sata_promise: fix endianess bug in ASIC PRD bug workaround
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
2dcb407e 52#include <linux/io.h>
1da177e4 53#include <scsi/scsi.h>
193515d5 54#include <scsi/scsi_cmnd.h>
1da177e4
LT
55#include <scsi/scsi_host.h>
56#include <linux/libata.h>
1da177e4
LT
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5 62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
71static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
3373efd8 73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
baf4fdfa
ML
89int atapi_passthru16 = 1;
90module_param(atapi_passthru16, int, 0444);
91MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
92
c3c013a2
JG
93int libata_fua = 0;
94module_param_named(fua, libata_fua, int, 0444);
95MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
96
2dcb407e 97static int ata_ignore_hpa;
1e999736
AC
98module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
100
b3a70601
AC
101static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102module_param_named(dma, libata_dma_mask, int, 0444);
103MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
104
a8601e5f
AM
105static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106module_param(ata_probe_timeout, int, 0444);
107MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
108
6ebe9d86 109int libata_noacpi = 0;
d7d0dad6 110module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 111MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 112
1da177e4
LT
113MODULE_AUTHOR("Jeff Garzik");
114MODULE_DESCRIPTION("Library module for ATA devices");
115MODULE_LICENSE("GPL");
116MODULE_VERSION(DRV_VERSION);
117
0baab86b 118
1da177e4
LT
119/**
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
1da177e4 122 * @pmp: Port multiplier port
9977126c
TH
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
1da177e4
LT
125 *
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
128 *
129 * LOCKING:
130 * Inherited from caller.
131 */
9977126c 132void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 133{
9977126c
TH
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
138
1da177e4
LT
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
141
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
146
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
151
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
156
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
161}
162
163/**
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
167 *
e12a1be6 168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
169 *
170 * LOCKING:
171 * Inherited from caller.
172 */
173
057ace5e 174void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
175{
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
178
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
183
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
187
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
190}
191
8cbd6df1
AL
192static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
198 0,
199 0,
200 0,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
207 0,
208 0,
209 0,
210 0,
8cbd6df1
AL
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
9a3dccc4
TH
215 ATA_CMD_WRITE_EXT,
216 0,
217 0,
218 0,
219 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 220};
1da177e4
LT
221
222/**
8cbd6df1 223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
1da177e4 226 *
2e9edbf8 227 * Examine the device configuration and tf->flags to calculate
8cbd6df1 228 * the proper read/write commands and protocol to use.
1da177e4
LT
229 *
230 * LOCKING:
231 * caller.
232 */
bd056d7e 233static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 234{
9a3dccc4 235 u8 cmd;
1da177e4 236
9a3dccc4 237 int index, fua, lba48, write;
2e9edbf8 238
9a3dccc4 239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 242
8cbd6df1
AL
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
9a3dccc4 245 index = dev->multi_count ? 0 : 8;
9af5c9c9 246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
0565c26d 249 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
250 } else {
251 tf->protocol = ATA_PROT_DMA;
9a3dccc4 252 index = 16;
8cbd6df1 253 }
1da177e4 254
9a3dccc4
TH
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
259 }
260 return -1;
1da177e4
LT
261}
262
35b649fe
TH
263/**
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
267 *
268 * LOCKING:
269 * None.
270 *
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
274 *
275 * RETURNS:
276 * Block address read from @tf.
277 */
278u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
279{
280 u64 block = 0;
281
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
289
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
295
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
299
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
301 }
302
303 return block;
304}
305
bd056d7e
TH
306/**
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
314 *
315 * LOCKING:
316 * None.
317 *
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
320 *
321 * RETURNS:
322 *
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
325 */
326int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
329{
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
332
6d1245bf 333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
337
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
340
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
345
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
349
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
356
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
362
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
369
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
372
373 tf->hob_nsect = (n_block >> 8) & 0xff;
374
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
381
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
384
385 tf->nsect = n_block & 0xff;
386
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
390
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
395
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
399
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
402
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
408
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
411
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
418
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
424 }
425
426 return 0;
427}
428
cb95d562
TH
429/**
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
434 *
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
437 *
438 * LOCKING:
439 * None.
440 *
441 * RETURNS:
442 * Packed xfer_mask.
443 */
444static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
447{
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
451}
452
c0489e4e
TH
453/**
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
459 *
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
462 */
463static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
467{
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
474}
475
cb95d562 476static const struct ata_xfer_ent {
be9a50c8 477 int shift, bits;
cb95d562
TH
478 u8 base;
479} ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
484};
485
486/**
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
489 *
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
498 */
499static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
500{
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
503
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
508}
509
510/**
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
513 *
514 * Return matching xfer_mask for @xfer_mode.
515 *
516 * LOCKING:
517 * None.
518 *
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
521 */
522static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
523{
524 const struct ata_xfer_ent *ent;
525
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
530}
531
532/**
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
535 *
536 * Return matching xfer_shift for @xfer_mode.
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
543 */
544static int ata_xfer_mode2shift(unsigned int xfer_mode)
545{
546 const struct ata_xfer_ent *ent;
547
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
552}
553
1da177e4 554/**
1da7b0d0
TH
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
557 *
558 * Determine string which represents the highest speed
1da7b0d0 559 * (highest bit in @modemask).
1da177e4
LT
560 *
561 * LOCKING:
562 * None.
563 *
564 * RETURNS:
565 * Constant C string representing highest speed listed in
1da7b0d0 566 * @mode_mask, or the constant C string "<n/a>".
1da177e4 567 */
1da7b0d0 568static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 569{
75f554bc
TH
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
b352e57d
AC
576 "PIO5",
577 "PIO6",
75f554bc
TH
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
b352e57d
AC
581 "MWDMA3",
582 "MWDMA4",
75f554bc
TH
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
591 };
1da7b0d0 592 int highbit;
1da177e4 593
1da7b0d0
TH
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
1da177e4 597 return "<n/a>";
1da177e4
LT
598}
599
4c360c81
TH
600static const char *sata_spd_string(unsigned int spd)
601{
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
605 };
606
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
610}
611
3373efd8 612void ata_dev_disable(struct ata_device *dev)
0b8efb0a 613{
09d7f9b0 614 if (ata_dev_enabled(dev)) {
9af5c9c9 615 if (ata_msg_drv(dev->link->ap))
09d7f9b0 616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
0b8efb0a
TH
619 dev->class++;
620 }
621}
622
ca77329f
KCA
623static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
624{
625 struct ata_link *link = dev->link;
626 struct ata_port *ap = link->ap;
627 u32 scontrol;
628 unsigned int err_mask;
629 int rc;
630
631 /*
632 * disallow DIPM for drivers which haven't set
633 * ATA_FLAG_IPM. This is because when DIPM is enabled,
634 * phy ready will be set in the interrupt status on
635 * state changes, which will cause some drivers to
636 * think there are errors - additionally drivers will
637 * need to disable hot plug.
638 */
639 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
640 ap->pm_policy = NOT_AVAILABLE;
641 return -EINVAL;
642 }
643
644 /*
645 * For DIPM, we will only enable it for the
646 * min_power setting.
647 *
648 * Why? Because Disks are too stupid to know that
649 * If the host rejects a request to go to SLUMBER
650 * they should retry at PARTIAL, and instead it
651 * just would give up. So, for medium_power to
652 * work at all, we need to only allow HIPM.
653 */
654 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
655 if (rc)
656 return rc;
657
658 switch (policy) {
659 case MIN_POWER:
660 /* no restrictions on IPM transitions */
661 scontrol &= ~(0x3 << 8);
662 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
663 if (rc)
664 return rc;
665
666 /* enable DIPM */
667 if (dev->flags & ATA_DFLAG_DIPM)
668 err_mask = ata_dev_set_feature(dev,
669 SETFEATURES_SATA_ENABLE, SATA_DIPM);
670 break;
671 case MEDIUM_POWER:
672 /* allow IPM to PARTIAL */
673 scontrol &= ~(0x1 << 8);
674 scontrol |= (0x2 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
678
679 /* disable DIPM */
680 if (ata_dev_enabled(dev) && (dev->flags & ATA_DFLAG_DIPM))
681 err_mask = ata_dev_set_feature(dev,
682 SETFEATURES_SATA_DISABLE, SATA_DIPM);
683 break;
684 case NOT_AVAILABLE:
685 case MAX_PERFORMANCE:
686 /* disable all IPM transitions */
687 scontrol |= (0x3 << 8);
688 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
689 if (rc)
690 return rc;
691
692 /* disable DIPM */
693 if (ata_dev_enabled(dev) && (dev->flags & ATA_DFLAG_DIPM))
694 err_mask = ata_dev_set_feature(dev,
695 SETFEATURES_SATA_DISABLE, SATA_DIPM);
696 break;
697 }
698
699 /* FIXME: handle SET FEATURES failure */
700 (void) err_mask;
701
702 return 0;
703}
704
705/**
706 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
707 * @dev: device to enable power management
708 * @policy: the link power management policy
ca77329f
KCA
709 *
710 * Enable SATA Interface power management. This will enable
711 * Device Interface Power Management (DIPM) for min_power
712 * policy, and then call driver specific callbacks for
713 * enabling Host Initiated Power management.
714 *
715 * Locking: Caller.
716 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
717 */
718void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
719{
720 int rc = 0;
721 struct ata_port *ap = dev->link->ap;
722
723 /* set HIPM first, then DIPM */
724 if (ap->ops->enable_pm)
725 rc = ap->ops->enable_pm(ap, policy);
726 if (rc)
727 goto enable_pm_out;
728 rc = ata_dev_set_dipm(dev, policy);
729
730enable_pm_out:
731 if (rc)
732 ap->pm_policy = MAX_PERFORMANCE;
733 else
734 ap->pm_policy = policy;
735 return /* rc */; /* hopefully we can use 'rc' eventually */
736}
737
1992a5ed 738#ifdef CONFIG_PM
ca77329f
KCA
739/**
740 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 741 * @dev: device to disable power management
ca77329f
KCA
742 *
743 * Disable SATA Interface power management. This will disable
744 * Device Interface Power Management (DIPM) without changing
745 * policy, call driver specific callbacks for disabling Host
746 * Initiated Power management.
747 *
748 * Locking: Caller.
749 * Returns: void
750 */
751static void ata_dev_disable_pm(struct ata_device *dev)
752{
753 struct ata_port *ap = dev->link->ap;
754
755 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
756 if (ap->ops->disable_pm)
757 ap->ops->disable_pm(ap);
758}
1992a5ed 759#endif /* CONFIG_PM */
ca77329f
KCA
760
761void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
762{
763 ap->pm_policy = policy;
764 ap->link.eh_info.action |= ATA_EHI_LPM;
765 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
766 ata_port_schedule_eh(ap);
767}
768
1992a5ed 769#ifdef CONFIG_PM
ca77329f
KCA
770static void ata_lpm_enable(struct ata_host *host)
771{
772 struct ata_link *link;
773 struct ata_port *ap;
774 struct ata_device *dev;
775 int i;
776
777 for (i = 0; i < host->n_ports; i++) {
778 ap = host->ports[i];
779 ata_port_for_each_link(link, ap) {
780 ata_link_for_each_dev(dev, link)
781 ata_dev_disable_pm(dev);
782 }
783 }
784}
785
786static void ata_lpm_disable(struct ata_host *host)
787{
788 int i;
789
790 for (i = 0; i < host->n_ports; i++) {
791 struct ata_port *ap = host->ports[i];
792 ata_lpm_schedule(ap, ap->pm_policy);
793 }
794}
1992a5ed 795#endif /* CONFIG_PM */
ca77329f
KCA
796
797
1da177e4 798/**
0d5ff566 799 * ata_devchk - PATA device presence detection
1da177e4
LT
800 * @ap: ATA channel to examine
801 * @device: Device to examine (starting at zero)
802 *
803 * This technique was originally described in
804 * Hale Landis's ATADRVR (www.ata-atapi.com), and
805 * later found its way into the ATA/ATAPI spec.
806 *
807 * Write a pattern to the ATA shadow registers,
808 * and if a device is present, it will respond by
809 * correctly storing and echoing back the
810 * ATA shadow register contents.
811 *
812 * LOCKING:
813 * caller.
814 */
815
0d5ff566 816static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
817{
818 struct ata_ioports *ioaddr = &ap->ioaddr;
819 u8 nsect, lbal;
820
821 ap->ops->dev_select(ap, device);
822
0d5ff566
TH
823 iowrite8(0x55, ioaddr->nsect_addr);
824 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 825
0d5ff566
TH
826 iowrite8(0xaa, ioaddr->nsect_addr);
827 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 828
0d5ff566
TH
829 iowrite8(0x55, ioaddr->nsect_addr);
830 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 831
0d5ff566
TH
832 nsect = ioread8(ioaddr->nsect_addr);
833 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
834
835 if ((nsect == 0x55) && (lbal == 0xaa))
836 return 1; /* we found a device */
837
838 return 0; /* nothing found */
839}
840
1da177e4
LT
841/**
842 * ata_dev_classify - determine device type based on ATA-spec signature
843 * @tf: ATA taskfile register set for device to be identified
844 *
845 * Determine from taskfile register contents whether a device is
846 * ATA or ATAPI, as per "Signature and persistence" section
847 * of ATA/PI spec (volume 1, sect 5.14).
848 *
849 * LOCKING:
850 * None.
851 *
852 * RETURNS:
633273a3
TH
853 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
854 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 855 */
057ace5e 856unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
857{
858 /* Apple's open source Darwin code hints that some devices only
859 * put a proper signature into the LBA mid/high registers,
860 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
861 *
862 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
863 * signatures for ATA and ATAPI devices attached on SerialATA,
864 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
865 * spec has never mentioned about using different signatures
866 * for ATA/ATAPI devices. Then, Serial ATA II: Port
867 * Multiplier specification began to use 0x69/0x96 to identify
868 * port multpliers and 0x3c/0xc3 to identify SEMB device.
869 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
870 * 0x69/0x96 shortly and described them as reserved for
871 * SerialATA.
872 *
873 * We follow the current spec and consider that 0x69/0x96
874 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 875 */
633273a3 876 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
877 DPRINTK("found ATA device by sig\n");
878 return ATA_DEV_ATA;
879 }
880
633273a3 881 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
882 DPRINTK("found ATAPI device by sig\n");
883 return ATA_DEV_ATAPI;
884 }
885
633273a3
TH
886 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
887 DPRINTK("found PMP device by sig\n");
888 return ATA_DEV_PMP;
889 }
890
891 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 892 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
893 return ATA_DEV_SEMB_UNSUP; /* not yet */
894 }
895
1da177e4
LT
896 DPRINTK("unknown device\n");
897 return ATA_DEV_UNKNOWN;
898}
899
900/**
901 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
902 * @dev: ATA device to classify (starting at zero)
903 * @present: device seems present
b4dc7623 904 * @r_err: Value of error register on completion
1da177e4
LT
905 *
906 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
907 * an ATA/ATAPI-defined set of values is placed in the ATA
908 * shadow registers, indicating the results of device detection
909 * and diagnostics.
910 *
911 * Select the ATA device, and read the values from the ATA shadow
912 * registers. Then parse according to the Error register value,
913 * and the spec-defined values examined by ata_dev_classify().
914 *
915 * LOCKING:
916 * caller.
b4dc7623
TH
917 *
918 * RETURNS:
919 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 920 */
3f19859e
TH
921unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
922 u8 *r_err)
1da177e4 923{
3f19859e 924 struct ata_port *ap = dev->link->ap;
1da177e4
LT
925 struct ata_taskfile tf;
926 unsigned int class;
927 u8 err;
928
3f19859e 929 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
930
931 memset(&tf, 0, sizeof(tf));
932
1da177e4 933 ap->ops->tf_read(ap, &tf);
0169e284 934 err = tf.feature;
b4dc7623
TH
935 if (r_err)
936 *r_err = err;
1da177e4 937
93590859 938 /* see if device passed diags: if master then continue and warn later */
3f19859e 939 if (err == 0 && dev->devno == 0)
93590859 940 /* diagnostic fail : do nothing _YET_ */
3f19859e 941 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 942 else if (err == 1)
1da177e4 943 /* do nothing */ ;
3f19859e 944 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
945 /* do nothing */ ;
946 else
b4dc7623 947 return ATA_DEV_NONE;
1da177e4 948
b4dc7623 949 /* determine if device is ATA or ATAPI */
1da177e4 950 class = ata_dev_classify(&tf);
b4dc7623 951
d7fbee05
TH
952 if (class == ATA_DEV_UNKNOWN) {
953 /* If the device failed diagnostic, it's likely to
954 * have reported incorrect device signature too.
955 * Assume ATA device if the device seems present but
956 * device signature is invalid with diagnostic
957 * failure.
958 */
959 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
960 class = ATA_DEV_ATA;
961 else
962 class = ATA_DEV_NONE;
963 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
964 class = ATA_DEV_NONE;
965
b4dc7623 966 return class;
1da177e4
LT
967}
968
969/**
6a62a04d 970 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
971 * @id: IDENTIFY DEVICE results we will examine
972 * @s: string into which data is output
973 * @ofs: offset into identify device page
974 * @len: length of string to return. must be an even number.
975 *
976 * The strings in the IDENTIFY DEVICE page are broken up into
977 * 16-bit chunks. Run through the string, and output each
978 * 8-bit chunk linearly, regardless of platform.
979 *
980 * LOCKING:
981 * caller.
982 */
983
6a62a04d
TH
984void ata_id_string(const u16 *id, unsigned char *s,
985 unsigned int ofs, unsigned int len)
1da177e4
LT
986{
987 unsigned int c;
988
989 while (len > 0) {
990 c = id[ofs] >> 8;
991 *s = c;
992 s++;
993
994 c = id[ofs] & 0xff;
995 *s = c;
996 s++;
997
998 ofs++;
999 len -= 2;
1000 }
1001}
1002
0e949ff3 1003/**
6a62a04d 1004 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1005 * @id: IDENTIFY DEVICE results we will examine
1006 * @s: string into which data is output
1007 * @ofs: offset into identify device page
1008 * @len: length of string to return. must be an odd number.
1009 *
6a62a04d 1010 * This function is identical to ata_id_string except that it
0e949ff3
TH
1011 * trims trailing spaces and terminates the resulting string with
1012 * null. @len must be actual maximum length (even number) + 1.
1013 *
1014 * LOCKING:
1015 * caller.
1016 */
6a62a04d
TH
1017void ata_id_c_string(const u16 *id, unsigned char *s,
1018 unsigned int ofs, unsigned int len)
0e949ff3
TH
1019{
1020 unsigned char *p;
1021
1022 WARN_ON(!(len & 1));
1023
6a62a04d 1024 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1025
1026 p = s + strnlen(s, len - 1);
1027 while (p > s && p[-1] == ' ')
1028 p--;
1029 *p = '\0';
1030}
0baab86b 1031
db6f8759
TH
1032static u64 ata_id_n_sectors(const u16 *id)
1033{
1034 if (ata_id_has_lba(id)) {
1035 if (ata_id_has_lba48(id))
1036 return ata_id_u64(id, 100);
1037 else
1038 return ata_id_u32(id, 60);
1039 } else {
1040 if (ata_id_current_chs_valid(id))
1041 return ata_id_u32(id, 57);
1042 else
1043 return id[1] * id[3] * id[6];
1044 }
1045}
1046
1e999736
AC
1047static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1048{
1049 u64 sectors = 0;
1050
1051 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1052 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1053 sectors |= (tf->hob_lbal & 0xff) << 24;
1054 sectors |= (tf->lbah & 0xff) << 16;
1055 sectors |= (tf->lbam & 0xff) << 8;
1056 sectors |= (tf->lbal & 0xff);
1057
1058 return ++sectors;
1059}
1060
1061static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1062{
1063 u64 sectors = 0;
1064
1065 sectors |= (tf->device & 0x0f) << 24;
1066 sectors |= (tf->lbah & 0xff) << 16;
1067 sectors |= (tf->lbam & 0xff) << 8;
1068 sectors |= (tf->lbal & 0xff);
1069
1070 return ++sectors;
1071}
1072
1073/**
c728a914
TH
1074 * ata_read_native_max_address - Read native max address
1075 * @dev: target device
1076 * @max_sectors: out parameter for the result native max address
1e999736 1077 *
c728a914
TH
1078 * Perform an LBA48 or LBA28 native size query upon the device in
1079 * question.
1e999736 1080 *
c728a914
TH
1081 * RETURNS:
1082 * 0 on success, -EACCES if command is aborted by the drive.
1083 * -EIO on other errors.
1e999736 1084 */
c728a914 1085static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1086{
c728a914 1087 unsigned int err_mask;
1e999736 1088 struct ata_taskfile tf;
c728a914 1089 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1090
1091 ata_tf_init(dev, &tf);
1092
c728a914 1093 /* always clear all address registers */
1e999736 1094 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1095
c728a914
TH
1096 if (lba48) {
1097 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1098 tf.flags |= ATA_TFLAG_LBA48;
1099 } else
1100 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1101
1e999736 1102 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1103 tf.device |= ATA_LBA;
1104
2b789108 1105 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1106 if (err_mask) {
1107 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1108 "max address (err_mask=0x%x)\n", err_mask);
1109 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1110 return -EACCES;
1111 return -EIO;
1112 }
1e999736 1113
c728a914
TH
1114 if (lba48)
1115 *max_sectors = ata_tf_to_lba48(&tf);
1116 else
1117 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1118 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1119 (*max_sectors)--;
c728a914 1120 return 0;
1e999736
AC
1121}
1122
1123/**
c728a914
TH
1124 * ata_set_max_sectors - Set max sectors
1125 * @dev: target device
6b38d1d1 1126 * @new_sectors: new max sectors value to set for the device
1e999736 1127 *
c728a914
TH
1128 * Set max sectors of @dev to @new_sectors.
1129 *
1130 * RETURNS:
1131 * 0 on success, -EACCES if command is aborted or denied (due to
1132 * previous non-volatile SET_MAX) by the drive. -EIO on other
1133 * errors.
1e999736 1134 */
05027adc 1135static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1136{
c728a914 1137 unsigned int err_mask;
1e999736 1138 struct ata_taskfile tf;
c728a914 1139 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1140
1141 new_sectors--;
1142
1143 ata_tf_init(dev, &tf);
1144
1e999736 1145 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1146
1147 if (lba48) {
1148 tf.command = ATA_CMD_SET_MAX_EXT;
1149 tf.flags |= ATA_TFLAG_LBA48;
1150
1151 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1152 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1153 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1154 } else {
c728a914
TH
1155 tf.command = ATA_CMD_SET_MAX;
1156
1e582ba4
TH
1157 tf.device |= (new_sectors >> 24) & 0xf;
1158 }
1159
1e999736 1160 tf.protocol |= ATA_PROT_NODATA;
c728a914 1161 tf.device |= ATA_LBA;
1e999736
AC
1162
1163 tf.lbal = (new_sectors >> 0) & 0xff;
1164 tf.lbam = (new_sectors >> 8) & 0xff;
1165 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1166
2b789108 1167 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1168 if (err_mask) {
1169 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1170 "max address (err_mask=0x%x)\n", err_mask);
1171 if (err_mask == AC_ERR_DEV &&
1172 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1173 return -EACCES;
1174 return -EIO;
1175 }
1176
c728a914 1177 return 0;
1e999736
AC
1178}
1179
1180/**
1181 * ata_hpa_resize - Resize a device with an HPA set
1182 * @dev: Device to resize
1183 *
1184 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1185 * it if required to the full size of the media. The caller must check
1186 * the drive has the HPA feature set enabled.
05027adc
TH
1187 *
1188 * RETURNS:
1189 * 0 on success, -errno on failure.
1e999736 1190 */
05027adc 1191static int ata_hpa_resize(struct ata_device *dev)
1e999736 1192{
05027adc
TH
1193 struct ata_eh_context *ehc = &dev->link->eh_context;
1194 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1195 u64 sectors = ata_id_n_sectors(dev->id);
1196 u64 native_sectors;
c728a914 1197 int rc;
a617c09f 1198
05027adc
TH
1199 /* do we need to do it? */
1200 if (dev->class != ATA_DEV_ATA ||
1201 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1202 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1203 return 0;
1e999736 1204
05027adc
TH
1205 /* read native max address */
1206 rc = ata_read_native_max_address(dev, &native_sectors);
1207 if (rc) {
1208 /* If HPA isn't going to be unlocked, skip HPA
1209 * resizing from the next try.
1210 */
1211 if (!ata_ignore_hpa) {
1212 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1213 "broken, will skip HPA handling\n");
1214 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1215
1216 /* we can continue if device aborted the command */
1217 if (rc == -EACCES)
1218 rc = 0;
1e999736 1219 }
37301a55 1220
05027adc
TH
1221 return rc;
1222 }
1223
1224 /* nothing to do? */
1225 if (native_sectors <= sectors || !ata_ignore_hpa) {
1226 if (!print_info || native_sectors == sectors)
1227 return 0;
1228
1229 if (native_sectors > sectors)
1230 ata_dev_printk(dev, KERN_INFO,
1231 "HPA detected: current %llu, native %llu\n",
1232 (unsigned long long)sectors,
1233 (unsigned long long)native_sectors);
1234 else if (native_sectors < sectors)
1235 ata_dev_printk(dev, KERN_WARNING,
1236 "native sectors (%llu) is smaller than "
1237 "sectors (%llu)\n",
1238 (unsigned long long)native_sectors,
1239 (unsigned long long)sectors);
1240 return 0;
1241 }
1242
1243 /* let's unlock HPA */
1244 rc = ata_set_max_sectors(dev, native_sectors);
1245 if (rc == -EACCES) {
1246 /* if device aborted the command, skip HPA resizing */
1247 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1248 "(%llu -> %llu), skipping HPA handling\n",
1249 (unsigned long long)sectors,
1250 (unsigned long long)native_sectors);
1251 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1252 return 0;
1253 } else if (rc)
1254 return rc;
1255
1256 /* re-read IDENTIFY data */
1257 rc = ata_dev_reread_id(dev, 0);
1258 if (rc) {
1259 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1260 "data after HPA resizing\n");
1261 return rc;
1262 }
1263
1264 if (print_info) {
1265 u64 new_sectors = ata_id_n_sectors(dev->id);
1266 ata_dev_printk(dev, KERN_INFO,
1267 "HPA unlocked: %llu -> %llu, native %llu\n",
1268 (unsigned long long)sectors,
1269 (unsigned long long)new_sectors,
1270 (unsigned long long)native_sectors);
1271 }
1272
1273 return 0;
1e999736
AC
1274}
1275
10305f0f
A
1276/**
1277 * ata_id_to_dma_mode - Identify DMA mode from id block
1278 * @dev: device to identify
cc261267 1279 * @unknown: mode to assume if we cannot tell
10305f0f
A
1280 *
1281 * Set up the timing values for the device based upon the identify
1282 * reported values for the DMA mode. This function is used by drivers
1283 * which rely upon firmware configured modes, but wish to report the
1284 * mode correctly when possible.
1285 *
1286 * In addition we emit similarly formatted messages to the default
1287 * ata_dev_set_mode handler, in order to provide consistency of
1288 * presentation.
1289 */
1290
1291void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1292{
1293 unsigned int mask;
1294 u8 mode;
1295
1296 /* Pack the DMA modes */
1297 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1298 if (dev->id[53] & 0x04)
1299 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1300
1301 /* Select the mode in use */
1302 mode = ata_xfer_mask2mode(mask);
1303
1304 if (mode != 0) {
1305 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1306 ata_mode_string(mask));
1307 } else {
1308 /* SWDMA perhaps ? */
1309 mode = unknown;
1310 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1311 }
1312
1313 /* Configure the device reporting */
1314 dev->xfer_mode = mode;
1315 dev->xfer_shift = ata_xfer_mode2shift(mode);
1316}
1317
0baab86b
EF
1318/**
1319 * ata_noop_dev_select - Select device 0/1 on ATA bus
1320 * @ap: ATA channel to manipulate
1321 * @device: ATA device (numbered from zero) to select
1322 *
1323 * This function performs no actual function.
1324 *
1325 * May be used as the dev_select() entry in ata_port_operations.
1326 *
1327 * LOCKING:
1328 * caller.
1329 */
2dcb407e 1330void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1331{
1332}
1333
0baab86b 1334
1da177e4
LT
1335/**
1336 * ata_std_dev_select - Select device 0/1 on ATA bus
1337 * @ap: ATA channel to manipulate
1338 * @device: ATA device (numbered from zero) to select
1339 *
1340 * Use the method defined in the ATA specification to
1341 * make either device 0, or device 1, active on the
0baab86b
EF
1342 * ATA channel. Works with both PIO and MMIO.
1343 *
1344 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1345 *
1346 * LOCKING:
1347 * caller.
1348 */
1349
2dcb407e 1350void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1351{
1352 u8 tmp;
1353
1354 if (device == 0)
1355 tmp = ATA_DEVICE_OBS;
1356 else
1357 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1358
0d5ff566 1359 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1360 ata_pause(ap); /* needed; also flushes, for mmio */
1361}
1362
1363/**
1364 * ata_dev_select - Select device 0/1 on ATA bus
1365 * @ap: ATA channel to manipulate
1366 * @device: ATA device (numbered from zero) to select
1367 * @wait: non-zero to wait for Status register BSY bit to clear
1368 * @can_sleep: non-zero if context allows sleeping
1369 *
1370 * Use the method defined in the ATA specification to
1371 * make either device 0, or device 1, active on the
1372 * ATA channel.
1373 *
1374 * This is a high-level version of ata_std_dev_select(),
1375 * which additionally provides the services of inserting
1376 * the proper pauses and status polling, where needed.
1377 *
1378 * LOCKING:
1379 * caller.
1380 */
1381
1382void ata_dev_select(struct ata_port *ap, unsigned int device,
1383 unsigned int wait, unsigned int can_sleep)
1384{
88574551 1385 if (ata_msg_probe(ap))
44877b4e
TH
1386 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1387 "device %u, wait %u\n", device, wait);
1da177e4
LT
1388
1389 if (wait)
1390 ata_wait_idle(ap);
1391
1392 ap->ops->dev_select(ap, device);
1393
1394 if (wait) {
9af5c9c9 1395 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1396 msleep(150);
1397 ata_wait_idle(ap);
1398 }
1399}
1400
1401/**
1402 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1403 * @id: IDENTIFY DEVICE page to dump
1da177e4 1404 *
0bd3300a
TH
1405 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1406 * page.
1da177e4
LT
1407 *
1408 * LOCKING:
1409 * caller.
1410 */
1411
0bd3300a 1412static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1413{
1414 DPRINTK("49==0x%04x "
1415 "53==0x%04x "
1416 "63==0x%04x "
1417 "64==0x%04x "
1418 "75==0x%04x \n",
0bd3300a
TH
1419 id[49],
1420 id[53],
1421 id[63],
1422 id[64],
1423 id[75]);
1da177e4
LT
1424 DPRINTK("80==0x%04x "
1425 "81==0x%04x "
1426 "82==0x%04x "
1427 "83==0x%04x "
1428 "84==0x%04x \n",
0bd3300a
TH
1429 id[80],
1430 id[81],
1431 id[82],
1432 id[83],
1433 id[84]);
1da177e4
LT
1434 DPRINTK("88==0x%04x "
1435 "93==0x%04x\n",
0bd3300a
TH
1436 id[88],
1437 id[93]);
1da177e4
LT
1438}
1439
cb95d562
TH
1440/**
1441 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1442 * @id: IDENTIFY data to compute xfer mask from
1443 *
1444 * Compute the xfermask for this device. This is not as trivial
1445 * as it seems if we must consider early devices correctly.
1446 *
1447 * FIXME: pre IDE drive timing (do we care ?).
1448 *
1449 * LOCKING:
1450 * None.
1451 *
1452 * RETURNS:
1453 * Computed xfermask
1454 */
1455static unsigned int ata_id_xfermask(const u16 *id)
1456{
1457 unsigned int pio_mask, mwdma_mask, udma_mask;
1458
1459 /* Usual case. Word 53 indicates word 64 is valid */
1460 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1461 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1462 pio_mask <<= 3;
1463 pio_mask |= 0x7;
1464 } else {
1465 /* If word 64 isn't valid then Word 51 high byte holds
1466 * the PIO timing number for the maximum. Turn it into
1467 * a mask.
1468 */
7a0f1c8a 1469 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1470 if (mode < 5) /* Valid PIO range */
2dcb407e 1471 pio_mask = (2 << mode) - 1;
46767aeb
AC
1472 else
1473 pio_mask = 1;
cb95d562
TH
1474
1475 /* But wait.. there's more. Design your standards by
1476 * committee and you too can get a free iordy field to
1477 * process. However its the speeds not the modes that
1478 * are supported... Note drivers using the timing API
1479 * will get this right anyway
1480 */
1481 }
1482
1483 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1484
b352e57d
AC
1485 if (ata_id_is_cfa(id)) {
1486 /*
1487 * Process compact flash extended modes
1488 */
1489 int pio = id[163] & 0x7;
1490 int dma = (id[163] >> 3) & 7;
1491
1492 if (pio)
1493 pio_mask |= (1 << 5);
1494 if (pio > 1)
1495 pio_mask |= (1 << 6);
1496 if (dma)
1497 mwdma_mask |= (1 << 3);
1498 if (dma > 1)
1499 mwdma_mask |= (1 << 4);
1500 }
1501
fb21f0d0
TH
1502 udma_mask = 0;
1503 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1504 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1505
1506 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1507}
1508
86e45b6b
TH
1509/**
1510 * ata_port_queue_task - Queue port_task
1511 * @ap: The ata_port to queue port_task for
e2a7f77a 1512 * @fn: workqueue function to be scheduled
65f27f38 1513 * @data: data for @fn to use
e2a7f77a 1514 * @delay: delay time for workqueue function
86e45b6b
TH
1515 *
1516 * Schedule @fn(@data) for execution after @delay jiffies using
1517 * port_task. There is one port_task per port and it's the
1518 * user(low level driver)'s responsibility to make sure that only
1519 * one task is active at any given time.
1520 *
1521 * libata core layer takes care of synchronization between
1522 * port_task and EH. ata_port_queue_task() may be ignored for EH
1523 * synchronization.
1524 *
1525 * LOCKING:
1526 * Inherited from caller.
1527 */
65f27f38 1528void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1529 unsigned long delay)
1530{
65f27f38
DH
1531 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1532 ap->port_task_data = data;
86e45b6b 1533
45a66c1c
ON
1534 /* may fail if ata_port_flush_task() in progress */
1535 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1536}
1537
1538/**
1539 * ata_port_flush_task - Flush port_task
1540 * @ap: The ata_port to flush port_task for
1541 *
1542 * After this function completes, port_task is guranteed not to
1543 * be running or scheduled.
1544 *
1545 * LOCKING:
1546 * Kernel thread context (may sleep)
1547 */
1548void ata_port_flush_task(struct ata_port *ap)
1549{
86e45b6b
TH
1550 DPRINTK("ENTER\n");
1551
45a66c1c 1552 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1553
0dd4b21f
BP
1554 if (ata_msg_ctl(ap))
1555 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1556}
1557
7102d230 1558static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1559{
77853bf2 1560 struct completion *waiting = qc->private_data;
a2a7a662 1561
a2a7a662 1562 complete(waiting);
a2a7a662
TH
1563}
1564
1565/**
2432697b 1566 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1567 * @dev: Device to which the command is sent
1568 * @tf: Taskfile registers for the command and the result
d69cf37d 1569 * @cdb: CDB for packet command
a2a7a662 1570 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1571 * @sgl: sg list for the data buffer of the command
2432697b 1572 * @n_elem: Number of sg entries
2b789108 1573 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1574 *
1575 * Executes libata internal command with timeout. @tf contains
1576 * command on entry and result on return. Timeout and error
1577 * conditions are reported via return value. No recovery action
1578 * is taken after a command times out. It's caller's duty to
1579 * clean up after timeout.
1580 *
1581 * LOCKING:
1582 * None. Should be called with kernel context, might sleep.
551e8889
TH
1583 *
1584 * RETURNS:
1585 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1586 */
2432697b
TH
1587unsigned ata_exec_internal_sg(struct ata_device *dev,
1588 struct ata_taskfile *tf, const u8 *cdb,
87260216 1589 int dma_dir, struct scatterlist *sgl,
2b789108 1590 unsigned int n_elem, unsigned long timeout)
a2a7a662 1591{
9af5c9c9
TH
1592 struct ata_link *link = dev->link;
1593 struct ata_port *ap = link->ap;
a2a7a662
TH
1594 u8 command = tf->command;
1595 struct ata_queued_cmd *qc;
2ab7db1f 1596 unsigned int tag, preempted_tag;
dedaf2b0 1597 u32 preempted_sactive, preempted_qc_active;
da917d69 1598 int preempted_nr_active_links;
60be6b9a 1599 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1600 unsigned long flags;
77853bf2 1601 unsigned int err_mask;
d95a717f 1602 int rc;
a2a7a662 1603
ba6a1308 1604 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1605
e3180499 1606 /* no internal command while frozen */
b51e9e5d 1607 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1608 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1609 return AC_ERR_SYSTEM;
1610 }
1611
2ab7db1f 1612 /* initialize internal qc */
a2a7a662 1613
2ab7db1f
TH
1614 /* XXX: Tag 0 is used for drivers with legacy EH as some
1615 * drivers choke if any other tag is given. This breaks
1616 * ata_tag_internal() test for those drivers. Don't use new
1617 * EH stuff without converting to it.
1618 */
1619 if (ap->ops->error_handler)
1620 tag = ATA_TAG_INTERNAL;
1621 else
1622 tag = 0;
1623
6cec4a39 1624 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1625 BUG();
f69499f4 1626 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1627
1628 qc->tag = tag;
1629 qc->scsicmd = NULL;
1630 qc->ap = ap;
1631 qc->dev = dev;
1632 ata_qc_reinit(qc);
1633
9af5c9c9
TH
1634 preempted_tag = link->active_tag;
1635 preempted_sactive = link->sactive;
dedaf2b0 1636 preempted_qc_active = ap->qc_active;
da917d69 1637 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1638 link->active_tag = ATA_TAG_POISON;
1639 link->sactive = 0;
dedaf2b0 1640 ap->qc_active = 0;
da917d69 1641 ap->nr_active_links = 0;
2ab7db1f
TH
1642
1643 /* prepare & issue qc */
a2a7a662 1644 qc->tf = *tf;
d69cf37d
TH
1645 if (cdb)
1646 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1647 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1648 qc->dma_dir = dma_dir;
1649 if (dma_dir != DMA_NONE) {
2432697b 1650 unsigned int i, buflen = 0;
87260216 1651 struct scatterlist *sg;
2432697b 1652
87260216
JA
1653 for_each_sg(sgl, sg, n_elem, i)
1654 buflen += sg->length;
2432697b 1655
87260216 1656 ata_sg_init(qc, sgl, n_elem);
49c80429 1657 qc->nbytes = buflen;
a2a7a662
TH
1658 }
1659
77853bf2 1660 qc->private_data = &wait;
a2a7a662
TH
1661 qc->complete_fn = ata_qc_complete_internal;
1662
8e0e694a 1663 ata_qc_issue(qc);
a2a7a662 1664
ba6a1308 1665 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1666
2b789108
TH
1667 if (!timeout)
1668 timeout = ata_probe_timeout * 1000 / HZ;
1669
1670 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1671
1672 ata_port_flush_task(ap);
41ade50c 1673
d95a717f 1674 if (!rc) {
ba6a1308 1675 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1676
1677 /* We're racing with irq here. If we lose, the
1678 * following test prevents us from completing the qc
d95a717f
TH
1679 * twice. If we win, the port is frozen and will be
1680 * cleaned up by ->post_internal_cmd().
a2a7a662 1681 */
77853bf2 1682 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1683 qc->err_mask |= AC_ERR_TIMEOUT;
1684
1685 if (ap->ops->error_handler)
1686 ata_port_freeze(ap);
1687 else
1688 ata_qc_complete(qc);
f15a1daf 1689
0dd4b21f
BP
1690 if (ata_msg_warn(ap))
1691 ata_dev_printk(dev, KERN_WARNING,
88574551 1692 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1693 }
1694
ba6a1308 1695 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1696 }
1697
d95a717f
TH
1698 /* do post_internal_cmd */
1699 if (ap->ops->post_internal_cmd)
1700 ap->ops->post_internal_cmd(qc);
1701
a51d644a
TH
1702 /* perform minimal error analysis */
1703 if (qc->flags & ATA_QCFLAG_FAILED) {
1704 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1705 qc->err_mask |= AC_ERR_DEV;
1706
1707 if (!qc->err_mask)
1708 qc->err_mask |= AC_ERR_OTHER;
1709
1710 if (qc->err_mask & ~AC_ERR_OTHER)
1711 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1712 }
1713
15869303 1714 /* finish up */
ba6a1308 1715 spin_lock_irqsave(ap->lock, flags);
15869303 1716
e61e0672 1717 *tf = qc->result_tf;
77853bf2
TH
1718 err_mask = qc->err_mask;
1719
1720 ata_qc_free(qc);
9af5c9c9
TH
1721 link->active_tag = preempted_tag;
1722 link->sactive = preempted_sactive;
dedaf2b0 1723 ap->qc_active = preempted_qc_active;
da917d69 1724 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1725
1f7dd3e9
TH
1726 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1727 * Until those drivers are fixed, we detect the condition
1728 * here, fail the command with AC_ERR_SYSTEM and reenable the
1729 * port.
1730 *
1731 * Note that this doesn't change any behavior as internal
1732 * command failure results in disabling the device in the
1733 * higher layer for LLDDs without new reset/EH callbacks.
1734 *
1735 * Kill the following code as soon as those drivers are fixed.
1736 */
198e0fed 1737 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1738 err_mask |= AC_ERR_SYSTEM;
1739 ata_port_probe(ap);
1740 }
1741
ba6a1308 1742 spin_unlock_irqrestore(ap->lock, flags);
15869303 1743
77853bf2 1744 return err_mask;
a2a7a662
TH
1745}
1746
2432697b 1747/**
33480a0e 1748 * ata_exec_internal - execute libata internal command
2432697b
TH
1749 * @dev: Device to which the command is sent
1750 * @tf: Taskfile registers for the command and the result
1751 * @cdb: CDB for packet command
1752 * @dma_dir: Data tranfer direction of the command
1753 * @buf: Data buffer of the command
1754 * @buflen: Length of data buffer
2b789108 1755 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1756 *
1757 * Wrapper around ata_exec_internal_sg() which takes simple
1758 * buffer instead of sg list.
1759 *
1760 * LOCKING:
1761 * None. Should be called with kernel context, might sleep.
1762 *
1763 * RETURNS:
1764 * Zero on success, AC_ERR_* mask on failure
1765 */
1766unsigned ata_exec_internal(struct ata_device *dev,
1767 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1768 int dma_dir, void *buf, unsigned int buflen,
1769 unsigned long timeout)
2432697b 1770{
33480a0e
TH
1771 struct scatterlist *psg = NULL, sg;
1772 unsigned int n_elem = 0;
2432697b 1773
33480a0e
TH
1774 if (dma_dir != DMA_NONE) {
1775 WARN_ON(!buf);
1776 sg_init_one(&sg, buf, buflen);
1777 psg = &sg;
1778 n_elem++;
1779 }
2432697b 1780
2b789108
TH
1781 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1782 timeout);
2432697b
TH
1783}
1784
977e6b9f
TH
1785/**
1786 * ata_do_simple_cmd - execute simple internal command
1787 * @dev: Device to which the command is sent
1788 * @cmd: Opcode to execute
1789 *
1790 * Execute a 'simple' command, that only consists of the opcode
1791 * 'cmd' itself, without filling any other registers
1792 *
1793 * LOCKING:
1794 * Kernel thread context (may sleep).
1795 *
1796 * RETURNS:
1797 * Zero on success, AC_ERR_* mask on failure
e58eb583 1798 */
77b08fb5 1799unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1800{
1801 struct ata_taskfile tf;
e58eb583
TH
1802
1803 ata_tf_init(dev, &tf);
1804
1805 tf.command = cmd;
1806 tf.flags |= ATA_TFLAG_DEVICE;
1807 tf.protocol = ATA_PROT_NODATA;
1808
2b789108 1809 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1810}
1811
1bc4ccff
AC
1812/**
1813 * ata_pio_need_iordy - check if iordy needed
1814 * @adev: ATA device
1815 *
1816 * Check if the current speed of the device requires IORDY. Used
1817 * by various controllers for chip configuration.
1818 */
a617c09f 1819
1bc4ccff
AC
1820unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1821{
432729f0
AC
1822 /* Controller doesn't support IORDY. Probably a pointless check
1823 as the caller should know this */
9af5c9c9 1824 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1825 return 0;
432729f0
AC
1826 /* PIO3 and higher it is mandatory */
1827 if (adev->pio_mode > XFER_PIO_2)
1828 return 1;
1829 /* We turn it on when possible */
1830 if (ata_id_has_iordy(adev->id))
1bc4ccff 1831 return 1;
432729f0
AC
1832 return 0;
1833}
2e9edbf8 1834
432729f0
AC
1835/**
1836 * ata_pio_mask_no_iordy - Return the non IORDY mask
1837 * @adev: ATA device
1838 *
1839 * Compute the highest mode possible if we are not using iordy. Return
1840 * -1 if no iordy mode is available.
1841 */
a617c09f 1842
432729f0
AC
1843static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1844{
1bc4ccff 1845 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1846 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1847 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1848 /* Is the speed faster than the drive allows non IORDY ? */
1849 if (pio) {
1850 /* This is cycle times not frequency - watch the logic! */
1851 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1852 return 3 << ATA_SHIFT_PIO;
1853 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1854 }
1855 }
432729f0 1856 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1857}
1858
1da177e4 1859/**
49016aca 1860 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1861 * @dev: target device
1862 * @p_class: pointer to class of the target device (may be changed)
bff04647 1863 * @flags: ATA_READID_* flags
fe635c7e 1864 * @id: buffer to read IDENTIFY data into
1da177e4 1865 *
49016aca
TH
1866 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1867 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1868 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1869 * for pre-ATA4 drives.
1da177e4 1870 *
50a99018 1871 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1872 * now we abort if we hit that case.
50a99018 1873 *
1da177e4 1874 * LOCKING:
49016aca
TH
1875 * Kernel thread context (may sleep)
1876 *
1877 * RETURNS:
1878 * 0 on success, -errno otherwise.
1da177e4 1879 */
a9beec95 1880int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1881 unsigned int flags, u16 *id)
1da177e4 1882{
9af5c9c9 1883 struct ata_port *ap = dev->link->ap;
49016aca 1884 unsigned int class = *p_class;
a0123703 1885 struct ata_taskfile tf;
49016aca
TH
1886 unsigned int err_mask = 0;
1887 const char *reason;
54936f8b 1888 int may_fallback = 1, tried_spinup = 0;
49016aca 1889 int rc;
1da177e4 1890
0dd4b21f 1891 if (ata_msg_ctl(ap))
44877b4e 1892 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1893
49016aca 1894 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1895 retry:
3373efd8 1896 ata_tf_init(dev, &tf);
a0123703 1897
49016aca
TH
1898 switch (class) {
1899 case ATA_DEV_ATA:
a0123703 1900 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1901 break;
1902 case ATA_DEV_ATAPI:
a0123703 1903 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1904 break;
1905 default:
1906 rc = -ENODEV;
1907 reason = "unsupported class";
1908 goto err_out;
1da177e4
LT
1909 }
1910
a0123703 1911 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1912
1913 /* Some devices choke if TF registers contain garbage. Make
1914 * sure those are properly initialized.
1915 */
1916 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1917
1918 /* Device presence detection is unreliable on some
1919 * controllers. Always poll IDENTIFY if available.
1920 */
1921 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1922
3373efd8 1923 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1924 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1925 if (err_mask) {
800b3996 1926 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1927 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1928 ap->print_id, dev->devno);
55a8e2c8
TH
1929 return -ENOENT;
1930 }
1931
54936f8b
TH
1932 /* Device or controller might have reported the wrong
1933 * device class. Give a shot at the other IDENTIFY if
1934 * the current one is aborted by the device.
1935 */
1936 if (may_fallback &&
1937 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1938 may_fallback = 0;
1939
1940 if (class == ATA_DEV_ATA)
1941 class = ATA_DEV_ATAPI;
1942 else
1943 class = ATA_DEV_ATA;
1944 goto retry;
1945 }
1946
49016aca
TH
1947 rc = -EIO;
1948 reason = "I/O error";
1da177e4
LT
1949 goto err_out;
1950 }
1951
54936f8b
TH
1952 /* Falling back doesn't make sense if ID data was read
1953 * successfully at least once.
1954 */
1955 may_fallback = 0;
1956
49016aca 1957 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1958
49016aca 1959 /* sanity check */
a4f5749b 1960 rc = -EINVAL;
6070068b 1961 reason = "device reports invalid type";
a4f5749b
TH
1962
1963 if (class == ATA_DEV_ATA) {
1964 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1965 goto err_out;
1966 } else {
1967 if (ata_id_is_ata(id))
1968 goto err_out;
49016aca
TH
1969 }
1970
169439c2
ML
1971 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1972 tried_spinup = 1;
1973 /*
1974 * Drive powered-up in standby mode, and requires a specific
1975 * SET_FEATURES spin-up subcommand before it will accept
1976 * anything other than the original IDENTIFY command.
1977 */
218f3d30 1978 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1979 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1980 rc = -EIO;
1981 reason = "SPINUP failed";
1982 goto err_out;
1983 }
1984 /*
1985 * If the drive initially returned incomplete IDENTIFY info,
1986 * we now must reissue the IDENTIFY command.
1987 */
1988 if (id[2] == 0x37c8)
1989 goto retry;
1990 }
1991
bff04647 1992 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1993 /*
1994 * The exact sequence expected by certain pre-ATA4 drives is:
1995 * SRST RESET
50a99018
AC
1996 * IDENTIFY (optional in early ATA)
1997 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1998 * anything else..
1999 * Some drives were very specific about that exact sequence.
50a99018
AC
2000 *
2001 * Note that ATA4 says lba is mandatory so the second check
2002 * shoud never trigger.
49016aca
TH
2003 */
2004 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2005 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2006 if (err_mask) {
2007 rc = -EIO;
2008 reason = "INIT_DEV_PARAMS failed";
2009 goto err_out;
2010 }
2011
2012 /* current CHS translation info (id[53-58]) might be
2013 * changed. reread the identify device info.
2014 */
bff04647 2015 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2016 goto retry;
2017 }
2018 }
2019
2020 *p_class = class;
fe635c7e 2021
49016aca
TH
2022 return 0;
2023
2024 err_out:
88574551 2025 if (ata_msg_warn(ap))
0dd4b21f 2026 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2027 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2028 return rc;
2029}
2030
3373efd8 2031static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2032{
9af5c9c9
TH
2033 struct ata_port *ap = dev->link->ap;
2034 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2035}
2036
a6e6ce8e
TH
2037static void ata_dev_config_ncq(struct ata_device *dev,
2038 char *desc, size_t desc_sz)
2039{
9af5c9c9 2040 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2041 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2042
2043 if (!ata_id_has_ncq(dev->id)) {
2044 desc[0] = '\0';
2045 return;
2046 }
75683fe7 2047 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2048 snprintf(desc, desc_sz, "NCQ (not used)");
2049 return;
2050 }
a6e6ce8e 2051 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2052 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2053 dev->flags |= ATA_DFLAG_NCQ;
2054 }
2055
2056 if (hdepth >= ddepth)
2057 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2058 else
2059 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2060}
2061
49016aca 2062/**
ffeae418 2063 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2064 * @dev: Target device to configure
2065 *
2066 * Configure @dev according to @dev->id. Generic and low-level
2067 * driver specific fixups are also applied.
49016aca
TH
2068 *
2069 * LOCKING:
ffeae418
TH
2070 * Kernel thread context (may sleep)
2071 *
2072 * RETURNS:
2073 * 0 on success, -errno otherwise
49016aca 2074 */
efdaedc4 2075int ata_dev_configure(struct ata_device *dev)
49016aca 2076{
9af5c9c9
TH
2077 struct ata_port *ap = dev->link->ap;
2078 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2079 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2080 const u16 *id = dev->id;
ff8854b2 2081 unsigned int xfer_mask;
b352e57d 2082 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2083 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2084 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2085 int rc;
49016aca 2086
0dd4b21f 2087 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2088 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2089 __FUNCTION__);
ffeae418 2090 return 0;
49016aca
TH
2091 }
2092
0dd4b21f 2093 if (ata_msg_probe(ap))
44877b4e 2094 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2095
75683fe7
TH
2096 /* set horkage */
2097 dev->horkage |= ata_dev_blacklisted(dev);
2098
6746544c
TH
2099 /* let ACPI work its magic */
2100 rc = ata_acpi_on_devcfg(dev);
2101 if (rc)
2102 return rc;
08573a86 2103
05027adc
TH
2104 /* massage HPA, do it early as it might change IDENTIFY data */
2105 rc = ata_hpa_resize(dev);
2106 if (rc)
2107 return rc;
2108
c39f5ebe 2109 /* print device capabilities */
0dd4b21f 2110 if (ata_msg_probe(ap))
88574551
TH
2111 ata_dev_printk(dev, KERN_DEBUG,
2112 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2113 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2114 __FUNCTION__,
f15a1daf
TH
2115 id[49], id[82], id[83], id[84],
2116 id[85], id[86], id[87], id[88]);
c39f5ebe 2117
208a9933 2118 /* initialize to-be-configured parameters */
ea1dd4e1 2119 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2120 dev->max_sectors = 0;
2121 dev->cdb_len = 0;
2122 dev->n_sectors = 0;
2123 dev->cylinders = 0;
2124 dev->heads = 0;
2125 dev->sectors = 0;
2126
1da177e4
LT
2127 /*
2128 * common ATA, ATAPI feature tests
2129 */
2130
ff8854b2 2131 /* find max transfer mode; for printk only */
1148c3a7 2132 xfer_mask = ata_id_xfermask(id);
1da177e4 2133
0dd4b21f
BP
2134 if (ata_msg_probe(ap))
2135 ata_dump_id(id);
1da177e4 2136
ef143d57
AL
2137 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2138 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2139 sizeof(fwrevbuf));
2140
2141 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2142 sizeof(modelbuf));
2143
1da177e4
LT
2144 /* ATA-specific feature tests */
2145 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2146 if (ata_id_is_cfa(id)) {
2147 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2148 ata_dev_printk(dev, KERN_WARNING,
2149 "supports DRM functions and may "
2150 "not be fully accessable.\n");
b352e57d 2151 snprintf(revbuf, 7, "CFA");
2dcb407e
JG
2152 } else
2153 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
b352e57d 2154
1148c3a7 2155 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2156
3f64f565
EM
2157 if (dev->id[59] & 0x100)
2158 dev->multi_count = dev->id[59] & 0xff;
2159
1148c3a7 2160 if (ata_id_has_lba(id)) {
4c2d721a 2161 const char *lba_desc;
a6e6ce8e 2162 char ncq_desc[20];
8bf62ece 2163
4c2d721a
TH
2164 lba_desc = "LBA";
2165 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2166 if (ata_id_has_lba48(id)) {
8bf62ece 2167 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2168 lba_desc = "LBA48";
6fc49adb
TH
2169
2170 if (dev->n_sectors >= (1UL << 28) &&
2171 ata_id_has_flush_ext(id))
2172 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2173 }
8bf62ece 2174
a6e6ce8e
TH
2175 /* config NCQ */
2176 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2177
8bf62ece 2178 /* print device info to dmesg */
3f64f565
EM
2179 if (ata_msg_drv(ap) && print_info) {
2180 ata_dev_printk(dev, KERN_INFO,
2181 "%s: %s, %s, max %s\n",
2182 revbuf, modelbuf, fwrevbuf,
2183 ata_mode_string(xfer_mask));
2184 ata_dev_printk(dev, KERN_INFO,
2185 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2186 (unsigned long long)dev->n_sectors,
3f64f565
EM
2187 dev->multi_count, lba_desc, ncq_desc);
2188 }
ffeae418 2189 } else {
8bf62ece
AL
2190 /* CHS */
2191
2192 /* Default translation */
1148c3a7
TH
2193 dev->cylinders = id[1];
2194 dev->heads = id[3];
2195 dev->sectors = id[6];
8bf62ece 2196
1148c3a7 2197 if (ata_id_current_chs_valid(id)) {
8bf62ece 2198 /* Current CHS translation is valid. */
1148c3a7
TH
2199 dev->cylinders = id[54];
2200 dev->heads = id[55];
2201 dev->sectors = id[56];
8bf62ece
AL
2202 }
2203
2204 /* print device info to dmesg */
3f64f565 2205 if (ata_msg_drv(ap) && print_info) {
88574551 2206 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2207 "%s: %s, %s, max %s\n",
2208 revbuf, modelbuf, fwrevbuf,
2209 ata_mode_string(xfer_mask));
a84471fe 2210 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2211 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2212 (unsigned long long)dev->n_sectors,
2213 dev->multi_count, dev->cylinders,
2214 dev->heads, dev->sectors);
2215 }
07f6f7d0
AL
2216 }
2217
6e7846e9 2218 dev->cdb_len = 16;
1da177e4
LT
2219 }
2220
2221 /* ATAPI-specific feature tests */
2c13b7ce 2222 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2223 const char *cdb_intr_string = "";
2224 const char *atapi_an_string = "";
7d77b247 2225 u32 sntf;
08a556db 2226
1148c3a7 2227 rc = atapi_cdb_len(id);
1da177e4 2228 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2229 if (ata_msg_warn(ap))
88574551
TH
2230 ata_dev_printk(dev, KERN_WARNING,
2231 "unsupported CDB len\n");
ffeae418 2232 rc = -EINVAL;
1da177e4
LT
2233 goto err_out_nosup;
2234 }
6e7846e9 2235 dev->cdb_len = (unsigned int) rc;
1da177e4 2236
7d77b247
TH
2237 /* Enable ATAPI AN if both the host and device have
2238 * the support. If PMP is attached, SNTF is required
2239 * to enable ATAPI AN to discern between PHY status
2240 * changed notifications and ATAPI ANs.
9f45cbd3 2241 */
7d77b247
TH
2242 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2243 (!ap->nr_pmp_links ||
2244 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2245 unsigned int err_mask;
2246
9f45cbd3 2247 /* issue SET feature command to turn this on */
218f3d30
JG
2248 err_mask = ata_dev_set_feature(dev,
2249 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2250 if (err_mask)
9f45cbd3 2251 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2252 "failed to enable ATAPI AN "
2253 "(err_mask=0x%x)\n", err_mask);
2254 else {
9f45cbd3 2255 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2256 atapi_an_string = ", ATAPI AN";
2257 }
9f45cbd3
KCA
2258 }
2259
08a556db 2260 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2261 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2262 cdb_intr_string = ", CDB intr";
2263 }
312f7da2 2264
1da177e4 2265 /* print device info to dmesg */
5afc8142 2266 if (ata_msg_drv(ap) && print_info)
ef143d57 2267 ata_dev_printk(dev, KERN_INFO,
854c73a2 2268 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2269 modelbuf, fwrevbuf,
12436c30 2270 ata_mode_string(xfer_mask),
854c73a2 2271 cdb_intr_string, atapi_an_string);
1da177e4
LT
2272 }
2273
914ed354
TH
2274 /* determine max_sectors */
2275 dev->max_sectors = ATA_MAX_SECTORS;
2276 if (dev->flags & ATA_DFLAG_LBA48)
2277 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2278
ca77329f
KCA
2279 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2280 if (ata_id_has_hipm(dev->id))
2281 dev->flags |= ATA_DFLAG_HIPM;
2282 if (ata_id_has_dipm(dev->id))
2283 dev->flags |= ATA_DFLAG_DIPM;
2284 }
2285
93590859
AC
2286 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2287 /* Let the user know. We don't want to disallow opens for
2288 rescue purposes, or in case the vendor is just a blithering
2289 idiot */
2dcb407e 2290 if (print_info) {
93590859
AC
2291 ata_dev_printk(dev, KERN_WARNING,
2292"Drive reports diagnostics failure. This may indicate a drive\n");
2293 ata_dev_printk(dev, KERN_WARNING,
2294"fault or invalid emulation. Contact drive vendor for information.\n");
2295 }
2296 }
2297
4b2f3ede 2298 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2299 if (ata_dev_knobble(dev)) {
5afc8142 2300 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2301 ata_dev_printk(dev, KERN_INFO,
2302 "applying bridge limits\n");
5a529139 2303 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2304 dev->max_sectors = ATA_MAX_SECTORS;
2305 }
2306
75683fe7 2307 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2308 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2309 dev->max_sectors);
18d6e9d5 2310
ca77329f
KCA
2311 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2312 dev->horkage |= ATA_HORKAGE_IPM;
2313
2314 /* reset link pm_policy for this port to no pm */
2315 ap->pm_policy = MAX_PERFORMANCE;
2316 }
2317
4b2f3ede 2318 if (ap->ops->dev_config)
cd0d3bbc 2319 ap->ops->dev_config(dev);
4b2f3ede 2320
0dd4b21f
BP
2321 if (ata_msg_probe(ap))
2322 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2323 __FUNCTION__, ata_chk_status(ap));
ffeae418 2324 return 0;
1da177e4
LT
2325
2326err_out_nosup:
0dd4b21f 2327 if (ata_msg_probe(ap))
88574551
TH
2328 ata_dev_printk(dev, KERN_DEBUG,
2329 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2330 return rc;
1da177e4
LT
2331}
2332
be0d18df 2333/**
2e41e8e6 2334 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2335 * @ap: port
2336 *
2e41e8e6 2337 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2338 * detection.
2339 */
2340
2341int ata_cable_40wire(struct ata_port *ap)
2342{
2343 return ATA_CBL_PATA40;
2344}
2345
2346/**
2e41e8e6 2347 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2348 * @ap: port
2349 *
2e41e8e6 2350 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2351 * detection.
2352 */
2353
2354int ata_cable_80wire(struct ata_port *ap)
2355{
2356 return ATA_CBL_PATA80;
2357}
2358
2359/**
2360 * ata_cable_unknown - return unknown PATA cable.
2361 * @ap: port
2362 *
2363 * Helper method for drivers which have no PATA cable detection.
2364 */
2365
2366int ata_cable_unknown(struct ata_port *ap)
2367{
2368 return ATA_CBL_PATA_UNK;
2369}
2370
2371/**
2372 * ata_cable_sata - return SATA cable type
2373 * @ap: port
2374 *
2375 * Helper method for drivers which have SATA cables
2376 */
2377
2378int ata_cable_sata(struct ata_port *ap)
2379{
2380 return ATA_CBL_SATA;
2381}
2382
1da177e4
LT
2383/**
2384 * ata_bus_probe - Reset and probe ATA bus
2385 * @ap: Bus to probe
2386 *
0cba632b
JG
2387 * Master ATA bus probing function. Initiates a hardware-dependent
2388 * bus reset, then attempts to identify any devices found on
2389 * the bus.
2390 *
1da177e4 2391 * LOCKING:
0cba632b 2392 * PCI/etc. bus probe sem.
1da177e4
LT
2393 *
2394 * RETURNS:
96072e69 2395 * Zero on success, negative errno otherwise.
1da177e4
LT
2396 */
2397
80289167 2398int ata_bus_probe(struct ata_port *ap)
1da177e4 2399{
28ca5c57 2400 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2401 int tries[ATA_MAX_DEVICES];
f58229f8 2402 int rc;
e82cbdb9 2403 struct ata_device *dev;
1da177e4 2404
28ca5c57 2405 ata_port_probe(ap);
c19ba8af 2406
f58229f8
TH
2407 ata_link_for_each_dev(dev, &ap->link)
2408 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2409
2410 retry:
cdeab114
TH
2411 ata_link_for_each_dev(dev, &ap->link) {
2412 /* If we issue an SRST then an ATA drive (not ATAPI)
2413 * may change configuration and be in PIO0 timing. If
2414 * we do a hard reset (or are coming from power on)
2415 * this is true for ATA or ATAPI. Until we've set a
2416 * suitable controller mode we should not touch the
2417 * bus as we may be talking too fast.
2418 */
2419 dev->pio_mode = XFER_PIO_0;
2420
2421 /* If the controller has a pio mode setup function
2422 * then use it to set the chipset to rights. Don't
2423 * touch the DMA setup as that will be dealt with when
2424 * configuring devices.
2425 */
2426 if (ap->ops->set_piomode)
2427 ap->ops->set_piomode(ap, dev);
2428 }
2429
2044470c 2430 /* reset and determine device classes */
52783c5d 2431 ap->ops->phy_reset(ap);
2061a47a 2432
f58229f8 2433 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2434 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2435 dev->class != ATA_DEV_UNKNOWN)
2436 classes[dev->devno] = dev->class;
2437 else
2438 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2439
52783c5d 2440 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2441 }
1da177e4 2442
52783c5d 2443 ata_port_probe(ap);
2044470c 2444
f31f0cc2
JG
2445 /* read IDENTIFY page and configure devices. We have to do the identify
2446 specific sequence bass-ackwards so that PDIAG- is released by
2447 the slave device */
2448
f58229f8
TH
2449 ata_link_for_each_dev(dev, &ap->link) {
2450 if (tries[dev->devno])
2451 dev->class = classes[dev->devno];
ffeae418 2452
14d2bac1 2453 if (!ata_dev_enabled(dev))
ffeae418 2454 continue;
ffeae418 2455
bff04647
TH
2456 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2457 dev->id);
14d2bac1
TH
2458 if (rc)
2459 goto fail;
f31f0cc2
JG
2460 }
2461
be0d18df
AC
2462 /* Now ask for the cable type as PDIAG- should have been released */
2463 if (ap->ops->cable_detect)
2464 ap->cbl = ap->ops->cable_detect(ap);
2465
614fe29b
AC
2466 /* We may have SATA bridge glue hiding here irrespective of the
2467 reported cable types and sensed types */
2468 ata_link_for_each_dev(dev, &ap->link) {
2469 if (!ata_dev_enabled(dev))
2470 continue;
2471 /* SATA drives indicate we have a bridge. We don't know which
2472 end of the link the bridge is which is a problem */
2473 if (ata_id_is_sata(dev->id))
2474 ap->cbl = ATA_CBL_SATA;
2475 }
2476
f31f0cc2
JG
2477 /* After the identify sequence we can now set up the devices. We do
2478 this in the normal order so that the user doesn't get confused */
2479
f58229f8 2480 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2481 if (!ata_dev_enabled(dev))
2482 continue;
14d2bac1 2483
9af5c9c9 2484 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2485 rc = ata_dev_configure(dev);
9af5c9c9 2486 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2487 if (rc)
2488 goto fail;
1da177e4
LT
2489 }
2490
e82cbdb9 2491 /* configure transfer mode */
0260731f 2492 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2493 if (rc)
51713d35 2494 goto fail;
1da177e4 2495
f58229f8
TH
2496 ata_link_for_each_dev(dev, &ap->link)
2497 if (ata_dev_enabled(dev))
e82cbdb9 2498 return 0;
1da177e4 2499
e82cbdb9
TH
2500 /* no device present, disable port */
2501 ata_port_disable(ap);
96072e69 2502 return -ENODEV;
14d2bac1
TH
2503
2504 fail:
4ae72a1e
TH
2505 tries[dev->devno]--;
2506
14d2bac1
TH
2507 switch (rc) {
2508 case -EINVAL:
4ae72a1e 2509 /* eeek, something went very wrong, give up */
14d2bac1
TH
2510 tries[dev->devno] = 0;
2511 break;
4ae72a1e
TH
2512
2513 case -ENODEV:
2514 /* give it just one more chance */
2515 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2516 case -EIO:
4ae72a1e
TH
2517 if (tries[dev->devno] == 1) {
2518 /* This is the last chance, better to slow
2519 * down than lose it.
2520 */
936fd732 2521 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2522 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2523 }
14d2bac1
TH
2524 }
2525
4ae72a1e 2526 if (!tries[dev->devno])
3373efd8 2527 ata_dev_disable(dev);
ec573755 2528
14d2bac1 2529 goto retry;
1da177e4
LT
2530}
2531
2532/**
0cba632b
JG
2533 * ata_port_probe - Mark port as enabled
2534 * @ap: Port for which we indicate enablement
1da177e4 2535 *
0cba632b
JG
2536 * Modify @ap data structure such that the system
2537 * thinks that the entire port is enabled.
2538 *
cca3974e 2539 * LOCKING: host lock, or some other form of
0cba632b 2540 * serialization.
1da177e4
LT
2541 */
2542
2543void ata_port_probe(struct ata_port *ap)
2544{
198e0fed 2545 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2546}
2547
3be680b7
TH
2548/**
2549 * sata_print_link_status - Print SATA link status
936fd732 2550 * @link: SATA link to printk link status about
3be680b7
TH
2551 *
2552 * This function prints link speed and status of a SATA link.
2553 *
2554 * LOCKING:
2555 * None.
2556 */
936fd732 2557void sata_print_link_status(struct ata_link *link)
3be680b7 2558{
6d5f9732 2559 u32 sstatus, scontrol, tmp;
3be680b7 2560
936fd732 2561 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2562 return;
936fd732 2563 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2564
936fd732 2565 if (ata_link_online(link)) {
3be680b7 2566 tmp = (sstatus >> 4) & 0xf;
936fd732 2567 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2568 "SATA link up %s (SStatus %X SControl %X)\n",
2569 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2570 } else {
936fd732 2571 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2572 "SATA link down (SStatus %X SControl %X)\n",
2573 sstatus, scontrol);
3be680b7
TH
2574 }
2575}
2576
1da177e4 2577/**
780a87f7
JG
2578 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2579 * @ap: SATA port associated with target SATA PHY.
1da177e4 2580 *
780a87f7
JG
2581 * This function issues commands to standard SATA Sxxx
2582 * PHY registers, to wake up the phy (and device), and
2583 * clear any reset condition.
1da177e4
LT
2584 *
2585 * LOCKING:
0cba632b 2586 * PCI/etc. bus probe sem.
1da177e4
LT
2587 *
2588 */
2589void __sata_phy_reset(struct ata_port *ap)
2590{
936fd732 2591 struct ata_link *link = &ap->link;
1da177e4 2592 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2593 u32 sstatus;
1da177e4
LT
2594
2595 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2596 /* issue phy wake/reset */
936fd732 2597 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2598 /* Couldn't find anything in SATA I/II specs, but
2599 * AHCI-1.1 10.4.2 says at least 1 ms. */
2600 mdelay(1);
1da177e4 2601 }
81952c54 2602 /* phy wake/clear reset */
936fd732 2603 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2604
2605 /* wait for phy to become ready, if necessary */
2606 do {
2607 msleep(200);
936fd732 2608 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2609 if ((sstatus & 0xf) != 1)
2610 break;
2611 } while (time_before(jiffies, timeout));
2612
3be680b7 2613 /* print link status */
936fd732 2614 sata_print_link_status(link);
656563e3 2615
3be680b7 2616 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2617 if (!ata_link_offline(link))
1da177e4 2618 ata_port_probe(ap);
3be680b7 2619 else
1da177e4 2620 ata_port_disable(ap);
1da177e4 2621
198e0fed 2622 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2623 return;
2624
2625 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2626 ata_port_disable(ap);
2627 return;
2628 }
2629
2630 ap->cbl = ATA_CBL_SATA;
2631}
2632
2633/**
780a87f7
JG
2634 * sata_phy_reset - Reset SATA bus.
2635 * @ap: SATA port associated with target SATA PHY.
1da177e4 2636 *
780a87f7
JG
2637 * This function resets the SATA bus, and then probes
2638 * the bus for devices.
1da177e4
LT
2639 *
2640 * LOCKING:
0cba632b 2641 * PCI/etc. bus probe sem.
1da177e4
LT
2642 *
2643 */
2644void sata_phy_reset(struct ata_port *ap)
2645{
2646 __sata_phy_reset(ap);
198e0fed 2647 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2648 return;
2649 ata_bus_reset(ap);
2650}
2651
ebdfca6e
AC
2652/**
2653 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2654 * @adev: device
2655 *
2656 * Obtain the other device on the same cable, or if none is
2657 * present NULL is returned
2658 */
2e9edbf8 2659
3373efd8 2660struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2661{
9af5c9c9
TH
2662 struct ata_link *link = adev->link;
2663 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2664 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2665 return NULL;
2666 return pair;
2667}
2668
1da177e4 2669/**
780a87f7
JG
2670 * ata_port_disable - Disable port.
2671 * @ap: Port to be disabled.
1da177e4 2672 *
780a87f7
JG
2673 * Modify @ap data structure such that the system
2674 * thinks that the entire port is disabled, and should
2675 * never attempt to probe or communicate with devices
2676 * on this port.
2677 *
cca3974e 2678 * LOCKING: host lock, or some other form of
780a87f7 2679 * serialization.
1da177e4
LT
2680 */
2681
2682void ata_port_disable(struct ata_port *ap)
2683{
9af5c9c9
TH
2684 ap->link.device[0].class = ATA_DEV_NONE;
2685 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2686 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2687}
2688
1c3fae4d 2689/**
3c567b7d 2690 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2691 * @link: Link to adjust SATA spd limit for
1c3fae4d 2692 *
936fd732 2693 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2694 * function only adjusts the limit. The change must be applied
3c567b7d 2695 * using sata_set_spd().
1c3fae4d
TH
2696 *
2697 * LOCKING:
2698 * Inherited from caller.
2699 *
2700 * RETURNS:
2701 * 0 on success, negative errno on failure
2702 */
936fd732 2703int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2704{
81952c54
TH
2705 u32 sstatus, spd, mask;
2706 int rc, highbit;
1c3fae4d 2707
936fd732 2708 if (!sata_scr_valid(link))
008a7896
TH
2709 return -EOPNOTSUPP;
2710
2711 /* If SCR can be read, use it to determine the current SPD.
936fd732 2712 * If not, use cached value in link->sata_spd.
008a7896 2713 */
936fd732 2714 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2715 if (rc == 0)
2716 spd = (sstatus >> 4) & 0xf;
2717 else
936fd732 2718 spd = link->sata_spd;
1c3fae4d 2719
936fd732 2720 mask = link->sata_spd_limit;
1c3fae4d
TH
2721 if (mask <= 1)
2722 return -EINVAL;
008a7896
TH
2723
2724 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2725 highbit = fls(mask) - 1;
2726 mask &= ~(1 << highbit);
2727
008a7896
TH
2728 /* Mask off all speeds higher than or equal to the current
2729 * one. Force 1.5Gbps if current SPD is not available.
2730 */
2731 if (spd > 1)
2732 mask &= (1 << (spd - 1)) - 1;
2733 else
2734 mask &= 1;
2735
2736 /* were we already at the bottom? */
1c3fae4d
TH
2737 if (!mask)
2738 return -EINVAL;
2739
936fd732 2740 link->sata_spd_limit = mask;
1c3fae4d 2741
936fd732 2742 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2743 sata_spd_string(fls(mask)));
1c3fae4d
TH
2744
2745 return 0;
2746}
2747
936fd732 2748static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2749{
2750 u32 spd, limit;
2751
936fd732 2752 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2753 limit = 0;
2754 else
936fd732 2755 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2756
2757 spd = (*scontrol >> 4) & 0xf;
2758 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2759
2760 return spd != limit;
2761}
2762
2763/**
3c567b7d 2764 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2765 * @link: Link in question
1c3fae4d
TH
2766 *
2767 * Test whether the spd limit in SControl matches
936fd732 2768 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2769 * whether hardreset is necessary to apply SATA spd
2770 * configuration.
2771 *
2772 * LOCKING:
2773 * Inherited from caller.
2774 *
2775 * RETURNS:
2776 * 1 if SATA spd configuration is needed, 0 otherwise.
2777 */
936fd732 2778int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2779{
2780 u32 scontrol;
2781
936fd732 2782 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2783 return 0;
2784
936fd732 2785 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2786}
2787
2788/**
3c567b7d 2789 * sata_set_spd - set SATA spd according to spd limit
936fd732 2790 * @link: Link to set SATA spd for
1c3fae4d 2791 *
936fd732 2792 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2793 *
2794 * LOCKING:
2795 * Inherited from caller.
2796 *
2797 * RETURNS:
2798 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2799 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2800 */
936fd732 2801int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2802{
2803 u32 scontrol;
81952c54 2804 int rc;
1c3fae4d 2805
936fd732 2806 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2807 return rc;
1c3fae4d 2808
936fd732 2809 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2810 return 0;
2811
936fd732 2812 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2813 return rc;
2814
1c3fae4d
TH
2815 return 1;
2816}
2817
452503f9
AC
2818/*
2819 * This mode timing computation functionality is ported over from
2820 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2821 */
2822/*
b352e57d 2823 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2824 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2825 * for UDMA6, which is currently supported only by Maxtor drives.
2826 *
2827 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2828 */
2829
2830static const struct ata_timing ata_timing[] = {
2831
2832 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2833 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2834 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2835 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2836
b352e57d
AC
2837 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2838 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2839 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2840 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2841 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2842
2843/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2844
452503f9
AC
2845 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2846 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2847 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2848
452503f9
AC
2849 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2850 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2851 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2852
b352e57d
AC
2853 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2854 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2855 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2856 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2857
2858 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2859 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2860 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2861
2862/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2863
2864 { 0xFF }
2865};
2866
2dcb407e
JG
2867#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2868#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2869
2870static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2871{
2872 q->setup = EZ(t->setup * 1000, T);
2873 q->act8b = EZ(t->act8b * 1000, T);
2874 q->rec8b = EZ(t->rec8b * 1000, T);
2875 q->cyc8b = EZ(t->cyc8b * 1000, T);
2876 q->active = EZ(t->active * 1000, T);
2877 q->recover = EZ(t->recover * 1000, T);
2878 q->cycle = EZ(t->cycle * 1000, T);
2879 q->udma = EZ(t->udma * 1000, UT);
2880}
2881
2882void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2883 struct ata_timing *m, unsigned int what)
2884{
2885 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2886 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2887 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2888 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2889 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2890 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2891 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2892 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2893}
2894
2dcb407e 2895static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
452503f9
AC
2896{
2897 const struct ata_timing *t;
2898
2899 for (t = ata_timing; t->mode != speed; t++)
91190758 2900 if (t->mode == 0xFF)
452503f9 2901 return NULL;
2e9edbf8 2902 return t;
452503f9
AC
2903}
2904
2905int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2906 struct ata_timing *t, int T, int UT)
2907{
2908 const struct ata_timing *s;
2909 struct ata_timing p;
2910
2911 /*
2e9edbf8 2912 * Find the mode.
75b1f2f8 2913 */
452503f9
AC
2914
2915 if (!(s = ata_timing_find_mode(speed)))
2916 return -EINVAL;
2917
75b1f2f8
AL
2918 memcpy(t, s, sizeof(*s));
2919
452503f9
AC
2920 /*
2921 * If the drive is an EIDE drive, it can tell us it needs extended
2922 * PIO/MW_DMA cycle timing.
2923 */
2924
2925 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2926 memset(&p, 0, sizeof(p));
2dcb407e 2927 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2928 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2929 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2930 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2931 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2932 }
2933 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2934 }
2935
2936 /*
2937 * Convert the timing to bus clock counts.
2938 */
2939
75b1f2f8 2940 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2941
2942 /*
c893a3ae
RD
2943 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2944 * S.M.A.R.T * and some other commands. We have to ensure that the
2945 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2946 */
2947
fd3367af 2948 if (speed > XFER_PIO_6) {
452503f9
AC
2949 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2950 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2951 }
2952
2953 /*
c893a3ae 2954 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2955 */
2956
2957 if (t->act8b + t->rec8b < t->cyc8b) {
2958 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2959 t->rec8b = t->cyc8b - t->act8b;
2960 }
2961
2962 if (t->active + t->recover < t->cycle) {
2963 t->active += (t->cycle - (t->active + t->recover)) / 2;
2964 t->recover = t->cycle - t->active;
2965 }
a617c09f 2966
4f701d1e
AC
2967 /* In a few cases quantisation may produce enough errors to
2968 leave t->cycle too low for the sum of active and recovery
2969 if so we must correct this */
2970 if (t->active + t->recover > t->cycle)
2971 t->cycle = t->active + t->recover;
452503f9
AC
2972
2973 return 0;
2974}
2975
cf176e1a
TH
2976/**
2977 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2978 * @dev: Device to adjust xfer masks
458337db 2979 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2980 *
2981 * Adjust xfer masks of @dev downward. Note that this function
2982 * does not apply the change. Invoking ata_set_mode() afterwards
2983 * will apply the limit.
2984 *
2985 * LOCKING:
2986 * Inherited from caller.
2987 *
2988 * RETURNS:
2989 * 0 on success, negative errno on failure
2990 */
458337db 2991int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2992{
458337db
TH
2993 char buf[32];
2994 unsigned int orig_mask, xfer_mask;
2995 unsigned int pio_mask, mwdma_mask, udma_mask;
2996 int quiet, highbit;
cf176e1a 2997
458337db
TH
2998 quiet = !!(sel & ATA_DNXFER_QUIET);
2999 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3000
458337db
TH
3001 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3002 dev->mwdma_mask,
3003 dev->udma_mask);
3004 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3005
458337db
TH
3006 switch (sel) {
3007 case ATA_DNXFER_PIO:
3008 highbit = fls(pio_mask) - 1;
3009 pio_mask &= ~(1 << highbit);
3010 break;
3011
3012 case ATA_DNXFER_DMA:
3013 if (udma_mask) {
3014 highbit = fls(udma_mask) - 1;
3015 udma_mask &= ~(1 << highbit);
3016 if (!udma_mask)
3017 return -ENOENT;
3018 } else if (mwdma_mask) {
3019 highbit = fls(mwdma_mask) - 1;
3020 mwdma_mask &= ~(1 << highbit);
3021 if (!mwdma_mask)
3022 return -ENOENT;
3023 }
3024 break;
3025
3026 case ATA_DNXFER_40C:
3027 udma_mask &= ATA_UDMA_MASK_40C;
3028 break;
3029
3030 case ATA_DNXFER_FORCE_PIO0:
3031 pio_mask &= 1;
3032 case ATA_DNXFER_FORCE_PIO:
3033 mwdma_mask = 0;
3034 udma_mask = 0;
3035 break;
3036
458337db
TH
3037 default:
3038 BUG();
3039 }
3040
3041 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3042
3043 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3044 return -ENOENT;
3045
3046 if (!quiet) {
3047 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3048 snprintf(buf, sizeof(buf), "%s:%s",
3049 ata_mode_string(xfer_mask),
3050 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3051 else
3052 snprintf(buf, sizeof(buf), "%s",
3053 ata_mode_string(xfer_mask));
3054
3055 ata_dev_printk(dev, KERN_WARNING,
3056 "limiting speed to %s\n", buf);
3057 }
cf176e1a
TH
3058
3059 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3060 &dev->udma_mask);
3061
cf176e1a 3062 return 0;
cf176e1a
TH
3063}
3064
3373efd8 3065static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3066{
9af5c9c9 3067 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
3068 unsigned int err_mask;
3069 int rc;
1da177e4 3070
e8384607 3071 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3072 if (dev->xfer_shift == ATA_SHIFT_PIO)
3073 dev->flags |= ATA_DFLAG_PIO;
3074
3373efd8 3075 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3076
11750a40
A
3077 /* Old CFA may refuse this command, which is just fine */
3078 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
3079 err_mask &= ~AC_ERR_DEV;
3080
0bc2a79a
AC
3081 /* Some very old devices and some bad newer ones fail any kind of
3082 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3083 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3084 dev->pio_mode <= XFER_PIO_2)
3085 err_mask &= ~AC_ERR_DEV;
2dcb407e 3086
3acaf94b
AC
3087 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3088 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3089 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3090 dev->dma_mode == XFER_MW_DMA_0 &&
3091 (dev->id[63] >> 8) & 1)
3092 err_mask &= ~AC_ERR_DEV;
3093
83206a29 3094 if (err_mask) {
f15a1daf
TH
3095 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3096 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
3097 return -EIO;
3098 }
1da177e4 3099
baa1e78a 3100 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 3101 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 3102 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 3103 if (rc)
83206a29 3104 return rc;
48a8a14f 3105
23e71c3d
TH
3106 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3107 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3108
f15a1daf
TH
3109 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3110 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 3111 return 0;
1da177e4
LT
3112}
3113
1da177e4 3114/**
04351821 3115 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3116 * @link: link on which timings will be programmed
e82cbdb9 3117 * @r_failed_dev: out paramter for failed device
1da177e4 3118 *
04351821
A
3119 * Standard implementation of the function used to tune and set
3120 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3121 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3122 * returned in @r_failed_dev.
780a87f7 3123 *
1da177e4 3124 * LOCKING:
0cba632b 3125 * PCI/etc. bus probe sem.
e82cbdb9
TH
3126 *
3127 * RETURNS:
3128 * 0 on success, negative errno otherwise
1da177e4 3129 */
04351821 3130
0260731f 3131int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3132{
0260731f 3133 struct ata_port *ap = link->ap;
e8e0619f 3134 struct ata_device *dev;
f58229f8 3135 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3136
a6d5a51c 3137 /* step 1: calculate xfer_mask */
f58229f8 3138 ata_link_for_each_dev(dev, link) {
acf356b1 3139 unsigned int pio_mask, dma_mask;
b3a70601 3140 unsigned int mode_mask;
a6d5a51c 3141
e1211e3f 3142 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3143 continue;
3144
b3a70601
AC
3145 mode_mask = ATA_DMA_MASK_ATA;
3146 if (dev->class == ATA_DEV_ATAPI)
3147 mode_mask = ATA_DMA_MASK_ATAPI;
3148 else if (ata_id_is_cfa(dev->id))
3149 mode_mask = ATA_DMA_MASK_CFA;
3150
3373efd8 3151 ata_dev_xfermask(dev);
1da177e4 3152
acf356b1
TH
3153 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3154 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3155
3156 if (libata_dma_mask & mode_mask)
3157 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3158 else
3159 dma_mask = 0;
3160
acf356b1
TH
3161 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3162 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3163
4f65977d 3164 found = 1;
5444a6f4
AC
3165 if (dev->dma_mode)
3166 used_dma = 1;
a6d5a51c 3167 }
4f65977d 3168 if (!found)
e82cbdb9 3169 goto out;
a6d5a51c
TH
3170
3171 /* step 2: always set host PIO timings */
f58229f8 3172 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3173 if (!ata_dev_enabled(dev))
3174 continue;
3175
3176 if (!dev->pio_mode) {
f15a1daf 3177 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3178 rc = -EINVAL;
e82cbdb9 3179 goto out;
e8e0619f
TH
3180 }
3181
3182 dev->xfer_mode = dev->pio_mode;
3183 dev->xfer_shift = ATA_SHIFT_PIO;
3184 if (ap->ops->set_piomode)
3185 ap->ops->set_piomode(ap, dev);
3186 }
1da177e4 3187
a6d5a51c 3188 /* step 3: set host DMA timings */
f58229f8 3189 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3190 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3191 continue;
3192
3193 dev->xfer_mode = dev->dma_mode;
3194 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3195 if (ap->ops->set_dmamode)
3196 ap->ops->set_dmamode(ap, dev);
3197 }
1da177e4
LT
3198
3199 /* step 4: update devices' xfer mode */
f58229f8 3200 ata_link_for_each_dev(dev, link) {
18d90deb 3201 /* don't update suspended devices' xfer mode */
9666f400 3202 if (!ata_dev_enabled(dev))
83206a29
TH
3203 continue;
3204
3373efd8 3205 rc = ata_dev_set_mode(dev);
5bbc53f4 3206 if (rc)
e82cbdb9 3207 goto out;
83206a29 3208 }
1da177e4 3209
e8e0619f
TH
3210 /* Record simplex status. If we selected DMA then the other
3211 * host channels are not permitted to do so.
5444a6f4 3212 */
cca3974e 3213 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3214 ap->host->simplex_claimed = ap;
5444a6f4 3215
e82cbdb9
TH
3216 out:
3217 if (rc)
3218 *r_failed_dev = dev;
3219 return rc;
1da177e4
LT
3220}
3221
04351821
A
3222/**
3223 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3224 * @link: link on which timings will be programmed
04351821
A
3225 * @r_failed_dev: out paramter for failed device
3226 *
3227 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3228 * ata_set_mode() fails, pointer to the failing device is
3229 * returned in @r_failed_dev.
3230 *
3231 * LOCKING:
3232 * PCI/etc. bus probe sem.
3233 *
3234 * RETURNS:
3235 * 0 on success, negative errno otherwise
3236 */
0260731f 3237int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3238{
0260731f
TH
3239 struct ata_port *ap = link->ap;
3240
04351821
A
3241 /* has private set_mode? */
3242 if (ap->ops->set_mode)
0260731f
TH
3243 return ap->ops->set_mode(link, r_failed_dev);
3244 return ata_do_set_mode(link, r_failed_dev);
04351821
A
3245}
3246
1fdffbce
JG
3247/**
3248 * ata_tf_to_host - issue ATA taskfile to host controller
3249 * @ap: port to which command is being issued
3250 * @tf: ATA taskfile register set
3251 *
3252 * Issues ATA taskfile register set to ATA host controller,
3253 * with proper synchronization with interrupt handler and
3254 * other threads.
3255 *
3256 * LOCKING:
cca3974e 3257 * spin_lock_irqsave(host lock)
1fdffbce
JG
3258 */
3259
3260static inline void ata_tf_to_host(struct ata_port *ap,
3261 const struct ata_taskfile *tf)
3262{
3263 ap->ops->tf_load(ap, tf);
3264 ap->ops->exec_command(ap, tf);
3265}
3266
1da177e4
LT
3267/**
3268 * ata_busy_sleep - sleep until BSY clears, or timeout
3269 * @ap: port containing status register to be polled
3270 * @tmout_pat: impatience timeout
3271 * @tmout: overall timeout
3272 *
780a87f7
JG
3273 * Sleep until ATA Status register bit BSY clears,
3274 * or a timeout occurs.
3275 *
d1adc1bb
TH
3276 * LOCKING:
3277 * Kernel thread context (may sleep).
3278 *
3279 * RETURNS:
3280 * 0 on success, -errno otherwise.
1da177e4 3281 */
d1adc1bb
TH
3282int ata_busy_sleep(struct ata_port *ap,
3283 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3284{
3285 unsigned long timer_start, timeout;
3286 u8 status;
3287
3288 status = ata_busy_wait(ap, ATA_BUSY, 300);
3289 timer_start = jiffies;
3290 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3291 while (status != 0xff && (status & ATA_BUSY) &&
3292 time_before(jiffies, timeout)) {
1da177e4
LT
3293 msleep(50);
3294 status = ata_busy_wait(ap, ATA_BUSY, 3);
3295 }
3296
d1adc1bb 3297 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3298 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3299 "port is slow to respond, please be patient "
3300 "(Status 0x%x)\n", status);
1da177e4
LT
3301
3302 timeout = timer_start + tmout;
d1adc1bb
TH
3303 while (status != 0xff && (status & ATA_BUSY) &&
3304 time_before(jiffies, timeout)) {
1da177e4
LT
3305 msleep(50);
3306 status = ata_chk_status(ap);
3307 }
3308
d1adc1bb
TH
3309 if (status == 0xff)
3310 return -ENODEV;
3311
1da177e4 3312 if (status & ATA_BUSY) {
f15a1daf 3313 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3314 "(%lu secs, Status 0x%x)\n",
3315 tmout / HZ, status);
d1adc1bb 3316 return -EBUSY;
1da177e4
LT
3317 }
3318
3319 return 0;
3320}
3321
88ff6eaf
TH
3322/**
3323 * ata_wait_after_reset - wait before checking status after reset
3324 * @ap: port containing status register to be polled
3325 * @deadline: deadline jiffies for the operation
3326 *
3327 * After reset, we need to pause a while before reading status.
3328 * Also, certain combination of controller and device report 0xff
3329 * for some duration (e.g. until SATA PHY is up and running)
3330 * which is interpreted as empty port in ATA world. This
3331 * function also waits for such devices to get out of 0xff
3332 * status.
3333 *
3334 * LOCKING:
3335 * Kernel thread context (may sleep).
3336 */
3337void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3338{
3339 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3340
3341 if (time_before(until, deadline))
3342 deadline = until;
3343
3344 /* Spec mandates ">= 2ms" before checking status. We wait
3345 * 150ms, because that was the magic delay used for ATAPI
3346 * devices in Hale Landis's ATADRVR, for the period of time
3347 * between when the ATA command register is written, and then
3348 * status is checked. Because waiting for "a while" before
3349 * checking status is fine, post SRST, we perform this magic
3350 * delay here as well.
3351 *
3352 * Old drivers/ide uses the 2mS rule and then waits for ready.
3353 */
3354 msleep(150);
3355
3356 /* Wait for 0xff to clear. Some SATA devices take a long time
3357 * to clear 0xff after reset. For example, HHD424020F7SV00
3358 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3359 * than that.
3360 */
3361 while (1) {
3362 u8 status = ata_chk_status(ap);
3363
3364 if (status != 0xff || time_after(jiffies, deadline))
3365 return;
3366
3367 msleep(50);
3368 }
3369}
3370
d4b2bab4
TH
3371/**
3372 * ata_wait_ready - sleep until BSY clears, or timeout
3373 * @ap: port containing status register to be polled
3374 * @deadline: deadline jiffies for the operation
3375 *
3376 * Sleep until ATA Status register bit BSY clears, or timeout
3377 * occurs.
3378 *
3379 * LOCKING:
3380 * Kernel thread context (may sleep).
3381 *
3382 * RETURNS:
3383 * 0 on success, -errno otherwise.
3384 */
3385int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3386{
3387 unsigned long start = jiffies;
3388 int warned = 0;
3389
3390 while (1) {
3391 u8 status = ata_chk_status(ap);
3392 unsigned long now = jiffies;
3393
3394 if (!(status & ATA_BUSY))
3395 return 0;
936fd732 3396 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3397 return -ENODEV;
3398 if (time_after(now, deadline))
3399 return -EBUSY;
3400
3401 if (!warned && time_after(now, start + 5 * HZ) &&
3402 (deadline - now > 3 * HZ)) {
3403 ata_port_printk(ap, KERN_WARNING,
3404 "port is slow to respond, please be patient "
3405 "(Status 0x%x)\n", status);
3406 warned = 1;
3407 }
3408
3409 msleep(50);
3410 }
3411}
3412
3413static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3414 unsigned long deadline)
1da177e4
LT
3415{
3416 struct ata_ioports *ioaddr = &ap->ioaddr;
3417 unsigned int dev0 = devmask & (1 << 0);
3418 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3419 int rc, ret = 0;
1da177e4
LT
3420
3421 /* if device 0 was found in ata_devchk, wait for its
3422 * BSY bit to clear
3423 */
d4b2bab4
TH
3424 if (dev0) {
3425 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3426 if (rc) {
3427 if (rc != -ENODEV)
3428 return rc;
3429 ret = rc;
3430 }
d4b2bab4 3431 }
1da177e4 3432
e141d999
TH
3433 /* if device 1 was found in ata_devchk, wait for register
3434 * access briefly, then wait for BSY to clear.
1da177e4 3435 */
e141d999
TH
3436 if (dev1) {
3437 int i;
1da177e4
LT
3438
3439 ap->ops->dev_select(ap, 1);
e141d999
TH
3440
3441 /* Wait for register access. Some ATAPI devices fail
3442 * to set nsect/lbal after reset, so don't waste too
3443 * much time on it. We're gonna wait for !BSY anyway.
3444 */
3445 for (i = 0; i < 2; i++) {
3446 u8 nsect, lbal;
3447
3448 nsect = ioread8(ioaddr->nsect_addr);
3449 lbal = ioread8(ioaddr->lbal_addr);
3450 if ((nsect == 1) && (lbal == 1))
3451 break;
3452 msleep(50); /* give drive a breather */
3453 }
3454
d4b2bab4 3455 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3456 if (rc) {
3457 if (rc != -ENODEV)
3458 return rc;
3459 ret = rc;
3460 }
d4b2bab4 3461 }
1da177e4
LT
3462
3463 /* is all this really necessary? */
3464 ap->ops->dev_select(ap, 0);
3465 if (dev1)
3466 ap->ops->dev_select(ap, 1);
3467 if (dev0)
3468 ap->ops->dev_select(ap, 0);
d4b2bab4 3469
9b89391c 3470 return ret;
1da177e4
LT
3471}
3472
d4b2bab4
TH
3473static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3474 unsigned long deadline)
1da177e4
LT
3475{
3476 struct ata_ioports *ioaddr = &ap->ioaddr;
3477
44877b4e 3478 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3479
3480 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3481 iowrite8(ap->ctl, ioaddr->ctl_addr);
3482 udelay(20); /* FIXME: flush */
3483 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3484 udelay(20); /* FIXME: flush */
3485 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3486
88ff6eaf
TH
3487 /* wait a while before checking status */
3488 ata_wait_after_reset(ap, deadline);
1da177e4 3489
2e9edbf8 3490 /* Before we perform post reset processing we want to see if
298a41ca
TH
3491 * the bus shows 0xFF because the odd clown forgets the D7
3492 * pulldown resistor.
3493 */
150981b0 3494 if (ata_chk_status(ap) == 0xFF)
9b89391c 3495 return -ENODEV;
09c7ad79 3496
d4b2bab4 3497 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3498}
3499
3500/**
3501 * ata_bus_reset - reset host port and associated ATA channel
3502 * @ap: port to reset
3503 *
3504 * This is typically the first time we actually start issuing
3505 * commands to the ATA channel. We wait for BSY to clear, then
3506 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3507 * result. Determine what devices, if any, are on the channel
3508 * by looking at the device 0/1 error register. Look at the signature
3509 * stored in each device's taskfile registers, to determine if
3510 * the device is ATA or ATAPI.
3511 *
3512 * LOCKING:
0cba632b 3513 * PCI/etc. bus probe sem.
cca3974e 3514 * Obtains host lock.
1da177e4
LT
3515 *
3516 * SIDE EFFECTS:
198e0fed 3517 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3518 */
3519
3520void ata_bus_reset(struct ata_port *ap)
3521{
9af5c9c9 3522 struct ata_device *device = ap->link.device;
1da177e4
LT
3523 struct ata_ioports *ioaddr = &ap->ioaddr;
3524 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3525 u8 err;
aec5c3c1 3526 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3527 int rc;
1da177e4 3528
44877b4e 3529 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3530
3531 /* determine if device 0/1 are present */
3532 if (ap->flags & ATA_FLAG_SATA_RESET)
3533 dev0 = 1;
3534 else {
3535 dev0 = ata_devchk(ap, 0);
3536 if (slave_possible)
3537 dev1 = ata_devchk(ap, 1);
3538 }
3539
3540 if (dev0)
3541 devmask |= (1 << 0);
3542 if (dev1)
3543 devmask |= (1 << 1);
3544
3545 /* select device 0 again */
3546 ap->ops->dev_select(ap, 0);
3547
3548 /* issue bus reset */
9b89391c
TH
3549 if (ap->flags & ATA_FLAG_SRST) {
3550 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3551 if (rc && rc != -ENODEV)
aec5c3c1 3552 goto err_out;
9b89391c 3553 }
1da177e4
LT
3554
3555 /*
3556 * determine by signature whether we have ATA or ATAPI devices
3557 */
3f19859e 3558 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3559 if ((slave_possible) && (err != 0x81))
3f19859e 3560 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3561
1da177e4 3562 /* is double-select really necessary? */
9af5c9c9 3563 if (device[1].class != ATA_DEV_NONE)
1da177e4 3564 ap->ops->dev_select(ap, 1);
9af5c9c9 3565 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3566 ap->ops->dev_select(ap, 0);
3567
3568 /* if no devices were detected, disable this port */
9af5c9c9
TH
3569 if ((device[0].class == ATA_DEV_NONE) &&
3570 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3571 goto err_out;
3572
3573 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3574 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3575 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3576 }
3577
3578 DPRINTK("EXIT\n");
3579 return;
3580
3581err_out:
f15a1daf 3582 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3583 ata_port_disable(ap);
1da177e4
LT
3584
3585 DPRINTK("EXIT\n");
3586}
3587
d7bb4cc7 3588/**
936fd732
TH
3589 * sata_link_debounce - debounce SATA phy status
3590 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3591 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3592 * @deadline: deadline jiffies for the operation
d7bb4cc7 3593 *
936fd732 3594* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3595 * holding the same value where DET is not 1 for @duration polled
3596 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3597 * beginning of the stable state. Because DET gets stuck at 1 on
3598 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3599 * until timeout then returns 0 if DET is stable at 1.
3600 *
d4b2bab4
TH
3601 * @timeout is further limited by @deadline. The sooner of the
3602 * two is used.
3603 *
d7bb4cc7
TH
3604 * LOCKING:
3605 * Kernel thread context (may sleep)
3606 *
3607 * RETURNS:
3608 * 0 on success, -errno on failure.
3609 */
936fd732
TH
3610int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3611 unsigned long deadline)
7a7921e8 3612{
d7bb4cc7 3613 unsigned long interval_msec = params[0];
d4b2bab4
TH
3614 unsigned long duration = msecs_to_jiffies(params[1]);
3615 unsigned long last_jiffies, t;
d7bb4cc7
TH
3616 u32 last, cur;
3617 int rc;
3618
d4b2bab4
TH
3619 t = jiffies + msecs_to_jiffies(params[2]);
3620 if (time_before(t, deadline))
3621 deadline = t;
3622
936fd732 3623 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3624 return rc;
3625 cur &= 0xf;
3626
3627 last = cur;
3628 last_jiffies = jiffies;
3629
3630 while (1) {
3631 msleep(interval_msec);
936fd732 3632 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3633 return rc;
3634 cur &= 0xf;
3635
3636 /* DET stable? */
3637 if (cur == last) {
d4b2bab4 3638 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3639 continue;
3640 if (time_after(jiffies, last_jiffies + duration))
3641 return 0;
3642 continue;
3643 }
3644
3645 /* unstable, start over */
3646 last = cur;
3647 last_jiffies = jiffies;
3648
f1545154
TH
3649 /* Check deadline. If debouncing failed, return
3650 * -EPIPE to tell upper layer to lower link speed.
3651 */
d4b2bab4 3652 if (time_after(jiffies, deadline))
f1545154 3653 return -EPIPE;
d7bb4cc7
TH
3654 }
3655}
3656
3657/**
936fd732
TH
3658 * sata_link_resume - resume SATA link
3659 * @link: ATA link to resume SATA
d7bb4cc7 3660 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3661 * @deadline: deadline jiffies for the operation
d7bb4cc7 3662 *
936fd732 3663 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3664 *
3665 * LOCKING:
3666 * Kernel thread context (may sleep)
3667 *
3668 * RETURNS:
3669 * 0 on success, -errno on failure.
3670 */
936fd732
TH
3671int sata_link_resume(struct ata_link *link, const unsigned long *params,
3672 unsigned long deadline)
d7bb4cc7
TH
3673{
3674 u32 scontrol;
81952c54
TH
3675 int rc;
3676
936fd732 3677 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3678 return rc;
7a7921e8 3679
852ee16a 3680 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3681
936fd732 3682 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3683 return rc;
7a7921e8 3684
d7bb4cc7
TH
3685 /* Some PHYs react badly if SStatus is pounded immediately
3686 * after resuming. Delay 200ms before debouncing.
3687 */
3688 msleep(200);
7a7921e8 3689
936fd732 3690 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3691}
3692
f5914a46
TH
3693/**
3694 * ata_std_prereset - prepare for reset
cc0680a5 3695 * @link: ATA link to be reset
d4b2bab4 3696 * @deadline: deadline jiffies for the operation
f5914a46 3697 *
cc0680a5 3698 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3699 * prereset makes libata abort whole reset sequence and give up
3700 * that port, so prereset should be best-effort. It does its
3701 * best to prepare for reset sequence but if things go wrong, it
3702 * should just whine, not fail.
f5914a46
TH
3703 *
3704 * LOCKING:
3705 * Kernel thread context (may sleep)
3706 *
3707 * RETURNS:
3708 * 0 on success, -errno otherwise.
3709 */
cc0680a5 3710int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3711{
cc0680a5 3712 struct ata_port *ap = link->ap;
936fd732 3713 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3714 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3715 int rc;
3716
31daabda 3717 /* handle link resume */
28324304 3718 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3719 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3720 ehc->i.action |= ATA_EH_HARDRESET;
3721
633273a3
TH
3722 /* Some PMPs don't work with only SRST, force hardreset if PMP
3723 * is supported.
3724 */
3725 if (ap->flags & ATA_FLAG_PMP)
3726 ehc->i.action |= ATA_EH_HARDRESET;
3727
f5914a46
TH
3728 /* if we're about to do hardreset, nothing more to do */
3729 if (ehc->i.action & ATA_EH_HARDRESET)
3730 return 0;
3731
936fd732 3732 /* if SATA, resume link */
a16abc0b 3733 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3734 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3735 /* whine about phy resume failure but proceed */
3736 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3737 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3738 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3739 }
3740
3741 /* Wait for !BSY if the controller can wait for the first D2H
3742 * Reg FIS and we don't know that no device is attached.
3743 */
0c88758b 3744 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3745 rc = ata_wait_ready(ap, deadline);
6dffaf61 3746 if (rc && rc != -ENODEV) {
cc0680a5 3747 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3748 "(errno=%d), forcing hardreset\n", rc);
3749 ehc->i.action |= ATA_EH_HARDRESET;
3750 }
3751 }
f5914a46
TH
3752
3753 return 0;
3754}
3755
c2bd5804
TH
3756/**
3757 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3758 * @link: ATA link to reset
c2bd5804 3759 * @classes: resulting classes of attached devices
d4b2bab4 3760 * @deadline: deadline jiffies for the operation
c2bd5804 3761 *
52783c5d 3762 * Reset host port using ATA SRST.
c2bd5804
TH
3763 *
3764 * LOCKING:
3765 * Kernel thread context (may sleep)
3766 *
3767 * RETURNS:
3768 * 0 on success, -errno otherwise.
3769 */
cc0680a5 3770int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3771 unsigned long deadline)
c2bd5804 3772{
cc0680a5 3773 struct ata_port *ap = link->ap;
c2bd5804 3774 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3775 unsigned int devmask = 0;
3776 int rc;
c2bd5804
TH
3777 u8 err;
3778
3779 DPRINTK("ENTER\n");
3780
936fd732 3781 if (ata_link_offline(link)) {
3a39746a
TH
3782 classes[0] = ATA_DEV_NONE;
3783 goto out;
3784 }
3785
c2bd5804
TH
3786 /* determine if device 0/1 are present */
3787 if (ata_devchk(ap, 0))
3788 devmask |= (1 << 0);
3789 if (slave_possible && ata_devchk(ap, 1))
3790 devmask |= (1 << 1);
3791
c2bd5804
TH
3792 /* select device 0 again */
3793 ap->ops->dev_select(ap, 0);
3794
3795 /* issue bus reset */
3796 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3797 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3798 /* if link is occupied, -ENODEV too is an error */
936fd732 3799 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3800 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3801 return rc;
c2bd5804
TH
3802 }
3803
3804 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3805 classes[0] = ata_dev_try_classify(&link->device[0],
3806 devmask & (1 << 0), &err);
c2bd5804 3807 if (slave_possible && err != 0x81)
3f19859e
TH
3808 classes[1] = ata_dev_try_classify(&link->device[1],
3809 devmask & (1 << 1), &err);
c2bd5804 3810
3a39746a 3811 out:
c2bd5804
TH
3812 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3813 return 0;
3814}
3815
3816/**
cc0680a5
TH
3817 * sata_link_hardreset - reset link via SATA phy reset
3818 * @link: link to reset
b6103f6d 3819 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3820 * @deadline: deadline jiffies for the operation
c2bd5804 3821 *
cc0680a5 3822 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3823 *
3824 * LOCKING:
3825 * Kernel thread context (may sleep)
3826 *
3827 * RETURNS:
3828 * 0 on success, -errno otherwise.
3829 */
cc0680a5 3830int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3831 unsigned long deadline)
c2bd5804 3832{
852ee16a 3833 u32 scontrol;
81952c54 3834 int rc;
852ee16a 3835
c2bd5804
TH
3836 DPRINTK("ENTER\n");
3837
936fd732 3838 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3839 /* SATA spec says nothing about how to reconfigure
3840 * spd. To be on the safe side, turn off phy during
3841 * reconfiguration. This works for at least ICH7 AHCI
3842 * and Sil3124.
3843 */
936fd732 3844 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3845 goto out;
81952c54 3846
a34b6fc0 3847 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3848
936fd732 3849 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3850 goto out;
1c3fae4d 3851
936fd732 3852 sata_set_spd(link);
1c3fae4d
TH
3853 }
3854
3855 /* issue phy wake/reset */
936fd732 3856 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3857 goto out;
81952c54 3858
852ee16a 3859 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3860
936fd732 3861 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3862 goto out;
c2bd5804 3863
1c3fae4d 3864 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3865 * 10.4.2 says at least 1 ms.
3866 */
3867 msleep(1);
3868
936fd732
TH
3869 /* bring link back */
3870 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3871 out:
3872 DPRINTK("EXIT, rc=%d\n", rc);
3873 return rc;
3874}
3875
3876/**
3877 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3878 * @link: link to reset
b6103f6d 3879 * @class: resulting class of attached device
d4b2bab4 3880 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3881 *
3882 * SATA phy-reset host port using DET bits of SControl register,
3883 * wait for !BSY and classify the attached device.
3884 *
3885 * LOCKING:
3886 * Kernel thread context (may sleep)
3887 *
3888 * RETURNS:
3889 * 0 on success, -errno otherwise.
3890 */
cc0680a5 3891int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3892 unsigned long deadline)
b6103f6d 3893{
cc0680a5 3894 struct ata_port *ap = link->ap;
936fd732 3895 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3896 int rc;
3897
3898 DPRINTK("ENTER\n");
3899
3900 /* do hardreset */
cc0680a5 3901 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3902 if (rc) {
cc0680a5 3903 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3904 "COMRESET failed (errno=%d)\n", rc);
3905 return rc;
3906 }
c2bd5804 3907
c2bd5804 3908 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3909 if (ata_link_offline(link)) {
c2bd5804
TH
3910 *class = ATA_DEV_NONE;
3911 DPRINTK("EXIT, link offline\n");
3912 return 0;
3913 }
3914
88ff6eaf
TH
3915 /* wait a while before checking status */
3916 ata_wait_after_reset(ap, deadline);
34fee227 3917
633273a3
TH
3918 /* If PMP is supported, we have to do follow-up SRST. Note
3919 * that some PMPs don't send D2H Reg FIS after hardreset at
3920 * all if the first port is empty. Wait for it just for a
3921 * second and request follow-up SRST.
3922 */
3923 if (ap->flags & ATA_FLAG_PMP) {
3924 ata_wait_ready(ap, jiffies + HZ);
3925 return -EAGAIN;
3926 }
3927
d4b2bab4 3928 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3929 /* link occupied, -ENODEV too is an error */
3930 if (rc) {
cc0680a5 3931 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3932 "COMRESET failed (errno=%d)\n", rc);
3933 return rc;
c2bd5804
TH
3934 }
3935
3a39746a
TH
3936 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3937
3f19859e 3938 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3939
3940 DPRINTK("EXIT, class=%u\n", *class);
3941 return 0;
3942}
3943
3944/**
3945 * ata_std_postreset - standard postreset callback
cc0680a5 3946 * @link: the target ata_link
c2bd5804
TH
3947 * @classes: classes of attached devices
3948 *
3949 * This function is invoked after a successful reset. Note that
3950 * the device might have been reset more than once using
3951 * different reset methods before postreset is invoked.
c2bd5804 3952 *
c2bd5804
TH
3953 * LOCKING:
3954 * Kernel thread context (may sleep)
3955 */
cc0680a5 3956void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3957{
cc0680a5 3958 struct ata_port *ap = link->ap;
dc2b3515
TH
3959 u32 serror;
3960
c2bd5804
TH
3961 DPRINTK("ENTER\n");
3962
c2bd5804 3963 /* print link status */
936fd732 3964 sata_print_link_status(link);
c2bd5804 3965
dc2b3515 3966 /* clear SError */
936fd732
TH
3967 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3968 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3969
c2bd5804
TH
3970 /* is double-select really necessary? */
3971 if (classes[0] != ATA_DEV_NONE)
3972 ap->ops->dev_select(ap, 1);
3973 if (classes[1] != ATA_DEV_NONE)
3974 ap->ops->dev_select(ap, 0);
3975
3a39746a
TH
3976 /* bail out if no device is present */
3977 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3978 DPRINTK("EXIT, no device\n");
3979 return;
3980 }
3981
3982 /* set up device control */
0d5ff566
TH
3983 if (ap->ioaddr.ctl_addr)
3984 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3985
3986 DPRINTK("EXIT\n");
3987}
3988
623a3128
TH
3989/**
3990 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3991 * @dev: device to compare against
3992 * @new_class: class of the new device
3993 * @new_id: IDENTIFY page of the new device
3994 *
3995 * Compare @new_class and @new_id against @dev and determine
3996 * whether @dev is the device indicated by @new_class and
3997 * @new_id.
3998 *
3999 * LOCKING:
4000 * None.
4001 *
4002 * RETURNS:
4003 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4004 */
3373efd8
TH
4005static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4006 const u16 *new_id)
623a3128
TH
4007{
4008 const u16 *old_id = dev->id;
a0cf733b
TH
4009 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4010 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4011
4012 if (dev->class != new_class) {
f15a1daf
TH
4013 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4014 dev->class, new_class);
623a3128
TH
4015 return 0;
4016 }
4017
a0cf733b
TH
4018 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4019 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4020 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4021 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4022
4023 if (strcmp(model[0], model[1])) {
f15a1daf
TH
4024 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4025 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
4026 return 0;
4027 }
4028
4029 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4030 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4031 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4032 return 0;
4033 }
4034
623a3128
TH
4035 return 1;
4036}
4037
4038/**
fe30911b 4039 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4040 * @dev: target ATA device
bff04647 4041 * @readid_flags: read ID flags
623a3128
TH
4042 *
4043 * Re-read IDENTIFY page and make sure @dev is still attached to
4044 * the port.
4045 *
4046 * LOCKING:
4047 * Kernel thread context (may sleep)
4048 *
4049 * RETURNS:
4050 * 0 on success, negative errno otherwise
4051 */
fe30911b 4052int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4053{
5eb45c02 4054 unsigned int class = dev->class;
9af5c9c9 4055 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4056 int rc;
4057
fe635c7e 4058 /* read ID data */
bff04647 4059 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4060 if (rc)
fe30911b 4061 return rc;
623a3128
TH
4062
4063 /* is the device still there? */
fe30911b
TH
4064 if (!ata_dev_same_device(dev, class, id))
4065 return -ENODEV;
623a3128 4066
fe635c7e 4067 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4068 return 0;
4069}
4070
4071/**
4072 * ata_dev_revalidate - Revalidate ATA device
4073 * @dev: device to revalidate
422c9daa 4074 * @new_class: new class code
fe30911b
TH
4075 * @readid_flags: read ID flags
4076 *
4077 * Re-read IDENTIFY page, make sure @dev is still attached to the
4078 * port and reconfigure it according to the new IDENTIFY page.
4079 *
4080 * LOCKING:
4081 * Kernel thread context (may sleep)
4082 *
4083 * RETURNS:
4084 * 0 on success, negative errno otherwise
4085 */
422c9daa
TH
4086int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4087 unsigned int readid_flags)
fe30911b 4088{
6ddcd3b0 4089 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4090 int rc;
4091
4092 if (!ata_dev_enabled(dev))
4093 return -ENODEV;
4094
422c9daa
TH
4095 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4096 if (ata_class_enabled(new_class) &&
4097 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4098 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4099 dev->class, new_class);
4100 rc = -ENODEV;
4101 goto fail;
4102 }
4103
fe30911b
TH
4104 /* re-read ID */
4105 rc = ata_dev_reread_id(dev, readid_flags);
4106 if (rc)
4107 goto fail;
623a3128
TH
4108
4109 /* configure device according to the new ID */
efdaedc4 4110 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4111 if (rc)
4112 goto fail;
4113
4114 /* verify n_sectors hasn't changed */
b54eebd6
TH
4115 if (dev->class == ATA_DEV_ATA && n_sectors &&
4116 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4117 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4118 "%llu != %llu\n",
4119 (unsigned long long)n_sectors,
4120 (unsigned long long)dev->n_sectors);
8270bec4
TH
4121
4122 /* restore original n_sectors */
4123 dev->n_sectors = n_sectors;
4124
6ddcd3b0
TH
4125 rc = -ENODEV;
4126 goto fail;
4127 }
4128
4129 return 0;
623a3128
TH
4130
4131 fail:
f15a1daf 4132 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4133 return rc;
4134}
4135
6919a0a6
AC
4136struct ata_blacklist_entry {
4137 const char *model_num;
4138 const char *model_rev;
4139 unsigned long horkage;
4140};
4141
4142static const struct ata_blacklist_entry ata_device_blacklist [] = {
4143 /* Devices with DMA related problems under Linux */
4144 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4145 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4146 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4147 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4148 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4149 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4150 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4151 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4152 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4153 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4154 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4155 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4156 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4157 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4158 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4159 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4160 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4161 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4162 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4163 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4164 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4165 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4166 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4167 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4168 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4169 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4170 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4171 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4172 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4173 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4174 /* Odd clown on sil3726/4726 PMPs */
4175 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4176 ATA_HORKAGE_SKIP_PM },
6919a0a6 4177
18d6e9d5 4178 /* Weird ATAPI devices */
40a1d531 4179 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4180
6919a0a6
AC
4181 /* Devices we expect to fail diagnostics */
4182
4183 /* Devices where NCQ should be avoided */
4184 /* NCQ is slow */
2dcb407e 4185 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
4186 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4187 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4188 /* NCQ is broken */
539cc7c7 4189 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4190 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4191 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4192 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4193 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4194
36e337d0
RH
4195 /* Blacklist entries taken from Silicon Image 3124/3132
4196 Windows driver .inf file - also several Linux problem reports */
4197 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4198 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4199 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
4200 /* Drives which do spurious command completion */
4201 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 4202 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
70edb185 4203 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
e14cbfa6 4204 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
0c173174 4205 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
2f8fcebb 4206 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
7f567620 4207 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
a520f261 4208 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
7f567620 4209 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3fb6589c 4210 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
954bb005 4211 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
13587960 4212 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
7f567620
TH
4213 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4214 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
5d6aca8d 4215 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
12850ffe 4216 { "Maxtor 7V300F0", "VA111900", ATA_HORKAGE_NONCQ, },
6919a0a6 4217
16c55b03
TH
4218 /* devices which puke on READ_NATIVE_MAX */
4219 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4220 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4221 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4222 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4223
93328e11
AC
4224 /* Devices which report 1 sector over size HPA */
4225 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4226 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4227
6919a0a6
AC
4228 /* End Marker */
4229 { }
1da177e4 4230};
2e9edbf8 4231
741b7763 4232static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4233{
4234 const char *p;
4235 int len;
4236
4237 /*
4238 * check for trailing wildcard: *\0
4239 */
4240 p = strchr(patt, wildchar);
4241 if (p && ((*(p + 1)) == 0))
4242 len = p - patt;
317b50b8 4243 else {
539cc7c7 4244 len = strlen(name);
317b50b8
AP
4245 if (!len) {
4246 if (!*patt)
4247 return 0;
4248 return -1;
4249 }
4250 }
539cc7c7
JG
4251
4252 return strncmp(patt, name, len);
4253}
4254
75683fe7 4255static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4256{
8bfa79fc
TH
4257 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4258 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4259 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4260
8bfa79fc
TH
4261 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4262 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4263
6919a0a6 4264 while (ad->model_num) {
539cc7c7 4265 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4266 if (ad->model_rev == NULL)
4267 return ad->horkage;
539cc7c7 4268 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4269 return ad->horkage;
f4b15fef 4270 }
6919a0a6 4271 ad++;
f4b15fef 4272 }
1da177e4
LT
4273 return 0;
4274}
4275
6919a0a6
AC
4276static int ata_dma_blacklisted(const struct ata_device *dev)
4277{
4278 /* We don't support polling DMA.
4279 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4280 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4281 */
9af5c9c9 4282 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4283 (dev->flags & ATA_DFLAG_CDB_INTR))
4284 return 1;
75683fe7 4285 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4286}
4287
a6d5a51c
TH
4288/**
4289 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4290 * @dev: Device to compute xfermask for
4291 *
acf356b1
TH
4292 * Compute supported xfermask of @dev and store it in
4293 * dev->*_mask. This function is responsible for applying all
4294 * known limits including host controller limits, device
4295 * blacklist, etc...
a6d5a51c
TH
4296 *
4297 * LOCKING:
4298 * None.
a6d5a51c 4299 */
3373efd8 4300static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4301{
9af5c9c9
TH
4302 struct ata_link *link = dev->link;
4303 struct ata_port *ap = link->ap;
cca3974e 4304 struct ata_host *host = ap->host;
a6d5a51c 4305 unsigned long xfer_mask;
1da177e4 4306
37deecb5 4307 /* controller modes available */
565083e1
TH
4308 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4309 ap->mwdma_mask, ap->udma_mask);
4310
8343f889 4311 /* drive modes available */
37deecb5
TH
4312 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4313 dev->mwdma_mask, dev->udma_mask);
4314 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4315
b352e57d
AC
4316 /*
4317 * CFA Advanced TrueIDE timings are not allowed on a shared
4318 * cable
4319 */
4320 if (ata_dev_pair(dev)) {
4321 /* No PIO5 or PIO6 */
4322 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4323 /* No MWDMA3 or MWDMA 4 */
4324 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4325 }
4326
37deecb5
TH
4327 if (ata_dma_blacklisted(dev)) {
4328 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4329 ata_dev_printk(dev, KERN_WARNING,
4330 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4331 }
a6d5a51c 4332
14d66ab7 4333 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4334 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4335 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4336 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4337 "other device, disabling DMA\n");
5444a6f4 4338 }
565083e1 4339
e424675f
JG
4340 if (ap->flags & ATA_FLAG_NO_IORDY)
4341 xfer_mask &= ata_pio_mask_no_iordy(dev);
4342
5444a6f4 4343 if (ap->ops->mode_filter)
a76b62ca 4344 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4345
8343f889
RH
4346 /* Apply cable rule here. Don't apply it early because when
4347 * we handle hot plug the cable type can itself change.
4348 * Check this last so that we know if the transfer rate was
4349 * solely limited by the cable.
4350 * Unknown or 80 wire cables reported host side are checked
4351 * drive side as well. Cases where we know a 40wire cable
4352 * is used safely for 80 are not checked here.
4353 */
4354 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4355 /* UDMA/44 or higher would be available */
2dcb407e
JG
4356 if ((ap->cbl == ATA_CBL_PATA40) ||
4357 (ata_drive_40wire(dev->id) &&
4358 (ap->cbl == ATA_CBL_PATA_UNK ||
4359 ap->cbl == ATA_CBL_PATA80))) {
4360 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4361 "limited to UDMA/33 due to 40-wire cable\n");
4362 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4363 }
4364
565083e1
TH
4365 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4366 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4367}
4368
1da177e4
LT
4369/**
4370 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4371 * @dev: Device to which command will be sent
4372 *
780a87f7
JG
4373 * Issue SET FEATURES - XFER MODE command to device @dev
4374 * on port @ap.
4375 *
1da177e4 4376 * LOCKING:
0cba632b 4377 * PCI/etc. bus probe sem.
83206a29
TH
4378 *
4379 * RETURNS:
4380 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4381 */
4382
3373efd8 4383static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4384{
a0123703 4385 struct ata_taskfile tf;
83206a29 4386 unsigned int err_mask;
1da177e4
LT
4387
4388 /* set up set-features taskfile */
4389 DPRINTK("set features - xfer mode\n");
4390
464cf177
TH
4391 /* Some controllers and ATAPI devices show flaky interrupt
4392 * behavior after setting xfer mode. Use polling instead.
4393 */
3373efd8 4394 ata_tf_init(dev, &tf);
a0123703
TH
4395 tf.command = ATA_CMD_SET_FEATURES;
4396 tf.feature = SETFEATURES_XFER;
464cf177 4397 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4398 tf.protocol = ATA_PROT_NODATA;
4399 tf.nsect = dev->xfer_mode;
1da177e4 4400
2b789108 4401 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4402
4403 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4404 return err_mask;
4405}
9f45cbd3 4406/**
218f3d30 4407 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4408 * @dev: Device to which command will be sent
4409 * @enable: Whether to enable or disable the feature
218f3d30 4410 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4411 *
4412 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4413 * on port @ap with sector count
9f45cbd3
KCA
4414 *
4415 * LOCKING:
4416 * PCI/etc. bus probe sem.
4417 *
4418 * RETURNS:
4419 * 0 on success, AC_ERR_* mask otherwise.
4420 */
218f3d30
JG
4421static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4422 u8 feature)
9f45cbd3
KCA
4423{
4424 struct ata_taskfile tf;
4425 unsigned int err_mask;
4426
4427 /* set up set-features taskfile */
4428 DPRINTK("set features - SATA features\n");
4429
4430 ata_tf_init(dev, &tf);
4431 tf.command = ATA_CMD_SET_FEATURES;
4432 tf.feature = enable;
4433 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4434 tf.protocol = ATA_PROT_NODATA;
218f3d30 4435 tf.nsect = feature;
9f45cbd3 4436
2b789108 4437 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4438
83206a29
TH
4439 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4440 return err_mask;
1da177e4
LT
4441}
4442
8bf62ece
AL
4443/**
4444 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4445 * @dev: Device to which command will be sent
e2a7f77a
RD
4446 * @heads: Number of heads (taskfile parameter)
4447 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4448 *
4449 * LOCKING:
6aff8f1f
TH
4450 * Kernel thread context (may sleep)
4451 *
4452 * RETURNS:
4453 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4454 */
3373efd8
TH
4455static unsigned int ata_dev_init_params(struct ata_device *dev,
4456 u16 heads, u16 sectors)
8bf62ece 4457{
a0123703 4458 struct ata_taskfile tf;
6aff8f1f 4459 unsigned int err_mask;
8bf62ece
AL
4460
4461 /* Number of sectors per track 1-255. Number of heads 1-16 */
4462 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4463 return AC_ERR_INVALID;
8bf62ece
AL
4464
4465 /* set up init dev params taskfile */
4466 DPRINTK("init dev params \n");
4467
3373efd8 4468 ata_tf_init(dev, &tf);
a0123703
TH
4469 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4470 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4471 tf.protocol = ATA_PROT_NODATA;
4472 tf.nsect = sectors;
4473 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4474
2b789108 4475 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4476 /* A clean abort indicates an original or just out of spec drive
4477 and we should continue as we issue the setup based on the
4478 drive reported working geometry */
4479 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4480 err_mask = 0;
8bf62ece 4481
6aff8f1f
TH
4482 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4483 return err_mask;
8bf62ece
AL
4484}
4485
1da177e4 4486/**
0cba632b
JG
4487 * ata_sg_clean - Unmap DMA memory associated with command
4488 * @qc: Command containing DMA memory to be released
4489 *
4490 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4491 *
4492 * LOCKING:
cca3974e 4493 * spin_lock_irqsave(host lock)
1da177e4 4494 */
70e6ad0c 4495void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4496{
4497 struct ata_port *ap = qc->ap;
cedc9a47 4498 struct scatterlist *sg = qc->__sg;
1da177e4 4499 int dir = qc->dma_dir;
cedc9a47 4500 void *pad_buf = NULL;
1da177e4 4501
a4631474
TH
4502 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4503 WARN_ON(sg == NULL);
1da177e4
LT
4504
4505 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4506 WARN_ON(qc->n_elem > 1);
1da177e4 4507
2c13b7ce 4508 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4509
cedc9a47
JG
4510 /* if we padded the buffer out to 32-bit bound, and data
4511 * xfer direction is from-device, we must copy from the
4512 * pad buffer back into the supplied buffer
4513 */
4514 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4515 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4516
4517 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4518 if (qc->n_elem)
2f1f610b 4519 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4520 /* restore last sg */
87260216 4521 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4522 if (pad_buf) {
4523 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4524 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4525 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4526 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4527 }
4528 } else {
2e242fa9 4529 if (qc->n_elem)
2f1f610b 4530 dma_unmap_single(ap->dev,
e1410f2d
JG
4531 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4532 dir);
cedc9a47
JG
4533 /* restore sg */
4534 sg->length += qc->pad_len;
4535 if (pad_buf)
4536 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4537 pad_buf, qc->pad_len);
4538 }
1da177e4
LT
4539
4540 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4541 qc->__sg = NULL;
1da177e4
LT
4542}
4543
4544/**
4545 * ata_fill_sg - Fill PCI IDE PRD table
4546 * @qc: Metadata associated with taskfile to be transferred
4547 *
780a87f7
JG
4548 * Fill PCI IDE PRD (scatter-gather) table with segments
4549 * associated with the current disk command.
4550 *
1da177e4 4551 * LOCKING:
cca3974e 4552 * spin_lock_irqsave(host lock)
1da177e4
LT
4553 *
4554 */
4555static void ata_fill_sg(struct ata_queued_cmd *qc)
4556{
1da177e4 4557 struct ata_port *ap = qc->ap;
cedc9a47
JG
4558 struct scatterlist *sg;
4559 unsigned int idx;
1da177e4 4560
a4631474 4561 WARN_ON(qc->__sg == NULL);
f131883e 4562 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4563
4564 idx = 0;
cedc9a47 4565 ata_for_each_sg(sg, qc) {
1da177e4
LT
4566 u32 addr, offset;
4567 u32 sg_len, len;
4568
4569 /* determine if physical DMA addr spans 64K boundary.
4570 * Note h/w doesn't support 64-bit, so we unconditionally
4571 * truncate dma_addr_t to u32.
4572 */
4573 addr = (u32) sg_dma_address(sg);
4574 sg_len = sg_dma_len(sg);
4575
4576 while (sg_len) {
4577 offset = addr & 0xffff;
4578 len = sg_len;
4579 if ((offset + sg_len) > 0x10000)
4580 len = 0x10000 - offset;
4581
4582 ap->prd[idx].addr = cpu_to_le32(addr);
4583 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4584 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4585
4586 idx++;
4587 sg_len -= len;
4588 addr += len;
4589 }
4590 }
4591
4592 if (idx)
4593 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4594}
b9a4197e 4595
d26fc955
AC
4596/**
4597 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4598 * @qc: Metadata associated with taskfile to be transferred
4599 *
4600 * Fill PCI IDE PRD (scatter-gather) table with segments
4601 * associated with the current disk command. Perform the fill
4602 * so that we avoid writing any length 64K records for
4603 * controllers that don't follow the spec.
4604 *
4605 * LOCKING:
4606 * spin_lock_irqsave(host lock)
4607 *
4608 */
4609static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4610{
4611 struct ata_port *ap = qc->ap;
4612 struct scatterlist *sg;
4613 unsigned int idx;
4614
4615 WARN_ON(qc->__sg == NULL);
4616 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4617
4618 idx = 0;
4619 ata_for_each_sg(sg, qc) {
4620 u32 addr, offset;
4621 u32 sg_len, len, blen;
4622
2dcb407e 4623 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4624 * Note h/w doesn't support 64-bit, so we unconditionally
4625 * truncate dma_addr_t to u32.
4626 */
4627 addr = (u32) sg_dma_address(sg);
4628 sg_len = sg_dma_len(sg);
4629
4630 while (sg_len) {
4631 offset = addr & 0xffff;
4632 len = sg_len;
4633 if ((offset + sg_len) > 0x10000)
4634 len = 0x10000 - offset;
4635
4636 blen = len & 0xffff;
4637 ap->prd[idx].addr = cpu_to_le32(addr);
4638 if (blen == 0) {
4639 /* Some PATA chipsets like the CS5530 can't
4640 cope with 0x0000 meaning 64K as the spec says */
4641 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4642 blen = 0x8000;
4643 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4644 }
4645 ap->prd[idx].flags_len = cpu_to_le32(blen);
4646 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4647
4648 idx++;
4649 sg_len -= len;
4650 addr += len;
4651 }
4652 }
4653
4654 if (idx)
4655 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4656}
4657
1da177e4
LT
4658/**
4659 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4660 * @qc: Metadata associated with taskfile to check
4661 *
780a87f7
JG
4662 * Allow low-level driver to filter ATA PACKET commands, returning
4663 * a status indicating whether or not it is OK to use DMA for the
4664 * supplied PACKET command.
4665 *
1da177e4 4666 * LOCKING:
cca3974e 4667 * spin_lock_irqsave(host lock)
0cba632b 4668 *
1da177e4
LT
4669 * RETURNS: 0 when ATAPI DMA can be used
4670 * nonzero otherwise
4671 */
4672int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4673{
4674 struct ata_port *ap = qc->ap;
b9a4197e
TH
4675
4676 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4677 * few ATAPI devices choke on such DMA requests.
4678 */
4679 if (unlikely(qc->nbytes & 15))
4680 return 1;
6f23a31d 4681
1da177e4 4682 if (ap->ops->check_atapi_dma)
b9a4197e 4683 return ap->ops->check_atapi_dma(qc);
1da177e4 4684
b9a4197e 4685 return 0;
1da177e4 4686}
b9a4197e 4687
31cc23b3
TH
4688/**
4689 * ata_std_qc_defer - Check whether a qc needs to be deferred
4690 * @qc: ATA command in question
4691 *
4692 * Non-NCQ commands cannot run with any other command, NCQ or
4693 * not. As upper layer only knows the queue depth, we are
4694 * responsible for maintaining exclusion. This function checks
4695 * whether a new command @qc can be issued.
4696 *
4697 * LOCKING:
4698 * spin_lock_irqsave(host lock)
4699 *
4700 * RETURNS:
4701 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4702 */
4703int ata_std_qc_defer(struct ata_queued_cmd *qc)
4704{
4705 struct ata_link *link = qc->dev->link;
4706
4707 if (qc->tf.protocol == ATA_PROT_NCQ) {
4708 if (!ata_tag_valid(link->active_tag))
4709 return 0;
4710 } else {
4711 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4712 return 0;
4713 }
4714
4715 return ATA_DEFER_LINK;
4716}
4717
1da177e4
LT
4718/**
4719 * ata_qc_prep - Prepare taskfile for submission
4720 * @qc: Metadata associated with taskfile to be prepared
4721 *
780a87f7
JG
4722 * Prepare ATA taskfile for submission.
4723 *
1da177e4 4724 * LOCKING:
cca3974e 4725 * spin_lock_irqsave(host lock)
1da177e4
LT
4726 */
4727void ata_qc_prep(struct ata_queued_cmd *qc)
4728{
4729 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4730 return;
4731
4732 ata_fill_sg(qc);
4733}
4734
d26fc955
AC
4735/**
4736 * ata_dumb_qc_prep - Prepare taskfile for submission
4737 * @qc: Metadata associated with taskfile to be prepared
4738 *
4739 * Prepare ATA taskfile for submission.
4740 *
4741 * LOCKING:
4742 * spin_lock_irqsave(host lock)
4743 */
4744void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4745{
4746 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4747 return;
4748
4749 ata_fill_sg_dumb(qc);
4750}
4751
e46834cd
BK
4752void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4753
0cba632b
JG
4754/**
4755 * ata_sg_init_one - Associate command with memory buffer
4756 * @qc: Command to be associated
4757 * @buf: Memory buffer
4758 * @buflen: Length of memory buffer, in bytes.
4759 *
4760 * Initialize the data-related elements of queued_cmd @qc
4761 * to point to a single memory buffer, @buf of byte length @buflen.
4762 *
4763 * LOCKING:
cca3974e 4764 * spin_lock_irqsave(host lock)
0cba632b
JG
4765 */
4766
1da177e4
LT
4767void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4768{
1da177e4
LT
4769 qc->flags |= ATA_QCFLAG_SINGLE;
4770
cedc9a47 4771 qc->__sg = &qc->sgent;
1da177e4 4772 qc->n_elem = 1;
cedc9a47 4773 qc->orig_n_elem = 1;
1da177e4 4774 qc->buf_virt = buf;
233277ca 4775 qc->nbytes = buflen;
87260216 4776 qc->cursg = qc->__sg;
1da177e4 4777
61c0596c 4778 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4779}
4780
0cba632b
JG
4781/**
4782 * ata_sg_init - Associate command with scatter-gather table.
4783 * @qc: Command to be associated
4784 * @sg: Scatter-gather table.
4785 * @n_elem: Number of elements in s/g table.
4786 *
4787 * Initialize the data-related elements of queued_cmd @qc
4788 * to point to a scatter-gather table @sg, containing @n_elem
4789 * elements.
4790 *
4791 * LOCKING:
cca3974e 4792 * spin_lock_irqsave(host lock)
0cba632b
JG
4793 */
4794
1da177e4
LT
4795void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4796 unsigned int n_elem)
4797{
4798 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4799 qc->__sg = sg;
1da177e4 4800 qc->n_elem = n_elem;
cedc9a47 4801 qc->orig_n_elem = n_elem;
87260216 4802 qc->cursg = qc->__sg;
1da177e4
LT
4803}
4804
4805/**
0cba632b
JG
4806 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4807 * @qc: Command with memory buffer to be mapped.
4808 *
4809 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4810 *
4811 * LOCKING:
cca3974e 4812 * spin_lock_irqsave(host lock)
1da177e4
LT
4813 *
4814 * RETURNS:
0cba632b 4815 * Zero on success, negative on error.
1da177e4
LT
4816 */
4817
4818static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4819{
4820 struct ata_port *ap = qc->ap;
4821 int dir = qc->dma_dir;
cedc9a47 4822 struct scatterlist *sg = qc->__sg;
1da177e4 4823 dma_addr_t dma_address;
2e242fa9 4824 int trim_sg = 0;
1da177e4 4825
cedc9a47
JG
4826 /* we must lengthen transfers to end on a 32-bit boundary */
4827 qc->pad_len = sg->length & 3;
4828 if (qc->pad_len) {
4829 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4830 struct scatterlist *psg = &qc->pad_sgent;
4831
a4631474 4832 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4833
4834 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4835
4836 if (qc->tf.flags & ATA_TFLAG_WRITE)
4837 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4838 qc->pad_len);
4839
4840 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4841 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4842 /* trim sg */
4843 sg->length -= qc->pad_len;
2e242fa9
TH
4844 if (sg->length == 0)
4845 trim_sg = 1;
cedc9a47
JG
4846
4847 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4848 sg->length, qc->pad_len);
4849 }
4850
2e242fa9
TH
4851 if (trim_sg) {
4852 qc->n_elem--;
e1410f2d
JG
4853 goto skip_map;
4854 }
4855
2f1f610b 4856 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4857 sg->length, dir);
537a95d9
TH
4858 if (dma_mapping_error(dma_address)) {
4859 /* restore sg */
4860 sg->length += qc->pad_len;
1da177e4 4861 return -1;
537a95d9 4862 }
1da177e4
LT
4863
4864 sg_dma_address(sg) = dma_address;
32529e01 4865 sg_dma_len(sg) = sg->length;
1da177e4 4866
2e242fa9 4867skip_map:
1da177e4
LT
4868 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4869 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4870
4871 return 0;
4872}
4873
4874/**
0cba632b
JG
4875 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4876 * @qc: Command with scatter-gather table to be mapped.
4877 *
4878 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4879 *
4880 * LOCKING:
cca3974e 4881 * spin_lock_irqsave(host lock)
1da177e4
LT
4882 *
4883 * RETURNS:
0cba632b 4884 * Zero on success, negative on error.
1da177e4
LT
4885 *
4886 */
4887
4888static int ata_sg_setup(struct ata_queued_cmd *qc)
4889{
4890 struct ata_port *ap = qc->ap;
cedc9a47 4891 struct scatterlist *sg = qc->__sg;
87260216 4892 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4893 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4894
44877b4e 4895 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4896 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4897
cedc9a47
JG
4898 /* we must lengthen transfers to end on a 32-bit boundary */
4899 qc->pad_len = lsg->length & 3;
4900 if (qc->pad_len) {
4901 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4902 struct scatterlist *psg = &qc->pad_sgent;
4903 unsigned int offset;
4904
a4631474 4905 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4906
4907 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4908
4909 /*
4910 * psg->page/offset are used to copy to-be-written
4911 * data in this function or read data in ata_sg_clean.
4912 */
4913 offset = lsg->offset + lsg->length - qc->pad_len;
acd054a5 4914 sg_init_table(psg, 1);
642f1490
JA
4915 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4916 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4917
4918 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4919 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4920 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4921 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4922 }
4923
4924 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4925 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4926 /* trim last sg */
4927 lsg->length -= qc->pad_len;
e1410f2d
JG
4928 if (lsg->length == 0)
4929 trim_sg = 1;
cedc9a47
JG
4930
4931 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4932 qc->n_elem - 1, lsg->length, qc->pad_len);
4933 }
4934
e1410f2d
JG
4935 pre_n_elem = qc->n_elem;
4936 if (trim_sg && pre_n_elem)
4937 pre_n_elem--;
4938
4939 if (!pre_n_elem) {
4940 n_elem = 0;
4941 goto skip_map;
4942 }
4943
1da177e4 4944 dir = qc->dma_dir;
2f1f610b 4945 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4946 if (n_elem < 1) {
4947 /* restore last sg */
4948 lsg->length += qc->pad_len;
1da177e4 4949 return -1;
537a95d9 4950 }
1da177e4
LT
4951
4952 DPRINTK("%d sg elements mapped\n", n_elem);
4953
e1410f2d 4954skip_map:
1da177e4
LT
4955 qc->n_elem = n_elem;
4956
4957 return 0;
4958}
4959
0baab86b 4960/**
c893a3ae 4961 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4962 * @buf: Buffer to swap
4963 * @buf_words: Number of 16-bit words in buffer.
4964 *
4965 * Swap halves of 16-bit words if needed to convert from
4966 * little-endian byte order to native cpu byte order, or
4967 * vice-versa.
4968 *
4969 * LOCKING:
6f0ef4fa 4970 * Inherited from caller.
0baab86b 4971 */
1da177e4
LT
4972void swap_buf_le16(u16 *buf, unsigned int buf_words)
4973{
4974#ifdef __BIG_ENDIAN
4975 unsigned int i;
4976
4977 for (i = 0; i < buf_words; i++)
4978 buf[i] = le16_to_cpu(buf[i]);
4979#endif /* __BIG_ENDIAN */
4980}
4981
6ae4cfb5 4982/**
0d5ff566 4983 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4984 * @adev: device to target
6ae4cfb5
AL
4985 * @buf: data buffer
4986 * @buflen: buffer length
344babaa 4987 * @write_data: read/write
6ae4cfb5
AL
4988 *
4989 * Transfer data from/to the device data register by PIO.
4990 *
4991 * LOCKING:
4992 * Inherited from caller.
6ae4cfb5 4993 */
0d5ff566
TH
4994void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4995 unsigned int buflen, int write_data)
1da177e4 4996{
9af5c9c9 4997 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4998 unsigned int words = buflen >> 1;
1da177e4 4999
6ae4cfb5 5000 /* Transfer multiple of 2 bytes */
1da177e4 5001 if (write_data)
0d5ff566 5002 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 5003 else
0d5ff566 5004 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
5005
5006 /* Transfer trailing 1 byte, if any. */
5007 if (unlikely(buflen & 0x01)) {
5008 u16 align_buf[1] = { 0 };
5009 unsigned char *trailing_buf = buf + buflen - 1;
5010
5011 if (write_data) {
5012 memcpy(align_buf, trailing_buf, 1);
0d5ff566 5013 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 5014 } else {
0d5ff566 5015 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
5016 memcpy(trailing_buf, align_buf, 1);
5017 }
5018 }
1da177e4
LT
5019}
5020
75e99585 5021/**
0d5ff566 5022 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
5023 * @adev: device to target
5024 * @buf: data buffer
5025 * @buflen: buffer length
5026 * @write_data: read/write
5027 *
88574551 5028 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
5029 * transfer with interrupts disabled.
5030 *
5031 * LOCKING:
5032 * Inherited from caller.
5033 */
0d5ff566
TH
5034void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5035 unsigned int buflen, int write_data)
75e99585
AC
5036{
5037 unsigned long flags;
5038 local_irq_save(flags);
0d5ff566 5039 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
5040 local_irq_restore(flags);
5041}
5042
5043
6ae4cfb5 5044/**
5a5dbd18 5045 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
5046 * @qc: Command on going
5047 *
5a5dbd18 5048 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5049 *
5050 * LOCKING:
5051 * Inherited from caller.
5052 */
5053
1da177e4
LT
5054static void ata_pio_sector(struct ata_queued_cmd *qc)
5055{
5056 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5057 struct ata_port *ap = qc->ap;
5058 struct page *page;
5059 unsigned int offset;
5060 unsigned char *buf;
5061
5a5dbd18 5062 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5063 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5064
45711f1a 5065 page = sg_page(qc->cursg);
87260216 5066 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5067
5068 /* get the current page and offset */
5069 page = nth_page(page, (offset >> PAGE_SHIFT));
5070 offset %= PAGE_SIZE;
5071
1da177e4
LT
5072 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5073
91b8b313
AL
5074 if (PageHighMem(page)) {
5075 unsigned long flags;
5076
a6b2c5d4 5077 /* FIXME: use a bounce buffer */
91b8b313
AL
5078 local_irq_save(flags);
5079 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5080
91b8b313 5081 /* do the actual data transfer */
5a5dbd18 5082 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5083
91b8b313
AL
5084 kunmap_atomic(buf, KM_IRQ0);
5085 local_irq_restore(flags);
5086 } else {
5087 buf = page_address(page);
5a5dbd18 5088 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5089 }
1da177e4 5090
5a5dbd18
ML
5091 qc->curbytes += qc->sect_size;
5092 qc->cursg_ofs += qc->sect_size;
1da177e4 5093
87260216
JA
5094 if (qc->cursg_ofs == qc->cursg->length) {
5095 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5096 qc->cursg_ofs = 0;
5097 }
1da177e4 5098}
1da177e4 5099
07f6f7d0 5100/**
5a5dbd18 5101 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5102 * @qc: Command on going
5103 *
5a5dbd18 5104 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5105 * ATA device for the DRQ request.
5106 *
5107 * LOCKING:
5108 * Inherited from caller.
5109 */
1da177e4 5110
07f6f7d0
AL
5111static void ata_pio_sectors(struct ata_queued_cmd *qc)
5112{
5113 if (is_multi_taskfile(&qc->tf)) {
5114 /* READ/WRITE MULTIPLE */
5115 unsigned int nsect;
5116
587005de 5117 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5118
5a5dbd18 5119 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5120 qc->dev->multi_count);
07f6f7d0
AL
5121 while (nsect--)
5122 ata_pio_sector(qc);
5123 } else
5124 ata_pio_sector(qc);
4cc980b3
AL
5125
5126 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5127}
5128
c71c1857
AL
5129/**
5130 * atapi_send_cdb - Write CDB bytes to hardware
5131 * @ap: Port to which ATAPI device is attached.
5132 * @qc: Taskfile currently active
5133 *
5134 * When device has indicated its readiness to accept
5135 * a CDB, this function is called. Send the CDB.
5136 *
5137 * LOCKING:
5138 * caller.
5139 */
5140
5141static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5142{
5143 /* send SCSI cdb */
5144 DPRINTK("send cdb\n");
db024d53 5145 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5146
a6b2c5d4 5147 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5148 ata_altstatus(ap); /* flush */
5149
5150 switch (qc->tf.protocol) {
5151 case ATA_PROT_ATAPI:
5152 ap->hsm_task_state = HSM_ST;
5153 break;
5154 case ATA_PROT_ATAPI_NODATA:
5155 ap->hsm_task_state = HSM_ST_LAST;
5156 break;
5157 case ATA_PROT_ATAPI_DMA:
5158 ap->hsm_task_state = HSM_ST_LAST;
5159 /* initiate bmdma */
5160 ap->ops->bmdma_start(qc);
5161 break;
5162 }
1da177e4
LT
5163}
5164
6ae4cfb5
AL
5165/**
5166 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5167 * @qc: Command on going
5168 * @bytes: number of bytes
5169 *
5170 * Transfer Transfer data from/to the ATAPI device.
5171 *
5172 * LOCKING:
5173 * Inherited from caller.
5174 *
5175 */
5176
1da177e4
LT
5177static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5178{
5179 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 5180 struct scatterlist *sg = qc->__sg;
0874ee76 5181 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
1da177e4
LT
5182 struct ata_port *ap = qc->ap;
5183 struct page *page;
5184 unsigned char *buf;
5185 unsigned int offset, count;
0874ee76 5186 int no_more_sg = 0;
1da177e4 5187
563a6e1f 5188 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 5189 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5190
5191next_sg:
0874ee76 5192 if (unlikely(no_more_sg)) {
7fb6ec28 5193 /*
563a6e1f
AL
5194 * The end of qc->sg is reached and the device expects
5195 * more data to transfer. In order not to overrun qc->sg
5196 * and fulfill length specified in the byte count register,
5197 * - for read case, discard trailing data from the device
5198 * - for write case, padding zero data to the device
5199 */
5200 u16 pad_buf[1] = { 0 };
5201 unsigned int words = bytes >> 1;
5202 unsigned int i;
5203
5204 if (words) /* warning if bytes > 1 */
f15a1daf
TH
5205 ata_dev_printk(qc->dev, KERN_WARNING,
5206 "%u bytes trailing data\n", bytes);
563a6e1f
AL
5207
5208 for (i = 0; i < words; i++)
2dcb407e 5209 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5210
14be71f4 5211 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
5212 return;
5213 }
5214
87260216 5215 sg = qc->cursg;
1da177e4 5216
45711f1a 5217 page = sg_page(sg);
1da177e4
LT
5218 offset = sg->offset + qc->cursg_ofs;
5219
5220 /* get the current page and offset */
5221 page = nth_page(page, (offset >> PAGE_SHIFT));
5222 offset %= PAGE_SIZE;
5223
6952df03 5224 /* don't overrun current sg */
32529e01 5225 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5226
5227 /* don't cross page boundaries */
5228 count = min(count, (unsigned int)PAGE_SIZE - offset);
5229
7282aa4b
AL
5230 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5231
91b8b313
AL
5232 if (PageHighMem(page)) {
5233 unsigned long flags;
5234
a6b2c5d4 5235 /* FIXME: use bounce buffer */
91b8b313
AL
5236 local_irq_save(flags);
5237 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5238
91b8b313 5239 /* do the actual data transfer */
a6b2c5d4 5240 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5241
91b8b313
AL
5242 kunmap_atomic(buf, KM_IRQ0);
5243 local_irq_restore(flags);
5244 } else {
5245 buf = page_address(page);
a6b2c5d4 5246 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5247 }
1da177e4
LT
5248
5249 bytes -= count;
5250 qc->curbytes += count;
5251 qc->cursg_ofs += count;
5252
32529e01 5253 if (qc->cursg_ofs == sg->length) {
0874ee76
FT
5254 if (qc->cursg == lsg)
5255 no_more_sg = 1;
5256
87260216 5257 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5258 qc->cursg_ofs = 0;
5259 }
5260
563a6e1f 5261 if (bytes)
1da177e4 5262 goto next_sg;
1da177e4
LT
5263}
5264
6ae4cfb5
AL
5265/**
5266 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5267 * @qc: Command on going
5268 *
5269 * Transfer Transfer data from/to the ATAPI device.
5270 *
5271 * LOCKING:
5272 * Inherited from caller.
6ae4cfb5
AL
5273 */
5274
1da177e4
LT
5275static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5276{
5277 struct ata_port *ap = qc->ap;
5278 struct ata_device *dev = qc->dev;
5279 unsigned int ireason, bc_lo, bc_hi, bytes;
5280 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5281
eec4c3f3
AL
5282 /* Abuse qc->result_tf for temp storage of intermediate TF
5283 * here to save some kernel stack usage.
5284 * For normal completion, qc->result_tf is not relevant. For
5285 * error, qc->result_tf is later overwritten by ata_qc_complete().
5286 * So, the correctness of qc->result_tf is not affected.
5287 */
5288 ap->ops->tf_read(ap, &qc->result_tf);
5289 ireason = qc->result_tf.nsect;
5290 bc_lo = qc->result_tf.lbam;
5291 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5292 bytes = (bc_hi << 8) | bc_lo;
5293
5294 /* shall be cleared to zero, indicating xfer of data */
5295 if (ireason & (1 << 0))
5296 goto err_out;
5297
5298 /* make sure transfer direction matches expected */
5299 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5300 if (do_write != i_write)
5301 goto err_out;
5302
44877b4e 5303 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5304
1da177e4 5305 __atapi_pio_bytes(qc, bytes);
4cc980b3 5306 ata_altstatus(ap); /* flush */
1da177e4
LT
5307
5308 return;
5309
5310err_out:
f15a1daf 5311 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5312 qc->err_mask |= AC_ERR_HSM;
14be71f4 5313 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5314}
5315
5316/**
c234fb00
AL
5317 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5318 * @ap: the target ata_port
5319 * @qc: qc on going
1da177e4 5320 *
c234fb00
AL
5321 * RETURNS:
5322 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5323 */
c234fb00
AL
5324
5325static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5326{
c234fb00
AL
5327 if (qc->tf.flags & ATA_TFLAG_POLLING)
5328 return 1;
1da177e4 5329
c234fb00
AL
5330 if (ap->hsm_task_state == HSM_ST_FIRST) {
5331 if (qc->tf.protocol == ATA_PROT_PIO &&
5332 (qc->tf.flags & ATA_TFLAG_WRITE))
5333 return 1;
1da177e4 5334
c234fb00
AL
5335 if (is_atapi_taskfile(&qc->tf) &&
5336 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5337 return 1;
fe79e683
AL
5338 }
5339
c234fb00
AL
5340 return 0;
5341}
1da177e4 5342
c17ea20d
TH
5343/**
5344 * ata_hsm_qc_complete - finish a qc running on standard HSM
5345 * @qc: Command to complete
5346 * @in_wq: 1 if called from workqueue, 0 otherwise
5347 *
5348 * Finish @qc which is running on standard HSM.
5349 *
5350 * LOCKING:
cca3974e 5351 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5352 * Otherwise, none on entry and grabs host lock.
5353 */
5354static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5355{
5356 struct ata_port *ap = qc->ap;
5357 unsigned long flags;
5358
5359 if (ap->ops->error_handler) {
5360 if (in_wq) {
ba6a1308 5361 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5362
cca3974e
JG
5363 /* EH might have kicked in while host lock is
5364 * released.
c17ea20d
TH
5365 */
5366 qc = ata_qc_from_tag(ap, qc->tag);
5367 if (qc) {
5368 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5369 ap->ops->irq_on(ap);
c17ea20d
TH
5370 ata_qc_complete(qc);
5371 } else
5372 ata_port_freeze(ap);
5373 }
5374
ba6a1308 5375 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5376 } else {
5377 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5378 ata_qc_complete(qc);
5379 else
5380 ata_port_freeze(ap);
5381 }
5382 } else {
5383 if (in_wq) {
ba6a1308 5384 spin_lock_irqsave(ap->lock, flags);
83625006 5385 ap->ops->irq_on(ap);
c17ea20d 5386 ata_qc_complete(qc);
ba6a1308 5387 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5388 } else
5389 ata_qc_complete(qc);
5390 }
5391}
5392
bb5cb290
AL
5393/**
5394 * ata_hsm_move - move the HSM to the next state.
5395 * @ap: the target ata_port
5396 * @qc: qc on going
5397 * @status: current device status
5398 * @in_wq: 1 if called from workqueue, 0 otherwise
5399 *
5400 * RETURNS:
5401 * 1 when poll next status needed, 0 otherwise.
5402 */
9a1004d0
TH
5403int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5404 u8 status, int in_wq)
e2cec771 5405{
bb5cb290
AL
5406 unsigned long flags = 0;
5407 int poll_next;
5408
6912ccd5
AL
5409 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5410
bb5cb290
AL
5411 /* Make sure ata_qc_issue_prot() does not throw things
5412 * like DMA polling into the workqueue. Notice that
5413 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5414 */
c234fb00 5415 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5416
e2cec771 5417fsm_start:
999bb6f4 5418 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5419 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5420
e2cec771
AL
5421 switch (ap->hsm_task_state) {
5422 case HSM_ST_FIRST:
bb5cb290
AL
5423 /* Send first data block or PACKET CDB */
5424
5425 /* If polling, we will stay in the work queue after
5426 * sending the data. Otherwise, interrupt handler
5427 * takes over after sending the data.
5428 */
5429 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5430
e2cec771 5431 /* check device status */
3655d1d3
AL
5432 if (unlikely((status & ATA_DRQ) == 0)) {
5433 /* handle BSY=0, DRQ=0 as error */
5434 if (likely(status & (ATA_ERR | ATA_DF)))
5435 /* device stops HSM for abort/error */
5436 qc->err_mask |= AC_ERR_DEV;
5437 else
5438 /* HSM violation. Let EH handle this */
5439 qc->err_mask |= AC_ERR_HSM;
5440
14be71f4 5441 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5442 goto fsm_start;
1da177e4
LT
5443 }
5444
71601958
AL
5445 /* Device should not ask for data transfer (DRQ=1)
5446 * when it finds something wrong.
eee6c32f
AL
5447 * We ignore DRQ here and stop the HSM by
5448 * changing hsm_task_state to HSM_ST_ERR and
5449 * let the EH abort the command or reset the device.
71601958
AL
5450 */
5451 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5452 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5453 "error, dev_stat 0x%X\n", status);
3655d1d3 5454 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5455 ap->hsm_task_state = HSM_ST_ERR;
5456 goto fsm_start;
71601958 5457 }
1da177e4 5458
bb5cb290
AL
5459 /* Send the CDB (atapi) or the first data block (ata pio out).
5460 * During the state transition, interrupt handler shouldn't
5461 * be invoked before the data transfer is complete and
5462 * hsm_task_state is changed. Hence, the following locking.
5463 */
5464 if (in_wq)
ba6a1308 5465 spin_lock_irqsave(ap->lock, flags);
1da177e4 5466
bb5cb290
AL
5467 if (qc->tf.protocol == ATA_PROT_PIO) {
5468 /* PIO data out protocol.
5469 * send first data block.
5470 */
0565c26d 5471
bb5cb290
AL
5472 /* ata_pio_sectors() might change the state
5473 * to HSM_ST_LAST. so, the state is changed here
5474 * before ata_pio_sectors().
5475 */
5476 ap->hsm_task_state = HSM_ST;
5477 ata_pio_sectors(qc);
bb5cb290
AL
5478 } else
5479 /* send CDB */
5480 atapi_send_cdb(ap, qc);
5481
5482 if (in_wq)
ba6a1308 5483 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5484
5485 /* if polling, ata_pio_task() handles the rest.
5486 * otherwise, interrupt handler takes over from here.
5487 */
e2cec771 5488 break;
1c848984 5489
e2cec771
AL
5490 case HSM_ST:
5491 /* complete command or read/write the data register */
5492 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5493 /* ATAPI PIO protocol */
5494 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5495 /* No more data to transfer or device error.
5496 * Device error will be tagged in HSM_ST_LAST.
5497 */
e2cec771
AL
5498 ap->hsm_task_state = HSM_ST_LAST;
5499 goto fsm_start;
5500 }
1da177e4 5501
71601958
AL
5502 /* Device should not ask for data transfer (DRQ=1)
5503 * when it finds something wrong.
eee6c32f
AL
5504 * We ignore DRQ here and stop the HSM by
5505 * changing hsm_task_state to HSM_ST_ERR and
5506 * let the EH abort the command or reset the device.
71601958
AL
5507 */
5508 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5509 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5510 "device error, dev_stat 0x%X\n",
5511 status);
3655d1d3 5512 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5513 ap->hsm_task_state = HSM_ST_ERR;
5514 goto fsm_start;
71601958 5515 }
1da177e4 5516
e2cec771 5517 atapi_pio_bytes(qc);
7fb6ec28 5518
e2cec771
AL
5519 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5520 /* bad ireason reported by device */
5521 goto fsm_start;
1da177e4 5522
e2cec771
AL
5523 } else {
5524 /* ATA PIO protocol */
5525 if (unlikely((status & ATA_DRQ) == 0)) {
5526 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5527 if (likely(status & (ATA_ERR | ATA_DF)))
5528 /* device stops HSM for abort/error */
5529 qc->err_mask |= AC_ERR_DEV;
5530 else
55a8e2c8
TH
5531 /* HSM violation. Let EH handle this.
5532 * Phantom devices also trigger this
5533 * condition. Mark hint.
5534 */
5535 qc->err_mask |= AC_ERR_HSM |
5536 AC_ERR_NODEV_HINT;
3655d1d3 5537
e2cec771
AL
5538 ap->hsm_task_state = HSM_ST_ERR;
5539 goto fsm_start;
5540 }
1da177e4 5541
eee6c32f
AL
5542 /* For PIO reads, some devices may ask for
5543 * data transfer (DRQ=1) alone with ERR=1.
5544 * We respect DRQ here and transfer one
5545 * block of junk data before changing the
5546 * hsm_task_state to HSM_ST_ERR.
5547 *
5548 * For PIO writes, ERR=1 DRQ=1 doesn't make
5549 * sense since the data block has been
5550 * transferred to the device.
71601958
AL
5551 */
5552 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5553 /* data might be corrputed */
5554 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5555
5556 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5557 ata_pio_sectors(qc);
eee6c32f
AL
5558 status = ata_wait_idle(ap);
5559 }
5560
3655d1d3
AL
5561 if (status & (ATA_BUSY | ATA_DRQ))
5562 qc->err_mask |= AC_ERR_HSM;
5563
eee6c32f
AL
5564 /* ata_pio_sectors() might change the
5565 * state to HSM_ST_LAST. so, the state
5566 * is changed after ata_pio_sectors().
5567 */
5568 ap->hsm_task_state = HSM_ST_ERR;
5569 goto fsm_start;
71601958
AL
5570 }
5571
e2cec771
AL
5572 ata_pio_sectors(qc);
5573
5574 if (ap->hsm_task_state == HSM_ST_LAST &&
5575 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5576 /* all data read */
52a32205 5577 status = ata_wait_idle(ap);
e2cec771
AL
5578 goto fsm_start;
5579 }
5580 }
5581
bb5cb290 5582 poll_next = 1;
1da177e4
LT
5583 break;
5584
14be71f4 5585 case HSM_ST_LAST:
6912ccd5
AL
5586 if (unlikely(!ata_ok(status))) {
5587 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5588 ap->hsm_task_state = HSM_ST_ERR;
5589 goto fsm_start;
5590 }
5591
5592 /* no more data to transfer */
4332a771 5593 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5594 ap->print_id, qc->dev->devno, status);
e2cec771 5595
6912ccd5
AL
5596 WARN_ON(qc->err_mask);
5597
e2cec771 5598 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5599
e2cec771 5600 /* complete taskfile transaction */
c17ea20d 5601 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5602
5603 poll_next = 0;
1da177e4
LT
5604 break;
5605
14be71f4 5606 case HSM_ST_ERR:
e2cec771
AL
5607 /* make sure qc->err_mask is available to
5608 * know what's wrong and recover
5609 */
5610 WARN_ON(qc->err_mask == 0);
5611
5612 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5613
999bb6f4 5614 /* complete taskfile transaction */
c17ea20d 5615 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5616
5617 poll_next = 0;
e2cec771
AL
5618 break;
5619 default:
bb5cb290 5620 poll_next = 0;
6912ccd5 5621 BUG();
1da177e4
LT
5622 }
5623
bb5cb290 5624 return poll_next;
1da177e4
LT
5625}
5626
65f27f38 5627static void ata_pio_task(struct work_struct *work)
8061f5f0 5628{
65f27f38
DH
5629 struct ata_port *ap =
5630 container_of(work, struct ata_port, port_task.work);
5631 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5632 u8 status;
a1af3734 5633 int poll_next;
8061f5f0 5634
7fb6ec28 5635fsm_start:
a1af3734 5636 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5637
a1af3734
AL
5638 /*
5639 * This is purely heuristic. This is a fast path.
5640 * Sometimes when we enter, BSY will be cleared in
5641 * a chk-status or two. If not, the drive is probably seeking
5642 * or something. Snooze for a couple msecs, then
5643 * chk-status again. If still busy, queue delayed work.
5644 */
5645 status = ata_busy_wait(ap, ATA_BUSY, 5);
5646 if (status & ATA_BUSY) {
5647 msleep(2);
5648 status = ata_busy_wait(ap, ATA_BUSY, 10);
5649 if (status & ATA_BUSY) {
31ce6dae 5650 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5651 return;
5652 }
8061f5f0
TH
5653 }
5654
a1af3734
AL
5655 /* move the HSM */
5656 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5657
a1af3734
AL
5658 /* another command or interrupt handler
5659 * may be running at this point.
5660 */
5661 if (poll_next)
7fb6ec28 5662 goto fsm_start;
8061f5f0
TH
5663}
5664
1da177e4
LT
5665/**
5666 * ata_qc_new - Request an available ATA command, for queueing
5667 * @ap: Port associated with device @dev
5668 * @dev: Device from whom we request an available command structure
5669 *
5670 * LOCKING:
0cba632b 5671 * None.
1da177e4
LT
5672 */
5673
5674static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5675{
5676 struct ata_queued_cmd *qc = NULL;
5677 unsigned int i;
5678
e3180499 5679 /* no command while frozen */
b51e9e5d 5680 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5681 return NULL;
5682
2ab7db1f
TH
5683 /* the last tag is reserved for internal command. */
5684 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5685 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5686 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5687 break;
5688 }
5689
5690 if (qc)
5691 qc->tag = i;
5692
5693 return qc;
5694}
5695
5696/**
5697 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5698 * @dev: Device from whom we request an available command structure
5699 *
5700 * LOCKING:
0cba632b 5701 * None.
1da177e4
LT
5702 */
5703
3373efd8 5704struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5705{
9af5c9c9 5706 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5707 struct ata_queued_cmd *qc;
5708
5709 qc = ata_qc_new(ap);
5710 if (qc) {
1da177e4
LT
5711 qc->scsicmd = NULL;
5712 qc->ap = ap;
5713 qc->dev = dev;
1da177e4 5714
2c13b7ce 5715 ata_qc_reinit(qc);
1da177e4
LT
5716 }
5717
5718 return qc;
5719}
5720
1da177e4
LT
5721/**
5722 * ata_qc_free - free unused ata_queued_cmd
5723 * @qc: Command to complete
5724 *
5725 * Designed to free unused ata_queued_cmd object
5726 * in case something prevents using it.
5727 *
5728 * LOCKING:
cca3974e 5729 * spin_lock_irqsave(host lock)
1da177e4
LT
5730 */
5731void ata_qc_free(struct ata_queued_cmd *qc)
5732{
4ba946e9
TH
5733 struct ata_port *ap = qc->ap;
5734 unsigned int tag;
5735
a4631474 5736 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5737
4ba946e9
TH
5738 qc->flags = 0;
5739 tag = qc->tag;
5740 if (likely(ata_tag_valid(tag))) {
4ba946e9 5741 qc->tag = ATA_TAG_POISON;
6cec4a39 5742 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5743 }
1da177e4
LT
5744}
5745
76014427 5746void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5747{
dedaf2b0 5748 struct ata_port *ap = qc->ap;
9af5c9c9 5749 struct ata_link *link = qc->dev->link;
dedaf2b0 5750
a4631474
TH
5751 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5752 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5753
5754 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5755 ata_sg_clean(qc);
5756
7401abf2 5757 /* command should be marked inactive atomically with qc completion */
da917d69 5758 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5759 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5760 if (!link->sactive)
5761 ap->nr_active_links--;
5762 } else {
9af5c9c9 5763 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5764 ap->nr_active_links--;
5765 }
5766
5767 /* clear exclusive status */
5768 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5769 ap->excl_link == link))
5770 ap->excl_link = NULL;
7401abf2 5771
3f3791d3
AL
5772 /* atapi: mark qc as inactive to prevent the interrupt handler
5773 * from completing the command twice later, before the error handler
5774 * is called. (when rc != 0 and atapi request sense is needed)
5775 */
5776 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5777 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5778
1da177e4 5779 /* call completion callback */
77853bf2 5780 qc->complete_fn(qc);
1da177e4
LT
5781}
5782
39599a53
TH
5783static void fill_result_tf(struct ata_queued_cmd *qc)
5784{
5785 struct ata_port *ap = qc->ap;
5786
39599a53 5787 qc->result_tf.flags = qc->tf.flags;
4742d54f 5788 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5789}
5790
f686bcb8
TH
5791/**
5792 * ata_qc_complete - Complete an active ATA command
5793 * @qc: Command to complete
5794 * @err_mask: ATA Status register contents
5795 *
5796 * Indicate to the mid and upper layers that an ATA
5797 * command has completed, with either an ok or not-ok status.
5798 *
5799 * LOCKING:
cca3974e 5800 * spin_lock_irqsave(host lock)
f686bcb8
TH
5801 */
5802void ata_qc_complete(struct ata_queued_cmd *qc)
5803{
5804 struct ata_port *ap = qc->ap;
5805
5806 /* XXX: New EH and old EH use different mechanisms to
5807 * synchronize EH with regular execution path.
5808 *
5809 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5810 * Normal execution path is responsible for not accessing a
5811 * failed qc. libata core enforces the rule by returning NULL
5812 * from ata_qc_from_tag() for failed qcs.
5813 *
5814 * Old EH depends on ata_qc_complete() nullifying completion
5815 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5816 * not synchronize with interrupt handler. Only PIO task is
5817 * taken care of.
5818 */
5819 if (ap->ops->error_handler) {
4dbfa39b
TH
5820 struct ata_device *dev = qc->dev;
5821 struct ata_eh_info *ehi = &dev->link->eh_info;
5822
b51e9e5d 5823 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5824
5825 if (unlikely(qc->err_mask))
5826 qc->flags |= ATA_QCFLAG_FAILED;
5827
5828 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5829 if (!ata_tag_internal(qc->tag)) {
5830 /* always fill result TF for failed qc */
39599a53 5831 fill_result_tf(qc);
f686bcb8
TH
5832 ata_qc_schedule_eh(qc);
5833 return;
5834 }
5835 }
5836
5837 /* read result TF if requested */
5838 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5839 fill_result_tf(qc);
f686bcb8 5840
4dbfa39b
TH
5841 /* Some commands need post-processing after successful
5842 * completion.
5843 */
5844 switch (qc->tf.command) {
5845 case ATA_CMD_SET_FEATURES:
5846 if (qc->tf.feature != SETFEATURES_WC_ON &&
5847 qc->tf.feature != SETFEATURES_WC_OFF)
5848 break;
5849 /* fall through */
5850 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5851 case ATA_CMD_SET_MULTI: /* multi_count changed */
5852 /* revalidate device */
5853 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5854 ata_port_schedule_eh(ap);
5855 break;
054a5fba
TH
5856
5857 case ATA_CMD_SLEEP:
5858 dev->flags |= ATA_DFLAG_SLEEPING;
5859 break;
4dbfa39b
TH
5860 }
5861
f686bcb8
TH
5862 __ata_qc_complete(qc);
5863 } else {
5864 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5865 return;
5866
5867 /* read result TF if failed or requested */
5868 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5869 fill_result_tf(qc);
f686bcb8
TH
5870
5871 __ata_qc_complete(qc);
5872 }
5873}
5874
dedaf2b0
TH
5875/**
5876 * ata_qc_complete_multiple - Complete multiple qcs successfully
5877 * @ap: port in question
5878 * @qc_active: new qc_active mask
5879 * @finish_qc: LLDD callback invoked before completing a qc
5880 *
5881 * Complete in-flight commands. This functions is meant to be
5882 * called from low-level driver's interrupt routine to complete
5883 * requests normally. ap->qc_active and @qc_active is compared
5884 * and commands are completed accordingly.
5885 *
5886 * LOCKING:
cca3974e 5887 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5888 *
5889 * RETURNS:
5890 * Number of completed commands on success, -errno otherwise.
5891 */
5892int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5893 void (*finish_qc)(struct ata_queued_cmd *))
5894{
5895 int nr_done = 0;
5896 u32 done_mask;
5897 int i;
5898
5899 done_mask = ap->qc_active ^ qc_active;
5900
5901 if (unlikely(done_mask & qc_active)) {
5902 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5903 "(%08x->%08x)\n", ap->qc_active, qc_active);
5904 return -EINVAL;
5905 }
5906
5907 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5908 struct ata_queued_cmd *qc;
5909
5910 if (!(done_mask & (1 << i)))
5911 continue;
5912
5913 if ((qc = ata_qc_from_tag(ap, i))) {
5914 if (finish_qc)
5915 finish_qc(qc);
5916 ata_qc_complete(qc);
5917 nr_done++;
5918 }
5919 }
5920
5921 return nr_done;
5922}
5923
1da177e4
LT
5924static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5925{
5926 struct ata_port *ap = qc->ap;
5927
5928 switch (qc->tf.protocol) {
3dc1d881 5929 case ATA_PROT_NCQ:
1da177e4
LT
5930 case ATA_PROT_DMA:
5931 case ATA_PROT_ATAPI_DMA:
5932 return 1;
5933
5934 case ATA_PROT_ATAPI:
5935 case ATA_PROT_PIO:
1da177e4
LT
5936 if (ap->flags & ATA_FLAG_PIO_DMA)
5937 return 1;
5938
5939 /* fall through */
5940
5941 default:
5942 return 0;
5943 }
5944
5945 /* never reached */
5946}
5947
5948/**
5949 * ata_qc_issue - issue taskfile to device
5950 * @qc: command to issue to device
5951 *
5952 * Prepare an ATA command to submission to device.
5953 * This includes mapping the data into a DMA-able
5954 * area, filling in the S/G table, and finally
5955 * writing the taskfile to hardware, starting the command.
5956 *
5957 * LOCKING:
cca3974e 5958 * spin_lock_irqsave(host lock)
1da177e4 5959 */
8e0e694a 5960void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5961{
5962 struct ata_port *ap = qc->ap;
9af5c9c9 5963 struct ata_link *link = qc->dev->link;
1da177e4 5964
dedaf2b0
TH
5965 /* Make sure only one non-NCQ command is outstanding. The
5966 * check is skipped for old EH because it reuses active qc to
5967 * request ATAPI sense.
5968 */
9af5c9c9 5969 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5970
5971 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5972 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5973
5974 if (!link->sactive)
5975 ap->nr_active_links++;
9af5c9c9 5976 link->sactive |= 1 << qc->tag;
dedaf2b0 5977 } else {
9af5c9c9 5978 WARN_ON(link->sactive);
da917d69
TH
5979
5980 ap->nr_active_links++;
9af5c9c9 5981 link->active_tag = qc->tag;
dedaf2b0
TH
5982 }
5983
e4a70e76 5984 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5985 ap->qc_active |= 1 << qc->tag;
e4a70e76 5986
1da177e4
LT
5987 if (ata_should_dma_map(qc)) {
5988 if (qc->flags & ATA_QCFLAG_SG) {
5989 if (ata_sg_setup(qc))
8e436af9 5990 goto sg_err;
1da177e4
LT
5991 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5992 if (ata_sg_setup_one(qc))
8e436af9 5993 goto sg_err;
1da177e4
LT
5994 }
5995 } else {
5996 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5997 }
5998
054a5fba
TH
5999 /* if device is sleeping, schedule softreset and abort the link */
6000 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6001 link->eh_info.action |= ATA_EH_SOFTRESET;
6002 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6003 ata_link_abort(link);
6004 return;
6005 }
6006
1da177e4
LT
6007 ap->ops->qc_prep(qc);
6008
8e0e694a
TH
6009 qc->err_mask |= ap->ops->qc_issue(qc);
6010 if (unlikely(qc->err_mask))
6011 goto err;
6012 return;
1da177e4 6013
8e436af9
TH
6014sg_err:
6015 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
6016 qc->err_mask |= AC_ERR_SYSTEM;
6017err:
6018 ata_qc_complete(qc);
1da177e4
LT
6019}
6020
6021/**
6022 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6023 * @qc: command to issue to device
6024 *
6025 * Using various libata functions and hooks, this function
6026 * starts an ATA command. ATA commands are grouped into
6027 * classes called "protocols", and issuing each type of protocol
6028 * is slightly different.
6029 *
0baab86b
EF
6030 * May be used as the qc_issue() entry in ata_port_operations.
6031 *
1da177e4 6032 * LOCKING:
cca3974e 6033 * spin_lock_irqsave(host lock)
1da177e4
LT
6034 *
6035 * RETURNS:
9a3d9eb0 6036 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6037 */
6038
9a3d9eb0 6039unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6040{
6041 struct ata_port *ap = qc->ap;
6042
e50362ec
AL
6043 /* Use polling pio if the LLD doesn't handle
6044 * interrupt driven pio and atapi CDB interrupt.
6045 */
6046 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6047 switch (qc->tf.protocol) {
6048 case ATA_PROT_PIO:
e3472cbe 6049 case ATA_PROT_NODATA:
e50362ec
AL
6050 case ATA_PROT_ATAPI:
6051 case ATA_PROT_ATAPI_NODATA:
6052 qc->tf.flags |= ATA_TFLAG_POLLING;
6053 break;
6054 case ATA_PROT_ATAPI_DMA:
6055 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6056 /* see ata_dma_blacklisted() */
e50362ec
AL
6057 BUG();
6058 break;
6059 default:
6060 break;
6061 }
6062 }
6063
312f7da2 6064 /* select the device */
1da177e4
LT
6065 ata_dev_select(ap, qc->dev->devno, 1, 0);
6066
312f7da2 6067 /* start the command */
1da177e4
LT
6068 switch (qc->tf.protocol) {
6069 case ATA_PROT_NODATA:
312f7da2
AL
6070 if (qc->tf.flags & ATA_TFLAG_POLLING)
6071 ata_qc_set_polling(qc);
6072
e5338254 6073 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6074 ap->hsm_task_state = HSM_ST_LAST;
6075
6076 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6077 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 6078
1da177e4
LT
6079 break;
6080
6081 case ATA_PROT_DMA:
587005de 6082 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6083
1da177e4
LT
6084 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6085 ap->ops->bmdma_setup(qc); /* set up bmdma */
6086 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6087 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6088 break;
6089
312f7da2
AL
6090 case ATA_PROT_PIO:
6091 if (qc->tf.flags & ATA_TFLAG_POLLING)
6092 ata_qc_set_polling(qc);
1da177e4 6093
e5338254 6094 ata_tf_to_host(ap, &qc->tf);
312f7da2 6095
54f00389
AL
6096 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6097 /* PIO data out protocol */
6098 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 6099 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6100
6101 /* always send first data block using
e27486db 6102 * the ata_pio_task() codepath.
54f00389 6103 */
312f7da2 6104 } else {
54f00389
AL
6105 /* PIO data in protocol */
6106 ap->hsm_task_state = HSM_ST;
6107
6108 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6109 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6110
6111 /* if polling, ata_pio_task() handles the rest.
6112 * otherwise, interrupt handler takes over from here.
6113 */
312f7da2
AL
6114 }
6115
1da177e4
LT
6116 break;
6117
1da177e4 6118 case ATA_PROT_ATAPI:
1da177e4 6119 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
6120 if (qc->tf.flags & ATA_TFLAG_POLLING)
6121 ata_qc_set_polling(qc);
6122
e5338254 6123 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6124
312f7da2
AL
6125 ap->hsm_task_state = HSM_ST_FIRST;
6126
6127 /* send cdb by polling if no cdb interrupt */
6128 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6129 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 6130 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6131 break;
6132
6133 case ATA_PROT_ATAPI_DMA:
587005de 6134 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6135
1da177e4
LT
6136 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6137 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6138 ap->hsm_task_state = HSM_ST_FIRST;
6139
6140 /* send cdb by polling if no cdb interrupt */
6141 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 6142 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6143 break;
6144
6145 default:
6146 WARN_ON(1);
9a3d9eb0 6147 return AC_ERR_SYSTEM;
1da177e4
LT
6148 }
6149
6150 return 0;
6151}
6152
1da177e4
LT
6153/**
6154 * ata_host_intr - Handle host interrupt for given (port, task)
6155 * @ap: Port on which interrupt arrived (possibly...)
6156 * @qc: Taskfile currently active in engine
6157 *
6158 * Handle host interrupt for given queued command. Currently,
6159 * only DMA interrupts are handled. All other commands are
6160 * handled via polling with interrupts disabled (nIEN bit).
6161 *
6162 * LOCKING:
cca3974e 6163 * spin_lock_irqsave(host lock)
1da177e4
LT
6164 *
6165 * RETURNS:
6166 * One if interrupt was handled, zero if not (shared irq).
6167 */
6168
2dcb407e
JG
6169inline unsigned int ata_host_intr(struct ata_port *ap,
6170 struct ata_queued_cmd *qc)
1da177e4 6171{
9af5c9c9 6172 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6173 u8 status, host_stat = 0;
1da177e4 6174
312f7da2 6175 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6176 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6177
312f7da2
AL
6178 /* Check whether we are expecting interrupt in this state */
6179 switch (ap->hsm_task_state) {
6180 case HSM_ST_FIRST:
6912ccd5
AL
6181 /* Some pre-ATAPI-4 devices assert INTRQ
6182 * at this state when ready to receive CDB.
6183 */
1da177e4 6184
312f7da2
AL
6185 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6186 * The flag was turned on only for atapi devices.
6187 * No need to check is_atapi_taskfile(&qc->tf) again.
6188 */
6189 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6190 goto idle_irq;
1da177e4 6191 break;
312f7da2
AL
6192 case HSM_ST_LAST:
6193 if (qc->tf.protocol == ATA_PROT_DMA ||
6194 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6195 /* check status of DMA engine */
6196 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6197 VPRINTK("ata%u: host_stat 0x%X\n",
6198 ap->print_id, host_stat);
312f7da2
AL
6199
6200 /* if it's not our irq... */
6201 if (!(host_stat & ATA_DMA_INTR))
6202 goto idle_irq;
6203
6204 /* before we do anything else, clear DMA-Start bit */
6205 ap->ops->bmdma_stop(qc);
a4f16610
AL
6206
6207 if (unlikely(host_stat & ATA_DMA_ERR)) {
6208 /* error when transfering data to/from memory */
6209 qc->err_mask |= AC_ERR_HOST_BUS;
6210 ap->hsm_task_state = HSM_ST_ERR;
6211 }
312f7da2
AL
6212 }
6213 break;
6214 case HSM_ST:
6215 break;
1da177e4
LT
6216 default:
6217 goto idle_irq;
6218 }
6219
312f7da2
AL
6220 /* check altstatus */
6221 status = ata_altstatus(ap);
6222 if (status & ATA_BUSY)
6223 goto idle_irq;
1da177e4 6224
312f7da2
AL
6225 /* check main status, clearing INTRQ */
6226 status = ata_chk_status(ap);
6227 if (unlikely(status & ATA_BUSY))
6228 goto idle_irq;
1da177e4 6229
312f7da2
AL
6230 /* ack bmdma irq events */
6231 ap->ops->irq_clear(ap);
1da177e4 6232
bb5cb290 6233 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6234
6235 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6236 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6237 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6238
1da177e4
LT
6239 return 1; /* irq handled */
6240
6241idle_irq:
6242 ap->stats.idle_irq++;
6243
6244#ifdef ATA_IRQ_TRAP
6245 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6246 ata_chk_status(ap);
6247 ap->ops->irq_clear(ap);
f15a1daf 6248 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6249 return 1;
1da177e4
LT
6250 }
6251#endif
6252 return 0; /* irq not handled */
6253}
6254
6255/**
6256 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6257 * @irq: irq line (unused)
cca3974e 6258 * @dev_instance: pointer to our ata_host information structure
1da177e4 6259 *
0cba632b
JG
6260 * Default interrupt handler for PCI IDE devices. Calls
6261 * ata_host_intr() for each port that is not disabled.
6262 *
1da177e4 6263 * LOCKING:
cca3974e 6264 * Obtains host lock during operation.
1da177e4
LT
6265 *
6266 * RETURNS:
0cba632b 6267 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6268 */
6269
2dcb407e 6270irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6271{
cca3974e 6272 struct ata_host *host = dev_instance;
1da177e4
LT
6273 unsigned int i;
6274 unsigned int handled = 0;
6275 unsigned long flags;
6276
6277 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6278 spin_lock_irqsave(&host->lock, flags);
1da177e4 6279
cca3974e 6280 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6281 struct ata_port *ap;
6282
cca3974e 6283 ap = host->ports[i];
c1389503 6284 if (ap &&
029f5468 6285 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6286 struct ata_queued_cmd *qc;
6287
9af5c9c9 6288 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6289 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6290 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6291 handled |= ata_host_intr(ap, qc);
6292 }
6293 }
6294
cca3974e 6295 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6296
6297 return IRQ_RETVAL(handled);
6298}
6299
34bf2170
TH
6300/**
6301 * sata_scr_valid - test whether SCRs are accessible
936fd732 6302 * @link: ATA link to test SCR accessibility for
34bf2170 6303 *
936fd732 6304 * Test whether SCRs are accessible for @link.
34bf2170
TH
6305 *
6306 * LOCKING:
6307 * None.
6308 *
6309 * RETURNS:
6310 * 1 if SCRs are accessible, 0 otherwise.
6311 */
936fd732 6312int sata_scr_valid(struct ata_link *link)
34bf2170 6313{
936fd732
TH
6314 struct ata_port *ap = link->ap;
6315
a16abc0b 6316 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6317}
6318
6319/**
6320 * sata_scr_read - read SCR register of the specified port
936fd732 6321 * @link: ATA link to read SCR for
34bf2170
TH
6322 * @reg: SCR to read
6323 * @val: Place to store read value
6324 *
936fd732 6325 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6326 * guaranteed to succeed if @link is ap->link, the cable type of
6327 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6328 *
6329 * LOCKING:
633273a3 6330 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6331 *
6332 * RETURNS:
6333 * 0 on success, negative errno on failure.
6334 */
936fd732 6335int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6336{
633273a3
TH
6337 if (ata_is_host_link(link)) {
6338 struct ata_port *ap = link->ap;
936fd732 6339
633273a3
TH
6340 if (sata_scr_valid(link))
6341 return ap->ops->scr_read(ap, reg, val);
6342 return -EOPNOTSUPP;
6343 }
6344
6345 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6346}
6347
6348/**
6349 * sata_scr_write - write SCR register of the specified port
936fd732 6350 * @link: ATA link to write SCR for
34bf2170
TH
6351 * @reg: SCR to write
6352 * @val: value to write
6353 *
936fd732 6354 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6355 * guaranteed to succeed if @link is ap->link, the cable type of
6356 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6357 *
6358 * LOCKING:
633273a3 6359 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6360 *
6361 * RETURNS:
6362 * 0 on success, negative errno on failure.
6363 */
936fd732 6364int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6365{
633273a3
TH
6366 if (ata_is_host_link(link)) {
6367 struct ata_port *ap = link->ap;
6368
6369 if (sata_scr_valid(link))
6370 return ap->ops->scr_write(ap, reg, val);
6371 return -EOPNOTSUPP;
6372 }
936fd732 6373
633273a3 6374 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6375}
6376
6377/**
6378 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6379 * @link: ATA link to write SCR for
34bf2170
TH
6380 * @reg: SCR to write
6381 * @val: value to write
6382 *
6383 * This function is identical to sata_scr_write() except that this
6384 * function performs flush after writing to the register.
6385 *
6386 * LOCKING:
633273a3 6387 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6388 *
6389 * RETURNS:
6390 * 0 on success, negative errno on failure.
6391 */
936fd732 6392int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6393{
633273a3
TH
6394 if (ata_is_host_link(link)) {
6395 struct ata_port *ap = link->ap;
6396 int rc;
da3dbb17 6397
633273a3
TH
6398 if (sata_scr_valid(link)) {
6399 rc = ap->ops->scr_write(ap, reg, val);
6400 if (rc == 0)
6401 rc = ap->ops->scr_read(ap, reg, &val);
6402 return rc;
6403 }
6404 return -EOPNOTSUPP;
34bf2170 6405 }
633273a3
TH
6406
6407 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6408}
6409
6410/**
936fd732
TH
6411 * ata_link_online - test whether the given link is online
6412 * @link: ATA link to test
34bf2170 6413 *
936fd732
TH
6414 * Test whether @link is online. Note that this function returns
6415 * 0 if online status of @link cannot be obtained, so
6416 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6417 *
6418 * LOCKING:
6419 * None.
6420 *
6421 * RETURNS:
6422 * 1 if the port online status is available and online.
6423 */
936fd732 6424int ata_link_online(struct ata_link *link)
34bf2170
TH
6425{
6426 u32 sstatus;
6427
936fd732
TH
6428 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6429 (sstatus & 0xf) == 0x3)
34bf2170
TH
6430 return 1;
6431 return 0;
6432}
6433
6434/**
936fd732
TH
6435 * ata_link_offline - test whether the given link is offline
6436 * @link: ATA link to test
34bf2170 6437 *
936fd732
TH
6438 * Test whether @link is offline. Note that this function
6439 * returns 0 if offline status of @link cannot be obtained, so
6440 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6441 *
6442 * LOCKING:
6443 * None.
6444 *
6445 * RETURNS:
6446 * 1 if the port offline status is available and offline.
6447 */
936fd732 6448int ata_link_offline(struct ata_link *link)
34bf2170
TH
6449{
6450 u32 sstatus;
6451
936fd732
TH
6452 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6453 (sstatus & 0xf) != 0x3)
34bf2170
TH
6454 return 1;
6455 return 0;
6456}
0baab86b 6457
77b08fb5 6458int ata_flush_cache(struct ata_device *dev)
9b847548 6459{
977e6b9f 6460 unsigned int err_mask;
9b847548
JA
6461 u8 cmd;
6462
6463 if (!ata_try_flush_cache(dev))
6464 return 0;
6465
6fc49adb 6466 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6467 cmd = ATA_CMD_FLUSH_EXT;
6468 else
6469 cmd = ATA_CMD_FLUSH;
6470
4f34337b
AC
6471 /* This is wrong. On a failed flush we get back the LBA of the lost
6472 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6473 a further flush command to continue the writeback until it
4f34337b 6474 does not error */
977e6b9f
TH
6475 err_mask = ata_do_simple_cmd(dev, cmd);
6476 if (err_mask) {
6477 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6478 return -EIO;
6479 }
6480
6481 return 0;
9b847548
JA
6482}
6483
6ffa01d8 6484#ifdef CONFIG_PM
cca3974e
JG
6485static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6486 unsigned int action, unsigned int ehi_flags,
6487 int wait)
500530f6
TH
6488{
6489 unsigned long flags;
6490 int i, rc;
6491
cca3974e
JG
6492 for (i = 0; i < host->n_ports; i++) {
6493 struct ata_port *ap = host->ports[i];
e3667ebf 6494 struct ata_link *link;
500530f6
TH
6495
6496 /* Previous resume operation might still be in
6497 * progress. Wait for PM_PENDING to clear.
6498 */
6499 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6500 ata_port_wait_eh(ap);
6501 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6502 }
6503
6504 /* request PM ops to EH */
6505 spin_lock_irqsave(ap->lock, flags);
6506
6507 ap->pm_mesg = mesg;
6508 if (wait) {
6509 rc = 0;
6510 ap->pm_result = &rc;
6511 }
6512
6513 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6514 __ata_port_for_each_link(link, ap) {
6515 link->eh_info.action |= action;
6516 link->eh_info.flags |= ehi_flags;
6517 }
500530f6
TH
6518
6519 ata_port_schedule_eh(ap);
6520
6521 spin_unlock_irqrestore(ap->lock, flags);
6522
6523 /* wait and check result */
6524 if (wait) {
6525 ata_port_wait_eh(ap);
6526 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6527 if (rc)
6528 return rc;
6529 }
6530 }
6531
6532 return 0;
6533}
6534
6535/**
cca3974e
JG
6536 * ata_host_suspend - suspend host
6537 * @host: host to suspend
500530f6
TH
6538 * @mesg: PM message
6539 *
cca3974e 6540 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6541 * function requests EH to perform PM operations and waits for EH
6542 * to finish.
6543 *
6544 * LOCKING:
6545 * Kernel thread context (may sleep).
6546 *
6547 * RETURNS:
6548 * 0 on success, -errno on failure.
6549 */
cca3974e 6550int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6551{
9666f400 6552 int rc;
500530f6 6553
ca77329f
KCA
6554 /*
6555 * disable link pm on all ports before requesting
6556 * any pm activity
6557 */
6558 ata_lpm_enable(host);
6559
cca3974e 6560 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6561 if (rc == 0)
6562 host->dev->power.power_state = mesg;
500530f6
TH
6563 return rc;
6564}
6565
6566/**
cca3974e
JG
6567 * ata_host_resume - resume host
6568 * @host: host to resume
500530f6 6569 *
cca3974e 6570 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6571 * function requests EH to perform PM operations and returns.
6572 * Note that all resume operations are performed parallely.
6573 *
6574 * LOCKING:
6575 * Kernel thread context (may sleep).
6576 */
cca3974e 6577void ata_host_resume(struct ata_host *host)
500530f6 6578{
cca3974e
JG
6579 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6580 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6581 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6582
6583 /* reenable link pm */
6584 ata_lpm_disable(host);
500530f6 6585}
6ffa01d8 6586#endif
500530f6 6587
c893a3ae
RD
6588/**
6589 * ata_port_start - Set port up for dma.
6590 * @ap: Port to initialize
6591 *
6592 * Called just after data structures for each port are
6593 * initialized. Allocates space for PRD table.
6594 *
6595 * May be used as the port_start() entry in ata_port_operations.
6596 *
6597 * LOCKING:
6598 * Inherited from caller.
6599 */
f0d36efd 6600int ata_port_start(struct ata_port *ap)
1da177e4 6601{
2f1f610b 6602 struct device *dev = ap->dev;
6037d6bb 6603 int rc;
1da177e4 6604
f0d36efd
TH
6605 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6606 GFP_KERNEL);
1da177e4
LT
6607 if (!ap->prd)
6608 return -ENOMEM;
6609
6037d6bb 6610 rc = ata_pad_alloc(ap, dev);
f0d36efd 6611 if (rc)
6037d6bb 6612 return rc;
1da177e4 6613
f0d36efd
TH
6614 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6615 (unsigned long long)ap->prd_dma);
1da177e4
LT
6616 return 0;
6617}
6618
3ef3b43d
TH
6619/**
6620 * ata_dev_init - Initialize an ata_device structure
6621 * @dev: Device structure to initialize
6622 *
6623 * Initialize @dev in preparation for probing.
6624 *
6625 * LOCKING:
6626 * Inherited from caller.
6627 */
6628void ata_dev_init(struct ata_device *dev)
6629{
9af5c9c9
TH
6630 struct ata_link *link = dev->link;
6631 struct ata_port *ap = link->ap;
72fa4b74
TH
6632 unsigned long flags;
6633
5a04bf4b 6634 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6635 link->sata_spd_limit = link->hw_sata_spd_limit;
6636 link->sata_spd = 0;
5a04bf4b 6637
72fa4b74
TH
6638 /* High bits of dev->flags are used to record warm plug
6639 * requests which occur asynchronously. Synchronize using
cca3974e 6640 * host lock.
72fa4b74 6641 */
ba6a1308 6642 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6643 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6644 dev->horkage = 0;
ba6a1308 6645 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6646
72fa4b74
TH
6647 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6648 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6649 dev->pio_mask = UINT_MAX;
6650 dev->mwdma_mask = UINT_MAX;
6651 dev->udma_mask = UINT_MAX;
6652}
6653
4fb37a25
TH
6654/**
6655 * ata_link_init - Initialize an ata_link structure
6656 * @ap: ATA port link is attached to
6657 * @link: Link structure to initialize
8989805d 6658 * @pmp: Port multiplier port number
4fb37a25
TH
6659 *
6660 * Initialize @link.
6661 *
6662 * LOCKING:
6663 * Kernel thread context (may sleep)
6664 */
fb7fd614 6665void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6666{
6667 int i;
6668
6669 /* clear everything except for devices */
6670 memset(link, 0, offsetof(struct ata_link, device[0]));
6671
6672 link->ap = ap;
8989805d 6673 link->pmp = pmp;
4fb37a25
TH
6674 link->active_tag = ATA_TAG_POISON;
6675 link->hw_sata_spd_limit = UINT_MAX;
6676
6677 /* can't use iterator, ap isn't initialized yet */
6678 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6679 struct ata_device *dev = &link->device[i];
6680
6681 dev->link = link;
6682 dev->devno = dev - link->device;
6683 ata_dev_init(dev);
6684 }
6685}
6686
6687/**
6688 * sata_link_init_spd - Initialize link->sata_spd_limit
6689 * @link: Link to configure sata_spd_limit for
6690 *
6691 * Initialize @link->[hw_]sata_spd_limit to the currently
6692 * configured value.
6693 *
6694 * LOCKING:
6695 * Kernel thread context (may sleep).
6696 *
6697 * RETURNS:
6698 * 0 on success, -errno on failure.
6699 */
fb7fd614 6700int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6701{
6702 u32 scontrol, spd;
6703 int rc;
6704
6705 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6706 if (rc)
6707 return rc;
6708
6709 spd = (scontrol >> 4) & 0xf;
6710 if (spd)
6711 link->hw_sata_spd_limit &= (1 << spd) - 1;
6712
6713 link->sata_spd_limit = link->hw_sata_spd_limit;
6714
6715 return 0;
6716}
6717
1da177e4 6718/**
f3187195
TH
6719 * ata_port_alloc - allocate and initialize basic ATA port resources
6720 * @host: ATA host this allocated port belongs to
1da177e4 6721 *
f3187195
TH
6722 * Allocate and initialize basic ATA port resources.
6723 *
6724 * RETURNS:
6725 * Allocate ATA port on success, NULL on failure.
0cba632b 6726 *
1da177e4 6727 * LOCKING:
f3187195 6728 * Inherited from calling layer (may sleep).
1da177e4 6729 */
f3187195 6730struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6731{
f3187195 6732 struct ata_port *ap;
1da177e4 6733
f3187195
TH
6734 DPRINTK("ENTER\n");
6735
6736 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6737 if (!ap)
6738 return NULL;
6739
f4d6d004 6740 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6741 ap->lock = &host->lock;
198e0fed 6742 ap->flags = ATA_FLAG_DISABLED;
f3187195 6743 ap->print_id = -1;
1da177e4 6744 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6745 ap->host = host;
f3187195 6746 ap->dev = host->dev;
1da177e4 6747 ap->last_ctl = 0xFF;
bd5d825c
BP
6748
6749#if defined(ATA_VERBOSE_DEBUG)
6750 /* turn on all debugging levels */
6751 ap->msg_enable = 0x00FF;
6752#elif defined(ATA_DEBUG)
6753 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6754#else
0dd4b21f 6755 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6756#endif
1da177e4 6757
65f27f38
DH
6758 INIT_DELAYED_WORK(&ap->port_task, NULL);
6759 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6760 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6761 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6762 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6763 init_timer_deferrable(&ap->fastdrain_timer);
6764 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6765 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6766
838df628 6767 ap->cbl = ATA_CBL_NONE;
838df628 6768
8989805d 6769 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6770
6771#ifdef ATA_IRQ_TRAP
6772 ap->stats.unhandled_irq = 1;
6773 ap->stats.idle_irq = 1;
6774#endif
1da177e4 6775 return ap;
1da177e4
LT
6776}
6777
f0d36efd
TH
6778static void ata_host_release(struct device *gendev, void *res)
6779{
6780 struct ata_host *host = dev_get_drvdata(gendev);
6781 int i;
6782
6783 for (i = 0; i < host->n_ports; i++) {
6784 struct ata_port *ap = host->ports[i];
6785
ecef7253
TH
6786 if (!ap)
6787 continue;
6788
6789 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6790 ap->ops->port_stop(ap);
f0d36efd
TH
6791 }
6792
ecef7253 6793 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6794 host->ops->host_stop(host);
1aa56cca 6795
1aa506e4
TH
6796 for (i = 0; i < host->n_ports; i++) {
6797 struct ata_port *ap = host->ports[i];
6798
4911487a
TH
6799 if (!ap)
6800 continue;
6801
6802 if (ap->scsi_host)
1aa506e4
TH
6803 scsi_host_put(ap->scsi_host);
6804
633273a3 6805 kfree(ap->pmp_link);
4911487a 6806 kfree(ap);
1aa506e4
TH
6807 host->ports[i] = NULL;
6808 }
6809
1aa56cca 6810 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6811}
6812
f3187195
TH
6813/**
6814 * ata_host_alloc - allocate and init basic ATA host resources
6815 * @dev: generic device this host is associated with
6816 * @max_ports: maximum number of ATA ports associated with this host
6817 *
6818 * Allocate and initialize basic ATA host resources. LLD calls
6819 * this function to allocate a host, initializes it fully and
6820 * attaches it using ata_host_register().
6821 *
6822 * @max_ports ports are allocated and host->n_ports is
6823 * initialized to @max_ports. The caller is allowed to decrease
6824 * host->n_ports before calling ata_host_register(). The unused
6825 * ports will be automatically freed on registration.
6826 *
6827 * RETURNS:
6828 * Allocate ATA host on success, NULL on failure.
6829 *
6830 * LOCKING:
6831 * Inherited from calling layer (may sleep).
6832 */
6833struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6834{
6835 struct ata_host *host;
6836 size_t sz;
6837 int i;
6838
6839 DPRINTK("ENTER\n");
6840
6841 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6842 return NULL;
6843
6844 /* alloc a container for our list of ATA ports (buses) */
6845 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6846 /* alloc a container for our list of ATA ports (buses) */
6847 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6848 if (!host)
6849 goto err_out;
6850
6851 devres_add(dev, host);
6852 dev_set_drvdata(dev, host);
6853
6854 spin_lock_init(&host->lock);
6855 host->dev = dev;
6856 host->n_ports = max_ports;
6857
6858 /* allocate ports bound to this host */
6859 for (i = 0; i < max_ports; i++) {
6860 struct ata_port *ap;
6861
6862 ap = ata_port_alloc(host);
6863 if (!ap)
6864 goto err_out;
6865
6866 ap->port_no = i;
6867 host->ports[i] = ap;
6868 }
6869
6870 devres_remove_group(dev, NULL);
6871 return host;
6872
6873 err_out:
6874 devres_release_group(dev, NULL);
6875 return NULL;
6876}
6877
f5cda257
TH
6878/**
6879 * ata_host_alloc_pinfo - alloc host and init with port_info array
6880 * @dev: generic device this host is associated with
6881 * @ppi: array of ATA port_info to initialize host with
6882 * @n_ports: number of ATA ports attached to this host
6883 *
6884 * Allocate ATA host and initialize with info from @ppi. If NULL
6885 * terminated, @ppi may contain fewer entries than @n_ports. The
6886 * last entry will be used for the remaining ports.
6887 *
6888 * RETURNS:
6889 * Allocate ATA host on success, NULL on failure.
6890 *
6891 * LOCKING:
6892 * Inherited from calling layer (may sleep).
6893 */
6894struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6895 const struct ata_port_info * const * ppi,
6896 int n_ports)
6897{
6898 const struct ata_port_info *pi;
6899 struct ata_host *host;
6900 int i, j;
6901
6902 host = ata_host_alloc(dev, n_ports);
6903 if (!host)
6904 return NULL;
6905
6906 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6907 struct ata_port *ap = host->ports[i];
6908
6909 if (ppi[j])
6910 pi = ppi[j++];
6911
6912 ap->pio_mask = pi->pio_mask;
6913 ap->mwdma_mask = pi->mwdma_mask;
6914 ap->udma_mask = pi->udma_mask;
6915 ap->flags |= pi->flags;
0c88758b 6916 ap->link.flags |= pi->link_flags;
f5cda257
TH
6917 ap->ops = pi->port_ops;
6918
6919 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6920 host->ops = pi->port_ops;
6921 if (!host->private_data && pi->private_data)
6922 host->private_data = pi->private_data;
6923 }
6924
6925 return host;
6926}
6927
ecef7253
TH
6928/**
6929 * ata_host_start - start and freeze ports of an ATA host
6930 * @host: ATA host to start ports for
6931 *
6932 * Start and then freeze ports of @host. Started status is
6933 * recorded in host->flags, so this function can be called
6934 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6935 * once. If host->ops isn't initialized yet, its set to the
6936 * first non-dummy port ops.
ecef7253
TH
6937 *
6938 * LOCKING:
6939 * Inherited from calling layer (may sleep).
6940 *
6941 * RETURNS:
6942 * 0 if all ports are started successfully, -errno otherwise.
6943 */
6944int ata_host_start(struct ata_host *host)
6945{
6946 int i, rc;
6947
6948 if (host->flags & ATA_HOST_STARTED)
6949 return 0;
6950
6951 for (i = 0; i < host->n_ports; i++) {
6952 struct ata_port *ap = host->ports[i];
6953
f3187195
TH
6954 if (!host->ops && !ata_port_is_dummy(ap))
6955 host->ops = ap->ops;
6956
ecef7253
TH
6957 if (ap->ops->port_start) {
6958 rc = ap->ops->port_start(ap);
6959 if (rc) {
6960 ata_port_printk(ap, KERN_ERR, "failed to "
6961 "start port (errno=%d)\n", rc);
6962 goto err_out;
6963 }
6964 }
6965
6966 ata_eh_freeze_port(ap);
6967 }
6968
6969 host->flags |= ATA_HOST_STARTED;
6970 return 0;
6971
6972 err_out:
6973 while (--i >= 0) {
6974 struct ata_port *ap = host->ports[i];
6975
6976 if (ap->ops->port_stop)
6977 ap->ops->port_stop(ap);
6978 }
6979 return rc;
6980}
6981
b03732f0 6982/**
cca3974e
JG
6983 * ata_sas_host_init - Initialize a host struct
6984 * @host: host to initialize
6985 * @dev: device host is attached to
6986 * @flags: host flags
6987 * @ops: port_ops
b03732f0
BK
6988 *
6989 * LOCKING:
6990 * PCI/etc. bus probe sem.
6991 *
6992 */
f3187195 6993/* KILLME - the only user left is ipr */
cca3974e
JG
6994void ata_host_init(struct ata_host *host, struct device *dev,
6995 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6996{
cca3974e
JG
6997 spin_lock_init(&host->lock);
6998 host->dev = dev;
6999 host->flags = flags;
7000 host->ops = ops;
b03732f0
BK
7001}
7002
f3187195
TH
7003/**
7004 * ata_host_register - register initialized ATA host
7005 * @host: ATA host to register
7006 * @sht: template for SCSI host
7007 *
7008 * Register initialized ATA host. @host is allocated using
7009 * ata_host_alloc() and fully initialized by LLD. This function
7010 * starts ports, registers @host with ATA and SCSI layers and
7011 * probe registered devices.
7012 *
7013 * LOCKING:
7014 * Inherited from calling layer (may sleep).
7015 *
7016 * RETURNS:
7017 * 0 on success, -errno otherwise.
7018 */
7019int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7020{
7021 int i, rc;
7022
7023 /* host must have been started */
7024 if (!(host->flags & ATA_HOST_STARTED)) {
7025 dev_printk(KERN_ERR, host->dev,
7026 "BUG: trying to register unstarted host\n");
7027 WARN_ON(1);
7028 return -EINVAL;
7029 }
7030
7031 /* Blow away unused ports. This happens when LLD can't
7032 * determine the exact number of ports to allocate at
7033 * allocation time.
7034 */
7035 for (i = host->n_ports; host->ports[i]; i++)
7036 kfree(host->ports[i]);
7037
7038 /* give ports names and add SCSI hosts */
7039 for (i = 0; i < host->n_ports; i++)
7040 host->ports[i]->print_id = ata_print_id++;
7041
7042 rc = ata_scsi_add_hosts(host, sht);
7043 if (rc)
7044 return rc;
7045
fafbae87
TH
7046 /* associate with ACPI nodes */
7047 ata_acpi_associate(host);
7048
f3187195
TH
7049 /* set cable, sata_spd_limit and report */
7050 for (i = 0; i < host->n_ports; i++) {
7051 struct ata_port *ap = host->ports[i];
f3187195
TH
7052 unsigned long xfer_mask;
7053
7054 /* set SATA cable type if still unset */
7055 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7056 ap->cbl = ATA_CBL_SATA;
7057
7058 /* init sata_spd_limit to the current value */
4fb37a25 7059 sata_link_init_spd(&ap->link);
f3187195 7060
cbcdd875 7061 /* print per-port info to dmesg */
f3187195
TH
7062 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7063 ap->udma_mask);
7064
abf6e8ed 7065 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7066 ata_port_printk(ap, KERN_INFO,
7067 "%cATA max %s %s\n",
a16abc0b 7068 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7069 ata_mode_string(xfer_mask),
cbcdd875 7070 ap->link.eh_info.desc);
abf6e8ed
TH
7071 ata_ehi_clear_desc(&ap->link.eh_info);
7072 } else
f3187195
TH
7073 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7074 }
7075
7076 /* perform each probe synchronously */
7077 DPRINTK("probe begin\n");
7078 for (i = 0; i < host->n_ports; i++) {
7079 struct ata_port *ap = host->ports[i];
7080 int rc;
7081
7082 /* probe */
7083 if (ap->ops->error_handler) {
9af5c9c9 7084 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7085 unsigned long flags;
7086
7087 ata_port_probe(ap);
7088
7089 /* kick EH for boot probing */
7090 spin_lock_irqsave(ap->lock, flags);
7091
f58229f8
TH
7092 ehi->probe_mask =
7093 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7094 ehi->action |= ATA_EH_SOFTRESET;
7095 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7096
f4d6d004 7097 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7098 ap->pflags |= ATA_PFLAG_LOADING;
7099 ata_port_schedule_eh(ap);
7100
7101 spin_unlock_irqrestore(ap->lock, flags);
7102
7103 /* wait for EH to finish */
7104 ata_port_wait_eh(ap);
7105 } else {
7106 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7107 rc = ata_bus_probe(ap);
7108 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7109
7110 if (rc) {
7111 /* FIXME: do something useful here?
7112 * Current libata behavior will
7113 * tear down everything when
7114 * the module is removed
7115 * or the h/w is unplugged.
7116 */
7117 }
7118 }
7119 }
7120
7121 /* probes are done, now scan each port's disk(s) */
7122 DPRINTK("host probe begin\n");
7123 for (i = 0; i < host->n_ports; i++) {
7124 struct ata_port *ap = host->ports[i];
7125
1ae46317 7126 ata_scsi_scan_host(ap, 1);
ca77329f 7127 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7128 }
7129
7130 return 0;
7131}
7132
f5cda257
TH
7133/**
7134 * ata_host_activate - start host, request IRQ and register it
7135 * @host: target ATA host
7136 * @irq: IRQ to request
7137 * @irq_handler: irq_handler used when requesting IRQ
7138 * @irq_flags: irq_flags used when requesting IRQ
7139 * @sht: scsi_host_template to use when registering the host
7140 *
7141 * After allocating an ATA host and initializing it, most libata
7142 * LLDs perform three steps to activate the host - start host,
7143 * request IRQ and register it. This helper takes necessasry
7144 * arguments and performs the three steps in one go.
7145 *
7146 * LOCKING:
7147 * Inherited from calling layer (may sleep).
7148 *
7149 * RETURNS:
7150 * 0 on success, -errno otherwise.
7151 */
7152int ata_host_activate(struct ata_host *host, int irq,
7153 irq_handler_t irq_handler, unsigned long irq_flags,
7154 struct scsi_host_template *sht)
7155{
cbcdd875 7156 int i, rc;
f5cda257
TH
7157
7158 rc = ata_host_start(host);
7159 if (rc)
7160 return rc;
7161
7162 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7163 dev_driver_string(host->dev), host);
7164 if (rc)
7165 return rc;
7166
cbcdd875
TH
7167 for (i = 0; i < host->n_ports; i++)
7168 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7169
f5cda257
TH
7170 rc = ata_host_register(host, sht);
7171 /* if failed, just free the IRQ and leave ports alone */
7172 if (rc)
7173 devm_free_irq(host->dev, irq, host);
7174
7175 return rc;
7176}
7177
720ba126
TH
7178/**
7179 * ata_port_detach - Detach ATA port in prepration of device removal
7180 * @ap: ATA port to be detached
7181 *
7182 * Detach all ATA devices and the associated SCSI devices of @ap;
7183 * then, remove the associated SCSI host. @ap is guaranteed to
7184 * be quiescent on return from this function.
7185 *
7186 * LOCKING:
7187 * Kernel thread context (may sleep).
7188 */
741b7763 7189static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7190{
7191 unsigned long flags;
41bda9c9 7192 struct ata_link *link;
f58229f8 7193 struct ata_device *dev;
720ba126
TH
7194
7195 if (!ap->ops->error_handler)
c3cf30a9 7196 goto skip_eh;
720ba126
TH
7197
7198 /* tell EH we're leaving & flush EH */
ba6a1308 7199 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7200 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7201 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7202
7203 ata_port_wait_eh(ap);
7204
7205 /* EH is now guaranteed to see UNLOADING, so no new device
7206 * will be attached. Disable all existing devices.
7207 */
ba6a1308 7208 spin_lock_irqsave(ap->lock, flags);
720ba126 7209
41bda9c9
TH
7210 ata_port_for_each_link(link, ap) {
7211 ata_link_for_each_dev(dev, link)
7212 ata_dev_disable(dev);
7213 }
720ba126 7214
ba6a1308 7215 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7216
7217 /* Final freeze & EH. All in-flight commands are aborted. EH
7218 * will be skipped and retrials will be terminated with bad
7219 * target.
7220 */
ba6a1308 7221 spin_lock_irqsave(ap->lock, flags);
720ba126 7222 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7223 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7224
7225 ata_port_wait_eh(ap);
45a66c1c 7226 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7227
c3cf30a9 7228 skip_eh:
720ba126 7229 /* remove the associated SCSI host */
cca3974e 7230 scsi_remove_host(ap->scsi_host);
720ba126
TH
7231}
7232
0529c159
TH
7233/**
7234 * ata_host_detach - Detach all ports of an ATA host
7235 * @host: Host to detach
7236 *
7237 * Detach all ports of @host.
7238 *
7239 * LOCKING:
7240 * Kernel thread context (may sleep).
7241 */
7242void ata_host_detach(struct ata_host *host)
7243{
7244 int i;
7245
7246 for (i = 0; i < host->n_ports; i++)
7247 ata_port_detach(host->ports[i]);
7248}
7249
1da177e4
LT
7250/**
7251 * ata_std_ports - initialize ioaddr with standard port offsets.
7252 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7253 *
7254 * Utility function which initializes data_addr, error_addr,
7255 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7256 * device_addr, status_addr, and command_addr to standard offsets
7257 * relative to cmd_addr.
7258 *
7259 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7260 */
0baab86b 7261
1da177e4
LT
7262void ata_std_ports(struct ata_ioports *ioaddr)
7263{
7264 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7265 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7266 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7267 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7268 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7269 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7270 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7271 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7272 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7273 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7274}
7275
0baab86b 7276
374b1873
JG
7277#ifdef CONFIG_PCI
7278
1da177e4
LT
7279/**
7280 * ata_pci_remove_one - PCI layer callback for device removal
7281 * @pdev: PCI device that was removed
7282 *
b878ca5d
TH
7283 * PCI layer indicates to libata via this hook that hot-unplug or
7284 * module unload event has occurred. Detach all ports. Resource
7285 * release is handled via devres.
1da177e4
LT
7286 *
7287 * LOCKING:
7288 * Inherited from PCI layer (may sleep).
7289 */
f0d36efd 7290void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7291{
2855568b 7292 struct device *dev = &pdev->dev;
cca3974e 7293 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7294
b878ca5d 7295 ata_host_detach(host);
1da177e4
LT
7296}
7297
7298/* move to PCI subsystem */
057ace5e 7299int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7300{
7301 unsigned long tmp = 0;
7302
7303 switch (bits->width) {
7304 case 1: {
7305 u8 tmp8 = 0;
7306 pci_read_config_byte(pdev, bits->reg, &tmp8);
7307 tmp = tmp8;
7308 break;
7309 }
7310 case 2: {
7311 u16 tmp16 = 0;
7312 pci_read_config_word(pdev, bits->reg, &tmp16);
7313 tmp = tmp16;
7314 break;
7315 }
7316 case 4: {
7317 u32 tmp32 = 0;
7318 pci_read_config_dword(pdev, bits->reg, &tmp32);
7319 tmp = tmp32;
7320 break;
7321 }
7322
7323 default:
7324 return -EINVAL;
7325 }
7326
7327 tmp &= bits->mask;
7328
7329 return (tmp == bits->val) ? 1 : 0;
7330}
9b847548 7331
6ffa01d8 7332#ifdef CONFIG_PM
3c5100c1 7333void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7334{
7335 pci_save_state(pdev);
4c90d971 7336 pci_disable_device(pdev);
500530f6 7337
4c90d971 7338 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7339 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7340}
7341
553c4aa6 7342int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7343{
553c4aa6
TH
7344 int rc;
7345
9b847548
JA
7346 pci_set_power_state(pdev, PCI_D0);
7347 pci_restore_state(pdev);
553c4aa6 7348
b878ca5d 7349 rc = pcim_enable_device(pdev);
553c4aa6
TH
7350 if (rc) {
7351 dev_printk(KERN_ERR, &pdev->dev,
7352 "failed to enable device after resume (%d)\n", rc);
7353 return rc;
7354 }
7355
9b847548 7356 pci_set_master(pdev);
553c4aa6 7357 return 0;
500530f6
TH
7358}
7359
3c5100c1 7360int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7361{
cca3974e 7362 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7363 int rc = 0;
7364
cca3974e 7365 rc = ata_host_suspend(host, mesg);
500530f6
TH
7366 if (rc)
7367 return rc;
7368
3c5100c1 7369 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7370
7371 return 0;
7372}
7373
7374int ata_pci_device_resume(struct pci_dev *pdev)
7375{
cca3974e 7376 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7377 int rc;
500530f6 7378
553c4aa6
TH
7379 rc = ata_pci_device_do_resume(pdev);
7380 if (rc == 0)
7381 ata_host_resume(host);
7382 return rc;
9b847548 7383}
6ffa01d8
TH
7384#endif /* CONFIG_PM */
7385
1da177e4
LT
7386#endif /* CONFIG_PCI */
7387
7388
1da177e4
LT
7389static int __init ata_init(void)
7390{
a8601e5f 7391 ata_probe_timeout *= HZ;
1da177e4
LT
7392 ata_wq = create_workqueue("ata");
7393 if (!ata_wq)
7394 return -ENOMEM;
7395
453b07ac
TH
7396 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7397 if (!ata_aux_wq) {
7398 destroy_workqueue(ata_wq);
7399 return -ENOMEM;
7400 }
7401
1da177e4
LT
7402 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7403 return 0;
7404}
7405
7406static void __exit ata_exit(void)
7407{
7408 destroy_workqueue(ata_wq);
453b07ac 7409 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7410}
7411
a4625085 7412subsys_initcall(ata_init);
1da177e4
LT
7413module_exit(ata_exit);
7414
67846b30 7415static unsigned long ratelimit_time;
34af946a 7416static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7417
7418int ata_ratelimit(void)
7419{
7420 int rc;
7421 unsigned long flags;
7422
7423 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7424
7425 if (time_after(jiffies, ratelimit_time)) {
7426 rc = 1;
7427 ratelimit_time = jiffies + (HZ/5);
7428 } else
7429 rc = 0;
7430
7431 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7432
7433 return rc;
7434}
7435
c22daff4
TH
7436/**
7437 * ata_wait_register - wait until register value changes
7438 * @reg: IO-mapped register
7439 * @mask: Mask to apply to read register value
7440 * @val: Wait condition
7441 * @interval_msec: polling interval in milliseconds
7442 * @timeout_msec: timeout in milliseconds
7443 *
7444 * Waiting for some bits of register to change is a common
7445 * operation for ATA controllers. This function reads 32bit LE
7446 * IO-mapped register @reg and tests for the following condition.
7447 *
7448 * (*@reg & mask) != val
7449 *
7450 * If the condition is met, it returns; otherwise, the process is
7451 * repeated after @interval_msec until timeout.
7452 *
7453 * LOCKING:
7454 * Kernel thread context (may sleep)
7455 *
7456 * RETURNS:
7457 * The final register value.
7458 */
7459u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7460 unsigned long interval_msec,
7461 unsigned long timeout_msec)
7462{
7463 unsigned long timeout;
7464 u32 tmp;
7465
7466 tmp = ioread32(reg);
7467
7468 /* Calculate timeout _after_ the first read to make sure
7469 * preceding writes reach the controller before starting to
7470 * eat away the timeout.
7471 */
7472 timeout = jiffies + (timeout_msec * HZ) / 1000;
7473
7474 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7475 msleep(interval_msec);
7476 tmp = ioread32(reg);
7477 }
7478
7479 return tmp;
7480}
7481
dd5b06c4
TH
7482/*
7483 * Dummy port_ops
7484 */
7485static void ata_dummy_noret(struct ata_port *ap) { }
7486static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7487static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7488
7489static u8 ata_dummy_check_status(struct ata_port *ap)
7490{
7491 return ATA_DRDY;
7492}
7493
7494static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7495{
7496 return AC_ERR_SYSTEM;
7497}
7498
7499const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7500 .check_status = ata_dummy_check_status,
7501 .check_altstatus = ata_dummy_check_status,
7502 .dev_select = ata_noop_dev_select,
7503 .qc_prep = ata_noop_qc_prep,
7504 .qc_issue = ata_dummy_qc_issue,
7505 .freeze = ata_dummy_noret,
7506 .thaw = ata_dummy_noret,
7507 .error_handler = ata_dummy_noret,
7508 .post_internal_cmd = ata_dummy_qc_noret,
7509 .irq_clear = ata_dummy_noret,
7510 .port_start = ata_dummy_ret0,
7511 .port_stop = ata_dummy_noret,
7512};
7513
21b0ad4f
TH
7514const struct ata_port_info ata_dummy_port_info = {
7515 .port_ops = &ata_dummy_port_ops,
7516};
7517
1da177e4
LT
7518/*
7519 * libata is essentially a library of internal helper functions for
7520 * low-level ATA host controller drivers. As such, the API/ABI is
7521 * likely to change as new drivers are added and updated.
7522 * Do not depend on ABI/API stability.
7523 */
e9c83914
TH
7524EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7525EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7526EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7527EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7528EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7529EXPORT_SYMBOL_GPL(ata_std_bios_param);
7530EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7531EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7532EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7533EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7534EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7535EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7536EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7537EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7538EXPORT_SYMBOL_GPL(ata_sg_init);
7539EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7540EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7541EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7542EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7543EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7544EXPORT_SYMBOL_GPL(ata_tf_load);
7545EXPORT_SYMBOL_GPL(ata_tf_read);
7546EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7547EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7548EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7549EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7550EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7551EXPORT_SYMBOL_GPL(ata_check_status);
7552EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7553EXPORT_SYMBOL_GPL(ata_exec_command);
7554EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7555EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7556EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7557EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7558EXPORT_SYMBOL_GPL(ata_data_xfer);
7559EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7560EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7561EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7562EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7563EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7564EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7565EXPORT_SYMBOL_GPL(ata_bmdma_start);
7566EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7567EXPORT_SYMBOL_GPL(ata_bmdma_status);
7568EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7569EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7570EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7571EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7572EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7573EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7574EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7575EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7576EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7577EXPORT_SYMBOL_GPL(sata_link_debounce);
7578EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7579EXPORT_SYMBOL_GPL(sata_phy_reset);
7580EXPORT_SYMBOL_GPL(__sata_phy_reset);
7581EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7582EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7583EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7584EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7585EXPORT_SYMBOL_GPL(sata_std_hardreset);
7586EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7587EXPORT_SYMBOL_GPL(ata_dev_classify);
7588EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7589EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7590EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7591EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7592EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7593EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7594EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7595EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7596EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7597EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7598EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7599EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7600EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7601EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7602EXPORT_SYMBOL_GPL(sata_scr_valid);
7603EXPORT_SYMBOL_GPL(sata_scr_read);
7604EXPORT_SYMBOL_GPL(sata_scr_write);
7605EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7606EXPORT_SYMBOL_GPL(ata_link_online);
7607EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7608#ifdef CONFIG_PM
cca3974e
JG
7609EXPORT_SYMBOL_GPL(ata_host_suspend);
7610EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7611#endif /* CONFIG_PM */
6a62a04d
TH
7612EXPORT_SYMBOL_GPL(ata_id_string);
7613EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7614EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7615EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7616
1bc4ccff 7617EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7618EXPORT_SYMBOL_GPL(ata_timing_compute);
7619EXPORT_SYMBOL_GPL(ata_timing_merge);
7620
1da177e4
LT
7621#ifdef CONFIG_PCI
7622EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7623EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7624EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7625EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7626EXPORT_SYMBOL_GPL(ata_pci_init_one);
7627EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7628#ifdef CONFIG_PM
500530f6
TH
7629EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7630EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7631EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7632EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7633#endif /* CONFIG_PM */
67951ade
AC
7634EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7635EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7636#endif /* CONFIG_PCI */
9b847548 7637
31f88384 7638EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7639EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7640EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7641EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7642EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7643
b64bbc39
TH
7644EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7645EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7646EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7647EXPORT_SYMBOL_GPL(ata_port_desc);
7648#ifdef CONFIG_PCI
7649EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7650#endif /* CONFIG_PCI */
ece1d636 7651EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7652EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7653EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7654EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7655EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7656EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7657EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7658EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7659EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7660EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7661EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7662EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7663EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7664
7665EXPORT_SYMBOL_GPL(ata_cable_40wire);
7666EXPORT_SYMBOL_GPL(ata_cable_80wire);
7667EXPORT_SYMBOL_GPL(ata_cable_unknown);
7668EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.95677 seconds and 5 git commands to generate.