */ | |
f0e6fdb2 BW |
691 | asection *sgotloc; |
692 | asection *spltlittbl; | |
693 | ||
694 | /* Total count of PLT relocations seen during check_relocs. | |
695 | The actual PLT code must be split into multiple sections and all | |
696 | the sections have to be created before size_dynamic_sections, | |
697 | where we figure out the exact number of PLT entries that will be | |
698 | needed. It is OK if this count is an overestimate, e.g., some | |
699 | relocations may be removed by GC. */ | |
700 | int plt_reloc_count; | |
28dbbc02 BW |
701 | |
702 | struct elf_xtensa_link_hash_entry *tlsbase; | |
f0e6fdb2 BW |
703 | }; |
704 | ||
705 | /* Get the Xtensa ELF linker hash table from a link_info structure. */ | |
706 | ||
707 | #define elf_xtensa_hash_table(p) \ | |
4dfe6ac6 NC |
708 | (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
709 | == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL) | |
f0e6fdb2 | 710 | |
28dbbc02 BW |
711 | /* Create an entry in an Xtensa ELF linker hash table. */ |
712 | ||
713 | static struct bfd_hash_entry * | |
714 | elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry, | |
715 | struct bfd_hash_table *table, | |
716 | const char *string) | |
717 | { | |
718 | /* Allocate the structure if it has not already been allocated by a | |
719 | subclass. */ | |
720 | if (entry == NULL) | |
721 | { | |
722 | entry = bfd_hash_allocate (table, | |
723 | sizeof (struct elf_xtensa_link_hash_entry)); | |
724 | if (entry == NULL) | |
725 | return entry; | |
726 | } | |
727 | ||
728 | /* Call the allocation method of the superclass. */ | |
729 | entry = _bfd_elf_link_hash_newfunc (entry, table, string); | |
730 | if (entry != NULL) | |
731 | { | |
732 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry); | |
733 | eh->tlsfunc_refcount = 0; | |
734 | eh->tls_type = GOT_UNKNOWN; | |
735 | } | |
736 | ||
737 | return entry; | |
738 | } | |
739 | ||
f0e6fdb2 BW |
740 | /* Create an Xtensa ELF linker hash table. */ |
741 | ||
742 | static struct bfd_link_hash_table * | |
743 | elf_xtensa_link_hash_table_create (bfd *abfd) | |
744 | { | |
28dbbc02 | 745 | struct elf_link_hash_entry *tlsbase; |
f0e6fdb2 | 746 | struct elf_xtensa_link_hash_table *ret; |
986f0783 | 747 | size_t amt = sizeof (struct elf_xtensa_link_hash_table); |
f0e6fdb2 | 748 | |
7bf52ea2 | 749 | ret = bfd_zmalloc (amt); |
f0e6fdb2 BW |
750 | if (ret == NULL) |
751 | return NULL; | |
752 | ||
753 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, | |
28dbbc02 | 754 | elf_xtensa_link_hash_newfunc, |
4dfe6ac6 NC |
755 | sizeof (struct elf_xtensa_link_hash_entry), |
756 | XTENSA_ELF_DATA)) | |
f0e6fdb2 BW |
757 | { |
758 | free (ret); | |
759 | return NULL; | |
760 | } | |
761 | ||
28dbbc02 BW |
762 | /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking |
763 | for it later. */ | |
764 | tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_", | |
765 | TRUE, FALSE, FALSE); | |
766 | tlsbase->root.type = bfd_link_hash_new; | |
767 | tlsbase->root.u.undef.abfd = NULL; | |
768 | tlsbase->non_elf = 0; | |
3084d7a2 | 769 | ret->elf.dt_pltgot_required = TRUE; |
28dbbc02 BW |
770 | ret->tlsbase = elf_xtensa_hash_entry (tlsbase); |
771 | ret->tlsbase->tls_type = GOT_UNKNOWN; | |
772 | ||
f0e6fdb2 BW |
773 | return &ret->elf.root; |
774 | } | |
571b5725 | 775 | |
28dbbc02 BW |
776 | /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
777 | ||
778 | static void | |
779 | elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info, | |
780 | struct elf_link_hash_entry *dir, | |
781 | struct elf_link_hash_entry *ind) | |
782 | { | |
783 | struct elf_xtensa_link_hash_entry *edir, *eind; | |
784 | ||
785 | edir = elf_xtensa_hash_entry (dir); | |
786 | eind = elf_xtensa_hash_entry (ind); | |
787 | ||
788 | if (ind->root.type == bfd_link_hash_indirect) | |
789 | { | |
790 | edir->tlsfunc_refcount += eind->tlsfunc_refcount; | |
791 | eind->tlsfunc_refcount = 0; | |
792 | ||
793 | if (dir->got.refcount <= 0) | |
794 | { | |
795 | edir->tls_type = eind->tls_type; | |
796 | eind->tls_type = GOT_UNKNOWN; | |
797 | } | |
798 | } | |
799 | ||
800 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); | |
801 | } | |
802 | ||
571b5725 | 803 | static inline bfd_boolean |
4608f3d9 | 804 | elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h, |
7fa3d080 | 805 | struct bfd_link_info *info) |
571b5725 BW |
806 | { |
807 | /* Check if we should do dynamic things to this symbol. The | |
808 | "ignore_protected" argument need not be set, because Xtensa code | |
809 | does not require special handling of STV_PROTECTED to make function | |
810 | pointer comparisons work properly. The PLT addresses are never | |
811 | used for function pointers. */ | |
812 | ||
813 | return _bfd_elf_dynamic_symbol_p (h, info, 0); | |
814 | } | |
815 | ||
e0001a05 NC |
816 | \f |
817 | static int | |
7fa3d080 | 818 | property_table_compare (const void *ap, const void *bp) |
e0001a05 NC |
819 | { |
820 | const property_table_entry *a = (const property_table_entry *) ap; | |
821 | const property_table_entry *b = (const property_table_entry *) bp; | |
822 | ||
43cd72b9 BW |
823 | if (a->address == b->address) |
824 | { | |
43cd72b9 BW |
825 | if (a->size != b->size) |
826 | return (a->size - b->size); | |
827 | ||
828 | if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN)) | |
829 | return ((b->flags & XTENSA_PROP_ALIGN) | |
830 | - (a->flags & XTENSA_PROP_ALIGN)); | |
831 | ||
832 | if ((a->flags & XTENSA_PROP_ALIGN) | |
833 | && (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
834 | != GET_XTENSA_PROP_ALIGNMENT (b->flags))) | |
835 | return (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
836 | - GET_XTENSA_PROP_ALIGNMENT (b->flags)); | |
68ffbac6 | 837 | |
43cd72b9 BW |
838 | if ((a->flags & XTENSA_PROP_UNREACHABLE) |
839 | != (b->flags & XTENSA_PROP_UNREACHABLE)) | |
840 | return ((b->flags & XTENSA_PROP_UNREACHABLE) | |
841 | - (a->flags & XTENSA_PROP_UNREACHABLE)); | |
842 | ||
843 | return (a->flags - b->flags); | |
844 | } | |
845 | ||
846 | return (a->address - b->address); | |
847 | } | |
848 | ||
849 | ||
850 | static int | |
7fa3d080 | 851 | property_table_matches (const void *ap, const void *bp) |
43cd72b9 BW |
852 | { |
853 | const property_table_entry *a = (const property_table_entry *) ap; | |
854 | const property_table_entry *b = (const property_table_entry *) bp; | |
855 | ||
856 | /* Check if one entry overlaps with the other. */ | |
e0001a05 NC |
857 | if ((b->address >= a->address && b->address < (a->address + a->size)) |
858 | || (a->address >= b->address && a->address < (b->address + b->size))) | |
859 | return 0; | |
860 | ||
861 | return (a->address - b->address); | |
862 | } | |
863 | ||
864 | ||
43cd72b9 BW |
865 | /* Get the literal table or property table entries for the given |
866 | section. Sets TABLE_P and returns the number of entries. On | |
867 | error, returns a negative value. */ | |
e0001a05 | 868 | |
4b8e28c7 | 869 | int |
7fa3d080 BW |
870 | xtensa_read_table_entries (bfd *abfd, |
871 | asection *section, | |
872 | property_table_entry **table_p, | |
873 | const char *sec_name, | |
874 | bfd_boolean output_addr) | |
e0001a05 NC |
875 | { |
876 | asection *table_section; | |
e0001a05 NC |
877 | bfd_size_type table_size = 0; |
878 | bfd_byte *table_data; | |
879 | property_table_entry *blocks; | |
e4115460 | 880 | int blk, block_count; |
e0001a05 | 881 | bfd_size_type num_records; |
bcc2cc8e BW |
882 | Elf_Internal_Rela *internal_relocs, *irel, *rel_end; |
883 | bfd_vma section_addr, off; | |
43cd72b9 | 884 | flagword predef_flags; |
bcc2cc8e | 885 | bfd_size_type table_entry_size, section_limit; |
43cd72b9 BW |
886 | |
887 | if (!section | |
888 | || !(section->flags & SEC_ALLOC) | |
889 | || (section->flags & SEC_DEBUGGING)) | |
890 | { | |
891 | *table_p = NULL; | |
892 | return 0; | |
893 | } | |
e0001a05 | 894 | |
74869ac7 | 895 | table_section = xtensa_get_property_section (section, sec_name); |
43cd72b9 | 896 | if (table_section) |
eea6121a | 897 | table_size = table_section->size; |
43cd72b9 | 898 | |
68ffbac6 | 899 | if (table_size == 0) |
e0001a05 NC |
900 | { |
901 | *table_p = NULL; | |
902 | return 0; | |
903 | } | |
904 | ||
43cd72b9 BW |
905 | predef_flags = xtensa_get_property_predef_flags (table_section); |
906 | table_entry_size = 12; | |
907 | if (predef_flags) | |
908 | table_entry_size -= 4; | |
909 | ||
910 | num_records = table_size / table_entry_size; | |
e0001a05 NC |
911 | table_data = retrieve_contents (abfd, table_section, TRUE); |
912 | blocks = (property_table_entry *) | |
913 | bfd_malloc (num_records * sizeof (property_table_entry)); | |
914 | block_count = 0; | |
43cd72b9 BW |
915 | |
916 | if (output_addr) | |
917 | section_addr = section->output_section->vma + section->output_offset; | |
918 | else | |
919 | section_addr = section->vma; | |
3ba3bc8c | 920 | |
e0001a05 | 921 | internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); |
3ba3bc8c | 922 | if (internal_relocs && !table_section->reloc_done) |
e0001a05 | 923 | { |
bcc2cc8e BW |
924 | qsort (internal_relocs, table_section->reloc_count, |
925 | sizeof (Elf_Internal_Rela), internal_reloc_compare); | |
926 | irel = internal_relocs; | |
927 | } | |
928 | else | |
929 | irel = NULL; | |
930 | ||
931 | section_limit = bfd_get_section_limit (abfd, section); | |
932 | rel_end = internal_relocs + table_section->reloc_count; | |
933 | ||
68ffbac6 | 934 | for (off = 0; off < table_size; off += table_entry_size) |
bcc2cc8e BW |
935 | { |
936 | bfd_vma address = bfd_get_32 (abfd, table_data + off); | |
937 | ||
938 | /* Skip any relocations before the current offset. This should help | |
939 | avoid confusion caused by unexpected relocations for the preceding | |
940 | table entry. */ | |
941 | while (irel && | |
942 | (irel->r_offset < off | |
943 | || (irel->r_offset == off | |
944 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE))) | |
945 | { | |
946 | irel += 1; | |
947 | if (irel >= rel_end) | |
948 | irel = 0; | |
949 | } | |
e0001a05 | 950 | |
bcc2cc8e | 951 | if (irel && irel->r_offset == off) |
e0001a05 | 952 | { |
bcc2cc8e BW |
953 | bfd_vma sym_off; |
954 | unsigned long r_symndx = ELF32_R_SYM (irel->r_info); | |
955 | BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32); | |
e0001a05 | 956 | |
bcc2cc8e | 957 | if (get_elf_r_symndx_section (abfd, r_symndx) != section) |
e0001a05 NC |
958 | continue; |
959 | ||
bcc2cc8e BW |
960 | sym_off = get_elf_r_symndx_offset (abfd, r_symndx); |
961 | BFD_ASSERT (sym_off == 0); | |
962 | address += (section_addr + sym_off + irel->r_addend); | |
e0001a05 | 963 | } |
bcc2cc8e | 964 | else |
e0001a05 | 965 | { |
bcc2cc8e BW |
966 | if (address < section_addr |
967 | || address >= section_addr + section_limit) | |
968 | continue; | |
e0001a05 | 969 | } |
bcc2cc8e BW |
970 | |
971 | blocks[block_count].address = address; | |
972 | blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4); | |
973 | if (predef_flags) | |
974 | blocks[block_count].flags = predef_flags; | |
975 | else | |
976 | blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8); | |
977 | block_count++; | |
e0001a05 NC |
978 | } |
979 | ||
980 | release_contents (table_section, table_data); | |
981 | release_internal_relocs (table_section, internal_relocs); | |
982 | ||
43cd72b9 | 983 | if (block_count > 0) |
e0001a05 NC |
984 | { |
985 | /* Now sort them into address order for easy reference. */ | |
986 | qsort (blocks, block_count, sizeof (property_table_entry), | |
987 | property_table_compare); | |
e4115460 BW |
988 | |
989 | /* Check that the table contents are valid. Problems may occur, | |
07d6d2b8 | 990 | for example, if an unrelocated object file is stripped. */ |
e4115460 BW |
991 | for (blk = 1; blk < block_count; blk++) |
992 | { | |
993 | /* The only circumstance where two entries may legitimately | |
994 | have the same address is when one of them is a zero-size | |
995 | placeholder to mark a place where fill can be inserted. | |
996 | The zero-size entry should come first. */ | |
997 | if (blocks[blk - 1].address == blocks[blk].address && | |
998 | blocks[blk - 1].size != 0) | |
999 | { | |
695344c0 | 1000 | /* xgettext:c-format */ |
871b3ab2 | 1001 | _bfd_error_handler (_("%pB(%pA): invalid property table"), |
4eca0228 | 1002 | abfd, section); |
e4115460 BW |
1003 | bfd_set_error (bfd_error_bad_value); |
1004 | free (blocks); | |
1005 | return -1; | |
1006 | } | |
1007 | } | |
e0001a05 | 1008 | } |
43cd72b9 | 1009 | |
e0001a05 NC |
1010 | *table_p = blocks; |
1011 | return block_count; | |
1012 | } | |
1013 | ||
1014 | ||
7fa3d080 BW |
1015 | static property_table_entry * |
1016 | elf_xtensa_find_property_entry (property_table_entry *property_table, | |
1017 | int property_table_size, | |
1018 | bfd_vma addr) | |
e0001a05 NC |
1019 | { |
1020 | property_table_entry entry; | |
43cd72b9 | 1021 | property_table_entry *rv; |
e0001a05 | 1022 | |
43cd72b9 BW |
1023 | if (property_table_size == 0) |
1024 | return NULL; | |
e0001a05 NC |
1025 | |
1026 | entry.address = addr; | |
1027 | entry.size = 1; | |
43cd72b9 | 1028 | entry.flags = 0; |
e0001a05 | 1029 | |
43cd72b9 BW |
1030 | rv = bsearch (&entry, property_table, property_table_size, |
1031 | sizeof (property_table_entry), property_table_matches); | |
1032 | return rv; | |
1033 | } | |
1034 | ||
1035 | ||
1036 | static bfd_boolean | |
7fa3d080 BW |
1037 | elf_xtensa_in_literal_pool (property_table_entry *lit_table, |
1038 | int lit_table_size, | |
1039 | bfd_vma addr) | |
43cd72b9 BW |
1040 | { |
1041 | if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr)) | |
e0001a05 NC |
1042 | return TRUE; |
1043 | ||
1044 | return FALSE; | |
1045 | } | |
1046 | ||
1047 | \f | |
1048 | /* Look through the relocs for a section during the first phase, and | |
1049 | calculate needed space in the dynamic reloc sections. */ | |
1050 | ||
1051 | static bfd_boolean | |
7fa3d080 BW |
1052 | elf_xtensa_check_relocs (bfd *abfd, |
1053 | struct bfd_link_info *info, | |
1054 | asection *sec, | |
1055 | const Elf_Internal_Rela *relocs) | |
e0001a05 | 1056 | { |
f0e6fdb2 | 1057 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
1058 | Elf_Internal_Shdr *symtab_hdr; |
1059 | struct elf_link_hash_entry **sym_hashes; | |
1060 | const Elf_Internal_Rela *rel; | |
1061 | const Elf_Internal_Rela *rel_end; | |
e0001a05 | 1062 | |
c4b126b8 | 1063 | if (bfd_link_relocatable (info)) |
e0001a05 NC |
1064 | return TRUE; |
1065 | ||
28dbbc02 BW |
1066 | BFD_ASSERT (is_xtensa_elf (abfd)); |
1067 | ||
f0e6fdb2 | 1068 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
1069 | if (htab == NULL) |
1070 | return FALSE; | |
1071 | ||
e0001a05 NC |
1072 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
1073 | sym_hashes = elf_sym_hashes (abfd); | |
1074 | ||
e0001a05 NC |
1075 | rel_end = relocs + sec->reloc_count; |
1076 | for (rel = relocs; rel < rel_end; rel++) | |
1077 | { | |
1078 | unsigned int r_type; | |
d42c267e | 1079 | unsigned r_symndx; |
28dbbc02 BW |
1080 | struct elf_link_hash_entry *h = NULL; |
1081 | struct elf_xtensa_link_hash_entry *eh; | |
1082 | int tls_type, old_tls_type; | |
1083 | bfd_boolean is_got = FALSE; | |
1084 | bfd_boolean is_plt = FALSE; | |
1085 | bfd_boolean is_tlsfunc = FALSE; | |
e0001a05 NC |
1086 | |
1087 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1088 | r_type = ELF32_R_TYPE (rel->r_info); | |
1089 | ||
1090 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
1091 | { | |
695344c0 | 1092 | /* xgettext:c-format */ |
871b3ab2 | 1093 | _bfd_error_handler (_("%pB: bad symbol index: %d"), |
4eca0228 | 1094 | abfd, r_symndx); |
e0001a05 NC |
1095 | return FALSE; |
1096 | } | |
1097 | ||
28dbbc02 | 1098 | if (r_symndx >= symtab_hdr->sh_info) |
e0001a05 NC |
1099 | { |
1100 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1101 | while (h->root.type == bfd_link_hash_indirect | |
1102 | || h->root.type == bfd_link_hash_warning) | |
1103 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1104 | } | |
28dbbc02 | 1105 | eh = elf_xtensa_hash_entry (h); |
e0001a05 NC |
1106 | |
1107 | switch (r_type) | |
1108 | { | |
28dbbc02 | 1109 | case R_XTENSA_TLSDESC_FN: |
0e1862bb | 1110 | if (bfd_link_pic (info)) |
28dbbc02 BW |
1111 | { |
1112 | tls_type = GOT_TLS_GD; | |
1113 | is_got = TRUE; | |
1114 | is_tlsfunc = TRUE; | |
1115 | } | |
1116 | else | |
1117 | tls_type = GOT_TLS_IE; | |
1118 | break; | |
e0001a05 | 1119 | |
28dbbc02 | 1120 | case R_XTENSA_TLSDESC_ARG: |
0e1862bb | 1121 | if (bfd_link_pic (info)) |
e0001a05 | 1122 | { |
28dbbc02 BW |
1123 | tls_type = GOT_TLS_GD; |
1124 | is_got = TRUE; | |
1125 | } | |
1126 | else | |
1127 | { | |
1128 | tls_type = GOT_TLS_IE; | |
1129 | if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) | |
1130 | is_got = TRUE; | |
e0001a05 NC |
1131 | } |
1132 | break; | |
1133 | ||
28dbbc02 | 1134 | case R_XTENSA_TLS_DTPOFF: |
0e1862bb | 1135 | if (bfd_link_pic (info)) |
28dbbc02 BW |
1136 | tls_type = GOT_TLS_GD; |
1137 | else | |
1138 | tls_type = GOT_TLS_IE; | |
1139 | break; | |
1140 | ||
1141 | case R_XTENSA_TLS_TPOFF: | |
1142 | tls_type = GOT_TLS_IE; | |
0e1862bb | 1143 | if (bfd_link_pic (info)) |
28dbbc02 | 1144 | info->flags |= DF_STATIC_TLS; |
0e1862bb | 1145 | if (bfd_link_pic (info) || h) |
28dbbc02 BW |
1146 | is_got = TRUE; |
1147 | break; | |
1148 | ||
1149 | case R_XTENSA_32: | |
1150 | tls_type = GOT_NORMAL; | |
1151 | is_got = TRUE; | |
1152 | break; | |
1153 | ||
e0001a05 | 1154 | case R_XTENSA_PLT: |
28dbbc02 BW |
1155 | tls_type = GOT_NORMAL; |
1156 | is_plt = TRUE; | |
1157 | break; | |
e0001a05 | 1158 | |
28dbbc02 BW |
1159 | case R_XTENSA_GNU_VTINHERIT: |
1160 | /* This relocation describes the C++ object vtable hierarchy. | |
1161 | Reconstruct it for later use during GC. */ | |
1162 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
1163 | return FALSE; | |
1164 | continue; | |
1165 | ||
1166 | case R_XTENSA_GNU_VTENTRY: | |
1167 | /* This relocation describes which C++ vtable entries are actually | |
1168 | used. Record for later use during GC. */ | |
a0ea3a14 | 1169 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
28dbbc02 BW |
1170 | return FALSE; |
1171 | continue; | |
1172 | ||
1173 | default: | |
1174 | /* Nothing to do for any other relocations. */ | |
1175 | continue; | |
1176 | } | |
1177 | ||
1178 | if (h) | |
1179 | { | |
1180 | if (is_plt) | |
e0001a05 | 1181 | { |
b45329f9 BW |
1182 | if (h->plt.refcount <= 0) |
1183 | { | |
1184 | h->needs_plt = 1; | |
1185 | h->plt.refcount = 1; | |
1186 | } | |
1187 | else | |
1188 | h->plt.refcount += 1; | |
e0001a05 NC |
1189 | |
1190 | /* Keep track of the total PLT relocation count even if we | |
1191 | don't yet know whether the dynamic sections will be | |
1192 | created. */ | |
f0e6fdb2 | 1193 | htab->plt_reloc_count += 1; |
e0001a05 NC |
1194 | |
1195 | if (elf_hash_table (info)->dynamic_sections_created) | |
1196 | { | |
f0e6fdb2 | 1197 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1198 | return FALSE; |
1199 | } | |
1200 | } | |
28dbbc02 | 1201 | else if (is_got) |
b45329f9 BW |
1202 | { |
1203 | if (h->got.refcount <= 0) | |
1204 | h->got.refcount = 1; | |
1205 | else | |
1206 | h->got.refcount += 1; | |
1207 | } | |
28dbbc02 BW |
1208 | |
1209 | if (is_tlsfunc) | |
1210 | eh->tlsfunc_refcount += 1; | |
e0001a05 | 1211 | |
28dbbc02 BW |
1212 | old_tls_type = eh->tls_type; |
1213 | } | |
1214 | else | |
1215 | { | |
1216 | /* Allocate storage the first time. */ | |
1217 | if (elf_local_got_refcounts (abfd) == NULL) | |
e0001a05 | 1218 | { |
28dbbc02 BW |
1219 | bfd_size_type size = symtab_hdr->sh_info; |
1220 | void *mem; | |
e0001a05 | 1221 | |
28dbbc02 BW |
1222 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); |
1223 | if (mem == NULL) | |
1224 | return FALSE; | |
1225 | elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem; | |
e0001a05 | 1226 | |
28dbbc02 BW |
1227 | mem = bfd_zalloc (abfd, size); |
1228 | if (mem == NULL) | |
1229 | return FALSE; | |
1230 | elf_xtensa_local_got_tls_type (abfd) = (char *) mem; | |
1231 | ||
1232 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); | |
1233 | if (mem == NULL) | |
1234 | return FALSE; | |
1235 | elf_xtensa_local_tlsfunc_refcounts (abfd) | |
1236 | = (bfd_signed_vma *) mem; | |
e0001a05 | 1237 | } |
e0001a05 | 1238 | |
28dbbc02 BW |
1239 | /* This is a global offset table entry for a local symbol. */ |
1240 | if (is_got || is_plt) | |
1241 | elf_local_got_refcounts (abfd) [r_symndx] += 1; | |
e0001a05 | 1242 | |
28dbbc02 BW |
1243 | if (is_tlsfunc) |
1244 | elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1; | |
e0001a05 | 1245 | |
28dbbc02 BW |
1246 | old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx]; |
1247 | } | |
1248 | ||
1249 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) | |
1250 | tls_type |= old_tls_type; | |
1251 | /* If a TLS symbol is accessed using IE at least once, | |
1252 | there is no point to use a dynamic model for it. */ | |
1253 | else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN | |
1254 | && ((old_tls_type & GOT_TLS_GD) == 0 | |
1255 | || (tls_type & GOT_TLS_IE) == 0)) | |
1256 | { | |
1257 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD)) | |
1258 | tls_type = old_tls_type; | |
1259 | else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD)) | |
1260 | tls_type |= old_tls_type; | |
1261 | else | |
1262 | { | |
4eca0228 | 1263 | _bfd_error_handler |
695344c0 | 1264 | /* xgettext:c-format */ |
871b3ab2 | 1265 | (_("%pB: `%s' accessed both as normal and thread local symbol"), |
28dbbc02 BW |
1266 | abfd, |
1267 | h ? h->root.root.string : "<local>"); | |
1268 | return FALSE; | |
1269 | } | |
1270 | } | |
1271 | ||
1272 | if (old_tls_type != tls_type) | |
1273 | { | |
1274 | if (eh) | |
1275 | eh->tls_type = tls_type; | |
1276 | else | |
1277 | elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type; | |
e0001a05 NC |
1278 | } |
1279 | } | |
1280 | ||
e0001a05 NC |
1281 | return TRUE; |
1282 | } | |
1283 | ||
1284 | ||
95147441 BW |
1285 | static void |
1286 | elf_xtensa_make_sym_local (struct bfd_link_info *info, | |
07d6d2b8 | 1287 | struct elf_link_hash_entry *h) |
95147441 | 1288 | { |
0e1862bb | 1289 | if (bfd_link_pic (info)) |
95147441 BW |
1290 | { |
1291 | if (h->plt.refcount > 0) | |
07d6d2b8 | 1292 | { |
95147441 BW |
1293 | /* For shared objects, there's no need for PLT entries for local |
1294 | symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */ | |
07d6d2b8 AM |
1295 | if (h->got.refcount < 0) |
1296 | h->got.refcount = 0; | |
1297 | h->got.refcount += h->plt.refcount; | |
1298 | h->plt.refcount = 0; | |
1299 | } | |
95147441 BW |
1300 | } |
1301 | else | |
1302 | { | |
1303 | /* Don't need any dynamic relocations at all. */ | |
1304 | h->plt.refcount = 0; | |
1305 | h->got.refcount = 0; | |
1306 | } | |
1307 | } | |
1308 | ||
1309 | ||
1310 | static void | |
1311 | elf_xtensa_hide_symbol (struct bfd_link_info *info, | |
07d6d2b8 AM |
1312 | struct elf_link_hash_entry *h, |
1313 | bfd_boolean force_local) | |
95147441 BW |
1314 | { |
1315 | /* For a shared link, move the plt refcount to the got refcount to leave | |
1316 | space for RELATIVE relocs. */ | |
1317 | elf_xtensa_make_sym_local (info, h); | |
1318 | ||
1319 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); | |
1320 | } | |
1321 | ||
1322 | ||
e0001a05 NC |
1323 | /* Return the section that should be marked against GC for a given |
1324 | relocation. */ | |
1325 | ||
1326 | static asection * | |
7fa3d080 | 1327 | elf_xtensa_gc_mark_hook (asection *sec, |
07adf181 | 1328 | struct bfd_link_info *info, |
7fa3d080 BW |
1329 | Elf_Internal_Rela *rel, |
1330 | struct elf_link_hash_entry *h, | |
1331 | Elf_Internal_Sym *sym) | |
e0001a05 | 1332 | { |
e1e5c0b5 BW |
1333 | /* Property sections are marked "KEEP" in the linker scripts, but they |
1334 | should not cause other sections to be marked. (This approach relies | |
1335 | on elf_xtensa_discard_info to remove property table entries that | |
1336 | describe discarded sections. Alternatively, it might be more | |
1337 | efficient to avoid using "KEEP" in the linker scripts and instead use | |
1338 | the gc_mark_extra_sections hook to mark only the property sections | |
1339 | that describe marked sections. That alternative does not work well | |
1340 | with the current property table sections, which do not correspond | |
1341 | one-to-one with the sections they describe, but that should be fixed | |
1342 | someday.) */ | |
1343 | if (xtensa_is_property_section (sec)) | |
1344 | return NULL; | |
1345 | ||
07adf181 AM |
1346 | if (h != NULL) |
1347 | switch (ELF32_R_TYPE (rel->r_info)) | |
1348 | { | |
1349 | case R_XTENSA_GNU_VTINHERIT: | |
1350 | case R_XTENSA_GNU_VTENTRY: | |
1351 | return NULL; | |
1352 | } | |
1353 | ||
1354 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | |
e0001a05 NC |
1355 | } |
1356 | ||
7fa3d080 | 1357 | |
e0001a05 NC |
1358 | /* Create all the dynamic sections. */ |
1359 | ||
1360 | static bfd_boolean | |
7fa3d080 | 1361 | elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
e0001a05 | 1362 | { |
f0e6fdb2 | 1363 | struct elf_xtensa_link_hash_table *htab; |
e901de89 | 1364 | flagword flags, noalloc_flags; |
f0e6fdb2 BW |
1365 | |
1366 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1367 | if (htab == NULL) |
1368 | return FALSE; | |
e0001a05 NC |
1369 | |
1370 | /* First do all the standard stuff. */ | |
1371 | if (! _bfd_elf_create_dynamic_sections (dynobj, info)) | |
1372 | return FALSE; | |
1373 | ||
1374 | /* Create any extra PLT sections in case check_relocs has already | |
1375 | been called on all the non-dynamic input files. */ | |
f0e6fdb2 | 1376 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1377 | return FALSE; |
1378 | ||
e901de89 BW |
1379 | noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
1380 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1381 | flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; | |
e0001a05 NC |
1382 | |
1383 | /* Mark the ".got.plt" section READONLY. */ | |
ce558b89 | 1384 | if (htab->elf.sgotplt == NULL |
fd361982 | 1385 | || !bfd_set_section_flags (htab->elf.sgotplt, flags)) |
e0001a05 NC |
1386 | return FALSE; |
1387 | ||
e901de89 | 1388 | /* Create ".got.loc" (literal tables for use by dynamic linker). */ |
3d4d4302 AM |
1389 | htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc", |
1390 | flags); | |
f0e6fdb2 | 1391 | if (htab->sgotloc == NULL |
fd361982 | 1392 | || !bfd_set_section_alignment (htab->sgotloc, 2)) |
e901de89 BW |
1393 | return FALSE; |
1394 | ||
e0001a05 | 1395 | /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ |
3d4d4302 AM |
1396 | htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt", |
1397 | noalloc_flags); | |
f0e6fdb2 | 1398 | if (htab->spltlittbl == NULL |
fd361982 | 1399 | || !bfd_set_section_alignment (htab->spltlittbl, 2)) |
e0001a05 NC |
1400 | return FALSE; |
1401 | ||
1402 | return TRUE; | |
1403 | } | |
1404 | ||
1405 | ||
1406 | static bfd_boolean | |
f0e6fdb2 | 1407 | add_extra_plt_sections (struct bfd_link_info *info, int count) |
e0001a05 | 1408 | { |
f0e6fdb2 | 1409 | bfd *dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
1410 | int chunk; |
1411 | ||
1412 | /* Iterate over all chunks except 0 which uses the standard ".plt" and | |
1413 | ".got.plt" sections. */ | |
1414 | for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) | |
1415 | { | |
1416 | char *sname; | |
1417 | flagword flags; | |
1418 | asection *s; | |
1419 | ||
1420 | /* Stop when we find a section has already been created. */ | |
f0e6fdb2 | 1421 | if (elf_xtensa_get_plt_section (info, chunk)) |
e0001a05 NC |
1422 | break; |
1423 | ||
1424 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
1425 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1426 | ||
1427 | sname = (char *) bfd_malloc (10); | |
1428 | sprintf (sname, ".plt.%u", chunk); | |
3d4d4302 | 1429 | s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE); |
e0001a05 | 1430 | if (s == NULL |
fd361982 | 1431 | || !bfd_set_section_alignment (s, 2)) |
e0001a05 NC |
1432 | return FALSE; |
1433 | ||
1434 | sname = (char *) bfd_malloc (14); | |
1435 | sprintf (sname, ".got.plt.%u", chunk); | |
3d4d4302 | 1436 | s = bfd_make_section_anyway_with_flags (dynobj, sname, flags); |
e0001a05 | 1437 | if (s == NULL |
fd361982 | 1438 | || !bfd_set_section_alignment (s, 2)) |
e0001a05 NC |
1439 | return FALSE; |
1440 | } | |
1441 | ||
1442 | return TRUE; | |
1443 | } | |
1444 | ||
1445 | ||
1446 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1447 | regular object. The current definition is in some section of the | |
1448 | dynamic object, but we're not including those sections. We have to | |
1449 | change the definition to something the rest of the link can | |
1450 | understand. */ | |
1451 | ||
1452 | static bfd_boolean | |
7fa3d080 BW |
1453 | elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
1454 | struct elf_link_hash_entry *h) | |
e0001a05 NC |
1455 | { |
1456 | /* If this is a weak symbol, and there is a real definition, the | |
1457 | processor independent code will have arranged for us to see the | |
1458 | real definition first, and we can just use the same value. */ | |
60d67dc8 | 1459 | if (h->is_weakalias) |
e0001a05 | 1460 | { |
60d67dc8 AM |
1461 | struct elf_link_hash_entry *def = weakdef (h); |
1462 | BFD_ASSERT (def->root.type == bfd_link_hash_defined); | |
1463 | h->root.u.def.section = def->root.u.def.section; | |
1464 | h->root.u.def.value = def->root.u.def.value; | |
e0001a05 NC |
1465 | return TRUE; |
1466 | } | |
1467 | ||
1468 | /* This is a reference to a symbol defined by a dynamic object. The | |
1469 | reference must go through the GOT, so there's no need for COPY relocs, | |
1470 | .dynbss, etc. */ | |
1471 | ||
1472 | return TRUE; | |
1473 | } | |
1474 | ||
1475 | ||
e0001a05 | 1476 | static bfd_boolean |
f1ab2340 | 1477 | elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg) |
e0001a05 | 1478 | { |
f1ab2340 BW |
1479 | struct bfd_link_info *info; |
1480 | struct elf_xtensa_link_hash_table *htab; | |
28dbbc02 | 1481 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h); |
e0001a05 | 1482 | |
f1ab2340 BW |
1483 | if (h->root.type == bfd_link_hash_indirect) |
1484 | return TRUE; | |
e0001a05 | 1485 | |
f1ab2340 BW |
1486 | info = (struct bfd_link_info *) arg; |
1487 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1488 | if (htab == NULL) |
1489 | return FALSE; | |
e0001a05 | 1490 | |
28dbbc02 BW |
1491 | /* If we saw any use of an IE model for this symbol, we can then optimize |
1492 | away GOT entries for any TLSDESC_FN relocs. */ | |
1493 | if ((eh->tls_type & GOT_TLS_IE) != 0) | |
1494 | { | |
1495 | BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount); | |
1496 | h->got.refcount -= eh->tlsfunc_refcount; | |
1497 | } | |
e0001a05 | 1498 | |
28dbbc02 | 1499 | if (! elf_xtensa_dynamic_symbol_p (h, info)) |
95147441 | 1500 | elf_xtensa_make_sym_local (info, h); |
e0001a05 | 1501 | |
c451bb34 MF |
1502 | if (! elf_xtensa_dynamic_symbol_p (h, info) |
1503 | && h->root.type == bfd_link_hash_undefweak) | |
1504 | return TRUE; | |
1505 | ||
f1ab2340 | 1506 | if (h->plt.refcount > 0) |
ce558b89 | 1507 | htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1508 | |
1509 | if (h->got.refcount > 0) | |
ce558b89 | 1510 | htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1511 | |
1512 | return TRUE; | |
1513 | } | |
1514 | ||
1515 | ||
1516 | static void | |
f0e6fdb2 | 1517 | elf_xtensa_allocate_local_got_size (struct bfd_link_info *info) |
e0001a05 | 1518 | { |
f0e6fdb2 | 1519 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
1520 | bfd *i; |
1521 | ||
f0e6fdb2 | 1522 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
1523 | if (htab == NULL) |
1524 | return; | |
f0e6fdb2 | 1525 | |
c72f2fb2 | 1526 | for (i = info->input_bfds; i; i = i->link.next) |
e0001a05 NC |
1527 | { |
1528 | bfd_signed_vma *local_got_refcounts; | |
1529 | bfd_size_type j, cnt; | |
1530 | Elf_Internal_Shdr *symtab_hdr; | |
1531 | ||
1532 | local_got_refcounts = elf_local_got_refcounts (i); | |
1533 | if (!local_got_refcounts) | |
1534 | continue; | |
1535 | ||
1536 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
1537 | cnt = symtab_hdr->sh_info; | |
1538 | ||
1539 | for (j = 0; j < cnt; ++j) | |
1540 | { | |
28dbbc02 BW |
1541 | /* If we saw any use of an IE model for this symbol, we can |
1542 | then optimize away GOT entries for any TLSDESC_FN relocs. */ | |
1543 | if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0) | |
1544 | { | |
1545 | bfd_signed_vma *tlsfunc_refcount | |
1546 | = &elf_xtensa_local_tlsfunc_refcounts (i) [j]; | |
1547 | BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount); | |
1548 | local_got_refcounts[j] -= *tlsfunc_refcount; | |
1549 | } | |
1550 | ||
e0001a05 | 1551 | if (local_got_refcounts[j] > 0) |
ce558b89 AM |
1552 | htab->elf.srelgot->size += (local_got_refcounts[j] |
1553 | * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1554 | } |
1555 | } | |
1556 | } | |
1557 | ||
1558 | ||
1559 | /* Set the sizes of the dynamic sections. */ | |
1560 | ||
1561 | static bfd_boolean | |
7fa3d080 BW |
1562 | elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
1563 | struct bfd_link_info *info) | |
e0001a05 | 1564 | { |
f0e6fdb2 | 1565 | struct elf_xtensa_link_hash_table *htab; |
e901de89 BW |
1566 | bfd *dynobj, *abfd; |
1567 | asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; | |
e0001a05 NC |
1568 | bfd_boolean relplt, relgot; |
1569 | int plt_entries, plt_chunks, chunk; | |
1570 | ||
1571 | plt_entries = 0; | |
1572 | plt_chunks = 0; | |
e0001a05 | 1573 | |
f0e6fdb2 | 1574 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
1575 | if (htab == NULL) |
1576 | return FALSE; | |
1577 | ||
e0001a05 NC |
1578 | dynobj = elf_hash_table (info)->dynobj; |
1579 | if (dynobj == NULL) | |
1580 | abort (); | |
ce558b89 AM |
1581 | srelgot = htab->elf.srelgot; |
1582 | srelplt = htab->elf.srelplt; | |
e0001a05 NC |
1583 | |
1584 | if (elf_hash_table (info)->dynamic_sections_created) | |
1585 | { | |
ce558b89 AM |
1586 | BFD_ASSERT (htab->elf.srelgot != NULL |
1587 | && htab->elf.srelplt != NULL | |
1588 | && htab->elf.sgot != NULL | |
f0e6fdb2 BW |
1589 | && htab->spltlittbl != NULL |
1590 | && htab->sgotloc != NULL); | |
1591 | ||
e0001a05 | 1592 | /* Set the contents of the .interp section to the interpreter. */ |
9b8b325a | 1593 | if (bfd_link_executable (info) && !info->nointerp) |
e0001a05 | 1594 | { |
3d4d4302 | 1595 | s = bfd_get_linker_section (dynobj, ".interp"); |
e0001a05 NC |
1596 | if (s == NULL) |
1597 | abort (); | |
eea6121a | 1598 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
e0001a05 NC |
1599 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1600 | } | |
1601 | ||
1602 | /* Allocate room for one word in ".got". */ | |
ce558b89 | 1603 | htab->elf.sgot->size = 4; |
e0001a05 | 1604 | |
f1ab2340 BW |
1605 | /* Allocate space in ".rela.got" for literals that reference global |
1606 | symbols and space in ".rela.plt" for literals that have PLT | |
1607 | entries. */ | |
e0001a05 | 1608 | elf_link_hash_traverse (elf_hash_table (info), |
f1ab2340 | 1609 | elf_xtensa_allocate_dynrelocs, |
7fa3d080 | 1610 | (void *) info); |
e0001a05 | 1611 | |
e0001a05 NC |
1612 | /* If we are generating a shared object, we also need space in |
1613 | ".rela.got" for R_XTENSA_RELATIVE relocs for literals that | |
1614 | reference local symbols. */ | |
0e1862bb | 1615 | if (bfd_link_pic (info)) |
f0e6fdb2 | 1616 | elf_xtensa_allocate_local_got_size (info); |
e0001a05 | 1617 | |
e0001a05 NC |
1618 | /* Allocate space in ".plt" to match the size of ".rela.plt". For |
1619 | each PLT entry, we need the PLT code plus a 4-byte literal. | |
1620 | For each chunk of ".plt", we also need two more 4-byte | |
1621 | literals, two corresponding entries in ".rela.got", and an | |
1622 | 8-byte entry in ".xt.lit.plt". */ | |
f0e6fdb2 | 1623 | spltlittbl = htab->spltlittbl; |
eea6121a | 1624 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
1625 | plt_chunks = |
1626 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
1627 | ||
1628 | /* Iterate over all the PLT chunks, including any extra sections | |
1629 | created earlier because the initial count of PLT relocations | |
1630 | was an overestimate. */ | |
1631 | for (chunk = 0; | |
f0e6fdb2 | 1632 | (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL; |
e0001a05 NC |
1633 | chunk++) |
1634 | { | |
1635 | int chunk_entries; | |
1636 | ||
f0e6fdb2 BW |
1637 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
1638 | BFD_ASSERT (sgotplt != NULL); | |
e0001a05 NC |
1639 | |
1640 | if (chunk < plt_chunks - 1) | |
1641 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
1642 | else if (chunk == plt_chunks - 1) | |
1643 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
1644 | else | |
1645 | chunk_entries = 0; | |
1646 | ||
1647 | if (chunk_entries != 0) | |
1648 | { | |
eea6121a AM |
1649 | sgotplt->size = 4 * (chunk_entries + 2); |
1650 | splt->size = PLT_ENTRY_SIZE * chunk_entries; | |
1651 | srelgot->size += 2 * sizeof (Elf32_External_Rela); | |
1652 | spltlittbl->size += 8; | |
e0001a05 NC |
1653 | } |
1654 | else | |
1655 | { | |
eea6121a AM |
1656 | sgotplt->size = 0; |
1657 | splt->size = 0; | |
e0001a05 NC |
1658 | } |
1659 | } | |
e901de89 BW |
1660 | |
1661 | /* Allocate space in ".got.loc" to match the total size of all the | |
1662 | literal tables. */ | |
f0e6fdb2 | 1663 | sgotloc = htab->sgotloc; |
eea6121a | 1664 | sgotloc->size = spltlittbl->size; |
c72f2fb2 | 1665 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
e901de89 BW |
1666 | { |
1667 | if (abfd->flags & DYNAMIC) | |
1668 | continue; | |
1669 | for (s = abfd->sections; s != NULL; s = s->next) | |
1670 | { | |
dbaa2011 | 1671 | if (! discarded_section (s) |
b536dc1e BW |
1672 | && xtensa_is_littable_section (s) |
1673 | && s != spltlittbl) | |
eea6121a | 1674 | sgotloc->size += s->size; |
e901de89 BW |
1675 | } |
1676 | } | |
e0001a05 NC |
1677 | } |
1678 | ||
1679 | /* Allocate memory for dynamic sections. */ | |
1680 | relplt = FALSE; | |
1681 | relgot = FALSE; | |
1682 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1683 | { | |
1684 | const char *name; | |
e0001a05 NC |
1685 | |
1686 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1687 | continue; | |
1688 | ||
1689 | /* It's OK to base decisions on the section name, because none | |
1690 | of the dynobj section names depend upon the input files. */ | |
fd361982 | 1691 | name = bfd_section_name (s); |
e0001a05 | 1692 | |
0112cd26 | 1693 | if (CONST_STRNEQ (name, ".rela")) |
e0001a05 | 1694 | { |
c456f082 | 1695 | if (s->size != 0) |
e0001a05 | 1696 | { |
c456f082 AM |
1697 | if (strcmp (name, ".rela.plt") == 0) |
1698 | relplt = TRUE; | |
1699 | else if (strcmp (name, ".rela.got") == 0) | |
1700 | relgot = TRUE; | |
1701 | ||
1702 | /* We use the reloc_count field as a counter if we need | |
1703 | to copy relocs into the output file. */ | |
1704 | s->reloc_count = 0; | |
e0001a05 NC |
1705 | } |
1706 | } | |
0112cd26 NC |
1707 | else if (! CONST_STRNEQ (name, ".plt.") |
1708 | && ! CONST_STRNEQ (name, ".got.plt.") | |
c456f082 | 1709 | && strcmp (name, ".got") != 0 |
e0001a05 NC |
1710 | && strcmp (name, ".plt") != 0 |
1711 | && strcmp (name, ".got.plt") != 0 | |
e901de89 BW |
1712 | && strcmp (name, ".xt.lit.plt") != 0 |
1713 | && strcmp (name, ".got.loc") != 0) | |
e0001a05 NC |
1714 | { |
1715 | /* It's not one of our sections, so don't allocate space. */ | |
1716 | continue; | |
1717 | } | |
1718 | ||
c456f082 AM |
1719 | if (s->size == 0) |
1720 | { | |
1721 | /* If we don't need this section, strip it from the output | |
1722 | file. We must create the ".plt*" and ".got.plt*" | |
1723 | sections in create_dynamic_sections and/or check_relocs | |
1724 | based on a conservative estimate of the PLT relocation | |
1725 | count, because the sections must be created before the | |
1726 | linker maps input sections to output sections. The | |
1727 | linker does that before size_dynamic_sections, where we | |
1728 | compute the exact size of the PLT, so there may be more | |
1729 | of these sections than are actually needed. */ | |
1730 | s->flags |= SEC_EXCLUDE; | |
1731 | } | |
1732 | else if ((s->flags & SEC_HAS_CONTENTS) != 0) | |
e0001a05 NC |
1733 | { |
1734 | /* Allocate memory for the section contents. */ | |
eea6121a | 1735 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
c456f082 | 1736 | if (s->contents == NULL) |
e0001a05 NC |
1737 | return FALSE; |
1738 | } | |
1739 | } | |
1740 | ||
1741 | if (elf_hash_table (info)->dynamic_sections_created) | |
1742 | { | |
1743 | /* Add the special XTENSA_RTLD relocations now. The offsets won't be | |
1744 | known until finish_dynamic_sections, but we need to get the relocs | |
1745 | in place before they are sorted. */ | |
e0001a05 NC |
1746 | for (chunk = 0; chunk < plt_chunks; chunk++) |
1747 | { | |
1748 | Elf_Internal_Rela irela; | |
1749 | bfd_byte *loc; | |
1750 | ||
1751 | irela.r_offset = 0; | |
1752 | irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); | |
1753 | irela.r_addend = 0; | |
1754 | ||
1755 | loc = (srelgot->contents | |
1756 | + srelgot->reloc_count * sizeof (Elf32_External_Rela)); | |
1757 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
1758 | bfd_elf32_swap_reloca_out (output_bfd, &irela, | |
1759 | loc + sizeof (Elf32_External_Rela)); | |
1760 | srelgot->reloc_count += 2; | |
1761 | } | |
1762 | ||
1763 | /* Add some entries to the .dynamic section. We fill in the | |
1764 | values later, in elf_xtensa_finish_dynamic_sections, but we | |
1765 | must add the entries now so that we get the correct size for | |
1766 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1767 | dynamic linker and used by the debugger. */ | |
1768 | #define add_dynamic_entry(TAG, VAL) \ | |
5a580b3a | 1769 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
e0001a05 | 1770 | |
3084d7a2 L |
1771 | if (!_bfd_elf_add_dynamic_tags (output_bfd, info, |
1772 | relplt || relgot)) | |
1773 | return FALSE; | |
e0001a05 | 1774 | |
3084d7a2 | 1775 | if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) |
e0001a05 NC |
1776 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) |
1777 | return FALSE; | |
1778 | } | |
1779 | #undef add_dynamic_entry | |
1780 | ||
1781 | return TRUE; | |
1782 | } | |
1783 | ||
28dbbc02 BW |
1784 | static bfd_boolean |
1785 | elf_xtensa_always_size_sections (bfd *output_bfd, | |
1786 | struct bfd_link_info *info) | |
1787 | { | |
1788 | struct elf_xtensa_link_hash_table *htab; | |
1789 | asection *tls_sec; | |
1790 | ||
1791 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1792 | if (htab == NULL) |
1793 | return FALSE; | |
1794 | ||
28dbbc02 BW |
1795 | tls_sec = htab->elf.tls_sec; |
1796 | ||
1797 | if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0) | |
1798 | { | |
1799 | struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf; | |
1800 | struct bfd_link_hash_entry *bh = &tlsbase->root; | |
1801 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
1802 | ||
1803 | tlsbase->type = STT_TLS; | |
1804 | if (!(_bfd_generic_link_add_one_symbol | |
1805 | (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, | |
1806 | tls_sec, 0, NULL, FALSE, | |
1807 | bed->collect, &bh))) | |
1808 | return FALSE; | |
1809 | tlsbase->def_regular = 1; | |
1810 | tlsbase->other = STV_HIDDEN; | |
1811 | (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); | |
1812 | } | |
1813 | ||
1814 | return TRUE; | |
1815 | } | |
1816 | ||
e0001a05 | 1817 | \f |
28dbbc02 BW |
1818 | /* Return the base VMA address which should be subtracted from real addresses |
1819 | when resolving @dtpoff relocation. | |
1820 | This is PT_TLS segment p_vaddr. */ | |
1821 | ||
1822 | static bfd_vma | |
1823 | dtpoff_base (struct bfd_link_info *info) | |
1824 | { | |
1825 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1826 | if (elf_hash_table (info)->tls_sec == NULL) | |
1827 | return 0; | |
1828 | return elf_hash_table (info)->tls_sec->vma; | |
1829 | } | |
1830 | ||
1831 | /* Return the relocation value for @tpoff relocation | |
1832 | if STT_TLS virtual address is ADDRESS. */ | |
1833 | ||
1834 | static bfd_vma | |
1835 | tpoff (struct bfd_link_info *info, bfd_vma address) | |
1836 | { | |
1837 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
1838 | bfd_vma base; | |
1839 | ||
1840 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1841 | if (htab->tls_sec == NULL) | |
1842 | return 0; | |
1843 | base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); | |
1844 | return address - htab->tls_sec->vma + base; | |
1845 | } | |
1846 | ||
e0001a05 NC |
1847 | /* Perform the specified relocation. The instruction at (contents + address) |
1848 | is modified to set one operand to represent the value in "relocation". The | |
1849 | operand position is determined by the relocation type recorded in the | |
1850 | howto. */ | |
1851 | ||
1852 | #define CALL_SEGMENT_BITS (30) | |
7fa3d080 | 1853 | #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS) |
e0001a05 NC |
1854 | |
1855 | static bfd_reloc_status_type | |
7fa3d080 BW |
1856 | elf_xtensa_do_reloc (reloc_howto_type *howto, |
1857 | bfd *abfd, | |
1858 | asection *input_section, | |
1859 | bfd_vma relocation, | |
1860 | bfd_byte *contents, | |
1861 | bfd_vma address, | |
1862 | bfd_boolean is_weak_undef, | |
1863 | char **error_message) | |
e0001a05 | 1864 | { |
43cd72b9 | 1865 | xtensa_format fmt; |
e0001a05 | 1866 | xtensa_opcode opcode; |
e0001a05 | 1867 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
1868 | static xtensa_insnbuf ibuff = NULL; |
1869 | static xtensa_insnbuf sbuff = NULL; | |
1bbb5f21 | 1870 | bfd_vma self_address; |
43cd72b9 BW |
1871 | bfd_size_type input_size; |
1872 | int opnd, slot; | |
e0001a05 NC |
1873 | uint32 newval; |
1874 | ||
43cd72b9 BW |
1875 | if (!ibuff) |
1876 | { | |
1877 | ibuff = xtensa_insnbuf_alloc (isa); | |
1878 | sbuff = xtensa_insnbuf_alloc (isa); | |
1879 | } | |
1880 | ||
1881 | input_size = bfd_get_section_limit (abfd, input_section); | |
1882 | ||
1bbb5f21 BW |
1883 | /* Calculate the PC address for this instruction. */ |
1884 | self_address = (input_section->output_section->vma | |
1885 | + input_section->output_offset | |
1886 | + address); | |
1887 | ||
e0001a05 NC |
1888 | switch (howto->type) |
1889 | { | |
1890 | case R_XTENSA_NONE: | |
43cd72b9 BW |
1891 | case R_XTENSA_DIFF8: |
1892 | case R_XTENSA_DIFF16: | |
1893 | case R_XTENSA_DIFF32: | |
30ce8e47 MF |
1894 | case R_XTENSA_PDIFF8: |
1895 | case R_XTENSA_PDIFF16: | |
1896 | case R_XTENSA_PDIFF32: | |
1897 | case R_XTENSA_NDIFF8: | |
1898 | case R_XTENSA_NDIFF16: | |
1899 | case R_XTENSA_NDIFF32: | |
28dbbc02 BW |
1900 | case R_XTENSA_TLS_FUNC: |
1901 | case R_XTENSA_TLS_ARG: | |
1902 | case R_XTENSA_TLS_CALL: | |
e0001a05 NC |
1903 | return bfd_reloc_ok; |
1904 | ||
1905 | case R_XTENSA_ASM_EXPAND: | |
1906 | if (!is_weak_undef) | |
1907 | { | |
1908 | /* Check for windowed CALL across a 1GB boundary. */ | |
91d6fa6a NC |
1909 | opcode = get_expanded_call_opcode (contents + address, |
1910 | input_size - address, 0); | |
e0001a05 NC |
1911 | if (is_windowed_call_opcode (opcode)) |
1912 | { | |
43cd72b9 | 1913 | if ((self_address >> CALL_SEGMENT_BITS) |
68ffbac6 | 1914 | != (relocation >> CALL_SEGMENT_BITS)) |
e0001a05 NC |
1915 | { |
1916 | *error_message = "windowed longcall crosses 1GB boundary; " | |
1917 | "return may fail"; | |
1918 | return bfd_reloc_dangerous; | |
1919 | } | |
1920 | } | |
1921 | } | |
1922 | return bfd_reloc_ok; | |
1923 | ||
1924 | case R_XTENSA_ASM_SIMPLIFY: | |
43cd72b9 | 1925 | { |
07d6d2b8 | 1926 | /* Convert the L32R/CALLX to CALL. */ |
43cd72b9 BW |
1927 | bfd_reloc_status_type retval = |
1928 | elf_xtensa_do_asm_simplify (contents, address, input_size, | |
1929 | error_message); | |
e0001a05 | 1930 | if (retval != bfd_reloc_ok) |
43cd72b9 | 1931 | return bfd_reloc_dangerous; |
e0001a05 NC |
1932 | |
1933 | /* The CALL needs to be relocated. Continue below for that part. */ | |
1934 | address += 3; | |
c46082c8 | 1935 | self_address += 3; |
43cd72b9 | 1936 | howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ]; |
e0001a05 NC |
1937 | } |
1938 | break; | |
1939 | ||
1940 | case R_XTENSA_32: | |
e0001a05 NC |
1941 | { |
1942 | bfd_vma x; | |
1943 | x = bfd_get_32 (abfd, contents + address); | |
1944 | x = x + relocation; | |
1945 | bfd_put_32 (abfd, x, contents + address); | |
1946 | } | |
1947 | return bfd_reloc_ok; | |
1bbb5f21 BW |
1948 | |
1949 | case R_XTENSA_32_PCREL: | |
1950 | bfd_put_32 (abfd, relocation - self_address, contents + address); | |
1951 | return bfd_reloc_ok; | |
28dbbc02 BW |
1952 | |
1953 | case R_XTENSA_PLT: | |
1954 | case R_XTENSA_TLSDESC_FN: | |
1955 | case R_XTENSA_TLSDESC_ARG: | |
1956 | case R_XTENSA_TLS_DTPOFF: | |
1957 | case R_XTENSA_TLS_TPOFF: | |
1958 | bfd_put_32 (abfd, relocation, contents + address); | |
1959 | return bfd_reloc_ok; | |
e0001a05 NC |
1960 | } |
1961 | ||
43cd72b9 BW |
1962 | /* Only instruction slot-specific relocations handled below.... */ |
1963 | slot = get_relocation_slot (howto->type); | |
1964 | if (slot == XTENSA_UNDEFINED) | |
e0001a05 | 1965 | { |
43cd72b9 | 1966 | *error_message = "unexpected relocation"; |
e0001a05 NC |
1967 | return bfd_reloc_dangerous; |
1968 | } | |
1969 | ||
43cd72b9 BW |
1970 | /* Read the instruction into a buffer and decode the opcode. */ |
1971 | xtensa_insnbuf_from_chars (isa, ibuff, contents + address, | |
1972 | input_size - address); | |
1973 | fmt = xtensa_format_decode (isa, ibuff); | |
1974 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 1975 | { |
43cd72b9 | 1976 | *error_message = "cannot decode instruction format"; |
e0001a05 NC |
1977 | return bfd_reloc_dangerous; |
1978 | } | |
1979 | ||
43cd72b9 | 1980 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); |
e0001a05 | 1981 | |
43cd72b9 BW |
1982 | opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff); |
1983 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 1984 | { |
43cd72b9 | 1985 | *error_message = "cannot decode instruction opcode"; |
e0001a05 NC |
1986 | return bfd_reloc_dangerous; |
1987 | } | |
1988 | ||
43cd72b9 BW |
1989 | /* Check for opcode-specific "alternate" relocations. */ |
1990 | if (is_alt_relocation (howto->type)) | |
1991 | { | |
1992 | if (opcode == get_l32r_opcode ()) | |
1993 | { | |
1994 | /* Handle the special-case of non-PC-relative L32R instructions. */ | |
1995 | bfd *output_bfd = input_section->output_section->owner; | |
1996 | asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4"); | |
1997 | if (!lit4_sec) | |
1998 | { | |
1999 | *error_message = "relocation references missing .lit4 section"; | |
2000 | return bfd_reloc_dangerous; | |
2001 | } | |
2002 | self_address = ((lit4_sec->vma & ~0xfff) | |
2003 | + 0x40000 - 3); /* -3 to compensate for do_reloc */ | |
2004 | newval = relocation; | |
2005 | opnd = 1; | |
2006 | } | |
2007 | else if (opcode == get_const16_opcode ()) | |
2008 | { | |
00863b8e MF |
2009 | /* ALT used for high 16 bits. |
2010 | Ignore 32-bit overflow. */ | |
2011 | newval = (relocation >> 16) & 0xffff; | |
43cd72b9 BW |
2012 | opnd = 1; |
2013 | } | |
2014 | else | |
2015 | { | |
2016 | /* No other "alternate" relocations currently defined. */ | |
2017 | *error_message = "unexpected relocation"; | |
2018 | return bfd_reloc_dangerous; | |
2019 | } | |
2020 | } | |
2021 | else /* Not an "alternate" relocation.... */ | |
2022 | { | |
2023 | if (opcode == get_const16_opcode ()) | |
2024 | { | |
2025 | newval = relocation & 0xffff; | |
2026 | opnd = 1; | |
2027 | } | |
2028 | else | |
2029 | { | |
2030 | /* ...normal PC-relative relocation.... */ | |
2031 | ||
2032 | /* Determine which operand is being relocated. */ | |
2033 | opnd = get_relocation_opnd (opcode, howto->type); | |
2034 | if (opnd == XTENSA_UNDEFINED) | |
2035 | { | |
2036 | *error_message = "unexpected relocation"; | |
2037 | return bfd_reloc_dangerous; | |
2038 | } | |
2039 | ||
2040 | if (!howto->pc_relative) | |
2041 | { | |
2042 | *error_message = "expected PC-relative relocation"; | |
2043 | return bfd_reloc_dangerous; | |
2044 | } | |
e0001a05 | 2045 | |
43cd72b9 BW |
2046 | newval = relocation; |
2047 | } | |
2048 | } | |
e0001a05 | 2049 | |
43cd72b9 BW |
2050 | /* Apply the relocation. */ |
2051 | if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address) | |
2052 | || xtensa_operand_encode (isa, opcode, opnd, &newval) | |
2053 | || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot, | |
2054 | sbuff, newval)) | |
e0001a05 | 2055 | { |
2db662be BW |
2056 | const char *opname = xtensa_opcode_name (isa, opcode); |
2057 | const char *msg; | |
2058 | ||
2059 | msg = "cannot encode"; | |
2060 | if (is_direct_call_opcode (opcode)) | |
2061 | { | |
2062 | if ((relocation & 0x3) != 0) | |
2063 | msg = "misaligned call target"; | |
2064 | else | |
2065 | msg = "call target out of range"; | |
2066 | } | |
2067 | else if (opcode == get_l32r_opcode ()) | |
2068 | { | |
2069 | if ((relocation & 0x3) != 0) | |
2070 | msg = "misaligned literal target"; | |
2071 | else if (is_alt_relocation (howto->type)) | |
2072 | msg = "literal target out of range (too many literals)"; | |
2073 | else if (self_address > relocation) | |
2074 | msg = "literal target out of range (try using text-section-literals)"; | |
2075 | else | |
2076 | msg = "literal placed after use"; | |
2077 | } | |
2078 | ||
2079 | *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); | |
e0001a05 NC |
2080 | return bfd_reloc_dangerous; |
2081 | } | |
2082 | ||
43cd72b9 | 2083 | /* Check for calls across 1GB boundaries. */ |
e0001a05 NC |
2084 | if (is_direct_call_opcode (opcode) |
2085 | && is_windowed_call_opcode (opcode)) | |
2086 | { | |
43cd72b9 | 2087 | if ((self_address >> CALL_SEGMENT_BITS) |
68ffbac6 | 2088 | != (relocation >> CALL_SEGMENT_BITS)) |
e0001a05 | 2089 | { |
43cd72b9 BW |
2090 | *error_message = |
2091 | "windowed call crosses 1GB boundary; return may fail"; | |
e0001a05 NC |
2092 | return bfd_reloc_dangerous; |
2093 | } | |
2094 | } | |
2095 | ||
43cd72b9 BW |
2096 | /* Write the modified instruction back out of the buffer. */ |
2097 | xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff); | |
2098 | xtensa_insnbuf_to_chars (isa, ibuff, contents + address, | |
2099 | input_size - address); | |
e0001a05 NC |
2100 | return bfd_reloc_ok; |
2101 | } | |
2102 | ||
2103 | ||
2db662be | 2104 | static char * |
7fa3d080 | 2105 | vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...) |
e0001a05 NC |
2106 | { |
2107 | /* To reduce the size of the memory leak, | |
2108 | we only use a single message buffer. */ | |
2109 | static bfd_size_type alloc_size = 0; | |
2110 | static char *message = NULL; | |
2111 | bfd_size_type orig_len, len = 0; | |
2112 | bfd_boolean is_append; | |
1651e569 | 2113 | va_list ap; |
e0001a05 | 2114 | |
1651e569 | 2115 | va_start (ap, arglen); |
68ffbac6 L |
2116 | |
2117 | is_append = (origmsg == message); | |
e0001a05 NC |
2118 | |
2119 | orig_len = strlen (origmsg); | |
2120 | len = orig_len + strlen (fmt) + arglen + 20; | |
2121 | if (len > alloc_size) | |
2122 | { | |
515ef31d | 2123 | message = (char *) bfd_realloc_or_free (message, len); |
e0001a05 NC |
2124 | alloc_size = len; |
2125 | } | |
515ef31d NC |
2126 | if (message != NULL) |
2127 | { | |
2128 | if (!is_append) | |
2129 | memcpy (message, origmsg, orig_len); | |
2130 | vsprintf (message + orig_len, fmt, ap); | |
2131 | } | |
1651e569 | 2132 | va_end (ap); |
e0001a05 NC |
2133 | return message; |
2134 | } | |
2135 | ||
2136 | ||
e0001a05 NC |
2137 | /* This function is registered as the "special_function" in the |
2138 | Xtensa howto for handling simplify operations. | |
2139 | bfd_perform_relocation / bfd_install_relocation use it to | |
2140 | perform (install) the specified relocation. Since this replaces the code | |
2141 | in bfd_perform_relocation, it is basically an Xtensa-specific, | |
2142 | stripped-down version of bfd_perform_relocation. */ | |
2143 | ||
2144 | static bfd_reloc_status_type | |
7fa3d080 BW |
2145 | bfd_elf_xtensa_reloc (bfd *abfd, |
2146 | arelent *reloc_entry, | |
2147 | asymbol *symbol, | |
2148 | void *data, | |
2149 | asection *input_section, | |
2150 | bfd *output_bfd, | |
2151 | char **error_message) | |
e0001a05 NC |
2152 | { |
2153 | bfd_vma relocation; | |
2154 | bfd_reloc_status_type flag; | |
61826503 | 2155 | bfd_size_type octets = (reloc_entry->address |
bb294208 | 2156 | * OCTETS_PER_BYTE (abfd, input_section)); |
e0001a05 NC |
2157 | bfd_vma output_base = 0; |
2158 | reloc_howto_type *howto = reloc_entry->howto; | |
2159 | asection *reloc_target_output_section; | |
2160 | bfd_boolean is_weak_undef; | |
2161 | ||
dd1a320b BW |
2162 | if (!xtensa_default_isa) |
2163 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
2164 | ||
1049f94e | 2165 | /* ELF relocs are against symbols. If we are producing relocatable |
e0001a05 NC |
2166 | output, and the reloc is against an external symbol, the resulting |
2167 | reloc will also be against the same symbol. In such a case, we | |
2168 | don't want to change anything about the way the reloc is handled, | |
2169 | since it will all be done at final link time. This test is similar | |
2170 | to what bfd_elf_generic_reloc does except that it lets relocs with | |
2171 | howto->partial_inplace go through even if the addend is non-zero. | |
2172 | (The real problem is that partial_inplace is set for XTENSA_32 | |
2173 | relocs to begin with, but that's a long story and there's little we | |
2174 | can do about it now....) */ | |
2175 | ||
7fa3d080 | 2176 | if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0) |
e0001a05 NC |
2177 | { |
2178 | reloc_entry->address += input_section->output_offset; | |
2179 | return bfd_reloc_ok; | |
2180 | } | |
2181 | ||
2182 | /* Is the address of the relocation really within the section? */ | |
07515404 | 2183 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
e0001a05 NC |
2184 | return bfd_reloc_outofrange; |
2185 | ||
4cc11e76 | 2186 | /* Work out which section the relocation is targeted at and the |
e0001a05 NC |
2187 | initial relocation command value. */ |
2188 | ||
2189 | /* Get symbol value. (Common symbols are special.) */ | |
2190 | if (bfd_is_com_section (symbol->section)) | |
2191 | relocation = 0; | |
2192 | else | |
2193 | relocation = symbol->value; | |
2194 | ||
2195 | reloc_target_output_section = symbol->section->output_section; | |
2196 | ||
2197 | /* Convert input-section-relative symbol value to absolute. */ | |
2198 | if ((output_bfd && !howto->partial_inplace) | |
2199 | || reloc_target_output_section == NULL) | |
2200 | output_base = 0; | |
2201 | else | |
2202 | output_base = reloc_target_output_section->vma; | |
2203 | ||
2204 | relocation += output_base + symbol->section->output_offset; | |
2205 | ||
2206 | /* Add in supplied addend. */ | |
2207 | relocation += reloc_entry->addend; | |
2208 | ||
2209 | /* Here the variable relocation holds the final address of the | |
2210 | symbol we are relocating against, plus any addend. */ | |
2211 | if (output_bfd) | |
2212 | { | |
2213 | if (!howto->partial_inplace) | |
2214 | { | |
2215 | /* This is a partial relocation, and we want to apply the relocation | |
2216 | to the reloc entry rather than the raw data. Everything except | |
2217 | relocations against section symbols has already been handled | |
2218 | above. */ | |
43cd72b9 | 2219 | |
e0001a05 NC |
2220 | BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); |
2221 | reloc_entry->addend = relocation; | |
2222 | reloc_entry->address += input_section->output_offset; | |
2223 | return bfd_reloc_ok; | |
2224 | } | |
2225 | else | |
2226 | { | |
2227 | reloc_entry->address += input_section->output_offset; | |
2228 | reloc_entry->addend = 0; | |
2229 | } | |
2230 | } | |
2231 | ||
2232 | is_weak_undef = (bfd_is_und_section (symbol->section) | |
2233 | && (symbol->flags & BSF_WEAK) != 0); | |
2234 | flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
2235 | (bfd_byte *) data, (bfd_vma) octets, | |
2236 | is_weak_undef, error_message); | |
2237 | ||
2238 | if (flag == bfd_reloc_dangerous) | |
2239 | { | |
2240 | /* Add the symbol name to the error message. */ | |
2241 | if (! *error_message) | |
2242 | *error_message = ""; | |
2243 | *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", | |
2244 | strlen (symbol->name) + 17, | |
70961b9d AM |
2245 | symbol->name, |
2246 | (unsigned long) reloc_entry->addend); | |
e0001a05 NC |
2247 | } |
2248 | ||
2249 | return flag; | |
2250 | } | |
2251 | ||
7a77f1ac MF |
2252 | int xtensa_abi_choice (void) |
2253 | { | |
2254 | if (elf32xtensa_abi == XTHAL_ABI_UNDEFINED) | |
2255 | return XSHAL_ABI; | |
2256 | else | |
2257 | return elf32xtensa_abi; | |
2258 | } | |
e0001a05 NC |
2259 | |
2260 | /* Set up an entry in the procedure linkage table. */ | |
2261 | ||
2262 | static bfd_vma | |
f0e6fdb2 | 2263 | elf_xtensa_create_plt_entry (struct bfd_link_info *info, |
7fa3d080 BW |
2264 | bfd *output_bfd, |
2265 | unsigned reloc_index) | |
e0001a05 NC |
2266 | { |
2267 | asection *splt, *sgotplt; | |
2268 | bfd_vma plt_base, got_base; | |
92b3f008 | 2269 | bfd_vma code_offset, lit_offset, abi_offset; |
e0001a05 | 2270 | int chunk; |
7a77f1ac | 2271 | int abi = xtensa_abi_choice (); |
e0001a05 NC |
2272 | |
2273 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
2274 | splt = elf_xtensa_get_plt_section (info, chunk); |
2275 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
2276 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
2277 | ||
2278 | plt_base = splt->output_section->vma + splt->output_offset; | |
2279 | got_base = sgotplt->output_section->vma + sgotplt->output_offset; | |
2280 | ||
2281 | lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; | |
2282 | code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; | |
2283 | ||
2284 | /* Fill in the literal entry. This is the offset of the dynamic | |
2285 | relocation entry. */ | |
2286 | bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), | |
2287 | sgotplt->contents + lit_offset); | |
2288 | ||
2289 | /* Fill in the entry in the procedure linkage table. */ | |
2290 | memcpy (splt->contents + code_offset, | |
2291 | (bfd_big_endian (output_bfd) | |
7a77f1ac MF |
2292 | ? elf_xtensa_be_plt_entry[abi != XTHAL_ABI_WINDOWED] |
2293 | : elf_xtensa_le_plt_entry[abi != XTHAL_ABI_WINDOWED]), | |
e0001a05 | 2294 | PLT_ENTRY_SIZE); |
7a77f1ac | 2295 | abi_offset = abi == XTHAL_ABI_WINDOWED ? 3 : 0; |
e0001a05 | 2296 | bfd_put_16 (output_bfd, l32r_offset (got_base + 0, |
92b3f008 MF |
2297 | plt_base + code_offset + abi_offset), |
2298 | splt->contents + code_offset + abi_offset + 1); | |
e0001a05 | 2299 | bfd_put_16 (output_bfd, l32r_offset (got_base + 4, |
92b3f008 MF |
2300 | plt_base + code_offset + abi_offset + 3), |
2301 | splt->contents + code_offset + abi_offset + 4); | |
e0001a05 | 2302 | bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, |
92b3f008 MF |
2303 | plt_base + code_offset + abi_offset + 6), |
2304 | splt->contents + code_offset + abi_offset + 7); | |
e0001a05 NC |
2305 | |
2306 | return plt_base + code_offset; | |
2307 | } | |
2308 | ||
2309 | ||
28dbbc02 BW |
2310 | static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *); |
2311 | ||
2312 | static bfd_boolean | |
2313 | replace_tls_insn (Elf_Internal_Rela *rel, | |
2314 | bfd *abfd, | |
2315 | asection *input_section, | |
2316 | bfd_byte *contents, | |
2317 | bfd_boolean is_ld_model, | |
2318 | char **error_message) | |
2319 | { | |
2320 | static xtensa_insnbuf ibuff = NULL; | |
2321 | static xtensa_insnbuf sbuff = NULL; | |
2322 | xtensa_isa isa = xtensa_default_isa; | |
2323 | xtensa_format fmt; | |
2324 | xtensa_opcode old_op, new_op; | |
2325 | bfd_size_type input_size; | |
2326 | int r_type; | |
2327 | unsigned dest_reg, src_reg; | |
2328 | ||
2329 | if (ibuff == NULL) | |
2330 | { | |
2331 | ibuff = xtensa_insnbuf_alloc (isa); | |
2332 | sbuff = xtensa_insnbuf_alloc (isa); | |
2333 | } | |
2334 | ||
2335 | input_size = bfd_get_section_limit (abfd, input_section); | |
2336 | ||
2337 | /* Read the instruction into a buffer and decode the opcode. */ | |
2338 | xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset, | |
2339 | input_size - rel->r_offset); | |
2340 | fmt = xtensa_format_decode (isa, ibuff); | |
2341 | if (fmt == XTENSA_UNDEFINED) | |
2342 | { | |
2343 | *error_message = "cannot decode instruction format"; | |
2344 | return FALSE; | |
2345 | } | |
2346 | ||
2347 | BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1); | |
2348 | xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff); | |
2349 | ||
2350 | old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff); | |
2351 | if (old_op == XTENSA_UNDEFINED) | |
2352 | { | |
2353 | *error_message = "cannot decode instruction opcode"; | |
2354 | return FALSE; | |
2355 | } | |
2356 | ||
2357 | r_type = ELF32_R_TYPE (rel->r_info); | |
2358 | switch (r_type) | |
2359 | { | |
2360 | case R_XTENSA_TLS_FUNC: | |
2361 | case R_XTENSA_TLS_ARG: | |
2362 | if (old_op != get_l32r_opcode () | |
2363 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, | |
2364 | sbuff, &dest_reg) != 0) | |
2365 | { | |
2366 | *error_message = "cannot extract L32R destination for TLS access"; | |
2367 | return FALSE; | |
2368 | } | |
2369 | break; | |
2370 | ||
2371 | case R_XTENSA_TLS_CALL: | |
2372 | if (! get_indirect_call_dest_reg (old_op, &dest_reg) | |
2373 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, | |
2374 | sbuff, &src_reg) != 0) | |
2375 | { | |
2376 | *error_message = "cannot extract CALLXn operands for TLS access"; | |
2377 | return FALSE; | |
2378 | } | |
2379 | break; | |
2380 | ||
2381 | default: | |
2382 | abort (); | |
2383 | } | |
2384 | ||
2385 | if (is_ld_model) | |
2386 | { | |
2387 | switch (r_type) | |
2388 | { | |
2389 | case R_XTENSA_TLS_FUNC: | |
2390 | case R_XTENSA_TLS_ARG: | |
2391 | /* Change the instruction to a NOP (or "OR a1, a1, a1" for older | |
2392 | versions of Xtensa). */ | |
2393 | new_op = xtensa_opcode_lookup (isa, "nop"); | |
2394 | if (new_op == XTENSA_UNDEFINED) | |
2395 | { | |
2396 | new_op = xtensa_opcode_lookup (isa, "or"); | |
2397 | if (new_op == XTENSA_UNDEFINED | |
2398 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2399 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2400 | sbuff, 1) != 0 | |
2401 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, | |
2402 | sbuff, 1) != 0 | |
2403 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, | |
2404 | sbuff, 1) != 0) | |
2405 | { | |
2406 | *error_message = "cannot encode OR for TLS access"; | |
2407 | return FALSE; | |
2408 | } | |
2409 | } | |
2410 | else | |
2411 | { | |
2412 | if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0) | |
2413 | { | |
2414 | *error_message = "cannot encode NOP for TLS access"; | |
2415 | return FALSE; | |
2416 | } | |
2417 | } | |
2418 | break; | |
2419 | ||
2420 | case R_XTENSA_TLS_CALL: | |
2421 | /* Read THREADPTR into the CALLX's return value register. */ | |
2422 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); | |
2423 | if (new_op == XTENSA_UNDEFINED | |
2424 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2425 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2426 | sbuff, dest_reg + 2) != 0) | |
2427 | { | |
2428 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; | |
2429 | return FALSE; | |
2430 | } | |
2431 | break; | |
2432 | } | |
2433 | } | |
2434 | else | |
2435 | { | |
2436 | switch (r_type) | |
2437 | { | |
2438 | case R_XTENSA_TLS_FUNC: | |
2439 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); | |
2440 | if (new_op == XTENSA_UNDEFINED | |
2441 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2442 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2443 | sbuff, dest_reg) != 0) | |
2444 | { | |
2445 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; | |
2446 | return FALSE; | |
2447 | } | |
2448 | break; | |
2449 | ||
2450 | case R_XTENSA_TLS_ARG: | |
2451 | /* Nothing to do. Keep the original L32R instruction. */ | |
2452 | return TRUE; | |
2453 | ||
2454 | case R_XTENSA_TLS_CALL: | |
2455 | /* Add the CALLX's src register (holding the THREADPTR value) | |
2456 | to the first argument register (holding the offset) and put | |
2457 | the result in the CALLX's return value register. */ | |
2458 | new_op = xtensa_opcode_lookup (isa, "add"); | |
2459 | if (new_op == XTENSA_UNDEFINED | |
2460 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2461 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2462 | sbuff, dest_reg + 2) != 0 | |
2463 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, | |
2464 | sbuff, dest_reg + 2) != 0 | |
2465 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, | |
2466 | sbuff, src_reg) != 0) | |
2467 | { | |
2468 | *error_message = "cannot encode ADD for TLS access"; | |
2469 | return FALSE; | |
2470 | } | |
2471 | break; | |
2472 | } | |
2473 | } | |
2474 | ||
2475 | xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff); | |
2476 | xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset, | |
07d6d2b8 | 2477 | input_size - rel->r_offset); |
28dbbc02 BW |
2478 | |
2479 | return TRUE; | |
2480 | } | |
2481 | ||
2482 | ||
2483 | #define IS_XTENSA_TLS_RELOC(R_TYPE) \ | |
2484 | ((R_TYPE) == R_XTENSA_TLSDESC_FN \ | |
2485 | || (R_TYPE) == R_XTENSA_TLSDESC_ARG \ | |
2486 | || (R_TYPE) == R_XTENSA_TLS_DTPOFF \ | |
2487 | || (R_TYPE) == R_XTENSA_TLS_TPOFF \ | |
2488 | || (R_TYPE) == R_XTENSA_TLS_FUNC \ | |
2489 | || (R_TYPE) == R_XTENSA_TLS_ARG \ | |
2490 | || (R_TYPE) == R_XTENSA_TLS_CALL) | |
2491 | ||
e0001a05 | 2492 | /* Relocate an Xtensa ELF section. This is invoked by the linker for |
1049f94e | 2493 | both relocatable and final links. */ |
e0001a05 NC |
2494 | |
2495 | static bfd_boolean | |
7fa3d080 BW |
2496 | elf_xtensa_relocate_section (bfd *output_bfd, |
2497 | struct bfd_link_info *info, | |
2498 | bfd *input_bfd, | |
2499 | asection *input_section, | |
2500 | bfd_byte *contents, | |
2501 | Elf_Internal_Rela *relocs, | |
2502 | Elf_Internal_Sym *local_syms, | |
2503 | asection **local_sections) | |
e0001a05 | 2504 | { |
f0e6fdb2 | 2505 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
2506 | Elf_Internal_Shdr *symtab_hdr; |
2507 | Elf_Internal_Rela *rel; | |
2508 | Elf_Internal_Rela *relend; | |
2509 | struct elf_link_hash_entry **sym_hashes; | |
88d65ad6 BW |
2510 | property_table_entry *lit_table = 0; |
2511 | int ltblsize = 0; | |
28dbbc02 | 2512 | char *local_got_tls_types; |
e0001a05 | 2513 | char *error_message = NULL; |
43cd72b9 | 2514 | bfd_size_type input_size; |
28dbbc02 | 2515 | int tls_type; |
e0001a05 | 2516 | |
43cd72b9 BW |
2517 | if (!xtensa_default_isa) |
2518 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 2519 | |
7af5d5c4 AM |
2520 | if (!is_xtensa_elf (input_bfd)) |
2521 | { | |
2522 | bfd_set_error (bfd_error_wrong_format); | |
2523 | return FALSE; | |
2524 | } | |
28dbbc02 | 2525 | |
f0e6fdb2 | 2526 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
2527 | if (htab == NULL) |
2528 | return FALSE; | |
2529 | ||
e0001a05 NC |
2530 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
2531 | sym_hashes = elf_sym_hashes (input_bfd); | |
28dbbc02 | 2532 | local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd); |
e0001a05 | 2533 | |
88d65ad6 BW |
2534 | if (elf_hash_table (info)->dynamic_sections_created) |
2535 | { | |
2536 | ltblsize = xtensa_read_table_entries (input_bfd, input_section, | |
43cd72b9 BW |
2537 | &lit_table, XTENSA_LIT_SEC_NAME, |
2538 | TRUE); | |
88d65ad6 BW |
2539 | if (ltblsize < 0) |
2540 | return FALSE; | |
2541 | } | |
2542 | ||
43cd72b9 BW |
2543 | input_size = bfd_get_section_limit (input_bfd, input_section); |
2544 | ||
e0001a05 NC |
2545 | rel = relocs; |
2546 | relend = relocs + input_section->reloc_count; | |
2547 | for (; rel < relend; rel++) | |
2548 | { | |
2549 | int r_type; | |
2550 | reloc_howto_type *howto; | |
2551 | unsigned long r_symndx; | |
2552 | struct elf_link_hash_entry *h; | |
2553 | Elf_Internal_Sym *sym; | |
28dbbc02 BW |
2554 | char sym_type; |
2555 | const char *name; | |
e0001a05 NC |
2556 | asection *sec; |
2557 | bfd_vma relocation; | |
2558 | bfd_reloc_status_type r; | |
2559 | bfd_boolean is_weak_undef; | |
2560 | bfd_boolean unresolved_reloc; | |
9b8c98a4 | 2561 | bfd_boolean warned; |
28dbbc02 | 2562 | bfd_boolean dynamic_symbol; |
e0001a05 NC |
2563 | |
2564 | r_type = ELF32_R_TYPE (rel->r_info); | |
2565 | if (r_type == (int) R_XTENSA_GNU_VTINHERIT | |
2566 | || r_type == (int) R_XTENSA_GNU_VTENTRY) | |
2567 | continue; | |
2568 | ||
2569 | if (r_type < 0 || r_type >= (int) R_XTENSA_max) | |
2570 | { | |
2571 | bfd_set_error (bfd_error_bad_value); | |
2572 | return FALSE; | |
2573 | } | |
2574 | howto = &elf_howto_table[r_type]; | |
2575 | ||
2576 | r_symndx = ELF32_R_SYM (rel->r_info); | |
2577 | ||
ab96bf03 AM |
2578 | h = NULL; |
2579 | sym = NULL; | |
2580 | sec = NULL; | |
2581 | is_weak_undef = FALSE; | |
2582 | unresolved_reloc = FALSE; | |
2583 | warned = FALSE; | |
2584 | ||
0e1862bb | 2585 | if (howto->partial_inplace && !bfd_link_relocatable (info)) |
ab96bf03 AM |
2586 | { |
2587 | /* Because R_XTENSA_32 was made partial_inplace to fix some | |
2588 | problems with DWARF info in partial links, there may be | |
2589 | an addend stored in the contents. Take it out of there | |
2590 | and move it back into the addend field of the reloc. */ | |
2591 | rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); | |
2592 | bfd_put_32 (input_bfd, 0, contents + rel->r_offset); | |
2593 | } | |
2594 | ||
2595 | if (r_symndx < symtab_hdr->sh_info) | |
2596 | { | |
2597 | sym = local_syms + r_symndx; | |
28dbbc02 | 2598 | sym_type = ELF32_ST_TYPE (sym->st_info); |
ab96bf03 AM |
2599 | sec = local_sections[r_symndx]; |
2600 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
2601 | } | |
2602 | else | |
2603 | { | |
62d887d4 L |
2604 | bfd_boolean ignored; |
2605 | ||
ab96bf03 AM |
2606 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
2607 | r_symndx, symtab_hdr, sym_hashes, | |
2608 | h, sec, relocation, | |
62d887d4 | 2609 | unresolved_reloc, warned, ignored); |
ab96bf03 AM |
2610 | |
2611 | if (relocation == 0 | |
2612 | && !unresolved_reloc | |
2613 | && h->root.type == bfd_link_hash_undefweak) | |
2614 | is_weak_undef = TRUE; | |
28dbbc02 BW |
2615 | |
2616 | sym_type = h->type; | |
ab96bf03 AM |
2617 | } |
2618 | ||
dbaa2011 | 2619 | if (sec != NULL && discarded_section (sec)) |
e4067dbb | 2620 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
545fd46b | 2621 | rel, 1, relend, howto, 0, contents); |
ab96bf03 | 2622 | |
0e1862bb | 2623 | if (bfd_link_relocatable (info)) |
e0001a05 | 2624 | { |
7aa09196 SA |
2625 | bfd_vma dest_addr; |
2626 | asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx); | |
2627 | ||
43cd72b9 | 2628 | /* This is a relocatable link. |
e0001a05 NC |
2629 | 1) If the reloc is against a section symbol, adjust |
2630 | according to the output section. | |
2631 | 2) If there is a new target for this relocation, | |
2632 | the new target will be in the same output section. | |
2633 | We adjust the relocation by the output section | |
2634 | difference. */ | |
2635 | ||
2636 | if (relaxing_section) | |
2637 | { | |
2638 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2639 | if (!do_fix_for_relocatable_link (rel, input_bfd, input_section, |
2640 | contents)) | |
2641 | return FALSE; | |
e0001a05 NC |
2642 | } |
2643 | ||
7aa09196 SA |
2644 | dest_addr = sym_sec->output_section->vma + sym_sec->output_offset |
2645 | + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend; | |
2646 | ||
43cd72b9 | 2647 | if (r_type == R_XTENSA_ASM_SIMPLIFY) |
e0001a05 | 2648 | { |
91d6fa6a | 2649 | error_message = NULL; |
e0001a05 NC |
2650 | /* Convert ASM_SIMPLIFY into the simpler relocation |
2651 | so that they never escape a relaxing link. */ | |
43cd72b9 BW |
2652 | r = contract_asm_expansion (contents, input_size, rel, |
2653 | &error_message); | |
2654 | if (r != bfd_reloc_ok) | |
1a72702b AM |
2655 | (*info->callbacks->reloc_dangerous) |
2656 | (info, error_message, | |
2657 | input_bfd, input_section, rel->r_offset); | |
2658 | ||
e0001a05 NC |
2659 | r_type = ELF32_R_TYPE (rel->r_info); |
2660 | } | |
2661 | ||
1049f94e | 2662 | /* This is a relocatable link, so we don't have to change |
e0001a05 NC |
2663 | anything unless the reloc is against a section symbol, |
2664 | in which case we have to adjust according to where the | |
2665 | section symbol winds up in the output section. */ | |
2666 | if (r_symndx < symtab_hdr->sh_info) | |
2667 | { | |
2668 | sym = local_syms + r_symndx; | |
2669 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
2670 | { | |
2671 | sec = local_sections[r_symndx]; | |
2672 | rel->r_addend += sec->output_offset + sym->st_value; | |
2673 | } | |
2674 | } | |
2675 | ||
2676 | /* If there is an addend with a partial_inplace howto, | |
2677 | then move the addend to the contents. This is a hack | |
1049f94e | 2678 | to work around problems with DWARF in relocatable links |
e0001a05 NC |
2679 | with some previous version of BFD. Now we can't easily get |
2680 | rid of the hack without breaking backward compatibility.... */ | |
7aa09196 SA |
2681 | r = bfd_reloc_ok; |
2682 | howto = &elf_howto_table[r_type]; | |
2683 | if (howto->partial_inplace && rel->r_addend) | |
2684 | { | |
2685 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2686 | rel->r_addend, contents, | |
2687 | rel->r_offset, FALSE, | |
2688 | &error_message); | |
2689 | rel->r_addend = 0; | |
2690 | } | |
2691 | else | |
e0001a05 | 2692 | { |
7aa09196 SA |
2693 | /* Put the correct bits in the target instruction, even |
2694 | though the relocation will still be present in the output | |
2695 | file. This makes disassembly clearer, as well as | |
2696 | allowing loadable kernel modules to work without needing | |
2697 | relocations on anything other than calls and l32r's. */ | |
2698 | ||
2699 | /* If it is not in the same section, there is nothing we can do. */ | |
2700 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP && | |
2701 | sym_sec->output_section == input_section->output_section) | |
e0001a05 NC |
2702 | { |
2703 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
7aa09196 | 2704 | dest_addr, contents, |
e0001a05 NC |
2705 | rel->r_offset, FALSE, |
2706 | &error_message); | |
e0001a05 NC |
2707 | } |
2708 | } | |
7aa09196 | 2709 | if (r != bfd_reloc_ok) |
1a72702b AM |
2710 | (*info->callbacks->reloc_dangerous) |
2711 | (info, error_message, | |
2712 | input_bfd, input_section, rel->r_offset); | |
e0001a05 | 2713 | |
1049f94e | 2714 | /* Done with work for relocatable link; continue with next reloc. */ |
e0001a05 NC |
2715 | continue; |
2716 | } | |
2717 | ||
2718 | /* This is a final link. */ | |
2719 | ||
e0001a05 NC |
2720 | if (relaxing_section) |
2721 | { | |
2722 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2723 | do_fix_for_final_link (rel, input_bfd, input_section, contents, |
2724 | &relocation); | |
e0001a05 NC |
2725 | } |
2726 | ||
2727 | /* Sanity check the address. */ | |
43cd72b9 | 2728 | if (rel->r_offset >= input_size |
e0001a05 NC |
2729 | && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) |
2730 | { | |
4eca0228 | 2731 | _bfd_error_handler |
695344c0 | 2732 | /* xgettext:c-format */ |
2dcf00ce AM |
2733 | (_("%pB(%pA+%#" PRIx64 "): " |
2734 | "relocation offset out of range (size=%#" PRIx64 ")"), | |
2735 | input_bfd, input_section, (uint64_t) rel->r_offset, | |
2736 | (uint64_t) input_size); | |
e0001a05 NC |
2737 | bfd_set_error (bfd_error_bad_value); |
2738 | return FALSE; | |
2739 | } | |
2740 | ||
28dbbc02 BW |
2741 | if (h != NULL) |
2742 | name = h->root.root.string; | |
2743 | else | |
e0001a05 | 2744 | { |
28dbbc02 BW |
2745 | name = (bfd_elf_string_from_elf_section |
2746 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | |
2747 | if (name == NULL || *name == '\0') | |
fd361982 | 2748 | name = bfd_section_name (sec); |
28dbbc02 | 2749 | } |
e0001a05 | 2750 | |
cf35638d | 2751 | if (r_symndx != STN_UNDEF |
28dbbc02 BW |
2752 | && r_type != R_XTENSA_NONE |
2753 | && (h == NULL | |
2754 | || h->root.type == bfd_link_hash_defined | |
2755 | || h->root.type == bfd_link_hash_defweak) | |
2756 | && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS)) | |
2757 | { | |
4eca0228 | 2758 | _bfd_error_handler |
28dbbc02 | 2759 | ((sym_type == STT_TLS |
695344c0 | 2760 | /* xgettext:c-format */ |
2dcf00ce | 2761 | ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s") |
695344c0 | 2762 | /* xgettext:c-format */ |
2dcf00ce | 2763 | : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")), |
28dbbc02 BW |
2764 | input_bfd, |
2765 | input_section, | |
2dcf00ce | 2766 | (uint64_t) rel->r_offset, |
28dbbc02 BW |
2767 | howto->name, |
2768 | name); | |
2769 | } | |
2770 | ||
2771 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); | |
2772 | ||
2773 | tls_type = GOT_UNKNOWN; | |
2774 | if (h) | |
2775 | tls_type = elf_xtensa_hash_entry (h)->tls_type; | |
2776 | else if (local_got_tls_types) | |
2777 | tls_type = local_got_tls_types [r_symndx]; | |
2778 | ||
2779 | switch (r_type) | |
2780 | { | |
2781 | case R_XTENSA_32: | |
2782 | case R_XTENSA_PLT: | |
2783 | if (elf_hash_table (info)->dynamic_sections_created | |
2784 | && (input_section->flags & SEC_ALLOC) != 0 | |
0e1862bb | 2785 | && (dynamic_symbol || bfd_link_pic (info))) |
e0001a05 NC |
2786 | { |
2787 | Elf_Internal_Rela outrel; | |
2788 | bfd_byte *loc; | |
2789 | asection *srel; | |
2790 | ||
2791 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
ce558b89 | 2792 | srel = htab->elf.srelplt; |
e0001a05 | 2793 | else |
ce558b89 | 2794 | srel = htab->elf.srelgot; |
e0001a05 NC |
2795 | |
2796 | BFD_ASSERT (srel != NULL); | |
2797 | ||
2798 | outrel.r_offset = | |
2799 | _bfd_elf_section_offset (output_bfd, info, | |
2800 | input_section, rel->r_offset); | |
2801 | ||
2802 | if ((outrel.r_offset | 1) == (bfd_vma) -1) | |
2803 | memset (&outrel, 0, sizeof outrel); | |
2804 | else | |
2805 | { | |
f0578e28 BW |
2806 | outrel.r_offset += (input_section->output_section->vma |
2807 | + input_section->output_offset); | |
e0001a05 | 2808 | |
88d65ad6 BW |
2809 | /* Complain if the relocation is in a read-only section |
2810 | and not in a literal pool. */ | |
2811 | if ((input_section->flags & SEC_READONLY) != 0 | |
2812 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
3ba3bc8c | 2813 | outrel.r_offset)) |
88d65ad6 BW |
2814 | { |
2815 | error_message = | |
2816 | _("dynamic relocation in read-only section"); | |
1a72702b AM |
2817 | (*info->callbacks->reloc_dangerous) |
2818 | (info, error_message, | |
2819 | input_bfd, input_section, rel->r_offset); | |
88d65ad6 BW |
2820 | } |
2821 | ||
e0001a05 NC |
2822 | if (dynamic_symbol) |
2823 | { | |
2824 | outrel.r_addend = rel->r_addend; | |
2825 | rel->r_addend = 0; | |
2826 | ||
2827 | if (r_type == R_XTENSA_32) | |
2828 | { | |
2829 | outrel.r_info = | |
2830 | ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); | |
2831 | relocation = 0; | |
2832 | } | |
2833 | else /* r_type == R_XTENSA_PLT */ | |
2834 | { | |
2835 | outrel.r_info = | |
2836 | ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); | |
2837 | ||
2838 | /* Create the PLT entry and set the initial | |
2839 | contents of the literal entry to the address of | |
2840 | the PLT entry. */ | |
43cd72b9 | 2841 | relocation = |
f0e6fdb2 | 2842 | elf_xtensa_create_plt_entry (info, output_bfd, |
e0001a05 NC |
2843 | srel->reloc_count); |
2844 | } | |
2845 | unresolved_reloc = FALSE; | |
2846 | } | |
c451bb34 | 2847 | else if (!is_weak_undef) |
e0001a05 NC |
2848 | { |
2849 | /* Generate a RELATIVE relocation. */ | |
2850 | outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); | |
2851 | outrel.r_addend = 0; | |
2852 | } | |
c451bb34 MF |
2853 | else |
2854 | { | |
2855 | continue; | |
2856 | } | |
e0001a05 NC |
2857 | } |
2858 | ||
2859 | loc = (srel->contents | |
2860 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2861 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2862 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
eea6121a | 2863 | <= srel->size); |
e0001a05 | 2864 | } |
d9ab3f29 BW |
2865 | else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol) |
2866 | { | |
2867 | /* This should only happen for non-PIC code, which is not | |
2868 | supposed to be used on systems with dynamic linking. | |
2869 | Just ignore these relocations. */ | |
2870 | continue; | |
2871 | } | |
28dbbc02 BW |
2872 | break; |
2873 | ||
2874 | case R_XTENSA_TLS_TPOFF: | |
2875 | /* Switch to LE model for local symbols in an executable. */ | |
0e1862bb | 2876 | if (! bfd_link_pic (info) && ! dynamic_symbol) |
28dbbc02 BW |
2877 | { |
2878 | relocation = tpoff (info, relocation); | |
2879 | break; | |
2880 | } | |
2881 | /* fall through */ | |
2882 | ||
2883 | case R_XTENSA_TLSDESC_FN: | |
2884 | case R_XTENSA_TLSDESC_ARG: | |
2885 | { | |
2886 | if (r_type == R_XTENSA_TLSDESC_FN) | |
2887 | { | |
0e1862bb | 2888 | if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0) |
28dbbc02 BW |
2889 | r_type = R_XTENSA_NONE; |
2890 | } | |
2891 | else if (r_type == R_XTENSA_TLSDESC_ARG) | |
2892 | { | |
0e1862bb | 2893 | if (bfd_link_pic (info)) |
28dbbc02 BW |
2894 | { |
2895 | if ((tls_type & GOT_TLS_IE) != 0) | |
2896 | r_type = R_XTENSA_TLS_TPOFF; | |
2897 | } | |
2898 | else | |
2899 | { | |
2900 | r_type = R_XTENSA_TLS_TPOFF; | |
2901 | if (! dynamic_symbol) | |
2902 | { | |
2903 | relocation = tpoff (info, relocation); | |
2904 | break; | |
2905 | } | |
2906 | } | |
2907 | } | |
2908 | ||
2909 | if (r_type == R_XTENSA_NONE) | |
2910 | /* Nothing to do here; skip to the next reloc. */ | |
2911 | continue; | |
2912 | ||
2913 | if (! elf_hash_table (info)->dynamic_sections_created) | |
2914 | { | |
2915 | error_message = | |
2916 | _("TLS relocation invalid without dynamic sections"); | |
1a72702b AM |
2917 | (*info->callbacks->reloc_dangerous) |
2918 | (info, error_message, | |
2919 | input_bfd, input_section, rel->r_offset); | |
28dbbc02 BW |
2920 | } |
2921 | else | |
2922 | { | |
2923 | Elf_Internal_Rela outrel; | |
2924 | bfd_byte *loc; | |
ce558b89 | 2925 | asection *srel = htab->elf.srelgot; |
28dbbc02 BW |
2926 | int indx; |
2927 | ||
2928 | outrel.r_offset = (input_section->output_section->vma | |
2929 | + input_section->output_offset | |
2930 | + rel->r_offset); | |
2931 | ||
2932 | /* Complain if the relocation is in a read-only section | |
2933 | and not in a literal pool. */ | |
2934 | if ((input_section->flags & SEC_READONLY) != 0 | |
2935 | && ! elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
2936 | outrel.r_offset)) | |
2937 | { | |
2938 | error_message = | |
2939 | _("dynamic relocation in read-only section"); | |
1a72702b AM |
2940 | (*info->callbacks->reloc_dangerous) |
2941 | (info, error_message, | |
2942 | input_bfd, input_section, rel->r_offset); | |
28dbbc02 BW |
2943 | } |
2944 | ||
2945 | indx = h && h->dynindx != -1 ? h->dynindx : 0; | |
2946 | if (indx == 0) | |
2947 | outrel.r_addend = relocation - dtpoff_base (info); | |
2948 | else | |
2949 | outrel.r_addend = 0; | |
2950 | rel->r_addend = 0; | |
2951 | ||
2952 | outrel.r_info = ELF32_R_INFO (indx, r_type); | |
2953 | relocation = 0; | |
2954 | unresolved_reloc = FALSE; | |
2955 | ||
2956 | BFD_ASSERT (srel); | |
2957 | loc = (srel->contents | |
2958 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2959 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2960 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
2961 | <= srel->size); | |
2962 | } | |
2963 | } | |
2964 | break; | |
2965 | ||
2966 | case R_XTENSA_TLS_DTPOFF: | |
0e1862bb | 2967 | if (! bfd_link_pic (info)) |
28dbbc02 BW |
2968 | /* Switch from LD model to LE model. */ |
2969 | relocation = tpoff (info, relocation); | |
2970 | else | |
2971 | relocation -= dtpoff_base (info); | |
2972 | break; | |
2973 | ||
2974 | case R_XTENSA_TLS_FUNC: | |
2975 | case R_XTENSA_TLS_ARG: | |
2976 | case R_XTENSA_TLS_CALL: | |
2977 | /* Check if optimizing to IE or LE model. */ | |
2978 | if ((tls_type & GOT_TLS_IE) != 0) | |
2979 | { | |
2980 | bfd_boolean is_ld_model = | |
2981 | (h && elf_xtensa_hash_entry (h) == htab->tlsbase); | |
2982 | if (! replace_tls_insn (rel, input_bfd, input_section, contents, | |
2983 | is_ld_model, &error_message)) | |
1a72702b AM |
2984 | (*info->callbacks->reloc_dangerous) |
2985 | (info, error_message, | |
2986 | input_bfd, input_section, rel->r_offset); | |
28dbbc02 BW |
2987 | |
2988 | if (r_type != R_XTENSA_TLS_ARG || is_ld_model) | |
2989 | { | |
2990 | /* Skip subsequent relocations on the same instruction. */ | |
2991 | while (rel + 1 < relend && rel[1].r_offset == rel->r_offset) | |
2992 | rel++; | |
2993 | } | |
2994 | } | |
2995 | continue; | |
2996 | ||
2997 | default: | |
2998 | if (elf_hash_table (info)->dynamic_sections_created | |
2999 | && dynamic_symbol && (is_operand_relocation (r_type) | |
3000 | || r_type == R_XTENSA_32_PCREL)) | |
3001 | { | |
3002 | error_message = | |
3003 | vsprint_msg ("invalid relocation for dynamic symbol", ": %s", | |
3004 | strlen (name) + 2, name); | |
1a72702b AM |
3005 | (*info->callbacks->reloc_dangerous) |
3006 | (info, error_message, input_bfd, input_section, rel->r_offset); | |
28dbbc02 BW |
3007 | continue; |
3008 | } | |
3009 | break; | |
e0001a05 NC |
3010 | } |
3011 | ||
3012 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
3013 | because such sections are not SEC_ALLOC and thus ld.so will | |
3014 | not process them. */ | |
3015 | if (unresolved_reloc | |
3016 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
1d5316ab AM |
3017 | && h->def_dynamic) |
3018 | && _bfd_elf_section_offset (output_bfd, info, input_section, | |
3019 | rel->r_offset) != (bfd_vma) -1) | |
bf1747de | 3020 | { |
4eca0228 | 3021 | _bfd_error_handler |
695344c0 | 3022 | /* xgettext:c-format */ |
2dcf00ce AM |
3023 | (_("%pB(%pA+%#" PRIx64 "): " |
3024 | "unresolvable %s relocation against symbol `%s'"), | |
bf1747de BW |
3025 | input_bfd, |
3026 | input_section, | |
2dcf00ce | 3027 | (uint64_t) rel->r_offset, |
bf1747de | 3028 | howto->name, |
28dbbc02 | 3029 | name); |
bf1747de BW |
3030 | return FALSE; |
3031 | } | |
e0001a05 | 3032 | |
28dbbc02 BW |
3033 | /* TLS optimizations may have changed r_type; update "howto". */ |
3034 | howto = &elf_howto_table[r_type]; | |
3035 | ||
e0001a05 NC |
3036 | /* There's no point in calling bfd_perform_relocation here. |
3037 | Just go directly to our "special function". */ | |
3038 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
3039 | relocation + rel->r_addend, | |
3040 | contents, rel->r_offset, is_weak_undef, | |
3041 | &error_message); | |
43cd72b9 | 3042 | |
9b8c98a4 | 3043 | if (r != bfd_reloc_ok && !warned) |
e0001a05 | 3044 | { |
43cd72b9 | 3045 | BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other); |
7fa3d080 | 3046 | BFD_ASSERT (error_message != NULL); |
e0001a05 | 3047 | |
28dbbc02 BW |
3048 | if (rel->r_addend == 0) |
3049 | error_message = vsprint_msg (error_message, ": %s", | |
3050 | strlen (name) + 2, name); | |
e0001a05 | 3051 | else |
28dbbc02 BW |
3052 | error_message = vsprint_msg (error_message, ": (%s+0x%x)", |
3053 | strlen (name) + 22, | |
3054 | name, (int) rel->r_addend); | |
43cd72b9 | 3055 | |
1a72702b AM |
3056 | (*info->callbacks->reloc_dangerous) |
3057 | (info, error_message, input_bfd, input_section, rel->r_offset); | |
e0001a05 NC |
3058 | } |
3059 | } | |
3060 | ||
c9594989 | 3061 | free (lit_table); |
3ba3bc8c BW |
3062 | input_section->reloc_done = TRUE; |
3063 | ||
e0001a05 NC |
3064 | return TRUE; |
3065 | } | |
3066 | ||
3067 | ||
3068 | /* Finish up dynamic symbol handling. There's not much to do here since | |
3069 | the PLT and GOT entries are all set up by relocate_section. */ | |
3070 | ||
3071 | static bfd_boolean | |
7fa3d080 BW |
3072 | elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, |
3073 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
3074 | struct elf_link_hash_entry *h, | |
3075 | Elf_Internal_Sym *sym) | |
e0001a05 | 3076 | { |
bf1747de | 3077 | if (h->needs_plt && !h->def_regular) |
e0001a05 NC |
3078 | { |
3079 | /* Mark the symbol as undefined, rather than as defined in | |
3080 | the .plt section. Leave the value alone. */ | |
3081 | sym->st_shndx = SHN_UNDEF; | |
bf1747de BW |
3082 | /* If the symbol is weak, we do need to clear the value. |
3083 | Otherwise, the PLT entry would provide a definition for | |
3084 | the symbol even if the symbol wasn't defined anywhere, | |
3085 | and so the symbol would never be NULL. */ | |
3086 | if (!h->ref_regular_nonweak) | |
3087 | sym->st_value = 0; | |
e0001a05 NC |
3088 | } |
3089 | ||
3090 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
9637f6ef | 3091 | if (h == elf_hash_table (info)->hdynamic |
22edb2f1 | 3092 | || h == elf_hash_table (info)->hgot) |
e0001a05 NC |
3093 | sym->st_shndx = SHN_ABS; |
3094 | ||
3095 | return TRUE; | |
3096 | } | |
3097 | ||
3098 | ||
3099 | /* Combine adjacent literal table entries in the output. Adjacent | |
3100 | entries within each input section may have been removed during | |
3101 | relaxation, but we repeat the process here, even though it's too late | |
3102 | to shrink the output section, because it's important to minimize the | |
3103 | number of literal table entries to reduce the start-up work for the | |
3104 | runtime linker. Returns the number of remaining table entries or -1 | |
3105 | on error. */ | |
3106 | ||
3107 | static int | |
7fa3d080 BW |
3108 | elf_xtensa_combine_prop_entries (bfd *output_bfd, |
3109 | asection *sxtlit, | |
3110 | asection *sgotloc) | |
e0001a05 | 3111 | { |
e0001a05 NC |
3112 | bfd_byte *contents; |
3113 | property_table_entry *table; | |
e901de89 | 3114 | bfd_size_type section_size, sgotloc_size; |
e0001a05 NC |
3115 | bfd_vma offset; |
3116 | int n, m, num; | |
3117 | ||
eea6121a | 3118 | section_size = sxtlit->size; |
e0001a05 NC |
3119 | BFD_ASSERT (section_size % 8 == 0); |
3120 | num = section_size / 8; | |
3121 | ||
eea6121a | 3122 | sgotloc_size = sgotloc->size; |
e901de89 | 3123 | if (sgotloc_size != section_size) |
b536dc1e | 3124 | { |
4eca0228 | 3125 | _bfd_error_handler |
43cd72b9 | 3126 | (_("internal inconsistency in size of .got.loc section")); |
b536dc1e BW |
3127 | return -1; |
3128 | } | |
e901de89 | 3129 | |
eea6121a AM |
3130 | table = bfd_malloc (num * sizeof (property_table_entry)); |
3131 | if (table == 0) | |
e0001a05 NC |
3132 | return -1; |
3133 | ||
3134 | /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this | |
3135 | propagates to the output section, where it doesn't really apply and | |
eea6121a | 3136 | where it breaks the following call to bfd_malloc_and_get_section. */ |
e901de89 | 3137 | sxtlit->flags &= ~SEC_IN_MEMORY; |
e0001a05 | 3138 | |
eea6121a AM |
3139 | if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) |
3140 | { | |
c9594989 | 3141 | free (contents); |
eea6121a AM |
3142 | free (table); |
3143 | return -1; | |
3144 | } | |
e0001a05 NC |
3145 | |
3146 | /* There should never be any relocations left at this point, so this | |
3147 | is quite a bit easier than what is done during relaxation. */ | |
3148 | ||
3149 | /* Copy the raw contents into a property table array and sort it. */ | |
3150 | offset = 0; | |
3151 | for (n = 0; n < num; n++) | |
3152 | { | |
3153 | table[n].address = bfd_get_32 (output_bfd, &contents[offset]); | |
3154 | table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); | |
3155 | offset += 8; | |
3156 | } | |
3157 | qsort (table, num, sizeof (property_table_entry), property_table_compare); | |
3158 | ||
3159 | for (n = 0; n < num; n++) | |
3160 | { | |
91d6fa6a | 3161 | bfd_boolean remove_entry = FALSE; |
e0001a05 NC |
3162 | |
3163 | if (table[n].size == 0) | |
91d6fa6a NC |
3164 | remove_entry = TRUE; |
3165 | else if (n > 0 | |
3166 | && (table[n-1].address + table[n-1].size == table[n].address)) | |
e0001a05 NC |
3167 | { |
3168 | table[n-1].size += table[n].size; | |
91d6fa6a | 3169 | remove_entry = TRUE; |
e0001a05 NC |
3170 | } |
3171 | ||
91d6fa6a | 3172 | if (remove_entry) |
e0001a05 NC |
3173 | { |
3174 | for (m = n; m < num - 1; m++) | |
3175 | { | |
3176 | table[m].address = table[m+1].address; | |
3177 | table[m].size = table[m+1].size; | |
3178 | } | |
3179 | ||
3180 | n--; | |
3181 | num--; | |
3182 | } | |
3183 | } | |
3184 | ||
3185 | /* Copy the data back to the raw contents. */ | |
3186 | offset = 0; | |
3187 | for (n = 0; n < num; n++) | |
3188 | { | |
3189 | bfd_put_32 (output_bfd, table[n].address, &contents[offset]); | |
3190 | bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); | |
3191 | offset += 8; | |
3192 | } | |
3193 | ||
3194 | /* Clear the removed bytes. */ | |
3195 | if ((bfd_size_type) (num * 8) < section_size) | |
b54d4b07 | 3196 | memset (&contents[num * 8], 0, section_size - num * 8); |
e0001a05 | 3197 | |
e901de89 BW |
3198 | if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, |
3199 | section_size)) | |
e0001a05 NC |
3200 | return -1; |
3201 | ||
e901de89 BW |
3202 | /* Copy the contents to ".got.loc". */ |
3203 | memcpy (sgotloc->contents, contents, section_size); | |
3204 | ||
e0001a05 | 3205 | free (contents); |
b614a702 | 3206 | free (table); |
e0001a05 NC |
3207 | return num; |
3208 | } | |
3209 | ||
3210 | ||
3211 | /* Finish up the dynamic sections. */ | |
3212 | ||
3213 | static bfd_boolean | |
7fa3d080 BW |
3214 | elf_xtensa_finish_dynamic_sections (bfd *output_bfd, |
3215 | struct bfd_link_info *info) | |
e0001a05 | 3216 | { |
f0e6fdb2 | 3217 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 | 3218 | bfd *dynobj; |
f82863d7 | 3219 | asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc; |
e0001a05 | 3220 | Elf32_External_Dyn *dyncon, *dynconend; |
d9ab3f29 | 3221 | int num_xtlit_entries = 0; |
e0001a05 NC |
3222 | |
3223 | if (! elf_hash_table (info)->dynamic_sections_created) | |
3224 | return TRUE; | |
3225 | ||
f0e6fdb2 | 3226 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
3227 | if (htab == NULL) |
3228 | return FALSE; | |
3229 | ||
e0001a05 | 3230 | dynobj = elf_hash_table (info)->dynobj; |
3d4d4302 | 3231 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
e0001a05 NC |
3232 | BFD_ASSERT (sdyn != NULL); |
3233 | ||
3234 | /* Set the first entry in the global offset table to the address of | |
3235 | the dynamic section. */ | |
ce558b89 | 3236 | sgot = htab->elf.sgot; |
e0001a05 NC |
3237 | if (sgot) |
3238 | { | |
eea6121a | 3239 | BFD_ASSERT (sgot->size == 4); |
e0001a05 | 3240 | if (sdyn == NULL) |
7fa3d080 | 3241 | bfd_put_32 (output_bfd, 0, sgot->contents); |
e0001a05 NC |
3242 | else |
3243 | bfd_put_32 (output_bfd, | |
3244 | sdyn->output_section->vma + sdyn->output_offset, | |
3245 | sgot->contents); | |
3246 | } | |
3247 | ||
ce558b89 | 3248 | srelplt = htab->elf.srelplt; |
f82863d7 | 3249 | srelgot = htab->elf.srelgot; |
7fa3d080 | 3250 | if (srelplt && srelplt->size != 0) |
e0001a05 | 3251 | { |
f82863d7 | 3252 | asection *sgotplt, *spltlittbl; |
e0001a05 NC |
3253 | int chunk, plt_chunks, plt_entries; |
3254 | Elf_Internal_Rela irela; | |
3255 | bfd_byte *loc; | |
3256 | unsigned rtld_reloc; | |
3257 | ||
f0e6fdb2 BW |
3258 | spltlittbl = htab->spltlittbl; |
3259 | BFD_ASSERT (srelgot != NULL && spltlittbl != NULL); | |
e0001a05 NC |
3260 | |
3261 | /* Find the first XTENSA_RTLD relocation. Presumably the rest | |
3262 | of them follow immediately after.... */ | |
3263 | for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) | |
3264 | { | |
3265 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
3266 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3267 | if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) | |
3268 | break; | |
3269 | } | |
3270 | BFD_ASSERT (rtld_reloc < srelgot->reloc_count); | |
3271 | ||
eea6121a | 3272 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
3273 | plt_chunks = |
3274 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
3275 | ||
3276 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
3277 | { | |
3278 | int chunk_entries = 0; | |
3279 | ||
f0e6fdb2 | 3280 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
e0001a05 NC |
3281 | BFD_ASSERT (sgotplt != NULL); |
3282 | ||
3283 | /* Emit special RTLD relocations for the first two entries in | |
3284 | each chunk of the .got.plt section. */ | |
3285 | ||
3286 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
3287 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3288 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
3289 | irela.r_offset = (sgotplt->output_section->vma | |
3290 | + sgotplt->output_offset); | |
3291 | irela.r_addend = 1; /* tell rtld to set value to resolver function */ | |
3292 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
3293 | rtld_reloc += 1; | |
3294 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
3295 | ||
3296 | /* Next literal immediately follows the first. */ | |
3297 | loc += sizeof (Elf32_External_Rela); | |
3298 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3299 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
3300 | irela.r_offset = (sgotplt->output_section->vma | |
3301 | + sgotplt->output_offset + 4); | |
3302 | /* Tell rtld to set value to object's link map. */ | |
3303 | irela.r_addend = 2; | |
3304 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
3305 | rtld_reloc += 1; | |
3306 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
3307 | ||
3308 | /* Fill in the literal table. */ | |
3309 | if (chunk < plt_chunks - 1) | |
3310 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
3311 | else | |
3312 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
3313 | ||
eea6121a | 3314 | BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); |
e0001a05 NC |
3315 | bfd_put_32 (output_bfd, |
3316 | sgotplt->output_section->vma + sgotplt->output_offset, | |
3317 | spltlittbl->contents + (chunk * 8) + 0); | |
3318 | bfd_put_32 (output_bfd, | |
3319 | 8 + (chunk_entries * 4), | |
3320 | spltlittbl->contents + (chunk * 8) + 4); | |
3321 | } | |
3322 | ||
e0001a05 NC |
3323 | /* The .xt.lit.plt section has just been modified. This must |
3324 | happen before the code below which combines adjacent literal | |
3325 | table entries, and the .xt.lit.plt contents have to be forced to | |
3326 | the output here. */ | |
3327 | if (! bfd_set_section_contents (output_bfd, | |
3328 | spltlittbl->output_section, | |
3329 | spltlittbl->contents, | |
3330 | spltlittbl->output_offset, | |
eea6121a | 3331 | spltlittbl->size)) |
e0001a05 NC |
3332 | return FALSE; |
3333 | /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ | |
3334 | spltlittbl->flags &= ~SEC_HAS_CONTENTS; | |
3335 | } | |
3336 | ||
f82863d7 MF |
3337 | /* All the dynamic relocations have been emitted at this point. |
3338 | Make sure the relocation sections are the correct size. */ | |
3339 | if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela) | |
3340 | * srelgot->reloc_count)) | |
3341 | || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela) | |
3342 | * srelplt->reloc_count))) | |
3343 | abort (); | |
3344 | ||
e0001a05 | 3345 | /* Combine adjacent literal table entries. */ |
0e1862bb | 3346 | BFD_ASSERT (! bfd_link_relocatable (info)); |
e901de89 | 3347 | sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); |
f0e6fdb2 | 3348 | sgotloc = htab->sgotloc; |
d9ab3f29 BW |
3349 | BFD_ASSERT (sgotloc); |
3350 | if (sxtlit) | |
3351 | { | |
3352 | num_xtlit_entries = | |
3353 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); | |
3354 | if (num_xtlit_entries < 0) | |
3355 | return FALSE; | |
3356 | } | |
e0001a05 NC |
3357 | |
3358 | dyncon = (Elf32_External_Dyn *) sdyn->contents; | |
eea6121a | 3359 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
e0001a05 NC |
3360 | for (; dyncon < dynconend; dyncon++) |
3361 | { | |
3362 | Elf_Internal_Dyn dyn; | |
e0001a05 NC |
3363 | |
3364 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | |
3365 | ||
3366 | switch (dyn.d_tag) | |
3367 | { | |
3368 | default: | |
3369 | break; | |
3370 | ||
3371 | case DT_XTENSA_GOT_LOC_SZ: | |
e0001a05 NC |
3372 | dyn.d_un.d_val = num_xtlit_entries; |
3373 | break; | |
3374 | ||
3375 | case DT_XTENSA_GOT_LOC_OFF: | |
4ade44b7 AM |
3376 | dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma |
3377 | + htab->sgotloc->output_offset); | |
f0e6fdb2 BW |
3378 | break; |
3379 | ||
e0001a05 | 3380 | case DT_PLTGOT: |
ce558b89 AM |
3381 | dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma |
3382 | + htab->elf.sgot->output_offset); | |
f0e6fdb2 BW |
3383 | break; |
3384 | ||
e0001a05 | 3385 | case DT_JMPREL: |
ce558b89 AM |
3386 | dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma |
3387 | + htab->elf.srelplt->output_offset); | |
e0001a05 NC |
3388 | break; |
3389 | ||
3390 | case DT_PLTRELSZ: | |
ce558b89 | 3391 | dyn.d_un.d_val = htab->elf.srelplt->size; |
e0001a05 | 3392 | break; |
e0001a05 NC |
3393 | } |
3394 | ||
3395 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | |
3396 | } | |
3397 | ||
3398 | return TRUE; | |
3399 | } | |
3400 | ||
3401 | \f | |
3402 | /* Functions for dealing with the e_flags field. */ | |
3403 | ||
3404 | /* Merge backend specific data from an object file to the output | |
3405 | object file when linking. */ | |
3406 | ||
3407 | static bfd_boolean | |
50e03d47 | 3408 | elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
e0001a05 | 3409 | { |
50e03d47 | 3410 | bfd *obfd = info->output_bfd; |
e0001a05 NC |
3411 | unsigned out_mach, in_mach; |
3412 | flagword out_flag, in_flag; | |
3413 | ||
cc643b88 | 3414 | /* Check if we have the same endianness. */ |
50e03d47 | 3415 | if (!_bfd_generic_verify_endian_match (ibfd, info)) |
e0001a05 NC |
3416 | return FALSE; |
3417 | ||
3418 | /* Don't even pretend to support mixed-format linking. */ | |
3419 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
3420 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
3421 | return FALSE; | |
3422 | ||
3423 | out_flag = elf_elfheader (obfd)->e_flags; | |
3424 | in_flag = elf_elfheader (ibfd)->e_flags; | |
3425 | ||
3426 | out_mach = out_flag & EF_XTENSA_MACH; | |
3427 | in_mach = in_flag & EF_XTENSA_MACH; | |
43cd72b9 | 3428 | if (out_mach != in_mach) |
e0001a05 | 3429 | { |
4eca0228 | 3430 | _bfd_error_handler |
695344c0 | 3431 | /* xgettext:c-format */ |
38f14ab8 | 3432 | (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"), |
d003868e | 3433 | ibfd, out_mach, in_mach); |
e0001a05 NC |
3434 | bfd_set_error (bfd_error_wrong_format); |
3435 | return FALSE; | |
3436 | } | |
3437 | ||
3438 | if (! elf_flags_init (obfd)) | |
3439 | { | |
3440 | elf_flags_init (obfd) = TRUE; | |
3441 | elf_elfheader (obfd)->e_flags = in_flag; | |
43cd72b9 | 3442 | |
e0001a05 NC |
3443 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
3444 | && bfd_get_arch_info (obfd)->the_default) | |
3445 | return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
3446 | bfd_get_mach (ibfd)); | |
43cd72b9 | 3447 | |
e0001a05 NC |
3448 | return TRUE; |
3449 | } | |
3450 | ||
68ffbac6 | 3451 | if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN)) |
43cd72b9 | 3452 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); |
e0001a05 | 3453 | |
68ffbac6 | 3454 | if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT)) |
43cd72b9 | 3455 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); |
e0001a05 NC |
3456 | |
3457 | return TRUE; | |
3458 | } | |
3459 | ||
3460 | ||
3461 | static bfd_boolean | |
7fa3d080 | 3462 | elf_xtensa_set_private_flags (bfd *abfd, flagword flags) |
e0001a05 NC |
3463 | { |
3464 | BFD_ASSERT (!elf_flags_init (abfd) | |
3465 | || elf_elfheader (abfd)->e_flags == flags); | |
3466 | ||
3467 | elf_elfheader (abfd)->e_flags |= flags; | |
3468 | elf_flags_init (abfd) = TRUE; | |
3469 | ||
3470 | return TRUE; | |
3471 | } | |
3472 | ||
3473 | ||
e0001a05 | 3474 | static bfd_boolean |
7fa3d080 | 3475 | elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg) |
e0001a05 NC |
3476 | { |
3477 | FILE *f = (FILE *) farg; | |
3478 | flagword e_flags = elf_elfheader (abfd)->e_flags; | |
3479 | ||
3480 | fprintf (f, "\nXtensa header:\n"); | |
43cd72b9 | 3481 | if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) |
e0001a05 NC |
3482 | fprintf (f, "\nMachine = Base\n"); |
3483 | else | |
3484 | fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); | |
3485 | ||
3486 | fprintf (f, "Insn tables = %s\n", | |
3487 | (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); | |
3488 | ||
3489 | fprintf (f, "Literal tables = %s\n", | |
3490 | (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); | |
3491 | ||
3492 | return _bfd_elf_print_private_bfd_data (abfd, farg); | |
3493 | } | |
3494 | ||
3495 | ||
3496 | /* Set the right machine number for an Xtensa ELF file. */ | |
3497 | ||
3498 | static bfd_boolean | |
7fa3d080 | 3499 | elf_xtensa_object_p (bfd *abfd) |
e0001a05 NC |
3500 | { |
3501 | int mach; | |
3502 | unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; | |
3503 | ||
3504 | switch (arch) | |
3505 | { | |
3506 | case E_XTENSA_MACH: | |
3507 | mach = bfd_mach_xtensa; | |
3508 | break; | |
3509 | default: | |
3510 | return FALSE; | |
3511 | } | |
3512 | ||
3513 | (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); | |
3514 | return TRUE; | |
3515 | } | |
3516 | ||
3517 | ||
3518 | /* The final processing done just before writing out an Xtensa ELF object | |
3519 | file. This gets the Xtensa architecture right based on the machine | |
3520 | number. */ | |
3521 | ||
cc364be6 AM |
3522 | static bfd_boolean |
3523 | elf_xtensa_final_write_processing (bfd *abfd) | |
e0001a05 NC |
3524 | { |
3525 | int mach; | |
c5e20471 | 3526 | unsigned long val = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; |
e0001a05 NC |
3527 | |
3528 | switch (mach = bfd_get_mach (abfd)) | |
3529 | { | |
3530 | case bfd_mach_xtensa: | |
3531 | val = E_XTENSA_MACH; | |
3532 | break; | |
3533 | default: | |
c5e20471 | 3534 | break; |
e0001a05 NC |
3535 | } |
3536 | ||
c5e20471 | 3537 | elf_elfheader (abfd)->e_flags &= ~EF_XTENSA_MACH; |
e0001a05 | 3538 | elf_elfheader (abfd)->e_flags |= val; |
cc364be6 | 3539 | return _bfd_elf_final_write_processing (abfd); |
e0001a05 NC |
3540 | } |
3541 | ||
3542 | ||
3543 | static enum elf_reloc_type_class | |
7e612e98 AM |
3544 | elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, |
3545 | const asection *rel_sec ATTRIBUTE_UNUSED, | |
3546 | const Elf_Internal_Rela *rela) | |
e0001a05 NC |
3547 | { |
3548 | switch ((int) ELF32_R_TYPE (rela->r_info)) | |
3549 | { | |
3550 | case R_XTENSA_RELATIVE: | |
3551 | return reloc_class_relative; | |
3552 | case R_XTENSA_JMP_SLOT: | |
3553 | return reloc_class_plt; | |
3554 | default: | |
3555 | return reloc_class_normal; | |
3556 | } | |
3557 | } | |
3558 | ||
3559 | \f | |
3560 | static bfd_boolean | |
7fa3d080 BW |
3561 | elf_xtensa_discard_info_for_section (bfd *abfd, |
3562 | struct elf_reloc_cookie *cookie, | |
3563 | struct bfd_link_info *info, | |
3564 | asection *sec) | |
e0001a05 NC |
3565 | { |
3566 | bfd_byte *contents; | |
e0001a05 | 3567 | bfd_vma offset, actual_offset; |
1d25768e BW |
3568 | bfd_size_type removed_bytes = 0; |
3569 | bfd_size_type entry_size; | |
e0001a05 NC |
3570 | |
3571 | if (sec->output_section | |
3572 | && bfd_is_abs_section (sec->output_section)) | |
3573 | return FALSE; | |
3574 | ||
1d25768e BW |
3575 | if (xtensa_is_proptable_section (sec)) |
3576 | entry_size = 12; | |
3577 | else | |
3578 | entry_size = 8; | |
3579 | ||
a3ef2d63 | 3580 | if (sec->size == 0 || sec->size % entry_size != 0) |
1d25768e BW |
3581 | return FALSE; |
3582 | ||
e0001a05 NC |
3583 | contents = retrieve_contents (abfd, sec, info->keep_memory); |
3584 | if (!contents) | |
3585 | return FALSE; | |
3586 | ||
3587 | cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); | |
3588 | if (!cookie->rels) | |
3589 | { | |
3590 | release_contents (sec, contents); | |
3591 | return FALSE; | |
3592 | } | |
3593 | ||
1d25768e BW |
3594 | /* Sort the relocations. They should already be in order when |
3595 | relaxation is enabled, but it might not be. */ | |
3596 | qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
3597 | internal_reloc_compare); | |
3598 | ||
e0001a05 NC |
3599 | cookie->rel = cookie->rels; |
3600 | cookie->relend = cookie->rels + sec->reloc_count; | |
3601 | ||
a3ef2d63 | 3602 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 NC |
3603 | { |
3604 | actual_offset = offset - removed_bytes; | |
3605 | ||
3606 | /* The ...symbol_deleted_p function will skip over relocs but it | |
3607 | won't adjust their offsets, so do that here. */ | |
3608 | while (cookie->rel < cookie->relend | |
3609 | && cookie->rel->r_offset < offset) | |
3610 | { | |
3611 | cookie->rel->r_offset -= removed_bytes; | |
3612 | cookie->rel++; | |
3613 | } | |
3614 | ||
3615 | while (cookie->rel < cookie->relend | |
3616 | && cookie->rel->r_offset == offset) | |
3617 | { | |
c152c796 | 3618 | if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) |
e0001a05 NC |
3619 | { |
3620 | /* Remove the table entry. (If the reloc type is NONE, then | |
3621 | the entry has already been merged with another and deleted | |
3622 | during relaxation.) */ | |
3623 | if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) | |
3624 | { | |
3625 | /* Shift the contents up. */ | |
a3ef2d63 | 3626 | if (offset + entry_size < sec->size) |
e0001a05 | 3627 | memmove (&contents[actual_offset], |
1d25768e | 3628 | &contents[actual_offset + entry_size], |
a3ef2d63 | 3629 | sec->size - offset - entry_size); |
1d25768e | 3630 | removed_bytes += entry_size; |
e0001a05 NC |
3631 | } |
3632 | ||
3633 | /* Remove this relocation. */ | |
3634 | cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
3635 | } | |
3636 | ||
3637 | /* Adjust the relocation offset for previous removals. This | |
3638 | should not be done before calling ...symbol_deleted_p | |
3639 | because it might mess up the offset comparisons there. | |
3640 | Make sure the offset doesn't underflow in the case where | |
3641 | the first entry is removed. */ | |
3642 | if (cookie->rel->r_offset >= removed_bytes) | |
3643 | cookie->rel->r_offset -= removed_bytes; | |
3644 | else | |
3645 | cookie->rel->r_offset = 0; | |
3646 | ||
3647 | cookie->rel++; | |
3648 | } | |
3649 | } | |
3650 | ||
3651 | if (removed_bytes != 0) | |
3652 | { | |
3653 | /* Adjust any remaining relocs (shouldn't be any). */ | |
3654 | for (; cookie->rel < cookie->relend; cookie->rel++) | |
3655 | { | |
3656 | if (cookie->rel->r_offset >= removed_bytes) | |
3657 | cookie->rel->r_offset -= removed_bytes; | |
3658 | else | |
3659 | cookie->rel->r_offset = 0; | |
3660 | } | |
3661 | ||
3662 | /* Clear the removed bytes. */ | |
a3ef2d63 | 3663 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 NC |
3664 | |
3665 | pin_contents (sec, contents); | |
3666 | pin_internal_relocs (sec, cookie->rels); | |
3667 | ||
eea6121a | 3668 | /* Shrink size. */ |
a3ef2d63 BW |
3669 | if (sec->rawsize == 0) |
3670 | sec->rawsize = sec->size; | |
3671 | sec->size -= removed_bytes; | |
b536dc1e BW |
3672 | |
3673 | if (xtensa_is_littable_section (sec)) | |
3674 | { | |
f0e6fdb2 BW |
3675 | asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc; |
3676 | if (sgotloc) | |
3677 | sgotloc->size -= removed_bytes; | |
b536dc1e | 3678 | } |
e0001a05 NC |
3679 | } |
3680 | else | |
3681 | { | |
3682 | release_contents (sec, contents); | |
3683 | release_internal_relocs (sec, cookie->rels); | |
3684 | } | |
3685 | ||
3686 | return (removed_bytes != 0); | |
3687 | } | |
3688 | ||
3689 | ||
3690 | static bfd_boolean | |
7fa3d080 BW |
3691 | elf_xtensa_discard_info (bfd *abfd, |
3692 | struct elf_reloc_cookie *cookie, | |
3693 | struct bfd_link_info *info) | |
e0001a05 NC |
3694 | { |
3695 | asection *sec; | |
3696 | bfd_boolean changed = FALSE; | |
3697 | ||
3698 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
3699 | { | |
3700 | if (xtensa_is_property_section (sec)) | |
3701 | { | |
3702 | if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) | |
3703 | changed = TRUE; | |
3704 | } | |
3705 | } | |
3706 | ||
3707 | return changed; | |
3708 | } | |
3709 | ||
3710 | ||
3711 | static bfd_boolean | |
7fa3d080 | 3712 | elf_xtensa_ignore_discarded_relocs (asection *sec) |
e0001a05 NC |
3713 | { |
3714 | return xtensa_is_property_section (sec); | |
3715 | } | |
3716 | ||
a77dc2cc BW |
3717 | |
3718 | static unsigned int | |
3719 | elf_xtensa_action_discarded (asection *sec) | |
3720 | { | |
3721 | if (strcmp (".xt_except_table", sec->name) == 0) | |
3722 | return 0; | |
3723 | ||
3724 | if (strcmp (".xt_except_desc", sec->name) == 0) | |
3725 | return 0; | |
3726 | ||
3727 | return _bfd_elf_default_action_discarded (sec); | |
3728 | } | |
3729 | ||
e0001a05 NC |
3730 | \f |
3731 | /* Support for core dump NOTE sections. */ | |
3732 | ||
3733 | static bfd_boolean | |
7fa3d080 | 3734 | elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3735 | { |
3736 | int offset; | |
eea6121a | 3737 | unsigned int size; |
e0001a05 NC |
3738 | |
3739 | /* The size for Xtensa is variable, so don't try to recognize the format | |
3740 | based on the size. Just assume this is GNU/Linux. */ | |
3741 | ||
3742 | /* pr_cursig */ | |
228e534f | 3743 | elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); |
e0001a05 NC |
3744 | |
3745 | /* pr_pid */ | |
228e534f | 3746 | elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); |
e0001a05 NC |
3747 | |
3748 | /* pr_reg */ | |
3749 | offset = 72; | |
eea6121a | 3750 | size = note->descsz - offset - 4; |
e0001a05 NC |
3751 | |
3752 | /* Make a ".reg/999" section. */ | |
3753 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
eea6121a | 3754 | size, note->descpos + offset); |
e0001a05 NC |
3755 | } |
3756 | ||
3757 | ||
3758 | static bfd_boolean | |
7fa3d080 | 3759 | elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3760 | { |
3761 | switch (note->descsz) | |
3762 | { | |
3763 | default: | |
3764 | return FALSE; | |
3765 | ||
3766 | case 128: /* GNU/Linux elf_prpsinfo */ | |
228e534f | 3767 | elf_tdata (abfd)->core->program |
e0001a05 | 3768 | = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); |
228e534f | 3769 | elf_tdata (abfd)->core->command |
e0001a05 NC |
3770 | = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); |
3771 | } | |
3772 | ||
3773 | /* Note that for some reason, a spurious space is tacked | |
3774 | onto the end of the args in some (at least one anyway) | |
3775 | implementations, so strip it off if it exists. */ | |
3776 | ||
3777 | { | |
228e534f | 3778 | char *command = elf_tdata (abfd)->core->command; |
e0001a05 NC |
3779 | int n = strlen (command); |
3780 | ||
3781 | if (0 < n && command[n - 1] == ' ') | |
3782 | command[n - 1] = '\0'; | |
3783 | } | |
3784 | ||
3785 | return TRUE; | |
3786 | } | |
3787 | ||
3788 | \f | |
3789 | /* Generic Xtensa configurability stuff. */ | |
3790 | ||
3791 | static xtensa_opcode callx0_op = XTENSA_UNDEFINED; | |
3792 | static xtensa_opcode callx4_op = XTENSA_UNDEFINED; | |
3793 | static xtensa_opcode callx8_op = XTENSA_UNDEFINED; | |
3794 | static xtensa_opcode callx12_op = XTENSA_UNDEFINED; | |
3795 | static xtensa_opcode call0_op = XTENSA_UNDEFINED; | |
3796 | static xtensa_opcode call4_op = XTENSA_UNDEFINED; | |
3797 | static xtensa_opcode call8_op = XTENSA_UNDEFINED; | |
3798 | static xtensa_opcode call12_op = XTENSA_UNDEFINED; | |
3799 | ||
3800 | static void | |
7fa3d080 | 3801 | init_call_opcodes (void) |
e0001a05 NC |
3802 | { |
3803 | if (callx0_op == XTENSA_UNDEFINED) | |
3804 | { | |
3805 | callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); | |
3806 | callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); | |
3807 | callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); | |
3808 | callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); | |
3809 | call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); | |
3810 | call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); | |
3811 | call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); | |
3812 | call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); | |
3813 | } | |
3814 | } | |
3815 | ||
3816 | ||
3817 | static bfd_boolean | |
7fa3d080 | 3818 | is_indirect_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3819 | { |
3820 | init_call_opcodes (); | |
3821 | return (opcode == callx0_op | |
3822 | || opcode == callx4_op | |
3823 | || opcode == callx8_op | |
3824 | || opcode == callx12_op); | |
3825 | } | |
3826 | ||
3827 | ||
3828 | static bfd_boolean | |
7fa3d080 | 3829 | is_direct_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3830 | { |
3831 | init_call_opcodes (); | |
3832 | return (opcode == call0_op | |
3833 | || opcode == call4_op | |
3834 | || opcode == call8_op | |
3835 | || opcode == call12_op); | |
3836 | } | |
3837 | ||
3838 | ||
3839 | static bfd_boolean | |
7fa3d080 | 3840 | is_windowed_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3841 | { |
3842 | init_call_opcodes (); | |
3843 | return (opcode == call4_op | |
3844 | || opcode == call8_op | |
3845 | || opcode == call12_op | |
3846 | || opcode == callx4_op | |
3847 | || opcode == callx8_op | |
3848 | || opcode == callx12_op); | |
3849 | } | |
3850 | ||
3851 | ||
28dbbc02 BW |
3852 | static bfd_boolean |
3853 | get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst) | |
3854 | { | |
3855 | unsigned dst = (unsigned) -1; | |
3856 | ||
3857 | init_call_opcodes (); | |
3858 | if (opcode == callx0_op) | |
3859 | dst = 0; | |
3860 | else if (opcode == callx4_op) | |
3861 | dst = 4; | |
3862 | else if (opcode == callx8_op) | |
3863 | dst = 8; | |
3864 | else if (opcode == callx12_op) | |
3865 | dst = 12; | |
3866 | ||
3867 | if (dst == (unsigned) -1) | |
3868 | return FALSE; | |
3869 | ||
3870 | *pdst = dst; | |
3871 | return TRUE; | |
3872 | } | |
3873 | ||
3874 | ||
43cd72b9 BW |
3875 | static xtensa_opcode |
3876 | get_const16_opcode (void) | |
3877 | { | |
3878 | static bfd_boolean done_lookup = FALSE; | |
3879 | static xtensa_opcode const16_opcode = XTENSA_UNDEFINED; | |
3880 | if (!done_lookup) | |
3881 | { | |
3882 | const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16"); | |
3883 | done_lookup = TRUE; | |
3884 | } | |
3885 | return const16_opcode; | |
3886 | } | |
3887 | ||
3888 | ||
e0001a05 NC |
3889 | static xtensa_opcode |
3890 | get_l32r_opcode (void) | |
3891 | { | |
3892 | static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; | |
43cd72b9 BW |
3893 | static bfd_boolean done_lookup = FALSE; |
3894 | ||
3895 | if (!done_lookup) | |
e0001a05 NC |
3896 | { |
3897 | l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); | |
43cd72b9 | 3898 | done_lookup = TRUE; |
e0001a05 NC |
3899 | } |
3900 | return l32r_opcode; | |
3901 | } | |
3902 | ||
3903 | ||
3904 | static bfd_vma | |
7fa3d080 | 3905 | l32r_offset (bfd_vma addr, bfd_vma pc) |
e0001a05 NC |
3906 | { |
3907 | bfd_vma offset; | |
3908 | ||
3909 | offset = addr - ((pc+3) & -4); | |
3910 | BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); | |
3911 | offset = (signed int) offset >> 2; | |
3912 | BFD_ASSERT ((signed int) offset >> 16 == -1); | |
3913 | return offset; | |
3914 | } | |
3915 | ||
3916 | ||
e0d0c518 MF |
3917 | static xtensa_opcode |
3918 | get_rsr_lend_opcode (void) | |
3919 | { | |
3920 | static xtensa_opcode rsr_lend_opcode = XTENSA_UNDEFINED; | |
3921 | static bfd_boolean done_lookup = FALSE; | |
3922 | if (!done_lookup) | |
3923 | { | |
3924 | rsr_lend_opcode = xtensa_opcode_lookup (xtensa_default_isa, "rsr.lend"); | |
3925 | done_lookup = TRUE; | |
3926 | } | |
3927 | return rsr_lend_opcode; | |
3928 | } | |
3929 | ||
3930 | static xtensa_opcode | |
3931 | get_wsr_lbeg_opcode (void) | |
3932 | { | |
3933 | static xtensa_opcode wsr_lbeg_opcode = XTENSA_UNDEFINED; | |
3934 | static bfd_boolean done_lookup = FALSE; | |
3935 | if (!done_lookup) | |
3936 | { | |
3937 | wsr_lbeg_opcode = xtensa_opcode_lookup (xtensa_default_isa, "wsr.lbeg"); | |
3938 | done_lookup = TRUE; | |
3939 | } | |
3940 | return wsr_lbeg_opcode; | |
3941 | } | |
3942 | ||
3943 | ||
e0001a05 | 3944 | static int |
7fa3d080 | 3945 | get_relocation_opnd (xtensa_opcode opcode, int r_type) |
e0001a05 | 3946 | { |
43cd72b9 BW |
3947 | xtensa_isa isa = xtensa_default_isa; |
3948 | int last_immed, last_opnd, opi; | |
3949 | ||
3950 | if (opcode == XTENSA_UNDEFINED) | |
3951 | return XTENSA_UNDEFINED; | |
3952 | ||
3953 | /* Find the last visible PC-relative immediate operand for the opcode. | |
3954 | If there are no PC-relative immediates, then choose the last visible | |
3955 | immediate; otherwise, fail and return XTENSA_UNDEFINED. */ | |
3956 | last_immed = XTENSA_UNDEFINED; | |
3957 | last_opnd = xtensa_opcode_num_operands (isa, opcode); | |
3958 | for (opi = last_opnd - 1; opi >= 0; opi--) | |
3959 | { | |
3960 | if (xtensa_operand_is_visible (isa, opcode, opi) == 0) | |
3961 | continue; | |
3962 | if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1) | |
3963 | { | |
3964 | last_immed = opi; | |
3965 | break; | |
3966 | } | |
3967 | if (last_immed == XTENSA_UNDEFINED | |
3968 | && xtensa_operand_is_register (isa, opcode, opi) == 0) | |
3969 | last_immed = opi; | |
3970 | } | |
3971 | if (last_immed < 0) | |
3972 | return XTENSA_UNDEFINED; | |
3973 | ||
3974 | /* If the operand number was specified in an old-style relocation, | |
3975 | check for consistency with the operand computed above. */ | |
3976 | if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2) | |
3977 | { | |
3978 | int reloc_opnd = r_type - R_XTENSA_OP0; | |
3979 | if (reloc_opnd != last_immed) | |
3980 | return XTENSA_UNDEFINED; | |
3981 | } | |
3982 | ||
3983 | return last_immed; | |
3984 | } | |
3985 | ||
3986 | ||
3987 | int | |
7fa3d080 | 3988 | get_relocation_slot (int r_type) |
43cd72b9 BW |
3989 | { |
3990 | switch (r_type) | |
3991 | { | |
3992 | case R_XTENSA_OP0: | |
3993 | case R_XTENSA_OP1: | |
3994 | case R_XTENSA_OP2: | |
3995 | return 0; | |
3996 | ||
3997 | default: | |
3998 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
3999 | return r_type - R_XTENSA_SLOT0_OP; | |
4000 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
4001 | return r_type - R_XTENSA_SLOT0_ALT; | |
4002 | break; | |
4003 | } | |
4004 | ||
4005 | return XTENSA_UNDEFINED; | |
e0001a05 NC |
4006 | } |
4007 | ||
4008 | ||
4009 | /* Get the opcode for a relocation. */ | |
4010 | ||
4011 | static xtensa_opcode | |
7fa3d080 BW |
4012 | get_relocation_opcode (bfd *abfd, |
4013 | asection *sec, | |
4014 | bfd_byte *contents, | |
4015 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
4016 | { |
4017 | static xtensa_insnbuf ibuff = NULL; | |
43cd72b9 | 4018 | static xtensa_insnbuf sbuff = NULL; |
e0001a05 | 4019 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
4020 | xtensa_format fmt; |
4021 | int slot; | |
e0001a05 NC |
4022 | |
4023 | if (contents == NULL) | |
4024 | return XTENSA_UNDEFINED; | |
4025 | ||
43cd72b9 | 4026 | if (bfd_get_section_limit (abfd, sec) <= irel->r_offset) |
e0001a05 NC |
4027 | return XTENSA_UNDEFINED; |
4028 | ||
4029 | if (ibuff == NULL) | |
43cd72b9 BW |
4030 | { |
4031 | ibuff = xtensa_insnbuf_alloc (isa); | |
4032 | sbuff = xtensa_insnbuf_alloc (isa); | |
4033 | } | |
4034 | ||
e0001a05 | 4035 | /* Decode the instruction. */ |
43cd72b9 BW |
4036 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset], |
4037 | sec->size - irel->r_offset); | |
4038 | fmt = xtensa_format_decode (isa, ibuff); | |
4039 | slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info)); | |
4040 | if (slot == XTENSA_UNDEFINED) | |
4041 | return XTENSA_UNDEFINED; | |
4042 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); | |
4043 | return xtensa_opcode_decode (isa, fmt, slot, sbuff); | |
e0001a05 NC |
4044 | } |
4045 | ||
4046 | ||
4047 | bfd_boolean | |
7fa3d080 BW |
4048 | is_l32r_relocation (bfd *abfd, |
4049 | asection *sec, | |
4050 | bfd_byte *contents, | |
4051 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
4052 | { |
4053 | xtensa_opcode opcode; | |
43cd72b9 | 4054 | if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info))) |
e0001a05 | 4055 | return FALSE; |
43cd72b9 | 4056 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
e0001a05 NC |
4057 | return (opcode == get_l32r_opcode ()); |
4058 | } | |
4059 | ||
e0001a05 | 4060 | |
43cd72b9 | 4061 | static bfd_size_type |
7fa3d080 BW |
4062 | get_asm_simplify_size (bfd_byte *contents, |
4063 | bfd_size_type content_len, | |
4064 | bfd_size_type offset) | |
e0001a05 | 4065 | { |
43cd72b9 | 4066 | bfd_size_type insnlen, size = 0; |
e0001a05 | 4067 | |
43cd72b9 BW |
4068 | /* Decode the size of the next two instructions. */ |
4069 | insnlen = insn_decode_len (contents, content_len, offset); | |
4070 | if (insnlen == 0) | |
4071 | return 0; | |
e0001a05 | 4072 | |
43cd72b9 | 4073 | size += insnlen; |
68ffbac6 | 4074 | |
43cd72b9 BW |
4075 | insnlen = insn_decode_len (contents, content_len, offset + size); |
4076 | if (insnlen == 0) | |
4077 | return 0; | |
e0001a05 | 4078 | |
43cd72b9 BW |
4079 | size += insnlen; |
4080 | return size; | |
4081 | } | |
e0001a05 | 4082 | |
43cd72b9 BW |
4083 | |
4084 | bfd_boolean | |
7fa3d080 | 4085 | is_alt_relocation (int r_type) |
43cd72b9 BW |
4086 | { |
4087 | return (r_type >= R_XTENSA_SLOT0_ALT | |
4088 | && r_type <= R_XTENSA_SLOT14_ALT); | |
e0001a05 NC |
4089 | } |
4090 | ||
4091 | ||
43cd72b9 | 4092 | bfd_boolean |
7fa3d080 | 4093 | is_operand_relocation (int r_type) |
e0001a05 | 4094 | { |
43cd72b9 BW |
4095 | switch (r_type) |
4096 | { | |
4097 | case R_XTENSA_OP0: | |
4098 | case R_XTENSA_OP1: | |
4099 | case R_XTENSA_OP2: | |
4100 | return TRUE; | |
e0001a05 | 4101 | |
43cd72b9 BW |
4102 | default: |
4103 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
4104 | return TRUE; | |
4105 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
4106 | return TRUE; | |
4107 | break; | |
4108 | } | |
e0001a05 | 4109 | |
43cd72b9 | 4110 | return FALSE; |
e0001a05 NC |
4111 | } |
4112 | ||
68ffbac6 | 4113 | |
43cd72b9 | 4114 | #define MIN_INSN_LENGTH 2 |
e0001a05 | 4115 | |
43cd72b9 BW |
4116 | /* Return 0 if it fails to decode. */ |
4117 | ||
4118 | bfd_size_type | |
7fa3d080 BW |
4119 | insn_decode_len (bfd_byte *contents, |
4120 | bfd_size_type content_len, | |
4121 | bfd_size_type offset) | |
e0001a05 | 4122 | { |
43cd72b9 BW |
4123 | int insn_len; |
4124 | xtensa_isa isa = xtensa_default_isa; | |
4125 | xtensa_format fmt; | |
4126 | static xtensa_insnbuf ibuff = NULL; | |
e0001a05 | 4127 | |
43cd72b9 BW |
4128 | if (offset + MIN_INSN_LENGTH > content_len) |
4129 | return 0; | |
e0001a05 | 4130 | |
43cd72b9 BW |
4131 | if (ibuff == NULL) |
4132 | ibuff = xtensa_insnbuf_alloc (isa); | |
4133 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], | |
4134 | content_len - offset); | |
4135 | fmt = xtensa_format_decode (isa, ibuff); | |
4136 | if (fmt == XTENSA_UNDEFINED) | |
4137 | return 0; | |
4138 | insn_len = xtensa_format_length (isa, fmt); | |
4139 | if (insn_len == XTENSA_UNDEFINED) | |
4140 | return 0; | |
4141 | return insn_len; | |
e0001a05 NC |
4142 | } |
4143 | ||
e0d0c518 MF |
4144 | int |
4145 | insn_num_slots (bfd_byte *contents, | |
4146 | bfd_size_type content_len, | |
4147 | bfd_size_type offset) | |
4148 | { | |
4149 | xtensa_isa isa = xtensa_default_isa; | |
4150 | xtensa_format fmt; | |
4151 | static xtensa_insnbuf ibuff = NULL; | |
4152 | ||
4153 | if (offset + MIN_INSN_LENGTH > content_len) | |
4154 | return XTENSA_UNDEFINED; | |
4155 | ||
4156 | if (ibuff == NULL) | |
4157 | ibuff = xtensa_insnbuf_alloc (isa); | |
4158 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], | |
4159 | content_len - offset); | |
4160 | fmt = xtensa_format_decode (isa, ibuff); | |
4161 | if (fmt == XTENSA_UNDEFINED) | |
4162 | return XTENSA_UNDEFINED; | |
4163 | return xtensa_format_num_slots (isa, fmt); | |
4164 | } | |
4165 | ||
e0001a05 | 4166 | |
43cd72b9 BW |
4167 | /* Decode the opcode for a single slot instruction. |
4168 | Return 0 if it fails to decode or the instruction is multi-slot. */ | |
e0001a05 | 4169 | |
43cd72b9 | 4170 | xtensa_opcode |
7fa3d080 BW |
4171 | insn_decode_opcode (bfd_byte *contents, |
4172 | bfd_size_type content_len, | |
4173 | bfd_size_type offset, | |
4174 | int slot) | |
e0001a05 | 4175 | { |
e0001a05 | 4176 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
4177 | xtensa_format fmt; |
4178 | static xtensa_insnbuf insnbuf = NULL; | |
4179 | static xtensa_insnbuf slotbuf = NULL; | |
4180 | ||
4181 | if (offset + MIN_INSN_LENGTH > content_len) | |
e0001a05 NC |
4182 | return XTENSA_UNDEFINED; |
4183 | ||
4184 | if (insnbuf == NULL) | |
43cd72b9 BW |
4185 | { |
4186 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4187 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4188 | } | |
4189 | ||
4190 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4191 | content_len - offset); | |
4192 | fmt = xtensa_format_decode (isa, insnbuf); | |
4193 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 4194 | return XTENSA_UNDEFINED; |
43cd72b9 BW |
4195 | |
4196 | if (slot >= xtensa_format_num_slots (isa, fmt)) | |
e0001a05 | 4197 | return XTENSA_UNDEFINED; |
e0001a05 | 4198 | |
43cd72b9 BW |
4199 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
4200 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
4201 | } | |
e0001a05 | 4202 | |
e0001a05 | 4203 | |
43cd72b9 BW |
4204 | /* The offset is the offset in the contents. |
4205 | The address is the address of that offset. */ | |
e0001a05 | 4206 | |
43cd72b9 | 4207 | static bfd_boolean |
7fa3d080 BW |
4208 | check_branch_target_aligned (bfd_byte *contents, |
4209 | bfd_size_type content_length, | |
4210 | bfd_vma offset, | |
4211 | bfd_vma address) | |
43cd72b9 BW |
4212 | { |
4213 | bfd_size_type insn_len = insn_decode_len (contents, content_length, offset); | |
4214 | if (insn_len == 0) | |
4215 | return FALSE; | |
4216 | return check_branch_target_aligned_address (address, insn_len); | |
4217 | } | |
e0001a05 | 4218 | |
e0001a05 | 4219 | |
43cd72b9 | 4220 | static bfd_boolean |
7fa3d080 BW |
4221 | check_loop_aligned (bfd_byte *contents, |
4222 | bfd_size_type content_length, | |
4223 | bfd_vma offset, | |
4224 | bfd_vma address) | |
e0001a05 | 4225 | { |
43cd72b9 | 4226 | bfd_size_type loop_len, insn_len; |
64b607e6 | 4227 | xtensa_opcode opcode; |
e0001a05 | 4228 | |
64b607e6 BW |
4229 | opcode = insn_decode_opcode (contents, content_length, offset, 0); |
4230 | if (opcode == XTENSA_UNDEFINED | |
4231 | || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1) | |
4232 | { | |
4233 | BFD_ASSERT (FALSE); | |
4234 | return FALSE; | |
4235 | } | |
68ffbac6 | 4236 | |
43cd72b9 | 4237 | loop_len = insn_decode_len (contents, content_length, offset); |
43cd72b9 | 4238 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); |
64b607e6 BW |
4239 | if (loop_len == 0 || insn_len == 0) |
4240 | { | |
4241 | BFD_ASSERT (FALSE); | |
4242 | return FALSE; | |
4243 | } | |
e0001a05 | 4244 | |
e0d0c518 MF |
4245 | /* If this is relaxed loop, analyze first instruction of the actual loop |
4246 | body. It must be at offset 27 from the loop instruction address. */ | |
4247 | if (insn_len == 3 | |
4248 | && insn_num_slots (contents, content_length, offset + loop_len) == 1 | |
4249 | && insn_decode_opcode (contents, content_length, | |
4250 | offset + loop_len, 0) == get_rsr_lend_opcode() | |
4251 | && insn_decode_len (contents, content_length, offset + loop_len + 3) == 3 | |
4252 | && insn_num_slots (contents, content_length, offset + loop_len + 3) == 1 | |
4253 | && insn_decode_opcode (contents, content_length, | |
4254 | offset + loop_len + 3, 0) == get_wsr_lbeg_opcode()) | |
4255 | { | |
4256 | loop_len = 27; | |
4257 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); | |
4258 | } | |
43cd72b9 BW |
4259 | return check_branch_target_aligned_address (address + loop_len, insn_len); |
4260 | } | |
e0001a05 | 4261 | |
e0001a05 NC |
4262 | |
4263 | static bfd_boolean | |
7fa3d080 | 4264 | check_branch_target_aligned_address (bfd_vma addr, int len) |
e0001a05 | 4265 | { |
43cd72b9 BW |
4266 | if (len == 8) |
4267 | return (addr % 8 == 0); | |
4268 | return ((addr >> 2) == ((addr + len - 1) >> 2)); | |
e0001a05 NC |
4269 | } |
4270 | ||
43cd72b9 BW |
4271 | \f |
4272 | /* Instruction widening and narrowing. */ | |
e0001a05 | 4273 | |
7fa3d080 BW |
4274 | /* When FLIX is available we need to access certain instructions only |
4275 | when they are 16-bit or 24-bit instructions. This table caches | |
4276 | information about such instructions by walking through all the | |
4277 | opcodes and finding the smallest single-slot format into which each | |
4278 | can be encoded. */ | |
4279 | ||
4280 | static xtensa_format *op_single_fmt_table = NULL; | |
e0001a05 NC |
4281 | |
4282 | ||
7fa3d080 BW |
4283 | static void |
4284 | init_op_single_format_table (void) | |
e0001a05 | 4285 | { |
7fa3d080 BW |
4286 | xtensa_isa isa = xtensa_default_isa; |
4287 | xtensa_insnbuf ibuf; | |
4288 | xtensa_opcode opcode; | |
4289 | xtensa_format fmt; | |
4290 | int num_opcodes; | |
4291 | ||
4292 | if (op_single_fmt_table) | |
4293 | return; | |
4294 | ||
4295 | ibuf = xtensa_insnbuf_alloc (isa); | |
4296 | num_opcodes = xtensa_isa_num_opcodes (isa); | |
4297 | ||
4298 | op_single_fmt_table = (xtensa_format *) | |
4299 | bfd_malloc (sizeof (xtensa_format) * num_opcodes); | |
4300 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
4301 | { | |
4302 | op_single_fmt_table[opcode] = XTENSA_UNDEFINED; | |
4303 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
4304 | { | |
4305 | if (xtensa_format_num_slots (isa, fmt) == 1 | |
4306 | && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0) | |
4307 | { | |
4308 | xtensa_opcode old_fmt = op_single_fmt_table[opcode]; | |
4309 | int fmt_length = xtensa_format_length (isa, fmt); | |
4310 | if (old_fmt == XTENSA_UNDEFINED | |
4311 | || fmt_length < xtensa_format_length (isa, old_fmt)) | |
4312 | op_single_fmt_table[opcode] = fmt; | |
4313 | } | |
4314 | } | |
4315 | } | |
4316 | xtensa_insnbuf_free (isa, ibuf); | |
4317 | } | |
4318 | ||
4319 | ||
4320 | static xtensa_format | |
4321 | get_single_format (xtensa_opcode opcode) | |
4322 | { | |
4323 | init_op_single_format_table (); | |
4324 | return op_single_fmt_table[opcode]; | |
4325 | } | |
e0001a05 | 4326 | |
e0001a05 | 4327 | |
43cd72b9 BW |
4328 | /* For the set of narrowable instructions we do NOT include the |
4329 | narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities | |
4330 | involved during linker relaxation that may require these to | |
4331 | re-expand in some conditions. Also, the narrowing "or" -> mov.n | |
4332 | requires special case code to ensure it only works when op1 == op2. */ | |
e0001a05 | 4333 | |
7fa3d080 BW |
4334 | struct string_pair |
4335 | { | |
4336 | const char *wide; | |
4337 | const char *narrow; | |
4338 | }; | |
4339 | ||
43cd72b9 | 4340 | struct string_pair narrowable[] = |
e0001a05 | 4341 | { |
43cd72b9 BW |
4342 | { "add", "add.n" }, |
4343 | { "addi", "addi.n" }, | |
4344 | { "addmi", "addi.n" }, | |
4345 | { "l32i", "l32i.n" }, | |
4346 | { "movi", "movi.n" }, | |
4347 | { "ret", "ret.n" }, | |
4348 | { "retw", "retw.n" }, | |
4349 | { "s32i", "s32i.n" }, | |
4350 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
4351 | }; | |
e0001a05 | 4352 | |
43cd72b9 | 4353 | struct string_pair widenable[] = |
e0001a05 | 4354 | { |
43cd72b9 BW |
4355 | { "add", "add.n" }, |
4356 | { "addi", "addi.n" }, | |
4357 | { "addmi", "addi.n" }, | |
4358 | { "beqz", "beqz.n" }, | |
4359 | { "bnez", "bnez.n" }, | |
4360 | { "l32i", "l32i.n" }, | |
4361 | { "movi", "movi.n" }, | |
4362 | { "ret", "ret.n" }, | |
4363 | { "retw", "retw.n" }, | |
4364 | { "s32i", "s32i.n" }, | |
4365 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
4366 | }; | |
e0001a05 NC |
4367 | |
4368 | ||
64b607e6 BW |
4369 | /* Check if an instruction can be "narrowed", i.e., changed from a standard |
4370 | 3-byte instruction to a 2-byte "density" instruction. If it is valid, | |
4371 | return the instruction buffer holding the narrow instruction. Otherwise, | |
4372 | return 0. The set of valid narrowing are specified by a string table | |
43cd72b9 BW |
4373 | but require some special case operand checks in some cases. */ |
4374 | ||
64b607e6 BW |
4375 | static xtensa_insnbuf |
4376 | can_narrow_instruction (xtensa_insnbuf slotbuf, | |
4377 | xtensa_format fmt, | |
4378 | xtensa_opcode opcode) | |
e0001a05 | 4379 | { |
43cd72b9 | 4380 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
4381 | xtensa_format o_fmt; |
4382 | unsigned opi; | |
e0001a05 | 4383 | |
43cd72b9 BW |
4384 | static xtensa_insnbuf o_insnbuf = NULL; |
4385 | static xtensa_insnbuf o_slotbuf = NULL; | |
e0001a05 | 4386 | |
64b607e6 | 4387 | if (o_insnbuf == NULL) |
43cd72b9 | 4388 | { |
43cd72b9 BW |
4389 | o_insnbuf = xtensa_insnbuf_alloc (isa); |
4390 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
4391 | } | |
e0001a05 | 4392 | |
64b607e6 | 4393 | for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++) |
43cd72b9 BW |
4394 | { |
4395 | bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0); | |
e0001a05 | 4396 | |
43cd72b9 BW |
4397 | if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide)) |
4398 | { | |
4399 | uint32 value, newval; | |
4400 | int i, operand_count, o_operand_count; | |
4401 | xtensa_opcode o_opcode; | |
e0001a05 | 4402 | |
43cd72b9 BW |
4403 | /* Address does not matter in this case. We might need to |
4404 | fix it to handle branches/jumps. */ | |
4405 | bfd_vma self_address = 0; | |
e0001a05 | 4406 | |
43cd72b9 BW |
4407 | o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow); |
4408 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 4409 | return 0; |
43cd72b9 BW |
4410 | o_fmt = get_single_format (o_opcode); |
4411 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 4412 | return 0; |
e0001a05 | 4413 | |
43cd72b9 BW |
4414 | if (xtensa_format_length (isa, fmt) != 3 |
4415 | || xtensa_format_length (isa, o_fmt) != 2) | |
64b607e6 | 4416 | return 0; |
e0001a05 | 4417 | |
43cd72b9 BW |
4418 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4419 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
4420 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
e0001a05 | 4421 | |
43cd72b9 | 4422 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 4423 | return 0; |
e0001a05 | 4424 | |
43cd72b9 BW |
4425 | if (!is_or) |
4426 | { | |
4427 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 4428 | return 0; |
43cd72b9 BW |
4429 | } |
4430 | else | |
4431 | { | |
4432 | uint32 rawval0, rawval1, rawval2; | |
e0001a05 | 4433 | |
64b607e6 BW |
4434 | if (o_operand_count + 1 != operand_count |
4435 | || xtensa_operand_get_field (isa, opcode, 0, | |
4436 | fmt, 0, slotbuf, &rawval0) != 0 | |
4437 | || xtensa_operand_get_field (isa, opcode, 1, | |
4438 | fmt, 0, slotbuf, &rawval1) != 0 | |
4439 | || xtensa_operand_get_field (isa, opcode, 2, | |
4440 | fmt, 0, slotbuf, &rawval2) != 0 | |
4441 | || rawval1 != rawval2 | |
4442 | || rawval0 == rawval1 /* it is a nop */) | |
4443 | return 0; | |
43cd72b9 | 4444 | } |
e0001a05 | 4445 | |
43cd72b9 BW |
4446 | for (i = 0; i < o_operand_count; ++i) |
4447 | { | |
4448 | if (xtensa_operand_get_field (isa, opcode, i, fmt, 0, | |
4449 | slotbuf, &value) | |
4450 | || xtensa_operand_decode (isa, opcode, i, &value)) | |
64b607e6 | 4451 | return 0; |
e0001a05 | 4452 | |
43cd72b9 BW |
4453 | /* PC-relative branches need adjustment, but |
4454 | the PC-rel operand will always have a relocation. */ | |
4455 | newval = value; | |
4456 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
4457 | self_address) | |
4458 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
4459 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
4460 | o_slotbuf, newval)) | |
64b607e6 | 4461 | return 0; |
43cd72b9 | 4462 | } |
e0001a05 | 4463 | |
64b607e6 BW |
4464 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) |
4465 | return 0; | |
e0001a05 | 4466 | |
64b607e6 | 4467 | return o_insnbuf; |
43cd72b9 BW |
4468 | } |
4469 | } | |
64b607e6 | 4470 | return 0; |
43cd72b9 | 4471 | } |
e0001a05 | 4472 | |
e0001a05 | 4473 | |
64b607e6 BW |
4474 | /* Attempt to narrow an instruction. If the narrowing is valid, perform |
4475 | the action in-place directly into the contents and return TRUE. Otherwise, | |
4476 | the return value is FALSE and the contents are not modified. */ | |
e0001a05 | 4477 | |
43cd72b9 | 4478 | static bfd_boolean |
64b607e6 BW |
4479 | narrow_instruction (bfd_byte *contents, |
4480 | bfd_size_type content_length, | |
4481 | bfd_size_type offset) | |
e0001a05 | 4482 | { |
43cd72b9 | 4483 | xtensa_opcode opcode; |
64b607e6 | 4484 | bfd_size_type insn_len; |
43cd72b9 | 4485 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
4486 | xtensa_format fmt; |
4487 | xtensa_insnbuf o_insnbuf; | |
e0001a05 | 4488 | |
43cd72b9 BW |
4489 | static xtensa_insnbuf insnbuf = NULL; |
4490 | static xtensa_insnbuf slotbuf = NULL; | |
e0001a05 | 4491 | |
43cd72b9 BW |
4492 | if (insnbuf == NULL) |
4493 | { | |
4494 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4495 | slotbuf = xtensa_insnbuf_alloc (isa); | |
43cd72b9 | 4496 | } |
e0001a05 | 4497 | |
43cd72b9 | 4498 | BFD_ASSERT (offset < content_length); |
2c8c90bc | 4499 | |
43cd72b9 | 4500 | if (content_length < 2) |
e0001a05 NC |
4501 | return FALSE; |
4502 | ||
64b607e6 | 4503 | /* We will hand-code a few of these for a little while. |
43cd72b9 BW |
4504 | These have all been specified in the assembler aleady. */ |
4505 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4506 | content_length - offset); | |
4507 | fmt = xtensa_format_decode (isa, insnbuf); | |
4508 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
e0001a05 NC |
4509 | return FALSE; |
4510 | ||
43cd72b9 | 4511 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) |
e0001a05 NC |
4512 | return FALSE; |
4513 | ||
43cd72b9 BW |
4514 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
4515 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 4516 | return FALSE; |
43cd72b9 BW |
4517 | insn_len = xtensa_format_length (isa, fmt); |
4518 | if (insn_len > content_length) | |
4519 | return FALSE; | |
4520 | ||
64b607e6 BW |
4521 | o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode); |
4522 | if (o_insnbuf) | |
4523 | { | |
4524 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
4525 | content_length - offset); | |
4526 | return TRUE; | |
4527 | } | |
4528 | ||
4529 | return FALSE; | |
4530 | } | |
4531 | ||
4532 | ||
4533 | /* Check if an instruction can be "widened", i.e., changed from a 2-byte | |
4534 | "density" instruction to a standard 3-byte instruction. If it is valid, | |
4535 | return the instruction buffer holding the wide instruction. Otherwise, | |
4536 | return 0. The set of valid widenings are specified by a string table | |
4537 | but require some special case operand checks in some cases. */ | |
4538 | ||
4539 | static xtensa_insnbuf | |
4540 | can_widen_instruction (xtensa_insnbuf slotbuf, | |
4541 | xtensa_format fmt, | |
4542 | xtensa_opcode opcode) | |
4543 | { | |
4544 | xtensa_isa isa = xtensa_default_isa; | |
4545 | xtensa_format o_fmt; | |
4546 | unsigned opi; | |
4547 | ||
4548 | static xtensa_insnbuf o_insnbuf = NULL; | |
4549 | static xtensa_insnbuf o_slotbuf = NULL; | |
4550 | ||
4551 | if (o_insnbuf == NULL) | |
4552 | { | |
4553 | o_insnbuf = xtensa_insnbuf_alloc (isa); | |
4554 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
4555 | } | |
4556 | ||
4557 | for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++) | |
e0001a05 | 4558 | { |
43cd72b9 BW |
4559 | bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0); |
4560 | bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0 | |
4561 | || strcmp ("bnez", widenable[opi].wide) == 0); | |
e0001a05 | 4562 | |
43cd72b9 BW |
4563 | if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow)) |
4564 | { | |
4565 | uint32 value, newval; | |
4566 | int i, operand_count, o_operand_count, check_operand_count; | |
4567 | xtensa_opcode o_opcode; | |
e0001a05 | 4568 | |
43cd72b9 BW |
4569 | /* Address does not matter in this case. We might need to fix it |
4570 | to handle branches/jumps. */ | |
4571 | bfd_vma self_address = 0; | |
e0001a05 | 4572 | |
43cd72b9 BW |
4573 | o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide); |
4574 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 4575 | return 0; |
43cd72b9 BW |
4576 | o_fmt = get_single_format (o_opcode); |
4577 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 4578 | return 0; |
e0001a05 | 4579 | |
43cd72b9 BW |
4580 | if (xtensa_format_length (isa, fmt) != 2 |
4581 | || xtensa_format_length (isa, o_fmt) != 3) | |
64b607e6 | 4582 | return 0; |
e0001a05 | 4583 | |
43cd72b9 BW |
4584 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4585 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
4586 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
4587 | check_operand_count = o_operand_count; | |
e0001a05 | 4588 | |
43cd72b9 | 4589 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 4590 | return 0; |
e0001a05 | 4591 | |
43cd72b9 BW |
4592 | if (!is_or) |
4593 | { | |
4594 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 4595 | return 0; |
43cd72b9 BW |
4596 | } |
4597 | else | |
4598 | { | |
4599 | uint32 rawval0, rawval1; | |
4600 | ||
64b607e6 BW |
4601 | if (o_operand_count != operand_count + 1 |
4602 | || xtensa_operand_get_field (isa, opcode, 0, | |
4603 | fmt, 0, slotbuf, &rawval0) != 0 | |
4604 | || xtensa_operand_get_field (isa, opcode, 1, | |
4605 | fmt, 0, slotbuf, &rawval1) != 0 | |
4606 | || rawval0 == rawval1 /* it is a nop */) | |
4607 | return 0; | |
43cd72b9 BW |
4608 | } |
4609 | if (is_branch) | |
4610 | check_operand_count--; | |
4611 | ||
64b607e6 | 4612 | for (i = 0; i < check_operand_count; i++) |
43cd72b9 BW |
4613 | { |
4614 | int new_i = i; | |
4615 | if (is_or && i == o_operand_count - 1) | |
4616 | new_i = i - 1; | |
4617 | if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0, | |
4618 | slotbuf, &value) | |
4619 | || xtensa_operand_decode (isa, opcode, new_i, &value)) | |
64b607e6 | 4620 | return 0; |
43cd72b9 BW |
4621 | |
4622 | /* PC-relative branches need adjustment, but | |
4623 | the PC-rel operand will always have a relocation. */ | |
4624 | newval = value; | |
4625 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
4626 | self_address) | |
4627 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
4628 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
4629 | o_slotbuf, newval)) | |
64b607e6 | 4630 | return 0; |
43cd72b9 BW |
4631 | } |
4632 | ||
4633 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) | |
64b607e6 | 4634 | return 0; |
43cd72b9 | 4635 | |
64b607e6 | 4636 | return o_insnbuf; |
43cd72b9 BW |
4637 | } |
4638 | } | |
64b607e6 BW |
4639 | return 0; |
4640 | } | |
4641 | ||
68ffbac6 | 4642 | |
64b607e6 BW |
4643 | /* Attempt to widen an instruction. If the widening is valid, perform |
4644 | the action in-place directly into the contents and return TRUE. Otherwise, | |
4645 | the return value is FALSE and the contents are not modified. */ | |
4646 | ||
4647 | static bfd_boolean | |
4648 | widen_instruction (bfd_byte *contents, | |
4649 | bfd_size_type content_length, | |
4650 | bfd_size_type offset) | |
4651 | { | |
4652 | xtensa_opcode opcode; | |
4653 | bfd_size_type insn_len; | |
4654 | xtensa_isa isa = xtensa_default_isa; | |
4655 | xtensa_format fmt; | |
4656 | xtensa_insnbuf o_insnbuf; | |
4657 | ||
4658 | static xtensa_insnbuf insnbuf = NULL; | |
4659 | static xtensa_insnbuf slotbuf = NULL; | |
4660 | ||
4661 | if (insnbuf == NULL) | |
4662 | { | |
4663 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4664 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4665 | } | |
4666 | ||
4667 | BFD_ASSERT (offset < content_length); | |
4668 | ||
4669 | if (content_length < 2) | |
4670 | return FALSE; | |
4671 | ||
4672 | /* We will hand-code a few of these for a little while. | |
4673 | These have all been specified in the assembler aleady. */ | |
4674 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4675 | content_length - offset); | |
4676 | fmt = xtensa_format_decode (isa, insnbuf); | |
4677 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
4678 | return FALSE; | |
4679 | ||
4680 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) | |
4681 | return FALSE; | |
4682 | ||
4683 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4684 | if (opcode == XTENSA_UNDEFINED) | |
4685 | return FALSE; | |
4686 | insn_len = xtensa_format_length (isa, fmt); | |
4687 | if (insn_len > content_length) | |
4688 | return FALSE; | |
4689 | ||
4690 | o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode); | |
4691 | if (o_insnbuf) | |
4692 | { | |
4693 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
4694 | content_length - offset); | |
4695 | return TRUE; | |
4696 | } | |
43cd72b9 | 4697 | return FALSE; |
e0001a05 NC |
4698 | } |
4699 | ||
43cd72b9 BW |
4700 | \f |
4701 | /* Code for transforming CALLs at link-time. */ | |
e0001a05 | 4702 | |
43cd72b9 | 4703 | static bfd_reloc_status_type |
7fa3d080 BW |
4704 | elf_xtensa_do_asm_simplify (bfd_byte *contents, |
4705 | bfd_vma address, | |
4706 | bfd_vma content_length, | |
4707 | char **error_message) | |
e0001a05 | 4708 | { |
43cd72b9 BW |
4709 | static xtensa_insnbuf insnbuf = NULL; |
4710 | static xtensa_insnbuf slotbuf = NULL; | |
4711 | xtensa_format core_format = XTENSA_UNDEFINED; | |
4712 | xtensa_opcode opcode; | |
4713 | xtensa_opcode direct_call_opcode; | |
4714 | xtensa_isa isa = xtensa_default_isa; | |
4715 | bfd_byte *chbuf = contents + address; | |
4716 | int opn; | |
e0001a05 | 4717 | |
43cd72b9 | 4718 | if (insnbuf == NULL) |
e0001a05 | 4719 | { |
43cd72b9 BW |
4720 | insnbuf = xtensa_insnbuf_alloc (isa); |
4721 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4722 | } |
e0001a05 | 4723 | |
43cd72b9 BW |
4724 | if (content_length < address) |
4725 | { | |
38f14ab8 | 4726 | *error_message = _("attempt to convert L32R/CALLX to CALL failed"); |
43cd72b9 BW |
4727 | return bfd_reloc_other; |
4728 | } | |
e0001a05 | 4729 | |
43cd72b9 BW |
4730 | opcode = get_expanded_call_opcode (chbuf, content_length - address, 0); |
4731 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
4732 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
4733 | { | |
38f14ab8 | 4734 | *error_message = _("attempt to convert L32R/CALLX to CALL failed"); |
43cd72b9 BW |
4735 | return bfd_reloc_other; |
4736 | } | |
68ffbac6 | 4737 | |
43cd72b9 BW |
4738 | /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ |
4739 | core_format = xtensa_format_lookup (isa, "x24"); | |
4740 | opcode = xtensa_opcode_lookup (isa, "or"); | |
4741 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode); | |
68ffbac6 | 4742 | for (opn = 0; opn < 3; opn++) |
43cd72b9 BW |
4743 | { |
4744 | uint32 regno = 1; | |
4745 | xtensa_operand_encode (isa, opcode, opn, ®no); | |
4746 | xtensa_operand_set_field (isa, opcode, opn, core_format, 0, | |
4747 | slotbuf, regno); | |
4748 | } | |
4749 | xtensa_format_encode (isa, core_format, insnbuf); | |
4750 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
4751 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address); | |
e0001a05 | 4752 | |
43cd72b9 BW |
4753 | /* Assemble a CALL ("callN 0") into the 3 byte offset. */ |
4754 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode); | |
4755 | xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0); | |
e0001a05 | 4756 | |
43cd72b9 BW |
4757 | xtensa_format_encode (isa, core_format, insnbuf); |
4758 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
4759 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3, | |
4760 | content_length - address - 3); | |
e0001a05 | 4761 | |
43cd72b9 BW |
4762 | return bfd_reloc_ok; |
4763 | } | |
e0001a05 | 4764 | |
e0001a05 | 4765 | |
43cd72b9 | 4766 | static bfd_reloc_status_type |
7fa3d080 BW |
4767 | contract_asm_expansion (bfd_byte *contents, |
4768 | bfd_vma content_length, | |
4769 | Elf_Internal_Rela *irel, | |
4770 | char **error_message) | |
43cd72b9 BW |
4771 | { |
4772 | bfd_reloc_status_type retval = | |
4773 | elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length, | |
4774 | error_message); | |
e0001a05 | 4775 | |
43cd72b9 BW |
4776 | if (retval != bfd_reloc_ok) |
4777 | return bfd_reloc_dangerous; | |
e0001a05 | 4778 | |
43cd72b9 BW |
4779 | /* Update the irel->r_offset field so that the right immediate and |
4780 | the right instruction are modified during the relocation. */ | |
4781 | irel->r_offset += 3; | |
4782 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP); | |
4783 | return bfd_reloc_ok; | |
4784 | } | |
e0001a05 | 4785 | |
e0001a05 | 4786 | |
43cd72b9 | 4787 | static xtensa_opcode |
7fa3d080 | 4788 | swap_callx_for_call_opcode (xtensa_opcode opcode) |
e0001a05 | 4789 | { |
43cd72b9 | 4790 | init_call_opcodes (); |
e0001a05 | 4791 | |
43cd72b9 BW |
4792 | if (opcode == callx0_op) return call0_op; |
4793 | if (opcode == callx4_op) return call4_op; | |
4794 | if (opcode == callx8_op) return call8_op; | |
4795 | if (opcode == callx12_op) return call12_op; | |
e0001a05 | 4796 | |
43cd72b9 BW |
4797 | /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ |
4798 | return XTENSA_UNDEFINED; | |
4799 | } | |
e0001a05 | 4800 | |
e0001a05 | 4801 | |
43cd72b9 BW |
4802 | /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN; |
4803 | CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode. | |
4804 | If not, return XTENSA_UNDEFINED. */ | |
e0001a05 | 4805 | |
43cd72b9 BW |
4806 | #define L32R_TARGET_REG_OPERAND 0 |
4807 | #define CONST16_TARGET_REG_OPERAND 0 | |
4808 | #define CALLN_SOURCE_OPERAND 0 | |
e0001a05 | 4809 | |
68ffbac6 | 4810 | static xtensa_opcode |
7fa3d080 | 4811 | get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r) |
e0001a05 | 4812 | { |
43cd72b9 BW |
4813 | static xtensa_insnbuf insnbuf = NULL; |
4814 | static xtensa_insnbuf slotbuf = NULL; | |
4815 | xtensa_format fmt; | |
4816 | xtensa_opcode opcode; | |
4817 | xtensa_isa isa = xtensa_default_isa; | |
4818 | uint32 regno, const16_regno, call_regno; | |
4819 | int offset = 0; | |
e0001a05 | 4820 | |
43cd72b9 | 4821 | if (insnbuf == NULL) |
e0001a05 | 4822 | { |
43cd72b9 BW |
4823 | insnbuf = xtensa_insnbuf_alloc (isa); |
4824 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4825 | } |
43cd72b9 BW |
4826 | |
4827 | xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize); | |
4828 | fmt = xtensa_format_decode (isa, insnbuf); | |
4829 | if (fmt == XTENSA_UNDEFINED | |
4830 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4831 | return XTENSA_UNDEFINED; | |
4832 | ||
4833 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4834 | if (opcode == XTENSA_UNDEFINED) | |
4835 | return XTENSA_UNDEFINED; | |
4836 | ||
4837 | if (opcode == get_l32r_opcode ()) | |
e0001a05 | 4838 | { |
43cd72b9 BW |
4839 | if (p_uses_l32r) |
4840 | *p_uses_l32r = TRUE; | |
4841 | if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4842 | fmt, 0, slotbuf, ®no) | |
4843 | || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4844 | ®no)) | |
4845 | return XTENSA_UNDEFINED; | |
e0001a05 | 4846 | } |
43cd72b9 | 4847 | else if (opcode == get_const16_opcode ()) |
e0001a05 | 4848 | { |
43cd72b9 BW |
4849 | if (p_uses_l32r) |
4850 | *p_uses_l32r = FALSE; | |
4851 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4852 | fmt, 0, slotbuf, ®no) | |
4853 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4854 | ®no)) | |
4855 | return XTENSA_UNDEFINED; | |
4856 | ||
4857 | /* Check that the next instruction is also CONST16. */ | |
4858 | offset += xtensa_format_length (isa, fmt); | |
4859 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4860 | fmt = xtensa_format_decode (isa, insnbuf); | |
4861 | if (fmt == XTENSA_UNDEFINED | |
4862 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4863 | return XTENSA_UNDEFINED; | |
4864 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4865 | if (opcode != get_const16_opcode ()) | |
4866 | return XTENSA_UNDEFINED; | |
4867 | ||
4868 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4869 | fmt, 0, slotbuf, &const16_regno) | |
4870 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4871 | &const16_regno) | |
4872 | || const16_regno != regno) | |
4873 | return XTENSA_UNDEFINED; | |
e0001a05 | 4874 | } |
43cd72b9 BW |
4875 | else |
4876 | return XTENSA_UNDEFINED; | |
e0001a05 | 4877 | |
43cd72b9 BW |
4878 | /* Next instruction should be an CALLXn with operand 0 == regno. */ |
4879 | offset += xtensa_format_length (isa, fmt); | |
4880 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4881 | fmt = xtensa_format_decode (isa, insnbuf); | |
4882 | if (fmt == XTENSA_UNDEFINED | |
4883 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4884 | return XTENSA_UNDEFINED; | |
4885 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
68ffbac6 | 4886 | if (opcode == XTENSA_UNDEFINED |
43cd72b9 BW |
4887 | || !is_indirect_call_opcode (opcode)) |
4888 | return XTENSA_UNDEFINED; | |
e0001a05 | 4889 | |
43cd72b9 BW |
4890 | if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND, |
4891 | fmt, 0, slotbuf, &call_regno) | |
4892 | || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND, | |
4893 | &call_regno)) | |
4894 | return XTENSA_UNDEFINED; | |
e0001a05 | 4895 | |
43cd72b9 BW |
4896 | if (call_regno != regno) |
4897 | return XTENSA_UNDEFINED; | |
e0001a05 | 4898 | |
43cd72b9 BW |
4899 | return opcode; |
4900 | } | |
e0001a05 | 4901 | |
43cd72b9 BW |
4902 | \f |
4903 | /* Data structures used during relaxation. */ | |
e0001a05 | 4904 | |
43cd72b9 | 4905 | /* r_reloc: relocation values. */ |
e0001a05 | 4906 | |
43cd72b9 BW |
4907 | /* Through the relaxation process, we need to keep track of the values |
4908 | that will result from evaluating relocations. The standard ELF | |
4909 | relocation structure is not sufficient for this purpose because we're | |
4910 | operating on multiple input files at once, so we need to know which | |
4911 | input file a relocation refers to. The r_reloc structure thus | |
4912 | records both the input file (bfd) and ELF relocation. | |
e0001a05 | 4913 | |
43cd72b9 BW |
4914 | For efficiency, an r_reloc also contains a "target_offset" field to |
4915 | cache the target-section-relative offset value that is represented by | |
4916 | the relocation. | |
68ffbac6 | 4917 | |
43cd72b9 BW |
4918 | The r_reloc also contains a virtual offset that allows multiple |
4919 | inserted literals to be placed at the same "address" with | |
4920 | different offsets. */ | |
e0001a05 | 4921 | |
43cd72b9 | 4922 | typedef struct r_reloc_struct r_reloc; |
e0001a05 | 4923 | |
43cd72b9 | 4924 | struct r_reloc_struct |
e0001a05 | 4925 | { |
43cd72b9 BW |
4926 | bfd *abfd; |
4927 | Elf_Internal_Rela rela; | |
e0001a05 | 4928 | bfd_vma target_offset; |
43cd72b9 | 4929 | bfd_vma virtual_offset; |
e0001a05 NC |
4930 | }; |
4931 | ||
e0001a05 | 4932 | |
43cd72b9 BW |
4933 | /* The r_reloc structure is included by value in literal_value, but not |
4934 | every literal_value has an associated relocation -- some are simple | |
4935 | constants. In such cases, we set all the fields in the r_reloc | |
4936 | struct to zero. The r_reloc_is_const function should be used to | |
4937 | detect this case. */ | |
e0001a05 | 4938 | |
43cd72b9 | 4939 | static bfd_boolean |
7fa3d080 | 4940 | r_reloc_is_const (const r_reloc *r_rel) |
e0001a05 | 4941 | { |
43cd72b9 | 4942 | return (r_rel->abfd == NULL); |
e0001a05 NC |
4943 | } |
4944 | ||
4945 | ||
43cd72b9 | 4946 | static bfd_vma |
7fa3d080 | 4947 | r_reloc_get_target_offset (const r_reloc *r_rel) |
e0001a05 | 4948 | { |
43cd72b9 BW |
4949 | bfd_vma target_offset; |
4950 | unsigned long r_symndx; | |
e0001a05 | 4951 | |
43cd72b9 BW |
4952 | BFD_ASSERT (!r_reloc_is_const (r_rel)); |
4953 | r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4954 | target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); | |
4955 | return (target_offset + r_rel->rela.r_addend); | |
4956 | } | |
e0001a05 | 4957 | |
e0001a05 | 4958 | |
43cd72b9 | 4959 | static struct elf_link_hash_entry * |
7fa3d080 | 4960 | r_reloc_get_hash_entry (const r_reloc *r_rel) |
e0001a05 | 4961 | { |
43cd72b9 BW |
4962 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); |
4963 | return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); | |
4964 | } | |
e0001a05 | 4965 | |
43cd72b9 BW |
4966 | |
4967 | static asection * | |
7fa3d080 | 4968 | r_reloc_get_section (const r_reloc *r_rel) |
43cd72b9 BW |
4969 | { |
4970 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4971 | return get_elf_r_symndx_section (r_rel->abfd, r_symndx); | |
4972 | } | |
e0001a05 NC |
4973 | |
4974 | ||
4975 | static bfd_boolean | |
7fa3d080 | 4976 | r_reloc_is_defined (const r_reloc *r_rel) |
e0001a05 | 4977 | { |
43cd72b9 BW |
4978 | asection *sec; |
4979 | if (r_rel == NULL) | |
e0001a05 | 4980 | return FALSE; |
e0001a05 | 4981 | |
43cd72b9 BW |
4982 | sec = r_reloc_get_section (r_rel); |
4983 | if (sec == bfd_abs_section_ptr | |
4984 | || sec == bfd_com_section_ptr | |
4985 | || sec == bfd_und_section_ptr) | |
4986 | return FALSE; | |
4987 | return TRUE; | |
e0001a05 NC |
4988 | } |
4989 | ||
4990 | ||
7fa3d080 BW |
4991 | static void |
4992 | r_reloc_init (r_reloc *r_rel, | |
4993 | bfd *abfd, | |
4994 | Elf_Internal_Rela *irel, | |
4995 | bfd_byte *contents, | |
4996 | bfd_size_type content_length) | |
4997 | { | |
4998 | int r_type; | |
4999 | reloc_howto_type *howto; | |
5000 | ||
5001 | if (irel) | |
5002 | { | |
5003 | r_rel->rela = *irel; | |
5004 | r_rel->abfd = abfd; | |
5005 | r_rel->target_offset = r_reloc_get_target_offset (r_rel); | |
5006 | r_rel->virtual_offset = 0; | |
5007 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
5008 | howto = &elf_howto_table[r_type]; | |
5009 | if (howto->partial_inplace) | |
5010 | { | |
5011 | bfd_vma inplace_val; | |
5012 | BFD_ASSERT (r_rel->rela.r_offset < content_length); | |
5013 | ||
5014 | inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]); | |
5015 | r_rel->target_offset += inplace_val; | |
5016 | } | |
5017 | } | |
5018 | else | |
5019 | memset (r_rel, 0, sizeof (r_reloc)); | |
5020 | } | |
5021 | ||
5022 | ||
43cd72b9 BW |
5023 | #if DEBUG |
5024 | ||
e0001a05 | 5025 | static void |
7fa3d080 | 5026 | print_r_reloc (FILE *fp, const r_reloc *r_rel) |
e0001a05 | 5027 | { |
43cd72b9 BW |
5028 | if (r_reloc_is_defined (r_rel)) |
5029 | { | |
5030 | asection *sec = r_reloc_get_section (r_rel); | |
5031 | fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name); | |
5032 | } | |
5033 | else if (r_reloc_get_hash_entry (r_rel)) | |
5034 | fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string); | |
5035 | else | |
5036 | fprintf (fp, " ?? + "); | |
e0001a05 | 5037 | |
43cd72b9 BW |
5038 | fprintf_vma (fp, r_rel->target_offset); |
5039 | if (r_rel->virtual_offset) | |
5040 | { | |
5041 | fprintf (fp, " + "); | |
5042 | fprintf_vma (fp, r_rel->virtual_offset); | |
5043 | } | |
68ffbac6 | 5044 | |
43cd72b9 BW |
5045 | fprintf (fp, ")"); |
5046 | } | |
e0001a05 | 5047 | |
43cd72b9 | 5048 | #endif /* DEBUG */ |
e0001a05 | 5049 | |
43cd72b9 BW |
5050 | \f |
5051 | /* source_reloc: relocations that reference literals. */ | |
e0001a05 | 5052 | |
43cd72b9 BW |
5053 | /* To determine whether literals can be coalesced, we need to first |
5054 | record all the relocations that reference the literals. The | |
5055 | source_reloc structure below is used for this purpose. The | |
5056 | source_reloc entries are kept in a per-literal-section array, sorted | |
5057 | by offset within the literal section (i.e., target offset). | |
e0001a05 | 5058 | |
43cd72b9 BW |
5059 | The source_sec and r_rel.rela.r_offset fields identify the source of |
5060 | the relocation. The r_rel field records the relocation value, i.e., | |
5061 | the offset of the literal being referenced. The opnd field is needed | |
5062 | to determine the range of the immediate field to which the relocation | |
5063 | applies, so we can determine whether another literal with the same | |
5064 | value is within range. The is_null field is true when the relocation | |
5065 | is being removed (e.g., when an L32R is being removed due to a CALLX | |
5066 | that is converted to a direct CALL). */ | |
e0001a05 | 5067 | |
43cd72b9 BW |
5068 | typedef struct source_reloc_struct source_reloc; |
5069 | ||
5070 | struct source_reloc_struct | |
e0001a05 | 5071 | { |
43cd72b9 BW |
5072 | asection *source_sec; |
5073 | r_reloc r_rel; | |
5074 | xtensa_opcode opcode; | |
5075 | int opnd; | |
5076 | bfd_boolean is_null; | |
5077 | bfd_boolean is_abs_literal; | |
5078 | }; | |
e0001a05 | 5079 | |
e0001a05 | 5080 | |
e0001a05 | 5081 | static void |
7fa3d080 BW |
5082 | init_source_reloc (source_reloc *reloc, |
5083 | asection *source_sec, | |
5084 | const r_reloc *r_rel, | |
5085 | xtensa_opcode opcode, | |
5086 | int opnd, | |
5087 | bfd_boolean is_abs_literal) | |
e0001a05 | 5088 | { |
43cd72b9 BW |
5089 | reloc->source_sec = source_sec; |
5090 | reloc->r_rel = *r_rel; | |
5091 | reloc->opcode = opcode; | |
5092 | reloc->opnd = opnd; | |
5093 | reloc->is_null = FALSE; | |
5094 | reloc->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
5095 | } |
5096 | ||
e0001a05 | 5097 | |
43cd72b9 BW |
5098 | /* Find the source_reloc for a particular source offset and relocation |
5099 | type. Note that the array is sorted by _target_ offset, so this is | |
5100 | just a linear search. */ | |
e0001a05 | 5101 | |
43cd72b9 | 5102 | static source_reloc * |
7fa3d080 BW |
5103 | find_source_reloc (source_reloc *src_relocs, |
5104 | int src_count, | |
5105 | asection *sec, | |
5106 | Elf_Internal_Rela *irel) | |
e0001a05 | 5107 | { |
43cd72b9 | 5108 | int i; |
e0001a05 | 5109 | |
43cd72b9 BW |
5110 | for (i = 0; i < src_count; i++) |
5111 | { | |
5112 | if (src_relocs[i].source_sec == sec | |
5113 | && src_relocs[i].r_rel.rela.r_offset == irel->r_offset | |
5114 | && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) | |
5115 | == ELF32_R_TYPE (irel->r_info))) | |
5116 | return &src_relocs[i]; | |
5117 | } | |
e0001a05 | 5118 | |
43cd72b9 | 5119 | return NULL; |
e0001a05 NC |
5120 | } |
5121 | ||
5122 | ||
43cd72b9 | 5123 | static int |
7fa3d080 | 5124 | source_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 5125 | { |
43cd72b9 BW |
5126 | const source_reloc *a = (const source_reloc *) ap; |
5127 | const source_reloc *b = (const source_reloc *) bp; | |
e0001a05 | 5128 | |
43cd72b9 BW |
5129 | if (a->r_rel.target_offset != b->r_rel.target_offset) |
5130 | return (a->r_rel.target_offset - b->r_rel.target_offset); | |
e0001a05 | 5131 | |
43cd72b9 BW |
5132 | /* We don't need to sort on these criteria for correctness, |
5133 | but enforcing a more strict ordering prevents unstable qsort | |
5134 | from behaving differently with different implementations. | |
5135 | Without the code below we get correct but different results | |
5136 | on Solaris 2.7 and 2.8. We would like to always produce the | |
5137 | same results no matter the host. */ | |
5138 | ||
5139 | if ((!a->is_null) - (!b->is_null)) | |
5140 | return ((!a->is_null) - (!b->is_null)); | |
5141 | return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela); | |
e0001a05 NC |
5142 | } |
5143 | ||
43cd72b9 BW |
5144 | \f |
5145 | /* Literal values and value hash tables. */ | |
e0001a05 | 5146 | |
43cd72b9 BW |
5147 | /* Literals with the same value can be coalesced. The literal_value |
5148 | structure records the value of a literal: the "r_rel" field holds the | |
5149 | information from the relocation on the literal (if there is one) and | |
5150 | the "value" field holds the contents of the literal word itself. | |
e0001a05 | 5151 | |
43cd72b9 BW |
5152 | The value_map structure records a literal value along with the |
5153 | location of a literal holding that value. The value_map hash table | |
5154 | is indexed by the literal value, so that we can quickly check if a | |
5155 | particular literal value has been seen before and is thus a candidate | |
5156 | for coalescing. */ | |
e0001a05 | 5157 | |
43cd72b9 BW |
5158 | typedef struct literal_value_struct literal_value; |
5159 | typedef struct value_map_struct value_map; | |
5160 | typedef struct value_map_hash_table_struct value_map_hash_table; | |
e0001a05 | 5161 | |
43cd72b9 | 5162 | struct literal_value_struct |
e0001a05 | 5163 | { |
68ffbac6 | 5164 | r_reloc r_rel; |
43cd72b9 BW |
5165 | unsigned long value; |
5166 | bfd_boolean is_abs_literal; | |
5167 | }; | |
5168 | ||
5169 | struct value_map_struct | |
5170 | { | |
5171 | literal_value val; /* The literal value. */ | |
5172 | r_reloc loc; /* Location of the literal. */ | |
5173 | value_map *next; | |
5174 | }; | |
5175 | ||
5176 | struct value_map_hash_table_struct | |
5177 | { | |
5178 | unsigned bucket_count; | |
5179 | value_map **buckets; | |
5180 | unsigned count; | |
5181 | bfd_boolean has_last_loc; | |
5182 | r_reloc last_loc; | |
5183 | }; | |
5184 | ||
5185 | ||
e0001a05 | 5186 | static void |
7fa3d080 BW |
5187 | init_literal_value (literal_value *lit, |
5188 | const r_reloc *r_rel, | |
5189 | unsigned long value, | |
5190 | bfd_boolean is_abs_literal) | |
e0001a05 | 5191 | { |
43cd72b9 BW |
5192 | lit->r_rel = *r_rel; |
5193 | lit->value = value; | |
5194 | lit->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
5195 | } |
5196 | ||
5197 | ||
43cd72b9 | 5198 | static bfd_boolean |
7fa3d080 BW |
5199 | literal_value_equal (const literal_value *src1, |
5200 | const literal_value *src2, | |
5201 | bfd_boolean final_static_link) | |
e0001a05 | 5202 | { |
43cd72b9 | 5203 | struct elf_link_hash_entry *h1, *h2; |
e0001a05 | 5204 | |
68ffbac6 | 5205 | if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) |
43cd72b9 | 5206 | return FALSE; |
e0001a05 | 5207 | |
43cd72b9 BW |
5208 | if (r_reloc_is_const (&src1->r_rel)) |
5209 | return (src1->value == src2->value); | |
e0001a05 | 5210 | |
43cd72b9 BW |
5211 | if (ELF32_R_TYPE (src1->r_rel.rela.r_info) |
5212 | != ELF32_R_TYPE (src2->r_rel.rela.r_info)) | |
5213 | return FALSE; | |
e0001a05 | 5214 | |
43cd72b9 BW |
5215 | if (src1->r_rel.target_offset != src2->r_rel.target_offset) |
5216 | return FALSE; | |
68ffbac6 | 5217 | |
43cd72b9 BW |
5218 | if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset) |
5219 | return FALSE; | |
5220 | ||
5221 | if (src1->value != src2->value) | |
5222 | return FALSE; | |
68ffbac6 | 5223 | |
43cd72b9 BW |
5224 | /* Now check for the same section (if defined) or the same elf_hash |
5225 | (if undefined or weak). */ | |
5226 | h1 = r_reloc_get_hash_entry (&src1->r_rel); | |
5227 | h2 = r_reloc_get_hash_entry (&src2->r_rel); | |
5228 | if (r_reloc_is_defined (&src1->r_rel) | |
5229 | && (final_static_link | |
5230 | || ((!h1 || h1->root.type != bfd_link_hash_defweak) | |
5231 | && (!h2 || h2->root.type != bfd_link_hash_defweak)))) | |
5232 | { | |
5233 | if (r_reloc_get_section (&src1->r_rel) | |
5234 | != r_reloc_get_section (&src2->r_rel)) | |
5235 | return FALSE; | |
5236 | } | |
5237 | else | |
5238 | { | |
5239 | /* Require that the hash entries (i.e., symbols) be identical. */ | |
5240 | if (h1 != h2 || h1 == 0) | |
5241 | return FALSE; | |
5242 | } | |
5243 | ||
5244 | if (src1->is_abs_literal != src2->is_abs_literal) | |
5245 | return FALSE; | |
5246 | ||
5247 | return TRUE; | |
e0001a05 NC |
5248 | } |
5249 | ||
e0001a05 | 5250 | |
43cd72b9 BW |
5251 | /* Must be power of 2. */ |
5252 | #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 | |
e0001a05 | 5253 | |
43cd72b9 | 5254 | static value_map_hash_table * |
7fa3d080 | 5255 | value_map_hash_table_init (void) |
43cd72b9 BW |
5256 | { |
5257 | value_map_hash_table *values; | |
e0001a05 | 5258 | |
43cd72b9 BW |
5259 | values = (value_map_hash_table *) |
5260 | bfd_zmalloc (sizeof (value_map_hash_table)); | |
5261 | values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; | |
5262 | values->count = 0; | |
5263 | values->buckets = (value_map **) | |
5264 | bfd_zmalloc (sizeof (value_map *) * values->bucket_count); | |
68ffbac6 | 5265 | if (values->buckets == NULL) |
43cd72b9 BW |
5266 | { |
5267 | free (values); | |
5268 | return NULL; | |
5269 | } | |
5270 | values->has_last_loc = FALSE; | |
5271 | ||
5272 | return values; | |
5273 | } | |
5274 | ||
5275 | ||
5276 | static void | |
7fa3d080 | 5277 | value_map_hash_table_delete (value_map_hash_table *table) |
e0001a05 | 5278 | { |
43cd72b9 BW |
5279 | free (table->buckets); |
5280 | free (table); | |
5281 | } | |
5282 | ||
5283 | ||
5284 | static unsigned | |
7fa3d080 | 5285 | hash_bfd_vma (bfd_vma val) |
43cd72b9 BW |
5286 | { |
5287 | return (val >> 2) + (val >> 10); | |
5288 | } | |
5289 | ||
5290 | ||
5291 | static unsigned | |
7fa3d080 | 5292 | literal_value_hash (const literal_value *src) |
43cd72b9 BW |
5293 | { |
5294 | unsigned hash_val; | |
e0001a05 | 5295 | |
43cd72b9 BW |
5296 | hash_val = hash_bfd_vma (src->value); |
5297 | if (!r_reloc_is_const (&src->r_rel)) | |
e0001a05 | 5298 | { |
43cd72b9 BW |
5299 | void *sec_or_hash; |
5300 | ||
5301 | hash_val += hash_bfd_vma (src->is_abs_literal * 1000); | |
5302 | hash_val += hash_bfd_vma (src->r_rel.target_offset); | |
5303 | hash_val += hash_bfd_vma (src->r_rel.virtual_offset); | |
68ffbac6 | 5304 | |
43cd72b9 BW |
5305 | /* Now check for the same section and the same elf_hash. */ |
5306 | if (r_reloc_is_defined (&src->r_rel)) | |
5307 | sec_or_hash = r_reloc_get_section (&src->r_rel); | |
5308 | else | |
5309 | sec_or_hash = r_reloc_get_hash_entry (&src->r_rel); | |
f60ca5e3 | 5310 | hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash); |
e0001a05 | 5311 | } |
43cd72b9 BW |
5312 | return hash_val; |
5313 | } | |
e0001a05 | 5314 | |
e0001a05 | 5315 | |
43cd72b9 | 5316 | /* Check if the specified literal_value has been seen before. */ |
e0001a05 | 5317 | |
43cd72b9 | 5318 | static value_map * |
7fa3d080 BW |
5319 | value_map_get_cached_value (value_map_hash_table *map, |
5320 | const literal_value *val, | |
5321 | bfd_boolean final_static_link) | |
43cd72b9 BW |
5322 | { |
5323 | value_map *map_e; | |
5324 | value_map *bucket; | |
5325 | unsigned idx; | |
5326 | ||
5327 | idx = literal_value_hash (val); | |
5328 | idx = idx & (map->bucket_count - 1); | |
5329 | bucket = map->buckets[idx]; | |
5330 | for (map_e = bucket; map_e; map_e = map_e->next) | |
e0001a05 | 5331 | { |
43cd72b9 BW |
5332 | if (literal_value_equal (&map_e->val, val, final_static_link)) |
5333 | return map_e; | |
5334 | } | |
5335 | return NULL; | |
5336 | } | |
e0001a05 | 5337 | |
e0001a05 | 5338 | |
43cd72b9 BW |
5339 | /* Record a new literal value. It is illegal to call this if VALUE |
5340 | already has an entry here. */ | |
5341 | ||
5342 | static value_map * | |
7fa3d080 BW |
5343 | add_value_map (value_map_hash_table *map, |
5344 | const literal_value *val, | |
5345 | const r_reloc *loc, | |
5346 | bfd_boolean final_static_link) | |
43cd72b9 BW |
5347 | { |
5348 | value_map **bucket_p; | |
5349 | unsigned idx; | |
5350 | ||
5351 | value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); | |
5352 | if (val_e == NULL) | |
5353 | { | |
5354 | bfd_set_error (bfd_error_no_memory); | |
5355 | return NULL; | |
e0001a05 NC |
5356 | } |
5357 | ||
43cd72b9 BW |
5358 | BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link)); |
5359 | val_e->val = *val; | |
5360 | val_e->loc = *loc; | |
5361 | ||
5362 | idx = literal_value_hash (val); | |
5363 | idx = idx & (map->bucket_count - 1); | |
5364 | bucket_p = &map->buckets[idx]; | |
5365 | ||
5366 | val_e->next = *bucket_p; | |
5367 | *bucket_p = val_e; | |
5368 | map->count++; | |
5369 | /* FIXME: Consider resizing the hash table if we get too many entries. */ | |
68ffbac6 | 5370 | |
43cd72b9 | 5371 | return val_e; |
e0001a05 NC |
5372 | } |
5373 | ||
43cd72b9 BW |
5374 | \f |
5375 | /* Lists of text actions (ta_) for narrowing, widening, longcall | |
5376 | conversion, space fill, code & literal removal, etc. */ | |
5377 | ||
5378 | /* The following text actions are generated: | |
5379 | ||
07d6d2b8 AM |
5380 | "ta_remove_insn" remove an instruction or instructions |
5381 | "ta_remove_longcall" convert longcall to call | |
43cd72b9 | 5382 | "ta_convert_longcall" convert longcall to nop/call |
07d6d2b8 AM |
5383 | "ta_narrow_insn" narrow a wide instruction |
5384 | "ta_widen" widen a narrow instruction | |
5385 | "ta_fill" add fill or remove fill | |
43cd72b9 BW |
5386 | removed < 0 is a fill; branches to the fill address will be |
5387 | changed to address + fill size (e.g., address - removed) | |
5388 | removed >= 0 branches to the fill address will stay unchanged | |
07d6d2b8 | 5389 | "ta_remove_literal" remove a literal; this action is |
43cd72b9 | 5390 | indicated when a literal is removed |
07d6d2b8 AM |
5391 | or replaced. |
5392 | "ta_add_literal" insert a new literal; this action is | |
5393 | indicated when a literal has been moved. | |
5394 | It may use a virtual_offset because | |
43cd72b9 | 5395 | multiple literals can be placed at the |
07d6d2b8 | 5396 | same location. |
43cd72b9 BW |
5397 | |
5398 | For each of these text actions, we also record the number of bytes | |
5399 | removed by performing the text action. In the case of a "ta_widen" | |
5400 | or a "ta_fill" that adds space, the removed_bytes will be negative. */ | |
5401 | ||
5402 | typedef struct text_action_struct text_action; | |
5403 | typedef struct text_action_list_struct text_action_list; | |
5404 | typedef enum text_action_enum_t text_action_t; | |
5405 | ||
5406 | enum text_action_enum_t | |
5407 | { | |
5408 | ta_none, | |
07d6d2b8 AM |
5409 | ta_remove_insn, /* removed = -size */ |
5410 | ta_remove_longcall, /* removed = -size */ | |
5411 | ta_convert_longcall, /* removed = 0 */ | |
5412 | ta_narrow_insn, /* removed = -1 */ | |
5413 | ta_widen_insn, /* removed = +1 */ | |
5414 | ta_fill, /* removed = +size */ | |
43cd72b9 BW |
5415 | ta_remove_literal, |
5416 | ta_add_literal | |
5417 | }; | |
e0001a05 | 5418 | |
e0001a05 | 5419 | |
43cd72b9 BW |
5420 | /* Structure for a text action record. */ |
5421 | struct text_action_struct | |
e0001a05 | 5422 | { |
43cd72b9 BW |
5423 | text_action_t action; |
5424 | asection *sec; /* Optional */ | |
5425 | bfd_vma offset; | |
5426 | bfd_vma virtual_offset; /* Zero except for adding literals. */ | |
5427 | int removed_bytes; | |
5428 | literal_value value; /* Only valid when adding literals. */ | |
43cd72b9 | 5429 | }; |
e0001a05 | 5430 | |
071aa5c9 MF |
5431 | struct removal_by_action_entry_struct |
5432 | { | |
5433 | bfd_vma offset; | |
5434 | int removed; | |
5435 | int eq_removed; | |
5436 | int eq_removed_before_fill; | |
5437 | }; | |
5438 | typedef struct removal_by_action_entry_struct removal_by_action_entry; | |
5439 | ||
5440 | struct removal_by_action_map_struct | |
5441 | { | |
5442 | unsigned n_entries; | |
5443 | removal_by_action_entry *entry; | |
5444 | }; | |
5445 | typedef struct removal_by_action_map_struct removal_by_action_map; | |
5446 | ||
e0001a05 | 5447 | |
43cd72b9 BW |
5448 | /* List of all of the actions taken on a text section. */ |
5449 | struct text_action_list_struct | |
5450 | { | |
4c2af04f MF |
5451 | unsigned count; |
5452 | splay_tree tree; | |
071aa5c9 | 5453 | removal_by_action_map map; |
43cd72b9 | 5454 | }; |
e0001a05 | 5455 | |
e0001a05 | 5456 | |
7fa3d080 BW |
5457 | static text_action * |
5458 | find_fill_action (text_action_list *l, asection *sec, bfd_vma offset) | |
43cd72b9 | 5459 | { |
4c2af04f | 5460 | text_action a; |
43cd72b9 BW |
5461 | |
5462 | /* It is not necessary to fill at the end of a section. */ | |
5463 | if (sec->size == offset) | |
5464 | return NULL; | |
5465 | ||
4c2af04f MF |
5466 | a.offset = offset; |
5467 | a.action = ta_fill; | |
5468 | ||
5469 | splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a); | |
5470 | if (node) | |
5471 | return (text_action *)node->value; | |
43cd72b9 BW |
5472 | return NULL; |
5473 | } | |
5474 | ||
5475 | ||
5476 | static int | |
7fa3d080 BW |
5477 | compute_removed_action_diff (const text_action *ta, |
5478 | asection *sec, | |
5479 | bfd_vma offset, | |
5480 | int removed, | |
5481 | int removable_space) | |
43cd72b9 BW |
5482 | { |
5483 | int new_removed; | |
5484 | int current_removed = 0; | |
5485 | ||
7fa3d080 | 5486 | if (ta) |
43cd72b9 BW |
5487 | current_removed = ta->removed_bytes; |
5488 | ||
5489 | BFD_ASSERT (ta == NULL || ta->offset == offset); | |
5490 | BFD_ASSERT (ta == NULL || ta->action == ta_fill); | |
5491 | ||
5492 | /* It is not necessary to fill at the end of a section. Clean this up. */ | |
5493 | if (sec->size == offset) | |
5494 | new_removed = removable_space - 0; | |
5495 | else | |
5496 | { | |
5497 | int space; | |
5498 | int added = -removed - current_removed; | |
5499 | /* Ignore multiples of the section alignment. */ | |
5500 | added = ((1 << sec->alignment_power) - 1) & added; | |
5501 | new_removed = (-added); | |
5502 | ||
5503 | /* Modify for removable. */ | |
5504 | space = removable_space - new_removed; | |
5505 | new_removed = (removable_space | |
5506 | - (((1 << sec->alignment_power) - 1) & space)); | |
5507 | } | |
5508 | return (new_removed - current_removed); | |
5509 | } | |
5510 | ||
5511 | ||
7fa3d080 BW |
5512 | static void |
5513 | adjust_fill_action (text_action *ta, int fill_diff) | |
43cd72b9 BW |
5514 | { |
5515 | ta->removed_bytes += fill_diff; | |
5516 | } | |
5517 | ||
5518 | ||
4c2af04f MF |
5519 | static int |
5520 | text_action_compare (splay_tree_key a, splay_tree_key b) | |
5521 | { | |
5522 | text_action *pa = (text_action *)a; | |
5523 | text_action *pb = (text_action *)b; | |
5524 | static const int action_priority[] = | |
5525 | { | |
5526 | [ta_fill] = 0, | |
5527 | [ta_none] = 1, | |
5528 | [ta_convert_longcall] = 2, | |
5529 | [ta_narrow_insn] = 3, | |
5530 | [ta_remove_insn] = 4, | |
5531 | [ta_remove_longcall] = 5, | |
5532 | [ta_remove_literal] = 6, | |
5533 | [ta_widen_insn] = 7, | |
5534 | [ta_add_literal] = 8, | |
5535 | }; | |
5536 | ||
5537 | if (pa->offset == pb->offset) | |
5538 | { | |
5539 | if (pa->action == pb->action) | |
5540 | return 0; | |
5541 | return action_priority[pa->action] - action_priority[pb->action]; | |
5542 | } | |
5543 | else | |
5544 | return pa->offset < pb->offset ? -1 : 1; | |
5545 | } | |
5546 | ||
5547 | static text_action * | |
5548 | action_first (text_action_list *action_list) | |
5549 | { | |
5550 | splay_tree_node node = splay_tree_min (action_list->tree); | |
5551 | return node ? (text_action *)node->value : NULL; | |
5552 | } | |
5553 | ||
5554 | static text_action * | |
5555 | action_next (text_action_list *action_list, text_action *action) | |
5556 | { | |
5557 | splay_tree_node node = splay_tree_successor (action_list->tree, | |
5558 | (splay_tree_key)action); | |
5559 | return node ? (text_action *)node->value : NULL; | |
5560 | } | |
5561 | ||
43cd72b9 BW |
5562 | /* Add a modification action to the text. For the case of adding or |
5563 | removing space, modify any current fill and assume that | |
5564 | "unreachable_space" bytes can be freely contracted. Note that a | |
5565 | negative removed value is a fill. */ | |
5566 | ||
68ffbac6 | 5567 | static void |
7fa3d080 BW |
5568 | text_action_add (text_action_list *l, |
5569 | text_action_t action, | |
5570 | asection *sec, | |
5571 | bfd_vma offset, | |
5572 | int removed) | |
43cd72b9 | 5573 | { |
43cd72b9 | 5574 | text_action *ta; |
4c2af04f | 5575 | text_action a; |
43cd72b9 BW |
5576 | |
5577 | /* It is not necessary to fill at the end of a section. */ | |
5578 | if (action == ta_fill && sec->size == offset) | |
5579 | return; | |
5580 | ||
5581 | /* It is not necessary to fill 0 bytes. */ | |
5582 | if (action == ta_fill && removed == 0) | |
5583 | return; | |
5584 | ||
4c2af04f MF |
5585 | a.action = action; |
5586 | a.offset = offset; | |
5587 | ||
5588 | if (action == ta_fill) | |
43cd72b9 | 5589 | { |
4c2af04f | 5590 | splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a); |
68ffbac6 | 5591 | |
4c2af04f | 5592 | if (node) |
43cd72b9 | 5593 | { |
4c2af04f MF |
5594 | ta = (text_action *)node->value; |
5595 | ta->removed_bytes += removed; | |
5596 | return; | |
43cd72b9 BW |
5597 | } |
5598 | } | |
4c2af04f MF |
5599 | else |
5600 | BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL); | |
43cd72b9 | 5601 | |
43cd72b9 BW |
5602 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); |
5603 | ta->action = action; | |
5604 | ta->sec = sec; | |
5605 | ta->offset = offset; | |
5606 | ta->removed_bytes = removed; | |
4c2af04f MF |
5607 | splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta); |
5608 | ++l->count; | |
43cd72b9 BW |
5609 | } |
5610 | ||
5611 | ||
5612 | static void | |
7fa3d080 BW |
5613 | text_action_add_literal (text_action_list *l, |
5614 | text_action_t action, | |
5615 | const r_reloc *loc, | |
5616 | const literal_value *value, | |
5617 | int removed) | |
43cd72b9 | 5618 | { |
43cd72b9 BW |
5619 | text_action *ta; |
5620 | asection *sec = r_reloc_get_section (loc); | |
5621 | bfd_vma offset = loc->target_offset; | |
5622 | bfd_vma virtual_offset = loc->virtual_offset; | |
5623 | ||
5624 | BFD_ASSERT (action == ta_add_literal); | |
5625 | ||
43cd72b9 BW |
5626 | /* Create a new record and fill it up. */ |
5627 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
5628 | ta->action = action; | |
5629 | ta->sec = sec; | |
5630 | ta->offset = offset; | |
5631 | ta->virtual_offset = virtual_offset; | |
5632 | ta->value = *value; | |
5633 | ta->removed_bytes = removed; | |
4c2af04f MF |
5634 | |
5635 | BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL); | |
5636 | splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta); | |
5637 | ++l->count; | |
43cd72b9 BW |
5638 | } |
5639 | ||
5640 | ||
03669f1c BW |
5641 | /* Find the total offset adjustment for the relaxations specified by |
5642 | text_actions, beginning from a particular starting action. This is | |
5643 | typically used from offset_with_removed_text to search an entire list of | |
5644 | actions, but it may also be called directly when adjusting adjacent offsets | |
5645 | so that each search may begin where the previous one left off. */ | |
5646 | ||
5647 | static int | |
4c2af04f MF |
5648 | removed_by_actions (text_action_list *action_list, |
5649 | text_action **p_start_action, | |
03669f1c BW |
5650 | bfd_vma offset, |
5651 | bfd_boolean before_fill) | |
43cd72b9 BW |
5652 | { |
5653 | text_action *r; | |
5654 | int removed = 0; | |
5655 | ||
03669f1c | 5656 | r = *p_start_action; |
4c2af04f MF |
5657 | if (r) |
5658 | { | |
5659 | splay_tree_node node = splay_tree_lookup (action_list->tree, | |
5660 | (splay_tree_key)r); | |
5661 | BFD_ASSERT (node != NULL && r == (text_action *)node->value); | |
5662 | } | |
5663 | ||
03669f1c | 5664 | while (r) |
43cd72b9 | 5665 | { |
03669f1c BW |
5666 | if (r->offset > offset) |
5667 | break; | |
5668 | ||
5669 | if (r->offset == offset | |
5670 | && (before_fill || r->action != ta_fill || r->removed_bytes >= 0)) | |
5671 | break; | |
5672 | ||
5673 | removed += r->removed_bytes; | |
5674 | ||
4c2af04f | 5675 | r = action_next (action_list, r); |
43cd72b9 BW |
5676 | } |
5677 | ||
03669f1c BW |
5678 | *p_start_action = r; |
5679 | return removed; | |
5680 | } | |
5681 | ||
5682 | ||
68ffbac6 | 5683 | static bfd_vma |
03669f1c BW |
5684 | offset_with_removed_text (text_action_list *action_list, bfd_vma offset) |
5685 | { | |
4c2af04f MF |
5686 | text_action *r = action_first (action_list); |
5687 | ||
5688 | return offset - removed_by_actions (action_list, &r, offset, FALSE); | |
43cd72b9 BW |
5689 | } |
5690 | ||
5691 | ||
03e94c08 BW |
5692 | static unsigned |
5693 | action_list_count (text_action_list *action_list) | |
5694 | { | |
4c2af04f | 5695 | return action_list->count; |
03e94c08 BW |
5696 | } |
5697 | ||
4c2af04f MF |
5698 | typedef struct map_action_fn_context_struct map_action_fn_context; |
5699 | struct map_action_fn_context_struct | |
071aa5c9 | 5700 | { |
4c2af04f | 5701 | int removed; |
071aa5c9 MF |
5702 | removal_by_action_map map; |
5703 | bfd_boolean eq_complete; | |
4c2af04f | 5704 | }; |
071aa5c9 | 5705 | |
4c2af04f MF |
5706 | static int |
5707 | map_action_fn (splay_tree_node node, void *p) | |
5708 | { | |
5709 | map_action_fn_context *ctx = p; | |
5710 | text_action *r = (text_action *)node->value; | |
5711 | removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries; | |
071aa5c9 | 5712 | |
4c2af04f | 5713 | if (ctx->map.n_entries && (ientry - 1)->offset == r->offset) |
071aa5c9 | 5714 | { |
4c2af04f MF |
5715 | --ientry; |
5716 | } | |
5717 | else | |
5718 | { | |
5719 | ++ctx->map.n_entries; | |
5720 | ctx->eq_complete = FALSE; | |
5721 | ientry->offset = r->offset; | |
5722 | ientry->eq_removed_before_fill = ctx->removed; | |
5723 | } | |
071aa5c9 | 5724 | |
4c2af04f MF |
5725 | if (!ctx->eq_complete) |
5726 | { | |
5727 | if (r->action != ta_fill || r->removed_bytes >= 0) | |
071aa5c9 | 5728 | { |
4c2af04f MF |
5729 | ientry->eq_removed = ctx->removed; |
5730 | ctx->eq_complete = TRUE; | |
071aa5c9 MF |
5731 | } |
5732 | else | |
4c2af04f MF |
5733 | ientry->eq_removed = ctx->removed + r->removed_bytes; |
5734 | } | |
071aa5c9 | 5735 | |
4c2af04f MF |
5736 | ctx->removed += r->removed_bytes; |
5737 | ientry->removed = ctx->removed; | |
5738 | return 0; | |
5739 | } | |
071aa5c9 | 5740 | |
4c2af04f MF |
5741 | static void |
5742 | map_removal_by_action (text_action_list *action_list) | |
5743 | { | |
5744 | map_action_fn_context ctx; | |
5745 | ||
5746 | ctx.removed = 0; | |
5747 | ctx.map.n_entries = 0; | |
5748 | ctx.map.entry = bfd_malloc (action_list_count (action_list) * | |
5749 | sizeof (removal_by_action_entry)); | |
5750 | ctx.eq_complete = FALSE; | |
5751 | ||
5752 | splay_tree_foreach (action_list->tree, map_action_fn, &ctx); | |
5753 | action_list->map = ctx.map; | |
071aa5c9 MF |
5754 | } |
5755 | ||
5756 | static int | |
5757 | removed_by_actions_map (text_action_list *action_list, bfd_vma offset, | |
5758 | bfd_boolean before_fill) | |
5759 | { | |
5760 | unsigned a, b; | |
5761 | ||
5762 | if (!action_list->map.entry) | |
5763 | map_removal_by_action (action_list); | |
5764 | ||
5765 | if (!action_list->map.n_entries) | |
5766 | return 0; | |
5767 | ||
5768 | a = 0; | |
5769 | b = action_list->map.n_entries; | |
5770 | ||
5771 | while (b - a > 1) | |
5772 | { | |
5773 | unsigned c = (a + b) / 2; | |
5774 | ||
5775 | if (action_list->map.entry[c].offset <= offset) | |
5776 | a = c; | |
5777 | else | |
5778 | b = c; | |
5779 | } | |
5780 | ||
5781 | if (action_list->map.entry[a].offset < offset) | |
5782 | { | |
5783 | return action_list->map.entry[a].removed; | |
5784 | } | |
5785 | else if (action_list->map.entry[a].offset == offset) | |
5786 | { | |
5787 | return before_fill ? | |
5788 | action_list->map.entry[a].eq_removed_before_fill : | |
5789 | action_list->map.entry[a].eq_removed; | |
5790 | } | |
5791 | else | |
5792 | { | |
5793 | return 0; | |
5794 | } | |
5795 | } | |
5796 | ||
5797 | static bfd_vma | |
5798 | offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset) | |
5799 | { | |
5800 | int removed = removed_by_actions_map (action_list, offset, FALSE); | |
5801 | return offset - removed; | |
5802 | } | |
5803 | ||
03e94c08 | 5804 | |
43cd72b9 BW |
5805 | /* The find_insn_action routine will only find non-fill actions. */ |
5806 | ||
7fa3d080 BW |
5807 | static text_action * |
5808 | find_insn_action (text_action_list *action_list, bfd_vma offset) | |
43cd72b9 | 5809 | { |
4c2af04f | 5810 | static const text_action_t action[] = |
43cd72b9 | 5811 | { |
4c2af04f MF |
5812 | ta_convert_longcall, |
5813 | ta_remove_longcall, | |
5814 | ta_widen_insn, | |
5815 | ta_narrow_insn, | |
5816 | ta_remove_insn, | |
5817 | }; | |
5818 | text_action a; | |
5819 | unsigned i; | |
5820 | ||
5821 | a.offset = offset; | |
5822 | for (i = 0; i < sizeof (action) / sizeof (*action); ++i) | |
5823 | { | |
5824 | splay_tree_node node; | |
5825 | ||
5826 | a.action = action[i]; | |
5827 | node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a); | |
5828 | if (node) | |
5829 | return (text_action *)node->value; | |
43cd72b9 BW |
5830 | } |
5831 | return NULL; | |
5832 | } | |
5833 | ||
5834 | ||
5835 | #if DEBUG | |
5836 | ||
5837 | static void | |
4c2af04f MF |
5838 | print_action (FILE *fp, text_action *r) |
5839 | { | |
5840 | const char *t = "unknown"; | |
5841 | switch (r->action) | |
5842 | { | |
5843 | case ta_remove_insn: | |
5844 | t = "remove_insn"; break; | |
5845 | case ta_remove_longcall: | |
5846 | t = "remove_longcall"; break; | |
5847 | case ta_convert_longcall: | |
5848 | t = "convert_longcall"; break; | |
5849 | case ta_narrow_insn: | |
5850 | t = "narrow_insn"; break; | |
5851 | case ta_widen_insn: | |
5852 | t = "widen_insn"; break; | |
5853 | case ta_fill: | |
5854 | t = "fill"; break; | |
5855 | case ta_none: | |
5856 | t = "none"; break; | |
5857 | case ta_remove_literal: | |
5858 | t = "remove_literal"; break; | |
5859 | case ta_add_literal: | |
5860 | t = "add_literal"; break; | |
5861 | } | |
5862 | ||
5863 | fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n", | |
5864 | r->sec->owner->filename, | |
5865 | r->sec->name, (unsigned long) r->offset, t, r->removed_bytes); | |
5866 | } | |
5867 | ||
5868 | static int | |
5869 | print_action_list_fn (splay_tree_node node, void *p) | |
43cd72b9 | 5870 | { |
4c2af04f | 5871 | text_action *r = (text_action *)node->value; |
43cd72b9 | 5872 | |
4c2af04f MF |
5873 | print_action (p, r); |
5874 | return 0; | |
5875 | } | |
43cd72b9 | 5876 | |
4c2af04f MF |
5877 | static void |
5878 | print_action_list (FILE *fp, text_action_list *action_list) | |
5879 | { | |
5880 | fprintf (fp, "Text Action\n"); | |
5881 | splay_tree_foreach (action_list->tree, print_action_list_fn, fp); | |
43cd72b9 BW |
5882 | } |
5883 | ||
5884 | #endif /* DEBUG */ | |
5885 | ||
5886 | \f | |
5887 | /* Lists of literals being coalesced or removed. */ | |
5888 | ||
5889 | /* In the usual case, the literal identified by "from" is being | |
5890 | coalesced with another literal identified by "to". If the literal is | |
5891 | unused and is being removed altogether, "to.abfd" will be NULL. | |
5892 | The removed_literal entries are kept on a per-section list, sorted | |
5893 | by the "from" offset field. */ | |
5894 | ||
5895 | typedef struct removed_literal_struct removed_literal; | |
3439c466 | 5896 | typedef struct removed_literal_map_entry_struct removed_literal_map_entry; |
43cd72b9 BW |
5897 | typedef struct removed_literal_list_struct removed_literal_list; |
5898 | ||
5899 | struct removed_literal_struct | |
5900 | { | |
5901 | r_reloc from; | |
5902 | r_reloc to; | |
5903 | removed_literal *next; | |
5904 | }; | |
5905 | ||
3439c466 MF |
5906 | struct removed_literal_map_entry_struct |
5907 | { | |
5908 | bfd_vma addr; | |
5909 | removed_literal *literal; | |
5910 | }; | |
5911 | ||
43cd72b9 BW |
5912 | struct removed_literal_list_struct |
5913 | { | |
5914 | removed_literal *head; | |
5915 | removed_literal *tail; | |
3439c466 MF |
5916 | |
5917 | unsigned n_map; | |
5918 | removed_literal_map_entry *map; | |
43cd72b9 BW |
5919 | }; |
5920 | ||
5921 | ||
43cd72b9 BW |
5922 | /* Record that the literal at "from" is being removed. If "to" is not |
5923 | NULL, the "from" literal is being coalesced with the "to" literal. */ | |
5924 | ||
5925 | static void | |
7fa3d080 BW |
5926 | add_removed_literal (removed_literal_list *removed_list, |
5927 | const r_reloc *from, | |
5928 | const r_reloc *to) | |
43cd72b9 BW |
5929 | { |
5930 | removed_literal *r, *new_r, *next_r; | |
5931 | ||
5932 | new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); | |
5933 | ||
5934 | new_r->from = *from; | |
5935 | if (to) | |
5936 | new_r->to = *to; | |
5937 | else | |
5938 | new_r->to.abfd = NULL; | |
5939 | new_r->next = NULL; | |
68ffbac6 | 5940 | |
43cd72b9 | 5941 | r = removed_list->head; |
68ffbac6 | 5942 | if (r == NULL) |
43cd72b9 BW |
5943 | { |
5944 | removed_list->head = new_r; | |
5945 | removed_list->tail = new_r; | |
5946 | } | |
5947 | /* Special check for common case of append. */ | |
5948 | else if (removed_list->tail->from.target_offset < from->target_offset) | |
5949 | { | |
5950 | removed_list->tail->next = new_r; | |
5951 | removed_list->tail = new_r; | |
5952 | } | |
5953 | else | |
5954 | { | |
68ffbac6 | 5955 | while (r->from.target_offset < from->target_offset && r->next) |
43cd72b9 BW |
5956 | { |
5957 | r = r->next; | |
5958 | } | |
5959 | next_r = r->next; | |
5960 | r->next = new_r; | |
5961 | new_r->next = next_r; | |
5962 | if (next_r == NULL) | |
5963 | removed_list->tail = new_r; | |
5964 | } | |
5965 | } | |
5966 | ||
3439c466 MF |
5967 | static void |
5968 | map_removed_literal (removed_literal_list *removed_list) | |
5969 | { | |
5970 | unsigned n_map = 0; | |
5971 | unsigned i; | |
5972 | removed_literal_map_entry *map = NULL; | |
5973 | removed_literal *r = removed_list->head; | |
5974 | ||
5975 | for (i = 0; r; ++i, r = r->next) | |
5976 | { | |
5977 | if (i == n_map) | |
5978 | { | |
5979 | n_map = (n_map * 2) + 2; | |
5980 | map = bfd_realloc (map, n_map * sizeof (*map)); | |
5981 | } | |
5982 | map[i].addr = r->from.target_offset; | |
5983 | map[i].literal = r; | |
5984 | } | |
5985 | removed_list->map = map; | |
5986 | removed_list->n_map = i; | |
5987 | } | |
5988 | ||
5989 | static int | |
5990 | removed_literal_compare (const void *a, const void *b) | |
5991 | { | |
5992 | const removed_literal_map_entry *pa = a; | |
5993 | const removed_literal_map_entry *pb = b; | |
5994 | ||
5995 | if (pa->addr == pb->addr) | |
5996 | return 0; | |
5997 | else | |
5998 | return pa->addr < pb->addr ? -1 : 1; | |
5999 | } | |
43cd72b9 BW |
6000 | |
6001 | /* Check if the list of removed literals contains an entry for the | |
6002 | given address. Return the entry if found. */ | |
6003 | ||
6004 | static removed_literal * | |
7fa3d080 | 6005 | find_removed_literal (removed_literal_list *removed_list, bfd_vma addr) |
43cd72b9 | 6006 | { |
3439c466 MF |
6007 | removed_literal_map_entry *p; |
6008 | removed_literal *r = NULL; | |
6009 | ||
6010 | if (removed_list->map == NULL) | |
6011 | map_removed_literal (removed_list); | |
6012 | ||
6013 | p = bsearch (&addr, removed_list->map, removed_list->n_map, | |
6014 | sizeof (*removed_list->map), removed_literal_compare); | |
6015 | if (p) | |
6016 | { | |
6017 | while (p != removed_list->map && (p - 1)->addr == addr) | |
6018 | --p; | |
6019 | r = p->literal; | |
6020 | } | |
6021 | return r; | |
43cd72b9 BW |
6022 | } |
6023 | ||
6024 | ||
6025 | #if DEBUG | |
6026 | ||
6027 | static void | |
7fa3d080 | 6028 | print_removed_literals (FILE *fp, removed_literal_list *removed_list) |
43cd72b9 BW |
6029 | { |
6030 | removed_literal *r; | |
6031 | r = removed_list->head; | |
6032 | if (r) | |
6033 | fprintf (fp, "Removed Literals\n"); | |
6034 | for (; r != NULL; r = r->next) | |
6035 | { | |
6036 | print_r_reloc (fp, &r->from); | |
6037 | fprintf (fp, " => "); | |
6038 | if (r->to.abfd == NULL) | |
6039 | fprintf (fp, "REMOVED"); | |
6040 | else | |
6041 | print_r_reloc (fp, &r->to); | |
6042 | fprintf (fp, "\n"); | |
6043 | } | |
6044 | } | |
6045 | ||
6046 | #endif /* DEBUG */ | |
6047 | ||
6048 | \f | |
6049 | /* Per-section data for relaxation. */ | |
6050 | ||
6051 | typedef struct reloc_bfd_fix_struct reloc_bfd_fix; | |
6052 | ||
6053 | struct xtensa_relax_info_struct | |
6054 | { | |
6055 | bfd_boolean is_relaxable_literal_section; | |
6056 | bfd_boolean is_relaxable_asm_section; | |
6057 | int visited; /* Number of times visited. */ | |
6058 | ||
6059 | source_reloc *src_relocs; /* Array[src_count]. */ | |
6060 | int src_count; | |
6061 | int src_next; /* Next src_relocs entry to assign. */ | |
6062 | ||
6063 | removed_literal_list removed_list; | |
6064 | text_action_list action_list; | |
6065 | ||
6066 | reloc_bfd_fix *fix_list; | |
6067 | reloc_bfd_fix *fix_array; | |
6068 | unsigned fix_array_count; | |
6069 | ||
6070 | /* Support for expanding the reloc array that is stored | |
6071 | in the section structure. If the relocations have been | |
6072 | reallocated, the newly allocated relocations will be referenced | |
6073 | here along with the actual size allocated. The relocation | |
6074 | count will always be found in the section structure. */ | |
68ffbac6 | 6075 | Elf_Internal_Rela *allocated_relocs; |
43cd72b9 BW |
6076 | unsigned relocs_count; |
6077 | unsigned allocated_relocs_count; | |
6078 | }; | |
6079 | ||
6080 | struct elf_xtensa_section_data | |
6081 | { | |
6082 | struct bfd_elf_section_data elf; | |
6083 | xtensa_relax_info relax_info; | |
6084 | }; | |
6085 | ||
43cd72b9 BW |
6086 | |
6087 | static bfd_boolean | |
7fa3d080 | 6088 | elf_xtensa_new_section_hook (bfd *abfd, asection *sec) |
43cd72b9 | 6089 | { |
f592407e AM |
6090 | if (!sec->used_by_bfd) |
6091 | { | |
6092 | struct elf_xtensa_section_data *sdata; | |
986f0783 | 6093 | size_t amt = sizeof (*sdata); |
43cd72b9 | 6094 | |
f592407e AM |
6095 | sdata = bfd_zalloc (abfd, amt); |
6096 | if (sdata == NULL) | |
6097 | return FALSE; | |
6098 | sec->used_by_bfd = sdata; | |
6099 | } | |
43cd72b9 BW |
6100 | |
6101 | return _bfd_elf_new_section_hook (abfd, sec); | |
6102 | } | |
6103 | ||
6104 | ||
7fa3d080 BW |
6105 | static xtensa_relax_info * |
6106 | get_xtensa_relax_info (asection *sec) | |
6107 | { | |
6108 | struct elf_xtensa_section_data *section_data; | |
6109 | ||
6110 | /* No info available if no section or if it is an output section. */ | |
6111 | if (!sec || sec == sec->output_section) | |
6112 | return NULL; | |
6113 | ||
6114 | section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); | |
6115 | return §ion_data->relax_info; | |
6116 | } | |
6117 | ||
6118 | ||
43cd72b9 | 6119 | static void |
7fa3d080 | 6120 | init_xtensa_relax_info (asection *sec) |
43cd72b9 BW |
6121 | { |
6122 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
6123 | ||
6124 | relax_info->is_relaxable_literal_section = FALSE; | |
6125 | relax_info->is_relaxable_asm_section = FALSE; | |
6126 | relax_info->visited = 0; | |
6127 | ||
6128 | relax_info->src_relocs = NULL; | |
6129 | relax_info->src_count = 0; | |
6130 | relax_info->src_next = 0; | |
6131 | ||
6132 | relax_info->removed_list.head = NULL; | |
6133 | relax_info->removed_list.tail = NULL; | |
6134 | ||
4c2af04f MF |
6135 | relax_info->action_list.tree = splay_tree_new (text_action_compare, |
6136 | NULL, NULL); | |
071aa5c9 MF |
6137 | relax_info->action_list.map.n_entries = 0; |
6138 | relax_info->action_list.map.entry = NULL; | |
6139 | ||
43cd72b9 BW |
6140 | relax_info->fix_list = NULL; |
6141 | relax_info->fix_array = NULL; | |
6142 | relax_info->fix_array_count = 0; | |
6143 | ||
68ffbac6 | 6144 | relax_info->allocated_relocs = NULL; |
43cd72b9 BW |
6145 | relax_info->relocs_count = 0; |
6146 | relax_info->allocated_relocs_count = 0; | |
6147 | } | |
6148 | ||
43cd72b9 BW |
6149 | \f |
6150 | /* Coalescing literals may require a relocation to refer to a section in | |
6151 | a different input file, but the standard relocation information | |
6152 | cannot express that. Instead, the reloc_bfd_fix structures are used | |
6153 | to "fix" the relocations that refer to sections in other input files. | |
6154 | These structures are kept on per-section lists. The "src_type" field | |
6155 | records the relocation type in case there are multiple relocations on | |
6156 | the same location. FIXME: This is ugly; an alternative might be to | |
6157 | add new symbols with the "owner" field to some other input file. */ | |
6158 | ||
6159 | struct reloc_bfd_fix_struct | |
6160 | { | |
6161 | asection *src_sec; | |
6162 | bfd_vma src_offset; | |
6163 | unsigned src_type; /* Relocation type. */ | |
68ffbac6 | 6164 | |
43cd72b9 BW |
6165 | asection *target_sec; |
6166 | bfd_vma target_offset; | |
6167 | bfd_boolean translated; | |
68ffbac6 | 6168 | |
43cd72b9 BW |
6169 | reloc_bfd_fix *next; |
6170 | }; | |
6171 | ||
6172 | ||
43cd72b9 | 6173 | static reloc_bfd_fix * |
7fa3d080 BW |
6174 | reloc_bfd_fix_init (asection *src_sec, |
6175 | bfd_vma src_offset, | |
6176 | unsigned src_type, | |
7fa3d080 BW |
6177 | asection *target_sec, |
6178 | bfd_vma target_offset, | |
6179 | bfd_boolean translated) | |
43cd72b9 BW |
6180 | { |
6181 | reloc_bfd_fix *fix; | |
6182 | ||
6183 | fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); | |
6184 | fix->src_sec = src_sec; | |
6185 | fix->src_offset = src_offset; | |
6186 | fix->src_type = src_type; | |
43cd72b9 BW |
6187 | fix->target_sec = target_sec; |
6188 | fix->target_offset = target_offset; | |
6189 | fix->translated = translated; | |
6190 | ||
6191 | return fix; | |
6192 | } | |
6193 | ||
6194 | ||
6195 | static void | |
7fa3d080 | 6196 | add_fix (asection *src_sec, reloc_bfd_fix *fix) |
43cd72b9 BW |
6197 | { |
6198 | xtensa_relax_info *relax_info; | |
6199 | ||
6200 | relax_info = get_xtensa_relax_info (src_sec); | |
6201 | fix->next = relax_info->fix_list; | |
6202 | relax_info->fix_list = fix; | |
6203 | } | |
6204 | ||
6205 | ||
6206 | static int | |
7fa3d080 | 6207 | fix_compare (const void *ap, const void *bp) |
43cd72b9 BW |
6208 | { |
6209 | const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap; | |
6210 | const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp; | |
6211 | ||
6212 | if (a->src_offset != b->src_offset) | |
6213 | return (a->src_offset - b->src_offset); | |
6214 | return (a->src_type - b->src_type); | |
6215 | } | |
6216 | ||
6217 | ||
6218 | static void | |
7fa3d080 | 6219 | cache_fix_array (asection *sec) |
43cd72b9 BW |
6220 | { |
6221 | unsigned i, count = 0; | |
6222 | reloc_bfd_fix *r; | |
6223 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
6224 | ||
6225 | if (relax_info == NULL) | |
6226 | return; | |
6227 | if (relax_info->fix_list == NULL) | |
6228 | return; | |
6229 | ||
6230 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
6231 | count++; | |
6232 | ||
6233 | relax_info->fix_array = | |
6234 | (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count); | |
6235 | relax_info->fix_array_count = count; | |
6236 | ||
6237 | r = relax_info->fix_list; | |
6238 | for (i = 0; i < count; i++, r = r->next) | |
6239 | { | |
6240 | relax_info->fix_array[count - 1 - i] = *r; | |
6241 | relax_info->fix_array[count - 1 - i].next = NULL; | |
6242 | } | |
6243 | ||
6244 | qsort (relax_info->fix_array, relax_info->fix_array_count, | |
6245 | sizeof (reloc_bfd_fix), fix_compare); | |
6246 | } | |
6247 | ||
6248 | ||
6249 | static reloc_bfd_fix * | |
7fa3d080 | 6250 | get_bfd_fix (asection *sec, bfd_vma offset, unsigned type) |
43cd72b9 BW |
6251 | { |
6252 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
6253 | reloc_bfd_fix *rv; | |
6254 | reloc_bfd_fix key; | |
6255 | ||
6256 | if (relax_info == NULL) | |
6257 | return NULL; | |
6258 | if (relax_info->fix_list == NULL) | |
6259 | return NULL; | |
6260 | ||
6261 | if (relax_info->fix_array == NULL) | |
6262 | cache_fix_array (sec); | |
6263 | ||
6264 | key.src_offset = offset; | |
6265 | key.src_type = type; | |
6266 | rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count, | |
6267 | sizeof (reloc_bfd_fix), fix_compare); | |
6268 | return rv; | |
6269 | } | |
6270 | ||
6271 | \f | |
6272 | /* Section caching. */ | |
6273 | ||
6274 | typedef struct section_cache_struct section_cache_t; | |
6275 | ||
6276 | struct section_cache_struct | |
6277 | { | |
6278 | asection *sec; | |
6279 | ||
6280 | bfd_byte *contents; /* Cache of the section contents. */ | |
6281 | bfd_size_type content_length; | |
6282 | ||
6283 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
6284 | unsigned pte_count; | |
6285 | ||
6286 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
6287 | unsigned reloc_count; | |
6288 | }; | |
6289 | ||
6290 | ||
7fa3d080 BW |
6291 | static void |
6292 | init_section_cache (section_cache_t *sec_cache) | |
6293 | { | |
6294 | memset (sec_cache, 0, sizeof (*sec_cache)); | |
6295 | } | |
43cd72b9 BW |
6296 | |
6297 | ||
6298 | static void | |
65e911f9 | 6299 | free_section_cache (section_cache_t *sec_cache) |
43cd72b9 | 6300 | { |
7fa3d080 BW |
6301 | if (sec_cache->sec) |
6302 | { | |
6303 | release_contents (sec_cache->sec, sec_cache->contents); | |
6304 | release_internal_relocs (sec_cache->sec, sec_cache->relocs); | |
c9594989 | 6305 | free (sec_cache->ptbl); |
7fa3d080 | 6306 | } |
43cd72b9 BW |
6307 | } |
6308 | ||
6309 | ||
6310 | static bfd_boolean | |
7fa3d080 BW |
6311 | section_cache_section (section_cache_t *sec_cache, |
6312 | asection *sec, | |
6313 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
6314 | { |
6315 | bfd *abfd; | |
6316 | property_table_entry *prop_table = NULL; | |
6317 | int ptblsize = 0; | |
6318 | bfd_byte *contents = NULL; | |
6319 | Elf_Internal_Rela *internal_relocs = NULL; | |
6320 | bfd_size_type sec_size; | |
6321 | ||
6322 | if (sec == NULL) | |
6323 | return FALSE; | |
6324 | if (sec == sec_cache->sec) | |
6325 | return TRUE; | |
6326 | ||
6327 | abfd = sec->owner; | |
6328 | sec_size = bfd_get_section_limit (abfd, sec); | |
6329 | ||
6330 | /* Get the contents. */ | |
6331 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6332 | if (contents == NULL && sec_size != 0) | |
6333 | goto err; | |
6334 | ||
6335 | /* Get the relocations. */ | |
6336 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6337 | link_info->keep_memory); | |
6338 | ||
6339 | /* Get the entry table. */ | |
6340 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, | |
6341 | XTENSA_PROP_SEC_NAME, FALSE); | |
6342 | if (ptblsize < 0) | |
6343 | goto err; | |
6344 | ||
6345 | /* Fill in the new section cache. */ | |
65e911f9 AM |
6346 | free_section_cache (sec_cache); |
6347 | init_section_cache (sec_cache); | |
43cd72b9 BW |
6348 | |
6349 | sec_cache->sec = sec; | |
6350 | sec_cache->contents = contents; | |
6351 | sec_cache->content_length = sec_size; | |
6352 | sec_cache->relocs = internal_relocs; | |
6353 | sec_cache->reloc_count = sec->reloc_count; | |
6354 | sec_cache->pte_count = ptblsize; | |
6355 | sec_cache->ptbl = prop_table; | |
6356 | ||
6357 | return TRUE; | |
6358 | ||
6359 | err: | |
6360 | release_contents (sec, contents); | |
6361 | release_internal_relocs (sec, internal_relocs); | |
c9594989 | 6362 | free (prop_table); |
43cd72b9 BW |
6363 | return FALSE; |
6364 | } | |
6365 | ||
43cd72b9 BW |
6366 | \f |
6367 | /* Extended basic blocks. */ | |
6368 | ||
6369 | /* An ebb_struct represents an Extended Basic Block. Within this | |
6370 | range, we guarantee that all instructions are decodable, the | |
6371 | property table entries are contiguous, and no property table | |
6372 | specifies a segment that cannot have instructions moved. This | |
6373 | structure contains caches of the contents, property table and | |
6374 | relocations for the specified section for easy use. The range is | |
6375 | specified by ranges of indices for the byte offset, property table | |
6376 | offsets and relocation offsets. These must be consistent. */ | |
6377 | ||
6378 | typedef struct ebb_struct ebb_t; | |
6379 | ||
6380 | struct ebb_struct | |
6381 | { | |
6382 | asection *sec; | |
6383 | ||
6384 | bfd_byte *contents; /* Cache of the section contents. */ | |
6385 | bfd_size_type content_length; | |
6386 | ||
6387 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
6388 | unsigned pte_count; | |
6389 | ||
6390 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
6391 | unsigned reloc_count; | |
6392 | ||
6393 | bfd_vma start_offset; /* Offset in section. */ | |
6394 | unsigned start_ptbl_idx; /* Offset in the property table. */ | |
6395 | unsigned start_reloc_idx; /* Offset in the relocations. */ | |
6396 | ||
6397 | bfd_vma end_offset; | |
6398 | unsigned end_ptbl_idx; | |
6399 | unsigned end_reloc_idx; | |
6400 | ||
6401 | bfd_boolean ends_section; /* Is this the last ebb in a section? */ | |
6402 | ||
6403 | /* The unreachable property table at the end of this set of blocks; | |
6404 | NULL if the end is not an unreachable block. */ | |
6405 | property_table_entry *ends_unreachable; | |
6406 | }; | |
6407 | ||
6408 | ||
6409 | enum ebb_target_enum | |
6410 | { | |
6411 | EBB_NO_ALIGN = 0, | |
6412 | EBB_DESIRE_TGT_ALIGN, | |
6413 | EBB_REQUIRE_TGT_ALIGN, | |
6414 | EBB_REQUIRE_LOOP_ALIGN, | |
6415 | EBB_REQUIRE_ALIGN | |
6416 | }; | |
6417 | ||
6418 | ||
6419 | /* proposed_action_struct is similar to the text_action_struct except | |
6420 | that is represents a potential transformation, not one that will | |
6421 | occur. We build a list of these for an extended basic block | |
6422 | and use them to compute the actual actions desired. We must be | |
6423 | careful that the entire set of actual actions we perform do not | |
6424 | break any relocations that would fit if the actions were not | |
6425 | performed. */ | |
6426 | ||
6427 | typedef struct proposed_action_struct proposed_action; | |
6428 | ||
6429 | struct proposed_action_struct | |
6430 | { | |
6431 | enum ebb_target_enum align_type; /* for the target alignment */ | |
6432 | bfd_vma alignment_pow; | |
6433 | text_action_t action; | |
6434 | bfd_vma offset; | |
6435 | int removed_bytes; | |
6436 | bfd_boolean do_action; /* If false, then we will not perform the action. */ | |
6437 | }; | |
6438 | ||
6439 | ||
6440 | /* The ebb_constraint_struct keeps a set of proposed actions for an | |
6441 | extended basic block. */ | |
6442 | ||
6443 | typedef struct ebb_constraint_struct ebb_constraint; | |
6444 | ||
6445 | struct ebb_constraint_struct | |
6446 | { | |
6447 | ebb_t ebb; | |
6448 | bfd_boolean start_movable; | |
6449 | ||
6450 | /* Bytes of extra space at the beginning if movable. */ | |
6451 | int start_extra_space; | |
6452 | ||
6453 | enum ebb_target_enum start_align; | |
6454 | ||
6455 | bfd_boolean end_movable; | |
6456 | ||
6457 | /* Bytes of extra space at the end if movable. */ | |
6458 | int end_extra_space; | |
6459 | ||
6460 | unsigned action_count; | |
6461 | unsigned action_allocated; | |
6462 | ||
6463 | /* Array of proposed actions. */ | |
6464 | proposed_action *actions; | |
6465 | ||
6466 | /* Action alignments -- one for each proposed action. */ | |
6467 | enum ebb_target_enum *action_aligns; | |
6468 | }; | |
6469 | ||
6470 | ||
43cd72b9 | 6471 | static void |
7fa3d080 | 6472 | init_ebb_constraint (ebb_constraint *c) |
43cd72b9 BW |
6473 | { |
6474 | memset (c, 0, sizeof (ebb_constraint)); | |
6475 | } | |
6476 | ||
6477 | ||
6478 | static void | |
7fa3d080 | 6479 | free_ebb_constraint (ebb_constraint *c) |
43cd72b9 | 6480 | { |
c9594989 | 6481 | free (c->actions); |
43cd72b9 BW |
6482 | } |
6483 | ||
6484 | ||
6485 | static void | |
7fa3d080 BW |
6486 | init_ebb (ebb_t *ebb, |
6487 | asection *sec, | |
6488 | bfd_byte *contents, | |
6489 | bfd_size_type content_length, | |
6490 | property_table_entry *prop_table, | |
6491 | unsigned ptblsize, | |
6492 | Elf_Internal_Rela *internal_relocs, | |
6493 | unsigned reloc_count) | |
43cd72b9 BW |
6494 | { |
6495 | memset (ebb, 0, sizeof (ebb_t)); | |
6496 | ebb->sec = sec; | |
6497 | ebb->contents = contents; | |
6498 | ebb->content_length = content_length; | |
6499 | ebb->ptbl = prop_table; | |
6500 | ebb->pte_count = ptblsize; | |
6501 | ebb->relocs = internal_relocs; | |
6502 | ebb->reloc_count = reloc_count; | |
6503 | ebb->start_offset = 0; | |
6504 | ebb->end_offset = ebb->content_length - 1; | |
6505 | ebb->start_ptbl_idx = 0; | |
6506 | ebb->end_ptbl_idx = ptblsize; | |
6507 | ebb->start_reloc_idx = 0; | |
6508 | ebb->end_reloc_idx = reloc_count; | |
6509 | } | |
6510 | ||
6511 | ||
6512 | /* Extend the ebb to all decodable contiguous sections. The algorithm | |
6513 | for building a basic block around an instruction is to push it | |
6514 | forward until we hit the end of a section, an unreachable block or | |
6515 | a block that cannot be transformed. Then we push it backwards | |
6516 | searching for similar conditions. */ | |
6517 | ||
7fa3d080 BW |
6518 | static bfd_boolean extend_ebb_bounds_forward (ebb_t *); |
6519 | static bfd_boolean extend_ebb_bounds_backward (ebb_t *); | |
6520 | static bfd_size_type insn_block_decodable_len | |
6521 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type); | |
6522 | ||
43cd72b9 | 6523 | static bfd_boolean |
7fa3d080 | 6524 | extend_ebb_bounds (ebb_t *ebb) |
43cd72b9 BW |
6525 | { |
6526 | if (!extend_ebb_bounds_forward (ebb)) | |
6527 | return FALSE; | |
6528 | if (!extend_ebb_bounds_backward (ebb)) | |
6529 | return FALSE; | |
6530 | return TRUE; | |
6531 | } | |
6532 | ||
6533 | ||
6534 | static bfd_boolean | |
7fa3d080 | 6535 | extend_ebb_bounds_forward (ebb_t *ebb) |
43cd72b9 BW |
6536 | { |
6537 | property_table_entry *the_entry, *new_entry; | |
6538 | ||
6539 | the_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
6540 | ||
6541 | /* Stop when (1) we cannot decode an instruction, (2) we are at | |
6542 | the end of the property tables, (3) we hit a non-contiguous property | |
6543 | table entry, (4) we hit a NO_TRANSFORM region. */ | |
6544 | ||
6545 | while (1) | |
6546 | { | |
6547 | bfd_vma entry_end; | |
6548 | bfd_size_type insn_block_len; | |
6549 | ||
6550 | entry_end = the_entry->address - ebb->sec->vma + the_entry->size; | |
6551 | insn_block_len = | |
6552 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
6553 | ebb->end_offset, | |
6554 | entry_end - ebb->end_offset); | |
6555 | if (insn_block_len != (entry_end - ebb->end_offset)) | |
6556 | { | |
4eca0228 | 6557 | _bfd_error_handler |
695344c0 | 6558 | /* xgettext:c-format */ |
2dcf00ce | 6559 | (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; " |
d42c267e | 6560 | "possible configuration mismatch"), |
2dcf00ce AM |
6561 | ebb->sec->owner, ebb->sec, |
6562 | (uint64_t) (ebb->end_offset + insn_block_len)); | |
43cd72b9 BW |
6563 | return FALSE; |
6564 | } | |
6565 | ebb->end_offset += insn_block_len; | |
6566 | ||
6567 | if (ebb->end_offset == ebb->sec->size) | |
6568 | ebb->ends_section = TRUE; | |
6569 | ||
6570 | /* Update the reloc counter. */ | |
6571 | while (ebb->end_reloc_idx + 1 < ebb->reloc_count | |
6572 | && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset | |
6573 | < ebb->end_offset)) | |
6574 | { | |
6575 | ebb->end_reloc_idx++; | |
6576 | } | |
6577 | ||
6578 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
6579 | return TRUE; | |
6580 | ||
6581 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
6582 | if (((new_entry->flags & XTENSA_PROP_INSN) == 0) | |
99ded152 | 6583 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
6584 | || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6585 | break; | |
6586 | ||
6587 | if (the_entry->address + the_entry->size != new_entry->address) | |
6588 | break; | |
6589 | ||
6590 | the_entry = new_entry; | |
6591 | ebb->end_ptbl_idx++; | |
6592 | } | |
6593 | ||
6594 | /* Quick check for an unreachable or end of file just at the end. */ | |
6595 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
6596 | { | |
6597 | if (ebb->end_offset == ebb->content_length) | |
6598 | ebb->ends_section = TRUE; | |
6599 | } | |
6600 | else | |
6601 | { | |
6602 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
6603 | if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0 | |
6604 | && the_entry->address + the_entry->size == new_entry->address) | |
6605 | ebb->ends_unreachable = new_entry; | |
6606 | } | |
6607 | ||
6608 | /* Any other ending requires exact alignment. */ | |
6609 | return TRUE; | |
6610 | } | |
6611 | ||
6612 | ||
6613 | static bfd_boolean | |
7fa3d080 | 6614 | extend_ebb_bounds_backward (ebb_t *ebb) |
43cd72b9 BW |
6615 | { |
6616 | property_table_entry *the_entry, *new_entry; | |
6617 | ||
6618 | the_entry = &ebb->ptbl[ebb->start_ptbl_idx]; | |
6619 | ||
6620 | /* Stop when (1) we cannot decode the instructions in the current entry. | |
6621 | (2) we are at the beginning of the property tables, (3) we hit a | |
6622 | non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */ | |
6623 | ||
6624 | while (1) | |
6625 | { | |
6626 | bfd_vma block_begin; | |
6627 | bfd_size_type insn_block_len; | |
6628 | ||
6629 | block_begin = the_entry->address - ebb->sec->vma; | |
6630 | insn_block_len = | |
6631 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
6632 | block_begin, | |
6633 | ebb->start_offset - block_begin); | |
6634 | if (insn_block_len != ebb->start_offset - block_begin) | |
6635 | { | |
4eca0228 | 6636 | _bfd_error_handler |
695344c0 | 6637 | /* xgettext:c-format */ |
2dcf00ce | 6638 | (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; " |
d42c267e | 6639 | "possible configuration mismatch"), |
2dcf00ce AM |
6640 | ebb->sec->owner, ebb->sec, |
6641 | (uint64_t) (ebb->end_offset + insn_block_len)); | |
43cd72b9 BW |
6642 | return FALSE; |
6643 | } | |
6644 | ebb->start_offset -= insn_block_len; | |
6645 | ||
6646 | /* Update the reloc counter. */ | |
6647 | while (ebb->start_reloc_idx > 0 | |
6648 | && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset | |
6649 | >= ebb->start_offset)) | |
6650 | { | |
6651 | ebb->start_reloc_idx--; | |
6652 | } | |
6653 | ||
6654 | if (ebb->start_ptbl_idx == 0) | |
6655 | return TRUE; | |
6656 | ||
6657 | new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1]; | |
6658 | if ((new_entry->flags & XTENSA_PROP_INSN) == 0 | |
99ded152 | 6659 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
6660 | || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6661 | return TRUE; | |
6662 | if (new_entry->address + new_entry->size != the_entry->address) | |
6663 | return TRUE; | |
6664 | ||
6665 | the_entry = new_entry; | |
6666 | ebb->start_ptbl_idx--; | |
6667 | } | |
6668 | return TRUE; | |
6669 | } | |
6670 | ||
6671 | ||
6672 | static bfd_size_type | |
7fa3d080 BW |
6673 | insn_block_decodable_len (bfd_byte *contents, |
6674 | bfd_size_type content_len, | |
6675 | bfd_vma block_offset, | |
6676 | bfd_size_type block_len) | |
43cd72b9 BW |
6677 | { |
6678 | bfd_vma offset = block_offset; | |
6679 | ||
6680 | while (offset < block_offset + block_len) | |
6681 | { | |
6682 | bfd_size_type insn_len = 0; | |
6683 | ||
6684 | insn_len = insn_decode_len (contents, content_len, offset); | |
6685 | if (insn_len == 0) | |
6686 | return (offset - block_offset); | |
6687 | offset += insn_len; | |
6688 | } | |
6689 | return (offset - block_offset); | |
6690 | } | |
6691 | ||
6692 | ||
6693 | static void | |
7fa3d080 | 6694 | ebb_propose_action (ebb_constraint *c, |
7fa3d080 | 6695 | enum ebb_target_enum align_type, |
288f74fa | 6696 | bfd_vma alignment_pow, |
7fa3d080 BW |
6697 | text_action_t action, |
6698 | bfd_vma offset, | |
6699 | int removed_bytes, | |
6700 | bfd_boolean do_action) | |
43cd72b9 | 6701 | { |
b08b5071 | 6702 | proposed_action *act; |
43cd72b9 | 6703 | |
43cd72b9 BW |
6704 | if (c->action_allocated <= c->action_count) |
6705 | { | |
b08b5071 | 6706 | unsigned new_allocated, i; |
823fc61f | 6707 | proposed_action *new_actions; |
b08b5071 BW |
6708 | |
6709 | new_allocated = (c->action_count + 2) * 2; | |
823fc61f | 6710 | new_actions = (proposed_action *) |
43cd72b9 BW |
6711 | bfd_zmalloc (sizeof (proposed_action) * new_allocated); |
6712 | ||
6713 | for (i = 0; i < c->action_count; i++) | |
6714 | new_actions[i] = c->actions[i]; | |
c9594989 | 6715 | free (c->actions); |
43cd72b9 BW |
6716 | c->actions = new_actions; |
6717 | c->action_allocated = new_allocated; | |
6718 | } | |
b08b5071 BW |
6719 | |
6720 | act = &c->actions[c->action_count]; | |
6721 | act->align_type = align_type; | |
6722 | act->alignment_pow = alignment_pow; | |
6723 | act->action = action; | |
6724 | act->offset = offset; | |
6725 | act->removed_bytes = removed_bytes; | |
6726 | act->do_action = do_action; | |
6727 | ||
43cd72b9 BW |
6728 | c->action_count++; |
6729 | } | |
6730 | ||
6731 | \f | |
6732 | /* Access to internal relocations, section contents and symbols. */ | |
6733 | ||
6734 | /* During relaxation, we need to modify relocations, section contents, | |
6735 | and symbol definitions, and we need to keep the original values from | |
6736 | being reloaded from the input files, i.e., we need to "pin" the | |
6737 | modified values in memory. We also want to continue to observe the | |
6738 | setting of the "keep-memory" flag. The following functions wrap the | |
6739 | standard BFD functions to take care of this for us. */ | |
6740 | ||
6741 | static Elf_Internal_Rela * | |
7fa3d080 | 6742 | retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
6743 | { |
6744 | Elf_Internal_Rela *internal_relocs; | |
6745 | ||
6746 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
6747 | return NULL; | |
6748 | ||
6749 | internal_relocs = elf_section_data (sec)->relocs; | |
6750 | if (internal_relocs == NULL) | |
6751 | internal_relocs = (_bfd_elf_link_read_relocs | |
7fa3d080 | 6752 | (abfd, sec, NULL, NULL, keep_memory)); |
43cd72b9 BW |
6753 | return internal_relocs; |
6754 | } | |
6755 | ||
6756 | ||
6757 | static void | |
7fa3d080 | 6758 | pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
6759 | { |
6760 | elf_section_data (sec)->relocs = internal_relocs; | |
6761 | } | |
6762 | ||
6763 | ||
6764 | static void | |
7fa3d080 | 6765 | release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 | 6766 | { |
c9594989 | 6767 | if (elf_section_data (sec)->relocs != internal_relocs) |
43cd72b9 BW |
6768 | free (internal_relocs); |
6769 | } | |
6770 | ||
6771 | ||
6772 | static bfd_byte * | |
7fa3d080 | 6773 | retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
6774 | { |
6775 | bfd_byte *contents; | |
6776 | bfd_size_type sec_size; | |
6777 | ||
6778 | sec_size = bfd_get_section_limit (abfd, sec); | |
6779 | contents = elf_section_data (sec)->this_hdr.contents; | |
68ffbac6 | 6780 | |
43cd72b9 BW |
6781 | if (contents == NULL && sec_size != 0) |
6782 | { | |
6783 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | |
6784 | { | |
c9594989 | 6785 | free (contents); |
43cd72b9 BW |
6786 | return NULL; |
6787 | } | |
68ffbac6 | 6788 | if (keep_memory) |
43cd72b9 BW |
6789 | elf_section_data (sec)->this_hdr.contents = contents; |
6790 | } | |
6791 | return contents; | |
6792 | } | |
6793 | ||
6794 | ||
6795 | static void | |
7fa3d080 | 6796 | pin_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
6797 | { |
6798 | elf_section_data (sec)->this_hdr.contents = contents; | |
6799 | } | |
6800 | ||
6801 | ||
6802 | static void | |
7fa3d080 | 6803 | release_contents (asection *sec, bfd_byte *contents) |
43cd72b9 | 6804 | { |
c9594989 | 6805 | if (elf_section_data (sec)->this_hdr.contents != contents) |
43cd72b9 BW |
6806 | free (contents); |
6807 | } | |
6808 | ||
6809 | ||
6810 | static Elf_Internal_Sym * | |
7fa3d080 | 6811 | retrieve_local_syms (bfd *input_bfd) |
43cd72b9 BW |
6812 | { |
6813 | Elf_Internal_Shdr *symtab_hdr; | |
6814 | Elf_Internal_Sym *isymbuf; | |
6815 | size_t locsymcount; | |
6816 | ||
6817 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
6818 | locsymcount = symtab_hdr->sh_info; | |
6819 | ||
6820 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
6821 | if (isymbuf == NULL && locsymcount != 0) | |
6822 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
6823 | NULL, NULL, NULL); | |
6824 | ||
6825 | /* Save the symbols for this input file so they won't be read again. */ | |
6826 | if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) | |
6827 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
6828 | ||
6829 | return isymbuf; | |
6830 | } | |
6831 | ||
6832 | \f | |
6833 | /* Code for link-time relaxation. */ | |
6834 | ||
6835 | /* Initialization for relaxation: */ | |
7fa3d080 | 6836 | static bfd_boolean analyze_relocations (struct bfd_link_info *); |
43cd72b9 | 6837 | static bfd_boolean find_relaxable_sections |
7fa3d080 | 6838 | (bfd *, asection *, struct bfd_link_info *, bfd_boolean *); |
43cd72b9 | 6839 | static bfd_boolean collect_source_relocs |
7fa3d080 | 6840 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 | 6841 | static bfd_boolean is_resolvable_asm_expansion |
7fa3d080 BW |
6842 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *, |
6843 | bfd_boolean *); | |
43cd72b9 | 6844 | static Elf_Internal_Rela *find_associated_l32r_irel |
7fa3d080 | 6845 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *); |
43cd72b9 | 6846 | static bfd_boolean compute_text_actions |
7fa3d080 BW |
6847 | (bfd *, asection *, struct bfd_link_info *); |
6848 | static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *); | |
6849 | static bfd_boolean compute_ebb_actions (ebb_constraint *); | |
b2b326d2 | 6850 | typedef struct reloc_range_list_struct reloc_range_list; |
43cd72b9 | 6851 | static bfd_boolean check_section_ebb_pcrels_fit |
b2b326d2 MF |
6852 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, |
6853 | reloc_range_list *, const ebb_constraint *, | |
cb337148 | 6854 | const xtensa_opcode *); |
7fa3d080 | 6855 | static bfd_boolean check_section_ebb_reduces (const ebb_constraint *); |
43cd72b9 | 6856 | static void text_action_add_proposed |
7fa3d080 | 6857 | (text_action_list *, const ebb_constraint *, asection *); |
43cd72b9 BW |
6858 | |
6859 | /* First pass: */ | |
6860 | static bfd_boolean compute_removed_literals | |
7fa3d080 | 6861 | (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *); |
43cd72b9 | 6862 | static Elf_Internal_Rela *get_irel_at_offset |
7fa3d080 | 6863 | (asection *, Elf_Internal_Rela *, bfd_vma); |
68ffbac6 | 6864 | static bfd_boolean is_removable_literal |
99ded152 BW |
6865 | (const source_reloc *, int, const source_reloc *, int, asection *, |
6866 | property_table_entry *, int); | |
43cd72b9 | 6867 | static bfd_boolean remove_dead_literal |
7fa3d080 | 6868 | (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *, |
68ffbac6 | 6869 | Elf_Internal_Rela *, source_reloc *, property_table_entry *, int); |
7fa3d080 BW |
6870 | static bfd_boolean identify_literal_placement |
6871 | (bfd *, asection *, bfd_byte *, struct bfd_link_info *, | |
6872 | value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int, | |
6873 | source_reloc *, property_table_entry *, int, section_cache_t *, | |
6874 | bfd_boolean); | |
6875 | static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *); | |
43cd72b9 | 6876 | static bfd_boolean coalesce_shared_literal |
7fa3d080 | 6877 | (asection *, source_reloc *, property_table_entry *, int, value_map *); |
43cd72b9 | 6878 | static bfd_boolean move_shared_literal |
7fa3d080 BW |
6879 | (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *, |
6880 | int, const r_reloc *, const literal_value *, section_cache_t *); | |
43cd72b9 BW |
6881 | |
6882 | /* Second pass: */ | |
7fa3d080 BW |
6883 | static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *); |
6884 | static bfd_boolean translate_section_fixes (asection *); | |
6885 | static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *); | |
9b7f5d20 | 6886 | static asection *translate_reloc (const r_reloc *, r_reloc *, asection *); |
43cd72b9 | 6887 | static void shrink_dynamic_reloc_sections |
7fa3d080 | 6888 | (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *); |
43cd72b9 | 6889 | static bfd_boolean move_literal |
7fa3d080 BW |
6890 | (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *, |
6891 | xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *); | |
43cd72b9 | 6892 | static bfd_boolean relax_property_section |
7fa3d080 | 6893 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 BW |
6894 | |
6895 | /* Third pass: */ | |
7fa3d080 | 6896 | static bfd_boolean relax_section_symbols (bfd *, asection *); |
43cd72b9 BW |
6897 | |
6898 | ||
68ffbac6 | 6899 | static bfd_boolean |
7fa3d080 BW |
6900 | elf_xtensa_relax_section (bfd *abfd, |
6901 | asection *sec, | |
6902 | struct bfd_link_info *link_info, | |
6903 | bfd_boolean *again) | |
43cd72b9 BW |
6904 | { |
6905 | static value_map_hash_table *values = NULL; | |
6906 | static bfd_boolean relocations_analyzed = FALSE; | |
6907 | xtensa_relax_info *relax_info; | |
6908 | ||
6909 | if (!relocations_analyzed) | |
6910 | { | |
6911 | /* Do some overall initialization for relaxation. */ | |
6912 | values = value_map_hash_table_init (); | |
6913 | if (values == NULL) | |
6914 | return FALSE; | |
6915 | relaxing_section = TRUE; | |
6916 | if (!analyze_relocations (link_info)) | |
6917 | return FALSE; | |
6918 | relocations_analyzed = TRUE; | |
6919 | } | |
6920 | *again = FALSE; | |
6921 | ||
6922 | /* Don't mess with linker-created sections. */ | |
6923 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
6924 | return TRUE; | |
6925 | ||
6926 | relax_info = get_xtensa_relax_info (sec); | |
6927 | BFD_ASSERT (relax_info != NULL); | |
6928 | ||
6929 | switch (relax_info->visited) | |
6930 | { | |
6931 | case 0: | |
6932 | /* Note: It would be nice to fold this pass into | |
6933 | analyze_relocations, but it is important for this step that the | |
6934 | sections be examined in link order. */ | |
6935 | if (!compute_removed_literals (abfd, sec, link_info, values)) | |
6936 | return FALSE; | |
6937 | *again = TRUE; | |
6938 | break; | |
6939 | ||
6940 | case 1: | |
6941 | if (values) | |
6942 | value_map_hash_table_delete (values); | |
6943 | values = NULL; | |
6944 | if (!relax_section (abfd, sec, link_info)) | |
6945 | return FALSE; | |
6946 | *again = TRUE; | |
6947 | break; | |
6948 | ||
6949 | case 2: | |
6950 | if (!relax_section_symbols (abfd, sec)) | |
6951 | return FALSE; | |
6952 | break; | |
6953 | } | |
6954 | ||
6955 | relax_info->visited++; | |
6956 | return TRUE; | |
6957 | } | |
6958 | ||
6959 | \f | |
6960 | /* Initialization for relaxation. */ | |
6961 | ||
6962 | /* This function is called once at the start of relaxation. It scans | |
6963 | all the input sections and marks the ones that are relaxable (i.e., | |
6964 | literal sections with L32R relocations against them), and then | |
6965 | collects source_reloc information for all the relocations against | |
6966 | those relaxable sections. During this process, it also detects | |
6967 | longcalls, i.e., calls relaxed by the assembler into indirect | |
6968 | calls, that can be optimized back into direct calls. Within each | |
6969 | extended basic block (ebb) containing an optimized longcall, it | |
6970 | computes a set of "text actions" that can be performed to remove | |
6971 | the L32R associated with the longcall while optionally preserving | |
6972 | branch target alignments. */ | |
6973 | ||
6974 | static bfd_boolean | |
7fa3d080 | 6975 | analyze_relocations (struct bfd_link_info *link_info) |
43cd72b9 BW |
6976 | { |
6977 | bfd *abfd; | |
6978 | asection *sec; | |
6979 | bfd_boolean is_relaxable = FALSE; | |
6980 | ||
6981 | /* Initialize the per-section relaxation info. */ | |
c72f2fb2 | 6982 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6983 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6984 | { | |
6985 | init_xtensa_relax_info (sec); | |
6986 | } | |
6987 | ||
6988 | /* Mark relaxable sections (and count relocations against each one). */ | |
c72f2fb2 | 6989 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6990 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6991 | { | |
6992 | if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) | |
6993 | return FALSE; | |
6994 | } | |
6995 | ||
6996 | /* Bail out if there are no relaxable sections. */ | |
6997 | if (!is_relaxable) | |
6998 | return TRUE; | |
6999 | ||
7000 | /* Allocate space for source_relocs. */ | |
c72f2fb2 | 7001 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
7002 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
7003 | { | |
7004 | xtensa_relax_info *relax_info; | |
7005 | ||
7006 | relax_info = get_xtensa_relax_info (sec); | |
7007 | if (relax_info->is_relaxable_literal_section | |
7008 | || relax_info->is_relaxable_asm_section) | |
7009 | { | |
7010 | relax_info->src_relocs = (source_reloc *) | |
7011 | bfd_malloc (relax_info->src_count * sizeof (source_reloc)); | |
7012 | } | |
25c6282a BW |
7013 | else |
7014 | relax_info->src_count = 0; | |
43cd72b9 BW |
7015 | } |
7016 | ||
7017 | /* Collect info on relocations against each relaxable section. */ | |
c72f2fb2 | 7018 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
7019 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
7020 | { | |
7021 | if (!collect_source_relocs (abfd, sec, link_info)) | |
7022 | return FALSE; | |
7023 | } | |
7024 | ||
7025 | /* Compute the text actions. */ | |
c72f2fb2 | 7026 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
7027 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
7028 | { | |
7029 | if (!compute_text_actions (abfd, sec, link_info)) | |
7030 | return FALSE; | |
7031 | } | |
7032 | ||
7033 | return TRUE; | |
7034 | } | |
7035 | ||
7036 | ||
7037 | /* Find all the sections that might be relaxed. The motivation for | |
7038 | this pass is that collect_source_relocs() needs to record _all_ the | |
7039 | relocations that target each relaxable section. That is expensive | |
7040 | and unnecessary unless the target section is actually going to be | |
7041 | relaxed. This pass identifies all such sections by checking if | |
7042 | they have L32Rs pointing to them. In the process, the total number | |
7043 | of relocations targeting each section is also counted so that we | |
7044 | know how much space to allocate for source_relocs against each | |
7045 | relaxable literal section. */ | |
7046 | ||
7047 | static bfd_boolean | |
7fa3d080 BW |
7048 | find_relaxable_sections (bfd *abfd, |
7049 | asection *sec, | |
7050 | struct bfd_link_info *link_info, | |
7051 | bfd_boolean *is_relaxable_p) | |
43cd72b9 BW |
7052 | { |
7053 | Elf_Internal_Rela *internal_relocs; | |
7054 | bfd_byte *contents; | |
7055 | bfd_boolean ok = TRUE; | |
7056 | unsigned i; | |
7057 | xtensa_relax_info *source_relax_info; | |
25c6282a | 7058 | bfd_boolean is_l32r_reloc; |
43cd72b9 BW |
7059 | |
7060 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
7061 | link_info->keep_memory); | |
68ffbac6 | 7062 | if (internal_relocs == NULL) |
43cd72b9 BW |
7063 | return ok; |
7064 | ||
7065 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
7066 | if (contents == NULL && sec->size != 0) | |
7067 | { | |
7068 | ok = FALSE; | |
7069 | goto error_return; | |
7070 | } | |
7071 | ||
7072 | source_relax_info = get_xtensa_relax_info (sec); | |
68ffbac6 | 7073 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7074 | { |
7075 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7076 | r_reloc r_rel; | |
7077 | asection *target_sec; | |
7078 | xtensa_relax_info *target_relax_info; | |
7079 | ||
7080 | /* If this section has not already been marked as "relaxable", and | |
7081 | if it contains any ASM_EXPAND relocations (marking expanded | |
7082 | longcalls) that can be optimized into direct calls, then mark | |
7083 | the section as "relaxable". */ | |
7084 | if (source_relax_info | |
7085 | && !source_relax_info->is_relaxable_asm_section | |
7086 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND) | |
7087 | { | |
7088 | bfd_boolean is_reachable = FALSE; | |
7089 | if (is_resolvable_asm_expansion (abfd, sec, contents, irel, | |
7090 | link_info, &is_reachable) | |
7091 | && is_reachable) | |
7092 | { | |
7093 | source_relax_info->is_relaxable_asm_section = TRUE; | |
7094 | *is_relaxable_p = TRUE; | |
7095 | } | |
7096 | } | |
7097 | ||
7098 | r_reloc_init (&r_rel, abfd, irel, contents, | |
7099 | bfd_get_section_limit (abfd, sec)); | |
7100 | ||
7101 | target_sec = r_reloc_get_section (&r_rel); | |
7102 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7103 | if (!target_relax_info) | |
7104 | continue; | |
7105 | ||
7106 | /* Count PC-relative operand relocations against the target section. | |
07d6d2b8 | 7107 | Note: The conditions tested here must match the conditions under |
43cd72b9 | 7108 | which init_source_reloc is called in collect_source_relocs(). */ |
25c6282a BW |
7109 | is_l32r_reloc = FALSE; |
7110 | if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
7111 | { | |
7112 | xtensa_opcode opcode = | |
7113 | get_relocation_opcode (abfd, sec, contents, irel); | |
7114 | if (opcode != XTENSA_UNDEFINED) | |
7115 | { | |
7116 | is_l32r_reloc = (opcode == get_l32r_opcode ()); | |
7117 | if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info)) | |
7118 | || is_l32r_reloc) | |
7119 | target_relax_info->src_count++; | |
7120 | } | |
7121 | } | |
43cd72b9 | 7122 | |
25c6282a | 7123 | if (is_l32r_reloc && r_reloc_is_defined (&r_rel)) |
43cd72b9 BW |
7124 | { |
7125 | /* Mark the target section as relaxable. */ | |
7126 | target_relax_info->is_relaxable_literal_section = TRUE; | |
7127 | *is_relaxable_p = TRUE; | |
7128 | } | |
7129 | } | |
7130 | ||
7131 | error_return: | |
7132 | release_contents (sec, contents); | |
7133 | release_internal_relocs (sec, internal_relocs); | |
7134 | return ok; | |
7135 | } | |
7136 | ||
7137 | ||
7138 | /* Record _all_ the relocations that point to relaxable sections, and | |
7139 | get rid of ASM_EXPAND relocs by either converting them to | |
7140 | ASM_SIMPLIFY or by removing them. */ | |
7141 | ||
7142 | static bfd_boolean | |
7fa3d080 BW |
7143 | collect_source_relocs (bfd *abfd, |
7144 | asection *sec, | |
7145 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
7146 | { |
7147 | Elf_Internal_Rela *internal_relocs; | |
7148 | bfd_byte *contents; | |
7149 | bfd_boolean ok = TRUE; | |
7150 | unsigned i; | |
7151 | bfd_size_type sec_size; | |
7152 | ||
68ffbac6 | 7153 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
43cd72b9 | 7154 | link_info->keep_memory); |
68ffbac6 | 7155 | if (internal_relocs == NULL) |
43cd72b9 BW |
7156 | return ok; |
7157 | ||
7158 | sec_size = bfd_get_section_limit (abfd, sec); | |
7159 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
7160 | if (contents == NULL && sec_size != 0) | |
7161 | { | |
7162 | ok = FALSE; | |
7163 | goto error_return; | |
7164 | } | |
7165 | ||
7166 | /* Record relocations against relaxable literal sections. */ | |
68ffbac6 | 7167 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7168 | { |
7169 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7170 | r_reloc r_rel; | |
7171 | asection *target_sec; | |
7172 | xtensa_relax_info *target_relax_info; | |
7173 | ||
7174 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7175 | ||
7176 | target_sec = r_reloc_get_section (&r_rel); | |
7177 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7178 | ||
7179 | if (target_relax_info | |
7180 | && (target_relax_info->is_relaxable_literal_section | |
7181 | || target_relax_info->is_relaxable_asm_section)) | |
7182 | { | |
7183 | xtensa_opcode opcode = XTENSA_UNDEFINED; | |
7184 | int opnd = -1; | |
7185 | bfd_boolean is_abs_literal = FALSE; | |
7186 | ||
7187 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
7188 | { | |
7189 | /* None of the current alternate relocs are PC-relative, | |
7190 | and only PC-relative relocs matter here. However, we | |
7191 | still need to record the opcode for literal | |
7192 | coalescing. */ | |
7193 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
7194 | if (opcode == get_l32r_opcode ()) | |
7195 | { | |
7196 | is_abs_literal = TRUE; | |
7197 | opnd = 1; | |
7198 | } | |
7199 | else | |
7200 | opcode = XTENSA_UNDEFINED; | |
7201 | } | |
7202 | else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
7203 | { | |
7204 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
7205 | opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
7206 | } | |
7207 | ||
7208 | if (opcode != XTENSA_UNDEFINED) | |
7209 | { | |
7210 | int src_next = target_relax_info->src_next++; | |
7211 | source_reloc *s_reloc = &target_relax_info->src_relocs[src_next]; | |
7212 | ||
7213 | init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd, | |
7214 | is_abs_literal); | |
7215 | } | |
7216 | } | |
7217 | } | |
7218 | ||
7219 | /* Now get rid of ASM_EXPAND relocations. At this point, the | |
7220 | src_relocs array for the target literal section may still be | |
7221 | incomplete, but it must at least contain the entries for the L32R | |
7222 | relocations associated with ASM_EXPANDs because they were just | |
7223 | added in the preceding loop over the relocations. */ | |
7224 | ||
68ffbac6 | 7225 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7226 | { |
7227 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7228 | bfd_boolean is_reachable; | |
7229 | ||
7230 | if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
7231 | &is_reachable)) | |
7232 | continue; | |
7233 | ||
7234 | if (is_reachable) | |
7235 | { | |
7236 | Elf_Internal_Rela *l32r_irel; | |
7237 | r_reloc r_rel; | |
7238 | asection *target_sec; | |
7239 | xtensa_relax_info *target_relax_info; | |
7240 | ||
7241 | /* Mark the source_reloc for the L32R so that it will be | |
7242 | removed in compute_removed_literals(), along with the | |
7243 | associated literal. */ | |
7244 | l32r_irel = find_associated_l32r_irel (abfd, sec, contents, | |
7245 | irel, internal_relocs); | |
7246 | if (l32r_irel == NULL) | |
7247 | continue; | |
7248 | ||
7249 | r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size); | |
7250 | ||
7251 | target_sec = r_reloc_get_section (&r_rel); | |
7252 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7253 | ||
7254 | if (target_relax_info | |
7255 | && (target_relax_info->is_relaxable_literal_section | |
7256 | || target_relax_info->is_relaxable_asm_section)) | |
7257 | { | |
7258 | source_reloc *s_reloc; | |
7259 | ||
7260 | /* Search the source_relocs for the entry corresponding to | |
7261 | the l32r_irel. Note: The src_relocs array is not yet | |
7262 | sorted, but it wouldn't matter anyway because we're | |
7263 | searching by source offset instead of target offset. */ | |
68ffbac6 | 7264 | s_reloc = find_source_reloc (target_relax_info->src_relocs, |
43cd72b9 BW |
7265 | target_relax_info->src_next, |
7266 | sec, l32r_irel); | |
7267 | BFD_ASSERT (s_reloc); | |
7268 | s_reloc->is_null = TRUE; | |
7269 | } | |
7270 | ||
7271 | /* Convert this reloc to ASM_SIMPLIFY. */ | |
7272 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | |
7273 | R_XTENSA_ASM_SIMPLIFY); | |
7274 | l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7275 | ||
7276 | pin_internal_relocs (sec, internal_relocs); | |
7277 | } | |
7278 | else | |
7279 | { | |
7280 | /* It is resolvable but doesn't reach. We resolve now | |
7281 | by eliminating the relocation -- the call will remain | |
7282 | expanded into L32R/CALLX. */ | |
7283 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7284 | pin_internal_relocs (sec, internal_relocs); | |
7285 | } | |
7286 | } | |
7287 | ||
7288 | error_return: | |
7289 | release_contents (sec, contents); | |
7290 | release_internal_relocs (sec, internal_relocs); | |
7291 | return ok; | |
7292 | } | |
7293 | ||
7294 | ||
7295 | /* Return TRUE if the asm expansion can be resolved. Generally it can | |
7296 | be resolved on a final link or when a partial link locates it in the | |
7297 | same section as the target. Set "is_reachable" flag if the target of | |
7298 | the call is within the range of a direct call, given the current VMA | |
7299 | for this section and the target section. */ | |
7300 | ||
7301 | bfd_boolean | |
7fa3d080 BW |
7302 | is_resolvable_asm_expansion (bfd *abfd, |
7303 | asection *sec, | |
7304 | bfd_byte *contents, | |
7305 | Elf_Internal_Rela *irel, | |
7306 | struct bfd_link_info *link_info, | |
7307 | bfd_boolean *is_reachable_p) | |
43cd72b9 BW |
7308 | { |
7309 | asection *target_sec; | |
eed62915 MF |
7310 | asection *s; |
7311 | bfd_vma first_vma; | |
7312 | bfd_vma last_vma; | |
7313 | unsigned int first_align; | |
7314 | unsigned int adjust; | |
43cd72b9 BW |
7315 | bfd_vma target_offset; |
7316 | r_reloc r_rel; | |
7317 | xtensa_opcode opcode, direct_call_opcode; | |
7318 | bfd_vma self_address; | |
7319 | bfd_vma dest_address; | |
7320 | bfd_boolean uses_l32r; | |
7321 | bfd_size_type sec_size; | |
7322 | ||
7323 | *is_reachable_p = FALSE; | |
7324 | ||
7325 | if (contents == NULL) | |
7326 | return FALSE; | |
7327 | ||
68ffbac6 | 7328 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) |
43cd72b9 BW |
7329 | return FALSE; |
7330 | ||
7331 | sec_size = bfd_get_section_limit (abfd, sec); | |
7332 | opcode = get_expanded_call_opcode (contents + irel->r_offset, | |
7333 | sec_size - irel->r_offset, &uses_l32r); | |
7334 | /* Optimization of longcalls that use CONST16 is not yet implemented. */ | |
7335 | if (!uses_l32r) | |
7336 | return FALSE; | |
68ffbac6 | 7337 | |
43cd72b9 BW |
7338 | direct_call_opcode = swap_callx_for_call_opcode (opcode); |
7339 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
7340 | return FALSE; | |
7341 | ||
7342 | /* Check and see that the target resolves. */ | |
7343 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7344 | if (!r_reloc_is_defined (&r_rel)) | |
7345 | return FALSE; | |
7346 | ||
7347 | target_sec = r_reloc_get_section (&r_rel); | |
7348 | target_offset = r_rel.target_offset; | |
7349 | ||
7350 | /* If the target is in a shared library, then it doesn't reach. This | |
7351 | isn't supposed to come up because the compiler should never generate | |
7352 | non-PIC calls on systems that use shared libraries, but the linker | |
7353 | shouldn't crash regardless. */ | |
7354 | if (!target_sec->output_section) | |
7355 | return FALSE; | |
68ffbac6 | 7356 | |
43cd72b9 BW |
7357 | /* For relocatable sections, we can only simplify when the output |
7358 | section of the target is the same as the output section of the | |
7359 | source. */ | |
0e1862bb | 7360 | if (bfd_link_relocatable (link_info) |
43cd72b9 BW |
7361 | && (target_sec->output_section != sec->output_section |
7362 | || is_reloc_sym_weak (abfd, irel))) | |
7363 | return FALSE; | |
7364 | ||
331ed130 SA |
7365 | if (target_sec->output_section != sec->output_section) |
7366 | { | |
7367 | /* If the two sections are sufficiently far away that relaxation | |
7368 | might take the call out of range, we can't simplify. For | |
7369 | example, a positive displacement call into another memory | |
7370 | could get moved to a lower address due to literal removal, | |
7371 | but the destination won't move, and so the displacment might | |
7372 | get larger. | |
7373 | ||
7374 | If the displacement is negative, assume the destination could | |
7375 | move as far back as the start of the output section. The | |
7376 | self_address will be at least as far into the output section | |
7377 | as it is prior to relaxation. | |
7378 | ||
7379 | If the displacement is postive, assume the destination will be in | |
7380 | it's pre-relaxed location (because relaxation only makes sections | |
7381 | smaller). The self_address could go all the way to the beginning | |
7382 | of the output section. */ | |
7383 | ||
7384 | dest_address = target_sec->output_section->vma; | |
7385 | self_address = sec->output_section->vma; | |
7386 | ||
7387 | if (sec->output_section->vma > target_sec->output_section->vma) | |
7388 | self_address += sec->output_offset + irel->r_offset + 3; | |
7389 | else | |
7390 | dest_address += bfd_get_section_limit (abfd, target_sec->output_section); | |
7391 | /* Call targets should be four-byte aligned. */ | |
7392 | dest_address = (dest_address + 3) & ~3; | |
7393 | } | |
7394 | else | |
7395 | { | |
7396 | ||
7397 | self_address = (sec->output_section->vma | |
7398 | + sec->output_offset + irel->r_offset + 3); | |
7399 | dest_address = (target_sec->output_section->vma | |
7400 | + target_sec->output_offset + target_offset); | |
7401 | } | |
68ffbac6 | 7402 | |
eed62915 MF |
7403 | /* Adjust addresses with alignments for the worst case to see if call insn |
7404 | can fit. Don't relax l32r + callx to call if the target can be out of | |
7405 | range due to alignment. | |
7406 | Caller and target addresses are highest and lowest address. | |
7407 | Search all sections between caller and target, looking for max alignment. | |
7408 | The adjustment is max alignment bytes. If the alignment at the lowest | |
7409 | address is less than the adjustment, apply the adjustment to highest | |
7410 | address. */ | |
7411 | ||
7412 | /* Start from lowest address. | |
7413 | Lowest address aligmnet is from input section. | |
7414 | Initial alignment (adjust) is from input section. */ | |
7415 | if (dest_address > self_address) | |
7416 | { | |
7417 | s = sec->output_section; | |
7418 | last_vma = dest_address; | |
7419 | first_align = sec->alignment_power; | |
7420 | adjust = target_sec->alignment_power; | |
7421 | } | |
7422 | else | |
7423 | { | |
7424 | s = target_sec->output_section; | |
7425 | last_vma = self_address; | |
7426 | first_align = target_sec->alignment_power; | |
7427 | adjust = sec->alignment_power; | |
7428 | } | |
7429 | ||
7430 | first_vma = s->vma; | |
7431 | ||
7432 | /* Find the largest alignment in output section list. */ | |
7433 | for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next) | |
7434 | { | |
7435 | if (s->alignment_power > adjust) | |
7436 | adjust = s->alignment_power; | |
7437 | } | |
7438 | ||
7439 | if (adjust > first_align) | |
7440 | { | |
7441 | /* Alignment may enlarge the range, adjust highest address. */ | |
7442 | adjust = 1 << adjust; | |
7443 | if (dest_address > self_address) | |
7444 | { | |
7445 | dest_address += adjust; | |
7446 | } | |
7447 | else | |
7448 | { | |
7449 | self_address += adjust; | |
7450 | } | |
7451 | } | |
7452 | ||
43cd72b9 BW |
7453 | *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0, |
7454 | self_address, dest_address); | |
7455 | ||
7456 | if ((self_address >> CALL_SEGMENT_BITS) != | |
7457 | (dest_address >> CALL_SEGMENT_BITS)) | |
7458 | return FALSE; | |
7459 | ||
7460 | return TRUE; | |
7461 | } | |
7462 | ||
7463 | ||
7464 | static Elf_Internal_Rela * | |
7fa3d080 BW |
7465 | find_associated_l32r_irel (bfd *abfd, |
7466 | asection *sec, | |
7467 | bfd_byte *contents, | |
7468 | Elf_Internal_Rela *other_irel, | |
7469 | Elf_Internal_Rela *internal_relocs) | |
43cd72b9 BW |
7470 | { |
7471 | unsigned i; | |
e0001a05 | 7472 | |
68ffbac6 | 7473 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7474 | { |
7475 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
e0001a05 | 7476 | |
43cd72b9 BW |
7477 | if (irel == other_irel) |
7478 | continue; | |
7479 | if (irel->r_offset != other_irel->r_offset) | |
7480 | continue; | |
7481 | if (is_l32r_relocation (abfd, sec, contents, irel)) | |
7482 | return irel; | |
7483 | } | |
7484 | ||
7485 | return NULL; | |
e0001a05 NC |
7486 | } |
7487 | ||
7488 | ||
cb337148 BW |
7489 | static xtensa_opcode * |
7490 | build_reloc_opcodes (bfd *abfd, | |
7491 | asection *sec, | |
7492 | bfd_byte *contents, | |
7493 | Elf_Internal_Rela *internal_relocs) | |
7494 | { | |
7495 | unsigned i; | |
7496 | xtensa_opcode *reloc_opcodes = | |
7497 | (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count); | |
7498 | for (i = 0; i < sec->reloc_count; i++) | |
7499 | { | |
7500 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7501 | reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel); | |
7502 | } | |
7503 | return reloc_opcodes; | |
7504 | } | |
7505 | ||
b2b326d2 MF |
7506 | struct reloc_range_struct |
7507 | { | |
7508 | bfd_vma addr; | |
7509 | bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */ | |
7510 | /* Original irel index in the array of relocations for a section. */ | |
7511 | unsigned irel_index; | |
7512 | }; | |
7513 | typedef struct reloc_range_struct reloc_range; | |
7514 | ||
7515 | typedef struct reloc_range_list_entry_struct reloc_range_list_entry; | |
7516 | struct reloc_range_list_entry_struct | |
7517 | { | |
7518 | reloc_range_list_entry *next; | |
7519 | reloc_range_list_entry *prev; | |
7520 | Elf_Internal_Rela *irel; | |
7521 | xtensa_opcode opcode; | |
7522 | int opnum; | |
7523 | }; | |
7524 | ||
7525 | struct reloc_range_list_struct | |
7526 | { | |
7527 | /* The rest of the structure is only meaningful when ok is TRUE. */ | |
7528 | bfd_boolean ok; | |
7529 | ||
7530 | unsigned n_range; /* Number of range markers. */ | |
7531 | reloc_range *range; /* Sorted range markers. */ | |
7532 | ||
7533 | unsigned first; /* Index of a first range element in the list. */ | |
7534 | unsigned last; /* One past index of a last range element in the list. */ | |
7535 | ||
7536 | unsigned n_list; /* Number of list elements. */ | |
7537 | reloc_range_list_entry *reloc; /* */ | |
7538 | reloc_range_list_entry list_root; | |
7539 | }; | |
7540 | ||
7541 | static int | |
7542 | reloc_range_compare (const void *a, const void *b) | |
7543 | { | |
7544 | const reloc_range *ra = a; | |
7545 | const reloc_range *rb = b; | |
7546 | ||
7547 | if (ra->addr != rb->addr) | |
7548 | return ra->addr < rb->addr ? -1 : 1; | |
7549 | if (ra->add != rb->add) | |
7550 | return ra->add ? -1 : 1; | |
7551 | return 0; | |
7552 | } | |
7553 | ||
7554 | static void | |
7555 | build_reloc_ranges (bfd *abfd, asection *sec, | |
7556 | bfd_byte *contents, | |
7557 | Elf_Internal_Rela *internal_relocs, | |
7558 | xtensa_opcode *reloc_opcodes, | |
7559 | reloc_range_list *list) | |
7560 | { | |
7561 | unsigned i; | |
7562 | size_t n = 0; | |
7563 | size_t max_n = 0; | |
7564 | reloc_range *ranges = NULL; | |
7565 | reloc_range_list_entry *reloc = | |
7566 | bfd_malloc (sec->reloc_count * sizeof (*reloc)); | |
7567 | ||
7568 | memset (list, 0, sizeof (*list)); | |
7569 | list->ok = TRUE; | |
7570 | ||
7571 | for (i = 0; i < sec->reloc_count; i++) | |
7572 | { | |
7573 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7574 | int r_type = ELF32_R_TYPE (irel->r_info); | |
7575 | reloc_howto_type *howto = &elf_howto_table[r_type]; | |
7576 | r_reloc r_rel; | |
7577 | ||
7578 | if (r_type == R_XTENSA_ASM_SIMPLIFY | |
7579 | || r_type == R_XTENSA_32_PCREL | |
7580 | || !howto->pc_relative) | |
7581 | continue; | |
7582 | ||
7583 | r_reloc_init (&r_rel, abfd, irel, contents, | |
7584 | bfd_get_section_limit (abfd, sec)); | |
7585 | ||
7586 | if (r_reloc_get_section (&r_rel) != sec) | |
7587 | continue; | |
7588 | ||
7589 | if (n + 2 > max_n) | |
7590 | { | |
7591 | max_n = (max_n + 2) * 2; | |
7592 | ranges = bfd_realloc (ranges, max_n * sizeof (*ranges)); | |
7593 | } | |
7594 | ||
7595 | ranges[n].addr = irel->r_offset; | |
7596 | ranges[n + 1].addr = r_rel.target_offset; | |
7597 | ||
7598 | ranges[n].add = ranges[n].addr < ranges[n + 1].addr; | |
7599 | ranges[n + 1].add = !ranges[n].add; | |
7600 | ||
7601 | ranges[n].irel_index = i; | |
7602 | ranges[n + 1].irel_index = i; | |
7603 | ||
7604 | n += 2; | |
7605 | ||
7606 | reloc[i].irel = irel; | |
7607 | ||
7608 | /* Every relocation won't possibly be checked in the optimized version of | |
07d6d2b8 | 7609 | check_section_ebb_pcrels_fit, so this needs to be done here. */ |
b2b326d2 MF |
7610 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) |
7611 | { | |
7612 | /* None of the current alternate relocs are PC-relative, | |
7613 | and only PC-relative relocs matter here. */ | |
7614 | } | |
7615 | else | |
7616 | { | |
7617 | xtensa_opcode opcode; | |
7618 | int opnum; | |
7619 | ||
7620 | if (reloc_opcodes) | |
7621 | opcode = reloc_opcodes[i]; | |
7622 | else | |
7623 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
7624 | ||
7625 | if (opcode == XTENSA_UNDEFINED) | |
7626 | { | |
7627 | list->ok = FALSE; | |
7628 | break; | |
7629 | } | |
7630 | ||
7631 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
7632 | if (opnum == XTENSA_UNDEFINED) | |
7633 | { | |
7634 | list->ok = FALSE; | |
7635 | break; | |
7636 | } | |
7637 | ||
7638 | /* Record relocation opcode and opnum as we've calculated them | |
7639 | anyway and they won't change. */ | |
7640 | reloc[i].opcode = opcode; | |
7641 | reloc[i].opnum = opnum; | |
7642 | } | |
7643 | } | |
7644 | ||
7645 | if (list->ok) | |
7646 | { | |
7647 | ranges = bfd_realloc (ranges, n * sizeof (*ranges)); | |
7648 | qsort (ranges, n, sizeof (*ranges), reloc_range_compare); | |
7649 | ||
7650 | list->n_range = n; | |
7651 | list->range = ranges; | |
7652 | list->reloc = reloc; | |
7653 | list->list_root.prev = &list->list_root; | |
7654 | list->list_root.next = &list->list_root; | |
7655 | } | |
7656 | else | |
7657 | { | |
7658 | free (ranges); | |
7659 | free (reloc); | |
7660 | } | |
7661 | } | |
7662 | ||
7663 | static void reloc_range_list_append (reloc_range_list *list, | |
7664 | unsigned irel_index) | |
7665 | { | |
7666 | reloc_range_list_entry *entry = list->reloc + irel_index; | |
7667 | ||
7668 | entry->prev = list->list_root.prev; | |
7669 | entry->next = &list->list_root; | |
7670 | entry->prev->next = entry; | |
7671 | entry->next->prev = entry; | |
7672 | ++list->n_list; | |
7673 | } | |
7674 | ||
7675 | static void reloc_range_list_remove (reloc_range_list *list, | |
7676 | unsigned irel_index) | |
7677 | { | |
7678 | reloc_range_list_entry *entry = list->reloc + irel_index; | |
7679 | ||
7680 | entry->next->prev = entry->prev; | |
7681 | entry->prev->next = entry->next; | |
7682 | --list->n_list; | |
7683 | } | |
7684 | ||
7685 | /* Update relocation list object so that it lists all relocations that cross | |
7686 | [first; last] range. Range bounds should not decrease with successive | |
7687 | invocations. */ | |
7688 | static void reloc_range_list_update_range (reloc_range_list *list, | |
7689 | bfd_vma first, bfd_vma last) | |
7690 | { | |
7691 | /* This should not happen: EBBs are iterated from lower addresses to higher. | |
7692 | But even if that happens there's no need to break: just flush current list | |
7693 | and start from scratch. */ | |
7694 | if ((list->last > 0 && list->range[list->last - 1].addr > last) || | |
7695 | (list->first > 0 && list->range[list->first - 1].addr >= first)) | |
7696 | { | |
7697 | list->first = 0; | |
7698 | list->last = 0; | |
7699 | list->n_list = 0; | |
7700 | list->list_root.next = &list->list_root; | |
7701 | list->list_root.prev = &list->list_root; | |
7702 | fprintf (stderr, "%s: move backwards requested\n", __func__); | |
7703 | } | |
7704 | ||
7705 | for (; list->last < list->n_range && | |
7706 | list->range[list->last].addr <= last; ++list->last) | |
7707 | if (list->range[list->last].add) | |
7708 | reloc_range_list_append (list, list->range[list->last].irel_index); | |
7709 | ||
7710 | for (; list->first < list->n_range && | |
7711 | list->range[list->first].addr < first; ++list->first) | |
7712 | if (!list->range[list->first].add) | |
7713 | reloc_range_list_remove (list, list->range[list->first].irel_index); | |
7714 | } | |
7715 | ||
7716 | static void free_reloc_range_list (reloc_range_list *list) | |
7717 | { | |
7718 | free (list->range); | |
7719 | free (list->reloc); | |
7720 | } | |
cb337148 | 7721 | |
43cd72b9 BW |
7722 | /* The compute_text_actions function will build a list of potential |
7723 | transformation actions for code in the extended basic block of each | |
7724 | longcall that is optimized to a direct call. From this list we | |
7725 | generate a set of actions to actually perform that optimizes for | |
7726 | space and, if not using size_opt, maintains branch target | |
7727 | alignments. | |
e0001a05 | 7728 | |
43cd72b9 BW |
7729 | These actions to be performed are placed on a per-section list. |
7730 | The actual changes are performed by relax_section() in the second | |
7731 | pass. */ | |
7732 | ||
7733 | bfd_boolean | |
7fa3d080 BW |
7734 | compute_text_actions (bfd *abfd, |
7735 | asection *sec, | |
7736 | struct bfd_link_info *link_info) | |
e0001a05 | 7737 | { |
cb337148 | 7738 | xtensa_opcode *reloc_opcodes = NULL; |
43cd72b9 | 7739 | xtensa_relax_info *relax_info; |
e0001a05 | 7740 | bfd_byte *contents; |
43cd72b9 | 7741 | Elf_Internal_Rela *internal_relocs; |
e0001a05 NC |
7742 | bfd_boolean ok = TRUE; |
7743 | unsigned i; | |
43cd72b9 BW |
7744 | property_table_entry *prop_table = 0; |
7745 | int ptblsize = 0; | |
7746 | bfd_size_type sec_size; | |
b2b326d2 | 7747 | reloc_range_list relevant_relocs; |
43cd72b9 | 7748 | |
43cd72b9 BW |
7749 | relax_info = get_xtensa_relax_info (sec); |
7750 | BFD_ASSERT (relax_info); | |
25c6282a BW |
7751 | BFD_ASSERT (relax_info->src_next == relax_info->src_count); |
7752 | ||
7753 | /* Do nothing if the section contains no optimized longcalls. */ | |
43cd72b9 BW |
7754 | if (!relax_info->is_relaxable_asm_section) |
7755 | return ok; | |
e0001a05 NC |
7756 | |
7757 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
7758 | link_info->keep_memory); | |
e0001a05 | 7759 | |
43cd72b9 BW |
7760 | if (internal_relocs) |
7761 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
7762 | internal_reloc_compare); | |
7763 | ||
7764 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 | 7765 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 7766 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
7767 | { |
7768 | ok = FALSE; | |
7769 | goto error_return; | |
7770 | } | |
7771 | ||
43cd72b9 BW |
7772 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
7773 | XTENSA_PROP_SEC_NAME, FALSE); | |
7774 | if (ptblsize < 0) | |
7775 | { | |
7776 | ok = FALSE; | |
7777 | goto error_return; | |
7778 | } | |
7779 | ||
b2b326d2 MF |
7780 | /* Precompute the opcode for each relocation. */ |
7781 | reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs); | |
7782 | ||
7783 | build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes, | |
7784 | &relevant_relocs); | |
7785 | ||
43cd72b9 | 7786 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
7787 | { |
7788 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 BW |
7789 | bfd_vma r_offset; |
7790 | property_table_entry *the_entry; | |
7791 | int ptbl_idx; | |
7792 | ebb_t *ebb; | |
7793 | ebb_constraint ebb_table; | |
7794 | bfd_size_type simplify_size; | |
7795 | ||
7796 | if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY) | |
7797 | continue; | |
7798 | r_offset = irel->r_offset; | |
e0001a05 | 7799 | |
43cd72b9 BW |
7800 | simplify_size = get_asm_simplify_size (contents, sec_size, r_offset); |
7801 | if (simplify_size == 0) | |
7802 | { | |
4eca0228 | 7803 | _bfd_error_handler |
695344c0 | 7804 | /* xgettext:c-format */ |
2dcf00ce | 7805 | (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for " |
d42c267e AM |
7806 | "XTENSA_ASM_SIMPLIFY relocation; " |
7807 | "possible configuration mismatch"), | |
2dcf00ce | 7808 | sec->owner, sec, (uint64_t) r_offset); |
43cd72b9 BW |
7809 | continue; |
7810 | } | |
e0001a05 | 7811 | |
43cd72b9 BW |
7812 | /* If the instruction table is not around, then don't do this |
7813 | relaxation. */ | |
7814 | the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7815 | sec->vma + irel->r_offset); | |
7816 | if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL) | |
7817 | { | |
7818 | text_action_add (&relax_info->action_list, | |
7819 | ta_convert_longcall, sec, r_offset, | |
7820 | 0); | |
7821 | continue; | |
7822 | } | |
7823 | ||
7824 | /* If the next longcall happens to be at the same address as an | |
7825 | unreachable section of size 0, then skip forward. */ | |
7826 | ptbl_idx = the_entry - prop_table; | |
7827 | while ((the_entry->flags & XTENSA_PROP_UNREACHABLE) | |
7828 | && the_entry->size == 0 | |
7829 | && ptbl_idx + 1 < ptblsize | |
7830 | && (prop_table[ptbl_idx + 1].address | |
7831 | == prop_table[ptbl_idx].address)) | |
7832 | { | |
7833 | ptbl_idx++; | |
7834 | the_entry++; | |
7835 | } | |
e0001a05 | 7836 | |
99ded152 | 7837 | if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM) |
43cd72b9 BW |
7838 | /* NO_REORDER is OK */ |
7839 | continue; | |
e0001a05 | 7840 | |
43cd72b9 BW |
7841 | init_ebb_constraint (&ebb_table); |
7842 | ebb = &ebb_table.ebb; | |
7843 | init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize, | |
7844 | internal_relocs, sec->reloc_count); | |
7845 | ebb->start_offset = r_offset + simplify_size; | |
7846 | ebb->end_offset = r_offset + simplify_size; | |
7847 | ebb->start_ptbl_idx = ptbl_idx; | |
7848 | ebb->end_ptbl_idx = ptbl_idx; | |
7849 | ebb->start_reloc_idx = i; | |
7850 | ebb->end_reloc_idx = i; | |
7851 | ||
7852 | if (!extend_ebb_bounds (ebb) | |
7853 | || !compute_ebb_proposed_actions (&ebb_table) | |
7854 | || !compute_ebb_actions (&ebb_table) | |
7855 | || !check_section_ebb_pcrels_fit (abfd, sec, contents, | |
b2b326d2 MF |
7856 | internal_relocs, |
7857 | &relevant_relocs, | |
7858 | &ebb_table, reloc_opcodes) | |
43cd72b9 | 7859 | || !check_section_ebb_reduces (&ebb_table)) |
e0001a05 | 7860 | { |
43cd72b9 BW |
7861 | /* If anything goes wrong or we get unlucky and something does |
7862 | not fit, with our plan because of expansion between | |
7863 | critical branches, just convert to a NOP. */ | |
7864 | ||
7865 | text_action_add (&relax_info->action_list, | |
7866 | ta_convert_longcall, sec, r_offset, 0); | |
7867 | i = ebb_table.ebb.end_reloc_idx; | |
7868 | free_ebb_constraint (&ebb_table); | |
7869 | continue; | |
e0001a05 | 7870 | } |
43cd72b9 BW |
7871 | |
7872 | text_action_add_proposed (&relax_info->action_list, &ebb_table, sec); | |
7873 | ||
7874 | /* Update the index so we do not go looking at the relocations | |
7875 | we have already processed. */ | |
7876 | i = ebb_table.ebb.end_reloc_idx; | |
7877 | free_ebb_constraint (&ebb_table); | |
e0001a05 NC |
7878 | } |
7879 | ||
b2b326d2 MF |
7880 | free_reloc_range_list (&relevant_relocs); |
7881 | ||
43cd72b9 | 7882 | #if DEBUG |
4c2af04f | 7883 | if (action_list_count (&relax_info->action_list)) |
43cd72b9 BW |
7884 | print_action_list (stderr, &relax_info->action_list); |
7885 | #endif | |
7886 | ||
dc1e8a47 | 7887 | error_return: |
e0001a05 NC |
7888 | release_contents (sec, contents); |
7889 | release_internal_relocs (sec, internal_relocs); | |
c9594989 AM |
7890 | free (prop_table); |
7891 | free (reloc_opcodes); | |
43cd72b9 | 7892 | |
e0001a05 NC |
7893 | return ok; |
7894 | } | |
7895 | ||
7896 | ||
64b607e6 BW |
7897 | /* Do not widen an instruction if it is preceeded by a |
7898 | loop opcode. It might cause misalignment. */ | |
7899 | ||
7900 | static bfd_boolean | |
7901 | prev_instr_is_a_loop (bfd_byte *contents, | |
7902 | bfd_size_type content_length, | |
7903 | bfd_size_type offset) | |
7904 | { | |
7905 | xtensa_opcode prev_opcode; | |
7906 | ||
7907 | if (offset < 3) | |
7908 | return FALSE; | |
7909 | prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0); | |
7910 | return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1); | |
68ffbac6 | 7911 | } |
64b607e6 BW |
7912 | |
7913 | ||
43cd72b9 | 7914 | /* Find all of the possible actions for an extended basic block. */ |
e0001a05 | 7915 | |
43cd72b9 | 7916 | bfd_boolean |
7fa3d080 | 7917 | compute_ebb_proposed_actions (ebb_constraint *ebb_table) |
e0001a05 | 7918 | { |
43cd72b9 BW |
7919 | const ebb_t *ebb = &ebb_table->ebb; |
7920 | unsigned rel_idx = ebb->start_reloc_idx; | |
7921 | property_table_entry *entry, *start_entry, *end_entry; | |
64b607e6 BW |
7922 | bfd_vma offset = 0; |
7923 | xtensa_isa isa = xtensa_default_isa; | |
7924 | xtensa_format fmt; | |
7925 | static xtensa_insnbuf insnbuf = NULL; | |
7926 | static xtensa_insnbuf slotbuf = NULL; | |
7927 | ||
7928 | if (insnbuf == NULL) | |
7929 | { | |
7930 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7931 | slotbuf = xtensa_insnbuf_alloc (isa); | |
7932 | } | |
e0001a05 | 7933 | |
43cd72b9 BW |
7934 | start_entry = &ebb->ptbl[ebb->start_ptbl_idx]; |
7935 | end_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
e0001a05 | 7936 | |
43cd72b9 | 7937 | for (entry = start_entry; entry <= end_entry; entry++) |
e0001a05 | 7938 | { |
64b607e6 | 7939 | bfd_vma start_offset, end_offset; |
43cd72b9 | 7940 | bfd_size_type insn_len; |
e0001a05 | 7941 | |
43cd72b9 BW |
7942 | start_offset = entry->address - ebb->sec->vma; |
7943 | end_offset = entry->address + entry->size - ebb->sec->vma; | |
e0001a05 | 7944 | |
43cd72b9 BW |
7945 | if (entry == start_entry) |
7946 | start_offset = ebb->start_offset; | |
7947 | if (entry == end_entry) | |
7948 | end_offset = ebb->end_offset; | |
7949 | offset = start_offset; | |
e0001a05 | 7950 | |
43cd72b9 BW |
7951 | if (offset == entry->address - ebb->sec->vma |
7952 | && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0) | |
7953 | { | |
7954 | enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN; | |
7955 | BFD_ASSERT (offset != end_offset); | |
7956 | if (offset == end_offset) | |
7957 | return FALSE; | |
e0001a05 | 7958 | |
43cd72b9 BW |
7959 | insn_len = insn_decode_len (ebb->contents, ebb->content_length, |
7960 | offset); | |
68ffbac6 | 7961 | if (insn_len == 0) |
64b607e6 BW |
7962 | goto decode_error; |
7963 | ||
43cd72b9 BW |
7964 | if (check_branch_target_aligned_address (offset, insn_len)) |
7965 | align_type = EBB_REQUIRE_TGT_ALIGN; | |
7966 | ||
7967 | ebb_propose_action (ebb_table, align_type, 0, | |
7968 | ta_none, offset, 0, TRUE); | |
7969 | } | |
7970 | ||
7971 | while (offset != end_offset) | |
e0001a05 | 7972 | { |
43cd72b9 | 7973 | Elf_Internal_Rela *irel; |
e0001a05 | 7974 | xtensa_opcode opcode; |
e0001a05 | 7975 | |
43cd72b9 BW |
7976 | while (rel_idx < ebb->end_reloc_idx |
7977 | && (ebb->relocs[rel_idx].r_offset < offset | |
7978 | || (ebb->relocs[rel_idx].r_offset == offset | |
7979 | && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info) | |
7980 | != R_XTENSA_ASM_SIMPLIFY)))) | |
7981 | rel_idx++; | |
7982 | ||
7983 | /* Check for longcall. */ | |
7984 | irel = &ebb->relocs[rel_idx]; | |
7985 | if (irel->r_offset == offset | |
7986 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY) | |
7987 | { | |
7988 | bfd_size_type simplify_size; | |
e0001a05 | 7989 | |
68ffbac6 | 7990 | simplify_size = get_asm_simplify_size (ebb->contents, |
43cd72b9 BW |
7991 | ebb->content_length, |
7992 | irel->r_offset); | |
7993 | if (simplify_size == 0) | |
64b607e6 | 7994 | goto decode_error; |
43cd72b9 BW |
7995 | |
7996 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7997 | ta_convert_longcall, offset, 0, TRUE); | |
68ffbac6 | 7998 | |
43cd72b9 BW |
7999 | offset += simplify_size; |
8000 | continue; | |
8001 | } | |
e0001a05 | 8002 | |
64b607e6 BW |
8003 | if (offset + MIN_INSN_LENGTH > ebb->content_length) |
8004 | goto decode_error; | |
8005 | xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset], | |
8006 | ebb->content_length - offset); | |
8007 | fmt = xtensa_format_decode (isa, insnbuf); | |
8008 | if (fmt == XTENSA_UNDEFINED) | |
8009 | goto decode_error; | |
8010 | insn_len = xtensa_format_length (isa, fmt); | |
8011 | if (insn_len == (bfd_size_type) XTENSA_UNDEFINED) | |
8012 | goto decode_error; | |
8013 | ||
8014 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
43cd72b9 | 8015 | { |
64b607e6 BW |
8016 | offset += insn_len; |
8017 | continue; | |
43cd72b9 | 8018 | } |
64b607e6 BW |
8019 | |
8020 | xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); | |
8021 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
8022 | if (opcode == XTENSA_UNDEFINED) | |
8023 | goto decode_error; | |
8024 | ||
43cd72b9 | 8025 | if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0 |
99ded152 | 8026 | && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 | 8027 | && can_narrow_instruction (slotbuf, fmt, opcode) != 0) |
43cd72b9 BW |
8028 | { |
8029 | /* Add an instruction narrow action. */ | |
8030 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
8031 | ta_narrow_insn, offset, 0, FALSE); | |
43cd72b9 | 8032 | } |
99ded152 | 8033 | else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 BW |
8034 | && can_widen_instruction (slotbuf, fmt, opcode) != 0 |
8035 | && ! prev_instr_is_a_loop (ebb->contents, | |
8036 | ebb->content_length, offset)) | |
43cd72b9 BW |
8037 | { |
8038 | /* Add an instruction widen action. */ | |
8039 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
8040 | ta_widen_insn, offset, 0, FALSE); | |
43cd72b9 | 8041 | } |
64b607e6 | 8042 | else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1) |
43cd72b9 BW |
8043 | { |
8044 | /* Check for branch targets. */ | |
8045 | ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0, | |
8046 | ta_none, offset, 0, TRUE); | |
43cd72b9 BW |
8047 | } |
8048 | ||
8049 | offset += insn_len; | |
e0001a05 NC |
8050 | } |
8051 | } | |
8052 | ||
43cd72b9 BW |
8053 | if (ebb->ends_unreachable) |
8054 | { | |
8055 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
8056 | ta_fill, ebb->end_offset, 0, TRUE); | |
8057 | } | |
e0001a05 | 8058 | |
43cd72b9 | 8059 | return TRUE; |
64b607e6 BW |
8060 | |
8061 | decode_error: | |
4eca0228 | 8062 | _bfd_error_handler |
695344c0 | 8063 | /* xgettext:c-format */ |
2dcf00ce | 8064 | (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; " |
d42c267e | 8065 | "possible configuration mismatch"), |
2dcf00ce | 8066 | ebb->sec->owner, ebb->sec, (uint64_t) offset); |
64b607e6 | 8067 | return FALSE; |
43cd72b9 BW |
8068 | } |
8069 | ||
8070 | ||
8071 | /* After all of the information has collected about the | |
8072 | transformations possible in an EBB, compute the appropriate actions | |
8073 | here in compute_ebb_actions. We still must check later to make | |
8074 | sure that the actions do not break any relocations. The algorithm | |
8075 | used here is pretty greedy. Basically, it removes as many no-ops | |
8076 | as possible so that the end of the EBB has the same alignment | |
8077 | characteristics as the original. First, it uses narrowing, then | |
8078 | fill space at the end of the EBB, and finally widenings. If that | |
8079 | does not work, it tries again with one fewer no-op removed. The | |
8080 | optimization will only be performed if all of the branch targets | |
8081 | that were aligned before transformation are also aligned after the | |
8082 | transformation. | |
8083 | ||
8084 | When the size_opt flag is set, ignore the branch target alignments, | |
8085 | narrow all wide instructions, and remove all no-ops unless the end | |
8086 | of the EBB prevents it. */ | |
8087 | ||
8088 | bfd_boolean | |
7fa3d080 | 8089 | compute_ebb_actions (ebb_constraint *ebb_table) |
43cd72b9 BW |
8090 | { |
8091 | unsigned i = 0; | |
8092 | unsigned j; | |
8093 | int removed_bytes = 0; | |
8094 | ebb_t *ebb = &ebb_table->ebb; | |
8095 | unsigned seg_idx_start = 0; | |
8096 | unsigned seg_idx_end = 0; | |
8097 | ||
8098 | /* We perform this like the assembler relaxation algorithm: Start by | |
8099 | assuming all instructions are narrow and all no-ops removed; then | |
8100 | walk through.... */ | |
8101 | ||
8102 | /* For each segment of this that has a solid constraint, check to | |
8103 | see if there are any combinations that will keep the constraint. | |
8104 | If so, use it. */ | |
8105 | for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++) | |
e0001a05 | 8106 | { |
43cd72b9 BW |
8107 | bfd_boolean requires_text_end_align = FALSE; |
8108 | unsigned longcall_count = 0; | |
8109 | unsigned longcall_convert_count = 0; | |
8110 | unsigned narrowable_count = 0; | |
8111 | unsigned narrowable_convert_count = 0; | |
8112 | unsigned widenable_count = 0; | |
8113 | unsigned widenable_convert_count = 0; | |
e0001a05 | 8114 | |
43cd72b9 BW |
8115 | proposed_action *action = NULL; |
8116 | int align = (1 << ebb_table->ebb.sec->alignment_power); | |
e0001a05 | 8117 | |
43cd72b9 | 8118 | seg_idx_start = seg_idx_end; |
e0001a05 | 8119 | |
43cd72b9 BW |
8120 | for (i = seg_idx_start; i < ebb_table->action_count; i++) |
8121 | { | |
8122 | action = &ebb_table->actions[i]; | |
8123 | if (action->action == ta_convert_longcall) | |
8124 | longcall_count++; | |
8125 | if (action->action == ta_narrow_insn) | |
8126 | narrowable_count++; | |
8127 | if (action->action == ta_widen_insn) | |
8128 | widenable_count++; | |
8129 | if (action->action == ta_fill) | |
8130 | break; | |
8131 | if (action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
8132 | break; | |
8133 | if (action->align_type == EBB_REQUIRE_TGT_ALIGN | |
8134 | && !elf32xtensa_size_opt) | |
8135 | break; | |
8136 | } | |
8137 | seg_idx_end = i; | |
e0001a05 | 8138 | |
43cd72b9 BW |
8139 | if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable) |
8140 | requires_text_end_align = TRUE; | |
e0001a05 | 8141 | |
43cd72b9 BW |
8142 | if (elf32xtensa_size_opt && !requires_text_end_align |
8143 | && action->align_type != EBB_REQUIRE_LOOP_ALIGN | |
8144 | && action->align_type != EBB_REQUIRE_TGT_ALIGN) | |
8145 | { | |
8146 | longcall_convert_count = longcall_count; | |
8147 | narrowable_convert_count = narrowable_count; | |
8148 | widenable_convert_count = 0; | |
8149 | } | |
8150 | else | |
8151 | { | |
8152 | /* There is a constraint. Convert the max number of longcalls. */ | |
8153 | narrowable_convert_count = 0; | |
8154 | longcall_convert_count = 0; | |
8155 | widenable_convert_count = 0; | |
e0001a05 | 8156 | |
43cd72b9 | 8157 | for (j = 0; j < longcall_count; j++) |
e0001a05 | 8158 | { |
43cd72b9 BW |
8159 | int removed = (longcall_count - j) * 3 & (align - 1); |
8160 | unsigned desire_narrow = (align - removed) & (align - 1); | |
8161 | unsigned desire_widen = removed; | |
8162 | if (desire_narrow <= narrowable_count) | |
8163 | { | |
8164 | narrowable_convert_count = desire_narrow; | |
8165 | narrowable_convert_count += | |
8166 | (align * ((narrowable_count - narrowable_convert_count) | |
8167 | / align)); | |
8168 | longcall_convert_count = (longcall_count - j); | |
8169 | widenable_convert_count = 0; | |
8170 | break; | |
8171 | } | |
8172 | if (desire_widen <= widenable_count && !elf32xtensa_size_opt) | |
8173 | { | |
8174 | narrowable_convert_count = 0; | |
8175 | longcall_convert_count = longcall_count - j; | |
8176 | widenable_convert_count = desire_widen; | |
8177 | break; | |
8178 | } | |
8179 | } | |
8180 | } | |
e0001a05 | 8181 | |
43cd72b9 BW |
8182 | /* Now the number of conversions are saved. Do them. */ |
8183 | for (i = seg_idx_start; i < seg_idx_end; i++) | |
8184 | { | |
8185 | action = &ebb_table->actions[i]; | |
8186 | switch (action->action) | |
8187 | { | |
8188 | case ta_convert_longcall: | |
8189 | if (longcall_convert_count != 0) | |
8190 | { | |
8191 | action->action = ta_remove_longcall; | |
8192 | action->do_action = TRUE; | |
8193 | action->removed_bytes += 3; | |
8194 | longcall_convert_count--; | |
8195 | } | |
8196 | break; | |
8197 | case ta_narrow_insn: | |
8198 | if (narrowable_convert_count != 0) | |
8199 | { | |
8200 | action->do_action = TRUE; | |
8201 | action->removed_bytes += 1; | |
8202 | narrowable_convert_count--; | |
8203 | } | |
8204 | break; | |
8205 | case ta_widen_insn: | |
8206 | if (widenable_convert_count != 0) | |
8207 | { | |
8208 | action->do_action = TRUE; | |
8209 | action->removed_bytes -= 1; | |
8210 | widenable_convert_count--; | |
8211 | } | |
8212 | break; | |
8213 | default: | |
8214 | break; | |
e0001a05 | 8215 | } |
43cd72b9 BW |
8216 | } |
8217 | } | |
e0001a05 | 8218 | |
43cd72b9 BW |
8219 | /* Now we move on to some local opts. Try to remove each of the |
8220 | remaining longcalls. */ | |
e0001a05 | 8221 | |
43cd72b9 BW |
8222 | if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable) |
8223 | { | |
8224 | removed_bytes = 0; | |
8225 | for (i = 0; i < ebb_table->action_count; i++) | |
e0001a05 | 8226 | { |
43cd72b9 BW |
8227 | int old_removed_bytes = removed_bytes; |
8228 | proposed_action *action = &ebb_table->actions[i]; | |
8229 | ||
8230 | if (action->do_action && action->action == ta_convert_longcall) | |
8231 | { | |
8232 | bfd_boolean bad_alignment = FALSE; | |
8233 | removed_bytes += 3; | |
8234 | for (j = i + 1; j < ebb_table->action_count; j++) | |
8235 | { | |
8236 | proposed_action *new_action = &ebb_table->actions[j]; | |
8237 | bfd_vma offset = new_action->offset; | |
8238 | if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN) | |
8239 | { | |
8240 | if (!check_branch_target_aligned | |
8241 | (ebb_table->ebb.contents, | |
8242 | ebb_table->ebb.content_length, | |
8243 | offset, offset - removed_bytes)) | |
8244 | { | |
8245 | bad_alignment = TRUE; | |
8246 | break; | |
8247 | } | |
8248 | } | |
8249 | if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
8250 | { | |
8251 | if (!check_loop_aligned (ebb_table->ebb.contents, | |
8252 | ebb_table->ebb.content_length, | |
8253 | offset, | |
8254 | offset - removed_bytes)) | |
8255 | { | |
8256 | bad_alignment = TRUE; | |
8257 | break; | |
8258 | } | |
8259 | } | |
8260 | if (new_action->action == ta_narrow_insn | |
8261 | && !new_action->do_action | |
8262 | && ebb_table->ebb.sec->alignment_power == 2) | |
8263 | { | |
8264 | /* Narrow an instruction and we are done. */ | |
8265 | new_action->do_action = TRUE; | |
8266 | new_action->removed_bytes += 1; | |
8267 | bad_alignment = FALSE; | |
8268 | break; | |
8269 | } | |
8270 | if (new_action->action == ta_widen_insn | |
8271 | && new_action->do_action | |
8272 | && ebb_table->ebb.sec->alignment_power == 2) | |
8273 | { | |
8274 | /* Narrow an instruction and we are done. */ | |
8275 | new_action->do_action = FALSE; | |
8276 | new_action->removed_bytes += 1; | |
8277 | bad_alignment = FALSE; | |
8278 | break; | |
8279 | } | |
5c5d6806 BW |
8280 | if (new_action->do_action) |
8281 | removed_bytes += new_action->removed_bytes; | |
43cd72b9 BW |
8282 | } |
8283 | if (!bad_alignment) | |
8284 | { | |
8285 | action->removed_bytes += 3; | |
8286 | action->action = ta_remove_longcall; | |
8287 | action->do_action = TRUE; | |
8288 | } | |
8289 | } | |
8290 | removed_bytes = old_removed_bytes; | |
8291 | if (action->do_action) | |
8292 | removed_bytes += action->removed_bytes; | |
e0001a05 NC |
8293 | } |
8294 | } | |
8295 | ||
43cd72b9 BW |
8296 | removed_bytes = 0; |
8297 | for (i = 0; i < ebb_table->action_count; ++i) | |
8298 | { | |
8299 | proposed_action *action = &ebb_table->actions[i]; | |
8300 | if (action->do_action) | |
8301 | removed_bytes += action->removed_bytes; | |
8302 | } | |
8303 | ||
8304 | if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0 | |
8305 | && ebb->ends_unreachable) | |
8306 | { | |
8307 | proposed_action *action; | |
8308 | int br; | |
8309 | int extra_space; | |
8310 | ||
8311 | BFD_ASSERT (ebb_table->action_count != 0); | |
8312 | action = &ebb_table->actions[ebb_table->action_count - 1]; | |
8313 | BFD_ASSERT (action->action == ta_fill); | |
8314 | BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE); | |
8315 | ||
4b8e28c7 | 8316 | extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable); |
43cd72b9 BW |
8317 | br = action->removed_bytes + removed_bytes + extra_space; |
8318 | br = br & ((1 << ebb->sec->alignment_power ) - 1); | |
8319 | ||
8320 | action->removed_bytes = extra_space - br; | |
8321 | } | |
8322 | return TRUE; | |
e0001a05 NC |
8323 | } |
8324 | ||
8325 | ||
03e94c08 BW |
8326 | /* The xlate_map is a sorted array of address mappings designed to |
8327 | answer the offset_with_removed_text() query with a binary search instead | |
8328 | of a linear search through the section's action_list. */ | |
8329 | ||
8330 | typedef struct xlate_map_entry xlate_map_entry_t; | |
8331 | typedef struct xlate_map xlate_map_t; | |
8332 | ||
8333 | struct xlate_map_entry | |
8334 | { | |
0854d504 MF |
8335 | bfd_vma orig_address; |
8336 | bfd_vma new_address; | |
03e94c08 BW |
8337 | unsigned size; |
8338 | }; | |
8339 | ||
8340 | struct xlate_map | |
8341 | { | |
8342 | unsigned entry_count; | |
8343 | xlate_map_entry_t *entry; | |
8344 | }; | |
8345 | ||
8346 | ||
68ffbac6 | 8347 | static int |
03e94c08 BW |
8348 | xlate_compare (const void *a_v, const void *b_v) |
8349 | { | |
8350 | const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v; | |
8351 | const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v; | |
8352 | if (a->orig_address < b->orig_address) | |
8353 | return -1; | |
8354 | if (a->orig_address > (b->orig_address + b->size - 1)) | |
8355 | return 1; | |
8356 | return 0; | |
8357 | } | |
8358 | ||
8359 | ||
8360 | static bfd_vma | |
8361 | xlate_offset_with_removed_text (const xlate_map_t *map, | |
8362 | text_action_list *action_list, | |
8363 | bfd_vma offset) | |
8364 | { | |
03e94c08 BW |
8365 | void *r; |
8366 | xlate_map_entry_t *e; | |
0854d504 | 8367 | struct xlate_map_entry se; |
03e94c08 BW |
8368 | |
8369 | if (map == NULL) | |
8370 | return offset_with_removed_text (action_list, offset); | |
8371 | ||
8372 | if (map->entry_count == 0) | |
8373 | return offset; | |
8374 | ||
0854d504 MF |
8375 | se.orig_address = offset; |
8376 | r = bsearch (&se, map->entry, map->entry_count, | |
03e94c08 BW |
8377 | sizeof (xlate_map_entry_t), &xlate_compare); |
8378 | e = (xlate_map_entry_t *) r; | |
68ffbac6 | 8379 | |
0854d504 MF |
8380 | /* There could be a jump past the end of the section, |
8381 | allow it using the last xlate map entry to translate its address. */ | |
8382 | if (e == NULL) | |
8383 | { | |
8384 | e = map->entry + map->entry_count - 1; | |
8385 | if (xlate_compare (&se, e) <= 0) | |
8386 | e = NULL; | |
8387 | } | |
03e94c08 BW |
8388 | BFD_ASSERT (e != NULL); |
8389 | if (e == NULL) | |
8390 | return offset; | |
8391 | return e->new_address - e->orig_address + offset; | |
8392 | } | |
8393 | ||
4c2af04f MF |
8394 | typedef struct xlate_map_context_struct xlate_map_context; |
8395 | struct xlate_map_context_struct | |
8396 | { | |
8397 | xlate_map_t *map; | |
8398 | xlate_map_entry_t *current_entry; | |
8399 | int removed; | |
8400 | }; | |
8401 | ||
8402 | static int | |
8403 | xlate_map_fn (splay_tree_node node, void *p) | |
8404 | { | |
8405 | text_action *r = (text_action *)node->value; | |
8406 | xlate_map_context *ctx = p; | |
8407 | unsigned orig_size = 0; | |
8408 | ||
8409 | switch (r->action) | |
8410 | { | |
8411 | case ta_none: | |
8412 | case ta_remove_insn: | |
8413 | case ta_convert_longcall: | |
8414 | case ta_remove_literal: | |
8415 | case ta_add_literal: | |
8416 | break; | |
8417 | case ta_remove_longcall: | |
8418 | orig_size = 6; | |
8419 | break; | |
8420 | case ta_narrow_insn: | |
8421 | orig_size = 3; | |
8422 | break; | |
8423 | case ta_widen_insn: | |
8424 | orig_size = 2; | |
8425 | break; | |
8426 | case ta_fill: | |
8427 | break; | |
8428 | } | |
8429 | ctx->current_entry->size = | |
8430 | r->offset + orig_size - ctx->current_entry->orig_address; | |
8431 | if (ctx->current_entry->size != 0) | |
8432 | { | |
8433 | ctx->current_entry++; | |
8434 | ctx->map->entry_count++; | |
8435 | } | |
8436 | ctx->current_entry->orig_address = r->offset + orig_size; | |
8437 | ctx->removed += r->removed_bytes; | |
8438 | ctx->current_entry->new_address = r->offset + orig_size - ctx->removed; | |
8439 | ctx->current_entry->size = 0; | |
8440 | return 0; | |
8441 | } | |
03e94c08 BW |
8442 | |
8443 | /* Build a binary searchable offset translation map from a section's | |
8444 | action list. */ | |
8445 | ||
8446 | static xlate_map_t * | |
8447 | build_xlate_map (asection *sec, xtensa_relax_info *relax_info) | |
8448 | { | |
03e94c08 BW |
8449 | text_action_list *action_list = &relax_info->action_list; |
8450 | unsigned num_actions = 0; | |
4c2af04f | 8451 | xlate_map_context ctx; |
03e94c08 | 8452 | |
4c2af04f MF |
8453 | ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t)); |
8454 | ||
8455 | if (ctx.map == NULL) | |
03e94c08 BW |
8456 | return NULL; |
8457 | ||
8458 | num_actions = action_list_count (action_list); | |
4c2af04f | 8459 | ctx.map->entry = (xlate_map_entry_t *) |
03e94c08 | 8460 | bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1)); |
4c2af04f | 8461 | if (ctx.map->entry == NULL) |
03e94c08 | 8462 | { |
4c2af04f | 8463 | free (ctx.map); |
03e94c08 BW |
8464 | return NULL; |
8465 | } | |
4c2af04f | 8466 | ctx.map->entry_count = 0; |
68ffbac6 | 8467 | |
4c2af04f MF |
8468 | ctx.removed = 0; |
8469 | ctx.current_entry = &ctx.map->entry[0]; | |
03e94c08 | 8470 | |
4c2af04f MF |
8471 | ctx.current_entry->orig_address = 0; |
8472 | ctx.current_entry->new_address = 0; | |
8473 | ctx.current_entry->size = 0; | |
03e94c08 | 8474 | |
4c2af04f | 8475 | splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx); |
03e94c08 | 8476 | |
4c2af04f MF |
8477 | ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec) |
8478 | - ctx.current_entry->orig_address); | |
8479 | if (ctx.current_entry->size != 0) | |
8480 | ctx.map->entry_count++; | |
03e94c08 | 8481 | |
4c2af04f | 8482 | return ctx.map; |
03e94c08 BW |
8483 | } |
8484 | ||
8485 | ||
8486 | /* Free an offset translation map. */ | |
8487 | ||
68ffbac6 | 8488 | static void |
03e94c08 BW |
8489 | free_xlate_map (xlate_map_t *map) |
8490 | { | |
03e94c08 | 8491 | if (map) |
c9594989 AM |
8492 | { |
8493 | free (map->entry); | |
8494 | free (map); | |
8495 | } | |
03e94c08 BW |
8496 | } |
8497 | ||
8498 | ||
43cd72b9 BW |
8499 | /* Use check_section_ebb_pcrels_fit to make sure that all of the |
8500 | relocations in a section will fit if a proposed set of actions | |
8501 | are performed. */ | |
e0001a05 | 8502 | |
43cd72b9 | 8503 | static bfd_boolean |
7fa3d080 BW |
8504 | check_section_ebb_pcrels_fit (bfd *abfd, |
8505 | asection *sec, | |
8506 | bfd_byte *contents, | |
8507 | Elf_Internal_Rela *internal_relocs, | |
b2b326d2 | 8508 | reloc_range_list *relevant_relocs, |
cb337148 BW |
8509 | const ebb_constraint *constraint, |
8510 | const xtensa_opcode *reloc_opcodes) | |
e0001a05 | 8511 | { |
43cd72b9 | 8512 | unsigned i, j; |
b2b326d2 | 8513 | unsigned n = sec->reloc_count; |
43cd72b9 | 8514 | Elf_Internal_Rela *irel; |
03e94c08 BW |
8515 | xlate_map_t *xmap = NULL; |
8516 | bfd_boolean ok = TRUE; | |
43cd72b9 | 8517 | xtensa_relax_info *relax_info; |
b2b326d2 | 8518 | reloc_range_list_entry *entry = NULL; |
e0001a05 | 8519 | |
43cd72b9 | 8520 | relax_info = get_xtensa_relax_info (sec); |
e0001a05 | 8521 | |
03e94c08 BW |
8522 | if (relax_info && sec->reloc_count > 100) |
8523 | { | |
8524 | xmap = build_xlate_map (sec, relax_info); | |
8525 | /* NULL indicates out of memory, but the slow version | |
8526 | can still be used. */ | |
8527 | } | |
8528 | ||
b2b326d2 MF |
8529 | if (relevant_relocs && constraint->action_count) |
8530 | { | |
8531 | if (!relevant_relocs->ok) | |
8532 | { | |
8533 | ok = FALSE; | |
8534 | n = 0; | |
8535 | } | |
8536 | else | |
8537 | { | |
8538 | bfd_vma min_offset, max_offset; | |
8539 | min_offset = max_offset = constraint->actions[0].offset; | |
8540 | ||
8541 | for (i = 1; i < constraint->action_count; ++i) | |
8542 | { | |
8543 | proposed_action *action = &constraint->actions[i]; | |
8544 | bfd_vma offset = action->offset; | |
8545 | ||
8546 | if (offset < min_offset) | |
8547 | min_offset = offset; | |
8548 | if (offset > max_offset) | |
8549 | max_offset = offset; | |
8550 | } | |
8551 | reloc_range_list_update_range (relevant_relocs, min_offset, | |
8552 | max_offset); | |
8553 | n = relevant_relocs->n_list; | |
8554 | entry = &relevant_relocs->list_root; | |
8555 | } | |
8556 | } | |
8557 | else | |
8558 | { | |
8559 | relevant_relocs = NULL; | |
8560 | } | |
8561 | ||
8562 | for (i = 0; i < n; i++) | |
43cd72b9 BW |
8563 | { |
8564 | r_reloc r_rel; | |
8565 | bfd_vma orig_self_offset, orig_target_offset; | |
8566 | bfd_vma self_offset, target_offset; | |
8567 | int r_type; | |
8568 | reloc_howto_type *howto; | |
8569 | int self_removed_bytes, target_removed_bytes; | |
e0001a05 | 8570 | |
b2b326d2 MF |
8571 | if (relevant_relocs) |
8572 | { | |
8573 | entry = entry->next; | |
8574 | irel = entry->irel; | |
8575 | } | |
8576 | else | |
8577 | { | |
8578 | irel = internal_relocs + i; | |
8579 | } | |
43cd72b9 | 8580 | r_type = ELF32_R_TYPE (irel->r_info); |
e0001a05 | 8581 | |
43cd72b9 BW |
8582 | howto = &elf_howto_table[r_type]; |
8583 | /* We maintain the required invariant: PC-relative relocations | |
8584 | that fit before linking must fit after linking. Thus we only | |
8585 | need to deal with relocations to the same section that are | |
8586 | PC-relative. */ | |
1bbb5f21 BW |
8587 | if (r_type == R_XTENSA_ASM_SIMPLIFY |
8588 | || r_type == R_XTENSA_32_PCREL | |
43cd72b9 BW |
8589 | || !howto->pc_relative) |
8590 | continue; | |
e0001a05 | 8591 | |
43cd72b9 BW |
8592 | r_reloc_init (&r_rel, abfd, irel, contents, |
8593 | bfd_get_section_limit (abfd, sec)); | |
e0001a05 | 8594 | |
43cd72b9 BW |
8595 | if (r_reloc_get_section (&r_rel) != sec) |
8596 | continue; | |
e0001a05 | 8597 | |
43cd72b9 BW |
8598 | orig_self_offset = irel->r_offset; |
8599 | orig_target_offset = r_rel.target_offset; | |
e0001a05 | 8600 | |
43cd72b9 BW |
8601 | self_offset = orig_self_offset; |
8602 | target_offset = orig_target_offset; | |
8603 | ||
8604 | if (relax_info) | |
8605 | { | |
03e94c08 BW |
8606 | self_offset = |
8607 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
8608 | orig_self_offset); | |
8609 | target_offset = | |
8610 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
8611 | orig_target_offset); | |
43cd72b9 BW |
8612 | } |
8613 | ||
8614 | self_removed_bytes = 0; | |
8615 | target_removed_bytes = 0; | |
8616 | ||
8617 | for (j = 0; j < constraint->action_count; ++j) | |
8618 | { | |
8619 | proposed_action *action = &constraint->actions[j]; | |
8620 | bfd_vma offset = action->offset; | |
8621 | int removed_bytes = action->removed_bytes; | |
8622 | if (offset < orig_self_offset | |
8623 | || (offset == orig_self_offset && action->action == ta_fill | |
8624 | && action->removed_bytes < 0)) | |
8625 | self_removed_bytes += removed_bytes; | |
8626 | if (offset < orig_target_offset | |
8627 | || (offset == orig_target_offset && action->action == ta_fill | |
8628 | && action->removed_bytes < 0)) | |
8629 | target_removed_bytes += removed_bytes; | |
8630 | } | |
8631 | self_offset -= self_removed_bytes; | |
8632 | target_offset -= target_removed_bytes; | |
8633 | ||
8634 | /* Try to encode it. Get the operand and check. */ | |
8635 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
8636 | { | |
8637 | /* None of the current alternate relocs are PC-relative, | |
8638 | and only PC-relative relocs matter here. */ | |
8639 | } | |
8640 | else | |
8641 | { | |
8642 | xtensa_opcode opcode; | |
8643 | int opnum; | |
8644 | ||
b2b326d2 | 8645 | if (relevant_relocs) |
03e94c08 | 8646 | { |
b2b326d2 MF |
8647 | opcode = entry->opcode; |
8648 | opnum = entry->opnum; | |
03e94c08 | 8649 | } |
b2b326d2 | 8650 | else |
03e94c08 | 8651 | { |
b2b326d2 MF |
8652 | if (reloc_opcodes) |
8653 | opcode = reloc_opcodes[relevant_relocs ? | |
8654 | (unsigned)(entry - relevant_relocs->reloc) : i]; | |
8655 | else | |
8656 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
8657 | if (opcode == XTENSA_UNDEFINED) | |
8658 | { | |
8659 | ok = FALSE; | |
8660 | break; | |
8661 | } | |
8662 | ||
8663 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
8664 | if (opnum == XTENSA_UNDEFINED) | |
8665 | { | |
8666 | ok = FALSE; | |
8667 | break; | |
8668 | } | |
03e94c08 | 8669 | } |
43cd72b9 BW |
8670 | |
8671 | if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset)) | |
03e94c08 BW |
8672 | { |
8673 | ok = FALSE; | |
8674 | break; | |
8675 | } | |
43cd72b9 BW |
8676 | } |
8677 | } | |
8678 | ||
c9594989 | 8679 | free_xlate_map (xmap); |
03e94c08 BW |
8680 | |
8681 | return ok; | |
43cd72b9 BW |
8682 | } |
8683 | ||
8684 | ||
8685 | static bfd_boolean | |
7fa3d080 | 8686 | check_section_ebb_reduces (const ebb_constraint *constraint) |
43cd72b9 BW |
8687 | { |
8688 | int removed = 0; | |
8689 | unsigned i; | |
8690 | ||
8691 | for (i = 0; i < constraint->action_count; i++) | |
8692 | { | |
8693 | const proposed_action *action = &constraint->actions[i]; | |
8694 | if (action->do_action) | |
8695 | removed += action->removed_bytes; | |
8696 | } | |
8697 | if (removed < 0) | |
e0001a05 NC |
8698 | return FALSE; |
8699 | ||
8700 | return TRUE; | |
8701 | } | |
8702 | ||
8703 | ||
43cd72b9 | 8704 | void |
7fa3d080 BW |
8705 | text_action_add_proposed (text_action_list *l, |
8706 | const ebb_constraint *ebb_table, | |
8707 | asection *sec) | |
e0001a05 NC |
8708 | { |
8709 | unsigned i; | |
8710 | ||
43cd72b9 | 8711 | for (i = 0; i < ebb_table->action_count; i++) |
e0001a05 | 8712 | { |
43cd72b9 | 8713 | proposed_action *action = &ebb_table->actions[i]; |
e0001a05 | 8714 | |
43cd72b9 | 8715 | if (!action->do_action) |
e0001a05 | 8716 | continue; |
43cd72b9 BW |
8717 | switch (action->action) |
8718 | { | |
8719 | case ta_remove_insn: | |
8720 | case ta_remove_longcall: | |
8721 | case ta_convert_longcall: | |
8722 | case ta_narrow_insn: | |
8723 | case ta_widen_insn: | |
8724 | case ta_fill: | |
8725 | case ta_remove_literal: | |
8726 | text_action_add (l, action->action, sec, action->offset, | |
8727 | action->removed_bytes); | |
8728 | break; | |
8729 | case ta_none: | |
8730 | break; | |
8731 | default: | |
8732 | BFD_ASSERT (0); | |
8733 | break; | |
8734 | } | |
e0001a05 | 8735 | } |
43cd72b9 | 8736 | } |
e0001a05 | 8737 | |
43cd72b9 BW |
8738 | |
8739 | int | |
4b8e28c7 | 8740 | xtensa_compute_fill_extra_space (property_table_entry *entry) |
43cd72b9 BW |
8741 | { |
8742 | int fill_extra_space; | |
8743 | ||
8744 | if (!entry) | |
8745 | return 0; | |
8746 | ||
8747 | if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0) | |
8748 | return 0; | |
8749 | ||
8750 | fill_extra_space = entry->size; | |
8751 | if ((entry->flags & XTENSA_PROP_ALIGN) != 0) | |
8752 | { | |
8753 | /* Fill bytes for alignment: | |
8754 | (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */ | |
8755 | int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags); | |
8756 | int nsm = (1 << pow) - 1; | |
8757 | bfd_vma addr = entry->address + entry->size; | |
8758 | bfd_vma align_fill = nsm - ((addr + nsm) & nsm); | |
8759 | fill_extra_space += align_fill; | |
8760 | } | |
8761 | return fill_extra_space; | |
e0001a05 NC |
8762 | } |
8763 | ||
43cd72b9 | 8764 | \f |
e0001a05 NC |
8765 | /* First relaxation pass. */ |
8766 | ||
43cd72b9 BW |
8767 | /* If the section contains relaxable literals, check each literal to |
8768 | see if it has the same value as another literal that has already | |
8769 | been seen, either in the current section or a previous one. If so, | |
8770 | add an entry to the per-section list of removed literals. The | |
e0001a05 NC |
8771 | actual changes are deferred until the next pass. */ |
8772 | ||
68ffbac6 | 8773 | static bfd_boolean |
7fa3d080 BW |
8774 | compute_removed_literals (bfd *abfd, |
8775 | asection *sec, | |
8776 | struct bfd_link_info *link_info, | |
8777 | value_map_hash_table *values) | |
e0001a05 NC |
8778 | { |
8779 | xtensa_relax_info *relax_info; | |
8780 | bfd_byte *contents; | |
8781 | Elf_Internal_Rela *internal_relocs; | |
43cd72b9 | 8782 | source_reloc *src_relocs, *rel; |
e0001a05 | 8783 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
8784 | property_table_entry *prop_table = NULL; |
8785 | int ptblsize; | |
8786 | int i, prev_i; | |
8787 | bfd_boolean last_loc_is_prev = FALSE; | |
8788 | bfd_vma last_target_offset = 0; | |
8789 | section_cache_t target_sec_cache; | |
8790 | bfd_size_type sec_size; | |
8791 | ||
8792 | init_section_cache (&target_sec_cache); | |
e0001a05 NC |
8793 | |
8794 | /* Do nothing if it is not a relaxable literal section. */ | |
8795 | relax_info = get_xtensa_relax_info (sec); | |
8796 | BFD_ASSERT (relax_info); | |
e0001a05 NC |
8797 | if (!relax_info->is_relaxable_literal_section) |
8798 | return ok; | |
8799 | ||
68ffbac6 | 8800 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
e0001a05 NC |
8801 | link_info->keep_memory); |
8802 | ||
43cd72b9 | 8803 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 | 8804 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 8805 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
8806 | { |
8807 | ok = FALSE; | |
8808 | goto error_return; | |
8809 | } | |
8810 | ||
8811 | /* Sort the source_relocs by target offset. */ | |
8812 | src_relocs = relax_info->src_relocs; | |
8813 | qsort (src_relocs, relax_info->src_count, | |
8814 | sizeof (source_reloc), source_reloc_compare); | |
43cd72b9 BW |
8815 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
8816 | internal_reloc_compare); | |
e0001a05 | 8817 | |
43cd72b9 BW |
8818 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
8819 | XTENSA_PROP_SEC_NAME, FALSE); | |
8820 | if (ptblsize < 0) | |
8821 | { | |
8822 | ok = FALSE; | |
8823 | goto error_return; | |
8824 | } | |
8825 | ||
8826 | prev_i = -1; | |
e0001a05 NC |
8827 | for (i = 0; i < relax_info->src_count; i++) |
8828 | { | |
e0001a05 | 8829 | Elf_Internal_Rela *irel = NULL; |
e0001a05 NC |
8830 | |
8831 | rel = &src_relocs[i]; | |
43cd72b9 BW |
8832 | if (get_l32r_opcode () != rel->opcode) |
8833 | continue; | |
e0001a05 NC |
8834 | irel = get_irel_at_offset (sec, internal_relocs, |
8835 | rel->r_rel.target_offset); | |
8836 | ||
43cd72b9 BW |
8837 | /* If the relocation on this is not a simple R_XTENSA_32 or |
8838 | R_XTENSA_PLT then do not consider it. This may happen when | |
8839 | the difference of two symbols is used in a literal. */ | |
8840 | if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32 | |
8841 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT)) | |
8842 | continue; | |
8843 | ||
e0001a05 NC |
8844 | /* If the target_offset for this relocation is the same as the |
8845 | previous relocation, then we've already considered whether the | |
8846 | literal can be coalesced. Skip to the next one.... */ | |
43cd72b9 BW |
8847 | if (i != 0 && prev_i != -1 |
8848 | && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset) | |
e0001a05 | 8849 | continue; |
43cd72b9 BW |
8850 | prev_i = i; |
8851 | ||
68ffbac6 | 8852 | if (last_loc_is_prev && |
43cd72b9 BW |
8853 | last_target_offset + 4 != rel->r_rel.target_offset) |
8854 | last_loc_is_prev = FALSE; | |
e0001a05 NC |
8855 | |
8856 | /* Check if the relocation was from an L32R that is being removed | |
8857 | because a CALLX was converted to a direct CALL, and check if | |
8858 | there are no other relocations to the literal. */ | |
68ffbac6 | 8859 | if (is_removable_literal (rel, i, src_relocs, relax_info->src_count, |
99ded152 | 8860 | sec, prop_table, ptblsize)) |
e0001a05 | 8861 | { |
43cd72b9 BW |
8862 | if (!remove_dead_literal (abfd, sec, link_info, internal_relocs, |
8863 | irel, rel, prop_table, ptblsize)) | |
e0001a05 | 8864 | { |
43cd72b9 BW |
8865 | ok = FALSE; |
8866 | goto error_return; | |
e0001a05 | 8867 | } |
43cd72b9 | 8868 | last_target_offset = rel->r_rel.target_offset; |
e0001a05 NC |
8869 | continue; |
8870 | } | |
8871 | ||
43cd72b9 | 8872 | if (!identify_literal_placement (abfd, sec, contents, link_info, |
68ffbac6 L |
8873 | values, |
8874 | &last_loc_is_prev, irel, | |
43cd72b9 BW |
8875 | relax_info->src_count - i, rel, |
8876 | prop_table, ptblsize, | |
8877 | &target_sec_cache, rel->is_abs_literal)) | |
e0001a05 | 8878 | { |
43cd72b9 BW |
8879 | ok = FALSE; |
8880 | goto error_return; | |
8881 | } | |
8882 | last_target_offset = rel->r_rel.target_offset; | |
8883 | } | |
e0001a05 | 8884 | |
43cd72b9 BW |
8885 | #if DEBUG |
8886 | print_removed_literals (stderr, &relax_info->removed_list); | |
8887 | print_action_list (stderr, &relax_info->action_list); | |
8888 | #endif /* DEBUG */ | |
8889 | ||
dc1e8a47 | 8890 | error_return: |
c9594989 | 8891 | free (prop_table); |
65e911f9 | 8892 | free_section_cache (&target_sec_cache); |
43cd72b9 BW |
8893 | |
8894 | release_contents (sec, contents); | |
8895 | release_internal_relocs (sec, internal_relocs); | |
8896 | return ok; | |
8897 | } | |
8898 | ||
8899 | ||
8900 | static Elf_Internal_Rela * | |
7fa3d080 BW |
8901 | get_irel_at_offset (asection *sec, |
8902 | Elf_Internal_Rela *internal_relocs, | |
8903 | bfd_vma offset) | |
43cd72b9 BW |
8904 | { |
8905 | unsigned i; | |
8906 | Elf_Internal_Rela *irel; | |
8907 | unsigned r_type; | |
8908 | Elf_Internal_Rela key; | |
8909 | ||
68ffbac6 | 8910 | if (!internal_relocs) |
43cd72b9 BW |
8911 | return NULL; |
8912 | ||
8913 | key.r_offset = offset; | |
8914 | irel = bsearch (&key, internal_relocs, sec->reloc_count, | |
8915 | sizeof (Elf_Internal_Rela), internal_reloc_matches); | |
8916 | if (!irel) | |
8917 | return NULL; | |
8918 | ||
8919 | /* bsearch does not guarantee which will be returned if there are | |
8920 | multiple matches. We need the first that is not an alignment. */ | |
8921 | i = irel - internal_relocs; | |
8922 | while (i > 0) | |
8923 | { | |
8924 | if (internal_relocs[i-1].r_offset != offset) | |
8925 | break; | |
8926 | i--; | |
8927 | } | |
8928 | for ( ; i < sec->reloc_count; i++) | |
8929 | { | |
8930 | irel = &internal_relocs[i]; | |
8931 | r_type = ELF32_R_TYPE (irel->r_info); | |
8932 | if (irel->r_offset == offset && r_type != R_XTENSA_NONE) | |
8933 | return irel; | |
8934 | } | |
8935 | ||
8936 | return NULL; | |
8937 | } | |
8938 | ||
8939 | ||
8940 | bfd_boolean | |
7fa3d080 BW |
8941 | is_removable_literal (const source_reloc *rel, |
8942 | int i, | |
8943 | const source_reloc *src_relocs, | |
99ded152 BW |
8944 | int src_count, |
8945 | asection *sec, | |
8946 | property_table_entry *prop_table, | |
8947 | int ptblsize) | |
43cd72b9 BW |
8948 | { |
8949 | const source_reloc *curr_rel; | |
99ded152 BW |
8950 | property_table_entry *entry; |
8951 | ||
43cd72b9 BW |
8952 | if (!rel->is_null) |
8953 | return FALSE; | |
68ffbac6 L |
8954 | |
8955 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
99ded152 BW |
8956 | sec->vma + rel->r_rel.target_offset); |
8957 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) | |
8958 | return FALSE; | |
8959 | ||
43cd72b9 BW |
8960 | for (++i; i < src_count; ++i) |
8961 | { | |
8962 | curr_rel = &src_relocs[i]; | |
8963 | /* If all others have the same target offset.... */ | |
8964 | if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset) | |
8965 | return TRUE; | |
8966 | ||
8967 | if (!curr_rel->is_null | |
8968 | && !xtensa_is_property_section (curr_rel->source_sec) | |
8969 | && !(curr_rel->source_sec->flags & SEC_DEBUGGING)) | |
8970 | return FALSE; | |
8971 | } | |
8972 | return TRUE; | |
8973 | } | |
8974 | ||
8975 | ||
68ffbac6 | 8976 | bfd_boolean |
7fa3d080 BW |
8977 | remove_dead_literal (bfd *abfd, |
8978 | asection *sec, | |
8979 | struct bfd_link_info *link_info, | |
8980 | Elf_Internal_Rela *internal_relocs, | |
8981 | Elf_Internal_Rela *irel, | |
8982 | source_reloc *rel, | |
8983 | property_table_entry *prop_table, | |
8984 | int ptblsize) | |
43cd72b9 BW |
8985 | { |
8986 | property_table_entry *entry; | |
8987 | xtensa_relax_info *relax_info; | |
8988 | ||
8989 | relax_info = get_xtensa_relax_info (sec); | |
8990 | if (!relax_info) | |
8991 | return FALSE; | |
8992 | ||
8993 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8994 | sec->vma + rel->r_rel.target_offset); | |
8995 | ||
8996 | /* Mark the unused literal so that it will be removed. */ | |
8997 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); | |
8998 | ||
8999 | text_action_add (&relax_info->action_list, | |
9000 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
9001 | ||
9002 | /* If the section is 4-byte aligned, do not add fill. */ | |
68ffbac6 | 9003 | if (sec->alignment_power > 2) |
43cd72b9 BW |
9004 | { |
9005 | int fill_extra_space; | |
9006 | bfd_vma entry_sec_offset; | |
9007 | text_action *fa; | |
9008 | property_table_entry *the_add_entry; | |
9009 | int removed_diff; | |
9010 | ||
9011 | if (entry) | |
9012 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
9013 | else | |
9014 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
9015 | ||
9016 | /* If the literal range is at the end of the section, | |
9017 | do not add fill. */ | |
9018 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
9019 | entry_sec_offset); | |
4b8e28c7 | 9020 | fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry); |
43cd72b9 BW |
9021 | |
9022 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
9023 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
9024 | -4, fill_extra_space); | |
9025 | if (fa) | |
9026 | adjust_fill_action (fa, removed_diff); | |
9027 | else | |
9028 | text_action_add (&relax_info->action_list, | |
9029 | ta_fill, sec, entry_sec_offset, removed_diff); | |
9030 | } | |
9031 | ||
9032 | /* Zero out the relocation on this literal location. */ | |
9033 | if (irel) | |
9034 | { | |
9035 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
9036 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
9037 | ||
9038 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
9039 | pin_internal_relocs (sec, internal_relocs); | |
9040 | } | |
9041 | ||
9042 | /* Do not modify "last_loc_is_prev". */ | |
9043 | return TRUE; | |
9044 | } | |
9045 | ||
9046 | ||
68ffbac6 | 9047 | bfd_boolean |
7fa3d080 BW |
9048 | identify_literal_placement (bfd *abfd, |
9049 | asection *sec, | |
9050 | bfd_byte *contents, | |
9051 | struct bfd_link_info *link_info, | |
9052 | value_map_hash_table *values, | |
9053 | bfd_boolean *last_loc_is_prev_p, | |
9054 | Elf_Internal_Rela *irel, | |
9055 | int remaining_src_rels, | |
9056 | source_reloc *rel, | |
9057 | property_table_entry *prop_table, | |
9058 | int ptblsize, | |
9059 | section_cache_t *target_sec_cache, | |
9060 | bfd_boolean is_abs_literal) | |
43cd72b9 BW |
9061 | { |
9062 | literal_value val; | |
9063 | value_map *val_map; | |
9064 | xtensa_relax_info *relax_info; | |
9065 | bfd_boolean literal_placed = FALSE; | |
9066 | r_reloc r_rel; | |
9067 | unsigned long value; | |
9068 | bfd_boolean final_static_link; | |
9069 | bfd_size_type sec_size; | |
9070 | ||
9071 | relax_info = get_xtensa_relax_info (sec); | |
9072 | if (!relax_info) | |
9073 | return FALSE; | |
9074 | ||
9075 | sec_size = bfd_get_section_limit (abfd, sec); | |
9076 | ||
9077 | final_static_link = | |
0e1862bb | 9078 | (!bfd_link_relocatable (link_info) |
43cd72b9 BW |
9079 | && !elf_hash_table (link_info)->dynamic_sections_created); |
9080 | ||
9081 | /* The placement algorithm first checks to see if the literal is | |
9082 | already in the value map. If so and the value map is reachable | |
9083 | from all uses, then the literal is moved to that location. If | |
9084 | not, then we identify the last location where a fresh literal was | |
9085 | placed. If the literal can be safely moved there, then we do so. | |
9086 | If not, then we assume that the literal is not to move and leave | |
9087 | the literal where it is, marking it as the last literal | |
9088 | location. */ | |
9089 | ||
9090 | /* Find the literal value. */ | |
9091 | value = 0; | |
9092 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
9093 | if (!irel) | |
9094 | { | |
9095 | BFD_ASSERT (rel->r_rel.target_offset < sec_size); | |
9096 | value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); | |
9097 | } | |
9098 | init_literal_value (&val, &r_rel, value, is_abs_literal); | |
9099 | ||
9100 | /* Check if we've seen another literal with the same value that | |
9101 | is in the same output section. */ | |
9102 | val_map = value_map_get_cached_value (values, &val, final_static_link); | |
9103 | ||
9104 | if (val_map | |
9105 | && (r_reloc_get_section (&val_map->loc)->output_section | |
9106 | == sec->output_section) | |
9107 | && relocations_reach (rel, remaining_src_rels, &val_map->loc) | |
9108 | && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map)) | |
9109 | { | |
9110 | /* No change to last_loc_is_prev. */ | |
9111 | literal_placed = TRUE; | |
9112 | } | |
9113 | ||
9114 | /* For relocatable links, do not try to move literals. To do it | |
9115 | correctly might increase the number of relocations in an input | |
9116 | section making the default relocatable linking fail. */ | |
0e1862bb | 9117 | if (!bfd_link_relocatable (link_info) && !literal_placed |
43cd72b9 BW |
9118 | && values->has_last_loc && !(*last_loc_is_prev_p)) |
9119 | { | |
9120 | asection *target_sec = r_reloc_get_section (&values->last_loc); | |
9121 | if (target_sec && target_sec->output_section == sec->output_section) | |
9122 | { | |
9123 | /* Increment the virtual offset. */ | |
9124 | r_reloc try_loc = values->last_loc; | |
9125 | try_loc.virtual_offset += 4; | |
9126 | ||
9127 | /* There is a last loc that was in the same output section. */ | |
9128 | if (relocations_reach (rel, remaining_src_rels, &try_loc) | |
9129 | && move_shared_literal (sec, link_info, rel, | |
68ffbac6 | 9130 | prop_table, ptblsize, |
43cd72b9 | 9131 | &try_loc, &val, target_sec_cache)) |
e0001a05 | 9132 | { |
43cd72b9 BW |
9133 | values->last_loc.virtual_offset += 4; |
9134 | literal_placed = TRUE; | |
9135 | if (!val_map) | |
9136 | val_map = add_value_map (values, &val, &try_loc, | |
9137 | final_static_link); | |
9138 | else | |
9139 | val_map->loc = try_loc; | |
e0001a05 NC |
9140 | } |
9141 | } | |
43cd72b9 BW |
9142 | } |
9143 | ||
9144 | if (!literal_placed) | |
9145 | { | |
9146 | /* Nothing worked, leave the literal alone but update the last loc. */ | |
9147 | values->has_last_loc = TRUE; | |
9148 | values->last_loc = rel->r_rel; | |
9149 | if (!val_map) | |
9150 | val_map = add_value_map (values, &val, &rel->r_rel, final_static_link); | |
e0001a05 | 9151 | else |
43cd72b9 BW |
9152 | val_map->loc = rel->r_rel; |
9153 | *last_loc_is_prev_p = TRUE; | |
e0001a05 NC |
9154 | } |
9155 | ||
43cd72b9 | 9156 | return TRUE; |
e0001a05 NC |
9157 | } |
9158 | ||
9159 | ||
9160 | /* Check if the original relocations (presumably on L32R instructions) | |
9161 | identified by reloc[0..N] can be changed to reference the literal | |
9162 | identified by r_rel. If r_rel is out of range for any of the | |
9163 | original relocations, then we don't want to coalesce the original | |
9164 | literal with the one at r_rel. We only check reloc[0..N], where the | |
9165 | offsets are all the same as for reloc[0] (i.e., they're all | |
9166 | referencing the same literal) and where N is also bounded by the | |
9167 | number of remaining entries in the "reloc" array. The "reloc" array | |
9168 | is sorted by target offset so we know all the entries for the same | |
9169 | literal will be contiguous. */ | |
9170 | ||
9171 | static bfd_boolean | |
7fa3d080 BW |
9172 | relocations_reach (source_reloc *reloc, |
9173 | int remaining_relocs, | |
9174 | const r_reloc *r_rel) | |
e0001a05 NC |
9175 | { |
9176 | bfd_vma from_offset, source_address, dest_address; | |
9177 | asection *sec; | |
9178 | int i; | |
9179 | ||
9180 | if (!r_reloc_is_defined (r_rel)) | |
9181 | return FALSE; | |
9182 | ||
9183 | sec = r_reloc_get_section (r_rel); | |
9184 | from_offset = reloc[0].r_rel.target_offset; | |
9185 | ||
9186 | for (i = 0; i < remaining_relocs; i++) | |
9187 | { | |
9188 | if (reloc[i].r_rel.target_offset != from_offset) | |
9189 | break; | |
9190 | ||
9191 | /* Ignore relocations that have been removed. */ | |
9192 | if (reloc[i].is_null) | |
9193 | continue; | |
9194 | ||
9195 | /* The original and new output section for these must be the same | |
07d6d2b8 | 9196 | in order to coalesce. */ |
e0001a05 NC |
9197 | if (r_reloc_get_section (&reloc[i].r_rel)->output_section |
9198 | != sec->output_section) | |
9199 | return FALSE; | |
9200 | ||
d638e0ac BW |
9201 | /* Absolute literals in the same output section can always be |
9202 | combined. */ | |
9203 | if (reloc[i].is_abs_literal) | |
9204 | continue; | |
9205 | ||
43cd72b9 BW |
9206 | /* A literal with no PC-relative relocations can be moved anywhere. */ |
9207 | if (reloc[i].opnd != -1) | |
e0001a05 NC |
9208 | { |
9209 | /* Otherwise, check to see that it fits. */ | |
9210 | source_address = (reloc[i].source_sec->output_section->vma | |
9211 | + reloc[i].source_sec->output_offset | |
9212 | + reloc[i].r_rel.rela.r_offset); | |
9213 | dest_address = (sec->output_section->vma | |
9214 | + sec->output_offset | |
9215 | + r_rel->target_offset); | |
9216 | ||
43cd72b9 BW |
9217 | if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd, |
9218 | source_address, dest_address)) | |
e0001a05 NC |
9219 | return FALSE; |
9220 | } | |
9221 | } | |
9222 | ||
9223 | return TRUE; | |
9224 | } | |
9225 | ||
9226 | ||
43cd72b9 BW |
9227 | /* Move a literal to another literal location because it is |
9228 | the same as the other literal value. */ | |
e0001a05 | 9229 | |
68ffbac6 | 9230 | static bfd_boolean |
7fa3d080 BW |
9231 | coalesce_shared_literal (asection *sec, |
9232 | source_reloc *rel, | |
9233 | property_table_entry *prop_table, | |
9234 | int ptblsize, | |
9235 | value_map *val_map) | |
e0001a05 | 9236 | { |
43cd72b9 BW |
9237 | property_table_entry *entry; |
9238 | text_action *fa; | |
9239 | property_table_entry *the_add_entry; | |
9240 | int removed_diff; | |
9241 | xtensa_relax_info *relax_info; | |
9242 | ||
9243 | relax_info = get_xtensa_relax_info (sec); | |
9244 | if (!relax_info) | |
9245 | return FALSE; | |
9246 | ||
9247 | entry = elf_xtensa_find_property_entry | |
9248 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
99ded152 | 9249 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) |
43cd72b9 BW |
9250 | return TRUE; |
9251 | ||
9252 | /* Mark that the literal will be coalesced. */ | |
9253 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc); | |
9254 | ||
9255 | text_action_add (&relax_info->action_list, | |
9256 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
9257 | ||
9258 | /* If the section is 4-byte aligned, do not add fill. */ | |
68ffbac6 | 9259 | if (sec->alignment_power > 2) |
e0001a05 | 9260 | { |
43cd72b9 BW |
9261 | int fill_extra_space; |
9262 | bfd_vma entry_sec_offset; | |
9263 | ||
9264 | if (entry) | |
9265 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
9266 | else | |
9267 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
9268 | ||
9269 | /* If the literal range is at the end of the section, | |
9270 | do not add fill. */ | |
9271 | fill_extra_space = 0; | |
9272 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
9273 | entry_sec_offset); | |
9274 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
9275 | fill_extra_space = the_add_entry->size; | |
9276 | ||
9277 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
9278 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
9279 | -4, fill_extra_space); | |
9280 | if (fa) | |
9281 | adjust_fill_action (fa, removed_diff); | |
9282 | else | |
9283 | text_action_add (&relax_info->action_list, | |
9284 | ta_fill, sec, entry_sec_offset, removed_diff); | |
e0001a05 | 9285 | } |
43cd72b9 BW |
9286 | |
9287 | return TRUE; | |
9288 | } | |
9289 | ||
9290 | ||
9291 | /* Move a literal to another location. This may actually increase the | |
9292 | total amount of space used because of alignments so we need to do | |
9293 | this carefully. Also, it may make a branch go out of range. */ | |
9294 | ||
68ffbac6 | 9295 | static bfd_boolean |
7fa3d080 BW |
9296 | move_shared_literal (asection *sec, |
9297 | struct bfd_link_info *link_info, | |
9298 | source_reloc *rel, | |
9299 | property_table_entry *prop_table, | |
9300 | int ptblsize, | |
9301 | const r_reloc *target_loc, | |
9302 | const literal_value *lit_value, | |
9303 | section_cache_t *target_sec_cache) | |
43cd72b9 BW |
9304 | { |
9305 | property_table_entry *the_add_entry, *src_entry, *target_entry = NULL; | |
9306 | text_action *fa, *target_fa; | |
9307 | int removed_diff; | |
9308 | xtensa_relax_info *relax_info, *target_relax_info; | |
9309 | asection *target_sec; | |
9310 | ebb_t *ebb; | |
9311 | ebb_constraint ebb_table; | |
9312 | bfd_boolean relocs_fit; | |
9313 | ||
9314 | /* If this routine always returns FALSE, the literals that cannot be | |
9315 | coalesced will not be moved. */ | |
9316 | if (elf32xtensa_no_literal_movement) | |
9317 | return FALSE; | |
9318 | ||
9319 | relax_info = get_xtensa_relax_info (sec); | |
9320 | if (!relax_info) | |
9321 | return FALSE; | |
9322 | ||
9323 | target_sec = r_reloc_get_section (target_loc); | |
9324 | target_relax_info = get_xtensa_relax_info (target_sec); | |
9325 | ||
9326 | /* Literals to undefined sections may not be moved because they | |
9327 | must report an error. */ | |
9328 | if (bfd_is_und_section (target_sec)) | |
9329 | return FALSE; | |
9330 | ||
9331 | src_entry = elf_xtensa_find_property_entry | |
9332 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
9333 | ||
9334 | if (!section_cache_section (target_sec_cache, target_sec, link_info)) | |
9335 | return FALSE; | |
9336 | ||
9337 | target_entry = elf_xtensa_find_property_entry | |
68ffbac6 | 9338 | (target_sec_cache->ptbl, target_sec_cache->pte_count, |
43cd72b9 BW |
9339 | target_sec->vma + target_loc->target_offset); |
9340 | ||
9341 | if (!target_entry) | |
9342 | return FALSE; | |
9343 | ||
9344 | /* Make sure that we have not broken any branches. */ | |
9345 | relocs_fit = FALSE; | |
9346 | ||
9347 | init_ebb_constraint (&ebb_table); | |
9348 | ebb = &ebb_table.ebb; | |
68ffbac6 | 9349 | init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents, |
43cd72b9 BW |
9350 | target_sec_cache->content_length, |
9351 | target_sec_cache->ptbl, target_sec_cache->pte_count, | |
9352 | target_sec_cache->relocs, target_sec_cache->reloc_count); | |
9353 | ||
9354 | /* Propose to add 4 bytes + worst-case alignment size increase to | |
9355 | destination. */ | |
9356 | ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0, | |
9357 | ta_fill, target_loc->target_offset, | |
9358 | -4 - (1 << target_sec->alignment_power), TRUE); | |
9359 | ||
9360 | /* Check all of the PC-relative relocations to make sure they still fit. */ | |
68ffbac6 | 9361 | relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec, |
43cd72b9 | 9362 | target_sec_cache->contents, |
b2b326d2 | 9363 | target_sec_cache->relocs, NULL, |
cb337148 | 9364 | &ebb_table, NULL); |
43cd72b9 | 9365 | |
68ffbac6 | 9366 | if (!relocs_fit) |
43cd72b9 BW |
9367 | return FALSE; |
9368 | ||
9369 | text_action_add_literal (&target_relax_info->action_list, | |
9370 | ta_add_literal, target_loc, lit_value, -4); | |
9371 | ||
68ffbac6 | 9372 | if (target_sec->alignment_power > 2 && target_entry != src_entry) |
43cd72b9 BW |
9373 | { |
9374 | /* May need to add or remove some fill to maintain alignment. */ | |
9375 | int fill_extra_space; | |
9376 | bfd_vma entry_sec_offset; | |
9377 | ||
68ffbac6 | 9378 | entry_sec_offset = |
43cd72b9 BW |
9379 | target_entry->address - target_sec->vma + target_entry->size; |
9380 | ||
9381 | /* If the literal range is at the end of the section, | |
9382 | do not add fill. */ | |
9383 | fill_extra_space = 0; | |
9384 | the_add_entry = | |
9385 | elf_xtensa_find_property_entry (target_sec_cache->ptbl, | |
9386 | target_sec_cache->pte_count, | |
9387 | entry_sec_offset); | |
9388 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
9389 | fill_extra_space = the_add_entry->size; | |
9390 | ||
9391 | target_fa = find_fill_action (&target_relax_info->action_list, | |
9392 | target_sec, entry_sec_offset); | |
9393 | removed_diff = compute_removed_action_diff (target_fa, target_sec, | |
9394 | entry_sec_offset, 4, | |
9395 | fill_extra_space); | |
9396 | if (target_fa) | |
9397 | adjust_fill_action (target_fa, removed_diff); | |
9398 | else | |
9399 | text_action_add (&target_relax_info->action_list, | |
9400 | ta_fill, target_sec, entry_sec_offset, removed_diff); | |
9401 | } | |
9402 | ||
9403 | /* Mark that the literal will be moved to the new location. */ | |
9404 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc); | |
9405 | ||
9406 | /* Remove the literal. */ | |
9407 | text_action_add (&relax_info->action_list, | |
9408 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
9409 | ||
9410 | /* If the section is 4-byte aligned, do not add fill. */ | |
68ffbac6 | 9411 | if (sec->alignment_power > 2 && target_entry != src_entry) |
43cd72b9 BW |
9412 | { |
9413 | int fill_extra_space; | |
9414 | bfd_vma entry_sec_offset; | |
9415 | ||
9416 | if (src_entry) | |
9417 | entry_sec_offset = src_entry->address - sec->vma + src_entry->size; | |
9418 | else | |
9419 | entry_sec_offset = rel->r_rel.target_offset+4; | |
9420 | ||
9421 | /* If the literal range is at the end of the section, | |
9422 | do not add fill. */ | |
9423 | fill_extra_space = 0; | |
9424 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
9425 | entry_sec_offset); | |
9426 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
9427 | fill_extra_space = the_add_entry->size; | |
9428 | ||
9429 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
9430 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
9431 | -4, fill_extra_space); | |
9432 | if (fa) | |
9433 | adjust_fill_action (fa, removed_diff); | |
9434 | else | |
9435 | text_action_add (&relax_info->action_list, | |
9436 | ta_fill, sec, entry_sec_offset, removed_diff); | |
9437 | } | |
9438 | ||
9439 | return TRUE; | |
e0001a05 NC |
9440 | } |
9441 | ||
9442 | \f | |
9443 | /* Second relaxation pass. */ | |
9444 | ||
4c2af04f MF |
9445 | static int |
9446 | action_remove_bytes_fn (splay_tree_node node, void *p) | |
9447 | { | |
9448 | bfd_size_type *final_size = p; | |
9449 | text_action *action = (text_action *)node->value; | |
9450 | ||
9451 | *final_size -= action->removed_bytes; | |
9452 | return 0; | |
9453 | } | |
9454 | ||
e0001a05 NC |
9455 | /* Modify all of the relocations to point to the right spot, and if this |
9456 | is a relaxable section, delete the unwanted literals and fix the | |
43cd72b9 | 9457 | section size. */ |
e0001a05 | 9458 | |
43cd72b9 | 9459 | bfd_boolean |
7fa3d080 | 9460 | relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info) |
e0001a05 NC |
9461 | { |
9462 | Elf_Internal_Rela *internal_relocs; | |
9463 | xtensa_relax_info *relax_info; | |
9464 | bfd_byte *contents; | |
9465 | bfd_boolean ok = TRUE; | |
9466 | unsigned i; | |
43cd72b9 BW |
9467 | bfd_boolean rv = FALSE; |
9468 | bfd_boolean virtual_action; | |
9469 | bfd_size_type sec_size; | |
e0001a05 | 9470 | |
43cd72b9 | 9471 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
9472 | relax_info = get_xtensa_relax_info (sec); |
9473 | BFD_ASSERT (relax_info); | |
9474 | ||
43cd72b9 BW |
9475 | /* First translate any of the fixes that have been added already. */ |
9476 | translate_section_fixes (sec); | |
9477 | ||
e0001a05 NC |
9478 | /* Handle property sections (e.g., literal tables) specially. */ |
9479 | if (xtensa_is_property_section (sec)) | |
9480 | { | |
9481 | BFD_ASSERT (!relax_info->is_relaxable_literal_section); | |
9482 | return relax_property_section (abfd, sec, link_info); | |
9483 | } | |
9484 | ||
68ffbac6 | 9485 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
43cd72b9 | 9486 | link_info->keep_memory); |
4c2af04f | 9487 | if (!internal_relocs && !action_list_count (&relax_info->action_list)) |
7aa09196 SA |
9488 | return TRUE; |
9489 | ||
43cd72b9 BW |
9490 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
9491 | if (contents == NULL && sec_size != 0) | |
9492 | { | |
9493 | ok = FALSE; | |
9494 | goto error_return; | |
9495 | } | |
9496 | ||
9497 | if (internal_relocs) | |
9498 | { | |
9499 | for (i = 0; i < sec->reloc_count; i++) | |
9500 | { | |
9501 | Elf_Internal_Rela *irel; | |
9502 | xtensa_relax_info *target_relax_info; | |
9503 | bfd_vma source_offset, old_source_offset; | |
9504 | r_reloc r_rel; | |
9505 | unsigned r_type; | |
9506 | asection *target_sec; | |
9507 | ||
9508 | /* Locally change the source address. | |
9509 | Translate the target to the new target address. | |
9510 | If it points to this section and has been removed, | |
9511 | NULLify it. | |
9512 | Write it back. */ | |
9513 | ||
9514 | irel = &internal_relocs[i]; | |
9515 | source_offset = irel->r_offset; | |
9516 | old_source_offset = source_offset; | |
9517 | ||
9518 | r_type = ELF32_R_TYPE (irel->r_info); | |
9519 | r_reloc_init (&r_rel, abfd, irel, contents, | |
9520 | bfd_get_section_limit (abfd, sec)); | |
9521 | ||
9522 | /* If this section could have changed then we may need to | |
9523 | change the relocation's offset. */ | |
9524 | ||
9525 | if (relax_info->is_relaxable_literal_section | |
9526 | || relax_info->is_relaxable_asm_section) | |
9527 | { | |
9b7f5d20 BW |
9528 | pin_internal_relocs (sec, internal_relocs); |
9529 | ||
43cd72b9 BW |
9530 | if (r_type != R_XTENSA_NONE |
9531 | && find_removed_literal (&relax_info->removed_list, | |
9532 | irel->r_offset)) | |
9533 | { | |
9534 | /* Remove this relocation. */ | |
9535 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
9536 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
9537 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
071aa5c9 | 9538 | irel->r_offset = offset_with_removed_text_map |
43cd72b9 | 9539 | (&relax_info->action_list, irel->r_offset); |
43cd72b9 BW |
9540 | continue; |
9541 | } | |
9542 | ||
9543 | if (r_type == R_XTENSA_ASM_SIMPLIFY) | |
9544 | { | |
9545 | text_action *action = | |
9546 | find_insn_action (&relax_info->action_list, | |
9547 | irel->r_offset); | |
9548 | if (action && (action->action == ta_convert_longcall | |
9549 | || action->action == ta_remove_longcall)) | |
9550 | { | |
9551 | bfd_reloc_status_type retval; | |
9552 | char *error_message = NULL; | |
9553 | ||
9554 | retval = contract_asm_expansion (contents, sec_size, | |
9555 | irel, &error_message); | |
9556 | if (retval != bfd_reloc_ok) | |
9557 | { | |
9558 | (*link_info->callbacks->reloc_dangerous) | |
9559 | (link_info, error_message, abfd, sec, | |
9560 | irel->r_offset); | |
9561 | goto error_return; | |
9562 | } | |
9563 | /* Update the action so that the code that moves | |
9564 | the contents will do the right thing. */ | |
4c2af04f | 9565 | /* ta_remove_longcall and ta_remove_insn actions are |
07d6d2b8 | 9566 | grouped together in the tree as well as |
4c2af04f MF |
9567 | ta_convert_longcall and ta_none, so that changes below |
9568 | can be done w/o removing and reinserting action into | |
9569 | the tree. */ | |
9570 | ||
43cd72b9 BW |
9571 | if (action->action == ta_remove_longcall) |
9572 | action->action = ta_remove_insn; | |
9573 | else | |
9574 | action->action = ta_none; | |
9575 | /* Refresh the info in the r_rel. */ | |
9576 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
9577 | r_type = ELF32_R_TYPE (irel->r_info); | |
9578 | } | |
9579 | } | |
9580 | ||
071aa5c9 | 9581 | source_offset = offset_with_removed_text_map |
43cd72b9 BW |
9582 | (&relax_info->action_list, irel->r_offset); |
9583 | irel->r_offset = source_offset; | |
9584 | } | |
9585 | ||
9586 | /* If the target section could have changed then | |
9587 | we may need to change the relocation's target offset. */ | |
9588 | ||
9589 | target_sec = r_reloc_get_section (&r_rel); | |
43cd72b9 | 9590 | |
ae326da8 BW |
9591 | /* For a reference to a discarded section from a DWARF section, |
9592 | i.e., where action_discarded is PRETEND, the symbol will | |
9593 | eventually be modified to refer to the kept section (at least if | |
9594 | the kept and discarded sections are the same size). Anticipate | |
9595 | that here and adjust things accordingly. */ | |
9596 | if (! elf_xtensa_ignore_discarded_relocs (sec) | |
9597 | && elf_xtensa_action_discarded (sec) == PRETEND | |
dbaa2011 | 9598 | && sec->sec_info_type != SEC_INFO_TYPE_STABS |
ae326da8 | 9599 | && target_sec != NULL |
dbaa2011 | 9600 | && discarded_section (target_sec)) |
ae326da8 BW |
9601 | { |
9602 | /* It would be natural to call _bfd_elf_check_kept_section | |
9603 | here, but it's not exported from elflink.c. It's also a | |
9604 | fairly expensive check. Adjusting the relocations to the | |
9605 | discarded section is fairly harmless; it will only adjust | |
9606 | some addends and difference values. If it turns out that | |
9607 | _bfd_elf_check_kept_section fails later, it won't matter, | |
9608 | so just compare the section names to find the right group | |
9609 | member. */ | |
9610 | asection *kept = target_sec->kept_section; | |
9611 | if (kept != NULL) | |
9612 | { | |
9613 | if ((kept->flags & SEC_GROUP) != 0) | |
9614 | { | |
9615 | asection *first = elf_next_in_group (kept); | |
9616 | asection *s = first; | |
9617 | ||
9618 | kept = NULL; | |
9619 | while (s != NULL) | |
9620 | { | |
9621 | if (strcmp (s->name, target_sec->name) == 0) | |
9622 | { | |
9623 | kept = s; | |
9624 | break; | |
9625 | } | |
9626 | s = elf_next_in_group (s); | |
9627 | if (s == first) | |
9628 | break; | |
9629 | } | |
9630 | } | |
9631 | } | |
9632 | if (kept != NULL | |
9633 | && ((target_sec->rawsize != 0 | |
9634 | ? target_sec->rawsize : target_sec->size) | |
9635 | == (kept->rawsize != 0 ? kept->rawsize : kept->size))) | |
9636 | target_sec = kept; | |
9637 | } | |
9638 | ||
9639 | target_relax_info = get_xtensa_relax_info (target_sec); | |
43cd72b9 BW |
9640 | if (target_relax_info |
9641 | && (target_relax_info->is_relaxable_literal_section | |
9642 | || target_relax_info->is_relaxable_asm_section)) | |
9643 | { | |
9644 | r_reloc new_reloc; | |
9b7f5d20 | 9645 | target_sec = translate_reloc (&r_rel, &new_reloc, target_sec); |
43cd72b9 BW |
9646 | |
9647 | if (r_type == R_XTENSA_DIFF8 | |
9648 | || r_type == R_XTENSA_DIFF16 | |
30ce8e47 MF |
9649 | || r_type == R_XTENSA_DIFF32 |
9650 | || r_type == R_XTENSA_PDIFF8 | |
9651 | || r_type == R_XTENSA_PDIFF16 | |
9652 | || r_type == R_XTENSA_PDIFF32 | |
9653 | || r_type == R_XTENSA_NDIFF8 | |
9654 | || r_type == R_XTENSA_NDIFF16 | |
9655 | || r_type == R_XTENSA_NDIFF32) | |
43cd72b9 | 9656 | { |
1058c753 VA |
9657 | bfd_signed_vma diff_value = 0; |
9658 | bfd_vma new_end_offset, diff_mask = 0; | |
43cd72b9 BW |
9659 | |
9660 | if (bfd_get_section_limit (abfd, sec) < old_source_offset) | |
9661 | { | |
9662 | (*link_info->callbacks->reloc_dangerous) | |
9663 | (link_info, _("invalid relocation address"), | |
9664 | abfd, sec, old_source_offset); | |
9665 | goto error_return; | |
9666 | } | |
9667 | ||
9668 | switch (r_type) | |
9669 | { | |
9670 | case R_XTENSA_DIFF8: | |
d548f47d | 9671 | diff_mask = 0x7f; |
43cd72b9 | 9672 | diff_value = |
1058c753 | 9673 | bfd_get_signed_8 (abfd, &contents[old_source_offset]); |
43cd72b9 BW |
9674 | break; |
9675 | case R_XTENSA_DIFF16: | |
d548f47d | 9676 | diff_mask = 0x7fff; |
43cd72b9 | 9677 | diff_value = |
1058c753 | 9678 | bfd_get_signed_16 (abfd, &contents[old_source_offset]); |
43cd72b9 BW |
9679 | break; |
9680 | case R_XTENSA_DIFF32: | |
d548f47d | 9681 | diff_mask = 0x7fffffff; |
43cd72b9 | 9682 | diff_value = |
1058c753 | 9683 | bfd_get_signed_32 (abfd, &contents[old_source_offset]); |
43cd72b9 | 9684 | break; |
30ce8e47 MF |
9685 | case R_XTENSA_PDIFF8: |
9686 | case R_XTENSA_NDIFF8: | |
d548f47d | 9687 | diff_mask = 0xff; |
30ce8e47 MF |
9688 | diff_value = |
9689 | bfd_get_8 (abfd, &contents[old_source_offset]); | |
9690 | break; | |
9691 | case R_XTENSA_PDIFF16: | |
9692 | case R_XTENSA_NDIFF16: | |
d548f47d | 9693 | diff_mask = 0xffff; |
30ce8e47 MF |
9694 | diff_value = |
9695 | bfd_get_16 (abfd, &contents[old_source_offset]); | |
9696 | break; | |
9697 | case R_XTENSA_PDIFF32: | |
9698 | case R_XTENSA_NDIFF32: | |
d548f47d | 9699 | diff_mask = 0xffffffff; |
30ce8e47 MF |
9700 | diff_value = |
9701 | bfd_get_32 (abfd, &contents[old_source_offset]); | |
9702 | break; | |
43cd72b9 BW |
9703 | } |
9704 | ||
30ce8e47 | 9705 | if (r_type >= R_XTENSA_NDIFF8 |
d548f47d MF |
9706 | && r_type <= R_XTENSA_NDIFF32 |
9707 | && diff_value) | |
9708 | diff_value |= ~diff_mask; | |
30ce8e47 | 9709 | |
071aa5c9 | 9710 | new_end_offset = offset_with_removed_text_map |
43cd72b9 BW |
9711 | (&target_relax_info->action_list, |
9712 | r_rel.target_offset + diff_value); | |
9713 | diff_value = new_end_offset - new_reloc.target_offset; | |
9714 | ||
9715 | switch (r_type) | |
9716 | { | |
9717 | case R_XTENSA_DIFF8: | |
1058c753 | 9718 | bfd_put_signed_8 (abfd, diff_value, |
43cd72b9 BW |
9719 | &contents[old_source_offset]); |
9720 | break; | |
9721 | case R_XTENSA_DIFF16: | |
1058c753 | 9722 | bfd_put_signed_16 (abfd, diff_value, |
43cd72b9 BW |
9723 | &contents[old_source_offset]); |
9724 | break; | |
9725 | case R_XTENSA_DIFF32: | |
1058c753 | 9726 | bfd_put_signed_32 (abfd, diff_value, |
43cd72b9 BW |
9727 | &contents[old_source_offset]); |
9728 | break; | |
30ce8e47 MF |
9729 | case R_XTENSA_PDIFF8: |
9730 | case R_XTENSA_NDIFF8: | |
30ce8e47 MF |
9731 | bfd_put_8 (abfd, diff_value, |
9732 | &contents[old_source_offset]); | |
9733 | break; | |
9734 | case R_XTENSA_PDIFF16: | |
9735 | case R_XTENSA_NDIFF16: | |
30ce8e47 MF |
9736 | bfd_put_16 (abfd, diff_value, |
9737 | &contents[old_source_offset]); | |
9738 | break; | |
9739 | case R_XTENSA_PDIFF32: | |
9740 | case R_XTENSA_NDIFF32: | |
30ce8e47 MF |
9741 | bfd_put_32 (abfd, diff_value, |
9742 | &contents[old_source_offset]); | |
9743 | break; | |
43cd72b9 BW |
9744 | } |
9745 | ||
d548f47d MF |
9746 | /* Check for overflow. Sign bits must be all zeroes or |
9747 | all ones. When sign bits are all ones diff_value | |
9748 | may not be zero. */ | |
9749 | if (((diff_value & ~diff_mask) != 0 | |
9750 | && (diff_value & ~diff_mask) != ~diff_mask) | |
9751 | || (diff_value && (bfd_vma) diff_value == ~diff_mask)) | |
43cd72b9 BW |
9752 | { |
9753 | (*link_info->callbacks->reloc_dangerous) | |
9754 | (link_info, _("overflow after relaxation"), | |
9755 | abfd, sec, old_source_offset); | |
9756 | goto error_return; | |
9757 | } | |
9758 | ||
9759 | pin_contents (sec, contents); | |
9760 | } | |
dc96b90a BW |
9761 | |
9762 | /* If the relocation still references a section in the same | |
9763 | input file, modify the relocation directly instead of | |
9764 | adding a "fix" record. */ | |
9765 | if (target_sec->owner == abfd) | |
9766 | { | |
9767 | unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info); | |
9768 | irel->r_info = ELF32_R_INFO (r_symndx, r_type); | |
9769 | irel->r_addend = new_reloc.rela.r_addend; | |
9770 | pin_internal_relocs (sec, internal_relocs); | |
9771 | } | |
9b7f5d20 BW |
9772 | else |
9773 | { | |
dc96b90a BW |
9774 | bfd_vma addend_displacement; |
9775 | reloc_bfd_fix *fix; | |
9776 | ||
9777 | addend_displacement = | |
9778 | new_reloc.target_offset + new_reloc.virtual_offset; | |
9779 | fix = reloc_bfd_fix_init (sec, source_offset, r_type, | |
9780 | target_sec, | |
9781 | addend_displacement, TRUE); | |
9782 | add_fix (sec, fix); | |
9b7f5d20 | 9783 | } |
43cd72b9 | 9784 | } |
43cd72b9 BW |
9785 | } |
9786 | } | |
9787 | ||
9788 | if ((relax_info->is_relaxable_literal_section | |
9789 | || relax_info->is_relaxable_asm_section) | |
4c2af04f | 9790 | && action_list_count (&relax_info->action_list)) |
43cd72b9 BW |
9791 | { |
9792 | /* Walk through the planned actions and build up a table | |
9793 | of move, copy and fill records. Use the move, copy and | |
9794 | fill records to perform the actions once. */ | |
9795 | ||
43cd72b9 BW |
9796 | bfd_size_type final_size, copy_size, orig_insn_size; |
9797 | bfd_byte *scratch = NULL; | |
9798 | bfd_byte *dup_contents = NULL; | |
a3ef2d63 | 9799 | bfd_size_type orig_size = sec->size; |
43cd72b9 BW |
9800 | bfd_vma orig_dot = 0; |
9801 | bfd_vma orig_dot_copied = 0; /* Byte copied already from | |
9802 | orig dot in physical memory. */ | |
9803 | bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */ | |
9804 | bfd_vma dup_dot = 0; | |
9805 | ||
4c2af04f | 9806 | text_action *action; |
43cd72b9 BW |
9807 | |
9808 | final_size = sec->size; | |
43cd72b9 | 9809 | |
4c2af04f MF |
9810 | splay_tree_foreach (relax_info->action_list.tree, |
9811 | action_remove_bytes_fn, &final_size); | |
43cd72b9 BW |
9812 | scratch = (bfd_byte *) bfd_zmalloc (final_size); |
9813 | dup_contents = (bfd_byte *) bfd_zmalloc (final_size); | |
9814 | ||
9815 | /* The dot is the current fill location. */ | |
9816 | #if DEBUG | |
9817 | print_action_list (stderr, &relax_info->action_list); | |
9818 | #endif | |
9819 | ||
4c2af04f MF |
9820 | for (action = action_first (&relax_info->action_list); action; |
9821 | action = action_next (&relax_info->action_list, action)) | |
43cd72b9 BW |
9822 | { |
9823 | virtual_action = FALSE; | |
9824 | if (action->offset > orig_dot) | |
9825 | { | |
9826 | orig_dot += orig_dot_copied; | |
9827 | orig_dot_copied = 0; | |
9828 | orig_dot_vo = 0; | |
9829 | /* Out of the virtual world. */ | |
9830 | } | |
9831 | ||
9832 | if (action->offset > orig_dot) | |
9833 | { | |
9834 | copy_size = action->offset - orig_dot; | |
9835 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
9836 | orig_dot += copy_size; | |
9837 | dup_dot += copy_size; | |
9838 | BFD_ASSERT (action->offset == orig_dot); | |
9839 | } | |
9840 | else if (action->offset < orig_dot) | |
9841 | { | |
9842 | if (action->action == ta_fill | |
9843 | && action->offset - action->removed_bytes == orig_dot) | |
9844 | { | |
9845 | /* This is OK because the fill only effects the dup_dot. */ | |
9846 | } | |
9847 | else if (action->action == ta_add_literal) | |
9848 | { | |
9849 | /* TBD. Might need to handle this. */ | |
9850 | } | |
9851 | } | |
9852 | if (action->offset == orig_dot) | |
9853 | { | |
9854 | if (action->virtual_offset > orig_dot_vo) | |
9855 | { | |
9856 | if (orig_dot_vo == 0) | |
9857 | { | |
9858 | /* Need to copy virtual_offset bytes. Probably four. */ | |
9859 | copy_size = action->virtual_offset - orig_dot_vo; | |
9860 | memmove (&dup_contents[dup_dot], | |
9861 | &contents[orig_dot], copy_size); | |
9862 | orig_dot_copied = copy_size; | |
9863 | dup_dot += copy_size; | |
9864 | } | |
9865 | virtual_action = TRUE; | |
68ffbac6 | 9866 | } |
43cd72b9 BW |
9867 | else |
9868 | BFD_ASSERT (action->virtual_offset <= orig_dot_vo); | |
9869 | } | |
9870 | switch (action->action) | |
9871 | { | |
9872 | case ta_remove_literal: | |
9873 | case ta_remove_insn: | |
9874 | BFD_ASSERT (action->removed_bytes >= 0); | |
9875 | orig_dot += action->removed_bytes; | |
9876 | break; | |
9877 | ||
9878 | case ta_narrow_insn: | |
9879 | orig_insn_size = 3; | |
9880 | copy_size = 2; | |
9881 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
9882 | BFD_ASSERT (action->removed_bytes == 1); | |
64b607e6 | 9883 | rv = narrow_instruction (scratch, final_size, 0); |
43cd72b9 BW |
9884 | BFD_ASSERT (rv); |
9885 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
9886 | orig_dot += orig_insn_size; | |
9887 | dup_dot += copy_size; | |
9888 | break; | |
9889 | ||
9890 | case ta_fill: | |
9891 | if (action->removed_bytes >= 0) | |
9892 | orig_dot += action->removed_bytes; | |
9893 | else | |
9894 | { | |
9895 | /* Already zeroed in dup_contents. Just bump the | |
9896 | counters. */ | |
9897 | dup_dot += (-action->removed_bytes); | |
9898 | } | |
9899 | break; | |
9900 | ||
9901 | case ta_none: | |
9902 | BFD_ASSERT (action->removed_bytes == 0); | |
9903 | break; | |
9904 | ||
9905 | case ta_convert_longcall: | |
9906 | case ta_remove_longcall: | |
9907 | /* These will be removed or converted before we get here. */ | |
9908 | BFD_ASSERT (0); | |
9909 | break; | |
9910 | ||
9911 | case ta_widen_insn: | |
9912 | orig_insn_size = 2; | |
9913 | copy_size = 3; | |
9914 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
9915 | BFD_ASSERT (action->removed_bytes == -1); | |
64b607e6 | 9916 | rv = widen_instruction (scratch, final_size, 0); |
43cd72b9 BW |
9917 | BFD_ASSERT (rv); |
9918 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
9919 | orig_dot += orig_insn_size; | |
9920 | dup_dot += copy_size; | |
9921 | break; | |
9922 | ||
9923 | case ta_add_literal: | |
9924 | orig_insn_size = 0; | |
9925 | copy_size = 4; | |
9926 | BFD_ASSERT (action->removed_bytes == -4); | |
9927 | /* TBD -- place the literal value here and insert | |
9928 | into the table. */ | |
9929 | memset (&dup_contents[dup_dot], 0, 4); | |
9930 | pin_internal_relocs (sec, internal_relocs); | |
9931 | pin_contents (sec, contents); | |
9932 | ||
9933 | if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents, | |
9934 | relax_info, &internal_relocs, &action->value)) | |
9935 | goto error_return; | |
9936 | ||
68ffbac6 | 9937 | if (virtual_action) |
43cd72b9 BW |
9938 | orig_dot_vo += copy_size; |
9939 | ||
9940 | orig_dot += orig_insn_size; | |
9941 | dup_dot += copy_size; | |
9942 | break; | |
9943 | ||
9944 | default: | |
9945 | /* Not implemented yet. */ | |
9946 | BFD_ASSERT (0); | |
9947 | break; | |
9948 | } | |
9949 | ||
43cd72b9 BW |
9950 | BFD_ASSERT (dup_dot <= final_size); |
9951 | BFD_ASSERT (orig_dot <= orig_size); | |
9952 | } | |
9953 | ||
9954 | orig_dot += orig_dot_copied; | |
9955 | orig_dot_copied = 0; | |
9956 | ||
9957 | if (orig_dot != orig_size) | |
9958 | { | |
9959 | copy_size = orig_size - orig_dot; | |
9960 | BFD_ASSERT (orig_size > orig_dot); | |
9961 | BFD_ASSERT (dup_dot + copy_size == final_size); | |
9962 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
9963 | orig_dot += copy_size; | |
9964 | dup_dot += copy_size; | |
9965 | } | |
9966 | BFD_ASSERT (orig_size == orig_dot); | |
9967 | BFD_ASSERT (final_size == dup_dot); | |
9968 | ||
9969 | /* Move the dup_contents back. */ | |
9970 | if (final_size > orig_size) | |
9971 | { | |
9972 | /* Contents need to be reallocated. Swap the dup_contents into | |
9973 | contents. */ | |
9974 | sec->contents = dup_contents; | |
9975 | free (contents); | |
9976 | contents = dup_contents; | |
9977 | pin_contents (sec, contents); | |
9978 | } | |
9979 | else | |
9980 | { | |
9981 | BFD_ASSERT (final_size <= orig_size); | |
9982 | memset (contents, 0, orig_size); | |
9983 | memcpy (contents, dup_contents, final_size); | |
9984 | free (dup_contents); | |
9985 | } | |
9986 | free (scratch); | |
9987 | pin_contents (sec, contents); | |
9988 | ||
a3ef2d63 BW |
9989 | if (sec->rawsize == 0) |
9990 | sec->rawsize = sec->size; | |
43cd72b9 BW |
9991 | sec->size = final_size; |
9992 | } | |
9993 | ||
9994 | error_return: | |
9995 | release_internal_relocs (sec, internal_relocs); | |
9996 | release_contents (sec, contents); | |
9997 | return ok; | |
9998 | } | |
9999 | ||
10000 | ||
68ffbac6 | 10001 | static bfd_boolean |
7fa3d080 | 10002 | translate_section_fixes (asection *sec) |
43cd72b9 BW |
10003 | { |
10004 | xtensa_relax_info *relax_info; | |
10005 | reloc_bfd_fix *r; | |
10006 | ||
10007 | relax_info = get_xtensa_relax_info (sec); | |
10008 | if (!relax_info) | |
10009 | return TRUE; | |
10010 | ||
10011 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
10012 | if (!translate_reloc_bfd_fix (r)) | |
10013 | return FALSE; | |
e0001a05 | 10014 | |
43cd72b9 BW |
10015 | return TRUE; |
10016 | } | |
e0001a05 | 10017 | |
e0001a05 | 10018 | |
43cd72b9 BW |
10019 | /* Translate a fix given the mapping in the relax info for the target |
10020 | section. If it has already been translated, no work is required. */ | |
e0001a05 | 10021 | |
68ffbac6 | 10022 | static bfd_boolean |
7fa3d080 | 10023 | translate_reloc_bfd_fix (reloc_bfd_fix *fix) |
43cd72b9 BW |
10024 | { |
10025 | reloc_bfd_fix new_fix; | |
10026 | asection *sec; | |
10027 | xtensa_relax_info *relax_info; | |
10028 | removed_literal *removed; | |
10029 | bfd_vma new_offset, target_offset; | |
e0001a05 | 10030 | |
43cd72b9 BW |
10031 | if (fix->translated) |
10032 | return TRUE; | |
e0001a05 | 10033 | |
43cd72b9 BW |
10034 | sec = fix->target_sec; |
10035 | target_offset = fix->target_offset; | |
e0001a05 | 10036 | |
43cd72b9 BW |
10037 | relax_info = get_xtensa_relax_info (sec); |
10038 | if (!relax_info) | |
10039 | { | |
10040 | fix->translated = TRUE; | |
10041 | return TRUE; | |
10042 | } | |
e0001a05 | 10043 | |
43cd72b9 | 10044 | new_fix = *fix; |
e0001a05 | 10045 | |
43cd72b9 BW |
10046 | /* The fix does not need to be translated if the section cannot change. */ |
10047 | if (!relax_info->is_relaxable_literal_section | |
10048 | && !relax_info->is_relaxable_asm_section) | |
10049 | { | |
10050 | fix->translated = TRUE; | |
10051 | return TRUE; | |
10052 | } | |
e0001a05 | 10053 | |
43cd72b9 BW |
10054 | /* If the literal has been moved and this relocation was on an |
10055 | opcode, then the relocation should move to the new literal | |
10056 | location. Otherwise, the relocation should move within the | |
10057 | section. */ | |
10058 | ||
10059 | removed = FALSE; | |
10060 | if (is_operand_relocation (fix->src_type)) | |
10061 | { | |
10062 | /* Check if the original relocation is against a literal being | |
10063 | removed. */ | |
10064 | removed = find_removed_literal (&relax_info->removed_list, | |
10065 | target_offset); | |
e0001a05 NC |
10066 | } |
10067 | ||
68ffbac6 | 10068 | if (removed) |
e0001a05 | 10069 | { |
43cd72b9 | 10070 | asection *new_sec; |
e0001a05 | 10071 | |
43cd72b9 BW |
10072 | /* The fact that there is still a relocation to this literal indicates |
10073 | that the literal is being coalesced, not simply removed. */ | |
10074 | BFD_ASSERT (removed->to.abfd != NULL); | |
e0001a05 | 10075 | |
43cd72b9 BW |
10076 | /* This was moved to some other address (possibly another section). */ |
10077 | new_sec = r_reloc_get_section (&removed->to); | |
68ffbac6 | 10078 | if (new_sec != sec) |
e0001a05 | 10079 | { |
43cd72b9 BW |
10080 | sec = new_sec; |
10081 | relax_info = get_xtensa_relax_info (sec); | |
68ffbac6 | 10082 | if (!relax_info || |
43cd72b9 BW |
10083 | (!relax_info->is_relaxable_literal_section |
10084 | && !relax_info->is_relaxable_asm_section)) | |
e0001a05 | 10085 | { |
43cd72b9 BW |
10086 | target_offset = removed->to.target_offset; |
10087 | new_fix.target_sec = new_sec; | |
10088 | new_fix.target_offset = target_offset; | |
10089 | new_fix.translated = TRUE; | |
10090 | *fix = new_fix; | |
10091 | return TRUE; | |
e0001a05 | 10092 | } |
e0001a05 | 10093 | } |
43cd72b9 BW |
10094 | target_offset = removed->to.target_offset; |
10095 | new_fix.target_sec = new_sec; | |
e0001a05 | 10096 | } |
43cd72b9 BW |
10097 | |
10098 | /* The target address may have been moved within its section. */ | |
10099 | new_offset = offset_with_removed_text (&relax_info->action_list, | |
10100 | target_offset); | |
10101 | ||
10102 | new_fix.target_offset = new_offset; | |
10103 | new_fix.target_offset = new_offset; | |
10104 | new_fix.translated = TRUE; | |
10105 | *fix = new_fix; | |
10106 | return TRUE; | |
e0001a05 NC |
10107 | } |
10108 | ||
10109 | ||
10110 | /* Fix up a relocation to take account of removed literals. */ | |
10111 | ||
9b7f5d20 BW |
10112 | static asection * |
10113 | translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec) | |
e0001a05 | 10114 | { |
e0001a05 NC |
10115 | xtensa_relax_info *relax_info; |
10116 | removed_literal *removed; | |
9b7f5d20 | 10117 | bfd_vma target_offset, base_offset; |
e0001a05 NC |
10118 | |
10119 | *new_rel = *orig_rel; | |
10120 | ||
10121 | if (!r_reloc_is_defined (orig_rel)) | |
9b7f5d20 | 10122 | return sec ; |
e0001a05 NC |
10123 | |
10124 | relax_info = get_xtensa_relax_info (sec); | |
9b7f5d20 BW |
10125 | BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section |
10126 | || relax_info->is_relaxable_asm_section)); | |
e0001a05 | 10127 | |
43cd72b9 BW |
10128 | target_offset = orig_rel->target_offset; |
10129 | ||
10130 | removed = FALSE; | |
10131 | if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info))) | |
10132 | { | |
10133 | /* Check if the original relocation is against a literal being | |
10134 | removed. */ | |
10135 | removed = find_removed_literal (&relax_info->removed_list, | |
10136 | target_offset); | |
10137 | } | |
10138 | if (removed && removed->to.abfd) | |
e0001a05 NC |
10139 | { |
10140 | asection *new_sec; | |
10141 | ||
10142 | /* The fact that there is still a relocation to this literal indicates | |
10143 | that the literal is being coalesced, not simply removed. */ | |
10144 | BFD_ASSERT (removed->to.abfd != NULL); | |
10145 | ||
43cd72b9 BW |
10146 | /* This was moved to some other address |
10147 | (possibly in another section). */ | |
e0001a05 NC |
10148 | *new_rel = removed->to; |
10149 | new_sec = r_reloc_get_section (new_rel); | |
43cd72b9 | 10150 | if (new_sec != sec) |
e0001a05 NC |
10151 | { |
10152 | sec = new_sec; | |
10153 | relax_info = get_xtensa_relax_info (sec); | |
43cd72b9 BW |
10154 | if (!relax_info |
10155 | || (!relax_info->is_relaxable_literal_section | |
10156 | && !relax_info->is_relaxable_asm_section)) | |
9b7f5d20 | 10157 | return sec; |
e0001a05 | 10158 | } |
43cd72b9 | 10159 | target_offset = new_rel->target_offset; |
e0001a05 NC |
10160 | } |
10161 | ||
9b7f5d20 BW |
10162 | /* Find the base offset of the reloc symbol, excluding any addend from the |
10163 | reloc or from the section contents (for a partial_inplace reloc). Then | |
10164 | find the adjusted values of the offsets due to relaxation. The base | |
10165 | offset is needed to determine the change to the reloc's addend; the reloc | |
10166 | addend should not be adjusted due to relaxations located before the base | |
10167 | offset. */ | |
10168 | ||
10169 | base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend; | |
9b7f5d20 BW |
10170 | if (base_offset <= target_offset) |
10171 | { | |
071aa5c9 MF |
10172 | int base_removed = removed_by_actions_map (&relax_info->action_list, |
10173 | base_offset, FALSE); | |
10174 | int addend_removed = removed_by_actions_map (&relax_info->action_list, | |
10175 | target_offset, FALSE) - | |
10176 | base_removed; | |
10177 | ||
9b7f5d20 BW |
10178 | new_rel->target_offset = target_offset - base_removed - addend_removed; |
10179 | new_rel->rela.r_addend -= addend_removed; | |
10180 | } | |
10181 | else | |
10182 | { | |
10183 | /* Handle a negative addend. The base offset comes first. */ | |
071aa5c9 MF |
10184 | int tgt_removed = removed_by_actions_map (&relax_info->action_list, |
10185 | target_offset, FALSE); | |
10186 | int addend_removed = removed_by_actions_map (&relax_info->action_list, | |
10187 | base_offset, FALSE) - | |
10188 | tgt_removed; | |
10189 | ||
9b7f5d20 BW |
10190 | new_rel->target_offset = target_offset - tgt_removed; |
10191 | new_rel->rela.r_addend += addend_removed; | |
10192 | } | |
e0001a05 | 10193 | |
9b7f5d20 | 10194 | return sec; |
e0001a05 NC |
10195 | } |
10196 | ||
10197 | ||
10198 | /* For dynamic links, there may be a dynamic relocation for each | |
10199 | literal. The number of dynamic relocations must be computed in | |
10200 | size_dynamic_sections, which occurs before relaxation. When a | |
10201 | literal is removed, this function checks if there is a corresponding | |
10202 | dynamic relocation and shrinks the size of the appropriate dynamic | |
10203 | relocation section accordingly. At this point, the contents of the | |
10204 | dynamic relocation sections have not yet been filled in, so there's | |
10205 | nothing else that needs to be done. */ | |
10206 | ||
10207 | static void | |
7fa3d080 BW |
10208 | shrink_dynamic_reloc_sections (struct bfd_link_info *info, |
10209 | bfd *abfd, | |
10210 | asection *input_section, | |
10211 | Elf_Internal_Rela *rel) | |
e0001a05 | 10212 | { |
f0e6fdb2 | 10213 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
10214 | Elf_Internal_Shdr *symtab_hdr; |
10215 | struct elf_link_hash_entry **sym_hashes; | |
10216 | unsigned long r_symndx; | |
10217 | int r_type; | |
10218 | struct elf_link_hash_entry *h; | |
10219 | bfd_boolean dynamic_symbol; | |
10220 | ||
f0e6fdb2 | 10221 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
10222 | if (htab == NULL) |
10223 | return; | |
10224 | ||
e0001a05 NC |
10225 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
10226 | sym_hashes = elf_sym_hashes (abfd); | |
10227 | ||
10228 | r_type = ELF32_R_TYPE (rel->r_info); | |
10229 | r_symndx = ELF32_R_SYM (rel->r_info); | |
10230 | ||
10231 | if (r_symndx < symtab_hdr->sh_info) | |
10232 | h = NULL; | |
10233 | else | |
10234 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
10235 | ||
4608f3d9 | 10236 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); |
e0001a05 NC |
10237 | |
10238 | if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
10239 | && (input_section->flags & SEC_ALLOC) != 0 | |
e15a8da9 MF |
10240 | && (dynamic_symbol |
10241 | || (bfd_link_pic (info) | |
10242 | && (!h || h->root.type != bfd_link_hash_undefweak)))) | |
e0001a05 | 10243 | { |
e0001a05 NC |
10244 | asection *srel; |
10245 | bfd_boolean is_plt = FALSE; | |
10246 | ||
e0001a05 NC |
10247 | if (dynamic_symbol && r_type == R_XTENSA_PLT) |
10248 | { | |
ce558b89 | 10249 | srel = htab->elf.srelplt; |
e0001a05 NC |
10250 | is_plt = TRUE; |
10251 | } | |
10252 | else | |
ce558b89 | 10253 | srel = htab->elf.srelgot; |
e0001a05 NC |
10254 | |
10255 | /* Reduce size of the .rela.* section by one reloc. */ | |
e0001a05 | 10256 | BFD_ASSERT (srel != NULL); |
eea6121a AM |
10257 | BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); |
10258 | srel->size -= sizeof (Elf32_External_Rela); | |
e0001a05 NC |
10259 | |
10260 | if (is_plt) | |
10261 | { | |
10262 | asection *splt, *sgotplt, *srelgot; | |
10263 | int reloc_index, chunk; | |
10264 | ||
10265 | /* Find the PLT reloc index of the entry being removed. This | |
10266 | is computed from the size of ".rela.plt". It is needed to | |
10267 | figure out which PLT chunk to resize. Usually "last index | |
10268 | = size - 1" since the index starts at zero, but in this | |
10269 | context, the size has just been decremented so there's no | |
10270 | need to subtract one. */ | |
eea6121a | 10271 | reloc_index = srel->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
10272 | |
10273 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
10274 | splt = elf_xtensa_get_plt_section (info, chunk); |
10275 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
10276 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
10277 | ||
10278 | /* Check if an entire PLT chunk has just been eliminated. */ | |
10279 | if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) | |
10280 | { | |
10281 | /* The two magic GOT entries for that chunk can go away. */ | |
ce558b89 | 10282 | srelgot = htab->elf.srelgot; |
e0001a05 NC |
10283 | BFD_ASSERT (srelgot != NULL); |
10284 | srelgot->reloc_count -= 2; | |
eea6121a AM |
10285 | srelgot->size -= 2 * sizeof (Elf32_External_Rela); |
10286 | sgotplt->size -= 8; | |
e0001a05 NC |
10287 | |
10288 | /* There should be only one entry left (and it will be | |
10289 | removed below). */ | |
eea6121a AM |
10290 | BFD_ASSERT (sgotplt->size == 4); |
10291 | BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); | |
e0001a05 NC |
10292 | } |
10293 | ||
eea6121a AM |
10294 | BFD_ASSERT (sgotplt->size >= 4); |
10295 | BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); | |
e0001a05 | 10296 | |
eea6121a AM |
10297 | sgotplt->size -= 4; |
10298 | splt->size -= PLT_ENTRY_SIZE; | |
e0001a05 NC |
10299 | } |
10300 | } | |
10301 | } | |
10302 | ||
10303 | ||
43cd72b9 BW |
10304 | /* Take an r_rel and move it to another section. This usually |
10305 | requires extending the interal_relocation array and pinning it. If | |
10306 | the original r_rel is from the same BFD, we can complete this here. | |
10307 | Otherwise, we add a fix record to let the final link fix the | |
10308 | appropriate address. Contents and internal relocations for the | |
10309 | section must be pinned after calling this routine. */ | |
10310 | ||
10311 | static bfd_boolean | |
7fa3d080 BW |
10312 | move_literal (bfd *abfd, |
10313 | struct bfd_link_info *link_info, | |
10314 | asection *sec, | |
10315 | bfd_vma offset, | |
10316 | bfd_byte *contents, | |
10317 | xtensa_relax_info *relax_info, | |
10318 | Elf_Internal_Rela **internal_relocs_p, | |
10319 | const literal_value *lit) | |
43cd72b9 BW |
10320 | { |
10321 | Elf_Internal_Rela *new_relocs = NULL; | |
10322 | size_t new_relocs_count = 0; | |
10323 | Elf_Internal_Rela this_rela; | |
10324 | const r_reloc *r_rel; | |
10325 | ||
10326 | r_rel = &lit->r_rel; | |
10327 | BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p); | |
10328 | ||
10329 | if (r_reloc_is_const (r_rel)) | |
10330 | bfd_put_32 (abfd, lit->value, contents + offset); | |
10331 | else | |
10332 | { | |
10333 | int r_type; | |
10334 | unsigned i; | |
43cd72b9 BW |
10335 | reloc_bfd_fix *fix; |
10336 | unsigned insert_at; | |
10337 | ||
10338 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
43cd72b9 BW |
10339 | |
10340 | /* This is the difficult case. We have to create a fix up. */ | |
10341 | this_rela.r_offset = offset; | |
10342 | this_rela.r_info = ELF32_R_INFO (0, r_type); | |
10343 | this_rela.r_addend = | |
10344 | r_rel->target_offset - r_reloc_get_target_offset (r_rel); | |
10345 | bfd_put_32 (abfd, lit->value, contents + offset); | |
10346 | ||
10347 | /* Currently, we cannot move relocations during a relocatable link. */ | |
0e1862bb | 10348 | BFD_ASSERT (!bfd_link_relocatable (link_info)); |
0f5f1638 | 10349 | fix = reloc_bfd_fix_init (sec, offset, r_type, |
43cd72b9 BW |
10350 | r_reloc_get_section (r_rel), |
10351 | r_rel->target_offset + r_rel->virtual_offset, | |
10352 | FALSE); | |
10353 | /* We also need to mark that relocations are needed here. */ | |
10354 | sec->flags |= SEC_RELOC; | |
10355 | ||
10356 | translate_reloc_bfd_fix (fix); | |
10357 | /* This fix has not yet been translated. */ | |
10358 | add_fix (sec, fix); | |
10359 | ||
10360 | /* Add the relocation. If we have already allocated our own | |
10361 | space for the relocations and we have room for more, then use | |
10362 | it. Otherwise, allocate new space and move the literals. */ | |
10363 | insert_at = sec->reloc_count; | |
10364 | for (i = 0; i < sec->reloc_count; ++i) | |
10365 | { | |
10366 | if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset) | |
10367 | { | |
10368 | insert_at = i; | |
10369 | break; | |
10370 | } | |
10371 | } | |
10372 | ||
10373 | if (*internal_relocs_p != relax_info->allocated_relocs | |
10374 | || sec->reloc_count + 1 > relax_info->allocated_relocs_count) | |
10375 | { | |
10376 | BFD_ASSERT (relax_info->allocated_relocs == NULL | |
10377 | || sec->reloc_count == relax_info->relocs_count); | |
10378 | ||
68ffbac6 | 10379 | if (relax_info->allocated_relocs_count == 0) |
43cd72b9 BW |
10380 | new_relocs_count = (sec->reloc_count + 2) * 2; |
10381 | else | |
10382 | new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2; | |
10383 | ||
10384 | new_relocs = (Elf_Internal_Rela *) | |
10385 | bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count)); | |
10386 | if (!new_relocs) | |
10387 | return FALSE; | |
10388 | ||
10389 | /* We could handle this more quickly by finding the split point. */ | |
10390 | if (insert_at != 0) | |
10391 | memcpy (new_relocs, *internal_relocs_p, | |
10392 | insert_at * sizeof (Elf_Internal_Rela)); | |
10393 | ||
10394 | new_relocs[insert_at] = this_rela; | |
10395 | ||
10396 | if (insert_at != sec->reloc_count) | |
10397 | memcpy (new_relocs + insert_at + 1, | |
10398 | (*internal_relocs_p) + insert_at, | |
68ffbac6 | 10399 | (sec->reloc_count - insert_at) |
43cd72b9 BW |
10400 | * sizeof (Elf_Internal_Rela)); |
10401 | ||
10402 | if (*internal_relocs_p != relax_info->allocated_relocs) | |
10403 | { | |
10404 | /* The first time we re-allocate, we can only free the | |
10405 | old relocs if they were allocated with bfd_malloc. | |
10406 | This is not true when keep_memory is in effect. */ | |
10407 | if (!link_info->keep_memory) | |
10408 | free (*internal_relocs_p); | |
10409 | } | |
10410 | else | |
10411 | free (*internal_relocs_p); | |
10412 | relax_info->allocated_relocs = new_relocs; | |
10413 | relax_info->allocated_relocs_count = new_relocs_count; | |
10414 | elf_section_data (sec)->relocs = new_relocs; | |
10415 | sec->reloc_count++; | |
10416 | relax_info->relocs_count = sec->reloc_count; | |
10417 | *internal_relocs_p = new_relocs; | |
10418 | } | |
10419 | else | |
10420 | { | |
10421 | if (insert_at != sec->reloc_count) | |
10422 | { | |
10423 | unsigned idx; | |
10424 | for (idx = sec->reloc_count; idx > insert_at; idx--) | |
10425 | (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1]; | |
10426 | } | |
10427 | (*internal_relocs_p)[insert_at] = this_rela; | |
10428 | sec->reloc_count++; | |
10429 | if (relax_info->allocated_relocs) | |
10430 | relax_info->relocs_count = sec->reloc_count; | |
10431 | } | |
10432 | } | |
10433 | return TRUE; | |
10434 | } | |
10435 | ||
10436 | ||
e0001a05 NC |
10437 | /* This is similar to relax_section except that when a target is moved, |
10438 | we shift addresses up. We also need to modify the size. This | |
10439 | algorithm does NOT allow for relocations into the middle of the | |
10440 | property sections. */ | |
10441 | ||
43cd72b9 | 10442 | static bfd_boolean |
7fa3d080 BW |
10443 | relax_property_section (bfd *abfd, |
10444 | asection *sec, | |
10445 | struct bfd_link_info *link_info) | |
e0001a05 NC |
10446 | { |
10447 | Elf_Internal_Rela *internal_relocs; | |
10448 | bfd_byte *contents; | |
1d25768e | 10449 | unsigned i; |
e0001a05 | 10450 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
10451 | bfd_boolean is_full_prop_section; |
10452 | size_t last_zfill_target_offset = 0; | |
10453 | asection *last_zfill_target_sec = NULL; | |
10454 | bfd_size_type sec_size; | |
1d25768e | 10455 | bfd_size_type entry_size; |
e0001a05 | 10456 | |
43cd72b9 | 10457 | sec_size = bfd_get_section_limit (abfd, sec); |
68ffbac6 | 10458 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
e0001a05 NC |
10459 | link_info->keep_memory); |
10460 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 10461 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
10462 | { |
10463 | ok = FALSE; | |
10464 | goto error_return; | |
10465 | } | |
10466 | ||
1d25768e BW |
10467 | is_full_prop_section = xtensa_is_proptable_section (sec); |
10468 | if (is_full_prop_section) | |
10469 | entry_size = 12; | |
10470 | else | |
10471 | entry_size = 8; | |
43cd72b9 BW |
10472 | |
10473 | if (internal_relocs) | |
e0001a05 | 10474 | { |
43cd72b9 | 10475 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
10476 | { |
10477 | Elf_Internal_Rela *irel; | |
10478 | xtensa_relax_info *target_relax_info; | |
e0001a05 NC |
10479 | unsigned r_type; |
10480 | asection *target_sec; | |
43cd72b9 BW |
10481 | literal_value val; |
10482 | bfd_byte *size_p, *flags_p; | |
e0001a05 NC |
10483 | |
10484 | /* Locally change the source address. | |
10485 | Translate the target to the new target address. | |
10486 | If it points to this section and has been removed, MOVE IT. | |
10487 | Also, don't forget to modify the associated SIZE at | |
10488 | (offset + 4). */ | |
10489 | ||
10490 | irel = &internal_relocs[i]; | |
10491 | r_type = ELF32_R_TYPE (irel->r_info); | |
10492 | if (r_type == R_XTENSA_NONE) | |
10493 | continue; | |
10494 | ||
43cd72b9 BW |
10495 | /* Find the literal value. */ |
10496 | r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size); | |
10497 | size_p = &contents[irel->r_offset + 4]; | |
10498 | flags_p = NULL; | |
10499 | if (is_full_prop_section) | |
1d25768e BW |
10500 | flags_p = &contents[irel->r_offset + 8]; |
10501 | BFD_ASSERT (irel->r_offset + entry_size <= sec_size); | |
e0001a05 | 10502 | |
43cd72b9 | 10503 | target_sec = r_reloc_get_section (&val.r_rel); |
e0001a05 NC |
10504 | target_relax_info = get_xtensa_relax_info (target_sec); |
10505 | ||
10506 | if (target_relax_info | |
43cd72b9 BW |
10507 | && (target_relax_info->is_relaxable_literal_section |
10508 | || target_relax_info->is_relaxable_asm_section )) | |
e0001a05 NC |
10509 | { |
10510 | /* Translate the relocation's destination. */ | |
03669f1c BW |
10511 | bfd_vma old_offset = val.r_rel.target_offset; |
10512 | bfd_vma new_offset; | |
e0001a05 | 10513 | long old_size, new_size; |
071aa5c9 MF |
10514 | int removed_by_old_offset = |
10515 | removed_by_actions_map (&target_relax_info->action_list, | |
10516 | old_offset, FALSE); | |
10517 | new_offset = old_offset - removed_by_old_offset; | |
e0001a05 NC |
10518 | |
10519 | /* Assert that we are not out of bounds. */ | |
43cd72b9 | 10520 | old_size = bfd_get_32 (abfd, size_p); |
03669f1c | 10521 | new_size = old_size; |
43cd72b9 BW |
10522 | |
10523 | if (old_size == 0) | |
10524 | { | |
10525 | /* Only the first zero-sized unreachable entry is | |
10526 | allowed to expand. In this case the new offset | |
10527 | should be the offset before the fill and the new | |
10528 | size is the expansion size. For other zero-sized | |
10529 | entries the resulting size should be zero with an | |
10530 | offset before or after the fill address depending | |
10531 | on whether the expanding unreachable entry | |
10532 | preceeds it. */ | |
03669f1c BW |
10533 | if (last_zfill_target_sec == 0 |
10534 | || last_zfill_target_sec != target_sec | |
10535 | || last_zfill_target_offset != old_offset) | |
43cd72b9 | 10536 | { |
03669f1c BW |
10537 | bfd_vma new_end_offset = new_offset; |
10538 | ||
10539 | /* Recompute the new_offset, but this time don't | |
10540 | include any fill inserted by relaxation. */ | |
071aa5c9 MF |
10541 | removed_by_old_offset = |
10542 | removed_by_actions_map (&target_relax_info->action_list, | |
10543 | old_offset, TRUE); | |
10544 | new_offset = old_offset - removed_by_old_offset; | |
43cd72b9 BW |
10545 | |
10546 | /* If it is not unreachable and we have not yet | |
10547 | seen an unreachable at this address, place it | |
10548 | before the fill address. */ | |
03669f1c BW |
10549 | if (flags_p && (bfd_get_32 (abfd, flags_p) |
10550 | & XTENSA_PROP_UNREACHABLE) != 0) | |
43cd72b9 | 10551 | { |
03669f1c BW |
10552 | new_size = new_end_offset - new_offset; |
10553 | ||
43cd72b9 | 10554 | last_zfill_target_sec = target_sec; |
03669f1c | 10555 | last_zfill_target_offset = old_offset; |
43cd72b9 BW |
10556 | } |
10557 | } | |
10558 | } | |
10559 | else | |
071aa5c9 MF |
10560 | { |
10561 | int removed_by_old_offset_size = | |
10562 | removed_by_actions_map (&target_relax_info->action_list, | |
10563 | old_offset + old_size, TRUE); | |
10564 | new_size -= removed_by_old_offset_size - removed_by_old_offset; | |
10565 | } | |
43cd72b9 | 10566 | |
e0001a05 NC |
10567 | if (new_size != old_size) |
10568 | { | |
10569 | bfd_put_32 (abfd, new_size, size_p); | |
10570 | pin_contents (sec, contents); | |
10571 | } | |
43cd72b9 | 10572 | |
03669f1c | 10573 | if (new_offset != old_offset) |
e0001a05 | 10574 | { |
03669f1c | 10575 | bfd_vma diff = new_offset - old_offset; |
e0001a05 NC |
10576 | irel->r_addend += diff; |
10577 | pin_internal_relocs (sec, internal_relocs); | |
10578 | } | |
10579 | } | |
10580 | } | |
10581 | } | |
10582 | ||
10583 | /* Combine adjacent property table entries. This is also done in | |
10584 | finish_dynamic_sections() but at that point it's too late to | |
10585 | reclaim the space in the output section, so we do this twice. */ | |
10586 | ||
0e1862bb | 10587 | if (internal_relocs && (!bfd_link_relocatable (link_info) |
1d25768e | 10588 | || xtensa_is_littable_section (sec))) |
e0001a05 NC |
10589 | { |
10590 | Elf_Internal_Rela *last_irel = NULL; | |
1d25768e | 10591 | Elf_Internal_Rela *irel, *next_rel, *rel_end; |
e0001a05 | 10592 | int removed_bytes = 0; |
1d25768e | 10593 | bfd_vma offset; |
43cd72b9 BW |
10594 | flagword predef_flags; |
10595 | ||
43cd72b9 | 10596 | predef_flags = xtensa_get_property_predef_flags (sec); |
e0001a05 | 10597 | |
1d25768e | 10598 | /* Walk over memory and relocations at the same time. |
07d6d2b8 | 10599 | This REQUIRES that the internal_relocs be sorted by offset. */ |
e0001a05 NC |
10600 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
10601 | internal_reloc_compare); | |
e0001a05 NC |
10602 | |
10603 | pin_internal_relocs (sec, internal_relocs); | |
10604 | pin_contents (sec, contents); | |
10605 | ||
1d25768e BW |
10606 | next_rel = internal_relocs; |
10607 | rel_end = internal_relocs + sec->reloc_count; | |
10608 | ||
a3ef2d63 | 10609 | BFD_ASSERT (sec->size % entry_size == 0); |
e0001a05 | 10610 | |
a3ef2d63 | 10611 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 | 10612 | { |
1d25768e | 10613 | Elf_Internal_Rela *offset_rel, *extra_rel; |
e0001a05 | 10614 | bfd_vma bytes_to_remove, size, actual_offset; |
1d25768e | 10615 | bfd_boolean remove_this_rel; |
43cd72b9 | 10616 | flagword flags; |
e0001a05 | 10617 | |
1d25768e BW |
10618 | /* Find the first relocation for the entry at the current offset. |
10619 | Adjust the offsets of any extra relocations for the previous | |
10620 | entry. */ | |
10621 | offset_rel = NULL; | |
10622 | if (next_rel) | |
10623 | { | |
10624 | for (irel = next_rel; irel < rel_end; irel++) | |
10625 | { | |
10626 | if ((irel->r_offset == offset | |
10627 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) | |
10628 | || irel->r_offset > offset) | |
10629 | { | |
10630 | offset_rel = irel; | |
10631 | break; | |
10632 | } | |
10633 | irel->r_offset -= removed_bytes; | |
1d25768e BW |
10634 | } |
10635 | } | |
e0001a05 | 10636 | |
1d25768e BW |
10637 | /* Find the next relocation (if there are any left). */ |
10638 | extra_rel = NULL; | |
10639 | if (offset_rel) | |
e0001a05 | 10640 | { |
1d25768e | 10641 | for (irel = offset_rel + 1; irel < rel_end; irel++) |
e0001a05 | 10642 | { |
1d25768e BW |
10643 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) |
10644 | { | |
10645 | extra_rel = irel; | |
10646 | break; | |
10647 | } | |
e0001a05 | 10648 | } |
e0001a05 NC |
10649 | } |
10650 | ||
1d25768e BW |
10651 | /* Check if there are relocations on the current entry. There |
10652 | should usually be a relocation on the offset field. If there | |
10653 | are relocations on the size or flags, then we can't optimize | |
10654 | this entry. Also, find the next relocation to examine on the | |
10655 | next iteration. */ | |
10656 | if (offset_rel) | |
e0001a05 | 10657 | { |
1d25768e | 10658 | if (offset_rel->r_offset >= offset + entry_size) |
e0001a05 | 10659 | { |
1d25768e BW |
10660 | next_rel = offset_rel; |
10661 | /* There are no relocations on the current entry, but we | |
10662 | might still be able to remove it if the size is zero. */ | |
10663 | offset_rel = NULL; | |
10664 | } | |
10665 | else if (offset_rel->r_offset > offset | |
10666 | || (extra_rel | |
10667 | && extra_rel->r_offset < offset + entry_size)) | |
10668 | { | |
10669 | /* There is a relocation on the size or flags, so we can't | |
10670 | do anything with this entry. Continue with the next. */ | |
10671 | next_rel = offset_rel; | |
10672 | continue; | |
10673 | } | |
10674 | else | |
10675 | { | |
10676 | BFD_ASSERT (offset_rel->r_offset == offset); | |
10677 | offset_rel->r_offset -= removed_bytes; | |
10678 | next_rel = offset_rel + 1; | |
e0001a05 | 10679 | } |
e0001a05 | 10680 | } |
1d25768e BW |
10681 | else |
10682 | next_rel = NULL; | |
e0001a05 | 10683 | |
1d25768e | 10684 | remove_this_rel = FALSE; |
e0001a05 NC |
10685 | bytes_to_remove = 0; |
10686 | actual_offset = offset - removed_bytes; | |
10687 | size = bfd_get_32 (abfd, &contents[actual_offset + 4]); | |
10688 | ||
68ffbac6 | 10689 | if (is_full_prop_section) |
43cd72b9 BW |
10690 | flags = bfd_get_32 (abfd, &contents[actual_offset + 8]); |
10691 | else | |
10692 | flags = predef_flags; | |
10693 | ||
1d25768e BW |
10694 | if (size == 0 |
10695 | && (flags & XTENSA_PROP_ALIGN) == 0 | |
10696 | && (flags & XTENSA_PROP_UNREACHABLE) == 0) | |
e0001a05 | 10697 | { |
43cd72b9 BW |
10698 | /* Always remove entries with zero size and no alignment. */ |
10699 | bytes_to_remove = entry_size; | |
1d25768e BW |
10700 | if (offset_rel) |
10701 | remove_this_rel = TRUE; | |
e0001a05 | 10702 | } |
1d25768e BW |
10703 | else if (offset_rel |
10704 | && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32) | |
e0001a05 | 10705 | { |
1d25768e | 10706 | if (last_irel) |
e0001a05 | 10707 | { |
1d25768e BW |
10708 | flagword old_flags; |
10709 | bfd_vma old_size = | |
10710 | bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); | |
10711 | bfd_vma old_address = | |
10712 | (last_irel->r_addend | |
10713 | + bfd_get_32 (abfd, &contents[last_irel->r_offset])); | |
10714 | bfd_vma new_address = | |
10715 | (offset_rel->r_addend | |
10716 | + bfd_get_32 (abfd, &contents[actual_offset])); | |
68ffbac6 | 10717 | if (is_full_prop_section) |
1d25768e BW |
10718 | old_flags = bfd_get_32 |
10719 | (abfd, &contents[last_irel->r_offset + 8]); | |
10720 | else | |
10721 | old_flags = predef_flags; | |
10722 | ||
10723 | if ((ELF32_R_SYM (offset_rel->r_info) | |
10724 | == ELF32_R_SYM (last_irel->r_info)) | |
10725 | && old_address + old_size == new_address | |
10726 | && old_flags == flags | |
10727 | && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0 | |
10728 | && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0) | |
e0001a05 | 10729 | { |
1d25768e BW |
10730 | /* Fix the old size. */ |
10731 | bfd_put_32 (abfd, old_size + size, | |
10732 | &contents[last_irel->r_offset + 4]); | |
10733 | bytes_to_remove = entry_size; | |
10734 | remove_this_rel = TRUE; | |
e0001a05 NC |
10735 | } |
10736 | else | |
1d25768e | 10737 | last_irel = offset_rel; |
e0001a05 | 10738 | } |
1d25768e BW |
10739 | else |
10740 | last_irel = offset_rel; | |
e0001a05 NC |
10741 | } |
10742 | ||
1d25768e | 10743 | if (remove_this_rel) |
e0001a05 | 10744 | { |
1d25768e | 10745 | offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
3df502ae | 10746 | offset_rel->r_offset = 0; |
e0001a05 NC |
10747 | } |
10748 | ||
10749 | if (bytes_to_remove != 0) | |
10750 | { | |
10751 | removed_bytes += bytes_to_remove; | |
a3ef2d63 | 10752 | if (offset + bytes_to_remove < sec->size) |
e0001a05 | 10753 | memmove (&contents[actual_offset], |
43cd72b9 | 10754 | &contents[actual_offset + bytes_to_remove], |
a3ef2d63 | 10755 | sec->size - offset - bytes_to_remove); |
e0001a05 NC |
10756 | } |
10757 | } | |
10758 | ||
43cd72b9 | 10759 | if (removed_bytes) |
e0001a05 | 10760 | { |
1d25768e BW |
10761 | /* Fix up any extra relocations on the last entry. */ |
10762 | for (irel = next_rel; irel < rel_end; irel++) | |
10763 | irel->r_offset -= removed_bytes; | |
10764 | ||
e0001a05 | 10765 | /* Clear the removed bytes. */ |
a3ef2d63 | 10766 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 | 10767 | |
a3ef2d63 BW |
10768 | if (sec->rawsize == 0) |
10769 | sec->rawsize = sec->size; | |
10770 | sec->size -= removed_bytes; | |
e901de89 BW |
10771 | |
10772 | if (xtensa_is_littable_section (sec)) | |
10773 | { | |
f0e6fdb2 BW |
10774 | asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc; |
10775 | if (sgotloc) | |
10776 | sgotloc->size -= removed_bytes; | |
e901de89 | 10777 | } |
e0001a05 NC |
10778 | } |
10779 | } | |
e901de89 | 10780 | |
e0001a05 NC |
10781 | error_return: |
10782 | release_internal_relocs (sec, internal_relocs); | |
10783 | release_contents (sec, contents); | |
10784 | return ok; | |
10785 | } | |
10786 | ||
10787 | \f | |
10788 | /* Third relaxation pass. */ | |
10789 | ||
10790 | /* Change symbol values to account for removed literals. */ | |
10791 | ||
43cd72b9 | 10792 | bfd_boolean |
7fa3d080 | 10793 | relax_section_symbols (bfd *abfd, asection *sec) |
e0001a05 NC |
10794 | { |
10795 | xtensa_relax_info *relax_info; | |
10796 | unsigned int sec_shndx; | |
10797 | Elf_Internal_Shdr *symtab_hdr; | |
10798 | Elf_Internal_Sym *isymbuf; | |
10799 | unsigned i, num_syms, num_locals; | |
10800 | ||
10801 | relax_info = get_xtensa_relax_info (sec); | |
10802 | BFD_ASSERT (relax_info); | |
10803 | ||
43cd72b9 BW |
10804 | if (!relax_info->is_relaxable_literal_section |
10805 | && !relax_info->is_relaxable_asm_section) | |
e0001a05 NC |
10806 | return TRUE; |
10807 | ||
10808 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
10809 | ||
10810 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10811 | isymbuf = retrieve_local_syms (abfd); | |
10812 | ||
10813 | num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
10814 | num_locals = symtab_hdr->sh_info; | |
10815 | ||
10816 | /* Adjust the local symbols defined in this section. */ | |
10817 | for (i = 0; i < num_locals; i++) | |
10818 | { | |
10819 | Elf_Internal_Sym *isym = &isymbuf[i]; | |
10820 | ||
10821 | if (isym->st_shndx == sec_shndx) | |
10822 | { | |
03669f1c | 10823 | bfd_vma orig_addr = isym->st_value; |
071aa5c9 MF |
10824 | int removed = removed_by_actions_map (&relax_info->action_list, |
10825 | orig_addr, FALSE); | |
43cd72b9 | 10826 | |
071aa5c9 | 10827 | isym->st_value -= removed; |
03669f1c BW |
10828 | if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC) |
10829 | isym->st_size -= | |
071aa5c9 MF |
10830 | removed_by_actions_map (&relax_info->action_list, |
10831 | orig_addr + isym->st_size, FALSE) - | |
10832 | removed; | |
e0001a05 NC |
10833 | } |
10834 | } | |
10835 | ||
10836 | /* Now adjust the global symbols defined in this section. */ | |
10837 | for (i = 0; i < (num_syms - num_locals); i++) | |
10838 | { | |
10839 | struct elf_link_hash_entry *sym_hash; | |
10840 | ||
10841 | sym_hash = elf_sym_hashes (abfd)[i]; | |
10842 | ||
10843 | if (sym_hash->root.type == bfd_link_hash_warning) | |
10844 | sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; | |
10845 | ||
10846 | if ((sym_hash->root.type == bfd_link_hash_defined | |
10847 | || sym_hash->root.type == bfd_link_hash_defweak) | |
10848 | && sym_hash->root.u.def.section == sec) | |
10849 | { | |
03669f1c | 10850 | bfd_vma orig_addr = sym_hash->root.u.def.value; |
071aa5c9 MF |
10851 | int removed = removed_by_actions_map (&relax_info->action_list, |
10852 | orig_addr, FALSE); | |
43cd72b9 | 10853 | |
071aa5c9 | 10854 | sym_hash->root.u.def.value -= removed; |
43cd72b9 | 10855 | |
03669f1c BW |
10856 | if (sym_hash->type == STT_FUNC) |
10857 | sym_hash->size -= | |
071aa5c9 MF |
10858 | removed_by_actions_map (&relax_info->action_list, |
10859 | orig_addr + sym_hash->size, FALSE) - | |
10860 | removed; | |
e0001a05 NC |
10861 | } |
10862 | } | |
10863 | ||
10864 | return TRUE; | |
10865 | } | |
10866 | ||
10867 | \f | |
10868 | /* "Fix" handling functions, called while performing relocations. */ | |
10869 | ||
43cd72b9 | 10870 | static bfd_boolean |
7fa3d080 BW |
10871 | do_fix_for_relocatable_link (Elf_Internal_Rela *rel, |
10872 | bfd *input_bfd, | |
10873 | asection *input_section, | |
10874 | bfd_byte *contents) | |
e0001a05 NC |
10875 | { |
10876 | r_reloc r_rel; | |
10877 | asection *sec, *old_sec; | |
10878 | bfd_vma old_offset; | |
10879 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 NC |
10880 | reloc_bfd_fix *fix; |
10881 | ||
10882 | if (r_type == R_XTENSA_NONE) | |
43cd72b9 | 10883 | return TRUE; |
e0001a05 | 10884 | |
43cd72b9 BW |
10885 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10886 | if (!fix) | |
10887 | return TRUE; | |
e0001a05 | 10888 | |
43cd72b9 BW |
10889 | r_reloc_init (&r_rel, input_bfd, rel, contents, |
10890 | bfd_get_section_limit (input_bfd, input_section)); | |
e0001a05 | 10891 | old_sec = r_reloc_get_section (&r_rel); |
43cd72b9 BW |
10892 | old_offset = r_rel.target_offset; |
10893 | ||
10894 | if (!old_sec || !r_reloc_is_defined (&r_rel)) | |
e0001a05 | 10895 | { |
43cd72b9 BW |
10896 | if (r_type != R_XTENSA_ASM_EXPAND) |
10897 | { | |
4eca0228 | 10898 | _bfd_error_handler |
695344c0 | 10899 | /* xgettext:c-format */ |
2dcf00ce AM |
10900 | (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"), |
10901 | input_bfd, input_section, (uint64_t) rel->r_offset, | |
43cd72b9 BW |
10902 | elf_howto_table[r_type].name); |
10903 | return FALSE; | |
10904 | } | |
e0001a05 NC |
10905 | /* Leave it be. Resolution will happen in a later stage. */ |
10906 | } | |
10907 | else | |
10908 | { | |
10909 | sec = fix->target_sec; | |
10910 | rel->r_addend += ((sec->output_offset + fix->target_offset) | |
10911 | - (old_sec->output_offset + old_offset)); | |
10912 | } | |
43cd72b9 | 10913 | return TRUE; |
e0001a05 NC |
10914 | } |
10915 | ||
10916 | ||
10917 | static void | |
7fa3d080 BW |
10918 | do_fix_for_final_link (Elf_Internal_Rela *rel, |
10919 | bfd *input_bfd, | |
10920 | asection *input_section, | |
10921 | bfd_byte *contents, | |
10922 | bfd_vma *relocationp) | |
e0001a05 NC |
10923 | { |
10924 | asection *sec; | |
10925 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 | 10926 | reloc_bfd_fix *fix; |
43cd72b9 | 10927 | bfd_vma fixup_diff; |
e0001a05 NC |
10928 | |
10929 | if (r_type == R_XTENSA_NONE) | |
10930 | return; | |
10931 | ||
43cd72b9 BW |
10932 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10933 | if (!fix) | |
e0001a05 NC |
10934 | return; |
10935 | ||
10936 | sec = fix->target_sec; | |
43cd72b9 BW |
10937 | |
10938 | fixup_diff = rel->r_addend; | |
10939 | if (elf_howto_table[fix->src_type].partial_inplace) | |
10940 | { | |
10941 | bfd_vma inplace_val; | |
10942 | BFD_ASSERT (fix->src_offset | |
10943 | < bfd_get_section_limit (input_bfd, input_section)); | |
10944 | inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]); | |
10945 | fixup_diff += inplace_val; | |
10946 | } | |
10947 | ||
e0001a05 NC |
10948 | *relocationp = (sec->output_section->vma |
10949 | + sec->output_offset | |
43cd72b9 | 10950 | + fix->target_offset - fixup_diff); |
e0001a05 NC |
10951 | } |
10952 | ||
10953 | \f | |
10954 | /* Miscellaneous utility functions.... */ | |
10955 | ||
10956 | static asection * | |
f0e6fdb2 | 10957 | elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 10958 | { |
f0e6fdb2 | 10959 | bfd *dynobj; |
0bae9e9e | 10960 | char plt_name[17]; |
e0001a05 NC |
10961 | |
10962 | if (chunk == 0) | |
ce558b89 | 10963 | return elf_hash_table (info)->splt; |
e0001a05 | 10964 | |
f0e6fdb2 | 10965 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 | 10966 | sprintf (plt_name, ".plt.%u", chunk); |
3d4d4302 | 10967 | return bfd_get_linker_section (dynobj, plt_name); |
e0001a05 NC |
10968 | } |
10969 | ||
10970 | ||
10971 | static asection * | |
f0e6fdb2 | 10972 | elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 10973 | { |
f0e6fdb2 | 10974 | bfd *dynobj; |
0bae9e9e | 10975 | char got_name[21]; |
e0001a05 NC |
10976 | |
10977 | if (chunk == 0) | |
ce558b89 | 10978 | return elf_hash_table (info)->sgotplt; |
e0001a05 | 10979 | |
f0e6fdb2 | 10980 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 | 10981 | sprintf (got_name, ".got.plt.%u", chunk); |
3d4d4302 | 10982 | return bfd_get_linker_section (dynobj, got_name); |
e0001a05 NC |
10983 | } |
10984 | ||
10985 | ||
10986 | /* Get the input section for a given symbol index. | |
10987 | If the symbol is: | |
10988 | . a section symbol, return the section; | |
10989 | . a common symbol, return the common section; | |
10990 | . an undefined symbol, return the undefined section; | |
10991 | . an indirect symbol, follow the links; | |
10992 | . an absolute value, return the absolute section. */ | |
10993 | ||
10994 | static asection * | |
7fa3d080 | 10995 | get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10996 | { |
10997 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10998 | asection *target_sec = NULL; | |
43cd72b9 | 10999 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
11000 | { |
11001 | Elf_Internal_Sym *isymbuf; | |
11002 | unsigned int section_index; | |
11003 | ||
11004 | isymbuf = retrieve_local_syms (abfd); | |
11005 | section_index = isymbuf[r_symndx].st_shndx; | |
11006 | ||
11007 | if (section_index == SHN_UNDEF) | |
11008 | target_sec = bfd_und_section_ptr; | |
e0001a05 NC |
11009 | else if (section_index == SHN_ABS) |
11010 | target_sec = bfd_abs_section_ptr; | |
11011 | else if (section_index == SHN_COMMON) | |
11012 | target_sec = bfd_com_section_ptr; | |
43cd72b9 | 11013 | else |
cb33740c | 11014 | target_sec = bfd_section_from_elf_index (abfd, section_index); |
e0001a05 NC |
11015 | } |
11016 | else | |
11017 | { | |
11018 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
11019 | struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; | |
11020 | ||
11021 | while (h->root.type == bfd_link_hash_indirect | |
07d6d2b8 AM |
11022 | || h->root.type == bfd_link_hash_warning) |
11023 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
e0001a05 NC |
11024 | |
11025 | switch (h->root.type) | |
11026 | { | |
11027 | case bfd_link_hash_defined: | |
11028 | case bfd_link_hash_defweak: | |
11029 | target_sec = h->root.u.def.section; | |
11030 | break; | |
11031 | case bfd_link_hash_common: | |
11032 | target_sec = bfd_com_section_ptr; | |
11033 | break; | |
11034 | case bfd_link_hash_undefined: | |
11035 | case bfd_link_hash_undefweak: | |
11036 | target_sec = bfd_und_section_ptr; | |
11037 | break; | |
11038 | default: /* New indirect warning. */ | |
11039 | target_sec = bfd_und_section_ptr; | |
11040 | break; | |
11041 | } | |
11042 | } | |
11043 | return target_sec; | |
11044 | } | |
11045 | ||
11046 | ||
11047 | static struct elf_link_hash_entry * | |
7fa3d080 | 11048 | get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
11049 | { |
11050 | unsigned long indx; | |
11051 | struct elf_link_hash_entry *h; | |
11052 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
11053 | ||
11054 | if (r_symndx < symtab_hdr->sh_info) | |
11055 | return NULL; | |
43cd72b9 | 11056 | |
e0001a05 NC |
11057 | indx = r_symndx - symtab_hdr->sh_info; |
11058 | h = elf_sym_hashes (abfd)[indx]; | |
11059 | while (h->root.type == bfd_link_hash_indirect | |
11060 | || h->root.type == bfd_link_hash_warning) | |
11061 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
11062 | return h; | |
11063 | } | |
11064 | ||
11065 | ||
11066 | /* Get the section-relative offset for a symbol number. */ | |
11067 | ||
11068 | static bfd_vma | |
7fa3d080 | 11069 | get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
11070 | { |
11071 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
11072 | bfd_vma offset = 0; | |
11073 | ||
43cd72b9 | 11074 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
11075 | { |
11076 | Elf_Internal_Sym *isymbuf; | |
11077 | isymbuf = retrieve_local_syms (abfd); | |
11078 | offset = isymbuf[r_symndx].st_value; | |
11079 | } | |
11080 | else | |
11081 | { | |
11082 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
11083 | struct elf_link_hash_entry *h = | |
11084 | elf_sym_hashes (abfd)[indx]; | |
11085 | ||
11086 | while (h->root.type == bfd_link_hash_indirect | |
07d6d2b8 | 11087 | || h->root.type == bfd_link_hash_warning) |
e0001a05 NC |
11088 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
11089 | if (h->root.type == bfd_link_hash_defined | |
07d6d2b8 | 11090 | || h->root.type == bfd_link_hash_defweak) |
e0001a05 NC |
11091 | offset = h->root.u.def.value; |
11092 | } | |
11093 | return offset; | |
11094 | } | |
11095 | ||
11096 | ||
11097 | static bfd_boolean | |
7fa3d080 | 11098 | is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel) |
43cd72b9 BW |
11099 | { |
11100 | unsigned long r_symndx = ELF32_R_SYM (rel->r_info); | |
11101 | struct elf_link_hash_entry *h; | |
11102 | ||
11103 | h = get_elf_r_symndx_hash_entry (abfd, r_symndx); | |
11104 | if (h && h->root.type == bfd_link_hash_defweak) | |
11105 | return TRUE; | |
11106 | return FALSE; | |
11107 | } | |
11108 | ||
11109 | ||
11110 | static bfd_boolean | |
7fa3d080 BW |
11111 | pcrel_reloc_fits (xtensa_opcode opc, |
11112 | int opnd, | |
11113 | bfd_vma self_address, | |
11114 | bfd_vma dest_address) | |
e0001a05 | 11115 | { |
43cd72b9 BW |
11116 | xtensa_isa isa = xtensa_default_isa; |
11117 | uint32 valp = dest_address; | |
11118 | if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address) | |
11119 | || xtensa_operand_encode (isa, opc, opnd, &valp)) | |
11120 | return FALSE; | |
11121 | return TRUE; | |
e0001a05 NC |
11122 | } |
11123 | ||
11124 | ||
68ffbac6 | 11125 | static bfd_boolean |
7fa3d080 | 11126 | xtensa_is_property_section (asection *sec) |
e0001a05 | 11127 | { |
1d25768e BW |
11128 | if (xtensa_is_insntable_section (sec) |
11129 | || xtensa_is_littable_section (sec) | |
11130 | || xtensa_is_proptable_section (sec)) | |
b614a702 | 11131 | return TRUE; |
e901de89 | 11132 | |
1d25768e BW |
11133 | return FALSE; |
11134 | } | |
11135 | ||
11136 | ||
68ffbac6 | 11137 | static bfd_boolean |
1d25768e BW |
11138 | xtensa_is_insntable_section (asection *sec) |
11139 | { | |
11140 | if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME) | |
11141 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.x.")) | |
e901de89 BW |
11142 | return TRUE; |
11143 | ||
e901de89 BW |
11144 | return FALSE; |
11145 | } | |
11146 | ||
11147 | ||
68ffbac6 | 11148 | static bfd_boolean |
7fa3d080 | 11149 | xtensa_is_littable_section (asection *sec) |
e901de89 | 11150 | { |
1d25768e BW |
11151 | if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME) |
11152 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.p.")) | |
b614a702 | 11153 | return TRUE; |
e901de89 | 11154 | |
1d25768e BW |
11155 | return FALSE; |
11156 | } | |
11157 | ||
11158 | ||
68ffbac6 | 11159 | static bfd_boolean |
1d25768e BW |
11160 | xtensa_is_proptable_section (asection *sec) |
11161 | { | |
11162 | if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME) | |
11163 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop.")) | |
e901de89 | 11164 | return TRUE; |
e0001a05 | 11165 | |
e901de89 | 11166 | return FALSE; |
e0001a05 NC |
11167 | } |
11168 | ||
11169 | ||
43cd72b9 | 11170 | static int |
7fa3d080 | 11171 | internal_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 11172 | { |
43cd72b9 BW |
11173 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; |
11174 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
11175 | ||
11176 | if (a->r_offset != b->r_offset) | |
11177 | return (a->r_offset - b->r_offset); | |
11178 | ||
11179 | /* We don't need to sort on these criteria for correctness, | |
11180 | but enforcing a more strict ordering prevents unstable qsort | |
11181 | from behaving differently with different implementations. | |
11182 | Without the code below we get correct but different results | |
11183 | on Solaris 2.7 and 2.8. We would like to always produce the | |
11184 | same results no matter the host. */ | |
11185 | ||
11186 | if (a->r_info != b->r_info) | |
11187 | return (a->r_info - b->r_info); | |
11188 | ||
11189 | return (a->r_addend - b->r_addend); | |
e0001a05 NC |
11190 | } |
11191 | ||
11192 | ||
11193 | static int | |
7fa3d080 | 11194 | internal_reloc_matches (const void *ap, const void *bp) |
e0001a05 NC |
11195 | { |
11196 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; | |
11197 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
11198 | ||
43cd72b9 BW |
11199 | /* Check if one entry overlaps with the other; this shouldn't happen |
11200 | except when searching for a match. */ | |
e0001a05 NC |
11201 | return (a->r_offset - b->r_offset); |
11202 | } | |
11203 | ||
11204 | ||
74869ac7 BW |
11205 | /* Predicate function used to look up a section in a particular group. */ |
11206 | ||
11207 | static bfd_boolean | |
11208 | match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) | |
11209 | { | |
11210 | const char *gname = inf; | |
11211 | const char *group_name = elf_group_name (sec); | |
68ffbac6 | 11212 | |
74869ac7 BW |
11213 | return (group_name == gname |
11214 | || (group_name != NULL | |
11215 | && gname != NULL | |
11216 | && strcmp (group_name, gname) == 0)); | |
11217 | } | |
11218 | ||
11219 | ||
8255c61b MF |
11220 | static char * |
11221 | xtensa_add_names (const char *base, const char *suffix) | |
11222 | { | |
11223 | if (suffix) | |
11224 | { | |
11225 | size_t base_len = strlen (base); | |
11226 | size_t suffix_len = strlen (suffix); | |
11227 | char *str = bfd_malloc (base_len + suffix_len + 1); | |
11228 | ||
11229 | memcpy (str, base, base_len); | |
11230 | memcpy (str + base_len, suffix, suffix_len + 1); | |
11231 | return str; | |
11232 | } | |
11233 | else | |
11234 | { | |
11235 | return strdup (base); | |
11236 | } | |
11237 | } | |
11238 | ||
1d25768e BW |
11239 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; |
11240 | ||
51c8ebc1 | 11241 | static char * |
8255c61b MF |
11242 | xtensa_property_section_name (asection *sec, const char *base_name, |
11243 | bfd_boolean separate_sections) | |
e0001a05 | 11244 | { |
74869ac7 BW |
11245 | const char *suffix, *group_name; |
11246 | char *prop_sec_name; | |
74869ac7 BW |
11247 | |
11248 | group_name = elf_group_name (sec); | |
11249 | if (group_name) | |
11250 | { | |
11251 | suffix = strrchr (sec->name, '.'); | |
11252 | if (suffix == sec->name) | |
11253 | suffix = 0; | |
8255c61b | 11254 | prop_sec_name = xtensa_add_names (base_name, suffix); |
74869ac7 BW |
11255 | } |
11256 | else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) | |
e0001a05 | 11257 | { |
43cd72b9 | 11258 | char *linkonce_kind = 0; |
b614a702 | 11259 | |
68ffbac6 | 11260 | if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) |
7db48a12 | 11261 | linkonce_kind = "x."; |
68ffbac6 | 11262 | else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) |
7db48a12 | 11263 | linkonce_kind = "p."; |
43cd72b9 BW |
11264 | else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0) |
11265 | linkonce_kind = "prop."; | |
e0001a05 | 11266 | else |
b614a702 BW |
11267 | abort (); |
11268 | ||
43cd72b9 BW |
11269 | prop_sec_name = (char *) bfd_malloc (strlen (sec->name) |
11270 | + strlen (linkonce_kind) + 1); | |
b614a702 | 11271 | memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); |
43cd72b9 | 11272 | strcpy (prop_sec_name + linkonce_len, linkonce_kind); |
b614a702 BW |
11273 | |
11274 | suffix = sec->name + linkonce_len; | |
096c35a7 | 11275 | /* For backward compatibility, replace "t." instead of inserting |
07d6d2b8 | 11276 | the new linkonce_kind (but not for "prop" sections). */ |
0112cd26 | 11277 | if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.') |
07d6d2b8 | 11278 | suffix += 2; |
43cd72b9 | 11279 | strcat (prop_sec_name + linkonce_len, suffix); |
74869ac7 BW |
11280 | } |
11281 | else | |
8255c61b MF |
11282 | { |
11283 | prop_sec_name = xtensa_add_names (base_name, | |
11284 | separate_sections ? sec->name : NULL); | |
11285 | } | |
74869ac7 | 11286 | |
51c8ebc1 BW |
11287 | return prop_sec_name; |
11288 | } | |
11289 | ||
11290 | ||
11291 | static asection * | |
8255c61b MF |
11292 | xtensa_get_separate_property_section (asection *sec, const char *base_name, |
11293 | bfd_boolean separate_section) | |
51c8ebc1 BW |
11294 | { |
11295 | char *prop_sec_name; | |
11296 | asection *prop_sec; | |
11297 | ||
8255c61b MF |
11298 | prop_sec_name = xtensa_property_section_name (sec, base_name, |
11299 | separate_section); | |
51c8ebc1 BW |
11300 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, |
11301 | match_section_group, | |
11302 | (void *) elf_group_name (sec)); | |
11303 | free (prop_sec_name); | |
11304 | return prop_sec; | |
11305 | } | |
11306 | ||
8255c61b MF |
11307 | static asection * |
11308 | xtensa_get_property_section (asection *sec, const char *base_name) | |
11309 | { | |
11310 | asection *prop_sec; | |
11311 | ||
11312 | /* Try individual property section first. */ | |
11313 | prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE); | |
11314 | ||
11315 | /* Refer to a common property section if individual is not present. */ | |
11316 | if (!prop_sec) | |
11317 | prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE); | |
11318 | ||
11319 | return prop_sec; | |
11320 | } | |
11321 | ||
51c8ebc1 BW |
11322 | |
11323 | asection * | |
11324 | xtensa_make_property_section (asection *sec, const char *base_name) | |
11325 | { | |
11326 | char *prop_sec_name; | |
11327 | asection *prop_sec; | |
11328 | ||
74869ac7 | 11329 | /* Check if the section already exists. */ |
8255c61b MF |
11330 | prop_sec_name = xtensa_property_section_name (sec, base_name, |
11331 | elf32xtensa_separate_props); | |
74869ac7 BW |
11332 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, |
11333 | match_section_group, | |
51c8ebc1 | 11334 | (void *) elf_group_name (sec)); |
74869ac7 BW |
11335 | /* If not, create it. */ |
11336 | if (! prop_sec) | |
11337 | { | |
11338 | flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY); | |
fd361982 | 11339 | flags |= (bfd_section_flags (sec) |
74869ac7 BW |
11340 | & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)); |
11341 | ||
11342 | prop_sec = bfd_make_section_anyway_with_flags | |
11343 | (sec->owner, strdup (prop_sec_name), flags); | |
11344 | if (! prop_sec) | |
11345 | return 0; | |
b614a702 | 11346 | |
51c8ebc1 | 11347 | elf_group_name (prop_sec) = elf_group_name (sec); |
e0001a05 NC |
11348 | } |
11349 | ||
74869ac7 BW |
11350 | free (prop_sec_name); |
11351 | return prop_sec; | |
e0001a05 NC |
11352 | } |
11353 | ||
43cd72b9 BW |
11354 | |
11355 | flagword | |
7fa3d080 | 11356 | xtensa_get_property_predef_flags (asection *sec) |
43cd72b9 | 11357 | { |
1d25768e | 11358 | if (xtensa_is_insntable_section (sec)) |
43cd72b9 | 11359 | return (XTENSA_PROP_INSN |
99ded152 | 11360 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
11361 | | XTENSA_PROP_INSN_NO_REORDER); |
11362 | ||
11363 | if (xtensa_is_littable_section (sec)) | |
11364 | return (XTENSA_PROP_LITERAL | |
99ded152 | 11365 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
11366 | | XTENSA_PROP_INSN_NO_REORDER); |
11367 | ||
11368 | return 0; | |
11369 | } | |
11370 | ||
e0001a05 NC |
11371 | \f |
11372 | /* Other functions called directly by the linker. */ | |
11373 | ||
11374 | bfd_boolean | |
7fa3d080 BW |
11375 | xtensa_callback_required_dependence (bfd *abfd, |
11376 | asection *sec, | |
11377 | struct bfd_link_info *link_info, | |
11378 | deps_callback_t callback, | |
11379 | void *closure) | |
e0001a05 NC |
11380 | { |
11381 | Elf_Internal_Rela *internal_relocs; | |
11382 | bfd_byte *contents; | |
11383 | unsigned i; | |
11384 | bfd_boolean ok = TRUE; | |
43cd72b9 BW |
11385 | bfd_size_type sec_size; |
11386 | ||
11387 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 NC |
11388 | |
11389 | /* ".plt*" sections have no explicit relocations but they contain L32R | |
11390 | instructions that reference the corresponding ".got.plt*" sections. */ | |
11391 | if ((sec->flags & SEC_LINKER_CREATED) != 0 | |
0112cd26 | 11392 | && CONST_STRNEQ (sec->name, ".plt")) |
e0001a05 NC |
11393 | { |
11394 | asection *sgotplt; | |
11395 | ||
11396 | /* Find the corresponding ".got.plt*" section. */ | |
11397 | if (sec->name[4] == '\0') | |
ce558b89 | 11398 | sgotplt = elf_hash_table (link_info)->sgotplt; |
e0001a05 NC |
11399 | else |
11400 | { | |
11401 | char got_name[14]; | |
11402 | int chunk = 0; | |
11403 | ||
11404 | BFD_ASSERT (sec->name[4] == '.'); | |
11405 | chunk = strtol (&sec->name[5], NULL, 10); | |
11406 | ||
11407 | sprintf (got_name, ".got.plt.%u", chunk); | |
3d4d4302 | 11408 | sgotplt = bfd_get_linker_section (sec->owner, got_name); |
e0001a05 NC |
11409 | } |
11410 | BFD_ASSERT (sgotplt); | |
11411 | ||
11412 | /* Assume worst-case offsets: L32R at the very end of the ".plt" | |
11413 | section referencing a literal at the very beginning of | |
11414 | ".got.plt". This is very close to the real dependence, anyway. */ | |
43cd72b9 | 11415 | (*callback) (sec, sec_size, sgotplt, 0, closure); |
e0001a05 NC |
11416 | } |
11417 | ||
13161072 BW |
11418 | /* Only ELF files are supported for Xtensa. Check here to avoid a segfault |
11419 | when building uclibc, which runs "ld -b binary /dev/null". */ | |
11420 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
11421 | return ok; | |
11422 | ||
68ffbac6 | 11423 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
e0001a05 NC |
11424 | link_info->keep_memory); |
11425 | if (internal_relocs == NULL | |
43cd72b9 | 11426 | || sec->reloc_count == 0) |
e0001a05 NC |
11427 | return ok; |
11428 | ||
11429 | /* Cache the contents for the duration of this scan. */ | |
11430 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 11431 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
11432 | { |
11433 | ok = FALSE; | |
11434 | goto error_return; | |
11435 | } | |
11436 | ||
43cd72b9 BW |
11437 | if (!xtensa_default_isa) |
11438 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 11439 | |
43cd72b9 | 11440 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
11441 | { |
11442 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 | 11443 | if (is_l32r_relocation (abfd, sec, contents, irel)) |
e0001a05 NC |
11444 | { |
11445 | r_reloc l32r_rel; | |
11446 | asection *target_sec; | |
11447 | bfd_vma target_offset; | |
43cd72b9 BW |
11448 | |
11449 | r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size); | |
e0001a05 NC |
11450 | target_sec = NULL; |
11451 | target_offset = 0; | |
11452 | /* L32Rs must be local to the input file. */ | |
11453 | if (r_reloc_is_defined (&l32r_rel)) | |
11454 | { | |
11455 | target_sec = r_reloc_get_section (&l32r_rel); | |
43cd72b9 | 11456 | target_offset = l32r_rel.target_offset; |
e0001a05 NC |
11457 | } |
11458 | (*callback) (sec, irel->r_offset, target_sec, target_offset, | |
11459 | closure); | |
11460 | } | |
11461 | } | |
11462 | ||
11463 | error_return: | |
11464 | release_internal_relocs (sec, internal_relocs); | |
11465 | release_contents (sec, contents); | |
11466 | return ok; | |
11467 | } | |
11468 | ||
2f89ff8d L |
11469 | /* The default literal sections should always be marked as "code" (i.e., |
11470 | SHF_EXECINSTR). This is particularly important for the Linux kernel | |
11471 | module loader so that the literals are not placed after the text. */ | |
b35d266b | 11472 | static const struct bfd_elf_special_section elf_xtensa_special_sections[] = |
2f89ff8d | 11473 | { |
0112cd26 NC |
11474 | { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
11475 | { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
07d6d2b8 AM |
11476 | { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
11477 | { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 }, | |
11478 | { NULL, 0, 0, 0, 0 } | |
7f4d3958 | 11479 | }; |
e0001a05 | 11480 | \f |
ae95ffa6 | 11481 | #define ELF_TARGET_ID XTENSA_ELF_DATA |
e0001a05 | 11482 | #ifndef ELF_ARCH |
6d00b590 | 11483 | #define TARGET_LITTLE_SYM xtensa_elf32_le_vec |
e0001a05 | 11484 | #define TARGET_LITTLE_NAME "elf32-xtensa-le" |
6d00b590 | 11485 | #define TARGET_BIG_SYM xtensa_elf32_be_vec |
e0001a05 NC |
11486 | #define TARGET_BIG_NAME "elf32-xtensa-be" |
11487 | #define ELF_ARCH bfd_arch_xtensa | |
11488 | ||
4af0a1d8 BW |
11489 | #define ELF_MACHINE_CODE EM_XTENSA |
11490 | #define ELF_MACHINE_ALT1 EM_XTENSA_OLD | |
e0001a05 | 11491 | |
f7e16c2a | 11492 | #define ELF_MAXPAGESIZE 0x1000 |
e0001a05 NC |
11493 | #endif /* ELF_ARCH */ |
11494 | ||
11495 | #define elf_backend_can_gc_sections 1 | |
11496 | #define elf_backend_can_refcount 1 | |
11497 | #define elf_backend_plt_readonly 1 | |
11498 | #define elf_backend_got_header_size 4 | |
11499 | #define elf_backend_want_dynbss 0 | |
11500 | #define elf_backend_want_got_plt 1 | |
64f52338 | 11501 | #define elf_backend_dtrel_excludes_plt 1 |
e0001a05 NC |
11502 | |
11503 | #define elf_info_to_howto elf_xtensa_info_to_howto_rela | |
11504 | ||
28dbbc02 BW |
11505 | #define bfd_elf32_mkobject elf_xtensa_mkobject |
11506 | ||
e0001a05 NC |
11507 | #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data |
11508 | #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook | |
11509 | #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data | |
11510 | #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section | |
11511 | #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup | |
157090f7 AM |
11512 | #define bfd_elf32_bfd_reloc_name_lookup \ |
11513 | elf_xtensa_reloc_name_lookup | |
e0001a05 | 11514 | #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags |
f0e6fdb2 | 11515 | #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create |
e0001a05 NC |
11516 | |
11517 | #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol | |
11518 | #define elf_backend_check_relocs elf_xtensa_check_relocs | |
e0001a05 NC |
11519 | #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections |
11520 | #define elf_backend_discard_info elf_xtensa_discard_info | |
11521 | #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs | |
11522 | #define elf_backend_final_write_processing elf_xtensa_final_write_processing | |
11523 | #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections | |
11524 | #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol | |
11525 | #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook | |
e0001a05 NC |
11526 | #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus |
11527 | #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo | |
95147441 | 11528 | #define elf_backend_hide_symbol elf_xtensa_hide_symbol |
e0001a05 NC |
11529 | #define elf_backend_object_p elf_xtensa_object_p |
11530 | #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class | |
11531 | #define elf_backend_relocate_section elf_xtensa_relocate_section | |
11532 | #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections | |
28dbbc02 | 11533 | #define elf_backend_always_size_sections elf_xtensa_always_size_sections |
d00dd7dc | 11534 | #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all |
29ef7005 | 11535 | #define elf_backend_special_sections elf_xtensa_special_sections |
a77dc2cc | 11536 | #define elf_backend_action_discarded elf_xtensa_action_discarded |
28dbbc02 | 11537 | #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol |
e0001a05 NC |
11538 | |
11539 | #include "elf32-target.h" |