pata_pcmcia: Add support for dumb 8bit IDE emulations
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/highmem.h>
50#include <linux/spinlock.h>
51#include <linux/blkdev.h>
52#include <linux/delay.h>
53#include <linux/timer.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
67846b30 58#include <linux/jiffies.h>
378f058c 59#include <linux/scatterlist.h>
2dcb407e 60#include <linux/io.h>
1da177e4 61#include <scsi/scsi.h>
193515d5 62#include <scsi/scsi_cmnd.h>
1da177e4
LT
63#include <scsi/scsi_host.h>
64#include <linux/libata.h>
1da177e4
LT
65#include <asm/semaphore.h>
66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
1da177e4
LT
68
69#include "libata.h"
70
fda0efc5 71
d7bb4cc7 72/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
73const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 76
3373efd8
TH
77static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
80static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
3373efd8 82static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 83static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 84
f3187195 85unsigned int ata_print_id = 1;
1da177e4
LT
86static struct workqueue_struct *ata_wq;
87
453b07ac
TH
88struct workqueue_struct *ata_aux_wq;
89
418dc1f5 90int atapi_enabled = 1;
1623c81e
JG
91module_param(atapi_enabled, int, 0444);
92MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
93
95de719a
AL
94int atapi_dmadir = 0;
95module_param(atapi_dmadir, int, 0444);
96MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
97
baf4fdfa
ML
98int atapi_passthru16 = 1;
99module_param(atapi_passthru16, int, 0444);
100MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
101
c3c013a2
JG
102int libata_fua = 0;
103module_param_named(fua, libata_fua, int, 0444);
104MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
105
2dcb407e 106static int ata_ignore_hpa;
1e999736
AC
107module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
108MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
109
b3a70601
AC
110static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
111module_param_named(dma, libata_dma_mask, int, 0444);
112MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
113
a8601e5f
AM
114static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
115module_param(ata_probe_timeout, int, 0444);
116MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
117
6ebe9d86 118int libata_noacpi = 0;
d7d0dad6 119module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 120MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 121
ae8d4ee7
AC
122int libata_allow_tpm = 0;
123module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
124MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
125
1da177e4
LT
126MODULE_AUTHOR("Jeff Garzik");
127MODULE_DESCRIPTION("Library module for ATA devices");
128MODULE_LICENSE("GPL");
129MODULE_VERSION(DRV_VERSION);
130
0baab86b 131
1da177e4
LT
132/**
133 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
134 * @tf: Taskfile to convert
1da177e4 135 * @pmp: Port multiplier port
9977126c
TH
136 * @is_cmd: This FIS is for command
137 * @fis: Buffer into which data will output
1da177e4
LT
138 *
139 * Converts a standard ATA taskfile to a Serial ATA
140 * FIS structure (Register - Host to Device).
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
9977126c 145void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 146{
9977126c
TH
147 fis[0] = 0x27; /* Register - Host to Device FIS */
148 fis[1] = pmp & 0xf; /* Port multiplier number*/
149 if (is_cmd)
150 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
151
1da177e4
LT
152 fis[2] = tf->command;
153 fis[3] = tf->feature;
154
155 fis[4] = tf->lbal;
156 fis[5] = tf->lbam;
157 fis[6] = tf->lbah;
158 fis[7] = tf->device;
159
160 fis[8] = tf->hob_lbal;
161 fis[9] = tf->hob_lbam;
162 fis[10] = tf->hob_lbah;
163 fis[11] = tf->hob_feature;
164
165 fis[12] = tf->nsect;
166 fis[13] = tf->hob_nsect;
167 fis[14] = 0;
168 fis[15] = tf->ctl;
169
170 fis[16] = 0;
171 fis[17] = 0;
172 fis[18] = 0;
173 fis[19] = 0;
174}
175
176/**
177 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
178 * @fis: Buffer from which data will be input
179 * @tf: Taskfile to output
180 *
e12a1be6 181 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
182 *
183 * LOCKING:
184 * Inherited from caller.
185 */
186
057ace5e 187void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
188{
189 tf->command = fis[2]; /* status */
190 tf->feature = fis[3]; /* error */
191
192 tf->lbal = fis[4];
193 tf->lbam = fis[5];
194 tf->lbah = fis[6];
195 tf->device = fis[7];
196
197 tf->hob_lbal = fis[8];
198 tf->hob_lbam = fis[9];
199 tf->hob_lbah = fis[10];
200
201 tf->nsect = fis[12];
202 tf->hob_nsect = fis[13];
203}
204
8cbd6df1
AL
205static const u8 ata_rw_cmds[] = {
206 /* pio multi */
207 ATA_CMD_READ_MULTI,
208 ATA_CMD_WRITE_MULTI,
209 ATA_CMD_READ_MULTI_EXT,
210 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
211 0,
212 0,
213 0,
214 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
215 /* pio */
216 ATA_CMD_PIO_READ,
217 ATA_CMD_PIO_WRITE,
218 ATA_CMD_PIO_READ_EXT,
219 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
220 0,
221 0,
222 0,
223 0,
8cbd6df1
AL
224 /* dma */
225 ATA_CMD_READ,
226 ATA_CMD_WRITE,
227 ATA_CMD_READ_EXT,
9a3dccc4
TH
228 ATA_CMD_WRITE_EXT,
229 0,
230 0,
231 0,
232 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 233};
1da177e4
LT
234
235/**
8cbd6df1 236 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
237 * @tf: command to examine and configure
238 * @dev: device tf belongs to
1da177e4 239 *
2e9edbf8 240 * Examine the device configuration and tf->flags to calculate
8cbd6df1 241 * the proper read/write commands and protocol to use.
1da177e4
LT
242 *
243 * LOCKING:
244 * caller.
245 */
bd056d7e 246static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 247{
9a3dccc4 248 u8 cmd;
1da177e4 249
9a3dccc4 250 int index, fua, lba48, write;
2e9edbf8 251
9a3dccc4 252 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
253 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
254 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 255
8cbd6df1
AL
256 if (dev->flags & ATA_DFLAG_PIO) {
257 tf->protocol = ATA_PROT_PIO;
9a3dccc4 258 index = dev->multi_count ? 0 : 8;
9af5c9c9 259 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
260 /* Unable to use DMA due to host limitation */
261 tf->protocol = ATA_PROT_PIO;
0565c26d 262 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
263 } else {
264 tf->protocol = ATA_PROT_DMA;
9a3dccc4 265 index = 16;
8cbd6df1 266 }
1da177e4 267
9a3dccc4
TH
268 cmd = ata_rw_cmds[index + fua + lba48 + write];
269 if (cmd) {
270 tf->command = cmd;
271 return 0;
272 }
273 return -1;
1da177e4
LT
274}
275
35b649fe
TH
276/**
277 * ata_tf_read_block - Read block address from ATA taskfile
278 * @tf: ATA taskfile of interest
279 * @dev: ATA device @tf belongs to
280 *
281 * LOCKING:
282 * None.
283 *
284 * Read block address from @tf. This function can handle all
285 * three address formats - LBA, LBA48 and CHS. tf->protocol and
286 * flags select the address format to use.
287 *
288 * RETURNS:
289 * Block address read from @tf.
290 */
291u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
292{
293 u64 block = 0;
294
295 if (tf->flags & ATA_TFLAG_LBA) {
296 if (tf->flags & ATA_TFLAG_LBA48) {
297 block |= (u64)tf->hob_lbah << 40;
298 block |= (u64)tf->hob_lbam << 32;
299 block |= tf->hob_lbal << 24;
300 } else
301 block |= (tf->device & 0xf) << 24;
302
303 block |= tf->lbah << 16;
304 block |= tf->lbam << 8;
305 block |= tf->lbal;
306 } else {
307 u32 cyl, head, sect;
308
309 cyl = tf->lbam | (tf->lbah << 8);
310 head = tf->device & 0xf;
311 sect = tf->lbal;
312
313 block = (cyl * dev->heads + head) * dev->sectors + sect;
314 }
315
316 return block;
317}
318
bd056d7e
TH
319/**
320 * ata_build_rw_tf - Build ATA taskfile for given read/write request
321 * @tf: Target ATA taskfile
322 * @dev: ATA device @tf belongs to
323 * @block: Block address
324 * @n_block: Number of blocks
325 * @tf_flags: RW/FUA etc...
326 * @tag: tag
327 *
328 * LOCKING:
329 * None.
330 *
331 * Build ATA taskfile @tf for read/write request described by
332 * @block, @n_block, @tf_flags and @tag on @dev.
333 *
334 * RETURNS:
335 *
336 * 0 on success, -ERANGE if the request is too large for @dev,
337 * -EINVAL if the request is invalid.
338 */
339int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
340 u64 block, u32 n_block, unsigned int tf_flags,
341 unsigned int tag)
342{
343 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
344 tf->flags |= tf_flags;
345
6d1245bf 346 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
347 /* yay, NCQ */
348 if (!lba_48_ok(block, n_block))
349 return -ERANGE;
350
351 tf->protocol = ATA_PROT_NCQ;
352 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
353
354 if (tf->flags & ATA_TFLAG_WRITE)
355 tf->command = ATA_CMD_FPDMA_WRITE;
356 else
357 tf->command = ATA_CMD_FPDMA_READ;
358
359 tf->nsect = tag << 3;
360 tf->hob_feature = (n_block >> 8) & 0xff;
361 tf->feature = n_block & 0xff;
362
363 tf->hob_lbah = (block >> 40) & 0xff;
364 tf->hob_lbam = (block >> 32) & 0xff;
365 tf->hob_lbal = (block >> 24) & 0xff;
366 tf->lbah = (block >> 16) & 0xff;
367 tf->lbam = (block >> 8) & 0xff;
368 tf->lbal = block & 0xff;
369
370 tf->device = 1 << 6;
371 if (tf->flags & ATA_TFLAG_FUA)
372 tf->device |= 1 << 7;
373 } else if (dev->flags & ATA_DFLAG_LBA) {
374 tf->flags |= ATA_TFLAG_LBA;
375
376 if (lba_28_ok(block, n_block)) {
377 /* use LBA28 */
378 tf->device |= (block >> 24) & 0xf;
379 } else if (lba_48_ok(block, n_block)) {
380 if (!(dev->flags & ATA_DFLAG_LBA48))
381 return -ERANGE;
382
383 /* use LBA48 */
384 tf->flags |= ATA_TFLAG_LBA48;
385
386 tf->hob_nsect = (n_block >> 8) & 0xff;
387
388 tf->hob_lbah = (block >> 40) & 0xff;
389 tf->hob_lbam = (block >> 32) & 0xff;
390 tf->hob_lbal = (block >> 24) & 0xff;
391 } else
392 /* request too large even for LBA48 */
393 return -ERANGE;
394
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
397
398 tf->nsect = n_block & 0xff;
399
400 tf->lbah = (block >> 16) & 0xff;
401 tf->lbam = (block >> 8) & 0xff;
402 tf->lbal = block & 0xff;
403
404 tf->device |= ATA_LBA;
405 } else {
406 /* CHS */
407 u32 sect, head, cyl, track;
408
409 /* The request -may- be too large for CHS addressing. */
410 if (!lba_28_ok(block, n_block))
411 return -ERANGE;
412
413 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
414 return -EINVAL;
415
416 /* Convert LBA to CHS */
417 track = (u32)block / dev->sectors;
418 cyl = track / dev->heads;
419 head = track % dev->heads;
420 sect = (u32)block % dev->sectors + 1;
421
422 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
423 (u32)block, track, cyl, head, sect);
424
425 /* Check whether the converted CHS can fit.
426 Cylinder: 0-65535
427 Head: 0-15
428 Sector: 1-255*/
429 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
430 return -ERANGE;
431
432 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
433 tf->lbal = sect;
434 tf->lbam = cyl;
435 tf->lbah = cyl >> 8;
436 tf->device |= head;
437 }
438
439 return 0;
440}
441
cb95d562
TH
442/**
443 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
444 * @pio_mask: pio_mask
445 * @mwdma_mask: mwdma_mask
446 * @udma_mask: udma_mask
447 *
448 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
449 * unsigned int xfer_mask.
450 *
451 * LOCKING:
452 * None.
453 *
454 * RETURNS:
455 * Packed xfer_mask.
456 */
7dc951ae
TH
457unsigned long ata_pack_xfermask(unsigned long pio_mask,
458 unsigned long mwdma_mask,
459 unsigned long udma_mask)
cb95d562
TH
460{
461 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
462 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
463 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
464}
465
c0489e4e
TH
466/**
467 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
468 * @xfer_mask: xfer_mask to unpack
469 * @pio_mask: resulting pio_mask
470 * @mwdma_mask: resulting mwdma_mask
471 * @udma_mask: resulting udma_mask
472 *
473 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
474 * Any NULL distination masks will be ignored.
475 */
7dc951ae
TH
476void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
477 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
478{
479 if (pio_mask)
480 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
481 if (mwdma_mask)
482 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
483 if (udma_mask)
484 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
485}
486
cb95d562 487static const struct ata_xfer_ent {
be9a50c8 488 int shift, bits;
cb95d562
TH
489 u8 base;
490} ata_xfer_tbl[] = {
70cd071e
TH
491 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
492 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
493 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
494 { -1, },
495};
496
497/**
498 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
499 * @xfer_mask: xfer_mask of interest
500 *
501 * Return matching XFER_* value for @xfer_mask. Only the highest
502 * bit of @xfer_mask is considered.
503 *
504 * LOCKING:
505 * None.
506 *
507 * RETURNS:
70cd071e 508 * Matching XFER_* value, 0xff if no match found.
cb95d562 509 */
7dc951ae 510u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
511{
512 int highbit = fls(xfer_mask) - 1;
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
517 return ent->base + highbit - ent->shift;
70cd071e 518 return 0xff;
cb95d562
TH
519}
520
521/**
522 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_mask for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_mask, 0 if no match found.
532 */
7dc951ae 533unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
539 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
540 & ~((1 << ent->shift) - 1);
cb95d562
TH
541 return 0;
542}
543
544/**
545 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
546 * @xfer_mode: XFER_* of interest
547 *
548 * Return matching xfer_shift for @xfer_mode.
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Matching xfer_shift, -1 if no match found.
555 */
7dc951ae 556int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
557{
558 const struct ata_xfer_ent *ent;
559
560 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
561 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
562 return ent->shift;
563 return -1;
564}
565
1da177e4 566/**
1da7b0d0
TH
567 * ata_mode_string - convert xfer_mask to string
568 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
569 *
570 * Determine string which represents the highest speed
1da7b0d0 571 * (highest bit in @modemask).
1da177e4
LT
572 *
573 * LOCKING:
574 * None.
575 *
576 * RETURNS:
577 * Constant C string representing highest speed listed in
1da7b0d0 578 * @mode_mask, or the constant C string "<n/a>".
1da177e4 579 */
7dc951ae 580const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 581{
75f554bc
TH
582 static const char * const xfer_mode_str[] = {
583 "PIO0",
584 "PIO1",
585 "PIO2",
586 "PIO3",
587 "PIO4",
b352e57d
AC
588 "PIO5",
589 "PIO6",
75f554bc
TH
590 "MWDMA0",
591 "MWDMA1",
592 "MWDMA2",
b352e57d
AC
593 "MWDMA3",
594 "MWDMA4",
75f554bc
TH
595 "UDMA/16",
596 "UDMA/25",
597 "UDMA/33",
598 "UDMA/44",
599 "UDMA/66",
600 "UDMA/100",
601 "UDMA/133",
602 "UDMA7",
603 };
1da7b0d0 604 int highbit;
1da177e4 605
1da7b0d0
TH
606 highbit = fls(xfer_mask) - 1;
607 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
608 return xfer_mode_str[highbit];
1da177e4 609 return "<n/a>";
1da177e4
LT
610}
611
4c360c81
TH
612static const char *sata_spd_string(unsigned int spd)
613{
614 static const char * const spd_str[] = {
615 "1.5 Gbps",
616 "3.0 Gbps",
617 };
618
619 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
620 return "<unknown>";
621 return spd_str[spd - 1];
622}
623
3373efd8 624void ata_dev_disable(struct ata_device *dev)
0b8efb0a 625{
09d7f9b0 626 if (ata_dev_enabled(dev)) {
9af5c9c9 627 if (ata_msg_drv(dev->link->ap))
09d7f9b0 628 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
562f0c2d 629 ata_acpi_on_disable(dev);
4ae72a1e
TH
630 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
631 ATA_DNXFER_QUIET);
0b8efb0a
TH
632 dev->class++;
633 }
634}
635
ca77329f
KCA
636static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
637{
638 struct ata_link *link = dev->link;
639 struct ata_port *ap = link->ap;
640 u32 scontrol;
641 unsigned int err_mask;
642 int rc;
643
644 /*
645 * disallow DIPM for drivers which haven't set
646 * ATA_FLAG_IPM. This is because when DIPM is enabled,
647 * phy ready will be set in the interrupt status on
648 * state changes, which will cause some drivers to
649 * think there are errors - additionally drivers will
650 * need to disable hot plug.
651 */
652 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
653 ap->pm_policy = NOT_AVAILABLE;
654 return -EINVAL;
655 }
656
657 /*
658 * For DIPM, we will only enable it for the
659 * min_power setting.
660 *
661 * Why? Because Disks are too stupid to know that
662 * If the host rejects a request to go to SLUMBER
663 * they should retry at PARTIAL, and instead it
664 * just would give up. So, for medium_power to
665 * work at all, we need to only allow HIPM.
666 */
667 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
668 if (rc)
669 return rc;
670
671 switch (policy) {
672 case MIN_POWER:
673 /* no restrictions on IPM transitions */
674 scontrol &= ~(0x3 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
678
679 /* enable DIPM */
680 if (dev->flags & ATA_DFLAG_DIPM)
681 err_mask = ata_dev_set_feature(dev,
682 SETFEATURES_SATA_ENABLE, SATA_DIPM);
683 break;
684 case MEDIUM_POWER:
685 /* allow IPM to PARTIAL */
686 scontrol &= ~(0x1 << 8);
687 scontrol |= (0x2 << 8);
688 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
689 if (rc)
690 return rc;
691
f5456b63
KCA
692 /*
693 * we don't have to disable DIPM since IPM flags
694 * disallow transitions to SLUMBER, which effectively
695 * disable DIPM if it does not support PARTIAL
696 */
ca77329f
KCA
697 break;
698 case NOT_AVAILABLE:
699 case MAX_PERFORMANCE:
700 /* disable all IPM transitions */
701 scontrol |= (0x3 << 8);
702 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
703 if (rc)
704 return rc;
705
f5456b63
KCA
706 /*
707 * we don't have to disable DIPM since IPM flags
708 * disallow all transitions which effectively
709 * disable DIPM anyway.
710 */
ca77329f
KCA
711 break;
712 }
713
714 /* FIXME: handle SET FEATURES failure */
715 (void) err_mask;
716
717 return 0;
718}
719
720/**
721 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
722 * @dev: device to enable power management
723 * @policy: the link power management policy
ca77329f
KCA
724 *
725 * Enable SATA Interface power management. This will enable
726 * Device Interface Power Management (DIPM) for min_power
727 * policy, and then call driver specific callbacks for
728 * enabling Host Initiated Power management.
729 *
730 * Locking: Caller.
731 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
732 */
733void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
734{
735 int rc = 0;
736 struct ata_port *ap = dev->link->ap;
737
738 /* set HIPM first, then DIPM */
739 if (ap->ops->enable_pm)
740 rc = ap->ops->enable_pm(ap, policy);
741 if (rc)
742 goto enable_pm_out;
743 rc = ata_dev_set_dipm(dev, policy);
744
745enable_pm_out:
746 if (rc)
747 ap->pm_policy = MAX_PERFORMANCE;
748 else
749 ap->pm_policy = policy;
750 return /* rc */; /* hopefully we can use 'rc' eventually */
751}
752
1992a5ed 753#ifdef CONFIG_PM
ca77329f
KCA
754/**
755 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 756 * @dev: device to disable power management
ca77329f
KCA
757 *
758 * Disable SATA Interface power management. This will disable
759 * Device Interface Power Management (DIPM) without changing
760 * policy, call driver specific callbacks for disabling Host
761 * Initiated Power management.
762 *
763 * Locking: Caller.
764 * Returns: void
765 */
766static void ata_dev_disable_pm(struct ata_device *dev)
767{
768 struct ata_port *ap = dev->link->ap;
769
770 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
771 if (ap->ops->disable_pm)
772 ap->ops->disable_pm(ap);
773}
1992a5ed 774#endif /* CONFIG_PM */
ca77329f
KCA
775
776void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
777{
778 ap->pm_policy = policy;
779 ap->link.eh_info.action |= ATA_EHI_LPM;
780 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
781 ata_port_schedule_eh(ap);
782}
783
1992a5ed 784#ifdef CONFIG_PM
ca77329f
KCA
785static void ata_lpm_enable(struct ata_host *host)
786{
787 struct ata_link *link;
788 struct ata_port *ap;
789 struct ata_device *dev;
790 int i;
791
792 for (i = 0; i < host->n_ports; i++) {
793 ap = host->ports[i];
794 ata_port_for_each_link(link, ap) {
795 ata_link_for_each_dev(dev, link)
796 ata_dev_disable_pm(dev);
797 }
798 }
799}
800
801static void ata_lpm_disable(struct ata_host *host)
802{
803 int i;
804
805 for (i = 0; i < host->n_ports; i++) {
806 struct ata_port *ap = host->ports[i];
807 ata_lpm_schedule(ap, ap->pm_policy);
808 }
809}
1992a5ed 810#endif /* CONFIG_PM */
ca77329f
KCA
811
812
1da177e4 813/**
0d5ff566 814 * ata_devchk - PATA device presence detection
1da177e4
LT
815 * @ap: ATA channel to examine
816 * @device: Device to examine (starting at zero)
817 *
818 * This technique was originally described in
819 * Hale Landis's ATADRVR (www.ata-atapi.com), and
820 * later found its way into the ATA/ATAPI spec.
821 *
822 * Write a pattern to the ATA shadow registers,
823 * and if a device is present, it will respond by
824 * correctly storing and echoing back the
825 * ATA shadow register contents.
826 *
827 * LOCKING:
828 * caller.
829 */
830
0d5ff566 831static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
832{
833 struct ata_ioports *ioaddr = &ap->ioaddr;
834 u8 nsect, lbal;
835
836 ap->ops->dev_select(ap, device);
837
0d5ff566
TH
838 iowrite8(0x55, ioaddr->nsect_addr);
839 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 840
0d5ff566
TH
841 iowrite8(0xaa, ioaddr->nsect_addr);
842 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 843
0d5ff566
TH
844 iowrite8(0x55, ioaddr->nsect_addr);
845 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 846
0d5ff566
TH
847 nsect = ioread8(ioaddr->nsect_addr);
848 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
849
850 if ((nsect == 0x55) && (lbal == 0xaa))
851 return 1; /* we found a device */
852
853 return 0; /* nothing found */
854}
855
1da177e4
LT
856/**
857 * ata_dev_classify - determine device type based on ATA-spec signature
858 * @tf: ATA taskfile register set for device to be identified
859 *
860 * Determine from taskfile register contents whether a device is
861 * ATA or ATAPI, as per "Signature and persistence" section
862 * of ATA/PI spec (volume 1, sect 5.14).
863 *
864 * LOCKING:
865 * None.
866 *
867 * RETURNS:
633273a3
TH
868 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
869 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 870 */
057ace5e 871unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
872{
873 /* Apple's open source Darwin code hints that some devices only
874 * put a proper signature into the LBA mid/high registers,
875 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
876 *
877 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
878 * signatures for ATA and ATAPI devices attached on SerialATA,
879 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
880 * spec has never mentioned about using different signatures
881 * for ATA/ATAPI devices. Then, Serial ATA II: Port
882 * Multiplier specification began to use 0x69/0x96 to identify
883 * port multpliers and 0x3c/0xc3 to identify SEMB device.
884 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
885 * 0x69/0x96 shortly and described them as reserved for
886 * SerialATA.
887 *
888 * We follow the current spec and consider that 0x69/0x96
889 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 890 */
633273a3 891 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
892 DPRINTK("found ATA device by sig\n");
893 return ATA_DEV_ATA;
894 }
895
633273a3 896 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
897 DPRINTK("found ATAPI device by sig\n");
898 return ATA_DEV_ATAPI;
899 }
900
633273a3
TH
901 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
902 DPRINTK("found PMP device by sig\n");
903 return ATA_DEV_PMP;
904 }
905
906 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 907 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
908 return ATA_DEV_SEMB_UNSUP; /* not yet */
909 }
910
1da177e4
LT
911 DPRINTK("unknown device\n");
912 return ATA_DEV_UNKNOWN;
913}
914
915/**
916 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
917 * @dev: ATA device to classify (starting at zero)
918 * @present: device seems present
b4dc7623 919 * @r_err: Value of error register on completion
1da177e4
LT
920 *
921 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
922 * an ATA/ATAPI-defined set of values is placed in the ATA
923 * shadow registers, indicating the results of device detection
924 * and diagnostics.
925 *
926 * Select the ATA device, and read the values from the ATA shadow
927 * registers. Then parse according to the Error register value,
928 * and the spec-defined values examined by ata_dev_classify().
929 *
930 * LOCKING:
931 * caller.
b4dc7623
TH
932 *
933 * RETURNS:
934 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 935 */
3f19859e
TH
936unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
937 u8 *r_err)
1da177e4 938{
3f19859e 939 struct ata_port *ap = dev->link->ap;
1da177e4
LT
940 struct ata_taskfile tf;
941 unsigned int class;
942 u8 err;
943
3f19859e 944 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
945
946 memset(&tf, 0, sizeof(tf));
947
1da177e4 948 ap->ops->tf_read(ap, &tf);
0169e284 949 err = tf.feature;
b4dc7623
TH
950 if (r_err)
951 *r_err = err;
1da177e4 952
93590859 953 /* see if device passed diags: if master then continue and warn later */
3f19859e 954 if (err == 0 && dev->devno == 0)
93590859 955 /* diagnostic fail : do nothing _YET_ */
3f19859e 956 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 957 else if (err == 1)
1da177e4 958 /* do nothing */ ;
3f19859e 959 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
960 /* do nothing */ ;
961 else
b4dc7623 962 return ATA_DEV_NONE;
1da177e4 963
b4dc7623 964 /* determine if device is ATA or ATAPI */
1da177e4 965 class = ata_dev_classify(&tf);
b4dc7623 966
d7fbee05
TH
967 if (class == ATA_DEV_UNKNOWN) {
968 /* If the device failed diagnostic, it's likely to
969 * have reported incorrect device signature too.
970 * Assume ATA device if the device seems present but
971 * device signature is invalid with diagnostic
972 * failure.
973 */
974 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
975 class = ATA_DEV_ATA;
976 else
977 class = ATA_DEV_NONE;
978 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
979 class = ATA_DEV_NONE;
980
b4dc7623 981 return class;
1da177e4
LT
982}
983
984/**
6a62a04d 985 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
986 * @id: IDENTIFY DEVICE results we will examine
987 * @s: string into which data is output
988 * @ofs: offset into identify device page
989 * @len: length of string to return. must be an even number.
990 *
991 * The strings in the IDENTIFY DEVICE page are broken up into
992 * 16-bit chunks. Run through the string, and output each
993 * 8-bit chunk linearly, regardless of platform.
994 *
995 * LOCKING:
996 * caller.
997 */
998
6a62a04d
TH
999void ata_id_string(const u16 *id, unsigned char *s,
1000 unsigned int ofs, unsigned int len)
1da177e4
LT
1001{
1002 unsigned int c;
1003
1004 while (len > 0) {
1005 c = id[ofs] >> 8;
1006 *s = c;
1007 s++;
1008
1009 c = id[ofs] & 0xff;
1010 *s = c;
1011 s++;
1012
1013 ofs++;
1014 len -= 2;
1015 }
1016}
1017
0e949ff3 1018/**
6a62a04d 1019 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1020 * @id: IDENTIFY DEVICE results we will examine
1021 * @s: string into which data is output
1022 * @ofs: offset into identify device page
1023 * @len: length of string to return. must be an odd number.
1024 *
6a62a04d 1025 * This function is identical to ata_id_string except that it
0e949ff3
TH
1026 * trims trailing spaces and terminates the resulting string with
1027 * null. @len must be actual maximum length (even number) + 1.
1028 *
1029 * LOCKING:
1030 * caller.
1031 */
6a62a04d
TH
1032void ata_id_c_string(const u16 *id, unsigned char *s,
1033 unsigned int ofs, unsigned int len)
0e949ff3
TH
1034{
1035 unsigned char *p;
1036
1037 WARN_ON(!(len & 1));
1038
6a62a04d 1039 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1040
1041 p = s + strnlen(s, len - 1);
1042 while (p > s && p[-1] == ' ')
1043 p--;
1044 *p = '\0';
1045}
0baab86b 1046
db6f8759
TH
1047static u64 ata_id_n_sectors(const u16 *id)
1048{
1049 if (ata_id_has_lba(id)) {
1050 if (ata_id_has_lba48(id))
1051 return ata_id_u64(id, 100);
1052 else
1053 return ata_id_u32(id, 60);
1054 } else {
1055 if (ata_id_current_chs_valid(id))
1056 return ata_id_u32(id, 57);
1057 else
1058 return id[1] * id[3] * id[6];
1059 }
1060}
1061
1e999736
AC
1062static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1063{
1064 u64 sectors = 0;
1065
1066 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1067 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1068 sectors |= (tf->hob_lbal & 0xff) << 24;
1069 sectors |= (tf->lbah & 0xff) << 16;
1070 sectors |= (tf->lbam & 0xff) << 8;
1071 sectors |= (tf->lbal & 0xff);
1072
1073 return ++sectors;
1074}
1075
1076static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1077{
1078 u64 sectors = 0;
1079
1080 sectors |= (tf->device & 0x0f) << 24;
1081 sectors |= (tf->lbah & 0xff) << 16;
1082 sectors |= (tf->lbam & 0xff) << 8;
1083 sectors |= (tf->lbal & 0xff);
1084
1085 return ++sectors;
1086}
1087
1088/**
c728a914
TH
1089 * ata_read_native_max_address - Read native max address
1090 * @dev: target device
1091 * @max_sectors: out parameter for the result native max address
1e999736 1092 *
c728a914
TH
1093 * Perform an LBA48 or LBA28 native size query upon the device in
1094 * question.
1e999736 1095 *
c728a914
TH
1096 * RETURNS:
1097 * 0 on success, -EACCES if command is aborted by the drive.
1098 * -EIO on other errors.
1e999736 1099 */
c728a914 1100static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1101{
c728a914 1102 unsigned int err_mask;
1e999736 1103 struct ata_taskfile tf;
c728a914 1104 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1105
1106 ata_tf_init(dev, &tf);
1107
c728a914 1108 /* always clear all address registers */
1e999736 1109 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1110
c728a914
TH
1111 if (lba48) {
1112 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1113 tf.flags |= ATA_TFLAG_LBA48;
1114 } else
1115 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1116
1e999736 1117 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1118 tf.device |= ATA_LBA;
1119
2b789108 1120 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1121 if (err_mask) {
1122 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1123 "max address (err_mask=0x%x)\n", err_mask);
1124 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1125 return -EACCES;
1126 return -EIO;
1127 }
1e999736 1128
c728a914
TH
1129 if (lba48)
1130 *max_sectors = ata_tf_to_lba48(&tf);
1131 else
1132 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1133 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1134 (*max_sectors)--;
c728a914 1135 return 0;
1e999736
AC
1136}
1137
1138/**
c728a914
TH
1139 * ata_set_max_sectors - Set max sectors
1140 * @dev: target device
6b38d1d1 1141 * @new_sectors: new max sectors value to set for the device
1e999736 1142 *
c728a914
TH
1143 * Set max sectors of @dev to @new_sectors.
1144 *
1145 * RETURNS:
1146 * 0 on success, -EACCES if command is aborted or denied (due to
1147 * previous non-volatile SET_MAX) by the drive. -EIO on other
1148 * errors.
1e999736 1149 */
05027adc 1150static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1151{
c728a914 1152 unsigned int err_mask;
1e999736 1153 struct ata_taskfile tf;
c728a914 1154 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1155
1156 new_sectors--;
1157
1158 ata_tf_init(dev, &tf);
1159
1e999736 1160 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1161
1162 if (lba48) {
1163 tf.command = ATA_CMD_SET_MAX_EXT;
1164 tf.flags |= ATA_TFLAG_LBA48;
1165
1166 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1167 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1168 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1169 } else {
c728a914
TH
1170 tf.command = ATA_CMD_SET_MAX;
1171
1e582ba4
TH
1172 tf.device |= (new_sectors >> 24) & 0xf;
1173 }
1174
1e999736 1175 tf.protocol |= ATA_PROT_NODATA;
c728a914 1176 tf.device |= ATA_LBA;
1e999736
AC
1177
1178 tf.lbal = (new_sectors >> 0) & 0xff;
1179 tf.lbam = (new_sectors >> 8) & 0xff;
1180 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1181
2b789108 1182 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1183 if (err_mask) {
1184 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1185 "max address (err_mask=0x%x)\n", err_mask);
1186 if (err_mask == AC_ERR_DEV &&
1187 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1188 return -EACCES;
1189 return -EIO;
1190 }
1191
c728a914 1192 return 0;
1e999736
AC
1193}
1194
1195/**
1196 * ata_hpa_resize - Resize a device with an HPA set
1197 * @dev: Device to resize
1198 *
1199 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1200 * it if required to the full size of the media. The caller must check
1201 * the drive has the HPA feature set enabled.
05027adc
TH
1202 *
1203 * RETURNS:
1204 * 0 on success, -errno on failure.
1e999736 1205 */
05027adc 1206static int ata_hpa_resize(struct ata_device *dev)
1e999736 1207{
05027adc
TH
1208 struct ata_eh_context *ehc = &dev->link->eh_context;
1209 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1210 u64 sectors = ata_id_n_sectors(dev->id);
1211 u64 native_sectors;
c728a914 1212 int rc;
a617c09f 1213
05027adc
TH
1214 /* do we need to do it? */
1215 if (dev->class != ATA_DEV_ATA ||
1216 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1217 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1218 return 0;
1e999736 1219
05027adc
TH
1220 /* read native max address */
1221 rc = ata_read_native_max_address(dev, &native_sectors);
1222 if (rc) {
1223 /* If HPA isn't going to be unlocked, skip HPA
1224 * resizing from the next try.
1225 */
1226 if (!ata_ignore_hpa) {
1227 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1228 "broken, will skip HPA handling\n");
1229 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1230
1231 /* we can continue if device aborted the command */
1232 if (rc == -EACCES)
1233 rc = 0;
1e999736 1234 }
37301a55 1235
05027adc
TH
1236 return rc;
1237 }
1238
1239 /* nothing to do? */
1240 if (native_sectors <= sectors || !ata_ignore_hpa) {
1241 if (!print_info || native_sectors == sectors)
1242 return 0;
1243
1244 if (native_sectors > sectors)
1245 ata_dev_printk(dev, KERN_INFO,
1246 "HPA detected: current %llu, native %llu\n",
1247 (unsigned long long)sectors,
1248 (unsigned long long)native_sectors);
1249 else if (native_sectors < sectors)
1250 ata_dev_printk(dev, KERN_WARNING,
1251 "native sectors (%llu) is smaller than "
1252 "sectors (%llu)\n",
1253 (unsigned long long)native_sectors,
1254 (unsigned long long)sectors);
1255 return 0;
1256 }
1257
1258 /* let's unlock HPA */
1259 rc = ata_set_max_sectors(dev, native_sectors);
1260 if (rc == -EACCES) {
1261 /* if device aborted the command, skip HPA resizing */
1262 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1263 "(%llu -> %llu), skipping HPA handling\n",
1264 (unsigned long long)sectors,
1265 (unsigned long long)native_sectors);
1266 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1267 return 0;
1268 } else if (rc)
1269 return rc;
1270
1271 /* re-read IDENTIFY data */
1272 rc = ata_dev_reread_id(dev, 0);
1273 if (rc) {
1274 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1275 "data after HPA resizing\n");
1276 return rc;
1277 }
1278
1279 if (print_info) {
1280 u64 new_sectors = ata_id_n_sectors(dev->id);
1281 ata_dev_printk(dev, KERN_INFO,
1282 "HPA unlocked: %llu -> %llu, native %llu\n",
1283 (unsigned long long)sectors,
1284 (unsigned long long)new_sectors,
1285 (unsigned long long)native_sectors);
1286 }
1287
1288 return 0;
1e999736
AC
1289}
1290
0baab86b
EF
1291/**
1292 * ata_noop_dev_select - Select device 0/1 on ATA bus
1293 * @ap: ATA channel to manipulate
1294 * @device: ATA device (numbered from zero) to select
1295 *
1296 * This function performs no actual function.
1297 *
1298 * May be used as the dev_select() entry in ata_port_operations.
1299 *
1300 * LOCKING:
1301 * caller.
1302 */
2dcb407e 1303void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1304{
1305}
1306
0baab86b 1307
1da177e4
LT
1308/**
1309 * ata_std_dev_select - Select device 0/1 on ATA bus
1310 * @ap: ATA channel to manipulate
1311 * @device: ATA device (numbered from zero) to select
1312 *
1313 * Use the method defined in the ATA specification to
1314 * make either device 0, or device 1, active on the
0baab86b
EF
1315 * ATA channel. Works with both PIO and MMIO.
1316 *
1317 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1318 *
1319 * LOCKING:
1320 * caller.
1321 */
1322
2dcb407e 1323void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1324{
1325 u8 tmp;
1326
1327 if (device == 0)
1328 tmp = ATA_DEVICE_OBS;
1329 else
1330 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1331
0d5ff566 1332 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1333 ata_pause(ap); /* needed; also flushes, for mmio */
1334}
1335
1336/**
1337 * ata_dev_select - Select device 0/1 on ATA bus
1338 * @ap: ATA channel to manipulate
1339 * @device: ATA device (numbered from zero) to select
1340 * @wait: non-zero to wait for Status register BSY bit to clear
1341 * @can_sleep: non-zero if context allows sleeping
1342 *
1343 * Use the method defined in the ATA specification to
1344 * make either device 0, or device 1, active on the
1345 * ATA channel.
1346 *
1347 * This is a high-level version of ata_std_dev_select(),
1348 * which additionally provides the services of inserting
1349 * the proper pauses and status polling, where needed.
1350 *
1351 * LOCKING:
1352 * caller.
1353 */
1354
1355void ata_dev_select(struct ata_port *ap, unsigned int device,
1356 unsigned int wait, unsigned int can_sleep)
1357{
88574551 1358 if (ata_msg_probe(ap))
44877b4e
TH
1359 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1360 "device %u, wait %u\n", device, wait);
1da177e4
LT
1361
1362 if (wait)
1363 ata_wait_idle(ap);
1364
1365 ap->ops->dev_select(ap, device);
1366
1367 if (wait) {
9af5c9c9 1368 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1369 msleep(150);
1370 ata_wait_idle(ap);
1371 }
1372}
1373
1374/**
1375 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1376 * @id: IDENTIFY DEVICE page to dump
1da177e4 1377 *
0bd3300a
TH
1378 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1379 * page.
1da177e4
LT
1380 *
1381 * LOCKING:
1382 * caller.
1383 */
1384
0bd3300a 1385static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1386{
1387 DPRINTK("49==0x%04x "
1388 "53==0x%04x "
1389 "63==0x%04x "
1390 "64==0x%04x "
1391 "75==0x%04x \n",
0bd3300a
TH
1392 id[49],
1393 id[53],
1394 id[63],
1395 id[64],
1396 id[75]);
1da177e4
LT
1397 DPRINTK("80==0x%04x "
1398 "81==0x%04x "
1399 "82==0x%04x "
1400 "83==0x%04x "
1401 "84==0x%04x \n",
0bd3300a
TH
1402 id[80],
1403 id[81],
1404 id[82],
1405 id[83],
1406 id[84]);
1da177e4
LT
1407 DPRINTK("88==0x%04x "
1408 "93==0x%04x\n",
0bd3300a
TH
1409 id[88],
1410 id[93]);
1da177e4
LT
1411}
1412
cb95d562
TH
1413/**
1414 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1415 * @id: IDENTIFY data to compute xfer mask from
1416 *
1417 * Compute the xfermask for this device. This is not as trivial
1418 * as it seems if we must consider early devices correctly.
1419 *
1420 * FIXME: pre IDE drive timing (do we care ?).
1421 *
1422 * LOCKING:
1423 * None.
1424 *
1425 * RETURNS:
1426 * Computed xfermask
1427 */
7dc951ae 1428unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1429{
7dc951ae 1430 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1431
1432 /* Usual case. Word 53 indicates word 64 is valid */
1433 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1434 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1435 pio_mask <<= 3;
1436 pio_mask |= 0x7;
1437 } else {
1438 /* If word 64 isn't valid then Word 51 high byte holds
1439 * the PIO timing number for the maximum. Turn it into
1440 * a mask.
1441 */
7a0f1c8a 1442 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1443 if (mode < 5) /* Valid PIO range */
2dcb407e 1444 pio_mask = (2 << mode) - 1;
46767aeb
AC
1445 else
1446 pio_mask = 1;
cb95d562
TH
1447
1448 /* But wait.. there's more. Design your standards by
1449 * committee and you too can get a free iordy field to
1450 * process. However its the speeds not the modes that
1451 * are supported... Note drivers using the timing API
1452 * will get this right anyway
1453 */
1454 }
1455
1456 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1457
b352e57d
AC
1458 if (ata_id_is_cfa(id)) {
1459 /*
1460 * Process compact flash extended modes
1461 */
1462 int pio = id[163] & 0x7;
1463 int dma = (id[163] >> 3) & 7;
1464
1465 if (pio)
1466 pio_mask |= (1 << 5);
1467 if (pio > 1)
1468 pio_mask |= (1 << 6);
1469 if (dma)
1470 mwdma_mask |= (1 << 3);
1471 if (dma > 1)
1472 mwdma_mask |= (1 << 4);
1473 }
1474
fb21f0d0
TH
1475 udma_mask = 0;
1476 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1477 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1478
1479 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1480}
1481
86e45b6b
TH
1482/**
1483 * ata_port_queue_task - Queue port_task
1484 * @ap: The ata_port to queue port_task for
e2a7f77a 1485 * @fn: workqueue function to be scheduled
65f27f38 1486 * @data: data for @fn to use
e2a7f77a 1487 * @delay: delay time for workqueue function
86e45b6b
TH
1488 *
1489 * Schedule @fn(@data) for execution after @delay jiffies using
1490 * port_task. There is one port_task per port and it's the
1491 * user(low level driver)'s responsibility to make sure that only
1492 * one task is active at any given time.
1493 *
1494 * libata core layer takes care of synchronization between
1495 * port_task and EH. ata_port_queue_task() may be ignored for EH
1496 * synchronization.
1497 *
1498 * LOCKING:
1499 * Inherited from caller.
1500 */
65f27f38 1501void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1502 unsigned long delay)
1503{
65f27f38
DH
1504 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1505 ap->port_task_data = data;
86e45b6b 1506
45a66c1c
ON
1507 /* may fail if ata_port_flush_task() in progress */
1508 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1509}
1510
1511/**
1512 * ata_port_flush_task - Flush port_task
1513 * @ap: The ata_port to flush port_task for
1514 *
1515 * After this function completes, port_task is guranteed not to
1516 * be running or scheduled.
1517 *
1518 * LOCKING:
1519 * Kernel thread context (may sleep)
1520 */
1521void ata_port_flush_task(struct ata_port *ap)
1522{
86e45b6b
TH
1523 DPRINTK("ENTER\n");
1524
45a66c1c 1525 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1526
0dd4b21f
BP
1527 if (ata_msg_ctl(ap))
1528 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1529}
1530
7102d230 1531static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1532{
77853bf2 1533 struct completion *waiting = qc->private_data;
a2a7a662 1534
a2a7a662 1535 complete(waiting);
a2a7a662
TH
1536}
1537
1538/**
2432697b 1539 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1540 * @dev: Device to which the command is sent
1541 * @tf: Taskfile registers for the command and the result
d69cf37d 1542 * @cdb: CDB for packet command
a2a7a662 1543 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1544 * @sgl: sg list for the data buffer of the command
2432697b 1545 * @n_elem: Number of sg entries
2b789108 1546 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1547 *
1548 * Executes libata internal command with timeout. @tf contains
1549 * command on entry and result on return. Timeout and error
1550 * conditions are reported via return value. No recovery action
1551 * is taken after a command times out. It's caller's duty to
1552 * clean up after timeout.
1553 *
1554 * LOCKING:
1555 * None. Should be called with kernel context, might sleep.
551e8889
TH
1556 *
1557 * RETURNS:
1558 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1559 */
2432697b
TH
1560unsigned ata_exec_internal_sg(struct ata_device *dev,
1561 struct ata_taskfile *tf, const u8 *cdb,
87260216 1562 int dma_dir, struct scatterlist *sgl,
2b789108 1563 unsigned int n_elem, unsigned long timeout)
a2a7a662 1564{
9af5c9c9
TH
1565 struct ata_link *link = dev->link;
1566 struct ata_port *ap = link->ap;
a2a7a662
TH
1567 u8 command = tf->command;
1568 struct ata_queued_cmd *qc;
2ab7db1f 1569 unsigned int tag, preempted_tag;
dedaf2b0 1570 u32 preempted_sactive, preempted_qc_active;
da917d69 1571 int preempted_nr_active_links;
60be6b9a 1572 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1573 unsigned long flags;
77853bf2 1574 unsigned int err_mask;
d95a717f 1575 int rc;
a2a7a662 1576
ba6a1308 1577 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1578
e3180499 1579 /* no internal command while frozen */
b51e9e5d 1580 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1581 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1582 return AC_ERR_SYSTEM;
1583 }
1584
2ab7db1f 1585 /* initialize internal qc */
a2a7a662 1586
2ab7db1f
TH
1587 /* XXX: Tag 0 is used for drivers with legacy EH as some
1588 * drivers choke if any other tag is given. This breaks
1589 * ata_tag_internal() test for those drivers. Don't use new
1590 * EH stuff without converting to it.
1591 */
1592 if (ap->ops->error_handler)
1593 tag = ATA_TAG_INTERNAL;
1594 else
1595 tag = 0;
1596
6cec4a39 1597 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1598 BUG();
f69499f4 1599 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1600
1601 qc->tag = tag;
1602 qc->scsicmd = NULL;
1603 qc->ap = ap;
1604 qc->dev = dev;
1605 ata_qc_reinit(qc);
1606
9af5c9c9
TH
1607 preempted_tag = link->active_tag;
1608 preempted_sactive = link->sactive;
dedaf2b0 1609 preempted_qc_active = ap->qc_active;
da917d69 1610 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1611 link->active_tag = ATA_TAG_POISON;
1612 link->sactive = 0;
dedaf2b0 1613 ap->qc_active = 0;
da917d69 1614 ap->nr_active_links = 0;
2ab7db1f
TH
1615
1616 /* prepare & issue qc */
a2a7a662 1617 qc->tf = *tf;
d69cf37d
TH
1618 if (cdb)
1619 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1620 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1621 qc->dma_dir = dma_dir;
1622 if (dma_dir != DMA_NONE) {
2432697b 1623 unsigned int i, buflen = 0;
87260216 1624 struct scatterlist *sg;
2432697b 1625
87260216
JA
1626 for_each_sg(sgl, sg, n_elem, i)
1627 buflen += sg->length;
2432697b 1628
87260216 1629 ata_sg_init(qc, sgl, n_elem);
49c80429 1630 qc->nbytes = buflen;
a2a7a662
TH
1631 }
1632
77853bf2 1633 qc->private_data = &wait;
a2a7a662
TH
1634 qc->complete_fn = ata_qc_complete_internal;
1635
8e0e694a 1636 ata_qc_issue(qc);
a2a7a662 1637
ba6a1308 1638 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1639
2b789108
TH
1640 if (!timeout)
1641 timeout = ata_probe_timeout * 1000 / HZ;
1642
1643 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1644
1645 ata_port_flush_task(ap);
41ade50c 1646
d95a717f 1647 if (!rc) {
ba6a1308 1648 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1649
1650 /* We're racing with irq here. If we lose, the
1651 * following test prevents us from completing the qc
d95a717f
TH
1652 * twice. If we win, the port is frozen and will be
1653 * cleaned up by ->post_internal_cmd().
a2a7a662 1654 */
77853bf2 1655 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1656 qc->err_mask |= AC_ERR_TIMEOUT;
1657
1658 if (ap->ops->error_handler)
1659 ata_port_freeze(ap);
1660 else
1661 ata_qc_complete(qc);
f15a1daf 1662
0dd4b21f
BP
1663 if (ata_msg_warn(ap))
1664 ata_dev_printk(dev, KERN_WARNING,
88574551 1665 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1666 }
1667
ba6a1308 1668 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1669 }
1670
d95a717f
TH
1671 /* do post_internal_cmd */
1672 if (ap->ops->post_internal_cmd)
1673 ap->ops->post_internal_cmd(qc);
1674
a51d644a
TH
1675 /* perform minimal error analysis */
1676 if (qc->flags & ATA_QCFLAG_FAILED) {
1677 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1678 qc->err_mask |= AC_ERR_DEV;
1679
1680 if (!qc->err_mask)
1681 qc->err_mask |= AC_ERR_OTHER;
1682
1683 if (qc->err_mask & ~AC_ERR_OTHER)
1684 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1685 }
1686
15869303 1687 /* finish up */
ba6a1308 1688 spin_lock_irqsave(ap->lock, flags);
15869303 1689
e61e0672 1690 *tf = qc->result_tf;
77853bf2
TH
1691 err_mask = qc->err_mask;
1692
1693 ata_qc_free(qc);
9af5c9c9
TH
1694 link->active_tag = preempted_tag;
1695 link->sactive = preempted_sactive;
dedaf2b0 1696 ap->qc_active = preempted_qc_active;
da917d69 1697 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1698
1f7dd3e9
TH
1699 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1700 * Until those drivers are fixed, we detect the condition
1701 * here, fail the command with AC_ERR_SYSTEM and reenable the
1702 * port.
1703 *
1704 * Note that this doesn't change any behavior as internal
1705 * command failure results in disabling the device in the
1706 * higher layer for LLDDs without new reset/EH callbacks.
1707 *
1708 * Kill the following code as soon as those drivers are fixed.
1709 */
198e0fed 1710 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1711 err_mask |= AC_ERR_SYSTEM;
1712 ata_port_probe(ap);
1713 }
1714
ba6a1308 1715 spin_unlock_irqrestore(ap->lock, flags);
15869303 1716
77853bf2 1717 return err_mask;
a2a7a662
TH
1718}
1719
2432697b 1720/**
33480a0e 1721 * ata_exec_internal - execute libata internal command
2432697b
TH
1722 * @dev: Device to which the command is sent
1723 * @tf: Taskfile registers for the command and the result
1724 * @cdb: CDB for packet command
1725 * @dma_dir: Data tranfer direction of the command
1726 * @buf: Data buffer of the command
1727 * @buflen: Length of data buffer
2b789108 1728 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1729 *
1730 * Wrapper around ata_exec_internal_sg() which takes simple
1731 * buffer instead of sg list.
1732 *
1733 * LOCKING:
1734 * None. Should be called with kernel context, might sleep.
1735 *
1736 * RETURNS:
1737 * Zero on success, AC_ERR_* mask on failure
1738 */
1739unsigned ata_exec_internal(struct ata_device *dev,
1740 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1741 int dma_dir, void *buf, unsigned int buflen,
1742 unsigned long timeout)
2432697b 1743{
33480a0e
TH
1744 struct scatterlist *psg = NULL, sg;
1745 unsigned int n_elem = 0;
2432697b 1746
33480a0e
TH
1747 if (dma_dir != DMA_NONE) {
1748 WARN_ON(!buf);
1749 sg_init_one(&sg, buf, buflen);
1750 psg = &sg;
1751 n_elem++;
1752 }
2432697b 1753
2b789108
TH
1754 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1755 timeout);
2432697b
TH
1756}
1757
977e6b9f
TH
1758/**
1759 * ata_do_simple_cmd - execute simple internal command
1760 * @dev: Device to which the command is sent
1761 * @cmd: Opcode to execute
1762 *
1763 * Execute a 'simple' command, that only consists of the opcode
1764 * 'cmd' itself, without filling any other registers
1765 *
1766 * LOCKING:
1767 * Kernel thread context (may sleep).
1768 *
1769 * RETURNS:
1770 * Zero on success, AC_ERR_* mask on failure
e58eb583 1771 */
77b08fb5 1772unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1773{
1774 struct ata_taskfile tf;
e58eb583
TH
1775
1776 ata_tf_init(dev, &tf);
1777
1778 tf.command = cmd;
1779 tf.flags |= ATA_TFLAG_DEVICE;
1780 tf.protocol = ATA_PROT_NODATA;
1781
2b789108 1782 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1783}
1784
1bc4ccff
AC
1785/**
1786 * ata_pio_need_iordy - check if iordy needed
1787 * @adev: ATA device
1788 *
1789 * Check if the current speed of the device requires IORDY. Used
1790 * by various controllers for chip configuration.
1791 */
a617c09f 1792
1bc4ccff
AC
1793unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1794{
432729f0
AC
1795 /* Controller doesn't support IORDY. Probably a pointless check
1796 as the caller should know this */
9af5c9c9 1797 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1798 return 0;
432729f0
AC
1799 /* PIO3 and higher it is mandatory */
1800 if (adev->pio_mode > XFER_PIO_2)
1801 return 1;
1802 /* We turn it on when possible */
1803 if (ata_id_has_iordy(adev->id))
1bc4ccff 1804 return 1;
432729f0
AC
1805 return 0;
1806}
2e9edbf8 1807
432729f0
AC
1808/**
1809 * ata_pio_mask_no_iordy - Return the non IORDY mask
1810 * @adev: ATA device
1811 *
1812 * Compute the highest mode possible if we are not using iordy. Return
1813 * -1 if no iordy mode is available.
1814 */
a617c09f 1815
432729f0
AC
1816static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1817{
1bc4ccff 1818 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1819 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1820 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1821 /* Is the speed faster than the drive allows non IORDY ? */
1822 if (pio) {
1823 /* This is cycle times not frequency - watch the logic! */
1824 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1825 return 3 << ATA_SHIFT_PIO;
1826 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1827 }
1828 }
432729f0 1829 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1830}
1831
1da177e4 1832/**
49016aca 1833 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1834 * @dev: target device
1835 * @p_class: pointer to class of the target device (may be changed)
bff04647 1836 * @flags: ATA_READID_* flags
fe635c7e 1837 * @id: buffer to read IDENTIFY data into
1da177e4 1838 *
49016aca
TH
1839 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1840 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1841 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1842 * for pre-ATA4 drives.
1da177e4 1843 *
50a99018 1844 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1845 * now we abort if we hit that case.
50a99018 1846 *
1da177e4 1847 * LOCKING:
49016aca
TH
1848 * Kernel thread context (may sleep)
1849 *
1850 * RETURNS:
1851 * 0 on success, -errno otherwise.
1da177e4 1852 */
a9beec95 1853int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1854 unsigned int flags, u16 *id)
1da177e4 1855{
9af5c9c9 1856 struct ata_port *ap = dev->link->ap;
49016aca 1857 unsigned int class = *p_class;
a0123703 1858 struct ata_taskfile tf;
49016aca
TH
1859 unsigned int err_mask = 0;
1860 const char *reason;
54936f8b 1861 int may_fallback = 1, tried_spinup = 0;
49016aca 1862 int rc;
1da177e4 1863
0dd4b21f 1864 if (ata_msg_ctl(ap))
44877b4e 1865 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1866
49016aca 1867 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1868 retry:
3373efd8 1869 ata_tf_init(dev, &tf);
a0123703 1870
49016aca
TH
1871 switch (class) {
1872 case ATA_DEV_ATA:
a0123703 1873 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1874 break;
1875 case ATA_DEV_ATAPI:
a0123703 1876 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1877 break;
1878 default:
1879 rc = -ENODEV;
1880 reason = "unsupported class";
1881 goto err_out;
1da177e4
LT
1882 }
1883
a0123703 1884 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1885
1886 /* Some devices choke if TF registers contain garbage. Make
1887 * sure those are properly initialized.
1888 */
1889 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1890
1891 /* Device presence detection is unreliable on some
1892 * controllers. Always poll IDENTIFY if available.
1893 */
1894 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1895
3373efd8 1896 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1897 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1898 if (err_mask) {
800b3996 1899 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1900 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1901 ap->print_id, dev->devno);
55a8e2c8
TH
1902 return -ENOENT;
1903 }
1904
54936f8b
TH
1905 /* Device or controller might have reported the wrong
1906 * device class. Give a shot at the other IDENTIFY if
1907 * the current one is aborted by the device.
1908 */
1909 if (may_fallback &&
1910 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1911 may_fallback = 0;
1912
1913 if (class == ATA_DEV_ATA)
1914 class = ATA_DEV_ATAPI;
1915 else
1916 class = ATA_DEV_ATA;
1917 goto retry;
1918 }
1919
49016aca
TH
1920 rc = -EIO;
1921 reason = "I/O error";
1da177e4
LT
1922 goto err_out;
1923 }
1924
54936f8b
TH
1925 /* Falling back doesn't make sense if ID data was read
1926 * successfully at least once.
1927 */
1928 may_fallback = 0;
1929
49016aca 1930 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1931
49016aca 1932 /* sanity check */
a4f5749b 1933 rc = -EINVAL;
6070068b 1934 reason = "device reports invalid type";
a4f5749b
TH
1935
1936 if (class == ATA_DEV_ATA) {
1937 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1938 goto err_out;
1939 } else {
1940 if (ata_id_is_ata(id))
1941 goto err_out;
49016aca
TH
1942 }
1943
169439c2
ML
1944 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1945 tried_spinup = 1;
1946 /*
1947 * Drive powered-up in standby mode, and requires a specific
1948 * SET_FEATURES spin-up subcommand before it will accept
1949 * anything other than the original IDENTIFY command.
1950 */
218f3d30 1951 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1952 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1953 rc = -EIO;
1954 reason = "SPINUP failed";
1955 goto err_out;
1956 }
1957 /*
1958 * If the drive initially returned incomplete IDENTIFY info,
1959 * we now must reissue the IDENTIFY command.
1960 */
1961 if (id[2] == 0x37c8)
1962 goto retry;
1963 }
1964
bff04647 1965 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1966 /*
1967 * The exact sequence expected by certain pre-ATA4 drives is:
1968 * SRST RESET
50a99018
AC
1969 * IDENTIFY (optional in early ATA)
1970 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1971 * anything else..
1972 * Some drives were very specific about that exact sequence.
50a99018
AC
1973 *
1974 * Note that ATA4 says lba is mandatory so the second check
1975 * shoud never trigger.
49016aca
TH
1976 */
1977 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1978 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1979 if (err_mask) {
1980 rc = -EIO;
1981 reason = "INIT_DEV_PARAMS failed";
1982 goto err_out;
1983 }
1984
1985 /* current CHS translation info (id[53-58]) might be
1986 * changed. reread the identify device info.
1987 */
bff04647 1988 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1989 goto retry;
1990 }
1991 }
1992
1993 *p_class = class;
fe635c7e 1994
49016aca
TH
1995 return 0;
1996
1997 err_out:
88574551 1998 if (ata_msg_warn(ap))
0dd4b21f 1999 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2000 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2001 return rc;
2002}
2003
3373efd8 2004static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2005{
9af5c9c9
TH
2006 struct ata_port *ap = dev->link->ap;
2007 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2008}
2009
a6e6ce8e
TH
2010static void ata_dev_config_ncq(struct ata_device *dev,
2011 char *desc, size_t desc_sz)
2012{
9af5c9c9 2013 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2014 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2015
2016 if (!ata_id_has_ncq(dev->id)) {
2017 desc[0] = '\0';
2018 return;
2019 }
75683fe7 2020 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2021 snprintf(desc, desc_sz, "NCQ (not used)");
2022 return;
2023 }
a6e6ce8e 2024 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2025 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2026 dev->flags |= ATA_DFLAG_NCQ;
2027 }
2028
2029 if (hdepth >= ddepth)
2030 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2031 else
2032 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2033}
2034
49016aca 2035/**
ffeae418 2036 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2037 * @dev: Target device to configure
2038 *
2039 * Configure @dev according to @dev->id. Generic and low-level
2040 * driver specific fixups are also applied.
49016aca
TH
2041 *
2042 * LOCKING:
ffeae418
TH
2043 * Kernel thread context (may sleep)
2044 *
2045 * RETURNS:
2046 * 0 on success, -errno otherwise
49016aca 2047 */
efdaedc4 2048int ata_dev_configure(struct ata_device *dev)
49016aca 2049{
9af5c9c9
TH
2050 struct ata_port *ap = dev->link->ap;
2051 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2052 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2053 const u16 *id = dev->id;
7dc951ae 2054 unsigned long xfer_mask;
b352e57d 2055 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2056 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2057 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2058 int rc;
49016aca 2059
0dd4b21f 2060 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2061 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2062 __FUNCTION__);
ffeae418 2063 return 0;
49016aca
TH
2064 }
2065
0dd4b21f 2066 if (ata_msg_probe(ap))
44877b4e 2067 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2068
75683fe7
TH
2069 /* set horkage */
2070 dev->horkage |= ata_dev_blacklisted(dev);
2071
6746544c
TH
2072 /* let ACPI work its magic */
2073 rc = ata_acpi_on_devcfg(dev);
2074 if (rc)
2075 return rc;
08573a86 2076
05027adc
TH
2077 /* massage HPA, do it early as it might change IDENTIFY data */
2078 rc = ata_hpa_resize(dev);
2079 if (rc)
2080 return rc;
2081
c39f5ebe 2082 /* print device capabilities */
0dd4b21f 2083 if (ata_msg_probe(ap))
88574551
TH
2084 ata_dev_printk(dev, KERN_DEBUG,
2085 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2086 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2087 __FUNCTION__,
f15a1daf
TH
2088 id[49], id[82], id[83], id[84],
2089 id[85], id[86], id[87], id[88]);
c39f5ebe 2090
208a9933 2091 /* initialize to-be-configured parameters */
ea1dd4e1 2092 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2093 dev->max_sectors = 0;
2094 dev->cdb_len = 0;
2095 dev->n_sectors = 0;
2096 dev->cylinders = 0;
2097 dev->heads = 0;
2098 dev->sectors = 0;
2099
1da177e4
LT
2100 /*
2101 * common ATA, ATAPI feature tests
2102 */
2103
ff8854b2 2104 /* find max transfer mode; for printk only */
1148c3a7 2105 xfer_mask = ata_id_xfermask(id);
1da177e4 2106
0dd4b21f
BP
2107 if (ata_msg_probe(ap))
2108 ata_dump_id(id);
1da177e4 2109
ef143d57
AL
2110 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2111 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2112 sizeof(fwrevbuf));
2113
2114 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2115 sizeof(modelbuf));
2116
1da177e4
LT
2117 /* ATA-specific feature tests */
2118 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2119 if (ata_id_is_cfa(id)) {
2120 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2121 ata_dev_printk(dev, KERN_WARNING,
2122 "supports DRM functions and may "
2123 "not be fully accessable.\n");
b352e57d 2124 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2125 } else {
2dcb407e 2126 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2127 /* Warn the user if the device has TPM extensions */
2128 if (ata_id_has_tpm(id))
2129 ata_dev_printk(dev, KERN_WARNING,
2130 "supports DRM functions and may "
2131 "not be fully accessable.\n");
2132 }
b352e57d 2133
1148c3a7 2134 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2135
3f64f565
EM
2136 if (dev->id[59] & 0x100)
2137 dev->multi_count = dev->id[59] & 0xff;
2138
1148c3a7 2139 if (ata_id_has_lba(id)) {
4c2d721a 2140 const char *lba_desc;
a6e6ce8e 2141 char ncq_desc[20];
8bf62ece 2142
4c2d721a
TH
2143 lba_desc = "LBA";
2144 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2145 if (ata_id_has_lba48(id)) {
8bf62ece 2146 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2147 lba_desc = "LBA48";
6fc49adb
TH
2148
2149 if (dev->n_sectors >= (1UL << 28) &&
2150 ata_id_has_flush_ext(id))
2151 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2152 }
8bf62ece 2153
a6e6ce8e
TH
2154 /* config NCQ */
2155 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2156
8bf62ece 2157 /* print device info to dmesg */
3f64f565
EM
2158 if (ata_msg_drv(ap) && print_info) {
2159 ata_dev_printk(dev, KERN_INFO,
2160 "%s: %s, %s, max %s\n",
2161 revbuf, modelbuf, fwrevbuf,
2162 ata_mode_string(xfer_mask));
2163 ata_dev_printk(dev, KERN_INFO,
2164 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2165 (unsigned long long)dev->n_sectors,
3f64f565
EM
2166 dev->multi_count, lba_desc, ncq_desc);
2167 }
ffeae418 2168 } else {
8bf62ece
AL
2169 /* CHS */
2170
2171 /* Default translation */
1148c3a7
TH
2172 dev->cylinders = id[1];
2173 dev->heads = id[3];
2174 dev->sectors = id[6];
8bf62ece 2175
1148c3a7 2176 if (ata_id_current_chs_valid(id)) {
8bf62ece 2177 /* Current CHS translation is valid. */
1148c3a7
TH
2178 dev->cylinders = id[54];
2179 dev->heads = id[55];
2180 dev->sectors = id[56];
8bf62ece
AL
2181 }
2182
2183 /* print device info to dmesg */
3f64f565 2184 if (ata_msg_drv(ap) && print_info) {
88574551 2185 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2186 "%s: %s, %s, max %s\n",
2187 revbuf, modelbuf, fwrevbuf,
2188 ata_mode_string(xfer_mask));
a84471fe 2189 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2190 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2191 (unsigned long long)dev->n_sectors,
2192 dev->multi_count, dev->cylinders,
2193 dev->heads, dev->sectors);
2194 }
07f6f7d0
AL
2195 }
2196
6e7846e9 2197 dev->cdb_len = 16;
1da177e4
LT
2198 }
2199
2200 /* ATAPI-specific feature tests */
2c13b7ce 2201 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2202 const char *cdb_intr_string = "";
2203 const char *atapi_an_string = "";
7d77b247 2204 u32 sntf;
08a556db 2205
1148c3a7 2206 rc = atapi_cdb_len(id);
1da177e4 2207 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2208 if (ata_msg_warn(ap))
88574551
TH
2209 ata_dev_printk(dev, KERN_WARNING,
2210 "unsupported CDB len\n");
ffeae418 2211 rc = -EINVAL;
1da177e4
LT
2212 goto err_out_nosup;
2213 }
6e7846e9 2214 dev->cdb_len = (unsigned int) rc;
1da177e4 2215
7d77b247
TH
2216 /* Enable ATAPI AN if both the host and device have
2217 * the support. If PMP is attached, SNTF is required
2218 * to enable ATAPI AN to discern between PHY status
2219 * changed notifications and ATAPI ANs.
9f45cbd3 2220 */
7d77b247
TH
2221 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2222 (!ap->nr_pmp_links ||
2223 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2224 unsigned int err_mask;
2225
9f45cbd3 2226 /* issue SET feature command to turn this on */
218f3d30
JG
2227 err_mask = ata_dev_set_feature(dev,
2228 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2229 if (err_mask)
9f45cbd3 2230 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2231 "failed to enable ATAPI AN "
2232 "(err_mask=0x%x)\n", err_mask);
2233 else {
9f45cbd3 2234 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2235 atapi_an_string = ", ATAPI AN";
2236 }
9f45cbd3
KCA
2237 }
2238
08a556db 2239 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2240 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2241 cdb_intr_string = ", CDB intr";
2242 }
312f7da2 2243
1da177e4 2244 /* print device info to dmesg */
5afc8142 2245 if (ata_msg_drv(ap) && print_info)
ef143d57 2246 ata_dev_printk(dev, KERN_INFO,
854c73a2 2247 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2248 modelbuf, fwrevbuf,
12436c30 2249 ata_mode_string(xfer_mask),
854c73a2 2250 cdb_intr_string, atapi_an_string);
1da177e4
LT
2251 }
2252
914ed354
TH
2253 /* determine max_sectors */
2254 dev->max_sectors = ATA_MAX_SECTORS;
2255 if (dev->flags & ATA_DFLAG_LBA48)
2256 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2257
ca77329f
KCA
2258 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2259 if (ata_id_has_hipm(dev->id))
2260 dev->flags |= ATA_DFLAG_HIPM;
2261 if (ata_id_has_dipm(dev->id))
2262 dev->flags |= ATA_DFLAG_DIPM;
2263 }
2264
93590859
AC
2265 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2266 /* Let the user know. We don't want to disallow opens for
2267 rescue purposes, or in case the vendor is just a blithering
2268 idiot */
2dcb407e 2269 if (print_info) {
93590859
AC
2270 ata_dev_printk(dev, KERN_WARNING,
2271"Drive reports diagnostics failure. This may indicate a drive\n");
2272 ata_dev_printk(dev, KERN_WARNING,
2273"fault or invalid emulation. Contact drive vendor for information.\n");
2274 }
2275 }
2276
4b2f3ede 2277 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2278 if (ata_dev_knobble(dev)) {
5afc8142 2279 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2280 ata_dev_printk(dev, KERN_INFO,
2281 "applying bridge limits\n");
5a529139 2282 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2283 dev->max_sectors = ATA_MAX_SECTORS;
2284 }
2285
f8d8e579 2286 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2287 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2288 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2289 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2290 }
f8d8e579 2291
75683fe7 2292 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2293 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2294 dev->max_sectors);
18d6e9d5 2295
ca77329f
KCA
2296 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2297 dev->horkage |= ATA_HORKAGE_IPM;
2298
2299 /* reset link pm_policy for this port to no pm */
2300 ap->pm_policy = MAX_PERFORMANCE;
2301 }
2302
4b2f3ede 2303 if (ap->ops->dev_config)
cd0d3bbc 2304 ap->ops->dev_config(dev);
4b2f3ede 2305
0dd4b21f
BP
2306 if (ata_msg_probe(ap))
2307 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2308 __FUNCTION__, ata_chk_status(ap));
ffeae418 2309 return 0;
1da177e4
LT
2310
2311err_out_nosup:
0dd4b21f 2312 if (ata_msg_probe(ap))
88574551
TH
2313 ata_dev_printk(dev, KERN_DEBUG,
2314 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2315 return rc;
1da177e4
LT
2316}
2317
be0d18df 2318/**
2e41e8e6 2319 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2320 * @ap: port
2321 *
2e41e8e6 2322 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2323 * detection.
2324 */
2325
2326int ata_cable_40wire(struct ata_port *ap)
2327{
2328 return ATA_CBL_PATA40;
2329}
2330
2331/**
2e41e8e6 2332 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2333 * @ap: port
2334 *
2e41e8e6 2335 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2336 * detection.
2337 */
2338
2339int ata_cable_80wire(struct ata_port *ap)
2340{
2341 return ATA_CBL_PATA80;
2342}
2343
2344/**
2345 * ata_cable_unknown - return unknown PATA cable.
2346 * @ap: port
2347 *
2348 * Helper method for drivers which have no PATA cable detection.
2349 */
2350
2351int ata_cable_unknown(struct ata_port *ap)
2352{
2353 return ATA_CBL_PATA_UNK;
2354}
2355
c88f90c3
TH
2356/**
2357 * ata_cable_ignore - return ignored PATA cable.
2358 * @ap: port
2359 *
2360 * Helper method for drivers which don't use cable type to limit
2361 * transfer mode.
2362 */
2363int ata_cable_ignore(struct ata_port *ap)
2364{
2365 return ATA_CBL_PATA_IGN;
2366}
2367
be0d18df
AC
2368/**
2369 * ata_cable_sata - return SATA cable type
2370 * @ap: port
2371 *
2372 * Helper method for drivers which have SATA cables
2373 */
2374
2375int ata_cable_sata(struct ata_port *ap)
2376{
2377 return ATA_CBL_SATA;
2378}
2379
1da177e4
LT
2380/**
2381 * ata_bus_probe - Reset and probe ATA bus
2382 * @ap: Bus to probe
2383 *
0cba632b
JG
2384 * Master ATA bus probing function. Initiates a hardware-dependent
2385 * bus reset, then attempts to identify any devices found on
2386 * the bus.
2387 *
1da177e4 2388 * LOCKING:
0cba632b 2389 * PCI/etc. bus probe sem.
1da177e4
LT
2390 *
2391 * RETURNS:
96072e69 2392 * Zero on success, negative errno otherwise.
1da177e4
LT
2393 */
2394
80289167 2395int ata_bus_probe(struct ata_port *ap)
1da177e4 2396{
28ca5c57 2397 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2398 int tries[ATA_MAX_DEVICES];
f58229f8 2399 int rc;
e82cbdb9 2400 struct ata_device *dev;
1da177e4 2401
28ca5c57 2402 ata_port_probe(ap);
c19ba8af 2403
f58229f8
TH
2404 ata_link_for_each_dev(dev, &ap->link)
2405 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2406
2407 retry:
cdeab114
TH
2408 ata_link_for_each_dev(dev, &ap->link) {
2409 /* If we issue an SRST then an ATA drive (not ATAPI)
2410 * may change configuration and be in PIO0 timing. If
2411 * we do a hard reset (or are coming from power on)
2412 * this is true for ATA or ATAPI. Until we've set a
2413 * suitable controller mode we should not touch the
2414 * bus as we may be talking too fast.
2415 */
2416 dev->pio_mode = XFER_PIO_0;
2417
2418 /* If the controller has a pio mode setup function
2419 * then use it to set the chipset to rights. Don't
2420 * touch the DMA setup as that will be dealt with when
2421 * configuring devices.
2422 */
2423 if (ap->ops->set_piomode)
2424 ap->ops->set_piomode(ap, dev);
2425 }
2426
2044470c 2427 /* reset and determine device classes */
52783c5d 2428 ap->ops->phy_reset(ap);
2061a47a 2429
f58229f8 2430 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2431 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2432 dev->class != ATA_DEV_UNKNOWN)
2433 classes[dev->devno] = dev->class;
2434 else
2435 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2436
52783c5d 2437 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2438 }
1da177e4 2439
52783c5d 2440 ata_port_probe(ap);
2044470c 2441
f31f0cc2
JG
2442 /* read IDENTIFY page and configure devices. We have to do the identify
2443 specific sequence bass-ackwards so that PDIAG- is released by
2444 the slave device */
2445
f58229f8
TH
2446 ata_link_for_each_dev(dev, &ap->link) {
2447 if (tries[dev->devno])
2448 dev->class = classes[dev->devno];
ffeae418 2449
14d2bac1 2450 if (!ata_dev_enabled(dev))
ffeae418 2451 continue;
ffeae418 2452
bff04647
TH
2453 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2454 dev->id);
14d2bac1
TH
2455 if (rc)
2456 goto fail;
f31f0cc2
JG
2457 }
2458
be0d18df
AC
2459 /* Now ask for the cable type as PDIAG- should have been released */
2460 if (ap->ops->cable_detect)
2461 ap->cbl = ap->ops->cable_detect(ap);
2462
614fe29b
AC
2463 /* We may have SATA bridge glue hiding here irrespective of the
2464 reported cable types and sensed types */
2465 ata_link_for_each_dev(dev, &ap->link) {
2466 if (!ata_dev_enabled(dev))
2467 continue;
2468 /* SATA drives indicate we have a bridge. We don't know which
2469 end of the link the bridge is which is a problem */
2470 if (ata_id_is_sata(dev->id))
2471 ap->cbl = ATA_CBL_SATA;
2472 }
2473
f31f0cc2
JG
2474 /* After the identify sequence we can now set up the devices. We do
2475 this in the normal order so that the user doesn't get confused */
2476
f58229f8 2477 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2478 if (!ata_dev_enabled(dev))
2479 continue;
14d2bac1 2480
9af5c9c9 2481 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2482 rc = ata_dev_configure(dev);
9af5c9c9 2483 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2484 if (rc)
2485 goto fail;
1da177e4
LT
2486 }
2487
e82cbdb9 2488 /* configure transfer mode */
0260731f 2489 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2490 if (rc)
51713d35 2491 goto fail;
1da177e4 2492
f58229f8
TH
2493 ata_link_for_each_dev(dev, &ap->link)
2494 if (ata_dev_enabled(dev))
e82cbdb9 2495 return 0;
1da177e4 2496
e82cbdb9
TH
2497 /* no device present, disable port */
2498 ata_port_disable(ap);
96072e69 2499 return -ENODEV;
14d2bac1
TH
2500
2501 fail:
4ae72a1e
TH
2502 tries[dev->devno]--;
2503
14d2bac1
TH
2504 switch (rc) {
2505 case -EINVAL:
4ae72a1e 2506 /* eeek, something went very wrong, give up */
14d2bac1
TH
2507 tries[dev->devno] = 0;
2508 break;
4ae72a1e
TH
2509
2510 case -ENODEV:
2511 /* give it just one more chance */
2512 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2513 case -EIO:
4ae72a1e
TH
2514 if (tries[dev->devno] == 1) {
2515 /* This is the last chance, better to slow
2516 * down than lose it.
2517 */
936fd732 2518 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2519 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2520 }
14d2bac1
TH
2521 }
2522
4ae72a1e 2523 if (!tries[dev->devno])
3373efd8 2524 ata_dev_disable(dev);
ec573755 2525
14d2bac1 2526 goto retry;
1da177e4
LT
2527}
2528
2529/**
0cba632b
JG
2530 * ata_port_probe - Mark port as enabled
2531 * @ap: Port for which we indicate enablement
1da177e4 2532 *
0cba632b
JG
2533 * Modify @ap data structure such that the system
2534 * thinks that the entire port is enabled.
2535 *
cca3974e 2536 * LOCKING: host lock, or some other form of
0cba632b 2537 * serialization.
1da177e4
LT
2538 */
2539
2540void ata_port_probe(struct ata_port *ap)
2541{
198e0fed 2542 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2543}
2544
3be680b7
TH
2545/**
2546 * sata_print_link_status - Print SATA link status
936fd732 2547 * @link: SATA link to printk link status about
3be680b7
TH
2548 *
2549 * This function prints link speed and status of a SATA link.
2550 *
2551 * LOCKING:
2552 * None.
2553 */
936fd732 2554void sata_print_link_status(struct ata_link *link)
3be680b7 2555{
6d5f9732 2556 u32 sstatus, scontrol, tmp;
3be680b7 2557
936fd732 2558 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2559 return;
936fd732 2560 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2561
936fd732 2562 if (ata_link_online(link)) {
3be680b7 2563 tmp = (sstatus >> 4) & 0xf;
936fd732 2564 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2565 "SATA link up %s (SStatus %X SControl %X)\n",
2566 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2567 } else {
936fd732 2568 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2569 "SATA link down (SStatus %X SControl %X)\n",
2570 sstatus, scontrol);
3be680b7
TH
2571 }
2572}
2573
ebdfca6e
AC
2574/**
2575 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2576 * @adev: device
2577 *
2578 * Obtain the other device on the same cable, or if none is
2579 * present NULL is returned
2580 */
2e9edbf8 2581
3373efd8 2582struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2583{
9af5c9c9
TH
2584 struct ata_link *link = adev->link;
2585 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2586 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2587 return NULL;
2588 return pair;
2589}
2590
1da177e4 2591/**
780a87f7
JG
2592 * ata_port_disable - Disable port.
2593 * @ap: Port to be disabled.
1da177e4 2594 *
780a87f7
JG
2595 * Modify @ap data structure such that the system
2596 * thinks that the entire port is disabled, and should
2597 * never attempt to probe or communicate with devices
2598 * on this port.
2599 *
cca3974e 2600 * LOCKING: host lock, or some other form of
780a87f7 2601 * serialization.
1da177e4
LT
2602 */
2603
2604void ata_port_disable(struct ata_port *ap)
2605{
9af5c9c9
TH
2606 ap->link.device[0].class = ATA_DEV_NONE;
2607 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2608 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2609}
2610
1c3fae4d 2611/**
3c567b7d 2612 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2613 * @link: Link to adjust SATA spd limit for
1c3fae4d 2614 *
936fd732 2615 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2616 * function only adjusts the limit. The change must be applied
3c567b7d 2617 * using sata_set_spd().
1c3fae4d
TH
2618 *
2619 * LOCKING:
2620 * Inherited from caller.
2621 *
2622 * RETURNS:
2623 * 0 on success, negative errno on failure
2624 */
936fd732 2625int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2626{
81952c54
TH
2627 u32 sstatus, spd, mask;
2628 int rc, highbit;
1c3fae4d 2629
936fd732 2630 if (!sata_scr_valid(link))
008a7896
TH
2631 return -EOPNOTSUPP;
2632
2633 /* If SCR can be read, use it to determine the current SPD.
936fd732 2634 * If not, use cached value in link->sata_spd.
008a7896 2635 */
936fd732 2636 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2637 if (rc == 0)
2638 spd = (sstatus >> 4) & 0xf;
2639 else
936fd732 2640 spd = link->sata_spd;
1c3fae4d 2641
936fd732 2642 mask = link->sata_spd_limit;
1c3fae4d
TH
2643 if (mask <= 1)
2644 return -EINVAL;
008a7896
TH
2645
2646 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2647 highbit = fls(mask) - 1;
2648 mask &= ~(1 << highbit);
2649
008a7896
TH
2650 /* Mask off all speeds higher than or equal to the current
2651 * one. Force 1.5Gbps if current SPD is not available.
2652 */
2653 if (spd > 1)
2654 mask &= (1 << (spd - 1)) - 1;
2655 else
2656 mask &= 1;
2657
2658 /* were we already at the bottom? */
1c3fae4d
TH
2659 if (!mask)
2660 return -EINVAL;
2661
936fd732 2662 link->sata_spd_limit = mask;
1c3fae4d 2663
936fd732 2664 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2665 sata_spd_string(fls(mask)));
1c3fae4d
TH
2666
2667 return 0;
2668}
2669
936fd732 2670static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2671{
5270222f
TH
2672 struct ata_link *host_link = &link->ap->link;
2673 u32 limit, target, spd;
1c3fae4d 2674
5270222f
TH
2675 limit = link->sata_spd_limit;
2676
2677 /* Don't configure downstream link faster than upstream link.
2678 * It doesn't speed up anything and some PMPs choke on such
2679 * configuration.
2680 */
2681 if (!ata_is_host_link(link) && host_link->sata_spd)
2682 limit &= (1 << host_link->sata_spd) - 1;
2683
2684 if (limit == UINT_MAX)
2685 target = 0;
1c3fae4d 2686 else
5270222f 2687 target = fls(limit);
1c3fae4d
TH
2688
2689 spd = (*scontrol >> 4) & 0xf;
5270222f 2690 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2691
5270222f 2692 return spd != target;
1c3fae4d
TH
2693}
2694
2695/**
3c567b7d 2696 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2697 * @link: Link in question
1c3fae4d
TH
2698 *
2699 * Test whether the spd limit in SControl matches
936fd732 2700 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2701 * whether hardreset is necessary to apply SATA spd
2702 * configuration.
2703 *
2704 * LOCKING:
2705 * Inherited from caller.
2706 *
2707 * RETURNS:
2708 * 1 if SATA spd configuration is needed, 0 otherwise.
2709 */
936fd732 2710int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2711{
2712 u32 scontrol;
2713
936fd732 2714 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2715 return 1;
1c3fae4d 2716
936fd732 2717 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2718}
2719
2720/**
3c567b7d 2721 * sata_set_spd - set SATA spd according to spd limit
936fd732 2722 * @link: Link to set SATA spd for
1c3fae4d 2723 *
936fd732 2724 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2725 *
2726 * LOCKING:
2727 * Inherited from caller.
2728 *
2729 * RETURNS:
2730 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2731 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2732 */
936fd732 2733int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2734{
2735 u32 scontrol;
81952c54 2736 int rc;
1c3fae4d 2737
936fd732 2738 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2739 return rc;
1c3fae4d 2740
936fd732 2741 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2742 return 0;
2743
936fd732 2744 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2745 return rc;
2746
1c3fae4d
TH
2747 return 1;
2748}
2749
452503f9
AC
2750/*
2751 * This mode timing computation functionality is ported over from
2752 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2753 */
2754/*
b352e57d 2755 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2756 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2757 * for UDMA6, which is currently supported only by Maxtor drives.
2758 *
2759 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2760 */
2761
2762static const struct ata_timing ata_timing[] = {
70cd071e
TH
2763/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2764 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2765 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2766 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2767 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2768 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2769 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2770 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
452503f9 2771
70cd071e
TH
2772 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2773 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2774 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
452503f9 2775
70cd071e
TH
2776 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2777 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2778 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
b352e57d 2779 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
70cd071e 2780 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
452503f9
AC
2781
2782/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
70cd071e
TH
2783 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2784 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2785 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2786 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2787 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2788 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2789 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
2790
2791 { 0xFF }
2792};
2793
2dcb407e
JG
2794#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2795#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2796
2797static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2798{
2799 q->setup = EZ(t->setup * 1000, T);
2800 q->act8b = EZ(t->act8b * 1000, T);
2801 q->rec8b = EZ(t->rec8b * 1000, T);
2802 q->cyc8b = EZ(t->cyc8b * 1000, T);
2803 q->active = EZ(t->active * 1000, T);
2804 q->recover = EZ(t->recover * 1000, T);
2805 q->cycle = EZ(t->cycle * 1000, T);
2806 q->udma = EZ(t->udma * 1000, UT);
2807}
2808
2809void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2810 struct ata_timing *m, unsigned int what)
2811{
2812 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2813 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2814 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2815 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2816 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2817 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2818 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2819 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2820}
2821
6357357c 2822const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 2823{
70cd071e
TH
2824 const struct ata_timing *t = ata_timing;
2825
2826 while (xfer_mode > t->mode)
2827 t++;
452503f9 2828
70cd071e
TH
2829 if (xfer_mode == t->mode)
2830 return t;
2831 return NULL;
452503f9
AC
2832}
2833
2834int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2835 struct ata_timing *t, int T, int UT)
2836{
2837 const struct ata_timing *s;
2838 struct ata_timing p;
2839
2840 /*
2e9edbf8 2841 * Find the mode.
75b1f2f8 2842 */
452503f9
AC
2843
2844 if (!(s = ata_timing_find_mode(speed)))
2845 return -EINVAL;
2846
75b1f2f8
AL
2847 memcpy(t, s, sizeof(*s));
2848
452503f9
AC
2849 /*
2850 * If the drive is an EIDE drive, it can tell us it needs extended
2851 * PIO/MW_DMA cycle timing.
2852 */
2853
2854 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2855 memset(&p, 0, sizeof(p));
2dcb407e 2856 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2857 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2858 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2859 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2860 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2861 }
2862 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2863 }
2864
2865 /*
2866 * Convert the timing to bus clock counts.
2867 */
2868
75b1f2f8 2869 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2870
2871 /*
c893a3ae
RD
2872 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2873 * S.M.A.R.T * and some other commands. We have to ensure that the
2874 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2875 */
2876
fd3367af 2877 if (speed > XFER_PIO_6) {
452503f9
AC
2878 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2879 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2880 }
2881
2882 /*
c893a3ae 2883 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2884 */
2885
2886 if (t->act8b + t->rec8b < t->cyc8b) {
2887 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2888 t->rec8b = t->cyc8b - t->act8b;
2889 }
2890
2891 if (t->active + t->recover < t->cycle) {
2892 t->active += (t->cycle - (t->active + t->recover)) / 2;
2893 t->recover = t->cycle - t->active;
2894 }
a617c09f 2895
4f701d1e
AC
2896 /* In a few cases quantisation may produce enough errors to
2897 leave t->cycle too low for the sum of active and recovery
2898 if so we must correct this */
2899 if (t->active + t->recover > t->cycle)
2900 t->cycle = t->active + t->recover;
452503f9
AC
2901
2902 return 0;
2903}
2904
a0f79b92
TH
2905/**
2906 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2907 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2908 * @cycle: cycle duration in ns
2909 *
2910 * Return matching xfer mode for @cycle. The returned mode is of
2911 * the transfer type specified by @xfer_shift. If @cycle is too
2912 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
2913 * than the fastest known mode, the fasted mode is returned.
2914 *
2915 * LOCKING:
2916 * None.
2917 *
2918 * RETURNS:
2919 * Matching xfer_mode, 0xff if no match found.
2920 */
2921u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
2922{
2923 u8 base_mode = 0xff, last_mode = 0xff;
2924 const struct ata_xfer_ent *ent;
2925 const struct ata_timing *t;
2926
2927 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
2928 if (ent->shift == xfer_shift)
2929 base_mode = ent->base;
2930
2931 for (t = ata_timing_find_mode(base_mode);
2932 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
2933 unsigned short this_cycle;
2934
2935 switch (xfer_shift) {
2936 case ATA_SHIFT_PIO:
2937 case ATA_SHIFT_MWDMA:
2938 this_cycle = t->cycle;
2939 break;
2940 case ATA_SHIFT_UDMA:
2941 this_cycle = t->udma;
2942 break;
2943 default:
2944 return 0xff;
2945 }
2946
2947 if (cycle > this_cycle)
2948 break;
2949
2950 last_mode = t->mode;
2951 }
2952
2953 return last_mode;
2954}
2955
cf176e1a
TH
2956/**
2957 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2958 * @dev: Device to adjust xfer masks
458337db 2959 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2960 *
2961 * Adjust xfer masks of @dev downward. Note that this function
2962 * does not apply the change. Invoking ata_set_mode() afterwards
2963 * will apply the limit.
2964 *
2965 * LOCKING:
2966 * Inherited from caller.
2967 *
2968 * RETURNS:
2969 * 0 on success, negative errno on failure
2970 */
458337db 2971int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2972{
458337db 2973 char buf[32];
7dc951ae
TH
2974 unsigned long orig_mask, xfer_mask;
2975 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 2976 int quiet, highbit;
cf176e1a 2977
458337db
TH
2978 quiet = !!(sel & ATA_DNXFER_QUIET);
2979 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2980
458337db
TH
2981 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2982 dev->mwdma_mask,
2983 dev->udma_mask);
2984 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2985
458337db
TH
2986 switch (sel) {
2987 case ATA_DNXFER_PIO:
2988 highbit = fls(pio_mask) - 1;
2989 pio_mask &= ~(1 << highbit);
2990 break;
2991
2992 case ATA_DNXFER_DMA:
2993 if (udma_mask) {
2994 highbit = fls(udma_mask) - 1;
2995 udma_mask &= ~(1 << highbit);
2996 if (!udma_mask)
2997 return -ENOENT;
2998 } else if (mwdma_mask) {
2999 highbit = fls(mwdma_mask) - 1;
3000 mwdma_mask &= ~(1 << highbit);
3001 if (!mwdma_mask)
3002 return -ENOENT;
3003 }
3004 break;
3005
3006 case ATA_DNXFER_40C:
3007 udma_mask &= ATA_UDMA_MASK_40C;
3008 break;
3009
3010 case ATA_DNXFER_FORCE_PIO0:
3011 pio_mask &= 1;
3012 case ATA_DNXFER_FORCE_PIO:
3013 mwdma_mask = 0;
3014 udma_mask = 0;
3015 break;
3016
458337db
TH
3017 default:
3018 BUG();
3019 }
3020
3021 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3022
3023 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3024 return -ENOENT;
3025
3026 if (!quiet) {
3027 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3028 snprintf(buf, sizeof(buf), "%s:%s",
3029 ata_mode_string(xfer_mask),
3030 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3031 else
3032 snprintf(buf, sizeof(buf), "%s",
3033 ata_mode_string(xfer_mask));
3034
3035 ata_dev_printk(dev, KERN_WARNING,
3036 "limiting speed to %s\n", buf);
3037 }
cf176e1a
TH
3038
3039 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3040 &dev->udma_mask);
3041
cf176e1a 3042 return 0;
cf176e1a
TH
3043}
3044
3373efd8 3045static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3046{
9af5c9c9 3047 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
3048 unsigned int err_mask;
3049 int rc;
1da177e4 3050
e8384607 3051 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3052 if (dev->xfer_shift == ATA_SHIFT_PIO)
3053 dev->flags |= ATA_DFLAG_PIO;
3054
3373efd8 3055 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3056
11750a40
A
3057 /* Old CFA may refuse this command, which is just fine */
3058 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
3059 err_mask &= ~AC_ERR_DEV;
3060
0bc2a79a
AC
3061 /* Some very old devices and some bad newer ones fail any kind of
3062 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3063 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3064 dev->pio_mode <= XFER_PIO_2)
3065 err_mask &= ~AC_ERR_DEV;
2dcb407e 3066
3acaf94b
AC
3067 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3068 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3069 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3070 dev->dma_mode == XFER_MW_DMA_0 &&
3071 (dev->id[63] >> 8) & 1)
3072 err_mask &= ~AC_ERR_DEV;
3073
83206a29 3074 if (err_mask) {
f15a1daf
TH
3075 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3076 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
3077 return -EIO;
3078 }
1da177e4 3079
baa1e78a 3080 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 3081 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 3082 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 3083 if (rc)
83206a29 3084 return rc;
48a8a14f 3085
23e71c3d
TH
3086 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3087 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3088
f15a1daf
TH
3089 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3090 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 3091 return 0;
1da177e4
LT
3092}
3093
1da177e4 3094/**
04351821 3095 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3096 * @link: link on which timings will be programmed
e82cbdb9 3097 * @r_failed_dev: out paramter for failed device
1da177e4 3098 *
04351821
A
3099 * Standard implementation of the function used to tune and set
3100 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3101 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3102 * returned in @r_failed_dev.
780a87f7 3103 *
1da177e4 3104 * LOCKING:
0cba632b 3105 * PCI/etc. bus probe sem.
e82cbdb9
TH
3106 *
3107 * RETURNS:
3108 * 0 on success, negative errno otherwise
1da177e4 3109 */
04351821 3110
0260731f 3111int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3112{
0260731f 3113 struct ata_port *ap = link->ap;
e8e0619f 3114 struct ata_device *dev;
f58229f8 3115 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3116
a6d5a51c 3117 /* step 1: calculate xfer_mask */
f58229f8 3118 ata_link_for_each_dev(dev, link) {
7dc951ae 3119 unsigned long pio_mask, dma_mask;
b3a70601 3120 unsigned int mode_mask;
a6d5a51c 3121
e1211e3f 3122 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3123 continue;
3124
b3a70601
AC
3125 mode_mask = ATA_DMA_MASK_ATA;
3126 if (dev->class == ATA_DEV_ATAPI)
3127 mode_mask = ATA_DMA_MASK_ATAPI;
3128 else if (ata_id_is_cfa(dev->id))
3129 mode_mask = ATA_DMA_MASK_CFA;
3130
3373efd8 3131 ata_dev_xfermask(dev);
1da177e4 3132
acf356b1
TH
3133 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3134 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3135
3136 if (libata_dma_mask & mode_mask)
3137 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3138 else
3139 dma_mask = 0;
3140
acf356b1
TH
3141 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3142 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3143
4f65977d 3144 found = 1;
70cd071e 3145 if (dev->dma_mode != 0xff)
5444a6f4 3146 used_dma = 1;
a6d5a51c 3147 }
4f65977d 3148 if (!found)
e82cbdb9 3149 goto out;
a6d5a51c
TH
3150
3151 /* step 2: always set host PIO timings */
f58229f8 3152 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3153 if (!ata_dev_enabled(dev))
3154 continue;
3155
70cd071e 3156 if (dev->pio_mode == 0xff) {
f15a1daf 3157 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3158 rc = -EINVAL;
e82cbdb9 3159 goto out;
e8e0619f
TH
3160 }
3161
3162 dev->xfer_mode = dev->pio_mode;
3163 dev->xfer_shift = ATA_SHIFT_PIO;
3164 if (ap->ops->set_piomode)
3165 ap->ops->set_piomode(ap, dev);
3166 }
1da177e4 3167
a6d5a51c 3168 /* step 3: set host DMA timings */
f58229f8 3169 ata_link_for_each_dev(dev, link) {
70cd071e 3170 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
e8e0619f
TH
3171 continue;
3172
3173 dev->xfer_mode = dev->dma_mode;
3174 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3175 if (ap->ops->set_dmamode)
3176 ap->ops->set_dmamode(ap, dev);
3177 }
1da177e4
LT
3178
3179 /* step 4: update devices' xfer mode */
f58229f8 3180 ata_link_for_each_dev(dev, link) {
18d90deb 3181 /* don't update suspended devices' xfer mode */
9666f400 3182 if (!ata_dev_enabled(dev))
83206a29
TH
3183 continue;
3184
3373efd8 3185 rc = ata_dev_set_mode(dev);
5bbc53f4 3186 if (rc)
e82cbdb9 3187 goto out;
83206a29 3188 }
1da177e4 3189
e8e0619f
TH
3190 /* Record simplex status. If we selected DMA then the other
3191 * host channels are not permitted to do so.
5444a6f4 3192 */
cca3974e 3193 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3194 ap->host->simplex_claimed = ap;
5444a6f4 3195
e82cbdb9
TH
3196 out:
3197 if (rc)
3198 *r_failed_dev = dev;
3199 return rc;
1da177e4
LT
3200}
3201
1fdffbce
JG
3202/**
3203 * ata_tf_to_host - issue ATA taskfile to host controller
3204 * @ap: port to which command is being issued
3205 * @tf: ATA taskfile register set
3206 *
3207 * Issues ATA taskfile register set to ATA host controller,
3208 * with proper synchronization with interrupt handler and
3209 * other threads.
3210 *
3211 * LOCKING:
cca3974e 3212 * spin_lock_irqsave(host lock)
1fdffbce
JG
3213 */
3214
3215static inline void ata_tf_to_host(struct ata_port *ap,
3216 const struct ata_taskfile *tf)
3217{
3218 ap->ops->tf_load(ap, tf);
3219 ap->ops->exec_command(ap, tf);
3220}
3221
1da177e4
LT
3222/**
3223 * ata_busy_sleep - sleep until BSY clears, or timeout
3224 * @ap: port containing status register to be polled
3225 * @tmout_pat: impatience timeout
3226 * @tmout: overall timeout
3227 *
780a87f7
JG
3228 * Sleep until ATA Status register bit BSY clears,
3229 * or a timeout occurs.
3230 *
d1adc1bb
TH
3231 * LOCKING:
3232 * Kernel thread context (may sleep).
3233 *
3234 * RETURNS:
3235 * 0 on success, -errno otherwise.
1da177e4 3236 */
d1adc1bb
TH
3237int ata_busy_sleep(struct ata_port *ap,
3238 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3239{
3240 unsigned long timer_start, timeout;
3241 u8 status;
3242
3243 status = ata_busy_wait(ap, ATA_BUSY, 300);
3244 timer_start = jiffies;
3245 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3246 while (status != 0xff && (status & ATA_BUSY) &&
3247 time_before(jiffies, timeout)) {
1da177e4
LT
3248 msleep(50);
3249 status = ata_busy_wait(ap, ATA_BUSY, 3);
3250 }
3251
d1adc1bb 3252 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3253 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3254 "port is slow to respond, please be patient "
3255 "(Status 0x%x)\n", status);
1da177e4
LT
3256
3257 timeout = timer_start + tmout;
d1adc1bb
TH
3258 while (status != 0xff && (status & ATA_BUSY) &&
3259 time_before(jiffies, timeout)) {
1da177e4
LT
3260 msleep(50);
3261 status = ata_chk_status(ap);
3262 }
3263
d1adc1bb
TH
3264 if (status == 0xff)
3265 return -ENODEV;
3266
1da177e4 3267 if (status & ATA_BUSY) {
f15a1daf 3268 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3269 "(%lu secs, Status 0x%x)\n",
3270 tmout / HZ, status);
d1adc1bb 3271 return -EBUSY;
1da177e4
LT
3272 }
3273
3274 return 0;
3275}
3276
88ff6eaf
TH
3277/**
3278 * ata_wait_after_reset - wait before checking status after reset
3279 * @ap: port containing status register to be polled
3280 * @deadline: deadline jiffies for the operation
3281 *
3282 * After reset, we need to pause a while before reading status.
3283 * Also, certain combination of controller and device report 0xff
3284 * for some duration (e.g. until SATA PHY is up and running)
3285 * which is interpreted as empty port in ATA world. This
3286 * function also waits for such devices to get out of 0xff
3287 * status.
3288 *
3289 * LOCKING:
3290 * Kernel thread context (may sleep).
3291 */
3292void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3293{
3294 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3295
3296 if (time_before(until, deadline))
3297 deadline = until;
3298
3299 /* Spec mandates ">= 2ms" before checking status. We wait
3300 * 150ms, because that was the magic delay used for ATAPI
3301 * devices in Hale Landis's ATADRVR, for the period of time
3302 * between when the ATA command register is written, and then
3303 * status is checked. Because waiting for "a while" before
3304 * checking status is fine, post SRST, we perform this magic
3305 * delay here as well.
3306 *
3307 * Old drivers/ide uses the 2mS rule and then waits for ready.
3308 */
3309 msleep(150);
3310
3311 /* Wait for 0xff to clear. Some SATA devices take a long time
3312 * to clear 0xff after reset. For example, HHD424020F7SV00
3313 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3314 * than that.
1974e201
TH
3315 *
3316 * Note that some PATA controllers (pata_ali) explode if
3317 * status register is read more than once when there's no
3318 * device attached.
88ff6eaf 3319 */
1974e201
TH
3320 if (ap->flags & ATA_FLAG_SATA) {
3321 while (1) {
3322 u8 status = ata_chk_status(ap);
88ff6eaf 3323
1974e201
TH
3324 if (status != 0xff || time_after(jiffies, deadline))
3325 return;
88ff6eaf 3326
1974e201
TH
3327 msleep(50);
3328 }
88ff6eaf
TH
3329 }
3330}
3331
d4b2bab4
TH
3332/**
3333 * ata_wait_ready - sleep until BSY clears, or timeout
3334 * @ap: port containing status register to be polled
3335 * @deadline: deadline jiffies for the operation
3336 *
3337 * Sleep until ATA Status register bit BSY clears, or timeout
3338 * occurs.
3339 *
3340 * LOCKING:
3341 * Kernel thread context (may sleep).
3342 *
3343 * RETURNS:
3344 * 0 on success, -errno otherwise.
3345 */
3346int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3347{
3348 unsigned long start = jiffies;
3349 int warned = 0;
3350
3351 while (1) {
3352 u8 status = ata_chk_status(ap);
3353 unsigned long now = jiffies;
3354
3355 if (!(status & ATA_BUSY))
3356 return 0;
936fd732 3357 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3358 return -ENODEV;
3359 if (time_after(now, deadline))
3360 return -EBUSY;
3361
3362 if (!warned && time_after(now, start + 5 * HZ) &&
3363 (deadline - now > 3 * HZ)) {
3364 ata_port_printk(ap, KERN_WARNING,
3365 "port is slow to respond, please be patient "
3366 "(Status 0x%x)\n", status);
3367 warned = 1;
3368 }
3369
3370 msleep(50);
3371 }
3372}
3373
3374static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3375 unsigned long deadline)
1da177e4
LT
3376{
3377 struct ata_ioports *ioaddr = &ap->ioaddr;
3378 unsigned int dev0 = devmask & (1 << 0);
3379 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3380 int rc, ret = 0;
1da177e4
LT
3381
3382 /* if device 0 was found in ata_devchk, wait for its
3383 * BSY bit to clear
3384 */
d4b2bab4
TH
3385 if (dev0) {
3386 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3387 if (rc) {
3388 if (rc != -ENODEV)
3389 return rc;
3390 ret = rc;
3391 }
d4b2bab4 3392 }
1da177e4 3393
e141d999
TH
3394 /* if device 1 was found in ata_devchk, wait for register
3395 * access briefly, then wait for BSY to clear.
1da177e4 3396 */
e141d999
TH
3397 if (dev1) {
3398 int i;
1da177e4
LT
3399
3400 ap->ops->dev_select(ap, 1);
e141d999
TH
3401
3402 /* Wait for register access. Some ATAPI devices fail
3403 * to set nsect/lbal after reset, so don't waste too
3404 * much time on it. We're gonna wait for !BSY anyway.
3405 */
3406 for (i = 0; i < 2; i++) {
3407 u8 nsect, lbal;
3408
3409 nsect = ioread8(ioaddr->nsect_addr);
3410 lbal = ioread8(ioaddr->lbal_addr);
3411 if ((nsect == 1) && (lbal == 1))
3412 break;
3413 msleep(50); /* give drive a breather */
3414 }
3415
d4b2bab4 3416 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3417 if (rc) {
3418 if (rc != -ENODEV)
3419 return rc;
3420 ret = rc;
3421 }
d4b2bab4 3422 }
1da177e4
LT
3423
3424 /* is all this really necessary? */
3425 ap->ops->dev_select(ap, 0);
3426 if (dev1)
3427 ap->ops->dev_select(ap, 1);
3428 if (dev0)
3429 ap->ops->dev_select(ap, 0);
d4b2bab4 3430
9b89391c 3431 return ret;
1da177e4
LT
3432}
3433
d4b2bab4
TH
3434static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3435 unsigned long deadline)
1da177e4
LT
3436{
3437 struct ata_ioports *ioaddr = &ap->ioaddr;
3438
44877b4e 3439 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3440
3441 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3442 iowrite8(ap->ctl, ioaddr->ctl_addr);
3443 udelay(20); /* FIXME: flush */
3444 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3445 udelay(20); /* FIXME: flush */
3446 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3447
88ff6eaf
TH
3448 /* wait a while before checking status */
3449 ata_wait_after_reset(ap, deadline);
1da177e4 3450
2e9edbf8 3451 /* Before we perform post reset processing we want to see if
298a41ca
TH
3452 * the bus shows 0xFF because the odd clown forgets the D7
3453 * pulldown resistor.
3454 */
150981b0 3455 if (ata_chk_status(ap) == 0xFF)
9b89391c 3456 return -ENODEV;
09c7ad79 3457
d4b2bab4 3458 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3459}
3460
3461/**
3462 * ata_bus_reset - reset host port and associated ATA channel
3463 * @ap: port to reset
3464 *
3465 * This is typically the first time we actually start issuing
3466 * commands to the ATA channel. We wait for BSY to clear, then
3467 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3468 * result. Determine what devices, if any, are on the channel
3469 * by looking at the device 0/1 error register. Look at the signature
3470 * stored in each device's taskfile registers, to determine if
3471 * the device is ATA or ATAPI.
3472 *
3473 * LOCKING:
0cba632b 3474 * PCI/etc. bus probe sem.
cca3974e 3475 * Obtains host lock.
1da177e4
LT
3476 *
3477 * SIDE EFFECTS:
198e0fed 3478 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3479 */
3480
3481void ata_bus_reset(struct ata_port *ap)
3482{
9af5c9c9 3483 struct ata_device *device = ap->link.device;
1da177e4
LT
3484 struct ata_ioports *ioaddr = &ap->ioaddr;
3485 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3486 u8 err;
aec5c3c1 3487 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3488 int rc;
1da177e4 3489
44877b4e 3490 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3491
3492 /* determine if device 0/1 are present */
3493 if (ap->flags & ATA_FLAG_SATA_RESET)
3494 dev0 = 1;
3495 else {
3496 dev0 = ata_devchk(ap, 0);
3497 if (slave_possible)
3498 dev1 = ata_devchk(ap, 1);
3499 }
3500
3501 if (dev0)
3502 devmask |= (1 << 0);
3503 if (dev1)
3504 devmask |= (1 << 1);
3505
3506 /* select device 0 again */
3507 ap->ops->dev_select(ap, 0);
3508
3509 /* issue bus reset */
9b89391c
TH
3510 if (ap->flags & ATA_FLAG_SRST) {
3511 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3512 if (rc && rc != -ENODEV)
aec5c3c1 3513 goto err_out;
9b89391c 3514 }
1da177e4
LT
3515
3516 /*
3517 * determine by signature whether we have ATA or ATAPI devices
3518 */
3f19859e 3519 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3520 if ((slave_possible) && (err != 0x81))
3f19859e 3521 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3522
1da177e4 3523 /* is double-select really necessary? */
9af5c9c9 3524 if (device[1].class != ATA_DEV_NONE)
1da177e4 3525 ap->ops->dev_select(ap, 1);
9af5c9c9 3526 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3527 ap->ops->dev_select(ap, 0);
3528
3529 /* if no devices were detected, disable this port */
9af5c9c9
TH
3530 if ((device[0].class == ATA_DEV_NONE) &&
3531 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3532 goto err_out;
3533
3534 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3535 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3536 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3537 }
3538
3539 DPRINTK("EXIT\n");
3540 return;
3541
3542err_out:
f15a1daf 3543 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3544 ata_port_disable(ap);
1da177e4
LT
3545
3546 DPRINTK("EXIT\n");
3547}
3548
d7bb4cc7 3549/**
936fd732
TH
3550 * sata_link_debounce - debounce SATA phy status
3551 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3552 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3553 * @deadline: deadline jiffies for the operation
d7bb4cc7 3554 *
936fd732 3555* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3556 * holding the same value where DET is not 1 for @duration polled
3557 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3558 * beginning of the stable state. Because DET gets stuck at 1 on
3559 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3560 * until timeout then returns 0 if DET is stable at 1.
3561 *
d4b2bab4
TH
3562 * @timeout is further limited by @deadline. The sooner of the
3563 * two is used.
3564 *
d7bb4cc7
TH
3565 * LOCKING:
3566 * Kernel thread context (may sleep)
3567 *
3568 * RETURNS:
3569 * 0 on success, -errno on failure.
3570 */
936fd732
TH
3571int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3572 unsigned long deadline)
7a7921e8 3573{
d7bb4cc7 3574 unsigned long interval_msec = params[0];
d4b2bab4
TH
3575 unsigned long duration = msecs_to_jiffies(params[1]);
3576 unsigned long last_jiffies, t;
d7bb4cc7
TH
3577 u32 last, cur;
3578 int rc;
3579
d4b2bab4
TH
3580 t = jiffies + msecs_to_jiffies(params[2]);
3581 if (time_before(t, deadline))
3582 deadline = t;
3583
936fd732 3584 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3585 return rc;
3586 cur &= 0xf;
3587
3588 last = cur;
3589 last_jiffies = jiffies;
3590
3591 while (1) {
3592 msleep(interval_msec);
936fd732 3593 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3594 return rc;
3595 cur &= 0xf;
3596
3597 /* DET stable? */
3598 if (cur == last) {
d4b2bab4 3599 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3600 continue;
3601 if (time_after(jiffies, last_jiffies + duration))
3602 return 0;
3603 continue;
3604 }
3605
3606 /* unstable, start over */
3607 last = cur;
3608 last_jiffies = jiffies;
3609
f1545154
TH
3610 /* Check deadline. If debouncing failed, return
3611 * -EPIPE to tell upper layer to lower link speed.
3612 */
d4b2bab4 3613 if (time_after(jiffies, deadline))
f1545154 3614 return -EPIPE;
d7bb4cc7
TH
3615 }
3616}
3617
3618/**
936fd732
TH
3619 * sata_link_resume - resume SATA link
3620 * @link: ATA link to resume SATA
d7bb4cc7 3621 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3622 * @deadline: deadline jiffies for the operation
d7bb4cc7 3623 *
936fd732 3624 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3625 *
3626 * LOCKING:
3627 * Kernel thread context (may sleep)
3628 *
3629 * RETURNS:
3630 * 0 on success, -errno on failure.
3631 */
936fd732
TH
3632int sata_link_resume(struct ata_link *link, const unsigned long *params,
3633 unsigned long deadline)
d7bb4cc7
TH
3634{
3635 u32 scontrol;
81952c54
TH
3636 int rc;
3637
936fd732 3638 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3639 return rc;
7a7921e8 3640
852ee16a 3641 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3642
936fd732 3643 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3644 return rc;
7a7921e8 3645
d7bb4cc7
TH
3646 /* Some PHYs react badly if SStatus is pounded immediately
3647 * after resuming. Delay 200ms before debouncing.
3648 */
3649 msleep(200);
7a7921e8 3650
936fd732 3651 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3652}
3653
f5914a46
TH
3654/**
3655 * ata_std_prereset - prepare for reset
cc0680a5 3656 * @link: ATA link to be reset
d4b2bab4 3657 * @deadline: deadline jiffies for the operation
f5914a46 3658 *
cc0680a5 3659 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3660 * prereset makes libata abort whole reset sequence and give up
3661 * that port, so prereset should be best-effort. It does its
3662 * best to prepare for reset sequence but if things go wrong, it
3663 * should just whine, not fail.
f5914a46
TH
3664 *
3665 * LOCKING:
3666 * Kernel thread context (may sleep)
3667 *
3668 * RETURNS:
3669 * 0 on success, -errno otherwise.
3670 */
cc0680a5 3671int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3672{
cc0680a5 3673 struct ata_port *ap = link->ap;
936fd732 3674 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3675 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3676 int rc;
3677
31daabda 3678 /* handle link resume */
28324304 3679 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3680 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3681 ehc->i.action |= ATA_EH_HARDRESET;
3682
633273a3
TH
3683 /* Some PMPs don't work with only SRST, force hardreset if PMP
3684 * is supported.
3685 */
3686 if (ap->flags & ATA_FLAG_PMP)
3687 ehc->i.action |= ATA_EH_HARDRESET;
3688
f5914a46
TH
3689 /* if we're about to do hardreset, nothing more to do */
3690 if (ehc->i.action & ATA_EH_HARDRESET)
3691 return 0;
3692
936fd732 3693 /* if SATA, resume link */
a16abc0b 3694 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3695 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3696 /* whine about phy resume failure but proceed */
3697 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3698 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3699 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3700 }
3701
3702 /* Wait for !BSY if the controller can wait for the first D2H
3703 * Reg FIS and we don't know that no device is attached.
3704 */
0c88758b 3705 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3706 rc = ata_wait_ready(ap, deadline);
6dffaf61 3707 if (rc && rc != -ENODEV) {
cc0680a5 3708 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3709 "(errno=%d), forcing hardreset\n", rc);
3710 ehc->i.action |= ATA_EH_HARDRESET;
3711 }
3712 }
f5914a46
TH
3713
3714 return 0;
3715}
3716
c2bd5804
TH
3717/**
3718 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3719 * @link: ATA link to reset
c2bd5804 3720 * @classes: resulting classes of attached devices
d4b2bab4 3721 * @deadline: deadline jiffies for the operation
c2bd5804 3722 *
52783c5d 3723 * Reset host port using ATA SRST.
c2bd5804
TH
3724 *
3725 * LOCKING:
3726 * Kernel thread context (may sleep)
3727 *
3728 * RETURNS:
3729 * 0 on success, -errno otherwise.
3730 */
cc0680a5 3731int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3732 unsigned long deadline)
c2bd5804 3733{
cc0680a5 3734 struct ata_port *ap = link->ap;
c2bd5804 3735 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3736 unsigned int devmask = 0;
3737 int rc;
c2bd5804
TH
3738 u8 err;
3739
3740 DPRINTK("ENTER\n");
3741
936fd732 3742 if (ata_link_offline(link)) {
3a39746a
TH
3743 classes[0] = ATA_DEV_NONE;
3744 goto out;
3745 }
3746
c2bd5804
TH
3747 /* determine if device 0/1 are present */
3748 if (ata_devchk(ap, 0))
3749 devmask |= (1 << 0);
3750 if (slave_possible && ata_devchk(ap, 1))
3751 devmask |= (1 << 1);
3752
c2bd5804
TH
3753 /* select device 0 again */
3754 ap->ops->dev_select(ap, 0);
3755
3756 /* issue bus reset */
3757 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3758 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3759 /* if link is occupied, -ENODEV too is an error */
936fd732 3760 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3761 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3762 return rc;
c2bd5804
TH
3763 }
3764
3765 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3766 classes[0] = ata_dev_try_classify(&link->device[0],
3767 devmask & (1 << 0), &err);
c2bd5804 3768 if (slave_possible && err != 0x81)
3f19859e
TH
3769 classes[1] = ata_dev_try_classify(&link->device[1],
3770 devmask & (1 << 1), &err);
c2bd5804 3771
3a39746a 3772 out:
c2bd5804
TH
3773 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3774 return 0;
3775}
3776
3777/**
cc0680a5
TH
3778 * sata_link_hardreset - reset link via SATA phy reset
3779 * @link: link to reset
b6103f6d 3780 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3781 * @deadline: deadline jiffies for the operation
c2bd5804 3782 *
cc0680a5 3783 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3784 *
3785 * LOCKING:
3786 * Kernel thread context (may sleep)
3787 *
3788 * RETURNS:
3789 * 0 on success, -errno otherwise.
3790 */
cc0680a5 3791int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3792 unsigned long deadline)
c2bd5804 3793{
852ee16a 3794 u32 scontrol;
81952c54 3795 int rc;
852ee16a 3796
c2bd5804
TH
3797 DPRINTK("ENTER\n");
3798
936fd732 3799 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3800 /* SATA spec says nothing about how to reconfigure
3801 * spd. To be on the safe side, turn off phy during
3802 * reconfiguration. This works for at least ICH7 AHCI
3803 * and Sil3124.
3804 */
936fd732 3805 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3806 goto out;
81952c54 3807
a34b6fc0 3808 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3809
936fd732 3810 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3811 goto out;
1c3fae4d 3812
936fd732 3813 sata_set_spd(link);
1c3fae4d
TH
3814 }
3815
3816 /* issue phy wake/reset */
936fd732 3817 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3818 goto out;
81952c54 3819
852ee16a 3820 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3821
936fd732 3822 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3823 goto out;
c2bd5804 3824
1c3fae4d 3825 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3826 * 10.4.2 says at least 1 ms.
3827 */
3828 msleep(1);
3829
936fd732
TH
3830 /* bring link back */
3831 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3832 out:
3833 DPRINTK("EXIT, rc=%d\n", rc);
3834 return rc;
3835}
3836
3837/**
3838 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3839 * @link: link to reset
b6103f6d 3840 * @class: resulting class of attached device
d4b2bab4 3841 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3842 *
3843 * SATA phy-reset host port using DET bits of SControl register,
3844 * wait for !BSY and classify the attached device.
3845 *
3846 * LOCKING:
3847 * Kernel thread context (may sleep)
3848 *
3849 * RETURNS:
3850 * 0 on success, -errno otherwise.
3851 */
cc0680a5 3852int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3853 unsigned long deadline)
b6103f6d 3854{
cc0680a5 3855 struct ata_port *ap = link->ap;
936fd732 3856 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3857 int rc;
3858
3859 DPRINTK("ENTER\n");
3860
3861 /* do hardreset */
cc0680a5 3862 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3863 if (rc) {
cc0680a5 3864 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3865 "COMRESET failed (errno=%d)\n", rc);
3866 return rc;
3867 }
c2bd5804 3868
c2bd5804 3869 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3870 if (ata_link_offline(link)) {
c2bd5804
TH
3871 *class = ATA_DEV_NONE;
3872 DPRINTK("EXIT, link offline\n");
3873 return 0;
3874 }
3875
88ff6eaf
TH
3876 /* wait a while before checking status */
3877 ata_wait_after_reset(ap, deadline);
34fee227 3878
633273a3
TH
3879 /* If PMP is supported, we have to do follow-up SRST. Note
3880 * that some PMPs don't send D2H Reg FIS after hardreset at
3881 * all if the first port is empty. Wait for it just for a
3882 * second and request follow-up SRST.
3883 */
3884 if (ap->flags & ATA_FLAG_PMP) {
3885 ata_wait_ready(ap, jiffies + HZ);
3886 return -EAGAIN;
3887 }
3888
d4b2bab4 3889 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3890 /* link occupied, -ENODEV too is an error */
3891 if (rc) {
cc0680a5 3892 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3893 "COMRESET failed (errno=%d)\n", rc);
3894 return rc;
c2bd5804
TH
3895 }
3896
3a39746a
TH
3897 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3898
3f19859e 3899 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3900
3901 DPRINTK("EXIT, class=%u\n", *class);
3902 return 0;
3903}
3904
3905/**
3906 * ata_std_postreset - standard postreset callback
cc0680a5 3907 * @link: the target ata_link
c2bd5804
TH
3908 * @classes: classes of attached devices
3909 *
3910 * This function is invoked after a successful reset. Note that
3911 * the device might have been reset more than once using
3912 * different reset methods before postreset is invoked.
c2bd5804 3913 *
c2bd5804
TH
3914 * LOCKING:
3915 * Kernel thread context (may sleep)
3916 */
cc0680a5 3917void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3918{
cc0680a5 3919 struct ata_port *ap = link->ap;
dc2b3515
TH
3920 u32 serror;
3921
c2bd5804
TH
3922 DPRINTK("ENTER\n");
3923
c2bd5804 3924 /* print link status */
936fd732 3925 sata_print_link_status(link);
c2bd5804 3926
dc2b3515 3927 /* clear SError */
936fd732
TH
3928 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3929 sata_scr_write(link, SCR_ERROR, serror);
f7fe7ad4 3930 link->eh_info.serror = 0;
dc2b3515 3931
c2bd5804
TH
3932 /* is double-select really necessary? */
3933 if (classes[0] != ATA_DEV_NONE)
3934 ap->ops->dev_select(ap, 1);
3935 if (classes[1] != ATA_DEV_NONE)
3936 ap->ops->dev_select(ap, 0);
3937
3a39746a
TH
3938 /* bail out if no device is present */
3939 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3940 DPRINTK("EXIT, no device\n");
3941 return;
3942 }
3943
3944 /* set up device control */
0d5ff566
TH
3945 if (ap->ioaddr.ctl_addr)
3946 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3947
3948 DPRINTK("EXIT\n");
3949}
3950
623a3128
TH
3951/**
3952 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3953 * @dev: device to compare against
3954 * @new_class: class of the new device
3955 * @new_id: IDENTIFY page of the new device
3956 *
3957 * Compare @new_class and @new_id against @dev and determine
3958 * whether @dev is the device indicated by @new_class and
3959 * @new_id.
3960 *
3961 * LOCKING:
3962 * None.
3963 *
3964 * RETURNS:
3965 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3966 */
3373efd8
TH
3967static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3968 const u16 *new_id)
623a3128
TH
3969{
3970 const u16 *old_id = dev->id;
a0cf733b
TH
3971 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3972 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3973
3974 if (dev->class != new_class) {
f15a1daf
TH
3975 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3976 dev->class, new_class);
623a3128
TH
3977 return 0;
3978 }
3979
a0cf733b
TH
3980 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3981 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3982 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3983 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3984
3985 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3986 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3987 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3988 return 0;
3989 }
3990
3991 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3992 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3993 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3994 return 0;
3995 }
3996
623a3128
TH
3997 return 1;
3998}
3999
4000/**
fe30911b 4001 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4002 * @dev: target ATA device
bff04647 4003 * @readid_flags: read ID flags
623a3128
TH
4004 *
4005 * Re-read IDENTIFY page and make sure @dev is still attached to
4006 * the port.
4007 *
4008 * LOCKING:
4009 * Kernel thread context (may sleep)
4010 *
4011 * RETURNS:
4012 * 0 on success, negative errno otherwise
4013 */
fe30911b 4014int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4015{
5eb45c02 4016 unsigned int class = dev->class;
9af5c9c9 4017 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4018 int rc;
4019
fe635c7e 4020 /* read ID data */
bff04647 4021 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4022 if (rc)
fe30911b 4023 return rc;
623a3128
TH
4024
4025 /* is the device still there? */
fe30911b
TH
4026 if (!ata_dev_same_device(dev, class, id))
4027 return -ENODEV;
623a3128 4028
fe635c7e 4029 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4030 return 0;
4031}
4032
4033/**
4034 * ata_dev_revalidate - Revalidate ATA device
4035 * @dev: device to revalidate
422c9daa 4036 * @new_class: new class code
fe30911b
TH
4037 * @readid_flags: read ID flags
4038 *
4039 * Re-read IDENTIFY page, make sure @dev is still attached to the
4040 * port and reconfigure it according to the new IDENTIFY page.
4041 *
4042 * LOCKING:
4043 * Kernel thread context (may sleep)
4044 *
4045 * RETURNS:
4046 * 0 on success, negative errno otherwise
4047 */
422c9daa
TH
4048int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4049 unsigned int readid_flags)
fe30911b 4050{
6ddcd3b0 4051 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4052 int rc;
4053
4054 if (!ata_dev_enabled(dev))
4055 return -ENODEV;
4056
422c9daa
TH
4057 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4058 if (ata_class_enabled(new_class) &&
4059 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4060 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4061 dev->class, new_class);
4062 rc = -ENODEV;
4063 goto fail;
4064 }
4065
fe30911b
TH
4066 /* re-read ID */
4067 rc = ata_dev_reread_id(dev, readid_flags);
4068 if (rc)
4069 goto fail;
623a3128
TH
4070
4071 /* configure device according to the new ID */
efdaedc4 4072 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4073 if (rc)
4074 goto fail;
4075
4076 /* verify n_sectors hasn't changed */
b54eebd6
TH
4077 if (dev->class == ATA_DEV_ATA && n_sectors &&
4078 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4079 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4080 "%llu != %llu\n",
4081 (unsigned long long)n_sectors,
4082 (unsigned long long)dev->n_sectors);
8270bec4
TH
4083
4084 /* restore original n_sectors */
4085 dev->n_sectors = n_sectors;
4086
6ddcd3b0
TH
4087 rc = -ENODEV;
4088 goto fail;
4089 }
4090
4091 return 0;
623a3128
TH
4092
4093 fail:
f15a1daf 4094 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4095 return rc;
4096}
4097
6919a0a6
AC
4098struct ata_blacklist_entry {
4099 const char *model_num;
4100 const char *model_rev;
4101 unsigned long horkage;
4102};
4103
4104static const struct ata_blacklist_entry ata_device_blacklist [] = {
4105 /* Devices with DMA related problems under Linux */
4106 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4107 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4108 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4109 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4110 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4111 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4112 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4113 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4114 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4115 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4116 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4117 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4118 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4119 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4120 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4121 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4122 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4123 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4124 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4125 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4126 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4127 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4128 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4129 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4130 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4131 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4132 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4133 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4134 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4135 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4136 /* Odd clown on sil3726/4726 PMPs */
4137 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4138 ATA_HORKAGE_SKIP_PM },
6919a0a6 4139
18d6e9d5 4140 /* Weird ATAPI devices */
40a1d531 4141 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4142
6919a0a6
AC
4143 /* Devices we expect to fail diagnostics */
4144
4145 /* Devices where NCQ should be avoided */
4146 /* NCQ is slow */
2dcb407e 4147 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4148 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4149 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4150 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4151 /* NCQ is broken */
539cc7c7 4152 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4153 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4154 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4155 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4156 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4157 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4158
36e337d0
RH
4159 /* Blacklist entries taken from Silicon Image 3124/3132
4160 Windows driver .inf file - also several Linux problem reports */
4161 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4162 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4163 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4164
16c55b03
TH
4165 /* devices which puke on READ_NATIVE_MAX */
4166 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4167 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4168 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4169 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4170
93328e11
AC
4171 /* Devices which report 1 sector over size HPA */
4172 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4173 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4174
6bbfd53d
AC
4175 /* Devices which get the IVB wrong */
4176 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4177 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4178 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4179 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4180 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4181
6919a0a6
AC
4182 /* End Marker */
4183 { }
1da177e4 4184};
2e9edbf8 4185
741b7763 4186static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4187{
4188 const char *p;
4189 int len;
4190
4191 /*
4192 * check for trailing wildcard: *\0
4193 */
4194 p = strchr(patt, wildchar);
4195 if (p && ((*(p + 1)) == 0))
4196 len = p - patt;
317b50b8 4197 else {
539cc7c7 4198 len = strlen(name);
317b50b8
AP
4199 if (!len) {
4200 if (!*patt)
4201 return 0;
4202 return -1;
4203 }
4204 }
539cc7c7
JG
4205
4206 return strncmp(patt, name, len);
4207}
4208
75683fe7 4209static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4210{
8bfa79fc
TH
4211 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4212 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4213 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4214
8bfa79fc
TH
4215 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4216 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4217
6919a0a6 4218 while (ad->model_num) {
539cc7c7 4219 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4220 if (ad->model_rev == NULL)
4221 return ad->horkage;
539cc7c7 4222 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4223 return ad->horkage;
f4b15fef 4224 }
6919a0a6 4225 ad++;
f4b15fef 4226 }
1da177e4
LT
4227 return 0;
4228}
4229
6919a0a6
AC
4230static int ata_dma_blacklisted(const struct ata_device *dev)
4231{
4232 /* We don't support polling DMA.
4233 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4234 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4235 */
9af5c9c9 4236 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4237 (dev->flags & ATA_DFLAG_CDB_INTR))
4238 return 1;
75683fe7 4239 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4240}
4241
6bbfd53d
AC
4242/**
4243 * ata_is_40wire - check drive side detection
4244 * @dev: device
4245 *
4246 * Perform drive side detection decoding, allowing for device vendors
4247 * who can't follow the documentation.
4248 */
4249
4250static int ata_is_40wire(struct ata_device *dev)
4251{
4252 if (dev->horkage & ATA_HORKAGE_IVB)
4253 return ata_drive_40wire_relaxed(dev->id);
4254 return ata_drive_40wire(dev->id);
4255}
4256
a6d5a51c
TH
4257/**
4258 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4259 * @dev: Device to compute xfermask for
4260 *
acf356b1
TH
4261 * Compute supported xfermask of @dev and store it in
4262 * dev->*_mask. This function is responsible for applying all
4263 * known limits including host controller limits, device
4264 * blacklist, etc...
a6d5a51c
TH
4265 *
4266 * LOCKING:
4267 * None.
a6d5a51c 4268 */
3373efd8 4269static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4270{
9af5c9c9
TH
4271 struct ata_link *link = dev->link;
4272 struct ata_port *ap = link->ap;
cca3974e 4273 struct ata_host *host = ap->host;
a6d5a51c 4274 unsigned long xfer_mask;
1da177e4 4275
37deecb5 4276 /* controller modes available */
565083e1
TH
4277 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4278 ap->mwdma_mask, ap->udma_mask);
4279
8343f889 4280 /* drive modes available */
37deecb5
TH
4281 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4282 dev->mwdma_mask, dev->udma_mask);
4283 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4284
b352e57d
AC
4285 /*
4286 * CFA Advanced TrueIDE timings are not allowed on a shared
4287 * cable
4288 */
4289 if (ata_dev_pair(dev)) {
4290 /* No PIO5 or PIO6 */
4291 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4292 /* No MWDMA3 or MWDMA 4 */
4293 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4294 }
4295
37deecb5
TH
4296 if (ata_dma_blacklisted(dev)) {
4297 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4298 ata_dev_printk(dev, KERN_WARNING,
4299 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4300 }
a6d5a51c 4301
14d66ab7 4302 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4303 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4304 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4305 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4306 "other device, disabling DMA\n");
5444a6f4 4307 }
565083e1 4308
e424675f
JG
4309 if (ap->flags & ATA_FLAG_NO_IORDY)
4310 xfer_mask &= ata_pio_mask_no_iordy(dev);
4311
5444a6f4 4312 if (ap->ops->mode_filter)
a76b62ca 4313 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4314
8343f889
RH
4315 /* Apply cable rule here. Don't apply it early because when
4316 * we handle hot plug the cable type can itself change.
4317 * Check this last so that we know if the transfer rate was
4318 * solely limited by the cable.
4319 * Unknown or 80 wire cables reported host side are checked
4320 * drive side as well. Cases where we know a 40wire cable
4321 * is used safely for 80 are not checked here.
4322 */
4323 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4324 /* UDMA/44 or higher would be available */
2dcb407e 4325 if ((ap->cbl == ATA_CBL_PATA40) ||
6bbfd53d 4326 (ata_is_40wire(dev) &&
2dcb407e
JG
4327 (ap->cbl == ATA_CBL_PATA_UNK ||
4328 ap->cbl == ATA_CBL_PATA80))) {
4329 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4330 "limited to UDMA/33 due to 40-wire cable\n");
4331 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4332 }
4333
565083e1
TH
4334 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4335 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4336}
4337
1da177e4
LT
4338/**
4339 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4340 * @dev: Device to which command will be sent
4341 *
780a87f7
JG
4342 * Issue SET FEATURES - XFER MODE command to device @dev
4343 * on port @ap.
4344 *
1da177e4 4345 * LOCKING:
0cba632b 4346 * PCI/etc. bus probe sem.
83206a29
TH
4347 *
4348 * RETURNS:
4349 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4350 */
4351
3373efd8 4352static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4353{
a0123703 4354 struct ata_taskfile tf;
83206a29 4355 unsigned int err_mask;
1da177e4
LT
4356
4357 /* set up set-features taskfile */
4358 DPRINTK("set features - xfer mode\n");
4359
464cf177
TH
4360 /* Some controllers and ATAPI devices show flaky interrupt
4361 * behavior after setting xfer mode. Use polling instead.
4362 */
3373efd8 4363 ata_tf_init(dev, &tf);
a0123703
TH
4364 tf.command = ATA_CMD_SET_FEATURES;
4365 tf.feature = SETFEATURES_XFER;
464cf177 4366 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4367 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4368 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4369 if (ata_pio_need_iordy(dev))
4370 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4371 /* If the device has IORDY and the controller does not - turn it off */
4372 else if (ata_id_has_iordy(dev->id))
11b7becc 4373 tf.nsect = 0x01;
b9f8ab2d
AC
4374 else /* In the ancient relic department - skip all of this */
4375 return 0;
1da177e4 4376
2b789108 4377 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4378
4379 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4380 return err_mask;
4381}
9f45cbd3 4382/**
218f3d30 4383 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4384 * @dev: Device to which command will be sent
4385 * @enable: Whether to enable or disable the feature
218f3d30 4386 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4387 *
4388 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4389 * on port @ap with sector count
9f45cbd3
KCA
4390 *
4391 * LOCKING:
4392 * PCI/etc. bus probe sem.
4393 *
4394 * RETURNS:
4395 * 0 on success, AC_ERR_* mask otherwise.
4396 */
218f3d30
JG
4397static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4398 u8 feature)
9f45cbd3
KCA
4399{
4400 struct ata_taskfile tf;
4401 unsigned int err_mask;
4402
4403 /* set up set-features taskfile */
4404 DPRINTK("set features - SATA features\n");
4405
4406 ata_tf_init(dev, &tf);
4407 tf.command = ATA_CMD_SET_FEATURES;
4408 tf.feature = enable;
4409 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4410 tf.protocol = ATA_PROT_NODATA;
218f3d30 4411 tf.nsect = feature;
9f45cbd3 4412
2b789108 4413 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4414
83206a29
TH
4415 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4416 return err_mask;
1da177e4
LT
4417}
4418
8bf62ece
AL
4419/**
4420 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4421 * @dev: Device to which command will be sent
e2a7f77a
RD
4422 * @heads: Number of heads (taskfile parameter)
4423 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4424 *
4425 * LOCKING:
6aff8f1f
TH
4426 * Kernel thread context (may sleep)
4427 *
4428 * RETURNS:
4429 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4430 */
3373efd8
TH
4431static unsigned int ata_dev_init_params(struct ata_device *dev,
4432 u16 heads, u16 sectors)
8bf62ece 4433{
a0123703 4434 struct ata_taskfile tf;
6aff8f1f 4435 unsigned int err_mask;
8bf62ece
AL
4436
4437 /* Number of sectors per track 1-255. Number of heads 1-16 */
4438 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4439 return AC_ERR_INVALID;
8bf62ece
AL
4440
4441 /* set up init dev params taskfile */
4442 DPRINTK("init dev params \n");
4443
3373efd8 4444 ata_tf_init(dev, &tf);
a0123703
TH
4445 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4446 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4447 tf.protocol = ATA_PROT_NODATA;
4448 tf.nsect = sectors;
4449 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4450
2b789108 4451 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4452 /* A clean abort indicates an original or just out of spec drive
4453 and we should continue as we issue the setup based on the
4454 drive reported working geometry */
4455 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4456 err_mask = 0;
8bf62ece 4457
6aff8f1f
TH
4458 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4459 return err_mask;
8bf62ece
AL
4460}
4461
1da177e4 4462/**
0cba632b
JG
4463 * ata_sg_clean - Unmap DMA memory associated with command
4464 * @qc: Command containing DMA memory to be released
4465 *
4466 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4467 *
4468 * LOCKING:
cca3974e 4469 * spin_lock_irqsave(host lock)
1da177e4 4470 */
70e6ad0c 4471void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4472{
4473 struct ata_port *ap = qc->ap;
ff2aeb1e 4474 struct scatterlist *sg = qc->sg;
1da177e4 4475 int dir = qc->dma_dir;
cedc9a47 4476 void *pad_buf = NULL;
1da177e4 4477
a4631474 4478 WARN_ON(sg == NULL);
1da177e4 4479
ff2aeb1e 4480 VPRINTK("unmapping %u sg elements\n", qc->mapped_n_elem);
1da177e4 4481
cedc9a47
JG
4482 /* if we padded the buffer out to 32-bit bound, and data
4483 * xfer direction is from-device, we must copy from the
4484 * pad buffer back into the supplied buffer
4485 */
4486 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4487 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4488
ff2aeb1e
TH
4489 if (qc->mapped_n_elem)
4490 dma_unmap_sg(ap->dev, sg, qc->mapped_n_elem, dir);
001102d7 4491 /* restore last sg */
ff2aeb1e
TH
4492 if (qc->last_sg)
4493 *qc->last_sg = qc->saved_last_sg;
001102d7 4494 if (pad_buf) {
ff2aeb1e 4495 struct scatterlist *psg = &qc->extra_sg[1];
001102d7
TH
4496 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4497 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4498 kunmap_atomic(addr, KM_IRQ0);
cedc9a47 4499 }
1da177e4
LT
4500
4501 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4502 qc->sg = NULL;
1da177e4
LT
4503}
4504
4505/**
4506 * ata_fill_sg - Fill PCI IDE PRD table
4507 * @qc: Metadata associated with taskfile to be transferred
4508 *
780a87f7
JG
4509 * Fill PCI IDE PRD (scatter-gather) table with segments
4510 * associated with the current disk command.
4511 *
1da177e4 4512 * LOCKING:
cca3974e 4513 * spin_lock_irqsave(host lock)
1da177e4
LT
4514 *
4515 */
4516static void ata_fill_sg(struct ata_queued_cmd *qc)
4517{
1da177e4 4518 struct ata_port *ap = qc->ap;
cedc9a47 4519 struct scatterlist *sg;
ff2aeb1e 4520 unsigned int si, pi;
1da177e4 4521
ff2aeb1e
TH
4522 pi = 0;
4523 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1da177e4
LT
4524 u32 addr, offset;
4525 u32 sg_len, len;
4526
4527 /* determine if physical DMA addr spans 64K boundary.
4528 * Note h/w doesn't support 64-bit, so we unconditionally
4529 * truncate dma_addr_t to u32.
4530 */
4531 addr = (u32) sg_dma_address(sg);
4532 sg_len = sg_dma_len(sg);
4533
4534 while (sg_len) {
4535 offset = addr & 0xffff;
4536 len = sg_len;
4537 if ((offset + sg_len) > 0x10000)
4538 len = 0x10000 - offset;
4539
ff2aeb1e
TH
4540 ap->prd[pi].addr = cpu_to_le32(addr);
4541 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
4542 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
1da177e4 4543
ff2aeb1e 4544 pi++;
1da177e4
LT
4545 sg_len -= len;
4546 addr += len;
4547 }
4548 }
4549
ff2aeb1e 4550 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
1da177e4 4551}
b9a4197e 4552
d26fc955
AC
4553/**
4554 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4555 * @qc: Metadata associated with taskfile to be transferred
4556 *
4557 * Fill PCI IDE PRD (scatter-gather) table with segments
4558 * associated with the current disk command. Perform the fill
4559 * so that we avoid writing any length 64K records for
4560 * controllers that don't follow the spec.
4561 *
4562 * LOCKING:
4563 * spin_lock_irqsave(host lock)
4564 *
4565 */
4566static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4567{
4568 struct ata_port *ap = qc->ap;
4569 struct scatterlist *sg;
ff2aeb1e 4570 unsigned int si, pi;
d26fc955 4571
ff2aeb1e
TH
4572 pi = 0;
4573 for_each_sg(qc->sg, sg, qc->n_elem, si) {
d26fc955
AC
4574 u32 addr, offset;
4575 u32 sg_len, len, blen;
4576
2dcb407e 4577 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4578 * Note h/w doesn't support 64-bit, so we unconditionally
4579 * truncate dma_addr_t to u32.
4580 */
4581 addr = (u32) sg_dma_address(sg);
4582 sg_len = sg_dma_len(sg);
4583
4584 while (sg_len) {
4585 offset = addr & 0xffff;
4586 len = sg_len;
4587 if ((offset + sg_len) > 0x10000)
4588 len = 0x10000 - offset;
4589
4590 blen = len & 0xffff;
ff2aeb1e 4591 ap->prd[pi].addr = cpu_to_le32(addr);
d26fc955
AC
4592 if (blen == 0) {
4593 /* Some PATA chipsets like the CS5530 can't
4594 cope with 0x0000 meaning 64K as the spec says */
ff2aeb1e 4595 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
d26fc955 4596 blen = 0x8000;
ff2aeb1e 4597 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
d26fc955 4598 }
ff2aeb1e
TH
4599 ap->prd[pi].flags_len = cpu_to_le32(blen);
4600 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
d26fc955 4601
ff2aeb1e 4602 pi++;
d26fc955
AC
4603 sg_len -= len;
4604 addr += len;
4605 }
4606 }
4607
ff2aeb1e 4608 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
d26fc955
AC
4609}
4610
1da177e4
LT
4611/**
4612 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4613 * @qc: Metadata associated with taskfile to check
4614 *
780a87f7
JG
4615 * Allow low-level driver to filter ATA PACKET commands, returning
4616 * a status indicating whether or not it is OK to use DMA for the
4617 * supplied PACKET command.
4618 *
1da177e4 4619 * LOCKING:
cca3974e 4620 * spin_lock_irqsave(host lock)
0cba632b 4621 *
1da177e4
LT
4622 * RETURNS: 0 when ATAPI DMA can be used
4623 * nonzero otherwise
4624 */
4625int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4626{
4627 struct ata_port *ap = qc->ap;
b9a4197e
TH
4628
4629 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4630 * few ATAPI devices choke on such DMA requests.
4631 */
4632 if (unlikely(qc->nbytes & 15))
4633 return 1;
6f23a31d 4634
1da177e4 4635 if (ap->ops->check_atapi_dma)
b9a4197e 4636 return ap->ops->check_atapi_dma(qc);
1da177e4 4637
b9a4197e 4638 return 0;
1da177e4 4639}
b9a4197e 4640
140b5e59
TH
4641/**
4642 * atapi_qc_may_overflow - Check whether data transfer may overflow
4643 * @qc: ATA command in question
4644 *
4645 * ATAPI commands which transfer variable length data to host
4646 * might overflow due to application error or hardare bug. This
4647 * function checks whether overflow should be drained and ignored
4648 * for @qc.
4649 *
4650 * LOCKING:
4651 * None.
4652 *
4653 * RETURNS:
4654 * 1 if @qc may overflow; otherwise, 0.
4655 */
4656static int atapi_qc_may_overflow(struct ata_queued_cmd *qc)
4657{
0dc36888
TH
4658 if (qc->tf.protocol != ATAPI_PROT_PIO &&
4659 qc->tf.protocol != ATAPI_PROT_DMA)
140b5e59
TH
4660 return 0;
4661
4662 if (qc->tf.flags & ATA_TFLAG_WRITE)
4663 return 0;
4664
4665 switch (qc->cdb[0]) {
4666 case READ_10:
4667 case READ_12:
4668 case WRITE_10:
4669 case WRITE_12:
4670 case GPCMD_READ_CD:
4671 case GPCMD_READ_CD_MSF:
4672 return 0;
4673 }
4674
4675 return 1;
4676}
4677
31cc23b3
TH
4678/**
4679 * ata_std_qc_defer - Check whether a qc needs to be deferred
4680 * @qc: ATA command in question
4681 *
4682 * Non-NCQ commands cannot run with any other command, NCQ or
4683 * not. As upper layer only knows the queue depth, we are
4684 * responsible for maintaining exclusion. This function checks
4685 * whether a new command @qc can be issued.
4686 *
4687 * LOCKING:
4688 * spin_lock_irqsave(host lock)
4689 *
4690 * RETURNS:
4691 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4692 */
4693int ata_std_qc_defer(struct ata_queued_cmd *qc)
4694{
4695 struct ata_link *link = qc->dev->link;
4696
4697 if (qc->tf.protocol == ATA_PROT_NCQ) {
4698 if (!ata_tag_valid(link->active_tag))
4699 return 0;
4700 } else {
4701 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4702 return 0;
4703 }
4704
4705 return ATA_DEFER_LINK;
4706}
4707
1da177e4
LT
4708/**
4709 * ata_qc_prep - Prepare taskfile for submission
4710 * @qc: Metadata associated with taskfile to be prepared
4711 *
780a87f7
JG
4712 * Prepare ATA taskfile for submission.
4713 *
1da177e4 4714 * LOCKING:
cca3974e 4715 * spin_lock_irqsave(host lock)
1da177e4
LT
4716 */
4717void ata_qc_prep(struct ata_queued_cmd *qc)
4718{
4719 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4720 return;
4721
4722 ata_fill_sg(qc);
4723}
4724
d26fc955
AC
4725/**
4726 * ata_dumb_qc_prep - Prepare taskfile for submission
4727 * @qc: Metadata associated with taskfile to be prepared
4728 *
4729 * Prepare ATA taskfile for submission.
4730 *
4731 * LOCKING:
4732 * spin_lock_irqsave(host lock)
4733 */
4734void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4735{
4736 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4737 return;
4738
4739 ata_fill_sg_dumb(qc);
4740}
4741
e46834cd
BK
4742void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4743
0cba632b
JG
4744/**
4745 * ata_sg_init - Associate command with scatter-gather table.
4746 * @qc: Command to be associated
4747 * @sg: Scatter-gather table.
4748 * @n_elem: Number of elements in s/g table.
4749 *
4750 * Initialize the data-related elements of queued_cmd @qc
4751 * to point to a scatter-gather table @sg, containing @n_elem
4752 * elements.
4753 *
4754 * LOCKING:
cca3974e 4755 * spin_lock_irqsave(host lock)
0cba632b 4756 */
1da177e4
LT
4757void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4758 unsigned int n_elem)
4759{
ff2aeb1e 4760 qc->sg = sg;
1da177e4 4761 qc->n_elem = n_elem;
ff2aeb1e 4762 qc->cursg = qc->sg;
1da177e4
LT
4763}
4764
ff2aeb1e 4765static unsigned int ata_sg_setup_extra(struct ata_queued_cmd *qc,
0bcc65ad
TH
4766 unsigned int *n_elem_extra,
4767 unsigned int *nbytes_extra)
1da177e4
LT
4768{
4769 struct ata_port *ap = qc->ap;
ff2aeb1e
TH
4770 unsigned int n_elem = qc->n_elem;
4771 struct scatterlist *lsg, *copy_lsg = NULL, *tsg = NULL, *esg = NULL;
1da177e4 4772
ff2aeb1e 4773 *n_elem_extra = 0;
0bcc65ad 4774 *nbytes_extra = 0;
ff2aeb1e
TH
4775
4776 /* needs padding? */
4777 qc->pad_len = qc->nbytes & 3;
4778
4779 if (likely(!qc->pad_len))
4780 return n_elem;
4781
4782 /* locate last sg and save it */
4783 lsg = sg_last(qc->sg, n_elem);
4784 qc->last_sg = lsg;
4785 qc->saved_last_sg = *lsg;
4786
4787 sg_init_table(qc->extra_sg, ARRAY_SIZE(qc->extra_sg));
1da177e4 4788
cedc9a47 4789 if (qc->pad_len) {
ff2aeb1e 4790 struct scatterlist *psg = &qc->extra_sg[1];
cedc9a47 4791 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
cedc9a47
JG
4792 unsigned int offset;
4793
a4631474 4794 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4795
4796 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4797
ff2aeb1e 4798 /* psg->page/offset are used to copy to-be-written
cedc9a47
JG
4799 * data in this function or read data in ata_sg_clean.
4800 */
4801 offset = lsg->offset + lsg->length - qc->pad_len;
642f1490 4802 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
ff2aeb1e 4803 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4804
4805 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4806 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4807 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4808 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4809 }
4810
4811 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4812 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
ff2aeb1e
TH
4813
4814 /* Trim the last sg entry and chain the original and
4815 * padding sg lists.
4816 *
4817 * Because chaining consumes one sg entry, one extra
4818 * sg entry is allocated and the last sg entry is
4819 * copied to it if the length isn't zero after padded
4820 * amount is removed.
4821 *
4822 * If the last sg entry is completely replaced by
4823 * padding sg entry, the first sg entry is skipped
4824 * while chaining.
4825 */
cedc9a47 4826 lsg->length -= qc->pad_len;
ff2aeb1e
TH
4827 if (lsg->length) {
4828 copy_lsg = &qc->extra_sg[0];
4829 tsg = &qc->extra_sg[0];
4830 } else {
4831 n_elem--;
4832 tsg = &qc->extra_sg[1];
4833 }
4834
4835 esg = &qc->extra_sg[1];
cedc9a47 4836
ff2aeb1e 4837 (*n_elem_extra)++;
0bcc65ad 4838 (*nbytes_extra) += 4 - qc->pad_len;
cedc9a47
JG
4839 }
4840
ff2aeb1e
TH
4841 if (copy_lsg)
4842 sg_set_page(copy_lsg, sg_page(lsg), lsg->length, lsg->offset);
e1410f2d 4843
ff2aeb1e
TH
4844 sg_chain(lsg, 1, tsg);
4845 sg_mark_end(esg);
4846
4847 /* sglist can't start with chaining sg entry, fast forward */
4848 if (qc->sg == lsg) {
4849 qc->sg = tsg;
4850 qc->cursg = tsg;
e1410f2d
JG
4851 }
4852
ff2aeb1e
TH
4853 return n_elem;
4854}
4855
4856/**
4857 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4858 * @qc: Command with scatter-gather table to be mapped.
4859 *
4860 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4861 *
4862 * LOCKING:
4863 * spin_lock_irqsave(host lock)
4864 *
4865 * RETURNS:
4866 * Zero on success, negative on error.
4867 *
4868 */
4869static int ata_sg_setup(struct ata_queued_cmd *qc)
4870{
4871 struct ata_port *ap = qc->ap;
0bcc65ad 4872 unsigned int n_elem, n_elem_extra, nbytes_extra;
ff2aeb1e
TH
4873
4874 VPRINTK("ENTER, ata%u\n", ap->print_id);
4875
0bcc65ad 4876 n_elem = ata_sg_setup_extra(qc, &n_elem_extra, &nbytes_extra);
ff2aeb1e
TH
4877
4878 if (n_elem) {
4879 n_elem = dma_map_sg(ap->dev, qc->sg, n_elem, qc->dma_dir);
4880 if (n_elem < 1) {
4881 /* restore last sg */
4882 if (qc->last_sg)
4883 *qc->last_sg = qc->saved_last_sg;
4884 return -1;
4885 }
4886 DPRINTK("%d sg elements mapped\n", n_elem);
537a95d9 4887 }
1da177e4 4888
ff2aeb1e
TH
4889 qc->n_elem = qc->mapped_n_elem = n_elem;
4890 qc->n_elem += n_elem_extra;
0bcc65ad 4891 qc->nbytes += nbytes_extra;
f92a2636 4892 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4
LT
4893
4894 return 0;
4895}
4896
0baab86b 4897/**
c893a3ae 4898 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4899 * @buf: Buffer to swap
4900 * @buf_words: Number of 16-bit words in buffer.
4901 *
4902 * Swap halves of 16-bit words if needed to convert from
4903 * little-endian byte order to native cpu byte order, or
4904 * vice-versa.
4905 *
4906 * LOCKING:
6f0ef4fa 4907 * Inherited from caller.
0baab86b 4908 */
1da177e4
LT
4909void swap_buf_le16(u16 *buf, unsigned int buf_words)
4910{
4911#ifdef __BIG_ENDIAN
4912 unsigned int i;
4913
4914 for (i = 0; i < buf_words; i++)
4915 buf[i] = le16_to_cpu(buf[i]);
4916#endif /* __BIG_ENDIAN */
4917}
4918
6ae4cfb5 4919/**
0d5ff566 4920 * ata_data_xfer - Transfer data by PIO
55dba312 4921 * @dev: device to target
6ae4cfb5
AL
4922 * @buf: data buffer
4923 * @buflen: buffer length
344babaa 4924 * @write_data: read/write
6ae4cfb5
AL
4925 *
4926 * Transfer data from/to the device data register by PIO.
4927 *
4928 * LOCKING:
4929 * Inherited from caller.
55dba312
TH
4930 *
4931 * RETURNS:
4932 * Bytes consumed.
6ae4cfb5 4933 */
55dba312
TH
4934unsigned int ata_data_xfer(struct ata_device *dev, unsigned char *buf,
4935 unsigned int buflen, int rw)
1da177e4 4936{
55dba312
TH
4937 struct ata_port *ap = dev->link->ap;
4938 void __iomem *data_addr = ap->ioaddr.data_addr;
6ae4cfb5 4939 unsigned int words = buflen >> 1;
1da177e4 4940
6ae4cfb5 4941 /* Transfer multiple of 2 bytes */
55dba312
TH
4942 if (rw == READ)
4943 ioread16_rep(data_addr, buf, words);
1da177e4 4944 else
55dba312 4945 iowrite16_rep(data_addr, buf, words);
6ae4cfb5
AL
4946
4947 /* Transfer trailing 1 byte, if any. */
4948 if (unlikely(buflen & 0x01)) {
4949 u16 align_buf[1] = { 0 };
4950 unsigned char *trailing_buf = buf + buflen - 1;
4951
55dba312
TH
4952 if (rw == READ) {
4953 align_buf[0] = cpu_to_le16(ioread16(data_addr));
6ae4cfb5 4954 memcpy(trailing_buf, align_buf, 1);
55dba312
TH
4955 } else {
4956 memcpy(align_buf, trailing_buf, 1);
4957 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
6ae4cfb5 4958 }
55dba312 4959 words++;
6ae4cfb5 4960 }
55dba312
TH
4961
4962 return words << 1;
1da177e4
LT
4963}
4964
75e99585 4965/**
0d5ff566 4966 * ata_data_xfer_noirq - Transfer data by PIO
55dba312 4967 * @dev: device to target
75e99585
AC
4968 * @buf: data buffer
4969 * @buflen: buffer length
4970 * @write_data: read/write
4971 *
88574551 4972 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4973 * transfer with interrupts disabled.
4974 *
4975 * LOCKING:
4976 * Inherited from caller.
55dba312
TH
4977 *
4978 * RETURNS:
4979 * Bytes consumed.
75e99585 4980 */
55dba312
TH
4981unsigned int ata_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
4982 unsigned int buflen, int rw)
75e99585
AC
4983{
4984 unsigned long flags;
55dba312
TH
4985 unsigned int consumed;
4986
75e99585 4987 local_irq_save(flags);
55dba312 4988 consumed = ata_data_xfer(dev, buf, buflen, rw);
75e99585 4989 local_irq_restore(flags);
55dba312
TH
4990
4991 return consumed;
75e99585
AC
4992}
4993
4994
6ae4cfb5 4995/**
5a5dbd18 4996 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4997 * @qc: Command on going
4998 *
5a5dbd18 4999 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5000 *
5001 * LOCKING:
5002 * Inherited from caller.
5003 */
5004
1da177e4
LT
5005static void ata_pio_sector(struct ata_queued_cmd *qc)
5006{
5007 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5008 struct ata_port *ap = qc->ap;
5009 struct page *page;
5010 unsigned int offset;
5011 unsigned char *buf;
5012
5a5dbd18 5013 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5014 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5015
45711f1a 5016 page = sg_page(qc->cursg);
87260216 5017 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5018
5019 /* get the current page and offset */
5020 page = nth_page(page, (offset >> PAGE_SHIFT));
5021 offset %= PAGE_SIZE;
5022
1da177e4
LT
5023 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5024
91b8b313
AL
5025 if (PageHighMem(page)) {
5026 unsigned long flags;
5027
a6b2c5d4 5028 /* FIXME: use a bounce buffer */
91b8b313
AL
5029 local_irq_save(flags);
5030 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5031
91b8b313 5032 /* do the actual data transfer */
5a5dbd18 5033 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5034
91b8b313
AL
5035 kunmap_atomic(buf, KM_IRQ0);
5036 local_irq_restore(flags);
5037 } else {
5038 buf = page_address(page);
5a5dbd18 5039 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5040 }
1da177e4 5041
5a5dbd18
ML
5042 qc->curbytes += qc->sect_size;
5043 qc->cursg_ofs += qc->sect_size;
1da177e4 5044
87260216
JA
5045 if (qc->cursg_ofs == qc->cursg->length) {
5046 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5047 qc->cursg_ofs = 0;
5048 }
1da177e4 5049}
1da177e4 5050
07f6f7d0 5051/**
5a5dbd18 5052 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5053 * @qc: Command on going
5054 *
5a5dbd18 5055 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5056 * ATA device for the DRQ request.
5057 *
5058 * LOCKING:
5059 * Inherited from caller.
5060 */
1da177e4 5061
07f6f7d0
AL
5062static void ata_pio_sectors(struct ata_queued_cmd *qc)
5063{
5064 if (is_multi_taskfile(&qc->tf)) {
5065 /* READ/WRITE MULTIPLE */
5066 unsigned int nsect;
5067
587005de 5068 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5069
5a5dbd18 5070 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5071 qc->dev->multi_count);
07f6f7d0
AL
5072 while (nsect--)
5073 ata_pio_sector(qc);
5074 } else
5075 ata_pio_sector(qc);
4cc980b3
AL
5076
5077 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5078}
5079
c71c1857
AL
5080/**
5081 * atapi_send_cdb - Write CDB bytes to hardware
5082 * @ap: Port to which ATAPI device is attached.
5083 * @qc: Taskfile currently active
5084 *
5085 * When device has indicated its readiness to accept
5086 * a CDB, this function is called. Send the CDB.
5087 *
5088 * LOCKING:
5089 * caller.
5090 */
5091
5092static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5093{
5094 /* send SCSI cdb */
5095 DPRINTK("send cdb\n");
db024d53 5096 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5097
a6b2c5d4 5098 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5099 ata_altstatus(ap); /* flush */
5100
5101 switch (qc->tf.protocol) {
0dc36888 5102 case ATAPI_PROT_PIO:
c71c1857
AL
5103 ap->hsm_task_state = HSM_ST;
5104 break;
0dc36888 5105 case ATAPI_PROT_NODATA:
c71c1857
AL
5106 ap->hsm_task_state = HSM_ST_LAST;
5107 break;
0dc36888 5108 case ATAPI_PROT_DMA:
c71c1857
AL
5109 ap->hsm_task_state = HSM_ST_LAST;
5110 /* initiate bmdma */
5111 ap->ops->bmdma_start(qc);
5112 break;
5113 }
1da177e4
LT
5114}
5115
6ae4cfb5
AL
5116/**
5117 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5118 * @qc: Command on going
5119 * @bytes: number of bytes
5120 *
5121 * Transfer Transfer data from/to the ATAPI device.
5122 *
5123 * LOCKING:
5124 * Inherited from caller.
5125 *
5126 */
140b5e59 5127static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
1da177e4
LT
5128{
5129 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4 5130 struct ata_port *ap = qc->ap;
140b5e59
TH
5131 struct ata_eh_info *ehi = &qc->dev->link->eh_info;
5132 struct scatterlist *sg;
1da177e4
LT
5133 struct page *page;
5134 unsigned char *buf;
5135 unsigned int offset, count;
1da177e4
LT
5136
5137next_sg:
140b5e59
TH
5138 sg = qc->cursg;
5139 if (unlikely(!sg)) {
7fb6ec28 5140 /*
563a6e1f
AL
5141 * The end of qc->sg is reached and the device expects
5142 * more data to transfer. In order not to overrun qc->sg
5143 * and fulfill length specified in the byte count register,
5144 * - for read case, discard trailing data from the device
5145 * - for write case, padding zero data to the device
5146 */
5147 u16 pad_buf[1] = { 0 };
563a6e1f
AL
5148 unsigned int i;
5149
140b5e59
TH
5150 if (bytes > qc->curbytes - qc->nbytes + ATAPI_MAX_DRAIN) {
5151 ata_ehi_push_desc(ehi, "too much trailing data "
5152 "buf=%u cur=%u bytes=%u",
5153 qc->nbytes, qc->curbytes, bytes);
5154 return -1;
5155 }
5156
5157 /* overflow is exptected for misc ATAPI commands */
5158 if (bytes && !atapi_qc_may_overflow(qc))
5159 ata_dev_printk(qc->dev, KERN_WARNING, "ATAPI %u bytes "
5160 "trailing data (cdb=%02x nbytes=%u)\n",
5161 bytes, qc->cdb[0], qc->nbytes);
563a6e1f 5162
140b5e59 5163 for (i = 0; i < (bytes + 1) / 2; i++)
2dcb407e 5164 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5165
140b5e59 5166 qc->curbytes += bytes;
563a6e1f 5167
140b5e59
TH
5168 return 0;
5169 }
1da177e4 5170
45711f1a 5171 page = sg_page(sg);
1da177e4
LT
5172 offset = sg->offset + qc->cursg_ofs;
5173
5174 /* get the current page and offset */
5175 page = nth_page(page, (offset >> PAGE_SHIFT));
5176 offset %= PAGE_SIZE;
5177
6952df03 5178 /* don't overrun current sg */
32529e01 5179 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5180
5181 /* don't cross page boundaries */
5182 count = min(count, (unsigned int)PAGE_SIZE - offset);
5183
7282aa4b
AL
5184 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5185
91b8b313
AL
5186 if (PageHighMem(page)) {
5187 unsigned long flags;
5188
a6b2c5d4 5189 /* FIXME: use bounce buffer */
91b8b313
AL
5190 local_irq_save(flags);
5191 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5192
91b8b313 5193 /* do the actual data transfer */
a6b2c5d4 5194 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5195
91b8b313
AL
5196 kunmap_atomic(buf, KM_IRQ0);
5197 local_irq_restore(flags);
5198 } else {
5199 buf = page_address(page);
a6b2c5d4 5200 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5201 }
1da177e4
LT
5202
5203 bytes -= count;
140b5e59
TH
5204 if ((count & 1) && bytes)
5205 bytes--;
1da177e4
LT
5206 qc->curbytes += count;
5207 qc->cursg_ofs += count;
5208
32529e01 5209 if (qc->cursg_ofs == sg->length) {
87260216 5210 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5211 qc->cursg_ofs = 0;
5212 }
5213
563a6e1f 5214 if (bytes)
1da177e4 5215 goto next_sg;
140b5e59
TH
5216
5217 return 0;
1da177e4
LT
5218}
5219
6ae4cfb5
AL
5220/**
5221 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5222 * @qc: Command on going
5223 *
5224 * Transfer Transfer data from/to the ATAPI device.
5225 *
5226 * LOCKING:
5227 * Inherited from caller.
6ae4cfb5
AL
5228 */
5229
1da177e4
LT
5230static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5231{
5232 struct ata_port *ap = qc->ap;
5233 struct ata_device *dev = qc->dev;
5234 unsigned int ireason, bc_lo, bc_hi, bytes;
5235 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5236
eec4c3f3
AL
5237 /* Abuse qc->result_tf for temp storage of intermediate TF
5238 * here to save some kernel stack usage.
5239 * For normal completion, qc->result_tf is not relevant. For
5240 * error, qc->result_tf is later overwritten by ata_qc_complete().
5241 * So, the correctness of qc->result_tf is not affected.
5242 */
5243 ap->ops->tf_read(ap, &qc->result_tf);
5244 ireason = qc->result_tf.nsect;
5245 bc_lo = qc->result_tf.lbam;
5246 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5247 bytes = (bc_hi << 8) | bc_lo;
5248
5249 /* shall be cleared to zero, indicating xfer of data */
0106372d 5250 if (unlikely(ireason & (1 << 0)))
1da177e4
LT
5251 goto err_out;
5252
5253 /* make sure transfer direction matches expected */
5254 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
0106372d
AL
5255 if (unlikely(do_write != i_write))
5256 goto err_out;
5257
5258 if (unlikely(!bytes))
1da177e4
LT
5259 goto err_out;
5260
44877b4e 5261 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5262
140b5e59
TH
5263 if (__atapi_pio_bytes(qc, bytes))
5264 goto err_out;
4cc980b3 5265 ata_altstatus(ap); /* flush */
1da177e4
LT
5266
5267 return;
5268
5269err_out:
f15a1daf 5270 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5271 qc->err_mask |= AC_ERR_HSM;
14be71f4 5272 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5273}
5274
5275/**
c234fb00
AL
5276 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5277 * @ap: the target ata_port
5278 * @qc: qc on going
1da177e4 5279 *
c234fb00
AL
5280 * RETURNS:
5281 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5282 */
c234fb00
AL
5283
5284static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5285{
c234fb00
AL
5286 if (qc->tf.flags & ATA_TFLAG_POLLING)
5287 return 1;
1da177e4 5288
c234fb00
AL
5289 if (ap->hsm_task_state == HSM_ST_FIRST) {
5290 if (qc->tf.protocol == ATA_PROT_PIO &&
5291 (qc->tf.flags & ATA_TFLAG_WRITE))
5292 return 1;
1da177e4 5293
405e66b3 5294 if (ata_is_atapi(qc->tf.protocol) &&
c234fb00
AL
5295 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5296 return 1;
fe79e683
AL
5297 }
5298
c234fb00
AL
5299 return 0;
5300}
1da177e4 5301
c17ea20d
TH
5302/**
5303 * ata_hsm_qc_complete - finish a qc running on standard HSM
5304 * @qc: Command to complete
5305 * @in_wq: 1 if called from workqueue, 0 otherwise
5306 *
5307 * Finish @qc which is running on standard HSM.
5308 *
5309 * LOCKING:
cca3974e 5310 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5311 * Otherwise, none on entry and grabs host lock.
5312 */
5313static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5314{
5315 struct ata_port *ap = qc->ap;
5316 unsigned long flags;
5317
5318 if (ap->ops->error_handler) {
5319 if (in_wq) {
ba6a1308 5320 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5321
cca3974e
JG
5322 /* EH might have kicked in while host lock is
5323 * released.
c17ea20d
TH
5324 */
5325 qc = ata_qc_from_tag(ap, qc->tag);
5326 if (qc) {
5327 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5328 ap->ops->irq_on(ap);
c17ea20d
TH
5329 ata_qc_complete(qc);
5330 } else
5331 ata_port_freeze(ap);
5332 }
5333
ba6a1308 5334 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5335 } else {
5336 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5337 ata_qc_complete(qc);
5338 else
5339 ata_port_freeze(ap);
5340 }
5341 } else {
5342 if (in_wq) {
ba6a1308 5343 spin_lock_irqsave(ap->lock, flags);
83625006 5344 ap->ops->irq_on(ap);
c17ea20d 5345 ata_qc_complete(qc);
ba6a1308 5346 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5347 } else
5348 ata_qc_complete(qc);
5349 }
5350}
5351
bb5cb290
AL
5352/**
5353 * ata_hsm_move - move the HSM to the next state.
5354 * @ap: the target ata_port
5355 * @qc: qc on going
5356 * @status: current device status
5357 * @in_wq: 1 if called from workqueue, 0 otherwise
5358 *
5359 * RETURNS:
5360 * 1 when poll next status needed, 0 otherwise.
5361 */
9a1004d0
TH
5362int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5363 u8 status, int in_wq)
e2cec771 5364{
bb5cb290
AL
5365 unsigned long flags = 0;
5366 int poll_next;
5367
6912ccd5
AL
5368 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5369
bb5cb290
AL
5370 /* Make sure ata_qc_issue_prot() does not throw things
5371 * like DMA polling into the workqueue. Notice that
5372 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5373 */
c234fb00 5374 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5375
e2cec771 5376fsm_start:
999bb6f4 5377 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5378 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5379
e2cec771
AL
5380 switch (ap->hsm_task_state) {
5381 case HSM_ST_FIRST:
bb5cb290
AL
5382 /* Send first data block or PACKET CDB */
5383
5384 /* If polling, we will stay in the work queue after
5385 * sending the data. Otherwise, interrupt handler
5386 * takes over after sending the data.
5387 */
5388 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5389
e2cec771 5390 /* check device status */
3655d1d3
AL
5391 if (unlikely((status & ATA_DRQ) == 0)) {
5392 /* handle BSY=0, DRQ=0 as error */
5393 if (likely(status & (ATA_ERR | ATA_DF)))
5394 /* device stops HSM for abort/error */
5395 qc->err_mask |= AC_ERR_DEV;
5396 else
5397 /* HSM violation. Let EH handle this */
5398 qc->err_mask |= AC_ERR_HSM;
5399
14be71f4 5400 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5401 goto fsm_start;
1da177e4
LT
5402 }
5403
71601958
AL
5404 /* Device should not ask for data transfer (DRQ=1)
5405 * when it finds something wrong.
eee6c32f
AL
5406 * We ignore DRQ here and stop the HSM by
5407 * changing hsm_task_state to HSM_ST_ERR and
5408 * let the EH abort the command or reset the device.
71601958
AL
5409 */
5410 if (unlikely(status & (ATA_ERR | ATA_DF))) {
2d3b8eea
AL
5411 /* Some ATAPI tape drives forget to clear the ERR bit
5412 * when doing the next command (mostly request sense).
5413 * We ignore ERR here to workaround and proceed sending
5414 * the CDB.
5415 */
5416 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5417 ata_port_printk(ap, KERN_WARNING,
5418 "DRQ=1 with device error, "
5419 "dev_stat 0x%X\n", status);
5420 qc->err_mask |= AC_ERR_HSM;
5421 ap->hsm_task_state = HSM_ST_ERR;
5422 goto fsm_start;
5423 }
71601958 5424 }
1da177e4 5425
bb5cb290
AL
5426 /* Send the CDB (atapi) or the first data block (ata pio out).
5427 * During the state transition, interrupt handler shouldn't
5428 * be invoked before the data transfer is complete and
5429 * hsm_task_state is changed. Hence, the following locking.
5430 */
5431 if (in_wq)
ba6a1308 5432 spin_lock_irqsave(ap->lock, flags);
1da177e4 5433
bb5cb290
AL
5434 if (qc->tf.protocol == ATA_PROT_PIO) {
5435 /* PIO data out protocol.
5436 * send first data block.
5437 */
0565c26d 5438
bb5cb290
AL
5439 /* ata_pio_sectors() might change the state
5440 * to HSM_ST_LAST. so, the state is changed here
5441 * before ata_pio_sectors().
5442 */
5443 ap->hsm_task_state = HSM_ST;
5444 ata_pio_sectors(qc);
bb5cb290
AL
5445 } else
5446 /* send CDB */
5447 atapi_send_cdb(ap, qc);
5448
5449 if (in_wq)
ba6a1308 5450 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5451
5452 /* if polling, ata_pio_task() handles the rest.
5453 * otherwise, interrupt handler takes over from here.
5454 */
e2cec771 5455 break;
1c848984 5456
e2cec771
AL
5457 case HSM_ST:
5458 /* complete command or read/write the data register */
0dc36888 5459 if (qc->tf.protocol == ATAPI_PROT_PIO) {
e2cec771
AL
5460 /* ATAPI PIO protocol */
5461 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5462 /* No more data to transfer or device error.
5463 * Device error will be tagged in HSM_ST_LAST.
5464 */
e2cec771
AL
5465 ap->hsm_task_state = HSM_ST_LAST;
5466 goto fsm_start;
5467 }
1da177e4 5468
71601958
AL
5469 /* Device should not ask for data transfer (DRQ=1)
5470 * when it finds something wrong.
eee6c32f
AL
5471 * We ignore DRQ here and stop the HSM by
5472 * changing hsm_task_state to HSM_ST_ERR and
5473 * let the EH abort the command or reset the device.
71601958
AL
5474 */
5475 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5476 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5477 "device error, dev_stat 0x%X\n",
5478 status);
3655d1d3 5479 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5480 ap->hsm_task_state = HSM_ST_ERR;
5481 goto fsm_start;
71601958 5482 }
1da177e4 5483
e2cec771 5484 atapi_pio_bytes(qc);
7fb6ec28 5485
e2cec771
AL
5486 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5487 /* bad ireason reported by device */
5488 goto fsm_start;
1da177e4 5489
e2cec771
AL
5490 } else {
5491 /* ATA PIO protocol */
5492 if (unlikely((status & ATA_DRQ) == 0)) {
5493 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5494 if (likely(status & (ATA_ERR | ATA_DF)))
5495 /* device stops HSM for abort/error */
5496 qc->err_mask |= AC_ERR_DEV;
5497 else
55a8e2c8
TH
5498 /* HSM violation. Let EH handle this.
5499 * Phantom devices also trigger this
5500 * condition. Mark hint.
5501 */
5502 qc->err_mask |= AC_ERR_HSM |
5503 AC_ERR_NODEV_HINT;
3655d1d3 5504
e2cec771
AL
5505 ap->hsm_task_state = HSM_ST_ERR;
5506 goto fsm_start;
5507 }
1da177e4 5508
eee6c32f
AL
5509 /* For PIO reads, some devices may ask for
5510 * data transfer (DRQ=1) alone with ERR=1.
5511 * We respect DRQ here and transfer one
5512 * block of junk data before changing the
5513 * hsm_task_state to HSM_ST_ERR.
5514 *
5515 * For PIO writes, ERR=1 DRQ=1 doesn't make
5516 * sense since the data block has been
5517 * transferred to the device.
71601958
AL
5518 */
5519 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5520 /* data might be corrputed */
5521 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5522
5523 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5524 ata_pio_sectors(qc);
eee6c32f
AL
5525 status = ata_wait_idle(ap);
5526 }
5527
3655d1d3
AL
5528 if (status & (ATA_BUSY | ATA_DRQ))
5529 qc->err_mask |= AC_ERR_HSM;
5530
eee6c32f
AL
5531 /* ata_pio_sectors() might change the
5532 * state to HSM_ST_LAST. so, the state
5533 * is changed after ata_pio_sectors().
5534 */
5535 ap->hsm_task_state = HSM_ST_ERR;
5536 goto fsm_start;
71601958
AL
5537 }
5538
e2cec771
AL
5539 ata_pio_sectors(qc);
5540
5541 if (ap->hsm_task_state == HSM_ST_LAST &&
5542 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5543 /* all data read */
52a32205 5544 status = ata_wait_idle(ap);
e2cec771
AL
5545 goto fsm_start;
5546 }
5547 }
5548
bb5cb290 5549 poll_next = 1;
1da177e4
LT
5550 break;
5551
14be71f4 5552 case HSM_ST_LAST:
6912ccd5
AL
5553 if (unlikely(!ata_ok(status))) {
5554 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5555 ap->hsm_task_state = HSM_ST_ERR;
5556 goto fsm_start;
5557 }
5558
5559 /* no more data to transfer */
4332a771 5560 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5561 ap->print_id, qc->dev->devno, status);
e2cec771 5562
6912ccd5
AL
5563 WARN_ON(qc->err_mask);
5564
e2cec771 5565 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5566
e2cec771 5567 /* complete taskfile transaction */
c17ea20d 5568 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5569
5570 poll_next = 0;
1da177e4
LT
5571 break;
5572
14be71f4 5573 case HSM_ST_ERR:
e2cec771
AL
5574 /* make sure qc->err_mask is available to
5575 * know what's wrong and recover
5576 */
5577 WARN_ON(qc->err_mask == 0);
5578
5579 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5580
999bb6f4 5581 /* complete taskfile transaction */
c17ea20d 5582 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5583
5584 poll_next = 0;
e2cec771
AL
5585 break;
5586 default:
bb5cb290 5587 poll_next = 0;
6912ccd5 5588 BUG();
1da177e4
LT
5589 }
5590
bb5cb290 5591 return poll_next;
1da177e4
LT
5592}
5593
65f27f38 5594static void ata_pio_task(struct work_struct *work)
8061f5f0 5595{
65f27f38
DH
5596 struct ata_port *ap =
5597 container_of(work, struct ata_port, port_task.work);
5598 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5599 u8 status;
a1af3734 5600 int poll_next;
8061f5f0 5601
7fb6ec28 5602fsm_start:
a1af3734 5603 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5604
a1af3734
AL
5605 /*
5606 * This is purely heuristic. This is a fast path.
5607 * Sometimes when we enter, BSY will be cleared in
5608 * a chk-status or two. If not, the drive is probably seeking
5609 * or something. Snooze for a couple msecs, then
5610 * chk-status again. If still busy, queue delayed work.
5611 */
5612 status = ata_busy_wait(ap, ATA_BUSY, 5);
5613 if (status & ATA_BUSY) {
5614 msleep(2);
5615 status = ata_busy_wait(ap, ATA_BUSY, 10);
5616 if (status & ATA_BUSY) {
31ce6dae 5617 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5618 return;
5619 }
8061f5f0
TH
5620 }
5621
a1af3734
AL
5622 /* move the HSM */
5623 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5624
a1af3734
AL
5625 /* another command or interrupt handler
5626 * may be running at this point.
5627 */
5628 if (poll_next)
7fb6ec28 5629 goto fsm_start;
8061f5f0
TH
5630}
5631
1da177e4
LT
5632/**
5633 * ata_qc_new - Request an available ATA command, for queueing
5634 * @ap: Port associated with device @dev
5635 * @dev: Device from whom we request an available command structure
5636 *
5637 * LOCKING:
0cba632b 5638 * None.
1da177e4
LT
5639 */
5640
5641static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5642{
5643 struct ata_queued_cmd *qc = NULL;
5644 unsigned int i;
5645
e3180499 5646 /* no command while frozen */
b51e9e5d 5647 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5648 return NULL;
5649
2ab7db1f
TH
5650 /* the last tag is reserved for internal command. */
5651 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5652 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5653 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5654 break;
5655 }
5656
5657 if (qc)
5658 qc->tag = i;
5659
5660 return qc;
5661}
5662
5663/**
5664 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5665 * @dev: Device from whom we request an available command structure
5666 *
5667 * LOCKING:
0cba632b 5668 * None.
1da177e4
LT
5669 */
5670
3373efd8 5671struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5672{
9af5c9c9 5673 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5674 struct ata_queued_cmd *qc;
5675
5676 qc = ata_qc_new(ap);
5677 if (qc) {
1da177e4
LT
5678 qc->scsicmd = NULL;
5679 qc->ap = ap;
5680 qc->dev = dev;
1da177e4 5681
2c13b7ce 5682 ata_qc_reinit(qc);
1da177e4
LT
5683 }
5684
5685 return qc;
5686}
5687
1da177e4
LT
5688/**
5689 * ata_qc_free - free unused ata_queued_cmd
5690 * @qc: Command to complete
5691 *
5692 * Designed to free unused ata_queued_cmd object
5693 * in case something prevents using it.
5694 *
5695 * LOCKING:
cca3974e 5696 * spin_lock_irqsave(host lock)
1da177e4
LT
5697 */
5698void ata_qc_free(struct ata_queued_cmd *qc)
5699{
4ba946e9
TH
5700 struct ata_port *ap = qc->ap;
5701 unsigned int tag;
5702
a4631474 5703 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5704
4ba946e9
TH
5705 qc->flags = 0;
5706 tag = qc->tag;
5707 if (likely(ata_tag_valid(tag))) {
4ba946e9 5708 qc->tag = ATA_TAG_POISON;
6cec4a39 5709 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5710 }
1da177e4
LT
5711}
5712
76014427 5713void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5714{
dedaf2b0 5715 struct ata_port *ap = qc->ap;
9af5c9c9 5716 struct ata_link *link = qc->dev->link;
dedaf2b0 5717
a4631474
TH
5718 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5719 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5720
5721 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5722 ata_sg_clean(qc);
5723
7401abf2 5724 /* command should be marked inactive atomically with qc completion */
da917d69 5725 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5726 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5727 if (!link->sactive)
5728 ap->nr_active_links--;
5729 } else {
9af5c9c9 5730 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5731 ap->nr_active_links--;
5732 }
5733
5734 /* clear exclusive status */
5735 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5736 ap->excl_link == link))
5737 ap->excl_link = NULL;
7401abf2 5738
3f3791d3
AL
5739 /* atapi: mark qc as inactive to prevent the interrupt handler
5740 * from completing the command twice later, before the error handler
5741 * is called. (when rc != 0 and atapi request sense is needed)
5742 */
5743 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5744 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5745
1da177e4 5746 /* call completion callback */
77853bf2 5747 qc->complete_fn(qc);
1da177e4
LT
5748}
5749
39599a53
TH
5750static void fill_result_tf(struct ata_queued_cmd *qc)
5751{
5752 struct ata_port *ap = qc->ap;
5753
39599a53 5754 qc->result_tf.flags = qc->tf.flags;
4742d54f 5755 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5756}
5757
00115e0f
TH
5758static void ata_verify_xfer(struct ata_queued_cmd *qc)
5759{
5760 struct ata_device *dev = qc->dev;
5761
5762 if (ata_tag_internal(qc->tag))
5763 return;
5764
5765 if (ata_is_nodata(qc->tf.protocol))
5766 return;
5767
5768 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5769 return;
5770
5771 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5772}
5773
f686bcb8
TH
5774/**
5775 * ata_qc_complete - Complete an active ATA command
5776 * @qc: Command to complete
5777 * @err_mask: ATA Status register contents
5778 *
5779 * Indicate to the mid and upper layers that an ATA
5780 * command has completed, with either an ok or not-ok status.
5781 *
5782 * LOCKING:
cca3974e 5783 * spin_lock_irqsave(host lock)
f686bcb8
TH
5784 */
5785void ata_qc_complete(struct ata_queued_cmd *qc)
5786{
5787 struct ata_port *ap = qc->ap;
5788
5789 /* XXX: New EH and old EH use different mechanisms to
5790 * synchronize EH with regular execution path.
5791 *
5792 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5793 * Normal execution path is responsible for not accessing a
5794 * failed qc. libata core enforces the rule by returning NULL
5795 * from ata_qc_from_tag() for failed qcs.
5796 *
5797 * Old EH depends on ata_qc_complete() nullifying completion
5798 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5799 * not synchronize with interrupt handler. Only PIO task is
5800 * taken care of.
5801 */
5802 if (ap->ops->error_handler) {
4dbfa39b
TH
5803 struct ata_device *dev = qc->dev;
5804 struct ata_eh_info *ehi = &dev->link->eh_info;
5805
b51e9e5d 5806 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5807
5808 if (unlikely(qc->err_mask))
5809 qc->flags |= ATA_QCFLAG_FAILED;
5810
5811 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5812 if (!ata_tag_internal(qc->tag)) {
5813 /* always fill result TF for failed qc */
39599a53 5814 fill_result_tf(qc);
f686bcb8
TH
5815 ata_qc_schedule_eh(qc);
5816 return;
5817 }
5818 }
5819
5820 /* read result TF if requested */
5821 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5822 fill_result_tf(qc);
f686bcb8 5823
4dbfa39b
TH
5824 /* Some commands need post-processing after successful
5825 * completion.
5826 */
5827 switch (qc->tf.command) {
5828 case ATA_CMD_SET_FEATURES:
5829 if (qc->tf.feature != SETFEATURES_WC_ON &&
5830 qc->tf.feature != SETFEATURES_WC_OFF)
5831 break;
5832 /* fall through */
5833 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5834 case ATA_CMD_SET_MULTI: /* multi_count changed */
5835 /* revalidate device */
5836 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5837 ata_port_schedule_eh(ap);
5838 break;
054a5fba
TH
5839
5840 case ATA_CMD_SLEEP:
5841 dev->flags |= ATA_DFLAG_SLEEPING;
5842 break;
4dbfa39b
TH
5843 }
5844
00115e0f
TH
5845 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5846 ata_verify_xfer(qc);
5847
f686bcb8
TH
5848 __ata_qc_complete(qc);
5849 } else {
5850 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5851 return;
5852
5853 /* read result TF if failed or requested */
5854 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5855 fill_result_tf(qc);
f686bcb8
TH
5856
5857 __ata_qc_complete(qc);
5858 }
5859}
5860
dedaf2b0
TH
5861/**
5862 * ata_qc_complete_multiple - Complete multiple qcs successfully
5863 * @ap: port in question
5864 * @qc_active: new qc_active mask
5865 * @finish_qc: LLDD callback invoked before completing a qc
5866 *
5867 * Complete in-flight commands. This functions is meant to be
5868 * called from low-level driver's interrupt routine to complete
5869 * requests normally. ap->qc_active and @qc_active is compared
5870 * and commands are completed accordingly.
5871 *
5872 * LOCKING:
cca3974e 5873 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5874 *
5875 * RETURNS:
5876 * Number of completed commands on success, -errno otherwise.
5877 */
5878int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5879 void (*finish_qc)(struct ata_queued_cmd *))
5880{
5881 int nr_done = 0;
5882 u32 done_mask;
5883 int i;
5884
5885 done_mask = ap->qc_active ^ qc_active;
5886
5887 if (unlikely(done_mask & qc_active)) {
5888 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5889 "(%08x->%08x)\n", ap->qc_active, qc_active);
5890 return -EINVAL;
5891 }
5892
5893 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5894 struct ata_queued_cmd *qc;
5895
5896 if (!(done_mask & (1 << i)))
5897 continue;
5898
5899 if ((qc = ata_qc_from_tag(ap, i))) {
5900 if (finish_qc)
5901 finish_qc(qc);
5902 ata_qc_complete(qc);
5903 nr_done++;
5904 }
5905 }
5906
5907 return nr_done;
5908}
5909
1da177e4
LT
5910/**
5911 * ata_qc_issue - issue taskfile to device
5912 * @qc: command to issue to device
5913 *
5914 * Prepare an ATA command to submission to device.
5915 * This includes mapping the data into a DMA-able
5916 * area, filling in the S/G table, and finally
5917 * writing the taskfile to hardware, starting the command.
5918 *
5919 * LOCKING:
cca3974e 5920 * spin_lock_irqsave(host lock)
1da177e4 5921 */
8e0e694a 5922void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5923{
5924 struct ata_port *ap = qc->ap;
9af5c9c9 5925 struct ata_link *link = qc->dev->link;
405e66b3 5926 u8 prot = qc->tf.protocol;
1da177e4 5927
dedaf2b0
TH
5928 /* Make sure only one non-NCQ command is outstanding. The
5929 * check is skipped for old EH because it reuses active qc to
5930 * request ATAPI sense.
5931 */
9af5c9c9 5932 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5933
1973a023 5934 if (ata_is_ncq(prot)) {
9af5c9c9 5935 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5936
5937 if (!link->sactive)
5938 ap->nr_active_links++;
9af5c9c9 5939 link->sactive |= 1 << qc->tag;
dedaf2b0 5940 } else {
9af5c9c9 5941 WARN_ON(link->sactive);
da917d69
TH
5942
5943 ap->nr_active_links++;
9af5c9c9 5944 link->active_tag = qc->tag;
dedaf2b0
TH
5945 }
5946
e4a70e76 5947 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5948 ap->qc_active |= 1 << qc->tag;
e4a70e76 5949
f92a2636
TH
5950 /* We guarantee to LLDs that they will have at least one
5951 * non-zero sg if the command is a data command.
5952 */
ff2aeb1e 5953 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 5954
0bcc65ad
TH
5955 /* ata_sg_setup() may update nbytes */
5956 qc->raw_nbytes = qc->nbytes;
5957
405e66b3 5958 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5959 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
5960 if (ata_sg_setup(qc))
5961 goto sg_err;
1da177e4 5962
054a5fba
TH
5963 /* if device is sleeping, schedule softreset and abort the link */
5964 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5965 link->eh_info.action |= ATA_EH_SOFTRESET;
5966 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5967 ata_link_abort(link);
5968 return;
5969 }
5970
1da177e4
LT
5971 ap->ops->qc_prep(qc);
5972
8e0e694a
TH
5973 qc->err_mask |= ap->ops->qc_issue(qc);
5974 if (unlikely(qc->err_mask))
5975 goto err;
5976 return;
1da177e4 5977
8e436af9 5978sg_err:
8e0e694a
TH
5979 qc->err_mask |= AC_ERR_SYSTEM;
5980err:
5981 ata_qc_complete(qc);
1da177e4
LT
5982}
5983
5984/**
5985 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5986 * @qc: command to issue to device
5987 *
5988 * Using various libata functions and hooks, this function
5989 * starts an ATA command. ATA commands are grouped into
5990 * classes called "protocols", and issuing each type of protocol
5991 * is slightly different.
5992 *
0baab86b
EF
5993 * May be used as the qc_issue() entry in ata_port_operations.
5994 *
1da177e4 5995 * LOCKING:
cca3974e 5996 * spin_lock_irqsave(host lock)
1da177e4
LT
5997 *
5998 * RETURNS:
9a3d9eb0 5999 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6000 */
6001
9a3d9eb0 6002unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6003{
6004 struct ata_port *ap = qc->ap;
6005
e50362ec
AL
6006 /* Use polling pio if the LLD doesn't handle
6007 * interrupt driven pio and atapi CDB interrupt.
6008 */
6009 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6010 switch (qc->tf.protocol) {
6011 case ATA_PROT_PIO:
e3472cbe 6012 case ATA_PROT_NODATA:
0dc36888
TH
6013 case ATAPI_PROT_PIO:
6014 case ATAPI_PROT_NODATA:
e50362ec
AL
6015 qc->tf.flags |= ATA_TFLAG_POLLING;
6016 break;
0dc36888 6017 case ATAPI_PROT_DMA:
e50362ec 6018 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6019 /* see ata_dma_blacklisted() */
e50362ec
AL
6020 BUG();
6021 break;
6022 default:
6023 break;
6024 }
6025 }
6026
312f7da2 6027 /* select the device */
1da177e4
LT
6028 ata_dev_select(ap, qc->dev->devno, 1, 0);
6029
312f7da2 6030 /* start the command */
1da177e4
LT
6031 switch (qc->tf.protocol) {
6032 case ATA_PROT_NODATA:
312f7da2
AL
6033 if (qc->tf.flags & ATA_TFLAG_POLLING)
6034 ata_qc_set_polling(qc);
6035
e5338254 6036 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6037 ap->hsm_task_state = HSM_ST_LAST;
6038
6039 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6040 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 6041
1da177e4
LT
6042 break;
6043
6044 case ATA_PROT_DMA:
587005de 6045 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6046
1da177e4
LT
6047 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6048 ap->ops->bmdma_setup(qc); /* set up bmdma */
6049 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6050 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6051 break;
6052
312f7da2
AL
6053 case ATA_PROT_PIO:
6054 if (qc->tf.flags & ATA_TFLAG_POLLING)
6055 ata_qc_set_polling(qc);
1da177e4 6056
e5338254 6057 ata_tf_to_host(ap, &qc->tf);
312f7da2 6058
54f00389
AL
6059 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6060 /* PIO data out protocol */
6061 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 6062 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6063
6064 /* always send first data block using
e27486db 6065 * the ata_pio_task() codepath.
54f00389 6066 */
312f7da2 6067 } else {
54f00389
AL
6068 /* PIO data in protocol */
6069 ap->hsm_task_state = HSM_ST;
6070
6071 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6072 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6073
6074 /* if polling, ata_pio_task() handles the rest.
6075 * otherwise, interrupt handler takes over from here.
6076 */
312f7da2
AL
6077 }
6078
1da177e4
LT
6079 break;
6080
0dc36888
TH
6081 case ATAPI_PROT_PIO:
6082 case ATAPI_PROT_NODATA:
312f7da2
AL
6083 if (qc->tf.flags & ATA_TFLAG_POLLING)
6084 ata_qc_set_polling(qc);
6085
e5338254 6086 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6087
312f7da2
AL
6088 ap->hsm_task_state = HSM_ST_FIRST;
6089
6090 /* send cdb by polling if no cdb interrupt */
6091 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6092 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 6093 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6094 break;
6095
0dc36888 6096 case ATAPI_PROT_DMA:
587005de 6097 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6098
1da177e4
LT
6099 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6100 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6101 ap->hsm_task_state = HSM_ST_FIRST;
6102
6103 /* send cdb by polling if no cdb interrupt */
6104 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 6105 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6106 break;
6107
6108 default:
6109 WARN_ON(1);
9a3d9eb0 6110 return AC_ERR_SYSTEM;
1da177e4
LT
6111 }
6112
6113 return 0;
6114}
6115
1da177e4
LT
6116/**
6117 * ata_host_intr - Handle host interrupt for given (port, task)
6118 * @ap: Port on which interrupt arrived (possibly...)
6119 * @qc: Taskfile currently active in engine
6120 *
6121 * Handle host interrupt for given queued command. Currently,
6122 * only DMA interrupts are handled. All other commands are
6123 * handled via polling with interrupts disabled (nIEN bit).
6124 *
6125 * LOCKING:
cca3974e 6126 * spin_lock_irqsave(host lock)
1da177e4
LT
6127 *
6128 * RETURNS:
6129 * One if interrupt was handled, zero if not (shared irq).
6130 */
6131
2dcb407e
JG
6132inline unsigned int ata_host_intr(struct ata_port *ap,
6133 struct ata_queued_cmd *qc)
1da177e4 6134{
9af5c9c9 6135 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6136 u8 status, host_stat = 0;
1da177e4 6137
312f7da2 6138 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6139 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6140
312f7da2
AL
6141 /* Check whether we are expecting interrupt in this state */
6142 switch (ap->hsm_task_state) {
6143 case HSM_ST_FIRST:
6912ccd5
AL
6144 /* Some pre-ATAPI-4 devices assert INTRQ
6145 * at this state when ready to receive CDB.
6146 */
1da177e4 6147
312f7da2 6148 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
405e66b3
TH
6149 * The flag was turned on only for atapi devices. No
6150 * need to check ata_is_atapi(qc->tf.protocol) again.
312f7da2
AL
6151 */
6152 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6153 goto idle_irq;
1da177e4 6154 break;
312f7da2
AL
6155 case HSM_ST_LAST:
6156 if (qc->tf.protocol == ATA_PROT_DMA ||
0dc36888 6157 qc->tf.protocol == ATAPI_PROT_DMA) {
312f7da2
AL
6158 /* check status of DMA engine */
6159 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6160 VPRINTK("ata%u: host_stat 0x%X\n",
6161 ap->print_id, host_stat);
312f7da2
AL
6162
6163 /* if it's not our irq... */
6164 if (!(host_stat & ATA_DMA_INTR))
6165 goto idle_irq;
6166
6167 /* before we do anything else, clear DMA-Start bit */
6168 ap->ops->bmdma_stop(qc);
a4f16610
AL
6169
6170 if (unlikely(host_stat & ATA_DMA_ERR)) {
6171 /* error when transfering data to/from memory */
6172 qc->err_mask |= AC_ERR_HOST_BUS;
6173 ap->hsm_task_state = HSM_ST_ERR;
6174 }
312f7da2
AL
6175 }
6176 break;
6177 case HSM_ST:
6178 break;
1da177e4
LT
6179 default:
6180 goto idle_irq;
6181 }
6182
312f7da2
AL
6183 /* check altstatus */
6184 status = ata_altstatus(ap);
6185 if (status & ATA_BUSY)
6186 goto idle_irq;
1da177e4 6187
312f7da2
AL
6188 /* check main status, clearing INTRQ */
6189 status = ata_chk_status(ap);
6190 if (unlikely(status & ATA_BUSY))
6191 goto idle_irq;
1da177e4 6192
312f7da2
AL
6193 /* ack bmdma irq events */
6194 ap->ops->irq_clear(ap);
1da177e4 6195
bb5cb290 6196 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6197
6198 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
0dc36888 6199 qc->tf.protocol == ATAPI_PROT_DMA))
ea54763f
TH
6200 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6201
1da177e4
LT
6202 return 1; /* irq handled */
6203
6204idle_irq:
6205 ap->stats.idle_irq++;
6206
6207#ifdef ATA_IRQ_TRAP
6208 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6209 ata_chk_status(ap);
6210 ap->ops->irq_clear(ap);
f15a1daf 6211 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6212 return 1;
1da177e4
LT
6213 }
6214#endif
6215 return 0; /* irq not handled */
6216}
6217
6218/**
6219 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6220 * @irq: irq line (unused)
cca3974e 6221 * @dev_instance: pointer to our ata_host information structure
1da177e4 6222 *
0cba632b
JG
6223 * Default interrupt handler for PCI IDE devices. Calls
6224 * ata_host_intr() for each port that is not disabled.
6225 *
1da177e4 6226 * LOCKING:
cca3974e 6227 * Obtains host lock during operation.
1da177e4
LT
6228 *
6229 * RETURNS:
0cba632b 6230 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6231 */
6232
2dcb407e 6233irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6234{
cca3974e 6235 struct ata_host *host = dev_instance;
1da177e4
LT
6236 unsigned int i;
6237 unsigned int handled = 0;
6238 unsigned long flags;
6239
6240 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6241 spin_lock_irqsave(&host->lock, flags);
1da177e4 6242
cca3974e 6243 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6244 struct ata_port *ap;
6245
cca3974e 6246 ap = host->ports[i];
c1389503 6247 if (ap &&
029f5468 6248 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6249 struct ata_queued_cmd *qc;
6250
9af5c9c9 6251 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6252 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6253 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6254 handled |= ata_host_intr(ap, qc);
6255 }
6256 }
6257
cca3974e 6258 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6259
6260 return IRQ_RETVAL(handled);
6261}
6262
34bf2170
TH
6263/**
6264 * sata_scr_valid - test whether SCRs are accessible
936fd732 6265 * @link: ATA link to test SCR accessibility for
34bf2170 6266 *
936fd732 6267 * Test whether SCRs are accessible for @link.
34bf2170
TH
6268 *
6269 * LOCKING:
6270 * None.
6271 *
6272 * RETURNS:
6273 * 1 if SCRs are accessible, 0 otherwise.
6274 */
936fd732 6275int sata_scr_valid(struct ata_link *link)
34bf2170 6276{
936fd732
TH
6277 struct ata_port *ap = link->ap;
6278
a16abc0b 6279 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6280}
6281
6282/**
6283 * sata_scr_read - read SCR register of the specified port
936fd732 6284 * @link: ATA link to read SCR for
34bf2170
TH
6285 * @reg: SCR to read
6286 * @val: Place to store read value
6287 *
936fd732 6288 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6289 * guaranteed to succeed if @link is ap->link, the cable type of
6290 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6291 *
6292 * LOCKING:
633273a3 6293 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6294 *
6295 * RETURNS:
6296 * 0 on success, negative errno on failure.
6297 */
936fd732 6298int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6299{
633273a3
TH
6300 if (ata_is_host_link(link)) {
6301 struct ata_port *ap = link->ap;
936fd732 6302
633273a3
TH
6303 if (sata_scr_valid(link))
6304 return ap->ops->scr_read(ap, reg, val);
6305 return -EOPNOTSUPP;
6306 }
6307
6308 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6309}
6310
6311/**
6312 * sata_scr_write - write SCR register of the specified port
936fd732 6313 * @link: ATA link to write SCR for
34bf2170
TH
6314 * @reg: SCR to write
6315 * @val: value to write
6316 *
936fd732 6317 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6318 * guaranteed to succeed if @link is ap->link, the cable type of
6319 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6320 *
6321 * LOCKING:
633273a3 6322 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6323 *
6324 * RETURNS:
6325 * 0 on success, negative errno on failure.
6326 */
936fd732 6327int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6328{
633273a3
TH
6329 if (ata_is_host_link(link)) {
6330 struct ata_port *ap = link->ap;
6331
6332 if (sata_scr_valid(link))
6333 return ap->ops->scr_write(ap, reg, val);
6334 return -EOPNOTSUPP;
6335 }
936fd732 6336
633273a3 6337 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6338}
6339
6340/**
6341 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6342 * @link: ATA link to write SCR for
34bf2170
TH
6343 * @reg: SCR to write
6344 * @val: value to write
6345 *
6346 * This function is identical to sata_scr_write() except that this
6347 * function performs flush after writing to the register.
6348 *
6349 * LOCKING:
633273a3 6350 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6351 *
6352 * RETURNS:
6353 * 0 on success, negative errno on failure.
6354 */
936fd732 6355int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6356{
633273a3
TH
6357 if (ata_is_host_link(link)) {
6358 struct ata_port *ap = link->ap;
6359 int rc;
da3dbb17 6360
633273a3
TH
6361 if (sata_scr_valid(link)) {
6362 rc = ap->ops->scr_write(ap, reg, val);
6363 if (rc == 0)
6364 rc = ap->ops->scr_read(ap, reg, &val);
6365 return rc;
6366 }
6367 return -EOPNOTSUPP;
34bf2170 6368 }
633273a3
TH
6369
6370 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6371}
6372
6373/**
936fd732
TH
6374 * ata_link_online - test whether the given link is online
6375 * @link: ATA link to test
34bf2170 6376 *
936fd732
TH
6377 * Test whether @link is online. Note that this function returns
6378 * 0 if online status of @link cannot be obtained, so
6379 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6380 *
6381 * LOCKING:
6382 * None.
6383 *
6384 * RETURNS:
6385 * 1 if the port online status is available and online.
6386 */
936fd732 6387int ata_link_online(struct ata_link *link)
34bf2170
TH
6388{
6389 u32 sstatus;
6390
936fd732
TH
6391 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6392 (sstatus & 0xf) == 0x3)
34bf2170
TH
6393 return 1;
6394 return 0;
6395}
6396
6397/**
936fd732
TH
6398 * ata_link_offline - test whether the given link is offline
6399 * @link: ATA link to test
34bf2170 6400 *
936fd732
TH
6401 * Test whether @link is offline. Note that this function
6402 * returns 0 if offline status of @link cannot be obtained, so
6403 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6404 *
6405 * LOCKING:
6406 * None.
6407 *
6408 * RETURNS:
6409 * 1 if the port offline status is available and offline.
6410 */
936fd732 6411int ata_link_offline(struct ata_link *link)
34bf2170
TH
6412{
6413 u32 sstatus;
6414
936fd732
TH
6415 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6416 (sstatus & 0xf) != 0x3)
34bf2170
TH
6417 return 1;
6418 return 0;
6419}
0baab86b 6420
77b08fb5 6421int ata_flush_cache(struct ata_device *dev)
9b847548 6422{
977e6b9f 6423 unsigned int err_mask;
9b847548
JA
6424 u8 cmd;
6425
6426 if (!ata_try_flush_cache(dev))
6427 return 0;
6428
6fc49adb 6429 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6430 cmd = ATA_CMD_FLUSH_EXT;
6431 else
6432 cmd = ATA_CMD_FLUSH;
6433
4f34337b
AC
6434 /* This is wrong. On a failed flush we get back the LBA of the lost
6435 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6436 a further flush command to continue the writeback until it
4f34337b 6437 does not error */
977e6b9f
TH
6438 err_mask = ata_do_simple_cmd(dev, cmd);
6439 if (err_mask) {
6440 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6441 return -EIO;
6442 }
6443
6444 return 0;
9b847548
JA
6445}
6446
6ffa01d8 6447#ifdef CONFIG_PM
cca3974e
JG
6448static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6449 unsigned int action, unsigned int ehi_flags,
6450 int wait)
500530f6
TH
6451{
6452 unsigned long flags;
6453 int i, rc;
6454
cca3974e
JG
6455 for (i = 0; i < host->n_ports; i++) {
6456 struct ata_port *ap = host->ports[i];
e3667ebf 6457 struct ata_link *link;
500530f6
TH
6458
6459 /* Previous resume operation might still be in
6460 * progress. Wait for PM_PENDING to clear.
6461 */
6462 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6463 ata_port_wait_eh(ap);
6464 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6465 }
6466
6467 /* request PM ops to EH */
6468 spin_lock_irqsave(ap->lock, flags);
6469
6470 ap->pm_mesg = mesg;
6471 if (wait) {
6472 rc = 0;
6473 ap->pm_result = &rc;
6474 }
6475
6476 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6477 __ata_port_for_each_link(link, ap) {
6478 link->eh_info.action |= action;
6479 link->eh_info.flags |= ehi_flags;
6480 }
500530f6
TH
6481
6482 ata_port_schedule_eh(ap);
6483
6484 spin_unlock_irqrestore(ap->lock, flags);
6485
6486 /* wait and check result */
6487 if (wait) {
6488 ata_port_wait_eh(ap);
6489 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6490 if (rc)
6491 return rc;
6492 }
6493 }
6494
6495 return 0;
6496}
6497
6498/**
cca3974e
JG
6499 * ata_host_suspend - suspend host
6500 * @host: host to suspend
500530f6
TH
6501 * @mesg: PM message
6502 *
cca3974e 6503 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6504 * function requests EH to perform PM operations and waits for EH
6505 * to finish.
6506 *
6507 * LOCKING:
6508 * Kernel thread context (may sleep).
6509 *
6510 * RETURNS:
6511 * 0 on success, -errno on failure.
6512 */
cca3974e 6513int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6514{
9666f400 6515 int rc;
500530f6 6516
ca77329f
KCA
6517 /*
6518 * disable link pm on all ports before requesting
6519 * any pm activity
6520 */
6521 ata_lpm_enable(host);
6522
cca3974e 6523 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6524 if (rc == 0)
6525 host->dev->power.power_state = mesg;
500530f6
TH
6526 return rc;
6527}
6528
6529/**
cca3974e
JG
6530 * ata_host_resume - resume host
6531 * @host: host to resume
500530f6 6532 *
cca3974e 6533 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6534 * function requests EH to perform PM operations and returns.
6535 * Note that all resume operations are performed parallely.
6536 *
6537 * LOCKING:
6538 * Kernel thread context (may sleep).
6539 */
cca3974e 6540void ata_host_resume(struct ata_host *host)
500530f6 6541{
cca3974e
JG
6542 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6543 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6544 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6545
6546 /* reenable link pm */
6547 ata_lpm_disable(host);
500530f6 6548}
6ffa01d8 6549#endif
500530f6 6550
c893a3ae
RD
6551/**
6552 * ata_port_start - Set port up for dma.
6553 * @ap: Port to initialize
6554 *
6555 * Called just after data structures for each port are
6556 * initialized. Allocates space for PRD table.
6557 *
6558 * May be used as the port_start() entry in ata_port_operations.
6559 *
6560 * LOCKING:
6561 * Inherited from caller.
6562 */
f0d36efd 6563int ata_port_start(struct ata_port *ap)
1da177e4 6564{
2f1f610b 6565 struct device *dev = ap->dev;
6037d6bb 6566 int rc;
1da177e4 6567
f0d36efd
TH
6568 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6569 GFP_KERNEL);
1da177e4
LT
6570 if (!ap->prd)
6571 return -ENOMEM;
6572
6037d6bb 6573 rc = ata_pad_alloc(ap, dev);
f0d36efd 6574 if (rc)
6037d6bb 6575 return rc;
1da177e4 6576
f0d36efd
TH
6577 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6578 (unsigned long long)ap->prd_dma);
1da177e4
LT
6579 return 0;
6580}
6581
3ef3b43d
TH
6582/**
6583 * ata_dev_init - Initialize an ata_device structure
6584 * @dev: Device structure to initialize
6585 *
6586 * Initialize @dev in preparation for probing.
6587 *
6588 * LOCKING:
6589 * Inherited from caller.
6590 */
6591void ata_dev_init(struct ata_device *dev)
6592{
9af5c9c9
TH
6593 struct ata_link *link = dev->link;
6594 struct ata_port *ap = link->ap;
72fa4b74
TH
6595 unsigned long flags;
6596
5a04bf4b 6597 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6598 link->sata_spd_limit = link->hw_sata_spd_limit;
6599 link->sata_spd = 0;
5a04bf4b 6600
72fa4b74
TH
6601 /* High bits of dev->flags are used to record warm plug
6602 * requests which occur asynchronously. Synchronize using
cca3974e 6603 * host lock.
72fa4b74 6604 */
ba6a1308 6605 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6606 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6607 dev->horkage = 0;
ba6a1308 6608 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6609
72fa4b74
TH
6610 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6611 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6612 dev->pio_mask = UINT_MAX;
6613 dev->mwdma_mask = UINT_MAX;
6614 dev->udma_mask = UINT_MAX;
6615}
6616
4fb37a25
TH
6617/**
6618 * ata_link_init - Initialize an ata_link structure
6619 * @ap: ATA port link is attached to
6620 * @link: Link structure to initialize
8989805d 6621 * @pmp: Port multiplier port number
4fb37a25
TH
6622 *
6623 * Initialize @link.
6624 *
6625 * LOCKING:
6626 * Kernel thread context (may sleep)
6627 */
fb7fd614 6628void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6629{
6630 int i;
6631
6632 /* clear everything except for devices */
6633 memset(link, 0, offsetof(struct ata_link, device[0]));
6634
6635 link->ap = ap;
8989805d 6636 link->pmp = pmp;
4fb37a25
TH
6637 link->active_tag = ATA_TAG_POISON;
6638 link->hw_sata_spd_limit = UINT_MAX;
6639
6640 /* can't use iterator, ap isn't initialized yet */
6641 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6642 struct ata_device *dev = &link->device[i];
6643
6644 dev->link = link;
6645 dev->devno = dev - link->device;
6646 ata_dev_init(dev);
6647 }
6648}
6649
6650/**
6651 * sata_link_init_spd - Initialize link->sata_spd_limit
6652 * @link: Link to configure sata_spd_limit for
6653 *
6654 * Initialize @link->[hw_]sata_spd_limit to the currently
6655 * configured value.
6656 *
6657 * LOCKING:
6658 * Kernel thread context (may sleep).
6659 *
6660 * RETURNS:
6661 * 0 on success, -errno on failure.
6662 */
fb7fd614 6663int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6664{
6665 u32 scontrol, spd;
6666 int rc;
6667
6668 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6669 if (rc)
6670 return rc;
6671
6672 spd = (scontrol >> 4) & 0xf;
6673 if (spd)
6674 link->hw_sata_spd_limit &= (1 << spd) - 1;
6675
6676 link->sata_spd_limit = link->hw_sata_spd_limit;
6677
6678 return 0;
6679}
6680
1da177e4 6681/**
f3187195
TH
6682 * ata_port_alloc - allocate and initialize basic ATA port resources
6683 * @host: ATA host this allocated port belongs to
1da177e4 6684 *
f3187195
TH
6685 * Allocate and initialize basic ATA port resources.
6686 *
6687 * RETURNS:
6688 * Allocate ATA port on success, NULL on failure.
0cba632b 6689 *
1da177e4 6690 * LOCKING:
f3187195 6691 * Inherited from calling layer (may sleep).
1da177e4 6692 */
f3187195 6693struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6694{
f3187195 6695 struct ata_port *ap;
1da177e4 6696
f3187195
TH
6697 DPRINTK("ENTER\n");
6698
6699 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6700 if (!ap)
6701 return NULL;
6702
f4d6d004 6703 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6704 ap->lock = &host->lock;
198e0fed 6705 ap->flags = ATA_FLAG_DISABLED;
f3187195 6706 ap->print_id = -1;
1da177e4 6707 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6708 ap->host = host;
f3187195 6709 ap->dev = host->dev;
1da177e4 6710 ap->last_ctl = 0xFF;
bd5d825c
BP
6711
6712#if defined(ATA_VERBOSE_DEBUG)
6713 /* turn on all debugging levels */
6714 ap->msg_enable = 0x00FF;
6715#elif defined(ATA_DEBUG)
6716 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6717#else
0dd4b21f 6718 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6719#endif
1da177e4 6720
65f27f38
DH
6721 INIT_DELAYED_WORK(&ap->port_task, NULL);
6722 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6723 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6724 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6725 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6726 init_timer_deferrable(&ap->fastdrain_timer);
6727 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6728 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6729
838df628 6730 ap->cbl = ATA_CBL_NONE;
838df628 6731
8989805d 6732 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6733
6734#ifdef ATA_IRQ_TRAP
6735 ap->stats.unhandled_irq = 1;
6736 ap->stats.idle_irq = 1;
6737#endif
1da177e4 6738 return ap;
1da177e4
LT
6739}
6740
f0d36efd
TH
6741static void ata_host_release(struct device *gendev, void *res)
6742{
6743 struct ata_host *host = dev_get_drvdata(gendev);
6744 int i;
6745
1aa506e4
TH
6746 for (i = 0; i < host->n_ports; i++) {
6747 struct ata_port *ap = host->ports[i];
6748
4911487a
TH
6749 if (!ap)
6750 continue;
6751
6752 if (ap->scsi_host)
1aa506e4
TH
6753 scsi_host_put(ap->scsi_host);
6754
633273a3 6755 kfree(ap->pmp_link);
4911487a 6756 kfree(ap);
1aa506e4
TH
6757 host->ports[i] = NULL;
6758 }
6759
1aa56cca 6760 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6761}
6762
f3187195
TH
6763/**
6764 * ata_host_alloc - allocate and init basic ATA host resources
6765 * @dev: generic device this host is associated with
6766 * @max_ports: maximum number of ATA ports associated with this host
6767 *
6768 * Allocate and initialize basic ATA host resources. LLD calls
6769 * this function to allocate a host, initializes it fully and
6770 * attaches it using ata_host_register().
6771 *
6772 * @max_ports ports are allocated and host->n_ports is
6773 * initialized to @max_ports. The caller is allowed to decrease
6774 * host->n_ports before calling ata_host_register(). The unused
6775 * ports will be automatically freed on registration.
6776 *
6777 * RETURNS:
6778 * Allocate ATA host on success, NULL on failure.
6779 *
6780 * LOCKING:
6781 * Inherited from calling layer (may sleep).
6782 */
6783struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6784{
6785 struct ata_host *host;
6786 size_t sz;
6787 int i;
6788
6789 DPRINTK("ENTER\n");
6790
6791 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6792 return NULL;
6793
6794 /* alloc a container for our list of ATA ports (buses) */
6795 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6796 /* alloc a container for our list of ATA ports (buses) */
6797 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6798 if (!host)
6799 goto err_out;
6800
6801 devres_add(dev, host);
6802 dev_set_drvdata(dev, host);
6803
6804 spin_lock_init(&host->lock);
6805 host->dev = dev;
6806 host->n_ports = max_ports;
6807
6808 /* allocate ports bound to this host */
6809 for (i = 0; i < max_ports; i++) {
6810 struct ata_port *ap;
6811
6812 ap = ata_port_alloc(host);
6813 if (!ap)
6814 goto err_out;
6815
6816 ap->port_no = i;
6817 host->ports[i] = ap;
6818 }
6819
6820 devres_remove_group(dev, NULL);
6821 return host;
6822
6823 err_out:
6824 devres_release_group(dev, NULL);
6825 return NULL;
6826}
6827
f5cda257
TH
6828/**
6829 * ata_host_alloc_pinfo - alloc host and init with port_info array
6830 * @dev: generic device this host is associated with
6831 * @ppi: array of ATA port_info to initialize host with
6832 * @n_ports: number of ATA ports attached to this host
6833 *
6834 * Allocate ATA host and initialize with info from @ppi. If NULL
6835 * terminated, @ppi may contain fewer entries than @n_ports. The
6836 * last entry will be used for the remaining ports.
6837 *
6838 * RETURNS:
6839 * Allocate ATA host on success, NULL on failure.
6840 *
6841 * LOCKING:
6842 * Inherited from calling layer (may sleep).
6843 */
6844struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6845 const struct ata_port_info * const * ppi,
6846 int n_ports)
6847{
6848 const struct ata_port_info *pi;
6849 struct ata_host *host;
6850 int i, j;
6851
6852 host = ata_host_alloc(dev, n_ports);
6853 if (!host)
6854 return NULL;
6855
6856 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6857 struct ata_port *ap = host->ports[i];
6858
6859 if (ppi[j])
6860 pi = ppi[j++];
6861
6862 ap->pio_mask = pi->pio_mask;
6863 ap->mwdma_mask = pi->mwdma_mask;
6864 ap->udma_mask = pi->udma_mask;
6865 ap->flags |= pi->flags;
0c88758b 6866 ap->link.flags |= pi->link_flags;
f5cda257
TH
6867 ap->ops = pi->port_ops;
6868
6869 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6870 host->ops = pi->port_ops;
6871 if (!host->private_data && pi->private_data)
6872 host->private_data = pi->private_data;
6873 }
6874
6875 return host;
6876}
6877
32ebbc0c
TH
6878static void ata_host_stop(struct device *gendev, void *res)
6879{
6880 struct ata_host *host = dev_get_drvdata(gendev);
6881 int i;
6882
6883 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6884
6885 for (i = 0; i < host->n_ports; i++) {
6886 struct ata_port *ap = host->ports[i];
6887
6888 if (ap->ops->port_stop)
6889 ap->ops->port_stop(ap);
6890 }
6891
6892 if (host->ops->host_stop)
6893 host->ops->host_stop(host);
6894}
6895
ecef7253
TH
6896/**
6897 * ata_host_start - start and freeze ports of an ATA host
6898 * @host: ATA host to start ports for
6899 *
6900 * Start and then freeze ports of @host. Started status is
6901 * recorded in host->flags, so this function can be called
6902 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6903 * once. If host->ops isn't initialized yet, its set to the
6904 * first non-dummy port ops.
ecef7253
TH
6905 *
6906 * LOCKING:
6907 * Inherited from calling layer (may sleep).
6908 *
6909 * RETURNS:
6910 * 0 if all ports are started successfully, -errno otherwise.
6911 */
6912int ata_host_start(struct ata_host *host)
6913{
32ebbc0c
TH
6914 int have_stop = 0;
6915 void *start_dr = NULL;
ecef7253
TH
6916 int i, rc;
6917
6918 if (host->flags & ATA_HOST_STARTED)
6919 return 0;
6920
6921 for (i = 0; i < host->n_ports; i++) {
6922 struct ata_port *ap = host->ports[i];
6923
f3187195
TH
6924 if (!host->ops && !ata_port_is_dummy(ap))
6925 host->ops = ap->ops;
6926
32ebbc0c
TH
6927 if (ap->ops->port_stop)
6928 have_stop = 1;
6929 }
6930
6931 if (host->ops->host_stop)
6932 have_stop = 1;
6933
6934 if (have_stop) {
6935 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6936 if (!start_dr)
6937 return -ENOMEM;
6938 }
6939
6940 for (i = 0; i < host->n_ports; i++) {
6941 struct ata_port *ap = host->ports[i];
6942
ecef7253
TH
6943 if (ap->ops->port_start) {
6944 rc = ap->ops->port_start(ap);
6945 if (rc) {
0f9fe9b7 6946 if (rc != -ENODEV)
0f757743
AM
6947 dev_printk(KERN_ERR, host->dev,
6948 "failed to start port %d "
6949 "(errno=%d)\n", i, rc);
ecef7253
TH
6950 goto err_out;
6951 }
6952 }
ecef7253
TH
6953 ata_eh_freeze_port(ap);
6954 }
6955
32ebbc0c
TH
6956 if (start_dr)
6957 devres_add(host->dev, start_dr);
ecef7253
TH
6958 host->flags |= ATA_HOST_STARTED;
6959 return 0;
6960
6961 err_out:
6962 while (--i >= 0) {
6963 struct ata_port *ap = host->ports[i];
6964
6965 if (ap->ops->port_stop)
6966 ap->ops->port_stop(ap);
6967 }
32ebbc0c 6968 devres_free(start_dr);
ecef7253
TH
6969 return rc;
6970}
6971
b03732f0 6972/**
cca3974e
JG
6973 * ata_sas_host_init - Initialize a host struct
6974 * @host: host to initialize
6975 * @dev: device host is attached to
6976 * @flags: host flags
6977 * @ops: port_ops
b03732f0
BK
6978 *
6979 * LOCKING:
6980 * PCI/etc. bus probe sem.
6981 *
6982 */
f3187195 6983/* KILLME - the only user left is ipr */
cca3974e
JG
6984void ata_host_init(struct ata_host *host, struct device *dev,
6985 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6986{
cca3974e
JG
6987 spin_lock_init(&host->lock);
6988 host->dev = dev;
6989 host->flags = flags;
6990 host->ops = ops;
b03732f0
BK
6991}
6992
f3187195
TH
6993/**
6994 * ata_host_register - register initialized ATA host
6995 * @host: ATA host to register
6996 * @sht: template for SCSI host
6997 *
6998 * Register initialized ATA host. @host is allocated using
6999 * ata_host_alloc() and fully initialized by LLD. This function
7000 * starts ports, registers @host with ATA and SCSI layers and
7001 * probe registered devices.
7002 *
7003 * LOCKING:
7004 * Inherited from calling layer (may sleep).
7005 *
7006 * RETURNS:
7007 * 0 on success, -errno otherwise.
7008 */
7009int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7010{
7011 int i, rc;
7012
7013 /* host must have been started */
7014 if (!(host->flags & ATA_HOST_STARTED)) {
7015 dev_printk(KERN_ERR, host->dev,
7016 "BUG: trying to register unstarted host\n");
7017 WARN_ON(1);
7018 return -EINVAL;
7019 }
7020
7021 /* Blow away unused ports. This happens when LLD can't
7022 * determine the exact number of ports to allocate at
7023 * allocation time.
7024 */
7025 for (i = host->n_ports; host->ports[i]; i++)
7026 kfree(host->ports[i]);
7027
7028 /* give ports names and add SCSI hosts */
7029 for (i = 0; i < host->n_ports; i++)
7030 host->ports[i]->print_id = ata_print_id++;
7031
7032 rc = ata_scsi_add_hosts(host, sht);
7033 if (rc)
7034 return rc;
7035
fafbae87
TH
7036 /* associate with ACPI nodes */
7037 ata_acpi_associate(host);
7038
f3187195
TH
7039 /* set cable, sata_spd_limit and report */
7040 for (i = 0; i < host->n_ports; i++) {
7041 struct ata_port *ap = host->ports[i];
f3187195
TH
7042 unsigned long xfer_mask;
7043
7044 /* set SATA cable type if still unset */
7045 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7046 ap->cbl = ATA_CBL_SATA;
7047
7048 /* init sata_spd_limit to the current value */
4fb37a25 7049 sata_link_init_spd(&ap->link);
f3187195 7050
cbcdd875 7051 /* print per-port info to dmesg */
f3187195
TH
7052 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7053 ap->udma_mask);
7054
abf6e8ed 7055 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7056 ata_port_printk(ap, KERN_INFO,
7057 "%cATA max %s %s\n",
a16abc0b 7058 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7059 ata_mode_string(xfer_mask),
cbcdd875 7060 ap->link.eh_info.desc);
abf6e8ed
TH
7061 ata_ehi_clear_desc(&ap->link.eh_info);
7062 } else
f3187195
TH
7063 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7064 }
7065
7066 /* perform each probe synchronously */
7067 DPRINTK("probe begin\n");
7068 for (i = 0; i < host->n_ports; i++) {
7069 struct ata_port *ap = host->ports[i];
7070 int rc;
7071
7072 /* probe */
7073 if (ap->ops->error_handler) {
9af5c9c9 7074 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7075 unsigned long flags;
7076
7077 ata_port_probe(ap);
7078
7079 /* kick EH for boot probing */
7080 spin_lock_irqsave(ap->lock, flags);
7081
f58229f8
TH
7082 ehi->probe_mask =
7083 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7084 ehi->action |= ATA_EH_SOFTRESET;
7085 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7086
f4d6d004 7087 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7088 ap->pflags |= ATA_PFLAG_LOADING;
7089 ata_port_schedule_eh(ap);
7090
7091 spin_unlock_irqrestore(ap->lock, flags);
7092
7093 /* wait for EH to finish */
7094 ata_port_wait_eh(ap);
7095 } else {
7096 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7097 rc = ata_bus_probe(ap);
7098 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7099
7100 if (rc) {
7101 /* FIXME: do something useful here?
7102 * Current libata behavior will
7103 * tear down everything when
7104 * the module is removed
7105 * or the h/w is unplugged.
7106 */
7107 }
7108 }
7109 }
7110
7111 /* probes are done, now scan each port's disk(s) */
7112 DPRINTK("host probe begin\n");
7113 for (i = 0; i < host->n_ports; i++) {
7114 struct ata_port *ap = host->ports[i];
7115
1ae46317 7116 ata_scsi_scan_host(ap, 1);
ca77329f 7117 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7118 }
7119
7120 return 0;
7121}
7122
f5cda257
TH
7123/**
7124 * ata_host_activate - start host, request IRQ and register it
7125 * @host: target ATA host
7126 * @irq: IRQ to request
7127 * @irq_handler: irq_handler used when requesting IRQ
7128 * @irq_flags: irq_flags used when requesting IRQ
7129 * @sht: scsi_host_template to use when registering the host
7130 *
7131 * After allocating an ATA host and initializing it, most libata
7132 * LLDs perform three steps to activate the host - start host,
7133 * request IRQ and register it. This helper takes necessasry
7134 * arguments and performs the three steps in one go.
7135 *
3d46b2e2
PM
7136 * An invalid IRQ skips the IRQ registration and expects the host to
7137 * have set polling mode on the port. In this case, @irq_handler
7138 * should be NULL.
7139 *
f5cda257
TH
7140 * LOCKING:
7141 * Inherited from calling layer (may sleep).
7142 *
7143 * RETURNS:
7144 * 0 on success, -errno otherwise.
7145 */
7146int ata_host_activate(struct ata_host *host, int irq,
7147 irq_handler_t irq_handler, unsigned long irq_flags,
7148 struct scsi_host_template *sht)
7149{
cbcdd875 7150 int i, rc;
f5cda257
TH
7151
7152 rc = ata_host_start(host);
7153 if (rc)
7154 return rc;
7155
3d46b2e2
PM
7156 /* Special case for polling mode */
7157 if (!irq) {
7158 WARN_ON(irq_handler);
7159 return ata_host_register(host, sht);
7160 }
7161
f5cda257
TH
7162 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7163 dev_driver_string(host->dev), host);
7164 if (rc)
7165 return rc;
7166
cbcdd875
TH
7167 for (i = 0; i < host->n_ports; i++)
7168 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7169
f5cda257
TH
7170 rc = ata_host_register(host, sht);
7171 /* if failed, just free the IRQ and leave ports alone */
7172 if (rc)
7173 devm_free_irq(host->dev, irq, host);
7174
7175 return rc;
7176}
7177
720ba126
TH
7178/**
7179 * ata_port_detach - Detach ATA port in prepration of device removal
7180 * @ap: ATA port to be detached
7181 *
7182 * Detach all ATA devices and the associated SCSI devices of @ap;
7183 * then, remove the associated SCSI host. @ap is guaranteed to
7184 * be quiescent on return from this function.
7185 *
7186 * LOCKING:
7187 * Kernel thread context (may sleep).
7188 */
741b7763 7189static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7190{
7191 unsigned long flags;
41bda9c9 7192 struct ata_link *link;
f58229f8 7193 struct ata_device *dev;
720ba126
TH
7194
7195 if (!ap->ops->error_handler)
c3cf30a9 7196 goto skip_eh;
720ba126
TH
7197
7198 /* tell EH we're leaving & flush EH */
ba6a1308 7199 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7200 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7201 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7202
7203 ata_port_wait_eh(ap);
7204
7f9ad9b8
TH
7205 /* EH is now guaranteed to see UNLOADING - EH context belongs
7206 * to us. Disable all existing devices.
720ba126 7207 */
41bda9c9
TH
7208 ata_port_for_each_link(link, ap) {
7209 ata_link_for_each_dev(dev, link)
7210 ata_dev_disable(dev);
7211 }
720ba126 7212
720ba126
TH
7213 /* Final freeze & EH. All in-flight commands are aborted. EH
7214 * will be skipped and retrials will be terminated with bad
7215 * target.
7216 */
ba6a1308 7217 spin_lock_irqsave(ap->lock, flags);
720ba126 7218 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7219 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7220
7221 ata_port_wait_eh(ap);
45a66c1c 7222 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7223
c3cf30a9 7224 skip_eh:
720ba126 7225 /* remove the associated SCSI host */
cca3974e 7226 scsi_remove_host(ap->scsi_host);
720ba126
TH
7227}
7228
0529c159
TH
7229/**
7230 * ata_host_detach - Detach all ports of an ATA host
7231 * @host: Host to detach
7232 *
7233 * Detach all ports of @host.
7234 *
7235 * LOCKING:
7236 * Kernel thread context (may sleep).
7237 */
7238void ata_host_detach(struct ata_host *host)
7239{
7240 int i;
7241
7242 for (i = 0; i < host->n_ports; i++)
7243 ata_port_detach(host->ports[i]);
562f0c2d
TH
7244
7245 /* the host is dead now, dissociate ACPI */
7246 ata_acpi_dissociate(host);
0529c159
TH
7247}
7248
1da177e4
LT
7249/**
7250 * ata_std_ports - initialize ioaddr with standard port offsets.
7251 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7252 *
7253 * Utility function which initializes data_addr, error_addr,
7254 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7255 * device_addr, status_addr, and command_addr to standard offsets
7256 * relative to cmd_addr.
7257 *
7258 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7259 */
0baab86b 7260
1da177e4
LT
7261void ata_std_ports(struct ata_ioports *ioaddr)
7262{
7263 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7264 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7265 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7266 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7267 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7268 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7269 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7270 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7271 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7272 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7273}
7274
0baab86b 7275
374b1873
JG
7276#ifdef CONFIG_PCI
7277
1da177e4
LT
7278/**
7279 * ata_pci_remove_one - PCI layer callback for device removal
7280 * @pdev: PCI device that was removed
7281 *
b878ca5d
TH
7282 * PCI layer indicates to libata via this hook that hot-unplug or
7283 * module unload event has occurred. Detach all ports. Resource
7284 * release is handled via devres.
1da177e4
LT
7285 *
7286 * LOCKING:
7287 * Inherited from PCI layer (may sleep).
7288 */
f0d36efd 7289void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7290{
2855568b 7291 struct device *dev = &pdev->dev;
cca3974e 7292 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7293
b878ca5d 7294 ata_host_detach(host);
1da177e4
LT
7295}
7296
7297/* move to PCI subsystem */
057ace5e 7298int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7299{
7300 unsigned long tmp = 0;
7301
7302 switch (bits->width) {
7303 case 1: {
7304 u8 tmp8 = 0;
7305 pci_read_config_byte(pdev, bits->reg, &tmp8);
7306 tmp = tmp8;
7307 break;
7308 }
7309 case 2: {
7310 u16 tmp16 = 0;
7311 pci_read_config_word(pdev, bits->reg, &tmp16);
7312 tmp = tmp16;
7313 break;
7314 }
7315 case 4: {
7316 u32 tmp32 = 0;
7317 pci_read_config_dword(pdev, bits->reg, &tmp32);
7318 tmp = tmp32;
7319 break;
7320 }
7321
7322 default:
7323 return -EINVAL;
7324 }
7325
7326 tmp &= bits->mask;
7327
7328 return (tmp == bits->val) ? 1 : 0;
7329}
9b847548 7330
6ffa01d8 7331#ifdef CONFIG_PM
3c5100c1 7332void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7333{
7334 pci_save_state(pdev);
4c90d971 7335 pci_disable_device(pdev);
500530f6 7336
4c90d971 7337 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7338 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7339}
7340
553c4aa6 7341int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7342{
553c4aa6
TH
7343 int rc;
7344
9b847548
JA
7345 pci_set_power_state(pdev, PCI_D0);
7346 pci_restore_state(pdev);
553c4aa6 7347
b878ca5d 7348 rc = pcim_enable_device(pdev);
553c4aa6
TH
7349 if (rc) {
7350 dev_printk(KERN_ERR, &pdev->dev,
7351 "failed to enable device after resume (%d)\n", rc);
7352 return rc;
7353 }
7354
9b847548 7355 pci_set_master(pdev);
553c4aa6 7356 return 0;
500530f6
TH
7357}
7358
3c5100c1 7359int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7360{
cca3974e 7361 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7362 int rc = 0;
7363
cca3974e 7364 rc = ata_host_suspend(host, mesg);
500530f6
TH
7365 if (rc)
7366 return rc;
7367
3c5100c1 7368 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7369
7370 return 0;
7371}
7372
7373int ata_pci_device_resume(struct pci_dev *pdev)
7374{
cca3974e 7375 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7376 int rc;
500530f6 7377
553c4aa6
TH
7378 rc = ata_pci_device_do_resume(pdev);
7379 if (rc == 0)
7380 ata_host_resume(host);
7381 return rc;
9b847548 7382}
6ffa01d8
TH
7383#endif /* CONFIG_PM */
7384
1da177e4
LT
7385#endif /* CONFIG_PCI */
7386
7387
1da177e4
LT
7388static int __init ata_init(void)
7389{
a8601e5f 7390 ata_probe_timeout *= HZ;
1da177e4
LT
7391 ata_wq = create_workqueue("ata");
7392 if (!ata_wq)
7393 return -ENOMEM;
7394
453b07ac
TH
7395 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7396 if (!ata_aux_wq) {
7397 destroy_workqueue(ata_wq);
7398 return -ENOMEM;
7399 }
7400
1da177e4
LT
7401 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7402 return 0;
7403}
7404
7405static void __exit ata_exit(void)
7406{
7407 destroy_workqueue(ata_wq);
453b07ac 7408 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7409}
7410
a4625085 7411subsys_initcall(ata_init);
1da177e4
LT
7412module_exit(ata_exit);
7413
67846b30 7414static unsigned long ratelimit_time;
34af946a 7415static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7416
7417int ata_ratelimit(void)
7418{
7419 int rc;
7420 unsigned long flags;
7421
7422 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7423
7424 if (time_after(jiffies, ratelimit_time)) {
7425 rc = 1;
7426 ratelimit_time = jiffies + (HZ/5);
7427 } else
7428 rc = 0;
7429
7430 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7431
7432 return rc;
7433}
7434
c22daff4
TH
7435/**
7436 * ata_wait_register - wait until register value changes
7437 * @reg: IO-mapped register
7438 * @mask: Mask to apply to read register value
7439 * @val: Wait condition
7440 * @interval_msec: polling interval in milliseconds
7441 * @timeout_msec: timeout in milliseconds
7442 *
7443 * Waiting for some bits of register to change is a common
7444 * operation for ATA controllers. This function reads 32bit LE
7445 * IO-mapped register @reg and tests for the following condition.
7446 *
7447 * (*@reg & mask) != val
7448 *
7449 * If the condition is met, it returns; otherwise, the process is
7450 * repeated after @interval_msec until timeout.
7451 *
7452 * LOCKING:
7453 * Kernel thread context (may sleep)
7454 *
7455 * RETURNS:
7456 * The final register value.
7457 */
7458u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7459 unsigned long interval_msec,
7460 unsigned long timeout_msec)
7461{
7462 unsigned long timeout;
7463 u32 tmp;
7464
7465 tmp = ioread32(reg);
7466
7467 /* Calculate timeout _after_ the first read to make sure
7468 * preceding writes reach the controller before starting to
7469 * eat away the timeout.
7470 */
7471 timeout = jiffies + (timeout_msec * HZ) / 1000;
7472
7473 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7474 msleep(interval_msec);
7475 tmp = ioread32(reg);
7476 }
7477
7478 return tmp;
7479}
7480
dd5b06c4
TH
7481/*
7482 * Dummy port_ops
7483 */
7484static void ata_dummy_noret(struct ata_port *ap) { }
7485static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7486static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7487
7488static u8 ata_dummy_check_status(struct ata_port *ap)
7489{
7490 return ATA_DRDY;
7491}
7492
7493static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7494{
7495 return AC_ERR_SYSTEM;
7496}
7497
7498const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7499 .check_status = ata_dummy_check_status,
7500 .check_altstatus = ata_dummy_check_status,
7501 .dev_select = ata_noop_dev_select,
7502 .qc_prep = ata_noop_qc_prep,
7503 .qc_issue = ata_dummy_qc_issue,
7504 .freeze = ata_dummy_noret,
7505 .thaw = ata_dummy_noret,
7506 .error_handler = ata_dummy_noret,
7507 .post_internal_cmd = ata_dummy_qc_noret,
7508 .irq_clear = ata_dummy_noret,
7509 .port_start = ata_dummy_ret0,
7510 .port_stop = ata_dummy_noret,
7511};
7512
21b0ad4f
TH
7513const struct ata_port_info ata_dummy_port_info = {
7514 .port_ops = &ata_dummy_port_ops,
7515};
7516
1da177e4
LT
7517/*
7518 * libata is essentially a library of internal helper functions for
7519 * low-level ATA host controller drivers. As such, the API/ABI is
7520 * likely to change as new drivers are added and updated.
7521 * Do not depend on ABI/API stability.
7522 */
e9c83914
TH
7523EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7524EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7525EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7526EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7527EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7528EXPORT_SYMBOL_GPL(ata_std_bios_param);
7529EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7530EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7531EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7532EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7533EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7534EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7535EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7536EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 7537EXPORT_SYMBOL_GPL(ata_sg_init);
9a1004d0 7538EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7539EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7540EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7541EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7542EXPORT_SYMBOL_GPL(ata_tf_load);
7543EXPORT_SYMBOL_GPL(ata_tf_read);
7544EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7545EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7546EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7547EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7548EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7549EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7550EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7551EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7552EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7553EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7554EXPORT_SYMBOL_GPL(ata_mode_string);
7555EXPORT_SYMBOL_GPL(ata_id_xfermask);
1da177e4
LT
7556EXPORT_SYMBOL_GPL(ata_check_status);
7557EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7558EXPORT_SYMBOL_GPL(ata_exec_command);
7559EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7560EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7561EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7562EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7563EXPORT_SYMBOL_GPL(ata_data_xfer);
7564EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7565EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7566EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7567EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7568EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7569EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7570EXPORT_SYMBOL_GPL(ata_bmdma_start);
7571EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7572EXPORT_SYMBOL_GPL(ata_bmdma_status);
7573EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7574EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7575EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7576EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7577EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7578EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7579EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7580EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7581EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7582EXPORT_SYMBOL_GPL(sata_link_debounce);
7583EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4 7584EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7585EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7586EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7587EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7588EXPORT_SYMBOL_GPL(sata_std_hardreset);
7589EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7590EXPORT_SYMBOL_GPL(ata_dev_classify);
7591EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7592EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7593EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7594EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7595EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7596EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7597EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7598EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7599EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7600EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7601EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7602EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7603EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7604EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7605EXPORT_SYMBOL_GPL(sata_scr_valid);
7606EXPORT_SYMBOL_GPL(sata_scr_read);
7607EXPORT_SYMBOL_GPL(sata_scr_write);
7608EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7609EXPORT_SYMBOL_GPL(ata_link_online);
7610EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7611#ifdef CONFIG_PM
cca3974e
JG
7612EXPORT_SYMBOL_GPL(ata_host_suspend);
7613EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7614#endif /* CONFIG_PM */
6a62a04d
TH
7615EXPORT_SYMBOL_GPL(ata_id_string);
7616EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
7617EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7618
1bc4ccff 7619EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7620EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7621EXPORT_SYMBOL_GPL(ata_timing_compute);
7622EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 7623EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 7624
1da177e4
LT
7625#ifdef CONFIG_PCI
7626EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7627EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7628EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7629EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7630EXPORT_SYMBOL_GPL(ata_pci_init_one);
7631EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7632#ifdef CONFIG_PM
500530f6
TH
7633EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7634EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7635EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7636EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7637#endif /* CONFIG_PM */
67951ade
AC
7638EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7639EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7640#endif /* CONFIG_PCI */
9b847548 7641
31f88384 7642EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7643EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7644EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7645EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7646EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7647
b64bbc39
TH
7648EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7649EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7650EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7651EXPORT_SYMBOL_GPL(ata_port_desc);
7652#ifdef CONFIG_PCI
7653EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7654#endif /* CONFIG_PCI */
7b70fc03 7655EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7656EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7657EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7658EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7659EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7660EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7661EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7662EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7663EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7664EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7665EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7666EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7667
7668EXPORT_SYMBOL_GPL(ata_cable_40wire);
7669EXPORT_SYMBOL_GPL(ata_cable_80wire);
7670EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7671EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7672EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 1.252187 seconds and 5 git commands to generate.