libata: support device-managed ZAC devices
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
af36d7f0
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
848c3920 53#include <linux/time.h>
1da177e4
LT
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
378f058c 58#include <linux/scatterlist.h>
2dcb407e 59#include <linux/io.h>
79318057 60#include <linux/async.h>
e18086d6 61#include <linux/log2.h>
5a0e3ad6 62#include <linux/slab.h>
428ac5fc 63#include <linux/glob.h>
1da177e4 64#include <scsi/scsi.h>
193515d5 65#include <scsi/scsi_cmnd.h>
1da177e4
LT
66#include <scsi/scsi_host.h>
67#include <linux/libata.h>
1da177e4 68#include <asm/byteorder.h>
fe5af0cc 69#include <asm/unaligned.h>
140b5e59 70#include <linux/cdrom.h>
9990b6f3 71#include <linux/ratelimit.h>
9ee4f393 72#include <linux/pm_runtime.h>
b7db04d9 73#include <linux/platform_device.h>
1da177e4 74
255c03d1
HR
75#define CREATE_TRACE_POINTS
76#include <trace/events/libata.h>
77
1da177e4 78#include "libata.h"
d9027470 79#include "libata-transport.h"
fda0efc5 80
d7bb4cc7 81/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
82const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
83const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
84const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 85
029cfd6b 86const struct ata_port_operations ata_base_port_ops = {
0aa1113d 87 .prereset = ata_std_prereset,
203c75b8 88 .postreset = ata_std_postreset,
a1efdaba 89 .error_handler = ata_std_error_handler,
e4a9c373
DW
90 .sched_eh = ata_std_sched_eh,
91 .end_eh = ata_std_end_eh,
029cfd6b
TH
92};
93
94const struct ata_port_operations sata_port_ops = {
95 .inherits = &ata_base_port_ops,
96
97 .qc_defer = ata_std_qc_defer,
57c9efdf 98 .hardreset = sata_std_hardreset,
029cfd6b
TH
99};
100
3373efd8
TH
101static unsigned int ata_dev_init_params(struct ata_device *dev,
102 u16 heads, u16 sectors);
103static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
104static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 105static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 106
a78f57af 107atomic_t ata_print_id = ATOMIC_INIT(0);
1da177e4 108
33267325
TH
109struct ata_force_param {
110 const char *name;
111 unsigned int cbl;
112 int spd_limit;
113 unsigned long xfer_mask;
114 unsigned int horkage_on;
115 unsigned int horkage_off;
05944bdf 116 unsigned int lflags;
33267325
TH
117};
118
119struct ata_force_ent {
120 int port;
121 int device;
122 struct ata_force_param param;
123};
124
125static struct ata_force_ent *ata_force_tbl;
126static int ata_force_tbl_size;
127
128static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
129/* param_buf is thrown away after initialization, disallow read */
130module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
131MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
132
2486fa56 133static int atapi_enabled = 1;
1623c81e 134module_param(atapi_enabled, int, 0444);
ad5d8eac 135MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 136
c5c61bda 137static int atapi_dmadir = 0;
95de719a 138module_param(atapi_dmadir, int, 0444);
ad5d8eac 139MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 140
baf4fdfa
ML
141int atapi_passthru16 = 1;
142module_param(atapi_passthru16, int, 0444);
ad5d8eac 143MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 144
c3c013a2
JG
145int libata_fua = 0;
146module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 147MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 148
2dcb407e 149static int ata_ignore_hpa;
1e999736
AC
150module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
151MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
152
b3a70601
AC
153static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
154module_param_named(dma, libata_dma_mask, int, 0444);
155MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
156
87fbc5a0 157static int ata_probe_timeout;
a8601e5f
AM
158module_param(ata_probe_timeout, int, 0444);
159MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
160
6ebe9d86 161int libata_noacpi = 0;
d7d0dad6 162module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 163MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 164
ae8d4ee7
AC
165int libata_allow_tpm = 0;
166module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 167MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 168
e7ecd435
TH
169static int atapi_an;
170module_param(atapi_an, int, 0444);
171MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
172
1da177e4
LT
173MODULE_AUTHOR("Jeff Garzik");
174MODULE_DESCRIPTION("Library module for ATA devices");
175MODULE_LICENSE("GPL");
176MODULE_VERSION(DRV_VERSION);
177
0baab86b 178
9913ff8a
TH
179static bool ata_sstatus_online(u32 sstatus)
180{
181 return (sstatus & 0xf) == 0x3;
182}
183
1eca4365
TH
184/**
185 * ata_link_next - link iteration helper
186 * @link: the previous link, NULL to start
187 * @ap: ATA port containing links to iterate
188 * @mode: iteration mode, one of ATA_LITER_*
189 *
190 * LOCKING:
191 * Host lock or EH context.
aadffb68 192 *
1eca4365
TH
193 * RETURNS:
194 * Pointer to the next link.
aadffb68 195 */
1eca4365
TH
196struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
197 enum ata_link_iter_mode mode)
aadffb68 198{
1eca4365
TH
199 BUG_ON(mode != ATA_LITER_EDGE &&
200 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
201
aadffb68 202 /* NULL link indicates start of iteration */
1eca4365
TH
203 if (!link)
204 switch (mode) {
205 case ATA_LITER_EDGE:
206 case ATA_LITER_PMP_FIRST:
207 if (sata_pmp_attached(ap))
208 return ap->pmp_link;
209 /* fall through */
210 case ATA_LITER_HOST_FIRST:
211 return &ap->link;
212 }
aadffb68 213
1eca4365
TH
214 /* we just iterated over the host link, what's next? */
215 if (link == &ap->link)
216 switch (mode) {
217 case ATA_LITER_HOST_FIRST:
218 if (sata_pmp_attached(ap))
219 return ap->pmp_link;
220 /* fall through */
221 case ATA_LITER_PMP_FIRST:
222 if (unlikely(ap->slave_link))
b1c72916 223 return ap->slave_link;
1eca4365
TH
224 /* fall through */
225 case ATA_LITER_EDGE:
aadffb68 226 return NULL;
b1c72916 227 }
aadffb68 228
b1c72916
TH
229 /* slave_link excludes PMP */
230 if (unlikely(link == ap->slave_link))
231 return NULL;
232
1eca4365 233 /* we were over a PMP link */
aadffb68
TH
234 if (++link < ap->pmp_link + ap->nr_pmp_links)
235 return link;
1eca4365
TH
236
237 if (mode == ATA_LITER_PMP_FIRST)
238 return &ap->link;
239
aadffb68
TH
240 return NULL;
241}
242
1eca4365
TH
243/**
244 * ata_dev_next - device iteration helper
245 * @dev: the previous device, NULL to start
246 * @link: ATA link containing devices to iterate
247 * @mode: iteration mode, one of ATA_DITER_*
248 *
249 * LOCKING:
250 * Host lock or EH context.
251 *
252 * RETURNS:
253 * Pointer to the next device.
254 */
255struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
256 enum ata_dev_iter_mode mode)
257{
258 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
259 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
260
261 /* NULL dev indicates start of iteration */
262 if (!dev)
263 switch (mode) {
264 case ATA_DITER_ENABLED:
265 case ATA_DITER_ALL:
266 dev = link->device;
267 goto check;
268 case ATA_DITER_ENABLED_REVERSE:
269 case ATA_DITER_ALL_REVERSE:
270 dev = link->device + ata_link_max_devices(link) - 1;
271 goto check;
272 }
273
274 next:
275 /* move to the next one */
276 switch (mode) {
277 case ATA_DITER_ENABLED:
278 case ATA_DITER_ALL:
279 if (++dev < link->device + ata_link_max_devices(link))
280 goto check;
281 return NULL;
282 case ATA_DITER_ENABLED_REVERSE:
283 case ATA_DITER_ALL_REVERSE:
284 if (--dev >= link->device)
285 goto check;
286 return NULL;
287 }
288
289 check:
290 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
291 !ata_dev_enabled(dev))
292 goto next;
293 return dev;
294}
295
b1c72916
TH
296/**
297 * ata_dev_phys_link - find physical link for a device
298 * @dev: ATA device to look up physical link for
299 *
300 * Look up physical link which @dev is attached to. Note that
301 * this is different from @dev->link only when @dev is on slave
302 * link. For all other cases, it's the same as @dev->link.
303 *
304 * LOCKING:
305 * Don't care.
306 *
307 * RETURNS:
308 * Pointer to the found physical link.
309 */
310struct ata_link *ata_dev_phys_link(struct ata_device *dev)
311{
312 struct ata_port *ap = dev->link->ap;
313
314 if (!ap->slave_link)
315 return dev->link;
316 if (!dev->devno)
317 return &ap->link;
318 return ap->slave_link;
319}
320
33267325
TH
321/**
322 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 323 * @ap: ATA port of interest
33267325
TH
324 *
325 * Force cable type according to libata.force and whine about it.
326 * The last entry which has matching port number is used, so it
327 * can be specified as part of device force parameters. For
328 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
329 * same effect.
330 *
331 * LOCKING:
332 * EH context.
333 */
334void ata_force_cbl(struct ata_port *ap)
335{
336 int i;
337
338 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
339 const struct ata_force_ent *fe = &ata_force_tbl[i];
340
341 if (fe->port != -1 && fe->port != ap->print_id)
342 continue;
343
344 if (fe->param.cbl == ATA_CBL_NONE)
345 continue;
346
347 ap->cbl = fe->param.cbl;
a9a79dfe 348 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
33267325
TH
349 return;
350 }
351}
352
353/**
05944bdf 354 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
355 * @link: ATA link of interest
356 *
05944bdf
TH
357 * Force link flags and SATA spd limit according to libata.force
358 * and whine about it. When only the port part is specified
359 * (e.g. 1:), the limit applies to all links connected to both
360 * the host link and all fan-out ports connected via PMP. If the
361 * device part is specified as 0 (e.g. 1.00:), it specifies the
362 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
363 * points to the host link whether PMP is attached or not. If the
364 * controller has slave link, device number 16 points to it.
33267325
TH
365 *
366 * LOCKING:
367 * EH context.
368 */
05944bdf 369static void ata_force_link_limits(struct ata_link *link)
33267325 370{
05944bdf 371 bool did_spd = false;
b1c72916
TH
372 int linkno = link->pmp;
373 int i;
33267325
TH
374
375 if (ata_is_host_link(link))
b1c72916 376 linkno += 15;
33267325
TH
377
378 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
379 const struct ata_force_ent *fe = &ata_force_tbl[i];
380
381 if (fe->port != -1 && fe->port != link->ap->print_id)
382 continue;
383
384 if (fe->device != -1 && fe->device != linkno)
385 continue;
386
05944bdf
TH
387 /* only honor the first spd limit */
388 if (!did_spd && fe->param.spd_limit) {
389 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
a9a79dfe 390 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
05944bdf
TH
391 fe->param.name);
392 did_spd = true;
393 }
33267325 394
05944bdf
TH
395 /* let lflags stack */
396 if (fe->param.lflags) {
397 link->flags |= fe->param.lflags;
a9a79dfe 398 ata_link_notice(link,
05944bdf
TH
399 "FORCE: link flag 0x%x forced -> 0x%x\n",
400 fe->param.lflags, link->flags);
401 }
33267325
TH
402 }
403}
404
405/**
406 * ata_force_xfermask - force xfermask according to libata.force
407 * @dev: ATA device of interest
408 *
409 * Force xfer_mask according to libata.force and whine about it.
410 * For consistency with link selection, device number 15 selects
411 * the first device connected to the host link.
412 *
413 * LOCKING:
414 * EH context.
415 */
416static void ata_force_xfermask(struct ata_device *dev)
417{
418 int devno = dev->link->pmp + dev->devno;
419 int alt_devno = devno;
420 int i;
421
b1c72916
TH
422 /* allow n.15/16 for devices attached to host port */
423 if (ata_is_host_link(dev->link))
424 alt_devno += 15;
33267325
TH
425
426 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 const struct ata_force_ent *fe = &ata_force_tbl[i];
428 unsigned long pio_mask, mwdma_mask, udma_mask;
429
430 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 continue;
432
433 if (fe->device != -1 && fe->device != devno &&
434 fe->device != alt_devno)
435 continue;
436
437 if (!fe->param.xfer_mask)
438 continue;
439
440 ata_unpack_xfermask(fe->param.xfer_mask,
441 &pio_mask, &mwdma_mask, &udma_mask);
442 if (udma_mask)
443 dev->udma_mask = udma_mask;
444 else if (mwdma_mask) {
445 dev->udma_mask = 0;
446 dev->mwdma_mask = mwdma_mask;
447 } else {
448 dev->udma_mask = 0;
449 dev->mwdma_mask = 0;
450 dev->pio_mask = pio_mask;
451 }
452
a9a79dfe
JP
453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 fe->param.name);
33267325
TH
455 return;
456 }
457}
458
459/**
460 * ata_force_horkage - force horkage according to libata.force
461 * @dev: ATA device of interest
462 *
463 * Force horkage according to libata.force and whine about it.
464 * For consistency with link selection, device number 15 selects
465 * the first device connected to the host link.
466 *
467 * LOCKING:
468 * EH context.
469 */
470static void ata_force_horkage(struct ata_device *dev)
471{
472 int devno = dev->link->pmp + dev->devno;
473 int alt_devno = devno;
474 int i;
475
b1c72916
TH
476 /* allow n.15/16 for devices attached to host port */
477 if (ata_is_host_link(dev->link))
478 alt_devno += 15;
33267325
TH
479
480 for (i = 0; i < ata_force_tbl_size; i++) {
481 const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 continue;
485
486 if (fe->device != -1 && fe->device != devno &&
487 fe->device != alt_devno)
488 continue;
489
490 if (!(~dev->horkage & fe->param.horkage_on) &&
491 !(dev->horkage & fe->param.horkage_off))
492 continue;
493
494 dev->horkage |= fe->param.horkage_on;
495 dev->horkage &= ~fe->param.horkage_off;
496
a9a79dfe
JP
497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 fe->param.name);
33267325
TH
499 }
500}
501
436d34b3
TH
502/**
503 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
504 * @opcode: SCSI opcode
505 *
506 * Determine ATAPI command type from @opcode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
513 */
514int atapi_cmd_type(u8 opcode)
515{
516 switch (opcode) {
517 case GPCMD_READ_10:
518 case GPCMD_READ_12:
519 return ATAPI_READ;
520
521 case GPCMD_WRITE_10:
522 case GPCMD_WRITE_12:
523 case GPCMD_WRITE_AND_VERIFY_10:
524 return ATAPI_WRITE;
525
526 case GPCMD_READ_CD:
527 case GPCMD_READ_CD_MSF:
528 return ATAPI_READ_CD;
529
e52dcc48
TH
530 case ATA_16:
531 case ATA_12:
532 if (atapi_passthru16)
533 return ATAPI_PASS_THRU;
534 /* fall thru */
436d34b3
TH
535 default:
536 return ATAPI_MISC;
537 }
538}
539
1da177e4
LT
540/**
541 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
542 * @tf: Taskfile to convert
1da177e4 543 * @pmp: Port multiplier port
9977126c
TH
544 * @is_cmd: This FIS is for command
545 * @fis: Buffer into which data will output
1da177e4
LT
546 *
547 * Converts a standard ATA taskfile to a Serial ATA
548 * FIS structure (Register - Host to Device).
549 *
550 * LOCKING:
551 * Inherited from caller.
552 */
9977126c 553void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 554{
9977126c
TH
555 fis[0] = 0x27; /* Register - Host to Device FIS */
556 fis[1] = pmp & 0xf; /* Port multiplier number*/
557 if (is_cmd)
558 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
559
1da177e4
LT
560 fis[2] = tf->command;
561 fis[3] = tf->feature;
562
563 fis[4] = tf->lbal;
564 fis[5] = tf->lbam;
565 fis[6] = tf->lbah;
566 fis[7] = tf->device;
567
568 fis[8] = tf->hob_lbal;
569 fis[9] = tf->hob_lbam;
570 fis[10] = tf->hob_lbah;
571 fis[11] = tf->hob_feature;
572
573 fis[12] = tf->nsect;
574 fis[13] = tf->hob_nsect;
575 fis[14] = 0;
576 fis[15] = tf->ctl;
577
86a565e6
MC
578 fis[16] = tf->auxiliary & 0xff;
579 fis[17] = (tf->auxiliary >> 8) & 0xff;
580 fis[18] = (tf->auxiliary >> 16) & 0xff;
581 fis[19] = (tf->auxiliary >> 24) & 0xff;
1da177e4
LT
582}
583
584/**
585 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
586 * @fis: Buffer from which data will be input
587 * @tf: Taskfile to output
588 *
e12a1be6 589 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
590 *
591 * LOCKING:
592 * Inherited from caller.
593 */
594
057ace5e 595void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
596{
597 tf->command = fis[2]; /* status */
598 tf->feature = fis[3]; /* error */
599
600 tf->lbal = fis[4];
601 tf->lbam = fis[5];
602 tf->lbah = fis[6];
603 tf->device = fis[7];
604
605 tf->hob_lbal = fis[8];
606 tf->hob_lbam = fis[9];
607 tf->hob_lbah = fis[10];
608
609 tf->nsect = fis[12];
610 tf->hob_nsect = fis[13];
611}
612
8cbd6df1
AL
613static const u8 ata_rw_cmds[] = {
614 /* pio multi */
615 ATA_CMD_READ_MULTI,
616 ATA_CMD_WRITE_MULTI,
617 ATA_CMD_READ_MULTI_EXT,
618 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
619 0,
620 0,
621 0,
622 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
623 /* pio */
624 ATA_CMD_PIO_READ,
625 ATA_CMD_PIO_WRITE,
626 ATA_CMD_PIO_READ_EXT,
627 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
628 0,
629 0,
630 0,
631 0,
8cbd6df1
AL
632 /* dma */
633 ATA_CMD_READ,
634 ATA_CMD_WRITE,
635 ATA_CMD_READ_EXT,
9a3dccc4
TH
636 ATA_CMD_WRITE_EXT,
637 0,
638 0,
639 0,
640 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 641};
1da177e4
LT
642
643/**
8cbd6df1 644 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
645 * @tf: command to examine and configure
646 * @dev: device tf belongs to
1da177e4 647 *
2e9edbf8 648 * Examine the device configuration and tf->flags to calculate
8cbd6df1 649 * the proper read/write commands and protocol to use.
1da177e4
LT
650 *
651 * LOCKING:
652 * caller.
653 */
bd056d7e 654static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 655{
9a3dccc4 656 u8 cmd;
1da177e4 657
9a3dccc4 658 int index, fua, lba48, write;
2e9edbf8 659
9a3dccc4 660 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
661 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
662 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 663
8cbd6df1
AL
664 if (dev->flags & ATA_DFLAG_PIO) {
665 tf->protocol = ATA_PROT_PIO;
9a3dccc4 666 index = dev->multi_count ? 0 : 8;
9af5c9c9 667 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
668 /* Unable to use DMA due to host limitation */
669 tf->protocol = ATA_PROT_PIO;
0565c26d 670 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
671 } else {
672 tf->protocol = ATA_PROT_DMA;
9a3dccc4 673 index = 16;
8cbd6df1 674 }
1da177e4 675
9a3dccc4
TH
676 cmd = ata_rw_cmds[index + fua + lba48 + write];
677 if (cmd) {
678 tf->command = cmd;
679 return 0;
680 }
681 return -1;
1da177e4
LT
682}
683
35b649fe
TH
684/**
685 * ata_tf_read_block - Read block address from ATA taskfile
686 * @tf: ATA taskfile of interest
687 * @dev: ATA device @tf belongs to
688 *
689 * LOCKING:
690 * None.
691 *
692 * Read block address from @tf. This function can handle all
693 * three address formats - LBA, LBA48 and CHS. tf->protocol and
694 * flags select the address format to use.
695 *
696 * RETURNS:
697 * Block address read from @tf.
698 */
cffd1ee9 699u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
35b649fe
TH
700{
701 u64 block = 0;
702
fe16d4f2 703 if (tf->flags & ATA_TFLAG_LBA) {
35b649fe
TH
704 if (tf->flags & ATA_TFLAG_LBA48) {
705 block |= (u64)tf->hob_lbah << 40;
706 block |= (u64)tf->hob_lbam << 32;
44901a96 707 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
708 } else
709 block |= (tf->device & 0xf) << 24;
710
711 block |= tf->lbah << 16;
712 block |= tf->lbam << 8;
713 block |= tf->lbal;
714 } else {
715 u32 cyl, head, sect;
716
717 cyl = tf->lbam | (tf->lbah << 8);
718 head = tf->device & 0xf;
719 sect = tf->lbal;
720
ac8672ea 721 if (!sect) {
a9a79dfe
JP
722 ata_dev_warn(dev,
723 "device reported invalid CHS sector 0\n");
cffd1ee9 724 return U64_MAX;
ac8672ea
TH
725 }
726
727 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
728 }
729
730 return block;
731}
732
bd056d7e
TH
733/**
734 * ata_build_rw_tf - Build ATA taskfile for given read/write request
735 * @tf: Target ATA taskfile
736 * @dev: ATA device @tf belongs to
737 * @block: Block address
738 * @n_block: Number of blocks
739 * @tf_flags: RW/FUA etc...
740 * @tag: tag
741 *
742 * LOCKING:
743 * None.
744 *
745 * Build ATA taskfile @tf for read/write request described by
746 * @block, @n_block, @tf_flags and @tag on @dev.
747 *
748 * RETURNS:
749 *
750 * 0 on success, -ERANGE if the request is too large for @dev,
751 * -EINVAL if the request is invalid.
752 */
753int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
754 u64 block, u32 n_block, unsigned int tf_flags,
755 unsigned int tag)
756{
757 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
758 tf->flags |= tf_flags;
759
6d1245bf 760 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
761 /* yay, NCQ */
762 if (!lba_48_ok(block, n_block))
763 return -ERANGE;
764
765 tf->protocol = ATA_PROT_NCQ;
766 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
767
768 if (tf->flags & ATA_TFLAG_WRITE)
769 tf->command = ATA_CMD_FPDMA_WRITE;
770 else
771 tf->command = ATA_CMD_FPDMA_READ;
772
773 tf->nsect = tag << 3;
774 tf->hob_feature = (n_block >> 8) & 0xff;
775 tf->feature = n_block & 0xff;
776
777 tf->hob_lbah = (block >> 40) & 0xff;
778 tf->hob_lbam = (block >> 32) & 0xff;
779 tf->hob_lbal = (block >> 24) & 0xff;
780 tf->lbah = (block >> 16) & 0xff;
781 tf->lbam = (block >> 8) & 0xff;
782 tf->lbal = block & 0xff;
783
9ca7cfa4 784 tf->device = ATA_LBA;
bd056d7e
TH
785 if (tf->flags & ATA_TFLAG_FUA)
786 tf->device |= 1 << 7;
787 } else if (dev->flags & ATA_DFLAG_LBA) {
788 tf->flags |= ATA_TFLAG_LBA;
789
790 if (lba_28_ok(block, n_block)) {
791 /* use LBA28 */
792 tf->device |= (block >> 24) & 0xf;
793 } else if (lba_48_ok(block, n_block)) {
794 if (!(dev->flags & ATA_DFLAG_LBA48))
795 return -ERANGE;
796
797 /* use LBA48 */
798 tf->flags |= ATA_TFLAG_LBA48;
799
800 tf->hob_nsect = (n_block >> 8) & 0xff;
801
802 tf->hob_lbah = (block >> 40) & 0xff;
803 tf->hob_lbam = (block >> 32) & 0xff;
804 tf->hob_lbal = (block >> 24) & 0xff;
805 } else
806 /* request too large even for LBA48 */
807 return -ERANGE;
808
809 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
810 return -EINVAL;
811
812 tf->nsect = n_block & 0xff;
813
814 tf->lbah = (block >> 16) & 0xff;
815 tf->lbam = (block >> 8) & 0xff;
816 tf->lbal = block & 0xff;
817
818 tf->device |= ATA_LBA;
819 } else {
820 /* CHS */
821 u32 sect, head, cyl, track;
822
823 /* The request -may- be too large for CHS addressing. */
824 if (!lba_28_ok(block, n_block))
825 return -ERANGE;
826
827 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
828 return -EINVAL;
829
830 /* Convert LBA to CHS */
831 track = (u32)block / dev->sectors;
832 cyl = track / dev->heads;
833 head = track % dev->heads;
834 sect = (u32)block % dev->sectors + 1;
835
836 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
837 (u32)block, track, cyl, head, sect);
838
839 /* Check whether the converted CHS can fit.
840 Cylinder: 0-65535
841 Head: 0-15
842 Sector: 1-255*/
843 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
844 return -ERANGE;
845
846 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
847 tf->lbal = sect;
848 tf->lbam = cyl;
849 tf->lbah = cyl >> 8;
850 tf->device |= head;
851 }
852
853 return 0;
854}
855
cb95d562
TH
856/**
857 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
858 * @pio_mask: pio_mask
859 * @mwdma_mask: mwdma_mask
860 * @udma_mask: udma_mask
861 *
862 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
863 * unsigned int xfer_mask.
864 *
865 * LOCKING:
866 * None.
867 *
868 * RETURNS:
869 * Packed xfer_mask.
870 */
7dc951ae
TH
871unsigned long ata_pack_xfermask(unsigned long pio_mask,
872 unsigned long mwdma_mask,
873 unsigned long udma_mask)
cb95d562
TH
874{
875 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
876 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
877 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
878}
879
c0489e4e
TH
880/**
881 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
882 * @xfer_mask: xfer_mask to unpack
883 * @pio_mask: resulting pio_mask
884 * @mwdma_mask: resulting mwdma_mask
885 * @udma_mask: resulting udma_mask
886 *
887 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
888 * Any NULL distination masks will be ignored.
889 */
7dc951ae
TH
890void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
891 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
892{
893 if (pio_mask)
894 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
895 if (mwdma_mask)
896 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
897 if (udma_mask)
898 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
899}
900
cb95d562 901static const struct ata_xfer_ent {
be9a50c8 902 int shift, bits;
cb95d562
TH
903 u8 base;
904} ata_xfer_tbl[] = {
70cd071e
TH
905 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
906 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
907 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
908 { -1, },
909};
910
911/**
912 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
913 * @xfer_mask: xfer_mask of interest
914 *
915 * Return matching XFER_* value for @xfer_mask. Only the highest
916 * bit of @xfer_mask is considered.
917 *
918 * LOCKING:
919 * None.
920 *
921 * RETURNS:
70cd071e 922 * Matching XFER_* value, 0xff if no match found.
cb95d562 923 */
7dc951ae 924u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
925{
926 int highbit = fls(xfer_mask) - 1;
927 const struct ata_xfer_ent *ent;
928
929 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
930 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
931 return ent->base + highbit - ent->shift;
70cd071e 932 return 0xff;
cb95d562
TH
933}
934
935/**
936 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
937 * @xfer_mode: XFER_* of interest
938 *
939 * Return matching xfer_mask for @xfer_mode.
940 *
941 * LOCKING:
942 * None.
943 *
944 * RETURNS:
945 * Matching xfer_mask, 0 if no match found.
946 */
7dc951ae 947unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
948{
949 const struct ata_xfer_ent *ent;
950
951 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
952 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
953 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
954 & ~((1 << ent->shift) - 1);
cb95d562
TH
955 return 0;
956}
957
958/**
959 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
960 * @xfer_mode: XFER_* of interest
961 *
962 * Return matching xfer_shift for @xfer_mode.
963 *
964 * LOCKING:
965 * None.
966 *
967 * RETURNS:
968 * Matching xfer_shift, -1 if no match found.
969 */
7dc951ae 970int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
971{
972 const struct ata_xfer_ent *ent;
973
974 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
975 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
976 return ent->shift;
977 return -1;
978}
979
1da177e4 980/**
1da7b0d0
TH
981 * ata_mode_string - convert xfer_mask to string
982 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
983 *
984 * Determine string which represents the highest speed
1da7b0d0 985 * (highest bit in @modemask).
1da177e4
LT
986 *
987 * LOCKING:
988 * None.
989 *
990 * RETURNS:
991 * Constant C string representing highest speed listed in
1da7b0d0 992 * @mode_mask, or the constant C string "<n/a>".
1da177e4 993 */
7dc951ae 994const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 995{
75f554bc
TH
996 static const char * const xfer_mode_str[] = {
997 "PIO0",
998 "PIO1",
999 "PIO2",
1000 "PIO3",
1001 "PIO4",
b352e57d
AC
1002 "PIO5",
1003 "PIO6",
75f554bc
TH
1004 "MWDMA0",
1005 "MWDMA1",
1006 "MWDMA2",
b352e57d
AC
1007 "MWDMA3",
1008 "MWDMA4",
75f554bc
TH
1009 "UDMA/16",
1010 "UDMA/25",
1011 "UDMA/33",
1012 "UDMA/44",
1013 "UDMA/66",
1014 "UDMA/100",
1015 "UDMA/133",
1016 "UDMA7",
1017 };
1da7b0d0 1018 int highbit;
1da177e4 1019
1da7b0d0
TH
1020 highbit = fls(xfer_mask) - 1;
1021 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1022 return xfer_mode_str[highbit];
1da177e4 1023 return "<n/a>";
1da177e4
LT
1024}
1025
d9027470 1026const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1027{
1028 static const char * const spd_str[] = {
1029 "1.5 Gbps",
1030 "3.0 Gbps",
8522ee25 1031 "6.0 Gbps",
4c360c81
TH
1032 };
1033
1034 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1035 return "<unknown>";
1036 return spd_str[spd - 1];
1037}
1038
1da177e4
LT
1039/**
1040 * ata_dev_classify - determine device type based on ATA-spec signature
1041 * @tf: ATA taskfile register set for device to be identified
1042 *
1043 * Determine from taskfile register contents whether a device is
1044 * ATA or ATAPI, as per "Signature and persistence" section
1045 * of ATA/PI spec (volume 1, sect 5.14).
1046 *
1047 * LOCKING:
1048 * None.
1049 *
1050 * RETURNS:
9162c657
HR
1051 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1052 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1053 */
057ace5e 1054unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1055{
1056 /* Apple's open source Darwin code hints that some devices only
1057 * put a proper signature into the LBA mid/high registers,
1058 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1059 *
1060 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1061 * signatures for ATA and ATAPI devices attached on SerialATA,
1062 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1063 * spec has never mentioned about using different signatures
1064 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1065 * Multiplier specification began to use 0x69/0x96 to identify
1066 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1067 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1068 * 0x69/0x96 shortly and described them as reserved for
1069 * SerialATA.
1070 *
1071 * We follow the current spec and consider that 0x69/0x96
1072 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1073 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1074 * SEMB signature. This is worked around in
1075 * ata_dev_read_id().
1da177e4 1076 */
633273a3 1077 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1078 DPRINTK("found ATA device by sig\n");
1079 return ATA_DEV_ATA;
1080 }
1081
633273a3 1082 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1083 DPRINTK("found ATAPI device by sig\n");
1084 return ATA_DEV_ATAPI;
1085 }
1086
633273a3
TH
1087 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1088 DPRINTK("found PMP device by sig\n");
1089 return ATA_DEV_PMP;
1090 }
1091
1092 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1093 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1094 return ATA_DEV_SEMB;
633273a3
TH
1095 }
1096
9162c657
HR
1097 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1098 DPRINTK("found ZAC device by sig\n");
1099 return ATA_DEV_ZAC;
1100 }
1101
1da177e4
LT
1102 DPRINTK("unknown device\n");
1103 return ATA_DEV_UNKNOWN;
1104}
1105
1da177e4 1106/**
6a62a04d 1107 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1108 * @id: IDENTIFY DEVICE results we will examine
1109 * @s: string into which data is output
1110 * @ofs: offset into identify device page
1111 * @len: length of string to return. must be an even number.
1112 *
1113 * The strings in the IDENTIFY DEVICE page are broken up into
1114 * 16-bit chunks. Run through the string, and output each
1115 * 8-bit chunk linearly, regardless of platform.
1116 *
1117 * LOCKING:
1118 * caller.
1119 */
1120
6a62a04d
TH
1121void ata_id_string(const u16 *id, unsigned char *s,
1122 unsigned int ofs, unsigned int len)
1da177e4
LT
1123{
1124 unsigned int c;
1125
963e4975
AC
1126 BUG_ON(len & 1);
1127
1da177e4
LT
1128 while (len > 0) {
1129 c = id[ofs] >> 8;
1130 *s = c;
1131 s++;
1132
1133 c = id[ofs] & 0xff;
1134 *s = c;
1135 s++;
1136
1137 ofs++;
1138 len -= 2;
1139 }
1140}
1141
0e949ff3 1142/**
6a62a04d 1143 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1144 * @id: IDENTIFY DEVICE results we will examine
1145 * @s: string into which data is output
1146 * @ofs: offset into identify device page
1147 * @len: length of string to return. must be an odd number.
1148 *
6a62a04d 1149 * This function is identical to ata_id_string except that it
0e949ff3
TH
1150 * trims trailing spaces and terminates the resulting string with
1151 * null. @len must be actual maximum length (even number) + 1.
1152 *
1153 * LOCKING:
1154 * caller.
1155 */
6a62a04d
TH
1156void ata_id_c_string(const u16 *id, unsigned char *s,
1157 unsigned int ofs, unsigned int len)
0e949ff3
TH
1158{
1159 unsigned char *p;
1160
6a62a04d 1161 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1162
1163 p = s + strnlen(s, len - 1);
1164 while (p > s && p[-1] == ' ')
1165 p--;
1166 *p = '\0';
1167}
0baab86b 1168
db6f8759
TH
1169static u64 ata_id_n_sectors(const u16 *id)
1170{
1171 if (ata_id_has_lba(id)) {
1172 if (ata_id_has_lba48(id))
968e594a 1173 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1174 else
968e594a 1175 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1176 } else {
1177 if (ata_id_current_chs_valid(id))
968e594a
RH
1178 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1179 id[ATA_ID_CUR_SECTORS];
db6f8759 1180 else
968e594a
RH
1181 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1182 id[ATA_ID_SECTORS];
db6f8759
TH
1183 }
1184}
1185
a5987e0a 1186u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1187{
1188 u64 sectors = 0;
1189
1190 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1191 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1192 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1193 sectors |= (tf->lbah & 0xff) << 16;
1194 sectors |= (tf->lbam & 0xff) << 8;
1195 sectors |= (tf->lbal & 0xff);
1196
a5987e0a 1197 return sectors;
1e999736
AC
1198}
1199
a5987e0a 1200u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1201{
1202 u64 sectors = 0;
1203
1204 sectors |= (tf->device & 0x0f) << 24;
1205 sectors |= (tf->lbah & 0xff) << 16;
1206 sectors |= (tf->lbam & 0xff) << 8;
1207 sectors |= (tf->lbal & 0xff);
1208
a5987e0a 1209 return sectors;
1e999736
AC
1210}
1211
1212/**
c728a914
TH
1213 * ata_read_native_max_address - Read native max address
1214 * @dev: target device
1215 * @max_sectors: out parameter for the result native max address
1e999736 1216 *
c728a914
TH
1217 * Perform an LBA48 or LBA28 native size query upon the device in
1218 * question.
1e999736 1219 *
c728a914
TH
1220 * RETURNS:
1221 * 0 on success, -EACCES if command is aborted by the drive.
1222 * -EIO on other errors.
1e999736 1223 */
c728a914 1224static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1225{
c728a914 1226 unsigned int err_mask;
1e999736 1227 struct ata_taskfile tf;
c728a914 1228 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1229
1230 ata_tf_init(dev, &tf);
1231
c728a914 1232 /* always clear all address registers */
1e999736 1233 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1234
c728a914
TH
1235 if (lba48) {
1236 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1237 tf.flags |= ATA_TFLAG_LBA48;
1238 } else
1239 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1240
1e999736 1241 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1242 tf.device |= ATA_LBA;
1243
2b789108 1244 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1245 if (err_mask) {
a9a79dfe
JP
1246 ata_dev_warn(dev,
1247 "failed to read native max address (err_mask=0x%x)\n",
1248 err_mask);
c728a914
TH
1249 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1250 return -EACCES;
1251 return -EIO;
1252 }
1e999736 1253
c728a914 1254 if (lba48)
a5987e0a 1255 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1256 else
a5987e0a 1257 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1258 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1259 (*max_sectors)--;
c728a914 1260 return 0;
1e999736
AC
1261}
1262
1263/**
c728a914
TH
1264 * ata_set_max_sectors - Set max sectors
1265 * @dev: target device
6b38d1d1 1266 * @new_sectors: new max sectors value to set for the device
1e999736 1267 *
c728a914
TH
1268 * Set max sectors of @dev to @new_sectors.
1269 *
1270 * RETURNS:
1271 * 0 on success, -EACCES if command is aborted or denied (due to
1272 * previous non-volatile SET_MAX) by the drive. -EIO on other
1273 * errors.
1e999736 1274 */
05027adc 1275static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1276{
c728a914 1277 unsigned int err_mask;
1e999736 1278 struct ata_taskfile tf;
c728a914 1279 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1280
1281 new_sectors--;
1282
1283 ata_tf_init(dev, &tf);
1284
1e999736 1285 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1286
1287 if (lba48) {
1288 tf.command = ATA_CMD_SET_MAX_EXT;
1289 tf.flags |= ATA_TFLAG_LBA48;
1290
1291 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1292 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1293 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1294 } else {
c728a914
TH
1295 tf.command = ATA_CMD_SET_MAX;
1296
1e582ba4
TH
1297 tf.device |= (new_sectors >> 24) & 0xf;
1298 }
1299
1e999736 1300 tf.protocol |= ATA_PROT_NODATA;
c728a914 1301 tf.device |= ATA_LBA;
1e999736
AC
1302
1303 tf.lbal = (new_sectors >> 0) & 0xff;
1304 tf.lbam = (new_sectors >> 8) & 0xff;
1305 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1306
2b789108 1307 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1308 if (err_mask) {
a9a79dfe
JP
1309 ata_dev_warn(dev,
1310 "failed to set max address (err_mask=0x%x)\n",
1311 err_mask);
c728a914
TH
1312 if (err_mask == AC_ERR_DEV &&
1313 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1314 return -EACCES;
1315 return -EIO;
1316 }
1317
c728a914 1318 return 0;
1e999736
AC
1319}
1320
1321/**
1322 * ata_hpa_resize - Resize a device with an HPA set
1323 * @dev: Device to resize
1324 *
1325 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1326 * it if required to the full size of the media. The caller must check
1327 * the drive has the HPA feature set enabled.
05027adc
TH
1328 *
1329 * RETURNS:
1330 * 0 on success, -errno on failure.
1e999736 1331 */
05027adc 1332static int ata_hpa_resize(struct ata_device *dev)
1e999736 1333{
05027adc
TH
1334 struct ata_eh_context *ehc = &dev->link->eh_context;
1335 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1336 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1337 u64 sectors = ata_id_n_sectors(dev->id);
1338 u64 native_sectors;
c728a914 1339 int rc;
a617c09f 1340
05027adc 1341 /* do we need to do it? */
9162c657 1342 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
05027adc
TH
1343 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1344 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1345 return 0;
1e999736 1346
05027adc
TH
1347 /* read native max address */
1348 rc = ata_read_native_max_address(dev, &native_sectors);
1349 if (rc) {
dda7aba1
TH
1350 /* If device aborted the command or HPA isn't going to
1351 * be unlocked, skip HPA resizing.
05027adc 1352 */
445d211b 1353 if (rc == -EACCES || !unlock_hpa) {
a9a79dfe
JP
1354 ata_dev_warn(dev,
1355 "HPA support seems broken, skipping HPA handling\n");
05027adc
TH
1356 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1357
1358 /* we can continue if device aborted the command */
1359 if (rc == -EACCES)
1360 rc = 0;
1e999736 1361 }
37301a55 1362
05027adc
TH
1363 return rc;
1364 }
5920dadf 1365 dev->n_native_sectors = native_sectors;
05027adc
TH
1366
1367 /* nothing to do? */
445d211b 1368 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1369 if (!print_info || native_sectors == sectors)
1370 return 0;
1371
1372 if (native_sectors > sectors)
a9a79dfe 1373 ata_dev_info(dev,
05027adc
TH
1374 "HPA detected: current %llu, native %llu\n",
1375 (unsigned long long)sectors,
1376 (unsigned long long)native_sectors);
1377 else if (native_sectors < sectors)
a9a79dfe
JP
1378 ata_dev_warn(dev,
1379 "native sectors (%llu) is smaller than sectors (%llu)\n",
05027adc
TH
1380 (unsigned long long)native_sectors,
1381 (unsigned long long)sectors);
1382 return 0;
1383 }
1384
1385 /* let's unlock HPA */
1386 rc = ata_set_max_sectors(dev, native_sectors);
1387 if (rc == -EACCES) {
1388 /* if device aborted the command, skip HPA resizing */
a9a79dfe
JP
1389 ata_dev_warn(dev,
1390 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1391 (unsigned long long)sectors,
1392 (unsigned long long)native_sectors);
05027adc
TH
1393 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1394 return 0;
1395 } else if (rc)
1396 return rc;
1397
1398 /* re-read IDENTIFY data */
1399 rc = ata_dev_reread_id(dev, 0);
1400 if (rc) {
a9a79dfe
JP
1401 ata_dev_err(dev,
1402 "failed to re-read IDENTIFY data after HPA resizing\n");
05027adc
TH
1403 return rc;
1404 }
1405
1406 if (print_info) {
1407 u64 new_sectors = ata_id_n_sectors(dev->id);
a9a79dfe 1408 ata_dev_info(dev,
05027adc
TH
1409 "HPA unlocked: %llu -> %llu, native %llu\n",
1410 (unsigned long long)sectors,
1411 (unsigned long long)new_sectors,
1412 (unsigned long long)native_sectors);
1413 }
1414
1415 return 0;
1e999736
AC
1416}
1417
1da177e4
LT
1418/**
1419 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1420 * @id: IDENTIFY DEVICE page to dump
1da177e4 1421 *
0bd3300a
TH
1422 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1423 * page.
1da177e4
LT
1424 *
1425 * LOCKING:
1426 * caller.
1427 */
1428
0bd3300a 1429static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1430{
1431 DPRINTK("49==0x%04x "
1432 "53==0x%04x "
1433 "63==0x%04x "
1434 "64==0x%04x "
1435 "75==0x%04x \n",
0bd3300a
TH
1436 id[49],
1437 id[53],
1438 id[63],
1439 id[64],
1440 id[75]);
1da177e4
LT
1441 DPRINTK("80==0x%04x "
1442 "81==0x%04x "
1443 "82==0x%04x "
1444 "83==0x%04x "
1445 "84==0x%04x \n",
0bd3300a
TH
1446 id[80],
1447 id[81],
1448 id[82],
1449 id[83],
1450 id[84]);
1da177e4
LT
1451 DPRINTK("88==0x%04x "
1452 "93==0x%04x\n",
0bd3300a
TH
1453 id[88],
1454 id[93]);
1da177e4
LT
1455}
1456
cb95d562
TH
1457/**
1458 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1459 * @id: IDENTIFY data to compute xfer mask from
1460 *
1461 * Compute the xfermask for this device. This is not as trivial
1462 * as it seems if we must consider early devices correctly.
1463 *
1464 * FIXME: pre IDE drive timing (do we care ?).
1465 *
1466 * LOCKING:
1467 * None.
1468 *
1469 * RETURNS:
1470 * Computed xfermask
1471 */
7dc951ae 1472unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1473{
7dc951ae 1474 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1475
1476 /* Usual case. Word 53 indicates word 64 is valid */
1477 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1478 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1479 pio_mask <<= 3;
1480 pio_mask |= 0x7;
1481 } else {
1482 /* If word 64 isn't valid then Word 51 high byte holds
1483 * the PIO timing number for the maximum. Turn it into
1484 * a mask.
1485 */
7a0f1c8a 1486 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1487 if (mode < 5) /* Valid PIO range */
2dcb407e 1488 pio_mask = (2 << mode) - 1;
46767aeb
AC
1489 else
1490 pio_mask = 1;
cb95d562
TH
1491
1492 /* But wait.. there's more. Design your standards by
1493 * committee and you too can get a free iordy field to
1494 * process. However its the speeds not the modes that
1495 * are supported... Note drivers using the timing API
1496 * will get this right anyway
1497 */
1498 }
1499
1500 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1501
b352e57d
AC
1502 if (ata_id_is_cfa(id)) {
1503 /*
1504 * Process compact flash extended modes
1505 */
62afe5d7
SS
1506 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1507 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1508
1509 if (pio)
1510 pio_mask |= (1 << 5);
1511 if (pio > 1)
1512 pio_mask |= (1 << 6);
1513 if (dma)
1514 mwdma_mask |= (1 << 3);
1515 if (dma > 1)
1516 mwdma_mask |= (1 << 4);
1517 }
1518
fb21f0d0
TH
1519 udma_mask = 0;
1520 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1521 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1522
1523 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1524}
1525
7102d230 1526static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1527{
77853bf2 1528 struct completion *waiting = qc->private_data;
a2a7a662 1529
a2a7a662 1530 complete(waiting);
a2a7a662
TH
1531}
1532
1533/**
2432697b 1534 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1535 * @dev: Device to which the command is sent
1536 * @tf: Taskfile registers for the command and the result
d69cf37d 1537 * @cdb: CDB for packet command
e227867f 1538 * @dma_dir: Data transfer direction of the command
5c1ad8b3 1539 * @sgl: sg list for the data buffer of the command
2432697b 1540 * @n_elem: Number of sg entries
2b789108 1541 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1542 *
1543 * Executes libata internal command with timeout. @tf contains
1544 * command on entry and result on return. Timeout and error
1545 * conditions are reported via return value. No recovery action
1546 * is taken after a command times out. It's caller's duty to
1547 * clean up after timeout.
1548 *
1549 * LOCKING:
1550 * None. Should be called with kernel context, might sleep.
551e8889
TH
1551 *
1552 * RETURNS:
1553 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1554 */
2432697b
TH
1555unsigned ata_exec_internal_sg(struct ata_device *dev,
1556 struct ata_taskfile *tf, const u8 *cdb,
87260216 1557 int dma_dir, struct scatterlist *sgl,
2b789108 1558 unsigned int n_elem, unsigned long timeout)
a2a7a662 1559{
9af5c9c9
TH
1560 struct ata_link *link = dev->link;
1561 struct ata_port *ap = link->ap;
a2a7a662 1562 u8 command = tf->command;
87fbc5a0 1563 int auto_timeout = 0;
a2a7a662 1564 struct ata_queued_cmd *qc;
2ab7db1f 1565 unsigned int tag, preempted_tag;
dedaf2b0 1566 u32 preempted_sactive, preempted_qc_active;
da917d69 1567 int preempted_nr_active_links;
60be6b9a 1568 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1569 unsigned long flags;
77853bf2 1570 unsigned int err_mask;
d95a717f 1571 int rc;
a2a7a662 1572
ba6a1308 1573 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1574
e3180499 1575 /* no internal command while frozen */
b51e9e5d 1576 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1577 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1578 return AC_ERR_SYSTEM;
1579 }
1580
2ab7db1f 1581 /* initialize internal qc */
a2a7a662 1582
2ab7db1f
TH
1583 /* XXX: Tag 0 is used for drivers with legacy EH as some
1584 * drivers choke if any other tag is given. This breaks
1585 * ata_tag_internal() test for those drivers. Don't use new
1586 * EH stuff without converting to it.
1587 */
1588 if (ap->ops->error_handler)
1589 tag = ATA_TAG_INTERNAL;
1590 else
1591 tag = 0;
1592
f69499f4 1593 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1594
1595 qc->tag = tag;
1596 qc->scsicmd = NULL;
1597 qc->ap = ap;
1598 qc->dev = dev;
1599 ata_qc_reinit(qc);
1600
9af5c9c9
TH
1601 preempted_tag = link->active_tag;
1602 preempted_sactive = link->sactive;
dedaf2b0 1603 preempted_qc_active = ap->qc_active;
da917d69 1604 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1605 link->active_tag = ATA_TAG_POISON;
1606 link->sactive = 0;
dedaf2b0 1607 ap->qc_active = 0;
da917d69 1608 ap->nr_active_links = 0;
2ab7db1f
TH
1609
1610 /* prepare & issue qc */
a2a7a662 1611 qc->tf = *tf;
d69cf37d
TH
1612 if (cdb)
1613 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e771451c
VP
1614
1615 /* some SATA bridges need us to indicate data xfer direction */
1616 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1617 dma_dir == DMA_FROM_DEVICE)
1618 qc->tf.feature |= ATAPI_DMADIR;
1619
e61e0672 1620 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1621 qc->dma_dir = dma_dir;
1622 if (dma_dir != DMA_NONE) {
2432697b 1623 unsigned int i, buflen = 0;
87260216 1624 struct scatterlist *sg;
2432697b 1625
87260216
JA
1626 for_each_sg(sgl, sg, n_elem, i)
1627 buflen += sg->length;
2432697b 1628
87260216 1629 ata_sg_init(qc, sgl, n_elem);
49c80429 1630 qc->nbytes = buflen;
a2a7a662
TH
1631 }
1632
77853bf2 1633 qc->private_data = &wait;
a2a7a662
TH
1634 qc->complete_fn = ata_qc_complete_internal;
1635
8e0e694a 1636 ata_qc_issue(qc);
a2a7a662 1637
ba6a1308 1638 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1639
87fbc5a0
TH
1640 if (!timeout) {
1641 if (ata_probe_timeout)
1642 timeout = ata_probe_timeout * 1000;
1643 else {
1644 timeout = ata_internal_cmd_timeout(dev, command);
1645 auto_timeout = 1;
1646 }
1647 }
2b789108 1648
c0c362b6
TH
1649 if (ap->ops->error_handler)
1650 ata_eh_release(ap);
1651
2b789108 1652 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1653
c0c362b6
TH
1654 if (ap->ops->error_handler)
1655 ata_eh_acquire(ap);
1656
c429137a 1657 ata_sff_flush_pio_task(ap);
41ade50c 1658
d95a717f 1659 if (!rc) {
ba6a1308 1660 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1661
1662 /* We're racing with irq here. If we lose, the
1663 * following test prevents us from completing the qc
d95a717f
TH
1664 * twice. If we win, the port is frozen and will be
1665 * cleaned up by ->post_internal_cmd().
a2a7a662 1666 */
77853bf2 1667 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1668 qc->err_mask |= AC_ERR_TIMEOUT;
1669
1670 if (ap->ops->error_handler)
1671 ata_port_freeze(ap);
1672 else
1673 ata_qc_complete(qc);
f15a1daf 1674
0dd4b21f 1675 if (ata_msg_warn(ap))
a9a79dfe
JP
1676 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1677 command);
a2a7a662
TH
1678 }
1679
ba6a1308 1680 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1681 }
1682
d95a717f
TH
1683 /* do post_internal_cmd */
1684 if (ap->ops->post_internal_cmd)
1685 ap->ops->post_internal_cmd(qc);
1686
a51d644a
TH
1687 /* perform minimal error analysis */
1688 if (qc->flags & ATA_QCFLAG_FAILED) {
1689 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1690 qc->err_mask |= AC_ERR_DEV;
1691
1692 if (!qc->err_mask)
1693 qc->err_mask |= AC_ERR_OTHER;
1694
1695 if (qc->err_mask & ~AC_ERR_OTHER)
1696 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1697 }
1698
15869303 1699 /* finish up */
ba6a1308 1700 spin_lock_irqsave(ap->lock, flags);
15869303 1701
e61e0672 1702 *tf = qc->result_tf;
77853bf2
TH
1703 err_mask = qc->err_mask;
1704
1705 ata_qc_free(qc);
9af5c9c9
TH
1706 link->active_tag = preempted_tag;
1707 link->sactive = preempted_sactive;
dedaf2b0 1708 ap->qc_active = preempted_qc_active;
da917d69 1709 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1710
ba6a1308 1711 spin_unlock_irqrestore(ap->lock, flags);
15869303 1712
87fbc5a0
TH
1713 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1714 ata_internal_cmd_timed_out(dev, command);
1715
77853bf2 1716 return err_mask;
a2a7a662
TH
1717}
1718
2432697b 1719/**
33480a0e 1720 * ata_exec_internal - execute libata internal command
2432697b
TH
1721 * @dev: Device to which the command is sent
1722 * @tf: Taskfile registers for the command and the result
1723 * @cdb: CDB for packet command
e227867f 1724 * @dma_dir: Data transfer direction of the command
2432697b
TH
1725 * @buf: Data buffer of the command
1726 * @buflen: Length of data buffer
2b789108 1727 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1728 *
1729 * Wrapper around ata_exec_internal_sg() which takes simple
1730 * buffer instead of sg list.
1731 *
1732 * LOCKING:
1733 * None. Should be called with kernel context, might sleep.
1734 *
1735 * RETURNS:
1736 * Zero on success, AC_ERR_* mask on failure
1737 */
1738unsigned ata_exec_internal(struct ata_device *dev,
1739 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1740 int dma_dir, void *buf, unsigned int buflen,
1741 unsigned long timeout)
2432697b 1742{
33480a0e
TH
1743 struct scatterlist *psg = NULL, sg;
1744 unsigned int n_elem = 0;
2432697b 1745
33480a0e
TH
1746 if (dma_dir != DMA_NONE) {
1747 WARN_ON(!buf);
1748 sg_init_one(&sg, buf, buflen);
1749 psg = &sg;
1750 n_elem++;
1751 }
2432697b 1752
2b789108
TH
1753 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1754 timeout);
2432697b
TH
1755}
1756
1bc4ccff
AC
1757/**
1758 * ata_pio_need_iordy - check if iordy needed
1759 * @adev: ATA device
1760 *
1761 * Check if the current speed of the device requires IORDY. Used
1762 * by various controllers for chip configuration.
1763 */
1bc4ccff
AC
1764unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1765{
0d9e6659
TH
1766 /* Don't set IORDY if we're preparing for reset. IORDY may
1767 * lead to controller lock up on certain controllers if the
1768 * port is not occupied. See bko#11703 for details.
1769 */
1770 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1771 return 0;
1772 /* Controller doesn't support IORDY. Probably a pointless
1773 * check as the caller should know this.
1774 */
9af5c9c9 1775 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1776 return 0;
5c18c4d2
DD
1777 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1778 if (ata_id_is_cfa(adev->id)
1779 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1780 return 0;
432729f0
AC
1781 /* PIO3 and higher it is mandatory */
1782 if (adev->pio_mode > XFER_PIO_2)
1783 return 1;
1784 /* We turn it on when possible */
1785 if (ata_id_has_iordy(adev->id))
1bc4ccff 1786 return 1;
432729f0
AC
1787 return 0;
1788}
2e9edbf8 1789
432729f0
AC
1790/**
1791 * ata_pio_mask_no_iordy - Return the non IORDY mask
1792 * @adev: ATA device
1793 *
1794 * Compute the highest mode possible if we are not using iordy. Return
1795 * -1 if no iordy mode is available.
1796 */
432729f0
AC
1797static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1798{
1bc4ccff 1799 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1800 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1801 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1802 /* Is the speed faster than the drive allows non IORDY ? */
1803 if (pio) {
1804 /* This is cycle times not frequency - watch the logic! */
1805 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1806 return 3 << ATA_SHIFT_PIO;
1807 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1808 }
1809 }
432729f0 1810 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1811}
1812
963e4975
AC
1813/**
1814 * ata_do_dev_read_id - default ID read method
1815 * @dev: device
1816 * @tf: proposed taskfile
1817 * @id: data buffer
1818 *
1819 * Issue the identify taskfile and hand back the buffer containing
1820 * identify data. For some RAID controllers and for pre ATA devices
1821 * this function is wrapped or replaced by the driver
1822 */
1823unsigned int ata_do_dev_read_id(struct ata_device *dev,
1824 struct ata_taskfile *tf, u16 *id)
1825{
1826 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1827 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1828}
1829
1da177e4 1830/**
49016aca 1831 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1832 * @dev: target device
1833 * @p_class: pointer to class of the target device (may be changed)
bff04647 1834 * @flags: ATA_READID_* flags
fe635c7e 1835 * @id: buffer to read IDENTIFY data into
1da177e4 1836 *
49016aca
TH
1837 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1838 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1839 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1840 * for pre-ATA4 drives.
1da177e4 1841 *
50a99018 1842 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1843 * now we abort if we hit that case.
50a99018 1844 *
1da177e4 1845 * LOCKING:
49016aca
TH
1846 * Kernel thread context (may sleep)
1847 *
1848 * RETURNS:
1849 * 0 on success, -errno otherwise.
1da177e4 1850 */
a9beec95 1851int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1852 unsigned int flags, u16 *id)
1da177e4 1853{
9af5c9c9 1854 struct ata_port *ap = dev->link->ap;
49016aca 1855 unsigned int class = *p_class;
a0123703 1856 struct ata_taskfile tf;
49016aca
TH
1857 unsigned int err_mask = 0;
1858 const char *reason;
79b42bab 1859 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1860 int may_fallback = 1, tried_spinup = 0;
49016aca 1861 int rc;
1da177e4 1862
0dd4b21f 1863 if (ata_msg_ctl(ap))
a9a79dfe 1864 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 1865
963e4975 1866retry:
3373efd8 1867 ata_tf_init(dev, &tf);
a0123703 1868
49016aca 1869 switch (class) {
79b42bab
TH
1870 case ATA_DEV_SEMB:
1871 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 1872 case ATA_DEV_ATA:
9162c657 1873 case ATA_DEV_ZAC:
a0123703 1874 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1875 break;
1876 case ATA_DEV_ATAPI:
a0123703 1877 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1878 break;
1879 default:
1880 rc = -ENODEV;
1881 reason = "unsupported class";
1882 goto err_out;
1da177e4
LT
1883 }
1884
a0123703 1885 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1886
1887 /* Some devices choke if TF registers contain garbage. Make
1888 * sure those are properly initialized.
1889 */
1890 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1891
1892 /* Device presence detection is unreliable on some
1893 * controllers. Always poll IDENTIFY if available.
1894 */
1895 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1896
963e4975
AC
1897 if (ap->ops->read_id)
1898 err_mask = ap->ops->read_id(dev, &tf, id);
1899 else
1900 err_mask = ata_do_dev_read_id(dev, &tf, id);
1901
a0123703 1902 if (err_mask) {
800b3996 1903 if (err_mask & AC_ERR_NODEV_HINT) {
a9a79dfe 1904 ata_dev_dbg(dev, "NODEV after polling detection\n");
55a8e2c8
TH
1905 return -ENOENT;
1906 }
1907
79b42bab 1908 if (is_semb) {
a9a79dfe
JP
1909 ata_dev_info(dev,
1910 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
79b42bab
TH
1911 /* SEMB is not supported yet */
1912 *p_class = ATA_DEV_SEMB_UNSUP;
1913 return 0;
1914 }
1915
1ffc151f
TH
1916 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1917 /* Device or controller might have reported
1918 * the wrong device class. Give a shot at the
1919 * other IDENTIFY if the current one is
1920 * aborted by the device.
1921 */
1922 if (may_fallback) {
1923 may_fallback = 0;
1924
1925 if (class == ATA_DEV_ATA)
1926 class = ATA_DEV_ATAPI;
1927 else
1928 class = ATA_DEV_ATA;
1929 goto retry;
1930 }
1931
1932 /* Control reaches here iff the device aborted
1933 * both flavors of IDENTIFYs which happens
1934 * sometimes with phantom devices.
1935 */
a9a79dfe
JP
1936 ata_dev_dbg(dev,
1937 "both IDENTIFYs aborted, assuming NODEV\n");
1ffc151f 1938 return -ENOENT;
54936f8b
TH
1939 }
1940
49016aca
TH
1941 rc = -EIO;
1942 reason = "I/O error";
1da177e4
LT
1943 goto err_out;
1944 }
1945
43c9c591 1946 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
a9a79dfe
JP
1947 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1948 "class=%d may_fallback=%d tried_spinup=%d\n",
1949 class, may_fallback, tried_spinup);
43c9c591
TH
1950 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1951 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1952 }
1953
54936f8b
TH
1954 /* Falling back doesn't make sense if ID data was read
1955 * successfully at least once.
1956 */
1957 may_fallback = 0;
1958
49016aca 1959 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1960
49016aca 1961 /* sanity check */
a4f5749b 1962 rc = -EINVAL;
6070068b 1963 reason = "device reports invalid type";
a4f5749b 1964
9162c657 1965 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
a4f5749b
TH
1966 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1967 goto err_out;
db63a4c8
AW
1968 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1969 ata_id_is_ata(id)) {
1970 ata_dev_dbg(dev,
1971 "host indicates ignore ATA devices, ignored\n");
1972 return -ENOENT;
1973 }
a4f5749b
TH
1974 } else {
1975 if (ata_id_is_ata(id))
1976 goto err_out;
49016aca
TH
1977 }
1978
169439c2
ML
1979 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1980 tried_spinup = 1;
1981 /*
1982 * Drive powered-up in standby mode, and requires a specific
1983 * SET_FEATURES spin-up subcommand before it will accept
1984 * anything other than the original IDENTIFY command.
1985 */
218f3d30 1986 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1987 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1988 rc = -EIO;
1989 reason = "SPINUP failed";
1990 goto err_out;
1991 }
1992 /*
1993 * If the drive initially returned incomplete IDENTIFY info,
1994 * we now must reissue the IDENTIFY command.
1995 */
1996 if (id[2] == 0x37c8)
1997 goto retry;
1998 }
1999
9162c657
HR
2000 if ((flags & ATA_READID_POSTRESET) &&
2001 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
49016aca
TH
2002 /*
2003 * The exact sequence expected by certain pre-ATA4 drives is:
2004 * SRST RESET
50a99018
AC
2005 * IDENTIFY (optional in early ATA)
2006 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2007 * anything else..
2008 * Some drives were very specific about that exact sequence.
50a99018
AC
2009 *
2010 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2011 * should never trigger.
49016aca
TH
2012 */
2013 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2014 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2015 if (err_mask) {
2016 rc = -EIO;
2017 reason = "INIT_DEV_PARAMS failed";
2018 goto err_out;
2019 }
2020
2021 /* current CHS translation info (id[53-58]) might be
2022 * changed. reread the identify device info.
2023 */
bff04647 2024 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2025 goto retry;
2026 }
2027 }
2028
2029 *p_class = class;
fe635c7e 2030
49016aca
TH
2031 return 0;
2032
2033 err_out:
88574551 2034 if (ata_msg_warn(ap))
a9a79dfe
JP
2035 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2036 reason, err_mask);
49016aca
TH
2037 return rc;
2038}
2039
9062712f
TH
2040static int ata_do_link_spd_horkage(struct ata_device *dev)
2041{
2042 struct ata_link *plink = ata_dev_phys_link(dev);
2043 u32 target, target_limit;
2044
2045 if (!sata_scr_valid(plink))
2046 return 0;
2047
2048 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2049 target = 1;
2050 else
2051 return 0;
2052
2053 target_limit = (1 << target) - 1;
2054
2055 /* if already on stricter limit, no need to push further */
2056 if (plink->sata_spd_limit <= target_limit)
2057 return 0;
2058
2059 plink->sata_spd_limit = target_limit;
2060
2061 /* Request another EH round by returning -EAGAIN if link is
2062 * going faster than the target speed. Forward progress is
2063 * guaranteed by setting sata_spd_limit to target_limit above.
2064 */
2065 if (plink->sata_spd > target) {
a9a79dfe
JP
2066 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2067 sata_spd_string(target));
9062712f
TH
2068 return -EAGAIN;
2069 }
2070 return 0;
2071}
2072
3373efd8 2073static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2074{
9af5c9c9 2075 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2076
2077 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2078 return 0;
2079
9af5c9c9 2080 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2081}
2082
5a233551
HR
2083static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2084{
2085 struct ata_port *ap = dev->link->ap;
2086 unsigned int err_mask;
fe5af0cc
HR
2087 int log_index = ATA_LOG_NCQ_SEND_RECV * 2;
2088 u16 log_pages;
5a233551 2089
fe5af0cc
HR
2090 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2091 0, ap->sector_buf, 1);
2092 if (err_mask) {
2093 ata_dev_dbg(dev,
2094 "failed to get Log Directory Emask 0x%x\n",
2095 err_mask);
2096 return;
2097 }
2098 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2099 if (!log_pages) {
2100 ata_dev_warn(dev,
2101 "NCQ Send/Recv Log not supported\n");
2102 return;
2103 }
5a233551
HR
2104 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2105 0, ap->sector_buf, 1);
2106 if (err_mask) {
2107 ata_dev_dbg(dev,
2108 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2109 err_mask);
2110 } else {
2111 u8 *cmds = dev->ncq_send_recv_cmds;
2112
2113 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2114 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2115
2116 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2117 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2118 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2119 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2120 }
2121 }
2122}
2123
284b3b77
HR
2124static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2125{
2126 struct ata_port *ap = dev->link->ap;
2127 unsigned int err_mask;
2128 int log_index = ATA_LOG_NCQ_NON_DATA * 2;
2129 u16 log_pages;
2130
2131 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2132 0, ap->sector_buf, 1);
2133 if (err_mask) {
2134 ata_dev_dbg(dev,
2135 "failed to get Log Directory Emask 0x%x\n",
2136 err_mask);
2137 return;
2138 }
2139 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2140 if (!log_pages) {
2141 ata_dev_warn(dev,
2142 "NCQ Send/Recv Log not supported\n");
2143 return;
2144 }
2145 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2146 0, ap->sector_buf, 1);
2147 if (err_mask) {
2148 ata_dev_dbg(dev,
2149 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2150 err_mask);
2151 } else {
2152 u8 *cmds = dev->ncq_non_data_cmds;
2153
2154 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2155 }
2156}
2157
388539f3 2158static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2159 char *desc, size_t desc_sz)
2160{
9af5c9c9 2161 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2162 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2163 unsigned int err_mask;
2164 char *aa_desc = "";
a6e6ce8e
TH
2165
2166 if (!ata_id_has_ncq(dev->id)) {
2167 desc[0] = '\0';
388539f3 2168 return 0;
a6e6ce8e 2169 }
75683fe7 2170 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2171 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2172 return 0;
6919a0a6 2173 }
a6e6ce8e 2174 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2175 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2176 dev->flags |= ATA_DFLAG_NCQ;
2177 }
2178
388539f3
SL
2179 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2180 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2181 ata_id_has_fpdma_aa(dev->id)) {
2182 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2183 SATA_FPDMA_AA);
2184 if (err_mask) {
a9a79dfe
JP
2185 ata_dev_err(dev,
2186 "failed to enable AA (error_mask=0x%x)\n",
2187 err_mask);
388539f3
SL
2188 if (err_mask != AC_ERR_DEV) {
2189 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2190 return -EIO;
2191 }
2192 } else
2193 aa_desc = ", AA";
2194 }
2195
a6e6ce8e 2196 if (hdepth >= ddepth)
388539f3 2197 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2198 else
388539f3
SL
2199 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2200 ddepth, aa_desc);
ed36911c 2201
284b3b77
HR
2202 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2203 if (ata_id_has_ncq_send_and_recv(dev->id))
2204 ata_dev_config_ncq_send_recv(dev);
2205 if (ata_id_has_ncq_non_data(dev->id))
2206 ata_dev_config_ncq_non_data(dev);
2207 }
ed36911c 2208
388539f3 2209 return 0;
a6e6ce8e
TH
2210}
2211
e87fd28c
HR
2212static void ata_dev_config_sense_reporting(struct ata_device *dev)
2213{
2214 unsigned int err_mask;
2215
2216 if (!ata_id_has_sense_reporting(dev->id))
2217 return;
2218
2219 if (ata_id_sense_reporting_enabled(dev->id))
2220 return;
2221
2222 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2223 if (err_mask) {
2224 ata_dev_dbg(dev,
2225 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2226 err_mask);
2227 }
2228}
2229
49016aca 2230/**
ffeae418 2231 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2232 * @dev: Target device to configure
2233 *
2234 * Configure @dev according to @dev->id. Generic and low-level
2235 * driver specific fixups are also applied.
49016aca
TH
2236 *
2237 * LOCKING:
ffeae418
TH
2238 * Kernel thread context (may sleep)
2239 *
2240 * RETURNS:
2241 * 0 on success, -errno otherwise
49016aca 2242 */
efdaedc4 2243int ata_dev_configure(struct ata_device *dev)
49016aca 2244{
9af5c9c9
TH
2245 struct ata_port *ap = dev->link->ap;
2246 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2247 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2248 const u16 *id = dev->id;
7dc951ae 2249 unsigned long xfer_mask;
65fe1f0f 2250 unsigned int err_mask;
b352e57d 2251 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2252 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2253 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2254 int rc;
49016aca 2255
0dd4b21f 2256 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
a9a79dfe 2257 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
ffeae418 2258 return 0;
49016aca
TH
2259 }
2260
0dd4b21f 2261 if (ata_msg_probe(ap))
a9a79dfe 2262 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 2263
75683fe7
TH
2264 /* set horkage */
2265 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2266 ata_force_horkage(dev);
75683fe7 2267
50af2fa1 2268 if (dev->horkage & ATA_HORKAGE_DISABLE) {
a9a79dfe 2269 ata_dev_info(dev, "unsupported device, disabling\n");
50af2fa1
TH
2270 ata_dev_disable(dev);
2271 return 0;
2272 }
2273
2486fa56
TH
2274 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2275 dev->class == ATA_DEV_ATAPI) {
a9a79dfe
JP
2276 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2277 atapi_enabled ? "not supported with this driver"
2278 : "disabled");
2486fa56
TH
2279 ata_dev_disable(dev);
2280 return 0;
2281 }
2282
9062712f
TH
2283 rc = ata_do_link_spd_horkage(dev);
2284 if (rc)
2285 return rc;
2286
ecd75ad5
TH
2287 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2288 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2289 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2290 dev->horkage |= ATA_HORKAGE_NOLPM;
2291
2292 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2293 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2294 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2295 }
2296
6746544c
TH
2297 /* let ACPI work its magic */
2298 rc = ata_acpi_on_devcfg(dev);
2299 if (rc)
2300 return rc;
08573a86 2301
05027adc
TH
2302 /* massage HPA, do it early as it might change IDENTIFY data */
2303 rc = ata_hpa_resize(dev);
2304 if (rc)
2305 return rc;
2306
c39f5ebe 2307 /* print device capabilities */
0dd4b21f 2308 if (ata_msg_probe(ap))
a9a79dfe
JP
2309 ata_dev_dbg(dev,
2310 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2311 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2312 __func__,
2313 id[49], id[82], id[83], id[84],
2314 id[85], id[86], id[87], id[88]);
c39f5ebe 2315
208a9933 2316 /* initialize to-be-configured parameters */
ea1dd4e1 2317 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2318 dev->max_sectors = 0;
2319 dev->cdb_len = 0;
2320 dev->n_sectors = 0;
2321 dev->cylinders = 0;
2322 dev->heads = 0;
2323 dev->sectors = 0;
e18086d6 2324 dev->multi_count = 0;
208a9933 2325
1da177e4
LT
2326 /*
2327 * common ATA, ATAPI feature tests
2328 */
2329
ff8854b2 2330 /* find max transfer mode; for printk only */
1148c3a7 2331 xfer_mask = ata_id_xfermask(id);
1da177e4 2332
0dd4b21f
BP
2333 if (ata_msg_probe(ap))
2334 ata_dump_id(id);
1da177e4 2335
ef143d57
AL
2336 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2337 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2338 sizeof(fwrevbuf));
2339
2340 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2341 sizeof(modelbuf));
2342
1da177e4 2343 /* ATA-specific feature tests */
9162c657 2344 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
b352e57d 2345 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2346 /* CPRM may make this media unusable */
2347 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
a9a79dfe
JP
2348 ata_dev_warn(dev,
2349 "supports DRM functions and may not be fully accessible\n");
b352e57d 2350 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2351 } else {
2dcb407e 2352 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2353 /* Warn the user if the device has TPM extensions */
2354 if (ata_id_has_tpm(id))
a9a79dfe
JP
2355 ata_dev_warn(dev,
2356 "supports DRM functions and may not be fully accessible\n");
ae8d4ee7 2357 }
b352e57d 2358
1148c3a7 2359 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2360
e18086d6
ML
2361 /* get current R/W Multiple count setting */
2362 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2363 unsigned int max = dev->id[47] & 0xff;
2364 unsigned int cnt = dev->id[59] & 0xff;
2365 /* only recognize/allow powers of two here */
2366 if (is_power_of_2(max) && is_power_of_2(cnt))
2367 if (cnt <= max)
2368 dev->multi_count = cnt;
2369 }
3f64f565 2370
1148c3a7 2371 if (ata_id_has_lba(id)) {
4c2d721a 2372 const char *lba_desc;
388539f3 2373 char ncq_desc[24];
8bf62ece 2374
4c2d721a
TH
2375 lba_desc = "LBA";
2376 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2377 if (ata_id_has_lba48(id)) {
8bf62ece 2378 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2379 lba_desc = "LBA48";
6fc49adb
TH
2380
2381 if (dev->n_sectors >= (1UL << 28) &&
2382 ata_id_has_flush_ext(id))
2383 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2384 }
8bf62ece 2385
a6e6ce8e 2386 /* config NCQ */
388539f3
SL
2387 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2388 if (rc)
2389 return rc;
a6e6ce8e 2390
8bf62ece 2391 /* print device info to dmesg */
3f64f565 2392 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2393 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2394 revbuf, modelbuf, fwrevbuf,
2395 ata_mode_string(xfer_mask));
2396 ata_dev_info(dev,
2397 "%llu sectors, multi %u: %s %s\n",
f15a1daf 2398 (unsigned long long)dev->n_sectors,
3f64f565
EM
2399 dev->multi_count, lba_desc, ncq_desc);
2400 }
ffeae418 2401 } else {
8bf62ece
AL
2402 /* CHS */
2403
2404 /* Default translation */
1148c3a7
TH
2405 dev->cylinders = id[1];
2406 dev->heads = id[3];
2407 dev->sectors = id[6];
8bf62ece 2408
1148c3a7 2409 if (ata_id_current_chs_valid(id)) {
8bf62ece 2410 /* Current CHS translation is valid. */
1148c3a7
TH
2411 dev->cylinders = id[54];
2412 dev->heads = id[55];
2413 dev->sectors = id[56];
8bf62ece
AL
2414 }
2415
2416 /* print device info to dmesg */
3f64f565 2417 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2418 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2419 revbuf, modelbuf, fwrevbuf,
2420 ata_mode_string(xfer_mask));
2421 ata_dev_info(dev,
2422 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2423 (unsigned long long)dev->n_sectors,
2424 dev->multi_count, dev->cylinders,
2425 dev->heads, dev->sectors);
3f64f565 2426 }
07f6f7d0
AL
2427 }
2428
803739d2
SH
2429 /* Check and mark DevSlp capability. Get DevSlp timing variables
2430 * from SATA Settings page of Identify Device Data Log.
65fe1f0f 2431 */
803739d2 2432 if (ata_id_has_devslp(dev->id)) {
8e725c7f 2433 u8 *sata_setting = ap->sector_buf;
803739d2
SH
2434 int i, j;
2435
2436 dev->flags |= ATA_DFLAG_DEVSLP;
65fe1f0f
SH
2437 err_mask = ata_read_log_page(dev,
2438 ATA_LOG_SATA_ID_DEV_DATA,
2439 ATA_LOG_SATA_SETTINGS,
803739d2 2440 sata_setting,
65fe1f0f
SH
2441 1);
2442 if (err_mask)
2443 ata_dev_dbg(dev,
2444 "failed to get Identify Device Data, Emask 0x%x\n",
2445 err_mask);
803739d2
SH
2446 else
2447 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2448 j = ATA_LOG_DEVSLP_OFFSET + i;
2449 dev->devslp_timing[i] = sata_setting[j];
2450 }
65fe1f0f 2451 }
e87fd28c 2452 ata_dev_config_sense_reporting(dev);
6e7846e9 2453 dev->cdb_len = 16;
1da177e4
LT
2454 }
2455
2456 /* ATAPI-specific feature tests */
2c13b7ce 2457 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2458 const char *cdb_intr_string = "";
2459 const char *atapi_an_string = "";
91163006 2460 const char *dma_dir_string = "";
7d77b247 2461 u32 sntf;
08a556db 2462
1148c3a7 2463 rc = atapi_cdb_len(id);
1da177e4 2464 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2465 if (ata_msg_warn(ap))
a9a79dfe 2466 ata_dev_warn(dev, "unsupported CDB len\n");
ffeae418 2467 rc = -EINVAL;
1da177e4
LT
2468 goto err_out_nosup;
2469 }
6e7846e9 2470 dev->cdb_len = (unsigned int) rc;
1da177e4 2471
7d77b247
TH
2472 /* Enable ATAPI AN if both the host and device have
2473 * the support. If PMP is attached, SNTF is required
2474 * to enable ATAPI AN to discern between PHY status
2475 * changed notifications and ATAPI ANs.
9f45cbd3 2476 */
e7ecd435
TH
2477 if (atapi_an &&
2478 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2479 (!sata_pmp_attached(ap) ||
7d77b247 2480 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
9f45cbd3 2481 /* issue SET feature command to turn this on */
218f3d30
JG
2482 err_mask = ata_dev_set_feature(dev,
2483 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2484 if (err_mask)
a9a79dfe
JP
2485 ata_dev_err(dev,
2486 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2487 err_mask);
854c73a2 2488 else {
9f45cbd3 2489 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2490 atapi_an_string = ", ATAPI AN";
2491 }
9f45cbd3
KCA
2492 }
2493
08a556db 2494 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2495 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2496 cdb_intr_string = ", CDB intr";
2497 }
312f7da2 2498
966fbe19 2499 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
91163006
TH
2500 dev->flags |= ATA_DFLAG_DMADIR;
2501 dma_dir_string = ", DMADIR";
2502 }
2503
afe75951 2504 if (ata_id_has_da(dev->id)) {
b1354cbb 2505 dev->flags |= ATA_DFLAG_DA;
afe75951
AL
2506 zpodd_init(dev);
2507 }
b1354cbb 2508
1da177e4 2509 /* print device info to dmesg */
5afc8142 2510 if (ata_msg_drv(ap) && print_info)
a9a79dfe
JP
2511 ata_dev_info(dev,
2512 "ATAPI: %s, %s, max %s%s%s%s\n",
2513 modelbuf, fwrevbuf,
2514 ata_mode_string(xfer_mask),
2515 cdb_intr_string, atapi_an_string,
2516 dma_dir_string);
1da177e4
LT
2517 }
2518
914ed354
TH
2519 /* determine max_sectors */
2520 dev->max_sectors = ATA_MAX_SECTORS;
2521 if (dev->flags & ATA_DFLAG_LBA48)
2522 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2523
c5038fc0
AC
2524 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2525 200 sectors */
3373efd8 2526 if (ata_dev_knobble(dev)) {
5afc8142 2527 if (ata_msg_drv(ap) && print_info)
a9a79dfe 2528 ata_dev_info(dev, "applying bridge limits\n");
5a529139 2529 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2530 dev->max_sectors = ATA_MAX_SECTORS;
2531 }
2532
f8d8e579 2533 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2534 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2535 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2536 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2537 }
f8d8e579 2538
75683fe7 2539 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2540 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2541 dev->max_sectors);
18d6e9d5 2542
af34d637
DM
2543 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2544 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2545 dev->max_sectors);
2546
a32450e1
SH
2547 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2548 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2549
4b2f3ede 2550 if (ap->ops->dev_config)
cd0d3bbc 2551 ap->ops->dev_config(dev);
4b2f3ede 2552
c5038fc0
AC
2553 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2554 /* Let the user know. We don't want to disallow opens for
2555 rescue purposes, or in case the vendor is just a blithering
2556 idiot. Do this after the dev_config call as some controllers
2557 with buggy firmware may want to avoid reporting false device
2558 bugs */
2559
2560 if (print_info) {
a9a79dfe 2561 ata_dev_warn(dev,
c5038fc0 2562"Drive reports diagnostics failure. This may indicate a drive\n");
a9a79dfe 2563 ata_dev_warn(dev,
c5038fc0
AC
2564"fault or invalid emulation. Contact drive vendor for information.\n");
2565 }
2566 }
2567
ac70a964 2568 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
a9a79dfe
JP
2569 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2570 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
ac70a964
TH
2571 }
2572
ffeae418 2573 return 0;
1da177e4
LT
2574
2575err_out_nosup:
0dd4b21f 2576 if (ata_msg_probe(ap))
a9a79dfe 2577 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
ffeae418 2578 return rc;
1da177e4
LT
2579}
2580
be0d18df 2581/**
2e41e8e6 2582 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2583 * @ap: port
2584 *
2e41e8e6 2585 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2586 * detection.
2587 */
2588
2589int ata_cable_40wire(struct ata_port *ap)
2590{
2591 return ATA_CBL_PATA40;
2592}
2593
2594/**
2e41e8e6 2595 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2596 * @ap: port
2597 *
2e41e8e6 2598 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2599 * detection.
2600 */
2601
2602int ata_cable_80wire(struct ata_port *ap)
2603{
2604 return ATA_CBL_PATA80;
2605}
2606
2607/**
2608 * ata_cable_unknown - return unknown PATA cable.
2609 * @ap: port
2610 *
2611 * Helper method for drivers which have no PATA cable detection.
2612 */
2613
2614int ata_cable_unknown(struct ata_port *ap)
2615{
2616 return ATA_CBL_PATA_UNK;
2617}
2618
c88f90c3
TH
2619/**
2620 * ata_cable_ignore - return ignored PATA cable.
2621 * @ap: port
2622 *
2623 * Helper method for drivers which don't use cable type to limit
2624 * transfer mode.
2625 */
2626int ata_cable_ignore(struct ata_port *ap)
2627{
2628 return ATA_CBL_PATA_IGN;
2629}
2630
be0d18df
AC
2631/**
2632 * ata_cable_sata - return SATA cable type
2633 * @ap: port
2634 *
2635 * Helper method for drivers which have SATA cables
2636 */
2637
2638int ata_cable_sata(struct ata_port *ap)
2639{
2640 return ATA_CBL_SATA;
2641}
2642
1da177e4
LT
2643/**
2644 * ata_bus_probe - Reset and probe ATA bus
2645 * @ap: Bus to probe
2646 *
0cba632b
JG
2647 * Master ATA bus probing function. Initiates a hardware-dependent
2648 * bus reset, then attempts to identify any devices found on
2649 * the bus.
2650 *
1da177e4 2651 * LOCKING:
0cba632b 2652 * PCI/etc. bus probe sem.
1da177e4
LT
2653 *
2654 * RETURNS:
96072e69 2655 * Zero on success, negative errno otherwise.
1da177e4
LT
2656 */
2657
80289167 2658int ata_bus_probe(struct ata_port *ap)
1da177e4 2659{
28ca5c57 2660 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2661 int tries[ATA_MAX_DEVICES];
f58229f8 2662 int rc;
e82cbdb9 2663 struct ata_device *dev;
1da177e4 2664
1eca4365 2665 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2666 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2667
2668 retry:
1eca4365 2669 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2670 /* If we issue an SRST then an ATA drive (not ATAPI)
2671 * may change configuration and be in PIO0 timing. If
2672 * we do a hard reset (or are coming from power on)
2673 * this is true for ATA or ATAPI. Until we've set a
2674 * suitable controller mode we should not touch the
2675 * bus as we may be talking too fast.
2676 */
2677 dev->pio_mode = XFER_PIO_0;
5416912a 2678 dev->dma_mode = 0xff;
cdeab114
TH
2679
2680 /* If the controller has a pio mode setup function
2681 * then use it to set the chipset to rights. Don't
2682 * touch the DMA setup as that will be dealt with when
2683 * configuring devices.
2684 */
2685 if (ap->ops->set_piomode)
2686 ap->ops->set_piomode(ap, dev);
2687 }
2688
2044470c 2689 /* reset and determine device classes */
52783c5d 2690 ap->ops->phy_reset(ap);
2061a47a 2691
1eca4365 2692 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2693 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2694 classes[dev->devno] = dev->class;
2695 else
2696 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2697
52783c5d 2698 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2699 }
1da177e4 2700
f31f0cc2
JG
2701 /* read IDENTIFY page and configure devices. We have to do the identify
2702 specific sequence bass-ackwards so that PDIAG- is released by
2703 the slave device */
2704
1eca4365 2705 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2706 if (tries[dev->devno])
2707 dev->class = classes[dev->devno];
ffeae418 2708
14d2bac1 2709 if (!ata_dev_enabled(dev))
ffeae418 2710 continue;
ffeae418 2711
bff04647
TH
2712 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2713 dev->id);
14d2bac1
TH
2714 if (rc)
2715 goto fail;
f31f0cc2
JG
2716 }
2717
be0d18df
AC
2718 /* Now ask for the cable type as PDIAG- should have been released */
2719 if (ap->ops->cable_detect)
2720 ap->cbl = ap->ops->cable_detect(ap);
2721
1eca4365
TH
2722 /* We may have SATA bridge glue hiding here irrespective of
2723 * the reported cable types and sensed types. When SATA
2724 * drives indicate we have a bridge, we don't know which end
2725 * of the link the bridge is which is a problem.
2726 */
2727 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2728 if (ata_id_is_sata(dev->id))
2729 ap->cbl = ATA_CBL_SATA;
614fe29b 2730
f31f0cc2
JG
2731 /* After the identify sequence we can now set up the devices. We do
2732 this in the normal order so that the user doesn't get confused */
2733
1eca4365 2734 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2735 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2736 rc = ata_dev_configure(dev);
9af5c9c9 2737 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2738 if (rc)
2739 goto fail;
1da177e4
LT
2740 }
2741
e82cbdb9 2742 /* configure transfer mode */
0260731f 2743 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2744 if (rc)
51713d35 2745 goto fail;
1da177e4 2746
1eca4365
TH
2747 ata_for_each_dev(dev, &ap->link, ENABLED)
2748 return 0;
1da177e4 2749
96072e69 2750 return -ENODEV;
14d2bac1
TH
2751
2752 fail:
4ae72a1e
TH
2753 tries[dev->devno]--;
2754
14d2bac1
TH
2755 switch (rc) {
2756 case -EINVAL:
4ae72a1e 2757 /* eeek, something went very wrong, give up */
14d2bac1
TH
2758 tries[dev->devno] = 0;
2759 break;
4ae72a1e
TH
2760
2761 case -ENODEV:
2762 /* give it just one more chance */
2763 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2764 case -EIO:
4ae72a1e
TH
2765 if (tries[dev->devno] == 1) {
2766 /* This is the last chance, better to slow
2767 * down than lose it.
2768 */
a07d499b 2769 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2770 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2771 }
14d2bac1
TH
2772 }
2773
4ae72a1e 2774 if (!tries[dev->devno])
3373efd8 2775 ata_dev_disable(dev);
ec573755 2776
14d2bac1 2777 goto retry;
1da177e4
LT
2778}
2779
3be680b7
TH
2780/**
2781 * sata_print_link_status - Print SATA link status
936fd732 2782 * @link: SATA link to printk link status about
3be680b7
TH
2783 *
2784 * This function prints link speed and status of a SATA link.
2785 *
2786 * LOCKING:
2787 * None.
2788 */
6bdb4fc9 2789static void sata_print_link_status(struct ata_link *link)
3be680b7 2790{
6d5f9732 2791 u32 sstatus, scontrol, tmp;
3be680b7 2792
936fd732 2793 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2794 return;
936fd732 2795 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2796
b1c72916 2797 if (ata_phys_link_online(link)) {
3be680b7 2798 tmp = (sstatus >> 4) & 0xf;
a9a79dfe
JP
2799 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2800 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2801 } else {
a9a79dfe
JP
2802 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2803 sstatus, scontrol);
3be680b7
TH
2804 }
2805}
2806
ebdfca6e
AC
2807/**
2808 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2809 * @adev: device
2810 *
2811 * Obtain the other device on the same cable, or if none is
2812 * present NULL is returned
2813 */
2e9edbf8 2814
3373efd8 2815struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2816{
9af5c9c9
TH
2817 struct ata_link *link = adev->link;
2818 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2819 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2820 return NULL;
2821 return pair;
2822}
2823
1c3fae4d 2824/**
3c567b7d 2825 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2826 * @link: Link to adjust SATA spd limit for
a07d499b 2827 * @spd_limit: Additional limit
1c3fae4d 2828 *
936fd732 2829 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2830 * function only adjusts the limit. The change must be applied
3c567b7d 2831 * using sata_set_spd().
1c3fae4d 2832 *
a07d499b
TH
2833 * If @spd_limit is non-zero, the speed is limited to equal to or
2834 * lower than @spd_limit if such speed is supported. If
2835 * @spd_limit is slower than any supported speed, only the lowest
2836 * supported speed is allowed.
2837 *
1c3fae4d
TH
2838 * LOCKING:
2839 * Inherited from caller.
2840 *
2841 * RETURNS:
2842 * 0 on success, negative errno on failure
2843 */
a07d499b 2844int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2845{
81952c54 2846 u32 sstatus, spd, mask;
a07d499b 2847 int rc, bit;
1c3fae4d 2848
936fd732 2849 if (!sata_scr_valid(link))
008a7896
TH
2850 return -EOPNOTSUPP;
2851
2852 /* If SCR can be read, use it to determine the current SPD.
936fd732 2853 * If not, use cached value in link->sata_spd.
008a7896 2854 */
936fd732 2855 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2856 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2857 spd = (sstatus >> 4) & 0xf;
2858 else
936fd732 2859 spd = link->sata_spd;
1c3fae4d 2860
936fd732 2861 mask = link->sata_spd_limit;
1c3fae4d
TH
2862 if (mask <= 1)
2863 return -EINVAL;
008a7896
TH
2864
2865 /* unconditionally mask off the highest bit */
a07d499b
TH
2866 bit = fls(mask) - 1;
2867 mask &= ~(1 << bit);
1c3fae4d 2868
008a7896
TH
2869 /* Mask off all speeds higher than or equal to the current
2870 * one. Force 1.5Gbps if current SPD is not available.
2871 */
2872 if (spd > 1)
2873 mask &= (1 << (spd - 1)) - 1;
2874 else
2875 mask &= 1;
2876
2877 /* were we already at the bottom? */
1c3fae4d
TH
2878 if (!mask)
2879 return -EINVAL;
2880
a07d499b
TH
2881 if (spd_limit) {
2882 if (mask & ((1 << spd_limit) - 1))
2883 mask &= (1 << spd_limit) - 1;
2884 else {
2885 bit = ffs(mask) - 1;
2886 mask = 1 << bit;
2887 }
2888 }
2889
936fd732 2890 link->sata_spd_limit = mask;
1c3fae4d 2891
a9a79dfe
JP
2892 ata_link_warn(link, "limiting SATA link speed to %s\n",
2893 sata_spd_string(fls(mask)));
1c3fae4d
TH
2894
2895 return 0;
2896}
2897
936fd732 2898static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2899{
5270222f
TH
2900 struct ata_link *host_link = &link->ap->link;
2901 u32 limit, target, spd;
1c3fae4d 2902
5270222f
TH
2903 limit = link->sata_spd_limit;
2904
2905 /* Don't configure downstream link faster than upstream link.
2906 * It doesn't speed up anything and some PMPs choke on such
2907 * configuration.
2908 */
2909 if (!ata_is_host_link(link) && host_link->sata_spd)
2910 limit &= (1 << host_link->sata_spd) - 1;
2911
2912 if (limit == UINT_MAX)
2913 target = 0;
1c3fae4d 2914 else
5270222f 2915 target = fls(limit);
1c3fae4d
TH
2916
2917 spd = (*scontrol >> 4) & 0xf;
5270222f 2918 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2919
5270222f 2920 return spd != target;
1c3fae4d
TH
2921}
2922
2923/**
3c567b7d 2924 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2925 * @link: Link in question
1c3fae4d
TH
2926 *
2927 * Test whether the spd limit in SControl matches
936fd732 2928 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2929 * whether hardreset is necessary to apply SATA spd
2930 * configuration.
2931 *
2932 * LOCKING:
2933 * Inherited from caller.
2934 *
2935 * RETURNS:
2936 * 1 if SATA spd configuration is needed, 0 otherwise.
2937 */
1dc55e87 2938static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2939{
2940 u32 scontrol;
2941
936fd732 2942 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2943 return 1;
1c3fae4d 2944
936fd732 2945 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2946}
2947
2948/**
3c567b7d 2949 * sata_set_spd - set SATA spd according to spd limit
936fd732 2950 * @link: Link to set SATA spd for
1c3fae4d 2951 *
936fd732 2952 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2953 *
2954 * LOCKING:
2955 * Inherited from caller.
2956 *
2957 * RETURNS:
2958 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2959 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2960 */
936fd732 2961int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2962{
2963 u32 scontrol;
81952c54 2964 int rc;
1c3fae4d 2965
936fd732 2966 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2967 return rc;
1c3fae4d 2968
936fd732 2969 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2970 return 0;
2971
936fd732 2972 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2973 return rc;
2974
1c3fae4d
TH
2975 return 1;
2976}
2977
452503f9
AC
2978/*
2979 * This mode timing computation functionality is ported over from
2980 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2981 */
2982/*
b352e57d 2983 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2984 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2985 * for UDMA6, which is currently supported only by Maxtor drives.
2986 *
2987 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2988 */
2989
2990static const struct ata_timing ata_timing[] = {
3ada9c12
DD
2991/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2992 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2993 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2994 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2995 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2996 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2997 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2998 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2999
3000 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3001 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3002 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3003
3004 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3005 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3006 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3007 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3008 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3009
3010/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3011 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3012 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3013 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3014 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3015 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3016 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3017 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3018
3019 { 0xFF }
3020};
3021
2dcb407e
JG
3022#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3023#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3024
3025static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3026{
3ada9c12
DD
3027 q->setup = EZ(t->setup * 1000, T);
3028 q->act8b = EZ(t->act8b * 1000, T);
3029 q->rec8b = EZ(t->rec8b * 1000, T);
3030 q->cyc8b = EZ(t->cyc8b * 1000, T);
3031 q->active = EZ(t->active * 1000, T);
3032 q->recover = EZ(t->recover * 1000, T);
3033 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3034 q->cycle = EZ(t->cycle * 1000, T);
3035 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3036}
3037
3038void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3039 struct ata_timing *m, unsigned int what)
3040{
3041 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3042 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3043 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3044 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3045 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3046 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3047 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3048 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3049 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3050}
3051
6357357c 3052const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3053{
70cd071e
TH
3054 const struct ata_timing *t = ata_timing;
3055
3056 while (xfer_mode > t->mode)
3057 t++;
452503f9 3058
70cd071e
TH
3059 if (xfer_mode == t->mode)
3060 return t;
cd705d5a
BP
3061
3062 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3063 __func__, xfer_mode);
3064
70cd071e 3065 return NULL;
452503f9
AC
3066}
3067
3068int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3069 struct ata_timing *t, int T, int UT)
3070{
9e8808a9 3071 const u16 *id = adev->id;
452503f9
AC
3072 const struct ata_timing *s;
3073 struct ata_timing p;
3074
3075 /*
2e9edbf8 3076 * Find the mode.
75b1f2f8 3077 */
452503f9
AC
3078
3079 if (!(s = ata_timing_find_mode(speed)))
3080 return -EINVAL;
3081
75b1f2f8
AL
3082 memcpy(t, s, sizeof(*s));
3083
452503f9
AC
3084 /*
3085 * If the drive is an EIDE drive, it can tell us it needs extended
3086 * PIO/MW_DMA cycle timing.
3087 */
3088
9e8808a9 3089 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3090 memset(&p, 0, sizeof(p));
9e8808a9 3091
bff00256 3092 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
9e8808a9
BZ
3093 if (speed <= XFER_PIO_2)
3094 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3095 else if ((speed <= XFER_PIO_4) ||
3096 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3097 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3098 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3099 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3100
452503f9
AC
3101 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3102 }
3103
3104 /*
3105 * Convert the timing to bus clock counts.
3106 */
3107
75b1f2f8 3108 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3109
3110 /*
c893a3ae
RD
3111 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3112 * S.M.A.R.T * and some other commands. We have to ensure that the
3113 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3114 */
3115
fd3367af 3116 if (speed > XFER_PIO_6) {
452503f9
AC
3117 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3118 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3119 }
3120
3121 /*
c893a3ae 3122 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3123 */
3124
3125 if (t->act8b + t->rec8b < t->cyc8b) {
3126 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3127 t->rec8b = t->cyc8b - t->act8b;
3128 }
3129
3130 if (t->active + t->recover < t->cycle) {
3131 t->active += (t->cycle - (t->active + t->recover)) / 2;
3132 t->recover = t->cycle - t->active;
3133 }
a617c09f 3134
4f701d1e
AC
3135 /* In a few cases quantisation may produce enough errors to
3136 leave t->cycle too low for the sum of active and recovery
3137 if so we must correct this */
3138 if (t->active + t->recover > t->cycle)
3139 t->cycle = t->active + t->recover;
452503f9
AC
3140
3141 return 0;
3142}
3143
a0f79b92
TH
3144/**
3145 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3146 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3147 * @cycle: cycle duration in ns
3148 *
3149 * Return matching xfer mode for @cycle. The returned mode is of
3150 * the transfer type specified by @xfer_shift. If @cycle is too
3151 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3152 * than the fastest known mode, the fasted mode is returned.
3153 *
3154 * LOCKING:
3155 * None.
3156 *
3157 * RETURNS:
3158 * Matching xfer_mode, 0xff if no match found.
3159 */
3160u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3161{
3162 u8 base_mode = 0xff, last_mode = 0xff;
3163 const struct ata_xfer_ent *ent;
3164 const struct ata_timing *t;
3165
3166 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3167 if (ent->shift == xfer_shift)
3168 base_mode = ent->base;
3169
3170 for (t = ata_timing_find_mode(base_mode);
3171 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3172 unsigned short this_cycle;
3173
3174 switch (xfer_shift) {
3175 case ATA_SHIFT_PIO:
3176 case ATA_SHIFT_MWDMA:
3177 this_cycle = t->cycle;
3178 break;
3179 case ATA_SHIFT_UDMA:
3180 this_cycle = t->udma;
3181 break;
3182 default:
3183 return 0xff;
3184 }
3185
3186 if (cycle > this_cycle)
3187 break;
3188
3189 last_mode = t->mode;
3190 }
3191
3192 return last_mode;
3193}
3194
cf176e1a
TH
3195/**
3196 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3197 * @dev: Device to adjust xfer masks
458337db 3198 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3199 *
3200 * Adjust xfer masks of @dev downward. Note that this function
3201 * does not apply the change. Invoking ata_set_mode() afterwards
3202 * will apply the limit.
3203 *
3204 * LOCKING:
3205 * Inherited from caller.
3206 *
3207 * RETURNS:
3208 * 0 on success, negative errno on failure
3209 */
458337db 3210int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3211{
458337db 3212 char buf[32];
7dc951ae
TH
3213 unsigned long orig_mask, xfer_mask;
3214 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3215 int quiet, highbit;
cf176e1a 3216
458337db
TH
3217 quiet = !!(sel & ATA_DNXFER_QUIET);
3218 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3219
458337db
TH
3220 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3221 dev->mwdma_mask,
3222 dev->udma_mask);
3223 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3224
458337db
TH
3225 switch (sel) {
3226 case ATA_DNXFER_PIO:
3227 highbit = fls(pio_mask) - 1;
3228 pio_mask &= ~(1 << highbit);
3229 break;
3230
3231 case ATA_DNXFER_DMA:
3232 if (udma_mask) {
3233 highbit = fls(udma_mask) - 1;
3234 udma_mask &= ~(1 << highbit);
3235 if (!udma_mask)
3236 return -ENOENT;
3237 } else if (mwdma_mask) {
3238 highbit = fls(mwdma_mask) - 1;
3239 mwdma_mask &= ~(1 << highbit);
3240 if (!mwdma_mask)
3241 return -ENOENT;
3242 }
3243 break;
3244
3245 case ATA_DNXFER_40C:
3246 udma_mask &= ATA_UDMA_MASK_40C;
3247 break;
3248
3249 case ATA_DNXFER_FORCE_PIO0:
3250 pio_mask &= 1;
3251 case ATA_DNXFER_FORCE_PIO:
3252 mwdma_mask = 0;
3253 udma_mask = 0;
3254 break;
3255
458337db
TH
3256 default:
3257 BUG();
3258 }
3259
3260 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3261
3262 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3263 return -ENOENT;
3264
3265 if (!quiet) {
3266 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3267 snprintf(buf, sizeof(buf), "%s:%s",
3268 ata_mode_string(xfer_mask),
3269 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3270 else
3271 snprintf(buf, sizeof(buf), "%s",
3272 ata_mode_string(xfer_mask));
3273
a9a79dfe 3274 ata_dev_warn(dev, "limiting speed to %s\n", buf);
458337db 3275 }
cf176e1a
TH
3276
3277 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3278 &dev->udma_mask);
3279
cf176e1a 3280 return 0;
cf176e1a
TH
3281}
3282
3373efd8 3283static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3284{
d0cb43b3 3285 struct ata_port *ap = dev->link->ap;
9af5c9c9 3286 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3287 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3288 const char *dev_err_whine = "";
3289 int ign_dev_err = 0;
d0cb43b3 3290 unsigned int err_mask = 0;
83206a29 3291 int rc;
1da177e4 3292
e8384607 3293 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3294 if (dev->xfer_shift == ATA_SHIFT_PIO)
3295 dev->flags |= ATA_DFLAG_PIO;
3296
d0cb43b3
TH
3297 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3298 dev_err_whine = " (SET_XFERMODE skipped)";
3299 else {
3300 if (nosetxfer)
a9a79dfe
JP
3301 ata_dev_warn(dev,
3302 "NOSETXFER but PATA detected - can't "
3303 "skip SETXFER, might malfunction\n");
d0cb43b3
TH
3304 err_mask = ata_dev_set_xfermode(dev);
3305 }
2dcb407e 3306
4055dee7
TH
3307 if (err_mask & ~AC_ERR_DEV)
3308 goto fail;
3309
3310 /* revalidate */
3311 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3312 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3313 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3314 if (rc)
3315 return rc;
3316
b93fda12
AC
3317 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3318 /* Old CFA may refuse this command, which is just fine */
3319 if (ata_id_is_cfa(dev->id))
3320 ign_dev_err = 1;
3321 /* Catch several broken garbage emulations plus some pre
3322 ATA devices */
3323 if (ata_id_major_version(dev->id) == 0 &&
3324 dev->pio_mode <= XFER_PIO_2)
3325 ign_dev_err = 1;
3326 /* Some very old devices and some bad newer ones fail
3327 any kind of SET_XFERMODE request but support PIO0-2
3328 timings and no IORDY */
3329 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3330 ign_dev_err = 1;
3331 }
3acaf94b
AC
3332 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3333 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3334 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3335 dev->dma_mode == XFER_MW_DMA_0 &&
3336 (dev->id[63] >> 8) & 1)
4055dee7 3337 ign_dev_err = 1;
3acaf94b 3338
4055dee7
TH
3339 /* if the device is actually configured correctly, ignore dev err */
3340 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3341 ign_dev_err = 1;
1da177e4 3342
4055dee7
TH
3343 if (err_mask & AC_ERR_DEV) {
3344 if (!ign_dev_err)
3345 goto fail;
3346 else
3347 dev_err_whine = " (device error ignored)";
3348 }
48a8a14f 3349
23e71c3d
TH
3350 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3351 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3352
a9a79dfe
JP
3353 ata_dev_info(dev, "configured for %s%s\n",
3354 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3355 dev_err_whine);
4055dee7 3356
83206a29 3357 return 0;
4055dee7
TH
3358
3359 fail:
a9a79dfe 3360 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
4055dee7 3361 return -EIO;
1da177e4
LT
3362}
3363
1da177e4 3364/**
04351821 3365 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3366 * @link: link on which timings will be programmed
1967b7ff 3367 * @r_failed_dev: out parameter for failed device
1da177e4 3368 *
04351821
A
3369 * Standard implementation of the function used to tune and set
3370 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3371 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3372 * returned in @r_failed_dev.
780a87f7 3373 *
1da177e4 3374 * LOCKING:
0cba632b 3375 * PCI/etc. bus probe sem.
e82cbdb9
TH
3376 *
3377 * RETURNS:
3378 * 0 on success, negative errno otherwise
1da177e4 3379 */
04351821 3380
0260731f 3381int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3382{
0260731f 3383 struct ata_port *ap = link->ap;
e8e0619f 3384 struct ata_device *dev;
f58229f8 3385 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3386
a6d5a51c 3387 /* step 1: calculate xfer_mask */
1eca4365 3388 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3389 unsigned long pio_mask, dma_mask;
b3a70601 3390 unsigned int mode_mask;
a6d5a51c 3391
b3a70601
AC
3392 mode_mask = ATA_DMA_MASK_ATA;
3393 if (dev->class == ATA_DEV_ATAPI)
3394 mode_mask = ATA_DMA_MASK_ATAPI;
3395 else if (ata_id_is_cfa(dev->id))
3396 mode_mask = ATA_DMA_MASK_CFA;
3397
3373efd8 3398 ata_dev_xfermask(dev);
33267325 3399 ata_force_xfermask(dev);
1da177e4 3400
acf356b1 3401 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
b3a70601
AC
3402
3403 if (libata_dma_mask & mode_mask)
80a9c430
SS
3404 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3405 dev->udma_mask);
b3a70601
AC
3406 else
3407 dma_mask = 0;
3408
acf356b1
TH
3409 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3410 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3411
4f65977d 3412 found = 1;
b15b3eba 3413 if (ata_dma_enabled(dev))
5444a6f4 3414 used_dma = 1;
a6d5a51c 3415 }
4f65977d 3416 if (!found)
e82cbdb9 3417 goto out;
a6d5a51c
TH
3418
3419 /* step 2: always set host PIO timings */
1eca4365 3420 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3421 if (dev->pio_mode == 0xff) {
a9a79dfe 3422 ata_dev_warn(dev, "no PIO support\n");
e8e0619f 3423 rc = -EINVAL;
e82cbdb9 3424 goto out;
e8e0619f
TH
3425 }
3426
3427 dev->xfer_mode = dev->pio_mode;
3428 dev->xfer_shift = ATA_SHIFT_PIO;
3429 if (ap->ops->set_piomode)
3430 ap->ops->set_piomode(ap, dev);
3431 }
1da177e4 3432
a6d5a51c 3433 /* step 3: set host DMA timings */
1eca4365
TH
3434 ata_for_each_dev(dev, link, ENABLED) {
3435 if (!ata_dma_enabled(dev))
e8e0619f
TH
3436 continue;
3437
3438 dev->xfer_mode = dev->dma_mode;
3439 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3440 if (ap->ops->set_dmamode)
3441 ap->ops->set_dmamode(ap, dev);
3442 }
1da177e4
LT
3443
3444 /* step 4: update devices' xfer mode */
1eca4365 3445 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3446 rc = ata_dev_set_mode(dev);
5bbc53f4 3447 if (rc)
e82cbdb9 3448 goto out;
83206a29 3449 }
1da177e4 3450
e8e0619f
TH
3451 /* Record simplex status. If we selected DMA then the other
3452 * host channels are not permitted to do so.
5444a6f4 3453 */
cca3974e 3454 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3455 ap->host->simplex_claimed = ap;
5444a6f4 3456
e82cbdb9
TH
3457 out:
3458 if (rc)
3459 *r_failed_dev = dev;
3460 return rc;
1da177e4
LT
3461}
3462
aa2731ad
TH
3463/**
3464 * ata_wait_ready - wait for link to become ready
3465 * @link: link to be waited on
3466 * @deadline: deadline jiffies for the operation
3467 * @check_ready: callback to check link readiness
3468 *
3469 * Wait for @link to become ready. @check_ready should return
3470 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3471 * link doesn't seem to be occupied, other errno for other error
3472 * conditions.
3473 *
3474 * Transient -ENODEV conditions are allowed for
3475 * ATA_TMOUT_FF_WAIT.
3476 *
3477 * LOCKING:
3478 * EH context.
3479 *
3480 * RETURNS:
3481 * 0 if @linke is ready before @deadline; otherwise, -errno.
3482 */
3483int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3484 int (*check_ready)(struct ata_link *link))
3485{
3486 unsigned long start = jiffies;
b48d58f5 3487 unsigned long nodev_deadline;
aa2731ad
TH
3488 int warned = 0;
3489
b48d58f5
TH
3490 /* choose which 0xff timeout to use, read comment in libata.h */
3491 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3492 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3493 else
3494 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3495
b1c72916
TH
3496 /* Slave readiness can't be tested separately from master. On
3497 * M/S emulation configuration, this function should be called
3498 * only on the master and it will handle both master and slave.
3499 */
3500 WARN_ON(link == link->ap->slave_link);
3501
aa2731ad
TH
3502 if (time_after(nodev_deadline, deadline))
3503 nodev_deadline = deadline;
3504
3505 while (1) {
3506 unsigned long now = jiffies;
3507 int ready, tmp;
3508
3509 ready = tmp = check_ready(link);
3510 if (ready > 0)
3511 return 0;
3512
b48d58f5
TH
3513 /*
3514 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3515 * is online. Also, some SATA devices take a long
b48d58f5
TH
3516 * time to clear 0xff after reset. Wait for
3517 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3518 * offline.
aa2731ad
TH
3519 *
3520 * Note that some PATA controllers (pata_ali) explode
3521 * if status register is read more than once when
3522 * there's no device attached.
3523 */
3524 if (ready == -ENODEV) {
3525 if (ata_link_online(link))
3526 ready = 0;
3527 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3528 !ata_link_offline(link) &&
3529 time_before(now, nodev_deadline))
3530 ready = 0;
3531 }
3532
3533 if (ready)
3534 return ready;
3535 if (time_after(now, deadline))
3536 return -EBUSY;
3537
3538 if (!warned && time_after(now, start + 5 * HZ) &&
3539 (deadline - now > 3 * HZ)) {
a9a79dfe 3540 ata_link_warn(link,
aa2731ad
TH
3541 "link is slow to respond, please be patient "
3542 "(ready=%d)\n", tmp);
3543 warned = 1;
3544 }
3545
97750ceb 3546 ata_msleep(link->ap, 50);
aa2731ad
TH
3547 }
3548}
3549
3550/**
3551 * ata_wait_after_reset - wait for link to become ready after reset
3552 * @link: link to be waited on
3553 * @deadline: deadline jiffies for the operation
3554 * @check_ready: callback to check link readiness
3555 *
3556 * Wait for @link to become ready after reset.
3557 *
3558 * LOCKING:
3559 * EH context.
3560 *
3561 * RETURNS:
3562 * 0 if @linke is ready before @deadline; otherwise, -errno.
3563 */
2b4221bb 3564int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3565 int (*check_ready)(struct ata_link *link))
3566{
97750ceb 3567 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3568
3569 return ata_wait_ready(link, deadline, check_ready);
3570}
3571
d7bb4cc7 3572/**
936fd732
TH
3573 * sata_link_debounce - debounce SATA phy status
3574 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3575 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3576 * @deadline: deadline jiffies for the operation
d7bb4cc7 3577 *
1152b261 3578 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3579 * holding the same value where DET is not 1 for @duration polled
3580 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3581 * beginning of the stable state. Because DET gets stuck at 1 on
3582 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3583 * until timeout then returns 0 if DET is stable at 1.
3584 *
d4b2bab4
TH
3585 * @timeout is further limited by @deadline. The sooner of the
3586 * two is used.
3587 *
d7bb4cc7
TH
3588 * LOCKING:
3589 * Kernel thread context (may sleep)
3590 *
3591 * RETURNS:
3592 * 0 on success, -errno on failure.
3593 */
936fd732
TH
3594int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3595 unsigned long deadline)
7a7921e8 3596{
341c2c95
TH
3597 unsigned long interval = params[0];
3598 unsigned long duration = params[1];
d4b2bab4 3599 unsigned long last_jiffies, t;
d7bb4cc7
TH
3600 u32 last, cur;
3601 int rc;
3602
341c2c95 3603 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3604 if (time_before(t, deadline))
3605 deadline = t;
3606
936fd732 3607 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3608 return rc;
3609 cur &= 0xf;
3610
3611 last = cur;
3612 last_jiffies = jiffies;
3613
3614 while (1) {
97750ceb 3615 ata_msleep(link->ap, interval);
936fd732 3616 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3617 return rc;
3618 cur &= 0xf;
3619
3620 /* DET stable? */
3621 if (cur == last) {
d4b2bab4 3622 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3623 continue;
341c2c95
TH
3624 if (time_after(jiffies,
3625 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3626 return 0;
3627 continue;
3628 }
3629
3630 /* unstable, start over */
3631 last = cur;
3632 last_jiffies = jiffies;
3633
f1545154
TH
3634 /* Check deadline. If debouncing failed, return
3635 * -EPIPE to tell upper layer to lower link speed.
3636 */
d4b2bab4 3637 if (time_after(jiffies, deadline))
f1545154 3638 return -EPIPE;
d7bb4cc7
TH
3639 }
3640}
3641
3642/**
936fd732
TH
3643 * sata_link_resume - resume SATA link
3644 * @link: ATA link to resume SATA
d7bb4cc7 3645 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3646 * @deadline: deadline jiffies for the operation
d7bb4cc7 3647 *
936fd732 3648 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3649 *
3650 * LOCKING:
3651 * Kernel thread context (may sleep)
3652 *
3653 * RETURNS:
3654 * 0 on success, -errno on failure.
3655 */
936fd732
TH
3656int sata_link_resume(struct ata_link *link, const unsigned long *params,
3657 unsigned long deadline)
d7bb4cc7 3658{
5040ab67 3659 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3660 u32 scontrol, serror;
81952c54
TH
3661 int rc;
3662
936fd732 3663 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3664 return rc;
7a7921e8 3665
5040ab67
TH
3666 /*
3667 * Writes to SControl sometimes get ignored under certain
3668 * controllers (ata_piix SIDPR). Make sure DET actually is
3669 * cleared.
3670 */
3671 do {
3672 scontrol = (scontrol & 0x0f0) | 0x300;
3673 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3674 return rc;
3675 /*
3676 * Some PHYs react badly if SStatus is pounded
3677 * immediately after resuming. Delay 200ms before
3678 * debouncing.
3679 */
e39b2bb3
DP
3680 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3681 ata_msleep(link->ap, 200);
81952c54 3682
5040ab67
TH
3683 /* is SControl restored correctly? */
3684 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3685 return rc;
3686 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3687
5040ab67 3688 if ((scontrol & 0xf0f) != 0x300) {
38941c95 3689 ata_link_warn(link, "failed to resume link (SControl %X)\n",
a9a79dfe 3690 scontrol);
5040ab67
TH
3691 return 0;
3692 }
3693
3694 if (tries < ATA_LINK_RESUME_TRIES)
a9a79dfe
JP
3695 ata_link_warn(link, "link resume succeeded after %d retries\n",
3696 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3697
ac371987
TH
3698 if ((rc = sata_link_debounce(link, params, deadline)))
3699 return rc;
3700
f046519f 3701 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3702 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3703 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3704
f046519f 3705 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3706}
3707
1152b261
TH
3708/**
3709 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3710 * @link: ATA link to manipulate SControl for
3711 * @policy: LPM policy to configure
3712 * @spm_wakeup: initiate LPM transition to active state
3713 *
3714 * Manipulate the IPM field of the SControl register of @link
3715 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3716 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3717 * the link. This function also clears PHYRDY_CHG before
3718 * returning.
3719 *
3720 * LOCKING:
3721 * EH context.
3722 *
3723 * RETURNS:
8485187b 3724 * 0 on success, -errno otherwise.
1152b261
TH
3725 */
3726int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3727 bool spm_wakeup)
3728{
3729 struct ata_eh_context *ehc = &link->eh_context;
3730 bool woken_up = false;
3731 u32 scontrol;
3732 int rc;
3733
3734 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3735 if (rc)
3736 return rc;
3737
3738 switch (policy) {
3739 case ATA_LPM_MAX_POWER:
3740 /* disable all LPM transitions */
65fe1f0f 3741 scontrol |= (0x7 << 8);
1152b261
TH
3742 /* initiate transition to active state */
3743 if (spm_wakeup) {
3744 scontrol |= (0x4 << 12);
3745 woken_up = true;
3746 }
3747 break;
3748 case ATA_LPM_MED_POWER:
3749 /* allow LPM to PARTIAL */
3750 scontrol &= ~(0x1 << 8);
65fe1f0f 3751 scontrol |= (0x6 << 8);
1152b261
TH
3752 break;
3753 case ATA_LPM_MIN_POWER:
8a745f1f
KCA
3754 if (ata_link_nr_enabled(link) > 0)
3755 /* no restrictions on LPM transitions */
65fe1f0f 3756 scontrol &= ~(0x7 << 8);
8a745f1f
KCA
3757 else {
3758 /* empty port, power off */
3759 scontrol &= ~0xf;
3760 scontrol |= (0x1 << 2);
3761 }
1152b261
TH
3762 break;
3763 default:
3764 WARN_ON(1);
3765 }
3766
3767 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3768 if (rc)
3769 return rc;
3770
3771 /* give the link time to transit out of LPM state */
3772 if (woken_up)
3773 msleep(10);
3774
3775 /* clear PHYRDY_CHG from SError */
3776 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3777 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3778}
3779
f5914a46 3780/**
0aa1113d 3781 * ata_std_prereset - prepare for reset
cc0680a5 3782 * @link: ATA link to be reset
d4b2bab4 3783 * @deadline: deadline jiffies for the operation
f5914a46 3784 *
cc0680a5 3785 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3786 * prereset makes libata abort whole reset sequence and give up
3787 * that port, so prereset should be best-effort. It does its
3788 * best to prepare for reset sequence but if things go wrong, it
3789 * should just whine, not fail.
f5914a46
TH
3790 *
3791 * LOCKING:
3792 * Kernel thread context (may sleep)
3793 *
3794 * RETURNS:
3795 * 0 on success, -errno otherwise.
3796 */
0aa1113d 3797int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3798{
cc0680a5 3799 struct ata_port *ap = link->ap;
936fd732 3800 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3801 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3802 int rc;
3803
f5914a46
TH
3804 /* if we're about to do hardreset, nothing more to do */
3805 if (ehc->i.action & ATA_EH_HARDRESET)
3806 return 0;
3807
936fd732 3808 /* if SATA, resume link */
a16abc0b 3809 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3810 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3811 /* whine about phy resume failure but proceed */
3812 if (rc && rc != -EOPNOTSUPP)
a9a79dfe
JP
3813 ata_link_warn(link,
3814 "failed to resume link for reset (errno=%d)\n",
3815 rc);
f5914a46
TH
3816 }
3817
45db2f6c 3818 /* no point in trying softreset on offline link */
b1c72916 3819 if (ata_phys_link_offline(link))
45db2f6c
TH
3820 ehc->i.action &= ~ATA_EH_SOFTRESET;
3821
f5914a46
TH
3822 return 0;
3823}
3824
c2bd5804 3825/**
624d5c51
TH
3826 * sata_link_hardreset - reset link via SATA phy reset
3827 * @link: link to reset
3828 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3829 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3830 * @online: optional out parameter indicating link onlineness
3831 * @check_ready: optional callback to check link readiness
c2bd5804 3832 *
624d5c51 3833 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3834 * After hardreset, link readiness is waited upon using
3835 * ata_wait_ready() if @check_ready is specified. LLDs are
3836 * allowed to not specify @check_ready and wait itself after this
3837 * function returns. Device classification is LLD's
3838 * responsibility.
3839 *
3840 * *@online is set to one iff reset succeeded and @link is online
3841 * after reset.
c2bd5804
TH
3842 *
3843 * LOCKING:
3844 * Kernel thread context (may sleep)
3845 *
3846 * RETURNS:
3847 * 0 on success, -errno otherwise.
3848 */
624d5c51 3849int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3850 unsigned long deadline,
3851 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3852{
624d5c51 3853 u32 scontrol;
81952c54 3854 int rc;
852ee16a 3855
c2bd5804
TH
3856 DPRINTK("ENTER\n");
3857
9dadd45b
TH
3858 if (online)
3859 *online = false;
3860
936fd732 3861 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3862 /* SATA spec says nothing about how to reconfigure
3863 * spd. To be on the safe side, turn off phy during
3864 * reconfiguration. This works for at least ICH7 AHCI
3865 * and Sil3124.
3866 */
936fd732 3867 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3868 goto out;
81952c54 3869
a34b6fc0 3870 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3871
936fd732 3872 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3873 goto out;
1c3fae4d 3874
936fd732 3875 sata_set_spd(link);
1c3fae4d
TH
3876 }
3877
3878 /* issue phy wake/reset */
936fd732 3879 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3880 goto out;
81952c54 3881
852ee16a 3882 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3883
936fd732 3884 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3885 goto out;
c2bd5804 3886
1c3fae4d 3887 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3888 * 10.4.2 says at least 1 ms.
3889 */
97750ceb 3890 ata_msleep(link->ap, 1);
c2bd5804 3891
936fd732
TH
3892 /* bring link back */
3893 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3894 if (rc)
3895 goto out;
3896 /* if link is offline nothing more to do */
b1c72916 3897 if (ata_phys_link_offline(link))
9dadd45b
TH
3898 goto out;
3899
3900 /* Link is online. From this point, -ENODEV too is an error. */
3901 if (online)
3902 *online = true;
3903
071f44b1 3904 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3905 /* If PMP is supported, we have to do follow-up SRST.
3906 * Some PMPs don't send D2H Reg FIS after hardreset if
3907 * the first port is empty. Wait only for
3908 * ATA_TMOUT_PMP_SRST_WAIT.
3909 */
3910 if (check_ready) {
3911 unsigned long pmp_deadline;
3912
341c2c95
TH
3913 pmp_deadline = ata_deadline(jiffies,
3914 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3915 if (time_after(pmp_deadline, deadline))
3916 pmp_deadline = deadline;
3917 ata_wait_ready(link, pmp_deadline, check_ready);
3918 }
3919 rc = -EAGAIN;
3920 goto out;
3921 }
3922
3923 rc = 0;
3924 if (check_ready)
3925 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3926 out:
0cbf0711
TH
3927 if (rc && rc != -EAGAIN) {
3928 /* online is set iff link is online && reset succeeded */
3929 if (online)
3930 *online = false;
a9a79dfe 3931 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3932 }
b6103f6d
TH
3933 DPRINTK("EXIT, rc=%d\n", rc);
3934 return rc;
3935}
3936
57c9efdf
TH
3937/**
3938 * sata_std_hardreset - COMRESET w/o waiting or classification
3939 * @link: link to reset
3940 * @class: resulting class of attached device
3941 * @deadline: deadline jiffies for the operation
3942 *
3943 * Standard SATA COMRESET w/o waiting or classification.
3944 *
3945 * LOCKING:
3946 * Kernel thread context (may sleep)
3947 *
3948 * RETURNS:
3949 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3950 */
3951int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3952 unsigned long deadline)
3953{
3954 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3955 bool online;
3956 int rc;
3957
3958 /* do hardreset */
3959 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3960 return online ? -EAGAIN : rc;
3961}
3962
c2bd5804 3963/**
203c75b8 3964 * ata_std_postreset - standard postreset callback
cc0680a5 3965 * @link: the target ata_link
c2bd5804
TH
3966 * @classes: classes of attached devices
3967 *
3968 * This function is invoked after a successful reset. Note that
3969 * the device might have been reset more than once using
3970 * different reset methods before postreset is invoked.
c2bd5804 3971 *
c2bd5804
TH
3972 * LOCKING:
3973 * Kernel thread context (may sleep)
3974 */
203c75b8 3975void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3976{
f046519f
TH
3977 u32 serror;
3978
c2bd5804
TH
3979 DPRINTK("ENTER\n");
3980
f046519f
TH
3981 /* reset complete, clear SError */
3982 if (!sata_scr_read(link, SCR_ERROR, &serror))
3983 sata_scr_write(link, SCR_ERROR, serror);
3984
c2bd5804 3985 /* print link status */
936fd732 3986 sata_print_link_status(link);
c2bd5804 3987
c2bd5804
TH
3988 DPRINTK("EXIT\n");
3989}
3990
623a3128
TH
3991/**
3992 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3993 * @dev: device to compare against
3994 * @new_class: class of the new device
3995 * @new_id: IDENTIFY page of the new device
3996 *
3997 * Compare @new_class and @new_id against @dev and determine
3998 * whether @dev is the device indicated by @new_class and
3999 * @new_id.
4000 *
4001 * LOCKING:
4002 * None.
4003 *
4004 * RETURNS:
4005 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4006 */
3373efd8
TH
4007static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4008 const u16 *new_id)
623a3128
TH
4009{
4010 const u16 *old_id = dev->id;
a0cf733b
TH
4011 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4012 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4013
4014 if (dev->class != new_class) {
a9a79dfe
JP
4015 ata_dev_info(dev, "class mismatch %d != %d\n",
4016 dev->class, new_class);
623a3128
TH
4017 return 0;
4018 }
4019
a0cf733b
TH
4020 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4021 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4022 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4023 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4024
4025 if (strcmp(model[0], model[1])) {
a9a79dfe
JP
4026 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4027 model[0], model[1]);
623a3128
TH
4028 return 0;
4029 }
4030
4031 if (strcmp(serial[0], serial[1])) {
a9a79dfe
JP
4032 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4033 serial[0], serial[1]);
623a3128
TH
4034 return 0;
4035 }
4036
623a3128
TH
4037 return 1;
4038}
4039
4040/**
fe30911b 4041 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4042 * @dev: target ATA device
bff04647 4043 * @readid_flags: read ID flags
623a3128
TH
4044 *
4045 * Re-read IDENTIFY page and make sure @dev is still attached to
4046 * the port.
4047 *
4048 * LOCKING:
4049 * Kernel thread context (may sleep)
4050 *
4051 * RETURNS:
4052 * 0 on success, negative errno otherwise
4053 */
fe30911b 4054int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4055{
5eb45c02 4056 unsigned int class = dev->class;
9af5c9c9 4057 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4058 int rc;
4059
fe635c7e 4060 /* read ID data */
bff04647 4061 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4062 if (rc)
fe30911b 4063 return rc;
623a3128
TH
4064
4065 /* is the device still there? */
fe30911b
TH
4066 if (!ata_dev_same_device(dev, class, id))
4067 return -ENODEV;
623a3128 4068
fe635c7e 4069 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4070 return 0;
4071}
4072
4073/**
4074 * ata_dev_revalidate - Revalidate ATA device
4075 * @dev: device to revalidate
422c9daa 4076 * @new_class: new class code
fe30911b
TH
4077 * @readid_flags: read ID flags
4078 *
4079 * Re-read IDENTIFY page, make sure @dev is still attached to the
4080 * port and reconfigure it according to the new IDENTIFY page.
4081 *
4082 * LOCKING:
4083 * Kernel thread context (may sleep)
4084 *
4085 * RETURNS:
4086 * 0 on success, negative errno otherwise
4087 */
422c9daa
TH
4088int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4089 unsigned int readid_flags)
fe30911b 4090{
6ddcd3b0 4091 u64 n_sectors = dev->n_sectors;
5920dadf 4092 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4093 int rc;
4094
4095 if (!ata_dev_enabled(dev))
4096 return -ENODEV;
4097
422c9daa
TH
4098 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4099 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4100 new_class != ATA_DEV_ATA &&
4101 new_class != ATA_DEV_ATAPI &&
9162c657 4102 new_class != ATA_DEV_ZAC &&
f0d0613d 4103 new_class != ATA_DEV_SEMB) {
a9a79dfe
JP
4104 ata_dev_info(dev, "class mismatch %u != %u\n",
4105 dev->class, new_class);
422c9daa
TH
4106 rc = -ENODEV;
4107 goto fail;
4108 }
4109
fe30911b
TH
4110 /* re-read ID */
4111 rc = ata_dev_reread_id(dev, readid_flags);
4112 if (rc)
4113 goto fail;
623a3128
TH
4114
4115 /* configure device according to the new ID */
efdaedc4 4116 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4117 if (rc)
4118 goto fail;
4119
4120 /* verify n_sectors hasn't changed */
445d211b
TH
4121 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4122 dev->n_sectors == n_sectors)
4123 return 0;
4124
4125 /* n_sectors has changed */
a9a79dfe
JP
4126 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4127 (unsigned long long)n_sectors,
4128 (unsigned long long)dev->n_sectors);
445d211b
TH
4129
4130 /*
4131 * Something could have caused HPA to be unlocked
4132 * involuntarily. If n_native_sectors hasn't changed and the
4133 * new size matches it, keep the device.
4134 */
4135 if (dev->n_native_sectors == n_native_sectors &&
4136 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
a9a79dfe
JP
4137 ata_dev_warn(dev,
4138 "new n_sectors matches native, probably "
4139 "late HPA unlock, n_sectors updated\n");
68939ce5 4140 /* use the larger n_sectors */
445d211b 4141 return 0;
6ddcd3b0
TH
4142 }
4143
445d211b
TH
4144 /*
4145 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4146 * unlocking HPA in those cases.
4147 *
4148 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4149 */
4150 if (dev->n_native_sectors == n_native_sectors &&
4151 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4152 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
a9a79dfe
JP
4153 ata_dev_warn(dev,
4154 "old n_sectors matches native, probably "
4155 "late HPA lock, will try to unlock HPA\n");
445d211b
TH
4156 /* try unlocking HPA */
4157 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4158 rc = -EIO;
4159 } else
4160 rc = -ENODEV;
623a3128 4161
445d211b
TH
4162 /* restore original n_[native_]sectors and fail */
4163 dev->n_native_sectors = n_native_sectors;
4164 dev->n_sectors = n_sectors;
623a3128 4165 fail:
a9a79dfe 4166 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4167 return rc;
4168}
4169
6919a0a6
AC
4170struct ata_blacklist_entry {
4171 const char *model_num;
4172 const char *model_rev;
4173 unsigned long horkage;
4174};
4175
4176static const struct ata_blacklist_entry ata_device_blacklist [] = {
4177 /* Devices with DMA related problems under Linux */
4178 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4179 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4180 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4181 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4182 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4183 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4184 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4185 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4186 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4187 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4188 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4189 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4190 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4191 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4192 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4193 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4194 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4195 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4196 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4197 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4198 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4199 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4200 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4201 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4202 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4203 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4204 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4205 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
d17d794c 4206 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
b00622fc 4207 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4208 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4209 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4210
18d6e9d5 4211 /* Weird ATAPI devices */
40a1d531 4212 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4213 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
a32450e1 4214 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
0523f037 4215 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
18d6e9d5 4216
af34d637
DM
4217 /*
4218 * Causes silent data corruption with higher max sects.
4219 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4220 */
4221 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4222
6919a0a6
AC
4223 /* Devices we expect to fail diagnostics */
4224
4225 /* Devices where NCQ should be avoided */
4226 /* NCQ is slow */
2dcb407e 4227 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4228 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4229 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4230 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4231 /* NCQ is broken */
539cc7c7 4232 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4233 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4234 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4235 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4236 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4237
ac70a964 4238 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4239 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4240 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4241
4d1f9082 4242 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4243 ATA_HORKAGE_FIRMWARE_WARN },
4244
4d1f9082 4245 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4246 ATA_HORKAGE_FIRMWARE_WARN },
4247
4d1f9082 4248 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4249 ATA_HORKAGE_FIRMWARE_WARN },
4250
08c85d2a 4251 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
87809942 4252 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
b28a613e 4253 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
08c85d2a 4254 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
87809942 4255
36e337d0
RH
4256 /* Blacklist entries taken from Silicon Image 3124/3132
4257 Windows driver .inf file - also several Linux problem reports */
4258 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4259 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4260 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4261
68b0ddb2
TH
4262 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4263 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4264
16c55b03
TH
4265 /* devices which puke on READ_NATIVE_MAX */
4266 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4267 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4268 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4269 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4270
7831387b
TH
4271 /* this one allows HPA unlocking but fails IOs on the area */
4272 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4273
93328e11
AC
4274 /* Devices which report 1 sector over size HPA */
4275 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4276 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4277 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4278
6bbfd53d
AC
4279 /* Devices which get the IVB wrong */
4280 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4281 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4282 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4283
9ce8e307
JA
4284 /* Devices that do not need bridging limits applied */
4285 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
04d0f1b8 4286 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
9ce8e307 4287
9062712f
TH
4288 /* Devices which aren't very happy with higher link speeds */
4289 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
c531077f 4290 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
9062712f 4291
d0cb43b3
TH
4292 /*
4293 * Devices which choke on SETXFER. Applies only if both the
4294 * device and controller are SATA.
4295 */
cd691876 4296 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3a25179e
VL
4297 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4298 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
cd691876
TH
4299 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4300 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
d0cb43b3 4301
f78dea06 4302 /* devices that don't properly handle queued TRIM commands */
243918be 4303 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4304 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4305 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4306 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9051bd39 4307 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4308 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4309 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4310 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4311 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
e61f7d1c 4312 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9a9324d3 4313 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
6fc4d97a 4314 ATA_HORKAGE_ZERO_AFTER_TRIM, },
7a7184b0
GA
4315 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4316 ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c 4317
cda57b1b
AF
4318 /* devices that don't properly handle TRIM commands */
4319 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4320
e61f7d1c
MP
4321 /*
4322 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4323 * (Return Zero After Trim) flags in the ATA Command Set are
4324 * unreliable in the sense that they only define what happens if
4325 * the device successfully executed the DSM TRIM command. TRIM
4326 * is only advisory, however, and the device is free to silently
4327 * ignore all or parts of the request.
4328 *
4329 * Whitelist drives that are known to reliably return zeroes
4330 * after TRIM.
4331 */
4332
4333 /*
4334 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4335 * that model before whitelisting all other intel SSDs.
4336 */
4337 { "INTEL*SSDSC2MH*", NULL, 0, },
4338
ff7f53fb
MP
4339 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4340 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c
MP
4341 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4342 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4343 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4344 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4345 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
f78dea06 4346
ecd75ad5
TH
4347 /*
4348 * Some WD SATA-I drives spin up and down erratically when the link
4349 * is put into the slumber mode. We don't have full list of the
4350 * affected devices. Disable LPM if the device matches one of the
4351 * known prefixes and is SATA-1. As a side effect LPM partial is
4352 * lost too.
4353 *
4354 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4355 */
4356 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4357 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4358 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4359 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4360 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4361 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4362 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4363
6919a0a6
AC
4364 /* End Marker */
4365 { }
1da177e4 4366};
2e9edbf8 4367
75683fe7 4368static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4369{
8bfa79fc
TH
4370 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4371 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4372 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4373
8bfa79fc
TH
4374 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4375 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4376
6919a0a6 4377 while (ad->model_num) {
1c402799 4378 if (glob_match(ad->model_num, model_num)) {
6919a0a6
AC
4379 if (ad->model_rev == NULL)
4380 return ad->horkage;
1c402799 4381 if (glob_match(ad->model_rev, model_rev))
6919a0a6 4382 return ad->horkage;
f4b15fef 4383 }
6919a0a6 4384 ad++;
f4b15fef 4385 }
1da177e4
LT
4386 return 0;
4387}
4388
6919a0a6
AC
4389static int ata_dma_blacklisted(const struct ata_device *dev)
4390{
4391 /* We don't support polling DMA.
4392 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4393 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4394 */
9af5c9c9 4395 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4396 (dev->flags & ATA_DFLAG_CDB_INTR))
4397 return 1;
75683fe7 4398 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4399}
4400
6bbfd53d
AC
4401/**
4402 * ata_is_40wire - check drive side detection
4403 * @dev: device
4404 *
4405 * Perform drive side detection decoding, allowing for device vendors
4406 * who can't follow the documentation.
4407 */
4408
4409static int ata_is_40wire(struct ata_device *dev)
4410{
4411 if (dev->horkage & ATA_HORKAGE_IVB)
4412 return ata_drive_40wire_relaxed(dev->id);
4413 return ata_drive_40wire(dev->id);
4414}
4415
15a5551c
AC
4416/**
4417 * cable_is_40wire - 40/80/SATA decider
4418 * @ap: port to consider
4419 *
4420 * This function encapsulates the policy for speed management
4421 * in one place. At the moment we don't cache the result but
4422 * there is a good case for setting ap->cbl to the result when
4423 * we are called with unknown cables (and figuring out if it
4424 * impacts hotplug at all).
4425 *
4426 * Return 1 if the cable appears to be 40 wire.
4427 */
4428
4429static int cable_is_40wire(struct ata_port *ap)
4430{
4431 struct ata_link *link;
4432 struct ata_device *dev;
4433
4a9c7b33 4434 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4435 if (ap->cbl == ATA_CBL_PATA40)
4436 return 1;
4a9c7b33
TH
4437
4438 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4439 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4440 return 0;
4a9c7b33
TH
4441
4442 /* If the system is known to be 40 wire short cable (eg
4443 * laptop), then we allow 80 wire modes even if the drive
4444 * isn't sure.
4445 */
f792068e
AC
4446 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4447 return 0;
4a9c7b33
TH
4448
4449 /* If the controller doesn't know, we scan.
4450 *
4451 * Note: We look for all 40 wire detects at this point. Any
4452 * 80 wire detect is taken to be 80 wire cable because
4453 * - in many setups only the one drive (slave if present) will
4454 * give a valid detect
4455 * - if you have a non detect capable drive you don't want it
4456 * to colour the choice
4457 */
1eca4365
TH
4458 ata_for_each_link(link, ap, EDGE) {
4459 ata_for_each_dev(dev, link, ENABLED) {
4460 if (!ata_is_40wire(dev))
15a5551c
AC
4461 return 0;
4462 }
4463 }
4464 return 1;
4465}
4466
a6d5a51c
TH
4467/**
4468 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4469 * @dev: Device to compute xfermask for
4470 *
acf356b1
TH
4471 * Compute supported xfermask of @dev and store it in
4472 * dev->*_mask. This function is responsible for applying all
4473 * known limits including host controller limits, device
4474 * blacklist, etc...
a6d5a51c
TH
4475 *
4476 * LOCKING:
4477 * None.
a6d5a51c 4478 */
3373efd8 4479static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4480{
9af5c9c9
TH
4481 struct ata_link *link = dev->link;
4482 struct ata_port *ap = link->ap;
cca3974e 4483 struct ata_host *host = ap->host;
a6d5a51c 4484 unsigned long xfer_mask;
1da177e4 4485
37deecb5 4486 /* controller modes available */
565083e1
TH
4487 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4488 ap->mwdma_mask, ap->udma_mask);
4489
8343f889 4490 /* drive modes available */
37deecb5
TH
4491 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4492 dev->mwdma_mask, dev->udma_mask);
4493 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4494
b352e57d
AC
4495 /*
4496 * CFA Advanced TrueIDE timings are not allowed on a shared
4497 * cable
4498 */
4499 if (ata_dev_pair(dev)) {
4500 /* No PIO5 or PIO6 */
4501 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4502 /* No MWDMA3 or MWDMA 4 */
4503 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4504 }
4505
37deecb5
TH
4506 if (ata_dma_blacklisted(dev)) {
4507 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4508 ata_dev_warn(dev,
4509 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4510 }
a6d5a51c 4511
14d66ab7 4512 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4513 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5 4514 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4515 ata_dev_warn(dev,
4516 "simplex DMA is claimed by other device, disabling DMA\n");
5444a6f4 4517 }
565083e1 4518
e424675f
JG
4519 if (ap->flags & ATA_FLAG_NO_IORDY)
4520 xfer_mask &= ata_pio_mask_no_iordy(dev);
4521
5444a6f4 4522 if (ap->ops->mode_filter)
a76b62ca 4523 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4524
8343f889
RH
4525 /* Apply cable rule here. Don't apply it early because when
4526 * we handle hot plug the cable type can itself change.
4527 * Check this last so that we know if the transfer rate was
4528 * solely limited by the cable.
4529 * Unknown or 80 wire cables reported host side are checked
4530 * drive side as well. Cases where we know a 40wire cable
4531 * is used safely for 80 are not checked here.
4532 */
4533 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4534 /* UDMA/44 or higher would be available */
15a5551c 4535 if (cable_is_40wire(ap)) {
a9a79dfe
JP
4536 ata_dev_warn(dev,
4537 "limited to UDMA/33 due to 40-wire cable\n");
8343f889
RH
4538 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4539 }
4540
565083e1
TH
4541 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4542 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4543}
4544
1da177e4
LT
4545/**
4546 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4547 * @dev: Device to which command will be sent
4548 *
780a87f7
JG
4549 * Issue SET FEATURES - XFER MODE command to device @dev
4550 * on port @ap.
4551 *
1da177e4 4552 * LOCKING:
0cba632b 4553 * PCI/etc. bus probe sem.
83206a29
TH
4554 *
4555 * RETURNS:
4556 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4557 */
4558
3373efd8 4559static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4560{
a0123703 4561 struct ata_taskfile tf;
83206a29 4562 unsigned int err_mask;
1da177e4
LT
4563
4564 /* set up set-features taskfile */
4565 DPRINTK("set features - xfer mode\n");
4566
464cf177
TH
4567 /* Some controllers and ATAPI devices show flaky interrupt
4568 * behavior after setting xfer mode. Use polling instead.
4569 */
3373efd8 4570 ata_tf_init(dev, &tf);
a0123703
TH
4571 tf.command = ATA_CMD_SET_FEATURES;
4572 tf.feature = SETFEATURES_XFER;
464cf177 4573 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4574 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4575 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4576 if (ata_pio_need_iordy(dev))
4577 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4578 /* If the device has IORDY and the controller does not - turn it off */
4579 else if (ata_id_has_iordy(dev->id))
11b7becc 4580 tf.nsect = 0x01;
b9f8ab2d
AC
4581 else /* In the ancient relic department - skip all of this */
4582 return 0;
1da177e4 4583
d531be2c
MP
4584 /* On some disks, this command causes spin-up, so we need longer timeout */
4585 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
9f45cbd3
KCA
4586
4587 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4588 return err_mask;
4589}
1152b261 4590
9f45cbd3 4591/**
218f3d30 4592 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4593 * @dev: Device to which command will be sent
4594 * @enable: Whether to enable or disable the feature
218f3d30 4595 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4596 *
4597 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4598 * on port @ap with sector count
9f45cbd3
KCA
4599 *
4600 * LOCKING:
4601 * PCI/etc. bus probe sem.
4602 *
4603 * RETURNS:
4604 * 0 on success, AC_ERR_* mask otherwise.
4605 */
1152b261 4606unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4607{
4608 struct ata_taskfile tf;
4609 unsigned int err_mask;
4610
4611 /* set up set-features taskfile */
4612 DPRINTK("set features - SATA features\n");
4613
4614 ata_tf_init(dev, &tf);
4615 tf.command = ATA_CMD_SET_FEATURES;
4616 tf.feature = enable;
4617 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4618 tf.protocol = ATA_PROT_NODATA;
218f3d30 4619 tf.nsect = feature;
9f45cbd3 4620
2b789108 4621 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4622
83206a29
TH
4623 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4624 return err_mask;
1da177e4 4625}
633de4cc 4626EXPORT_SYMBOL_GPL(ata_dev_set_feature);
1da177e4 4627
8bf62ece
AL
4628/**
4629 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4630 * @dev: Device to which command will be sent
e2a7f77a
RD
4631 * @heads: Number of heads (taskfile parameter)
4632 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4633 *
4634 * LOCKING:
6aff8f1f
TH
4635 * Kernel thread context (may sleep)
4636 *
4637 * RETURNS:
4638 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4639 */
3373efd8
TH
4640static unsigned int ata_dev_init_params(struct ata_device *dev,
4641 u16 heads, u16 sectors)
8bf62ece 4642{
a0123703 4643 struct ata_taskfile tf;
6aff8f1f 4644 unsigned int err_mask;
8bf62ece
AL
4645
4646 /* Number of sectors per track 1-255. Number of heads 1-16 */
4647 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4648 return AC_ERR_INVALID;
8bf62ece
AL
4649
4650 /* set up init dev params taskfile */
4651 DPRINTK("init dev params \n");
4652
3373efd8 4653 ata_tf_init(dev, &tf);
a0123703
TH
4654 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4655 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4656 tf.protocol = ATA_PROT_NODATA;
4657 tf.nsect = sectors;
4658 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4659
2b789108 4660 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4661 /* A clean abort indicates an original or just out of spec drive
4662 and we should continue as we issue the setup based on the
4663 drive reported working geometry */
4664 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4665 err_mask = 0;
8bf62ece 4666
6aff8f1f
TH
4667 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4668 return err_mask;
8bf62ece
AL
4669}
4670
1da177e4 4671/**
0cba632b
JG
4672 * ata_sg_clean - Unmap DMA memory associated with command
4673 * @qc: Command containing DMA memory to be released
4674 *
4675 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4676 *
4677 * LOCKING:
cca3974e 4678 * spin_lock_irqsave(host lock)
1da177e4 4679 */
70e6ad0c 4680void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4681{
4682 struct ata_port *ap = qc->ap;
ff2aeb1e 4683 struct scatterlist *sg = qc->sg;
1da177e4
LT
4684 int dir = qc->dma_dir;
4685
efcb3cf7 4686 WARN_ON_ONCE(sg == NULL);
1da177e4 4687
dde20207 4688 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4689
dde20207 4690 if (qc->n_elem)
5825627c 4691 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4692
4693 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4694 qc->sg = NULL;
1da177e4
LT
4695}
4696
1da177e4 4697/**
5895ef9a 4698 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4699 * @qc: Metadata associated with taskfile to check
4700 *
780a87f7
JG
4701 * Allow low-level driver to filter ATA PACKET commands, returning
4702 * a status indicating whether or not it is OK to use DMA for the
4703 * supplied PACKET command.
4704 *
1da177e4 4705 * LOCKING:
624d5c51
TH
4706 * spin_lock_irqsave(host lock)
4707 *
4708 * RETURNS: 0 when ATAPI DMA can be used
4709 * nonzero otherwise
4710 */
5895ef9a 4711int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4712{
4713 struct ata_port *ap = qc->ap;
71601958 4714
624d5c51
TH
4715 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4716 * few ATAPI devices choke on such DMA requests.
4717 */
6a87e42e
TH
4718 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4719 unlikely(qc->nbytes & 15))
624d5c51 4720 return 1;
e2cec771 4721
624d5c51
TH
4722 if (ap->ops->check_atapi_dma)
4723 return ap->ops->check_atapi_dma(qc);
e2cec771 4724
624d5c51
TH
4725 return 0;
4726}
1da177e4 4727
624d5c51
TH
4728/**
4729 * ata_std_qc_defer - Check whether a qc needs to be deferred
4730 * @qc: ATA command in question
4731 *
4732 * Non-NCQ commands cannot run with any other command, NCQ or
4733 * not. As upper layer only knows the queue depth, we are
4734 * responsible for maintaining exclusion. This function checks
4735 * whether a new command @qc can be issued.
4736 *
4737 * LOCKING:
4738 * spin_lock_irqsave(host lock)
4739 *
4740 * RETURNS:
4741 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4742 */
4743int ata_std_qc_defer(struct ata_queued_cmd *qc)
4744{
4745 struct ata_link *link = qc->dev->link;
e2cec771 4746
624d5c51
TH
4747 if (qc->tf.protocol == ATA_PROT_NCQ) {
4748 if (!ata_tag_valid(link->active_tag))
4749 return 0;
4750 } else {
4751 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4752 return 0;
4753 }
e2cec771 4754
624d5c51
TH
4755 return ATA_DEFER_LINK;
4756}
6912ccd5 4757
624d5c51 4758void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4759
624d5c51
TH
4760/**
4761 * ata_sg_init - Associate command with scatter-gather table.
4762 * @qc: Command to be associated
4763 * @sg: Scatter-gather table.
4764 * @n_elem: Number of elements in s/g table.
4765 *
4766 * Initialize the data-related elements of queued_cmd @qc
4767 * to point to a scatter-gather table @sg, containing @n_elem
4768 * elements.
4769 *
4770 * LOCKING:
4771 * spin_lock_irqsave(host lock)
4772 */
4773void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4774 unsigned int n_elem)
4775{
4776 qc->sg = sg;
4777 qc->n_elem = n_elem;
4778 qc->cursg = qc->sg;
4779}
bb5cb290 4780
624d5c51
TH
4781/**
4782 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4783 * @qc: Command with scatter-gather table to be mapped.
4784 *
4785 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4786 *
4787 * LOCKING:
4788 * spin_lock_irqsave(host lock)
4789 *
4790 * RETURNS:
4791 * Zero on success, negative on error.
4792 *
4793 */
4794static int ata_sg_setup(struct ata_queued_cmd *qc)
4795{
4796 struct ata_port *ap = qc->ap;
4797 unsigned int n_elem;
1da177e4 4798
624d5c51 4799 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4800
624d5c51
TH
4801 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4802 if (n_elem < 1)
4803 return -1;
bb5cb290 4804
624d5c51 4805 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4806 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4807 qc->n_elem = n_elem;
4808 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4809
624d5c51 4810 return 0;
1da177e4
LT
4811}
4812
624d5c51
TH
4813/**
4814 * swap_buf_le16 - swap halves of 16-bit words in place
4815 * @buf: Buffer to swap
4816 * @buf_words: Number of 16-bit words in buffer.
4817 *
4818 * Swap halves of 16-bit words if needed to convert from
4819 * little-endian byte order to native cpu byte order, or
4820 * vice-versa.
4821 *
4822 * LOCKING:
4823 * Inherited from caller.
4824 */
4825void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4826{
624d5c51
TH
4827#ifdef __BIG_ENDIAN
4828 unsigned int i;
8061f5f0 4829
624d5c51
TH
4830 for (i = 0; i < buf_words; i++)
4831 buf[i] = le16_to_cpu(buf[i]);
4832#endif /* __BIG_ENDIAN */
8061f5f0
TH
4833}
4834
8a8bc223 4835/**
98bd4be1
SL
4836 * ata_qc_new_init - Request an available ATA command, and initialize it
4837 * @dev: Device from whom we request an available command structure
38755e89 4838 * @tag: tag
1871ee13 4839 *
8a8bc223
TH
4840 * LOCKING:
4841 * None.
4842 */
4843
98bd4be1 4844struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
8a8bc223 4845{
98bd4be1 4846 struct ata_port *ap = dev->link->ap;
12cb5ce1 4847 struct ata_queued_cmd *qc;
8a8bc223
TH
4848
4849 /* no command while frozen */
4850 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4851 return NULL;
4852
98bd4be1 4853 /* libsas case */
5067c046 4854 if (ap->flags & ATA_FLAG_SAS_HOST) {
98bd4be1
SL
4855 tag = ata_sas_allocate_tag(ap);
4856 if (tag < 0)
4857 return NULL;
8a4aeec8 4858 }
8a8bc223 4859
98bd4be1
SL
4860 qc = __ata_qc_from_tag(ap, tag);
4861 qc->tag = tag;
4862 qc->scsicmd = NULL;
4863 qc->ap = ap;
4864 qc->dev = dev;
1da177e4 4865
98bd4be1 4866 ata_qc_reinit(qc);
1da177e4
LT
4867
4868 return qc;
4869}
4870
8a8bc223
TH
4871/**
4872 * ata_qc_free - free unused ata_queued_cmd
4873 * @qc: Command to complete
4874 *
4875 * Designed to free unused ata_queued_cmd object
4876 * in case something prevents using it.
4877 *
4878 * LOCKING:
4879 * spin_lock_irqsave(host lock)
4880 */
4881void ata_qc_free(struct ata_queued_cmd *qc)
4882{
a1104016 4883 struct ata_port *ap;
8a8bc223
TH
4884 unsigned int tag;
4885
efcb3cf7 4886 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4887 ap = qc->ap;
8a8bc223
TH
4888
4889 qc->flags = 0;
4890 tag = qc->tag;
4891 if (likely(ata_tag_valid(tag))) {
4892 qc->tag = ATA_TAG_POISON;
5067c046 4893 if (ap->flags & ATA_FLAG_SAS_HOST)
98bd4be1 4894 ata_sas_free_tag(tag, ap);
8a8bc223
TH
4895 }
4896}
4897
76014427 4898void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4899{
a1104016
JL
4900 struct ata_port *ap;
4901 struct ata_link *link;
dedaf2b0 4902
efcb3cf7
TH
4903 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4904 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4905 ap = qc->ap;
4906 link = qc->dev->link;
1da177e4
LT
4907
4908 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4909 ata_sg_clean(qc);
4910
7401abf2 4911 /* command should be marked inactive atomically with qc completion */
da917d69 4912 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4913 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4914 if (!link->sactive)
4915 ap->nr_active_links--;
4916 } else {
9af5c9c9 4917 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4918 ap->nr_active_links--;
4919 }
4920
4921 /* clear exclusive status */
4922 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4923 ap->excl_link == link))
4924 ap->excl_link = NULL;
7401abf2 4925
3f3791d3
AL
4926 /* atapi: mark qc as inactive to prevent the interrupt handler
4927 * from completing the command twice later, before the error handler
4928 * is called. (when rc != 0 and atapi request sense is needed)
4929 */
4930 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4931 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4932
1da177e4 4933 /* call completion callback */
77853bf2 4934 qc->complete_fn(qc);
1da177e4
LT
4935}
4936
39599a53
TH
4937static void fill_result_tf(struct ata_queued_cmd *qc)
4938{
4939 struct ata_port *ap = qc->ap;
4940
39599a53 4941 qc->result_tf.flags = qc->tf.flags;
22183bf5 4942 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4943}
4944
00115e0f
TH
4945static void ata_verify_xfer(struct ata_queued_cmd *qc)
4946{
4947 struct ata_device *dev = qc->dev;
4948
00115e0f
TH
4949 if (ata_is_nodata(qc->tf.protocol))
4950 return;
4951
4952 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4953 return;
4954
4955 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4956}
4957
f686bcb8
TH
4958/**
4959 * ata_qc_complete - Complete an active ATA command
4960 * @qc: Command to complete
f686bcb8 4961 *
1aadf5c3
TH
4962 * Indicate to the mid and upper layers that an ATA command has
4963 * completed, with either an ok or not-ok status.
4964 *
4965 * Refrain from calling this function multiple times when
4966 * successfully completing multiple NCQ commands.
4967 * ata_qc_complete_multiple() should be used instead, which will
4968 * properly update IRQ expect state.
f686bcb8
TH
4969 *
4970 * LOCKING:
cca3974e 4971 * spin_lock_irqsave(host lock)
f686bcb8
TH
4972 */
4973void ata_qc_complete(struct ata_queued_cmd *qc)
4974{
4975 struct ata_port *ap = qc->ap;
4976
4977 /* XXX: New EH and old EH use different mechanisms to
4978 * synchronize EH with regular execution path.
4979 *
4980 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4981 * Normal execution path is responsible for not accessing a
4982 * failed qc. libata core enforces the rule by returning NULL
4983 * from ata_qc_from_tag() for failed qcs.
4984 *
4985 * Old EH depends on ata_qc_complete() nullifying completion
4986 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4987 * not synchronize with interrupt handler. Only PIO task is
4988 * taken care of.
4989 */
4990 if (ap->ops->error_handler) {
4dbfa39b
TH
4991 struct ata_device *dev = qc->dev;
4992 struct ata_eh_info *ehi = &dev->link->eh_info;
4993
f686bcb8
TH
4994 if (unlikely(qc->err_mask))
4995 qc->flags |= ATA_QCFLAG_FAILED;
4996
f08dc1ac
TH
4997 /*
4998 * Finish internal commands without any further processing
4999 * and always with the result TF filled.
5000 */
5001 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 5002 fill_result_tf(qc);
255c03d1 5003 trace_ata_qc_complete_internal(qc);
f08dc1ac
TH
5004 __ata_qc_complete(qc);
5005 return;
5006 }
f4b31db9 5007
f08dc1ac
TH
5008 /*
5009 * Non-internal qc has failed. Fill the result TF and
5010 * summon EH.
5011 */
5012 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5013 fill_result_tf(qc);
255c03d1 5014 trace_ata_qc_complete_failed(qc);
f08dc1ac 5015 ata_qc_schedule_eh(qc);
f4b31db9 5016 return;
f686bcb8
TH
5017 }
5018
4dc738ed
TH
5019 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5020
f686bcb8
TH
5021 /* read result TF if requested */
5022 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5023 fill_result_tf(qc);
f686bcb8 5024
255c03d1 5025 trace_ata_qc_complete_done(qc);
4dbfa39b
TH
5026 /* Some commands need post-processing after successful
5027 * completion.
5028 */
5029 switch (qc->tf.command) {
5030 case ATA_CMD_SET_FEATURES:
5031 if (qc->tf.feature != SETFEATURES_WC_ON &&
5032 qc->tf.feature != SETFEATURES_WC_OFF)
5033 break;
5034 /* fall through */
5035 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5036 case ATA_CMD_SET_MULTI: /* multi_count changed */
5037 /* revalidate device */
5038 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5039 ata_port_schedule_eh(ap);
5040 break;
054a5fba
TH
5041
5042 case ATA_CMD_SLEEP:
5043 dev->flags |= ATA_DFLAG_SLEEPING;
5044 break;
4dbfa39b
TH
5045 }
5046
00115e0f
TH
5047 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5048 ata_verify_xfer(qc);
5049
f686bcb8
TH
5050 __ata_qc_complete(qc);
5051 } else {
5052 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5053 return;
5054
5055 /* read result TF if failed or requested */
5056 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5057 fill_result_tf(qc);
f686bcb8
TH
5058
5059 __ata_qc_complete(qc);
5060 }
5061}
5062
dedaf2b0
TH
5063/**
5064 * ata_qc_complete_multiple - Complete multiple qcs successfully
5065 * @ap: port in question
5066 * @qc_active: new qc_active mask
dedaf2b0
TH
5067 *
5068 * Complete in-flight commands. This functions is meant to be
5069 * called from low-level driver's interrupt routine to complete
5070 * requests normally. ap->qc_active and @qc_active is compared
5071 * and commands are completed accordingly.
5072 *
1aadf5c3
TH
5073 * Always use this function when completing multiple NCQ commands
5074 * from IRQ handlers instead of calling ata_qc_complete()
5075 * multiple times to keep IRQ expect status properly in sync.
5076 *
dedaf2b0 5077 * LOCKING:
cca3974e 5078 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5079 *
5080 * RETURNS:
5081 * Number of completed commands on success, -errno otherwise.
5082 */
79f97dad 5083int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5084{
5085 int nr_done = 0;
5086 u32 done_mask;
dedaf2b0
TH
5087
5088 done_mask = ap->qc_active ^ qc_active;
5089
5090 if (unlikely(done_mask & qc_active)) {
a9a79dfe
JP
5091 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5092 ap->qc_active, qc_active);
dedaf2b0
TH
5093 return -EINVAL;
5094 }
5095
43768180 5096 while (done_mask) {
dedaf2b0 5097 struct ata_queued_cmd *qc;
43768180 5098 unsigned int tag = __ffs(done_mask);
dedaf2b0 5099
43768180
JA
5100 qc = ata_qc_from_tag(ap, tag);
5101 if (qc) {
dedaf2b0
TH
5102 ata_qc_complete(qc);
5103 nr_done++;
5104 }
43768180 5105 done_mask &= ~(1 << tag);
dedaf2b0
TH
5106 }
5107
5108 return nr_done;
5109}
5110
1da177e4
LT
5111/**
5112 * ata_qc_issue - issue taskfile to device
5113 * @qc: command to issue to device
5114 *
5115 * Prepare an ATA command to submission to device.
5116 * This includes mapping the data into a DMA-able
5117 * area, filling in the S/G table, and finally
5118 * writing the taskfile to hardware, starting the command.
5119 *
5120 * LOCKING:
cca3974e 5121 * spin_lock_irqsave(host lock)
1da177e4 5122 */
8e0e694a 5123void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5124{
5125 struct ata_port *ap = qc->ap;
9af5c9c9 5126 struct ata_link *link = qc->dev->link;
405e66b3 5127 u8 prot = qc->tf.protocol;
1da177e4 5128
dedaf2b0
TH
5129 /* Make sure only one non-NCQ command is outstanding. The
5130 * check is skipped for old EH because it reuses active qc to
5131 * request ATAPI sense.
5132 */
efcb3cf7 5133 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5134
1973a023 5135 if (ata_is_ncq(prot)) {
efcb3cf7 5136 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5137
5138 if (!link->sactive)
5139 ap->nr_active_links++;
9af5c9c9 5140 link->sactive |= 1 << qc->tag;
dedaf2b0 5141 } else {
efcb3cf7 5142 WARN_ON_ONCE(link->sactive);
da917d69
TH
5143
5144 ap->nr_active_links++;
9af5c9c9 5145 link->active_tag = qc->tag;
dedaf2b0
TH
5146 }
5147
e4a70e76 5148 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5149 ap->qc_active |= 1 << qc->tag;
e4a70e76 5150
60f5d6ef
TH
5151 /*
5152 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5153 * non-zero sg if the command is a data command.
5154 */
60f5d6ef
TH
5155 if (WARN_ON_ONCE(ata_is_data(prot) &&
5156 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5157 goto sys_err;
f92a2636 5158
405e66b3 5159 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5160 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5161 if (ata_sg_setup(qc))
60f5d6ef 5162 goto sys_err;
1da177e4 5163
cf480626 5164 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5165 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5166 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5167 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5168 ata_link_abort(link);
5169 return;
5170 }
5171
1da177e4 5172 ap->ops->qc_prep(qc);
255c03d1 5173 trace_ata_qc_issue(qc);
8e0e694a
TH
5174 qc->err_mask |= ap->ops->qc_issue(qc);
5175 if (unlikely(qc->err_mask))
5176 goto err;
5177 return;
1da177e4 5178
60f5d6ef 5179sys_err:
8e0e694a
TH
5180 qc->err_mask |= AC_ERR_SYSTEM;
5181err:
5182 ata_qc_complete(qc);
1da177e4
LT
5183}
5184
34bf2170
TH
5185/**
5186 * sata_scr_valid - test whether SCRs are accessible
936fd732 5187 * @link: ATA link to test SCR accessibility for
34bf2170 5188 *
936fd732 5189 * Test whether SCRs are accessible for @link.
34bf2170
TH
5190 *
5191 * LOCKING:
5192 * None.
5193 *
5194 * RETURNS:
5195 * 1 if SCRs are accessible, 0 otherwise.
5196 */
936fd732 5197int sata_scr_valid(struct ata_link *link)
34bf2170 5198{
936fd732
TH
5199 struct ata_port *ap = link->ap;
5200
a16abc0b 5201 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5202}
5203
5204/**
5205 * sata_scr_read - read SCR register of the specified port
936fd732 5206 * @link: ATA link to read SCR for
34bf2170
TH
5207 * @reg: SCR to read
5208 * @val: Place to store read value
5209 *
936fd732 5210 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5211 * guaranteed to succeed if @link is ap->link, the cable type of
5212 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5213 *
5214 * LOCKING:
633273a3 5215 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5216 *
5217 * RETURNS:
5218 * 0 on success, negative errno on failure.
5219 */
936fd732 5220int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5221{
633273a3 5222 if (ata_is_host_link(link)) {
633273a3 5223 if (sata_scr_valid(link))
82ef04fb 5224 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5225 return -EOPNOTSUPP;
5226 }
5227
5228 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5229}
5230
5231/**
5232 * sata_scr_write - write SCR register of the specified port
936fd732 5233 * @link: ATA link to write SCR for
34bf2170
TH
5234 * @reg: SCR to write
5235 * @val: value to write
5236 *
936fd732 5237 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5238 * guaranteed to succeed if @link is ap->link, the cable type of
5239 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5240 *
5241 * LOCKING:
633273a3 5242 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5243 *
5244 * RETURNS:
5245 * 0 on success, negative errno on failure.
5246 */
936fd732 5247int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5248{
633273a3 5249 if (ata_is_host_link(link)) {
633273a3 5250 if (sata_scr_valid(link))
82ef04fb 5251 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5252 return -EOPNOTSUPP;
5253 }
936fd732 5254
633273a3 5255 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5256}
5257
5258/**
5259 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5260 * @link: ATA link to write SCR for
34bf2170
TH
5261 * @reg: SCR to write
5262 * @val: value to write
5263 *
5264 * This function is identical to sata_scr_write() except that this
5265 * function performs flush after writing to the register.
5266 *
5267 * LOCKING:
633273a3 5268 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5269 *
5270 * RETURNS:
5271 * 0 on success, negative errno on failure.
5272 */
936fd732 5273int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5274{
633273a3 5275 if (ata_is_host_link(link)) {
633273a3 5276 int rc;
da3dbb17 5277
633273a3 5278 if (sata_scr_valid(link)) {
82ef04fb 5279 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5280 if (rc == 0)
82ef04fb 5281 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5282 return rc;
5283 }
5284 return -EOPNOTSUPP;
34bf2170 5285 }
633273a3
TH
5286
5287 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5288}
5289
5290/**
b1c72916 5291 * ata_phys_link_online - test whether the given link is online
936fd732 5292 * @link: ATA link to test
34bf2170 5293 *
936fd732
TH
5294 * Test whether @link is online. Note that this function returns
5295 * 0 if online status of @link cannot be obtained, so
5296 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5297 *
5298 * LOCKING:
5299 * None.
5300 *
5301 * RETURNS:
b5b3fa38 5302 * True if the port online status is available and online.
34bf2170 5303 */
b1c72916 5304bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5305{
5306 u32 sstatus;
5307
936fd732 5308 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5309 ata_sstatus_online(sstatus))
b5b3fa38
TH
5310 return true;
5311 return false;
34bf2170
TH
5312}
5313
5314/**
b1c72916 5315 * ata_phys_link_offline - test whether the given link is offline
936fd732 5316 * @link: ATA link to test
34bf2170 5317 *
936fd732
TH
5318 * Test whether @link is offline. Note that this function
5319 * returns 0 if offline status of @link cannot be obtained, so
5320 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5321 *
5322 * LOCKING:
5323 * None.
5324 *
5325 * RETURNS:
b5b3fa38 5326 * True if the port offline status is available and offline.
34bf2170 5327 */
b1c72916 5328bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5329{
5330 u32 sstatus;
5331
936fd732 5332 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5333 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5334 return true;
5335 return false;
34bf2170 5336}
0baab86b 5337
b1c72916
TH
5338/**
5339 * ata_link_online - test whether the given link is online
5340 * @link: ATA link to test
5341 *
5342 * Test whether @link is online. This is identical to
5343 * ata_phys_link_online() when there's no slave link. When
5344 * there's a slave link, this function should only be called on
5345 * the master link and will return true if any of M/S links is
5346 * online.
5347 *
5348 * LOCKING:
5349 * None.
5350 *
5351 * RETURNS:
5352 * True if the port online status is available and online.
5353 */
5354bool ata_link_online(struct ata_link *link)
5355{
5356 struct ata_link *slave = link->ap->slave_link;
5357
5358 WARN_ON(link == slave); /* shouldn't be called on slave link */
5359
5360 return ata_phys_link_online(link) ||
5361 (slave && ata_phys_link_online(slave));
5362}
5363
5364/**
5365 * ata_link_offline - test whether the given link is offline
5366 * @link: ATA link to test
5367 *
5368 * Test whether @link is offline. This is identical to
5369 * ata_phys_link_offline() when there's no slave link. When
5370 * there's a slave link, this function should only be called on
5371 * the master link and will return true if both M/S links are
5372 * offline.
5373 *
5374 * LOCKING:
5375 * None.
5376 *
5377 * RETURNS:
5378 * True if the port offline status is available and offline.
5379 */
5380bool ata_link_offline(struct ata_link *link)
5381{
5382 struct ata_link *slave = link->ap->slave_link;
5383
5384 WARN_ON(link == slave); /* shouldn't be called on slave link */
5385
5386 return ata_phys_link_offline(link) &&
5387 (!slave || ata_phys_link_offline(slave));
5388}
5389
6ffa01d8 5390#ifdef CONFIG_PM
bc6e7c4b
DW
5391static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5392 unsigned int action, unsigned int ehi_flags,
5393 bool async)
500530f6 5394{
5ef41082 5395 struct ata_link *link;
500530f6 5396 unsigned long flags;
500530f6 5397
5ef41082
LM
5398 /* Previous resume operation might still be in
5399 * progress. Wait for PM_PENDING to clear.
5400 */
5401 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5402 ata_port_wait_eh(ap);
5403 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5404 }
500530f6 5405
5ef41082
LM
5406 /* request PM ops to EH */
5407 spin_lock_irqsave(ap->lock, flags);
500530f6 5408
5ef41082 5409 ap->pm_mesg = mesg;
5ef41082
LM
5410 ap->pflags |= ATA_PFLAG_PM_PENDING;
5411 ata_for_each_link(link, ap, HOST_FIRST) {
5412 link->eh_info.action |= action;
5413 link->eh_info.flags |= ehi_flags;
5414 }
500530f6 5415
5ef41082 5416 ata_port_schedule_eh(ap);
500530f6 5417
5ef41082 5418 spin_unlock_irqrestore(ap->lock, flags);
500530f6 5419
2fcbdcb4 5420 if (!async) {
5ef41082
LM
5421 ata_port_wait_eh(ap);
5422 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
500530f6 5423 }
500530f6
TH
5424}
5425
bc6e7c4b
DW
5426/*
5427 * On some hardware, device fails to respond after spun down for suspend. As
5428 * the device won't be used before being resumed, we don't need to touch the
5429 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5430 *
5431 * http://thread.gmane.org/gmane.linux.ide/46764
5432 */
5433static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5434 | ATA_EHI_NO_AUTOPSY
5435 | ATA_EHI_NO_RECOVERY;
5436
5437static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5ef41082 5438{
bc6e7c4b 5439 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5ef41082
LM
5440}
5441
bc6e7c4b 5442static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5443{
bc6e7c4b 5444 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
2fcbdcb4
DW
5445}
5446
bc6e7c4b 5447static int ata_port_pm_suspend(struct device *dev)
5ef41082 5448{
bc6e7c4b
DW
5449 struct ata_port *ap = to_ata_port(dev);
5450
5ef41082
LM
5451 if (pm_runtime_suspended(dev))
5452 return 0;
5453
bc6e7c4b
DW
5454 ata_port_suspend(ap, PMSG_SUSPEND);
5455 return 0;
33574d68
LM
5456}
5457
bc6e7c4b 5458static int ata_port_pm_freeze(struct device *dev)
33574d68 5459{
bc6e7c4b
DW
5460 struct ata_port *ap = to_ata_port(dev);
5461
33574d68 5462 if (pm_runtime_suspended(dev))
f5e6d0d0 5463 return 0;
33574d68 5464
bc6e7c4b
DW
5465 ata_port_suspend(ap, PMSG_FREEZE);
5466 return 0;
33574d68
LM
5467}
5468
bc6e7c4b 5469static int ata_port_pm_poweroff(struct device *dev)
33574d68 5470{
bc6e7c4b
DW
5471 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5472 return 0;
5ef41082
LM
5473}
5474
bc6e7c4b
DW
5475static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5476 | ATA_EHI_QUIET;
5ef41082 5477
bc6e7c4b
DW
5478static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5479{
5480 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5ef41082
LM
5481}
5482
bc6e7c4b 5483static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5484{
bc6e7c4b 5485 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
2fcbdcb4
DW
5486}
5487
bc6e7c4b 5488static int ata_port_pm_resume(struct device *dev)
e90b1e5a 5489{
200421a8 5490 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
bc6e7c4b
DW
5491 pm_runtime_disable(dev);
5492 pm_runtime_set_active(dev);
5493 pm_runtime_enable(dev);
5494 return 0;
e90b1e5a
LM
5495}
5496
7e15e9be
AL
5497/*
5498 * For ODDs, the upper layer will poll for media change every few seconds,
5499 * which will make it enter and leave suspend state every few seconds. And
5500 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5501 * is very little and the ODD may malfunction after constantly being reset.
5502 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5503 * ODD is attached to the port.
5504 */
9ee4f393
LM
5505static int ata_port_runtime_idle(struct device *dev)
5506{
7e15e9be
AL
5507 struct ata_port *ap = to_ata_port(dev);
5508 struct ata_link *link;
5509 struct ata_device *adev;
5510
5511 ata_for_each_link(link, ap, HOST_FIRST) {
5512 ata_for_each_dev(adev, link, ENABLED)
5513 if (adev->class == ATA_DEV_ATAPI &&
5514 !zpodd_dev_enabled(adev))
5515 return -EBUSY;
5516 }
5517
45f0a85c 5518 return 0;
9ee4f393
LM
5519}
5520
a7ff60db
AL
5521static int ata_port_runtime_suspend(struct device *dev)
5522{
bc6e7c4b
DW
5523 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5524 return 0;
a7ff60db
AL
5525}
5526
5527static int ata_port_runtime_resume(struct device *dev)
5528{
bc6e7c4b
DW
5529 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5530 return 0;
a7ff60db
AL
5531}
5532
5ef41082 5533static const struct dev_pm_ops ata_port_pm_ops = {
bc6e7c4b
DW
5534 .suspend = ata_port_pm_suspend,
5535 .resume = ata_port_pm_resume,
5536 .freeze = ata_port_pm_freeze,
5537 .thaw = ata_port_pm_resume,
5538 .poweroff = ata_port_pm_poweroff,
5539 .restore = ata_port_pm_resume,
9ee4f393 5540
a7ff60db
AL
5541 .runtime_suspend = ata_port_runtime_suspend,
5542 .runtime_resume = ata_port_runtime_resume,
9ee4f393 5543 .runtime_idle = ata_port_runtime_idle,
5ef41082
LM
5544};
5545
2fcbdcb4
DW
5546/* sas ports don't participate in pm runtime management of ata_ports,
5547 * and need to resume ata devices at the domain level, not the per-port
5548 * level. sas suspend/resume is async to allow parallel port recovery
5549 * since sas has multiple ata_port instances per Scsi_Host.
5550 */
bc6e7c4b 5551void ata_sas_port_suspend(struct ata_port *ap)
2fcbdcb4 5552{
bc6e7c4b 5553 ata_port_suspend_async(ap, PMSG_SUSPEND);
2fcbdcb4 5554}
bc6e7c4b 5555EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
2fcbdcb4 5556
bc6e7c4b 5557void ata_sas_port_resume(struct ata_port *ap)
2fcbdcb4 5558{
bc6e7c4b 5559 ata_port_resume_async(ap, PMSG_RESUME);
2fcbdcb4 5560}
bc6e7c4b 5561EXPORT_SYMBOL_GPL(ata_sas_port_resume);
2fcbdcb4 5562
500530f6 5563/**
cca3974e
JG
5564 * ata_host_suspend - suspend host
5565 * @host: host to suspend
500530f6
TH
5566 * @mesg: PM message
5567 *
5ef41082 5568 * Suspend @host. Actual operation is performed by port suspend.
500530f6 5569 */
cca3974e 5570int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5571{
5ef41082
LM
5572 host->dev->power.power_state = mesg;
5573 return 0;
500530f6
TH
5574}
5575
5576/**
cca3974e
JG
5577 * ata_host_resume - resume host
5578 * @host: host to resume
500530f6 5579 *
5ef41082 5580 * Resume @host. Actual operation is performed by port resume.
500530f6 5581 */
cca3974e 5582void ata_host_resume(struct ata_host *host)
500530f6 5583{
72ad6ec4 5584 host->dev->power.power_state = PMSG_ON;
500530f6 5585}
6ffa01d8 5586#endif
500530f6 5587
5ef41082
LM
5588struct device_type ata_port_type = {
5589 .name = "ata_port",
5590#ifdef CONFIG_PM
5591 .pm = &ata_port_pm_ops,
5592#endif
5593};
5594
3ef3b43d
TH
5595/**
5596 * ata_dev_init - Initialize an ata_device structure
5597 * @dev: Device structure to initialize
5598 *
5599 * Initialize @dev in preparation for probing.
5600 *
5601 * LOCKING:
5602 * Inherited from caller.
5603 */
5604void ata_dev_init(struct ata_device *dev)
5605{
b1c72916 5606 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5607 struct ata_port *ap = link->ap;
72fa4b74
TH
5608 unsigned long flags;
5609
b1c72916 5610 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5611 link->sata_spd_limit = link->hw_sata_spd_limit;
5612 link->sata_spd = 0;
5a04bf4b 5613
72fa4b74
TH
5614 /* High bits of dev->flags are used to record warm plug
5615 * requests which occur asynchronously. Synchronize using
cca3974e 5616 * host lock.
72fa4b74 5617 */
ba6a1308 5618 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5619 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5620 dev->horkage = 0;
ba6a1308 5621 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5622
99cf610a
TH
5623 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5624 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5625 dev->pio_mask = UINT_MAX;
5626 dev->mwdma_mask = UINT_MAX;
5627 dev->udma_mask = UINT_MAX;
5628}
5629
4fb37a25
TH
5630/**
5631 * ata_link_init - Initialize an ata_link structure
5632 * @ap: ATA port link is attached to
5633 * @link: Link structure to initialize
8989805d 5634 * @pmp: Port multiplier port number
4fb37a25
TH
5635 *
5636 * Initialize @link.
5637 *
5638 * LOCKING:
5639 * Kernel thread context (may sleep)
5640 */
fb7fd614 5641void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5642{
5643 int i;
5644
5645 /* clear everything except for devices */
d9027470
GG
5646 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5647 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5648
5649 link->ap = ap;
8989805d 5650 link->pmp = pmp;
4fb37a25
TH
5651 link->active_tag = ATA_TAG_POISON;
5652 link->hw_sata_spd_limit = UINT_MAX;
5653
5654 /* can't use iterator, ap isn't initialized yet */
5655 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5656 struct ata_device *dev = &link->device[i];
5657
5658 dev->link = link;
5659 dev->devno = dev - link->device;
110f66d2
TH
5660#ifdef CONFIG_ATA_ACPI
5661 dev->gtf_filter = ata_acpi_gtf_filter;
5662#endif
4fb37a25
TH
5663 ata_dev_init(dev);
5664 }
5665}
5666
5667/**
5668 * sata_link_init_spd - Initialize link->sata_spd_limit
5669 * @link: Link to configure sata_spd_limit for
5670 *
5671 * Initialize @link->[hw_]sata_spd_limit to the currently
5672 * configured value.
5673 *
5674 * LOCKING:
5675 * Kernel thread context (may sleep).
5676 *
5677 * RETURNS:
5678 * 0 on success, -errno on failure.
5679 */
fb7fd614 5680int sata_link_init_spd(struct ata_link *link)
4fb37a25 5681{
33267325 5682 u8 spd;
4fb37a25
TH
5683 int rc;
5684
d127ea7b 5685 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5686 if (rc)
5687 return rc;
5688
d127ea7b 5689 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5690 if (spd)
5691 link->hw_sata_spd_limit &= (1 << spd) - 1;
5692
05944bdf 5693 ata_force_link_limits(link);
33267325 5694
4fb37a25
TH
5695 link->sata_spd_limit = link->hw_sata_spd_limit;
5696
5697 return 0;
5698}
5699
1da177e4 5700/**
f3187195
TH
5701 * ata_port_alloc - allocate and initialize basic ATA port resources
5702 * @host: ATA host this allocated port belongs to
1da177e4 5703 *
f3187195
TH
5704 * Allocate and initialize basic ATA port resources.
5705 *
5706 * RETURNS:
5707 * Allocate ATA port on success, NULL on failure.
0cba632b 5708 *
1da177e4 5709 * LOCKING:
f3187195 5710 * Inherited from calling layer (may sleep).
1da177e4 5711 */
f3187195 5712struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5713{
f3187195 5714 struct ata_port *ap;
1da177e4 5715
f3187195
TH
5716 DPRINTK("ENTER\n");
5717
5718 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5719 if (!ap)
5720 return NULL;
4fca377f 5721
7b3a24c5 5722 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
cca3974e 5723 ap->lock = &host->lock;
f3187195 5724 ap->print_id = -1;
e628dc99 5725 ap->local_port_no = -1;
cca3974e 5726 ap->host = host;
f3187195 5727 ap->dev = host->dev;
bd5d825c
BP
5728
5729#if defined(ATA_VERBOSE_DEBUG)
5730 /* turn on all debugging levels */
5731 ap->msg_enable = 0x00FF;
5732#elif defined(ATA_DEBUG)
5733 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5734#else
0dd4b21f 5735 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5736#endif
1da177e4 5737
ad72cf98 5738 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
5739 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5740 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5741 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5742 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5743 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5744 init_timer_deferrable(&ap->fastdrain_timer);
5745 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5746 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5747
838df628 5748 ap->cbl = ATA_CBL_NONE;
838df628 5749
8989805d 5750 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5751
5752#ifdef ATA_IRQ_TRAP
5753 ap->stats.unhandled_irq = 1;
5754 ap->stats.idle_irq = 1;
5755#endif
270390e1
TH
5756 ata_sff_port_init(ap);
5757
1da177e4 5758 return ap;
1da177e4
LT
5759}
5760
f0d36efd
TH
5761static void ata_host_release(struct device *gendev, void *res)
5762{
5763 struct ata_host *host = dev_get_drvdata(gendev);
5764 int i;
5765
1aa506e4
TH
5766 for (i = 0; i < host->n_ports; i++) {
5767 struct ata_port *ap = host->ports[i];
5768
4911487a
TH
5769 if (!ap)
5770 continue;
5771
5772 if (ap->scsi_host)
1aa506e4
TH
5773 scsi_host_put(ap->scsi_host);
5774
633273a3 5775 kfree(ap->pmp_link);
b1c72916 5776 kfree(ap->slave_link);
4911487a 5777 kfree(ap);
1aa506e4
TH
5778 host->ports[i] = NULL;
5779 }
5780
1aa56cca 5781 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5782}
5783
f3187195
TH
5784/**
5785 * ata_host_alloc - allocate and init basic ATA host resources
5786 * @dev: generic device this host is associated with
5787 * @max_ports: maximum number of ATA ports associated with this host
5788 *
5789 * Allocate and initialize basic ATA host resources. LLD calls
5790 * this function to allocate a host, initializes it fully and
5791 * attaches it using ata_host_register().
5792 *
5793 * @max_ports ports are allocated and host->n_ports is
5794 * initialized to @max_ports. The caller is allowed to decrease
5795 * host->n_ports before calling ata_host_register(). The unused
5796 * ports will be automatically freed on registration.
5797 *
5798 * RETURNS:
5799 * Allocate ATA host on success, NULL on failure.
5800 *
5801 * LOCKING:
5802 * Inherited from calling layer (may sleep).
5803 */
5804struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5805{
5806 struct ata_host *host;
5807 size_t sz;
5808 int i;
5809
5810 DPRINTK("ENTER\n");
5811
5812 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5813 return NULL;
5814
5815 /* alloc a container for our list of ATA ports (buses) */
5816 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5817 /* alloc a container for our list of ATA ports (buses) */
5818 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5819 if (!host)
5820 goto err_out;
5821
5822 devres_add(dev, host);
5823 dev_set_drvdata(dev, host);
5824
5825 spin_lock_init(&host->lock);
c0c362b6 5826 mutex_init(&host->eh_mutex);
f3187195
TH
5827 host->dev = dev;
5828 host->n_ports = max_ports;
5829
5830 /* allocate ports bound to this host */
5831 for (i = 0; i < max_ports; i++) {
5832 struct ata_port *ap;
5833
5834 ap = ata_port_alloc(host);
5835 if (!ap)
5836 goto err_out;
5837
5838 ap->port_no = i;
5839 host->ports[i] = ap;
5840 }
5841
5842 devres_remove_group(dev, NULL);
5843 return host;
5844
5845 err_out:
5846 devres_release_group(dev, NULL);
5847 return NULL;
5848}
5849
f5cda257
TH
5850/**
5851 * ata_host_alloc_pinfo - alloc host and init with port_info array
5852 * @dev: generic device this host is associated with
5853 * @ppi: array of ATA port_info to initialize host with
5854 * @n_ports: number of ATA ports attached to this host
5855 *
5856 * Allocate ATA host and initialize with info from @ppi. If NULL
5857 * terminated, @ppi may contain fewer entries than @n_ports. The
5858 * last entry will be used for the remaining ports.
5859 *
5860 * RETURNS:
5861 * Allocate ATA host on success, NULL on failure.
5862 *
5863 * LOCKING:
5864 * Inherited from calling layer (may sleep).
5865 */
5866struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5867 const struct ata_port_info * const * ppi,
5868 int n_ports)
5869{
5870 const struct ata_port_info *pi;
5871 struct ata_host *host;
5872 int i, j;
5873
5874 host = ata_host_alloc(dev, n_ports);
5875 if (!host)
5876 return NULL;
5877
5878 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5879 struct ata_port *ap = host->ports[i];
5880
5881 if (ppi[j])
5882 pi = ppi[j++];
5883
5884 ap->pio_mask = pi->pio_mask;
5885 ap->mwdma_mask = pi->mwdma_mask;
5886 ap->udma_mask = pi->udma_mask;
5887 ap->flags |= pi->flags;
0c88758b 5888 ap->link.flags |= pi->link_flags;
f5cda257
TH
5889 ap->ops = pi->port_ops;
5890
5891 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5892 host->ops = pi->port_ops;
f5cda257
TH
5893 }
5894
5895 return host;
5896}
5897
b1c72916
TH
5898/**
5899 * ata_slave_link_init - initialize slave link
5900 * @ap: port to initialize slave link for
5901 *
5902 * Create and initialize slave link for @ap. This enables slave
5903 * link handling on the port.
5904 *
5905 * In libata, a port contains links and a link contains devices.
5906 * There is single host link but if a PMP is attached to it,
5907 * there can be multiple fan-out links. On SATA, there's usually
5908 * a single device connected to a link but PATA and SATA
5909 * controllers emulating TF based interface can have two - master
5910 * and slave.
5911 *
5912 * However, there are a few controllers which don't fit into this
5913 * abstraction too well - SATA controllers which emulate TF
5914 * interface with both master and slave devices but also have
5915 * separate SCR register sets for each device. These controllers
5916 * need separate links for physical link handling
5917 * (e.g. onlineness, link speed) but should be treated like a
5918 * traditional M/S controller for everything else (e.g. command
5919 * issue, softreset).
5920 *
5921 * slave_link is libata's way of handling this class of
5922 * controllers without impacting core layer too much. For
5923 * anything other than physical link handling, the default host
5924 * link is used for both master and slave. For physical link
5925 * handling, separate @ap->slave_link is used. All dirty details
5926 * are implemented inside libata core layer. From LLD's POV, the
5927 * only difference is that prereset, hardreset and postreset are
5928 * called once more for the slave link, so the reset sequence
5929 * looks like the following.
5930 *
5931 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5932 * softreset(M) -> postreset(M) -> postreset(S)
5933 *
5934 * Note that softreset is called only for the master. Softreset
5935 * resets both M/S by definition, so SRST on master should handle
5936 * both (the standard method will work just fine).
5937 *
5938 * LOCKING:
5939 * Should be called before host is registered.
5940 *
5941 * RETURNS:
5942 * 0 on success, -errno on failure.
5943 */
5944int ata_slave_link_init(struct ata_port *ap)
5945{
5946 struct ata_link *link;
5947
5948 WARN_ON(ap->slave_link);
5949 WARN_ON(ap->flags & ATA_FLAG_PMP);
5950
5951 link = kzalloc(sizeof(*link), GFP_KERNEL);
5952 if (!link)
5953 return -ENOMEM;
5954
5955 ata_link_init(ap, link, 1);
5956 ap->slave_link = link;
5957 return 0;
5958}
5959
32ebbc0c
TH
5960static void ata_host_stop(struct device *gendev, void *res)
5961{
5962 struct ata_host *host = dev_get_drvdata(gendev);
5963 int i;
5964
5965 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5966
5967 for (i = 0; i < host->n_ports; i++) {
5968 struct ata_port *ap = host->ports[i];
5969
5970 if (ap->ops->port_stop)
5971 ap->ops->port_stop(ap);
5972 }
5973
5974 if (host->ops->host_stop)
5975 host->ops->host_stop(host);
5976}
5977
029cfd6b
TH
5978/**
5979 * ata_finalize_port_ops - finalize ata_port_operations
5980 * @ops: ata_port_operations to finalize
5981 *
5982 * An ata_port_operations can inherit from another ops and that
5983 * ops can again inherit from another. This can go on as many
5984 * times as necessary as long as there is no loop in the
5985 * inheritance chain.
5986 *
5987 * Ops tables are finalized when the host is started. NULL or
5988 * unspecified entries are inherited from the closet ancestor
5989 * which has the method and the entry is populated with it.
5990 * After finalization, the ops table directly points to all the
5991 * methods and ->inherits is no longer necessary and cleared.
5992 *
5993 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5994 *
5995 * LOCKING:
5996 * None.
5997 */
5998static void ata_finalize_port_ops(struct ata_port_operations *ops)
5999{
2da67659 6000 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
6001 const struct ata_port_operations *cur;
6002 void **begin = (void **)ops;
6003 void **end = (void **)&ops->inherits;
6004 void **pp;
6005
6006 if (!ops || !ops->inherits)
6007 return;
6008
6009 spin_lock(&lock);
6010
6011 for (cur = ops->inherits; cur; cur = cur->inherits) {
6012 void **inherit = (void **)cur;
6013
6014 for (pp = begin; pp < end; pp++, inherit++)
6015 if (!*pp)
6016 *pp = *inherit;
6017 }
6018
6019 for (pp = begin; pp < end; pp++)
6020 if (IS_ERR(*pp))
6021 *pp = NULL;
6022
6023 ops->inherits = NULL;
6024
6025 spin_unlock(&lock);
6026}
6027
ecef7253
TH
6028/**
6029 * ata_host_start - start and freeze ports of an ATA host
6030 * @host: ATA host to start ports for
6031 *
6032 * Start and then freeze ports of @host. Started status is
6033 * recorded in host->flags, so this function can be called
6034 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6035 * once. If host->ops isn't initialized yet, its set to the
6036 * first non-dummy port ops.
ecef7253
TH
6037 *
6038 * LOCKING:
6039 * Inherited from calling layer (may sleep).
6040 *
6041 * RETURNS:
6042 * 0 if all ports are started successfully, -errno otherwise.
6043 */
6044int ata_host_start(struct ata_host *host)
6045{
32ebbc0c
TH
6046 int have_stop = 0;
6047 void *start_dr = NULL;
ecef7253
TH
6048 int i, rc;
6049
6050 if (host->flags & ATA_HOST_STARTED)
6051 return 0;
6052
029cfd6b
TH
6053 ata_finalize_port_ops(host->ops);
6054
ecef7253
TH
6055 for (i = 0; i < host->n_ports; i++) {
6056 struct ata_port *ap = host->ports[i];
6057
029cfd6b
TH
6058 ata_finalize_port_ops(ap->ops);
6059
f3187195
TH
6060 if (!host->ops && !ata_port_is_dummy(ap))
6061 host->ops = ap->ops;
6062
32ebbc0c
TH
6063 if (ap->ops->port_stop)
6064 have_stop = 1;
6065 }
6066
6067 if (host->ops->host_stop)
6068 have_stop = 1;
6069
6070 if (have_stop) {
6071 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6072 if (!start_dr)
6073 return -ENOMEM;
6074 }
6075
6076 for (i = 0; i < host->n_ports; i++) {
6077 struct ata_port *ap = host->ports[i];
6078
ecef7253
TH
6079 if (ap->ops->port_start) {
6080 rc = ap->ops->port_start(ap);
6081 if (rc) {
0f9fe9b7 6082 if (rc != -ENODEV)
a44fec1f
JP
6083 dev_err(host->dev,
6084 "failed to start port %d (errno=%d)\n",
6085 i, rc);
ecef7253
TH
6086 goto err_out;
6087 }
6088 }
ecef7253
TH
6089 ata_eh_freeze_port(ap);
6090 }
6091
32ebbc0c
TH
6092 if (start_dr)
6093 devres_add(host->dev, start_dr);
ecef7253
TH
6094 host->flags |= ATA_HOST_STARTED;
6095 return 0;
6096
6097 err_out:
6098 while (--i >= 0) {
6099 struct ata_port *ap = host->ports[i];
6100
6101 if (ap->ops->port_stop)
6102 ap->ops->port_stop(ap);
6103 }
32ebbc0c 6104 devres_free(start_dr);
ecef7253
TH
6105 return rc;
6106}
6107
b03732f0 6108/**
8d8e7d13 6109 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
cca3974e
JG
6110 * @host: host to initialize
6111 * @dev: device host is attached to
cca3974e 6112 * @ops: port_ops
b03732f0 6113 *
b03732f0 6114 */
cca3974e 6115void ata_host_init(struct ata_host *host, struct device *dev,
8d8e7d13 6116 struct ata_port_operations *ops)
b03732f0 6117{
cca3974e 6118 spin_lock_init(&host->lock);
c0c362b6 6119 mutex_init(&host->eh_mutex);
1a112d10 6120 host->n_tags = ATA_MAX_QUEUE - 1;
cca3974e 6121 host->dev = dev;
cca3974e 6122 host->ops = ops;
b03732f0
BK
6123}
6124
9508a66f 6125void __ata_port_probe(struct ata_port *ap)
79318057 6126{
9508a66f
DW
6127 struct ata_eh_info *ehi = &ap->link.eh_info;
6128 unsigned long flags;
886ad09f 6129
9508a66f
DW
6130 /* kick EH for boot probing */
6131 spin_lock_irqsave(ap->lock, flags);
79318057 6132
9508a66f
DW
6133 ehi->probe_mask |= ATA_ALL_DEVICES;
6134 ehi->action |= ATA_EH_RESET;
6135 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
79318057 6136
9508a66f
DW
6137 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6138 ap->pflags |= ATA_PFLAG_LOADING;
6139 ata_port_schedule_eh(ap);
79318057 6140
9508a66f
DW
6141 spin_unlock_irqrestore(ap->lock, flags);
6142}
79318057 6143
9508a66f
DW
6144int ata_port_probe(struct ata_port *ap)
6145{
6146 int rc = 0;
79318057 6147
9508a66f
DW
6148 if (ap->ops->error_handler) {
6149 __ata_port_probe(ap);
79318057
AV
6150 ata_port_wait_eh(ap);
6151 } else {
6152 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6153 rc = ata_bus_probe(ap);
6154 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 6155 }
238c9cf9
JB
6156 return rc;
6157}
6158
6159
6160static void async_port_probe(void *data, async_cookie_t cookie)
6161{
6162 struct ata_port *ap = data;
4fca377f 6163
238c9cf9
JB
6164 /*
6165 * If we're not allowed to scan this host in parallel,
6166 * we need to wait until all previous scans have completed
6167 * before going further.
6168 * Jeff Garzik says this is only within a controller, so we
6169 * don't need to wait for port 0, only for later ports.
6170 */
6171 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6172 async_synchronize_cookie(cookie);
6173
6174 (void)ata_port_probe(ap);
f29d3b23
AV
6175
6176 /* in order to keep device order, we need to synchronize at this point */
6177 async_synchronize_cookie(cookie);
6178
6179 ata_scsi_scan_host(ap, 1);
79318057 6180}
238c9cf9 6181
f3187195
TH
6182/**
6183 * ata_host_register - register initialized ATA host
6184 * @host: ATA host to register
6185 * @sht: template for SCSI host
6186 *
6187 * Register initialized ATA host. @host is allocated using
6188 * ata_host_alloc() and fully initialized by LLD. This function
6189 * starts ports, registers @host with ATA and SCSI layers and
6190 * probe registered devices.
6191 *
6192 * LOCKING:
6193 * Inherited from calling layer (may sleep).
6194 *
6195 * RETURNS:
6196 * 0 on success, -errno otherwise.
6197 */
6198int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6199{
6200 int i, rc;
6201
1a112d10 6202 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
1871ee13 6203
f3187195
TH
6204 /* host must have been started */
6205 if (!(host->flags & ATA_HOST_STARTED)) {
a44fec1f 6206 dev_err(host->dev, "BUG: trying to register unstarted host\n");
f3187195
TH
6207 WARN_ON(1);
6208 return -EINVAL;
6209 }
6210
6211 /* Blow away unused ports. This happens when LLD can't
6212 * determine the exact number of ports to allocate at
6213 * allocation time.
6214 */
6215 for (i = host->n_ports; host->ports[i]; i++)
6216 kfree(host->ports[i]);
6217
6218 /* give ports names and add SCSI hosts */
e628dc99 6219 for (i = 0; i < host->n_ports; i++) {
85d6725b 6220 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
e628dc99
DM
6221 host->ports[i]->local_port_no = i + 1;
6222 }
4fca377f 6223
d9027470
GG
6224 /* Create associated sysfs transport objects */
6225 for (i = 0; i < host->n_ports; i++) {
6226 rc = ata_tport_add(host->dev,host->ports[i]);
6227 if (rc) {
6228 goto err_tadd;
6229 }
6230 }
6231
f3187195
TH
6232 rc = ata_scsi_add_hosts(host, sht);
6233 if (rc)
d9027470 6234 goto err_tadd;
f3187195
TH
6235
6236 /* set cable, sata_spd_limit and report */
6237 for (i = 0; i < host->n_ports; i++) {
6238 struct ata_port *ap = host->ports[i];
f3187195
TH
6239 unsigned long xfer_mask;
6240
6241 /* set SATA cable type if still unset */
6242 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6243 ap->cbl = ATA_CBL_SATA;
6244
6245 /* init sata_spd_limit to the current value */
4fb37a25 6246 sata_link_init_spd(&ap->link);
b1c72916
TH
6247 if (ap->slave_link)
6248 sata_link_init_spd(ap->slave_link);
f3187195 6249
cbcdd875 6250 /* print per-port info to dmesg */
f3187195
TH
6251 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6252 ap->udma_mask);
6253
abf6e8ed 6254 if (!ata_port_is_dummy(ap)) {
a9a79dfe
JP
6255 ata_port_info(ap, "%cATA max %s %s\n",
6256 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6257 ata_mode_string(xfer_mask),
6258 ap->link.eh_info.desc);
abf6e8ed
TH
6259 ata_ehi_clear_desc(&ap->link.eh_info);
6260 } else
a9a79dfe 6261 ata_port_info(ap, "DUMMY\n");
f3187195
TH
6262 }
6263
f6005354 6264 /* perform each probe asynchronously */
f3187195
TH
6265 for (i = 0; i < host->n_ports; i++) {
6266 struct ata_port *ap = host->ports[i];
79318057 6267 async_schedule(async_port_probe, ap);
f3187195 6268 }
f3187195
TH
6269
6270 return 0;
d9027470
GG
6271
6272 err_tadd:
6273 while (--i >= 0) {
6274 ata_tport_delete(host->ports[i]);
6275 }
6276 return rc;
6277
f3187195
TH
6278}
6279
f5cda257
TH
6280/**
6281 * ata_host_activate - start host, request IRQ and register it
6282 * @host: target ATA host
6283 * @irq: IRQ to request
6284 * @irq_handler: irq_handler used when requesting IRQ
6285 * @irq_flags: irq_flags used when requesting IRQ
6286 * @sht: scsi_host_template to use when registering the host
6287 *
6288 * After allocating an ATA host and initializing it, most libata
6289 * LLDs perform three steps to activate the host - start host,
6290 * request IRQ and register it. This helper takes necessasry
6291 * arguments and performs the three steps in one go.
6292 *
3d46b2e2
PM
6293 * An invalid IRQ skips the IRQ registration and expects the host to
6294 * have set polling mode on the port. In this case, @irq_handler
6295 * should be NULL.
6296 *
f5cda257
TH
6297 * LOCKING:
6298 * Inherited from calling layer (may sleep).
6299 *
6300 * RETURNS:
6301 * 0 on success, -errno otherwise.
6302 */
6303int ata_host_activate(struct ata_host *host, int irq,
6304 irq_handler_t irq_handler, unsigned long irq_flags,
6305 struct scsi_host_template *sht)
6306{
cbcdd875 6307 int i, rc;
7e22c002 6308 char *irq_desc;
f5cda257
TH
6309
6310 rc = ata_host_start(host);
6311 if (rc)
6312 return rc;
6313
3d46b2e2
PM
6314 /* Special case for polling mode */
6315 if (!irq) {
6316 WARN_ON(irq_handler);
6317 return ata_host_register(host, sht);
6318 }
6319
7e22c002
HK
6320 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6321 dev_driver_string(host->dev),
6322 dev_name(host->dev));
6323 if (!irq_desc)
6324 return -ENOMEM;
6325
f5cda257 6326 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7e22c002 6327 irq_desc, host);
f5cda257
TH
6328 if (rc)
6329 return rc;
6330
cbcdd875
TH
6331 for (i = 0; i < host->n_ports; i++)
6332 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6333
f5cda257
TH
6334 rc = ata_host_register(host, sht);
6335 /* if failed, just free the IRQ and leave ports alone */
6336 if (rc)
6337 devm_free_irq(host->dev, irq, host);
6338
6339 return rc;
6340}
6341
720ba126
TH
6342/**
6343 * ata_port_detach - Detach ATA port in prepration of device removal
6344 * @ap: ATA port to be detached
6345 *
6346 * Detach all ATA devices and the associated SCSI devices of @ap;
6347 * then, remove the associated SCSI host. @ap is guaranteed to
6348 * be quiescent on return from this function.
6349 *
6350 * LOCKING:
6351 * Kernel thread context (may sleep).
6352 */
741b7763 6353static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6354{
6355 unsigned long flags;
a6f9bf4d
LK
6356 struct ata_link *link;
6357 struct ata_device *dev;
720ba126
TH
6358
6359 if (!ap->ops->error_handler)
c3cf30a9 6360 goto skip_eh;
720ba126
TH
6361
6362 /* tell EH we're leaving & flush EH */
ba6a1308 6363 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6364 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6365 ata_port_schedule_eh(ap);
ba6a1308 6366 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6367
ece180d1 6368 /* wait till EH commits suicide */
720ba126
TH
6369 ata_port_wait_eh(ap);
6370
ece180d1
TH
6371 /* it better be dead now */
6372 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6373
afe2c511 6374 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6375
c3cf30a9 6376 skip_eh:
a6f9bf4d
LK
6377 /* clean up zpodd on port removal */
6378 ata_for_each_link(link, ap, HOST_FIRST) {
6379 ata_for_each_dev(dev, link, ALL) {
6380 if (zpodd_dev_enabled(dev))
6381 zpodd_exit(dev);
6382 }
6383 }
d9027470
GG
6384 if (ap->pmp_link) {
6385 int i;
6386 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6387 ata_tlink_delete(&ap->pmp_link[i]);
6388 }
720ba126 6389 /* remove the associated SCSI host */
cca3974e 6390 scsi_remove_host(ap->scsi_host);
c5700766 6391 ata_tport_delete(ap);
720ba126
TH
6392}
6393
0529c159
TH
6394/**
6395 * ata_host_detach - Detach all ports of an ATA host
6396 * @host: Host to detach
6397 *
6398 * Detach all ports of @host.
6399 *
6400 * LOCKING:
6401 * Kernel thread context (may sleep).
6402 */
6403void ata_host_detach(struct ata_host *host)
6404{
6405 int i;
6406
6407 for (i = 0; i < host->n_ports; i++)
6408 ata_port_detach(host->ports[i]);
562f0c2d
TH
6409
6410 /* the host is dead now, dissociate ACPI */
6411 ata_acpi_dissociate(host);
0529c159
TH
6412}
6413
374b1873
JG
6414#ifdef CONFIG_PCI
6415
1da177e4
LT
6416/**
6417 * ata_pci_remove_one - PCI layer callback for device removal
6418 * @pdev: PCI device that was removed
6419 *
b878ca5d
TH
6420 * PCI layer indicates to libata via this hook that hot-unplug or
6421 * module unload event has occurred. Detach all ports. Resource
6422 * release is handled via devres.
1da177e4
LT
6423 *
6424 * LOCKING:
6425 * Inherited from PCI layer (may sleep).
6426 */
f0d36efd 6427void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6428{
04a3f5b7 6429 struct ata_host *host = pci_get_drvdata(pdev);
1da177e4 6430
b878ca5d 6431 ata_host_detach(host);
1da177e4
LT
6432}
6433
6434/* move to PCI subsystem */
057ace5e 6435int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6436{
6437 unsigned long tmp = 0;
6438
6439 switch (bits->width) {
6440 case 1: {
6441 u8 tmp8 = 0;
6442 pci_read_config_byte(pdev, bits->reg, &tmp8);
6443 tmp = tmp8;
6444 break;
6445 }
6446 case 2: {
6447 u16 tmp16 = 0;
6448 pci_read_config_word(pdev, bits->reg, &tmp16);
6449 tmp = tmp16;
6450 break;
6451 }
6452 case 4: {
6453 u32 tmp32 = 0;
6454 pci_read_config_dword(pdev, bits->reg, &tmp32);
6455 tmp = tmp32;
6456 break;
6457 }
6458
6459 default:
6460 return -EINVAL;
6461 }
6462
6463 tmp &= bits->mask;
6464
6465 return (tmp == bits->val) ? 1 : 0;
6466}
9b847548 6467
6ffa01d8 6468#ifdef CONFIG_PM
3c5100c1 6469void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6470{
6471 pci_save_state(pdev);
4c90d971 6472 pci_disable_device(pdev);
500530f6 6473
3a2d5b70 6474 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6475 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6476}
6477
553c4aa6 6478int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6479{
553c4aa6
TH
6480 int rc;
6481
9b847548
JA
6482 pci_set_power_state(pdev, PCI_D0);
6483 pci_restore_state(pdev);
553c4aa6 6484
b878ca5d 6485 rc = pcim_enable_device(pdev);
553c4aa6 6486 if (rc) {
a44fec1f
JP
6487 dev_err(&pdev->dev,
6488 "failed to enable device after resume (%d)\n", rc);
553c4aa6
TH
6489 return rc;
6490 }
6491
9b847548 6492 pci_set_master(pdev);
553c4aa6 6493 return 0;
500530f6
TH
6494}
6495
3c5100c1 6496int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6497{
04a3f5b7 6498 struct ata_host *host = pci_get_drvdata(pdev);
500530f6
TH
6499 int rc = 0;
6500
cca3974e 6501 rc = ata_host_suspend(host, mesg);
500530f6
TH
6502 if (rc)
6503 return rc;
6504
3c5100c1 6505 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6506
6507 return 0;
6508}
6509
6510int ata_pci_device_resume(struct pci_dev *pdev)
6511{
04a3f5b7 6512 struct ata_host *host = pci_get_drvdata(pdev);
553c4aa6 6513 int rc;
500530f6 6514
553c4aa6
TH
6515 rc = ata_pci_device_do_resume(pdev);
6516 if (rc == 0)
6517 ata_host_resume(host);
6518 return rc;
9b847548 6519}
6ffa01d8
TH
6520#endif /* CONFIG_PM */
6521
1da177e4
LT
6522#endif /* CONFIG_PCI */
6523
b7db04d9
BN
6524/**
6525 * ata_platform_remove_one - Platform layer callback for device removal
6526 * @pdev: Platform device that was removed
6527 *
6528 * Platform layer indicates to libata via this hook that hot-unplug or
6529 * module unload event has occurred. Detach all ports. Resource
6530 * release is handled via devres.
6531 *
6532 * LOCKING:
6533 * Inherited from platform layer (may sleep).
6534 */
6535int ata_platform_remove_one(struct platform_device *pdev)
6536{
6537 struct ata_host *host = platform_get_drvdata(pdev);
6538
6539 ata_host_detach(host);
6540
6541 return 0;
6542}
6543
33267325
TH
6544static int __init ata_parse_force_one(char **cur,
6545 struct ata_force_ent *force_ent,
6546 const char **reason)
6547{
0f5f264b 6548 static const struct ata_force_param force_tbl[] __initconst = {
33267325
TH
6549 { "40c", .cbl = ATA_CBL_PATA40 },
6550 { "80c", .cbl = ATA_CBL_PATA80 },
6551 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6552 { "unk", .cbl = ATA_CBL_PATA_UNK },
6553 { "ign", .cbl = ATA_CBL_PATA_IGN },
6554 { "sata", .cbl = ATA_CBL_SATA },
6555 { "1.5Gbps", .spd_limit = 1 },
6556 { "3.0Gbps", .spd_limit = 2 },
6557 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6558 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
d7b16e4f
MP
6559 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6560 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
43c9c591 6561 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6562 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6563 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6564 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6565 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6566 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6567 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6568 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6569 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6570 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6571 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6572 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6573 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6574 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6575 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6576 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6577 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6578 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6579 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6580 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6581 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6582 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6583 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6584 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6585 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6586 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6587 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6588 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6589 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6590 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6591 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6592 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6593 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6594 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6595 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6596 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6597 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6598 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
ca6d43b0 6599 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
966fbe19 6600 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
b8bd6dc3 6601 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
33267325
TH
6602 };
6603 char *start = *cur, *p = *cur;
6604 char *id, *val, *endp;
6605 const struct ata_force_param *match_fp = NULL;
6606 int nr_matches = 0, i;
6607
6608 /* find where this param ends and update *cur */
6609 while (*p != '\0' && *p != ',')
6610 p++;
6611
6612 if (*p == '\0')
6613 *cur = p;
6614 else
6615 *cur = p + 1;
6616
6617 *p = '\0';
6618
6619 /* parse */
6620 p = strchr(start, ':');
6621 if (!p) {
6622 val = strstrip(start);
6623 goto parse_val;
6624 }
6625 *p = '\0';
6626
6627 id = strstrip(start);
6628 val = strstrip(p + 1);
6629
6630 /* parse id */
6631 p = strchr(id, '.');
6632 if (p) {
6633 *p++ = '\0';
6634 force_ent->device = simple_strtoul(p, &endp, 10);
6635 if (p == endp || *endp != '\0') {
6636 *reason = "invalid device";
6637 return -EINVAL;
6638 }
6639 }
6640
6641 force_ent->port = simple_strtoul(id, &endp, 10);
6642 if (p == endp || *endp != '\0') {
6643 *reason = "invalid port/link";
6644 return -EINVAL;
6645 }
6646
6647 parse_val:
6648 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6649 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6650 const struct ata_force_param *fp = &force_tbl[i];
6651
6652 if (strncasecmp(val, fp->name, strlen(val)))
6653 continue;
6654
6655 nr_matches++;
6656 match_fp = fp;
6657
6658 if (strcasecmp(val, fp->name) == 0) {
6659 nr_matches = 1;
6660 break;
6661 }
6662 }
6663
6664 if (!nr_matches) {
6665 *reason = "unknown value";
6666 return -EINVAL;
6667 }
6668 if (nr_matches > 1) {
6669 *reason = "ambigious value";
6670 return -EINVAL;
6671 }
6672
6673 force_ent->param = *match_fp;
6674
6675 return 0;
6676}
6677
6678static void __init ata_parse_force_param(void)
6679{
6680 int idx = 0, size = 1;
6681 int last_port = -1, last_device = -1;
6682 char *p, *cur, *next;
6683
6684 /* calculate maximum number of params and allocate force_tbl */
6685 for (p = ata_force_param_buf; *p; p++)
6686 if (*p == ',')
6687 size++;
6688
6689 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6690 if (!ata_force_tbl) {
6691 printk(KERN_WARNING "ata: failed to extend force table, "
6692 "libata.force ignored\n");
6693 return;
6694 }
6695
6696 /* parse and populate the table */
6697 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6698 const char *reason = "";
6699 struct ata_force_ent te = { .port = -1, .device = -1 };
6700
6701 next = cur;
6702 if (ata_parse_force_one(&next, &te, &reason)) {
6703 printk(KERN_WARNING "ata: failed to parse force "
6704 "parameter \"%s\" (%s)\n",
6705 cur, reason);
6706 continue;
6707 }
6708
6709 if (te.port == -1) {
6710 te.port = last_port;
6711 te.device = last_device;
6712 }
6713
6714 ata_force_tbl[idx++] = te;
6715
6716 last_port = te.port;
6717 last_device = te.device;
6718 }
6719
6720 ata_force_tbl_size = idx;
6721}
1da177e4 6722
1da177e4
LT
6723static int __init ata_init(void)
6724{
d9027470 6725 int rc;
270390e1 6726
33267325
TH
6727 ata_parse_force_param();
6728
270390e1 6729 rc = ata_sff_init();
ad72cf98
TH
6730 if (rc) {
6731 kfree(ata_force_tbl);
6732 return rc;
6733 }
453b07ac 6734
d9027470
GG
6735 libata_transport_init();
6736 ata_scsi_transport_template = ata_attach_transport();
6737 if (!ata_scsi_transport_template) {
6738 ata_sff_exit();
6739 rc = -ENOMEM;
6740 goto err_out;
4fca377f 6741 }
d9027470 6742
1da177e4
LT
6743 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6744 return 0;
d9027470
GG
6745
6746err_out:
6747 return rc;
1da177e4
LT
6748}
6749
6750static void __exit ata_exit(void)
6751{
d9027470
GG
6752 ata_release_transport(ata_scsi_transport_template);
6753 libata_transport_exit();
270390e1 6754 ata_sff_exit();
33267325 6755 kfree(ata_force_tbl);
1da177e4
LT
6756}
6757
a4625085 6758subsys_initcall(ata_init);
1da177e4
LT
6759module_exit(ata_exit);
6760
9990b6f3 6761static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6762
6763int ata_ratelimit(void)
6764{
9990b6f3 6765 return __ratelimit(&ratelimit);
67846b30
JG
6766}
6767
c0c362b6
TH
6768/**
6769 * ata_msleep - ATA EH owner aware msleep
6770 * @ap: ATA port to attribute the sleep to
6771 * @msecs: duration to sleep in milliseconds
6772 *
6773 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6774 * ownership is released before going to sleep and reacquired
6775 * after the sleep is complete. IOW, other ports sharing the
6776 * @ap->host will be allowed to own the EH while this task is
6777 * sleeping.
6778 *
6779 * LOCKING:
6780 * Might sleep.
6781 */
97750ceb
TH
6782void ata_msleep(struct ata_port *ap, unsigned int msecs)
6783{
c0c362b6
TH
6784 bool owns_eh = ap && ap->host->eh_owner == current;
6785
6786 if (owns_eh)
6787 ata_eh_release(ap);
6788
848c3920
AVM
6789 if (msecs < 20) {
6790 unsigned long usecs = msecs * USEC_PER_MSEC;
6791 usleep_range(usecs, usecs + 50);
6792 } else {
6793 msleep(msecs);
6794 }
c0c362b6
TH
6795
6796 if (owns_eh)
6797 ata_eh_acquire(ap);
97750ceb
TH
6798}
6799
c22daff4
TH
6800/**
6801 * ata_wait_register - wait until register value changes
97750ceb 6802 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
6803 * @reg: IO-mapped register
6804 * @mask: Mask to apply to read register value
6805 * @val: Wait condition
341c2c95
TH
6806 * @interval: polling interval in milliseconds
6807 * @timeout: timeout in milliseconds
c22daff4
TH
6808 *
6809 * Waiting for some bits of register to change is a common
6810 * operation for ATA controllers. This function reads 32bit LE
6811 * IO-mapped register @reg and tests for the following condition.
6812 *
6813 * (*@reg & mask) != val
6814 *
6815 * If the condition is met, it returns; otherwise, the process is
6816 * repeated after @interval_msec until timeout.
6817 *
6818 * LOCKING:
6819 * Kernel thread context (may sleep)
6820 *
6821 * RETURNS:
6822 * The final register value.
6823 */
97750ceb 6824u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 6825 unsigned long interval, unsigned long timeout)
c22daff4 6826{
341c2c95 6827 unsigned long deadline;
c22daff4
TH
6828 u32 tmp;
6829
6830 tmp = ioread32(reg);
6831
6832 /* Calculate timeout _after_ the first read to make sure
6833 * preceding writes reach the controller before starting to
6834 * eat away the timeout.
6835 */
341c2c95 6836 deadline = ata_deadline(jiffies, timeout);
c22daff4 6837
341c2c95 6838 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 6839 ata_msleep(ap, interval);
c22daff4
TH
6840 tmp = ioread32(reg);
6841 }
6842
6843 return tmp;
6844}
6845
8393b811
GM
6846/**
6847 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6848 * @link: Link receiving the event
6849 *
6850 * Test whether the received PHY event has to be ignored or not.
6851 *
6852 * LOCKING:
6853 * None:
6854 *
6855 * RETURNS:
6856 * True if the event has to be ignored.
6857 */
6858bool sata_lpm_ignore_phy_events(struct ata_link *link)
6859{
09c5b480
GM
6860 unsigned long lpm_timeout = link->last_lpm_change +
6861 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6862
8393b811 6863 /* if LPM is enabled, PHYRDY doesn't mean anything */
09c5b480
GM
6864 if (link->lpm_policy > ATA_LPM_MAX_POWER)
6865 return true;
6866
6867 /* ignore the first PHY event after the LPM policy changed
6868 * as it is might be spurious
6869 */
6870 if ((link->flags & ATA_LFLAG_CHANGED) &&
6871 time_before(jiffies, lpm_timeout))
6872 return true;
6873
6874 return false;
8393b811
GM
6875}
6876EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6877
dd5b06c4
TH
6878/*
6879 * Dummy port_ops
6880 */
182d7bba 6881static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6882{
182d7bba 6883 return AC_ERR_SYSTEM;
dd5b06c4
TH
6884}
6885
182d7bba 6886static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6887{
182d7bba 6888 /* truly dummy */
dd5b06c4
TH
6889}
6890
029cfd6b 6891struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6892 .qc_prep = ata_noop_qc_prep,
6893 .qc_issue = ata_dummy_qc_issue,
182d7bba 6894 .error_handler = ata_dummy_error_handler,
e4a9c373
DW
6895 .sched_eh = ata_std_sched_eh,
6896 .end_eh = ata_std_end_eh,
dd5b06c4
TH
6897};
6898
21b0ad4f
TH
6899const struct ata_port_info ata_dummy_port_info = {
6900 .port_ops = &ata_dummy_port_ops,
6901};
6902
a9a79dfe
JP
6903/*
6904 * Utility print functions
6905 */
d7bead1b
JP
6906void ata_port_printk(const struct ata_port *ap, const char *level,
6907 const char *fmt, ...)
a9a79dfe
JP
6908{
6909 struct va_format vaf;
6910 va_list args;
a9a79dfe
JP
6911
6912 va_start(args, fmt);
6913
6914 vaf.fmt = fmt;
6915 vaf.va = &args;
6916
d7bead1b 6917 printk("%sata%u: %pV", level, ap->print_id, &vaf);
a9a79dfe
JP
6918
6919 va_end(args);
a9a79dfe
JP
6920}
6921EXPORT_SYMBOL(ata_port_printk);
6922
d7bead1b
JP
6923void ata_link_printk(const struct ata_link *link, const char *level,
6924 const char *fmt, ...)
a9a79dfe
JP
6925{
6926 struct va_format vaf;
6927 va_list args;
a9a79dfe
JP
6928
6929 va_start(args, fmt);
6930
6931 vaf.fmt = fmt;
6932 vaf.va = &args;
6933
6934 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
d7bead1b
JP
6935 printk("%sata%u.%02u: %pV",
6936 level, link->ap->print_id, link->pmp, &vaf);
a9a79dfe 6937 else
d7bead1b
JP
6938 printk("%sata%u: %pV",
6939 level, link->ap->print_id, &vaf);
a9a79dfe
JP
6940
6941 va_end(args);
a9a79dfe
JP
6942}
6943EXPORT_SYMBOL(ata_link_printk);
6944
d7bead1b 6945void ata_dev_printk(const struct ata_device *dev, const char *level,
a9a79dfe
JP
6946 const char *fmt, ...)
6947{
6948 struct va_format vaf;
6949 va_list args;
a9a79dfe
JP
6950
6951 va_start(args, fmt);
6952
6953 vaf.fmt = fmt;
6954 vaf.va = &args;
6955
d7bead1b
JP
6956 printk("%sata%u.%02u: %pV",
6957 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6958 &vaf);
a9a79dfe
JP
6959
6960 va_end(args);
a9a79dfe
JP
6961}
6962EXPORT_SYMBOL(ata_dev_printk);
6963
06296a1e
JP
6964void ata_print_version(const struct device *dev, const char *version)
6965{
6966 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6967}
6968EXPORT_SYMBOL(ata_print_version);
6969
1da177e4
LT
6970/*
6971 * libata is essentially a library of internal helper functions for
6972 * low-level ATA host controller drivers. As such, the API/ABI is
6973 * likely to change as new drivers are added and updated.
6974 * Do not depend on ABI/API stability.
6975 */
e9c83914
TH
6976EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6977EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6978EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6979EXPORT_SYMBOL_GPL(ata_base_port_ops);
6980EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6981EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6982EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6983EXPORT_SYMBOL_GPL(ata_link_next);
6984EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6985EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 6986EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 6987EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6988EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6989EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6990EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6991EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6992EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6993EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6994EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6995EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6996EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6997EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6998EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6999EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7000EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7001EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7002EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7003EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7004EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7005EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7006EXPORT_SYMBOL_GPL(ata_mode_string);
7007EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 7008EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 7009EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 7010EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 7011EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7012EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 7013EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
7014EXPORT_SYMBOL_GPL(sata_link_debounce);
7015EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 7016EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 7017EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 7018EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 7019EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 7020EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7021EXPORT_SYMBOL_GPL(ata_dev_classify);
7022EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 7023EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 7024EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 7025EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 7026EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7027EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7028EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7029EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
f6e67035 7030EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
34bf2170
TH
7031EXPORT_SYMBOL_GPL(sata_scr_valid);
7032EXPORT_SYMBOL_GPL(sata_scr_read);
7033EXPORT_SYMBOL_GPL(sata_scr_write);
7034EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7035EXPORT_SYMBOL_GPL(ata_link_online);
7036EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7037#ifdef CONFIG_PM
cca3974e
JG
7038EXPORT_SYMBOL_GPL(ata_host_suspend);
7039EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7040#endif /* CONFIG_PM */
6a62a04d
TH
7041EXPORT_SYMBOL_GPL(ata_id_string);
7042EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 7043EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
7044EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7045
1bc4ccff 7046EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7047EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7048EXPORT_SYMBOL_GPL(ata_timing_compute);
7049EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 7050EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 7051
1da177e4
LT
7052#ifdef CONFIG_PCI
7053EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 7054EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7055#ifdef CONFIG_PM
500530f6
TH
7056EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7057EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7058EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7059EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7060#endif /* CONFIG_PM */
1da177e4 7061#endif /* CONFIG_PCI */
9b847548 7062
b7db04d9
BN
7063EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7064
b64bbc39
TH
7065EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7066EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7067EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7068EXPORT_SYMBOL_GPL(ata_port_desc);
7069#ifdef CONFIG_PCI
7070EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7071#endif /* CONFIG_PCI */
7b70fc03 7072EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7073EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7074EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7075EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7076EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7077EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7078EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7079EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7080EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 7081EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 7082EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 7083EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
7084
7085EXPORT_SYMBOL_GPL(ata_cable_40wire);
7086EXPORT_SYMBOL_GPL(ata_cable_80wire);
7087EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7088EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7089EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 1.631317 seconds and 5 git commands to generate.