libata: update libata core layer to use devres
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
d7bb4cc7 62/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
63const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 66
3373efd8
TH
67static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
453b07ac
TH
75struct workqueue_struct *ata_aux_wq;
76
418dc1f5 77int atapi_enabled = 1;
1623c81e
JG
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
95de719a
AL
81int atapi_dmadir = 0;
82module_param(atapi_dmadir, int, 0444);
83MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
c3c013a2
JG
85int libata_fua = 0;
86module_param_named(fua, libata_fua, int, 0444);
87MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
a8601e5f
AM
89static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90module_param(ata_probe_timeout, int, 0444);
91MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
1da177e4
LT
93MODULE_AUTHOR("Jeff Garzik");
94MODULE_DESCRIPTION("Library module for ATA devices");
95MODULE_LICENSE("GPL");
96MODULE_VERSION(DRV_VERSION);
97
0baab86b 98
1da177e4
LT
99/**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
057ace5e 112void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
113{
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139}
140
141/**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
e12a1be6 146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
057ace5e 152void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
153{
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168}
169
8cbd6df1
AL
170static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
185 0,
186 0,
187 0,
188 0,
8cbd6df1
AL
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
9a3dccc4
TH
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 198};
1da177e4
LT
199
200/**
8cbd6df1 201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
202 * @tf: command to examine and configure
203 * @dev: device tf belongs to
1da177e4 204 *
2e9edbf8 205 * Examine the device configuration and tf->flags to calculate
8cbd6df1 206 * the proper read/write commands and protocol to use.
1da177e4
LT
207 *
208 * LOCKING:
209 * caller.
210 */
bd056d7e 211static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 212{
9a3dccc4 213 u8 cmd;
1da177e4 214
9a3dccc4 215 int index, fua, lba48, write;
2e9edbf8 216
9a3dccc4 217 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
218 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
219 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 220
8cbd6df1
AL
221 if (dev->flags & ATA_DFLAG_PIO) {
222 tf->protocol = ATA_PROT_PIO;
9a3dccc4 223 index = dev->multi_count ? 0 : 8;
bd056d7e 224 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
225 /* Unable to use DMA due to host limitation */
226 tf->protocol = ATA_PROT_PIO;
0565c26d 227 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
228 } else {
229 tf->protocol = ATA_PROT_DMA;
9a3dccc4 230 index = 16;
8cbd6df1 231 }
1da177e4 232
9a3dccc4
TH
233 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 if (cmd) {
235 tf->command = cmd;
236 return 0;
237 }
238 return -1;
1da177e4
LT
239}
240
35b649fe
TH
241/**
242 * ata_tf_read_block - Read block address from ATA taskfile
243 * @tf: ATA taskfile of interest
244 * @dev: ATA device @tf belongs to
245 *
246 * LOCKING:
247 * None.
248 *
249 * Read block address from @tf. This function can handle all
250 * three address formats - LBA, LBA48 and CHS. tf->protocol and
251 * flags select the address format to use.
252 *
253 * RETURNS:
254 * Block address read from @tf.
255 */
256u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
257{
258 u64 block = 0;
259
260 if (tf->flags & ATA_TFLAG_LBA) {
261 if (tf->flags & ATA_TFLAG_LBA48) {
262 block |= (u64)tf->hob_lbah << 40;
263 block |= (u64)tf->hob_lbam << 32;
264 block |= tf->hob_lbal << 24;
265 } else
266 block |= (tf->device & 0xf) << 24;
267
268 block |= tf->lbah << 16;
269 block |= tf->lbam << 8;
270 block |= tf->lbal;
271 } else {
272 u32 cyl, head, sect;
273
274 cyl = tf->lbam | (tf->lbah << 8);
275 head = tf->device & 0xf;
276 sect = tf->lbal;
277
278 block = (cyl * dev->heads + head) * dev->sectors + sect;
279 }
280
281 return block;
282}
283
bd056d7e
TH
284/**
285 * ata_build_rw_tf - Build ATA taskfile for given read/write request
286 * @tf: Target ATA taskfile
287 * @dev: ATA device @tf belongs to
288 * @block: Block address
289 * @n_block: Number of blocks
290 * @tf_flags: RW/FUA etc...
291 * @tag: tag
292 *
293 * LOCKING:
294 * None.
295 *
296 * Build ATA taskfile @tf for read/write request described by
297 * @block, @n_block, @tf_flags and @tag on @dev.
298 *
299 * RETURNS:
300 *
301 * 0 on success, -ERANGE if the request is too large for @dev,
302 * -EINVAL if the request is invalid.
303 */
304int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
305 u64 block, u32 n_block, unsigned int tf_flags,
306 unsigned int tag)
307{
308 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
309 tf->flags |= tf_flags;
310
311 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
70e6ad0c
TH
312 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
313 likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
314 /* yay, NCQ */
315 if (!lba_48_ok(block, n_block))
316 return -ERANGE;
317
318 tf->protocol = ATA_PROT_NCQ;
319 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
320
321 if (tf->flags & ATA_TFLAG_WRITE)
322 tf->command = ATA_CMD_FPDMA_WRITE;
323 else
324 tf->command = ATA_CMD_FPDMA_READ;
325
326 tf->nsect = tag << 3;
327 tf->hob_feature = (n_block >> 8) & 0xff;
328 tf->feature = n_block & 0xff;
329
330 tf->hob_lbah = (block >> 40) & 0xff;
331 tf->hob_lbam = (block >> 32) & 0xff;
332 tf->hob_lbal = (block >> 24) & 0xff;
333 tf->lbah = (block >> 16) & 0xff;
334 tf->lbam = (block >> 8) & 0xff;
335 tf->lbal = block & 0xff;
336
337 tf->device = 1 << 6;
338 if (tf->flags & ATA_TFLAG_FUA)
339 tf->device |= 1 << 7;
340 } else if (dev->flags & ATA_DFLAG_LBA) {
341 tf->flags |= ATA_TFLAG_LBA;
342
343 if (lba_28_ok(block, n_block)) {
344 /* use LBA28 */
345 tf->device |= (block >> 24) & 0xf;
346 } else if (lba_48_ok(block, n_block)) {
347 if (!(dev->flags & ATA_DFLAG_LBA48))
348 return -ERANGE;
349
350 /* use LBA48 */
351 tf->flags |= ATA_TFLAG_LBA48;
352
353 tf->hob_nsect = (n_block >> 8) & 0xff;
354
355 tf->hob_lbah = (block >> 40) & 0xff;
356 tf->hob_lbam = (block >> 32) & 0xff;
357 tf->hob_lbal = (block >> 24) & 0xff;
358 } else
359 /* request too large even for LBA48 */
360 return -ERANGE;
361
362 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
363 return -EINVAL;
364
365 tf->nsect = n_block & 0xff;
366
367 tf->lbah = (block >> 16) & 0xff;
368 tf->lbam = (block >> 8) & 0xff;
369 tf->lbal = block & 0xff;
370
371 tf->device |= ATA_LBA;
372 } else {
373 /* CHS */
374 u32 sect, head, cyl, track;
375
376 /* The request -may- be too large for CHS addressing. */
377 if (!lba_28_ok(block, n_block))
378 return -ERANGE;
379
380 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
381 return -EINVAL;
382
383 /* Convert LBA to CHS */
384 track = (u32)block / dev->sectors;
385 cyl = track / dev->heads;
386 head = track % dev->heads;
387 sect = (u32)block % dev->sectors + 1;
388
389 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
390 (u32)block, track, cyl, head, sect);
391
392 /* Check whether the converted CHS can fit.
393 Cylinder: 0-65535
394 Head: 0-15
395 Sector: 1-255*/
396 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
397 return -ERANGE;
398
399 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
400 tf->lbal = sect;
401 tf->lbam = cyl;
402 tf->lbah = cyl >> 8;
403 tf->device |= head;
404 }
405
406 return 0;
407}
408
cb95d562
TH
409/**
410 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
411 * @pio_mask: pio_mask
412 * @mwdma_mask: mwdma_mask
413 * @udma_mask: udma_mask
414 *
415 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
416 * unsigned int xfer_mask.
417 *
418 * LOCKING:
419 * None.
420 *
421 * RETURNS:
422 * Packed xfer_mask.
423 */
424static unsigned int ata_pack_xfermask(unsigned int pio_mask,
425 unsigned int mwdma_mask,
426 unsigned int udma_mask)
427{
428 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
429 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
430 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
431}
432
c0489e4e
TH
433/**
434 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
435 * @xfer_mask: xfer_mask to unpack
436 * @pio_mask: resulting pio_mask
437 * @mwdma_mask: resulting mwdma_mask
438 * @udma_mask: resulting udma_mask
439 *
440 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
441 * Any NULL distination masks will be ignored.
442 */
443static void ata_unpack_xfermask(unsigned int xfer_mask,
444 unsigned int *pio_mask,
445 unsigned int *mwdma_mask,
446 unsigned int *udma_mask)
447{
448 if (pio_mask)
449 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
450 if (mwdma_mask)
451 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
452 if (udma_mask)
453 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
454}
455
cb95d562 456static const struct ata_xfer_ent {
be9a50c8 457 int shift, bits;
cb95d562
TH
458 u8 base;
459} ata_xfer_tbl[] = {
460 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
461 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
462 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
463 { -1, },
464};
465
466/**
467 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
468 * @xfer_mask: xfer_mask of interest
469 *
470 * Return matching XFER_* value for @xfer_mask. Only the highest
471 * bit of @xfer_mask is considered.
472 *
473 * LOCKING:
474 * None.
475 *
476 * RETURNS:
477 * Matching XFER_* value, 0 if no match found.
478 */
479static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
480{
481 int highbit = fls(xfer_mask) - 1;
482 const struct ata_xfer_ent *ent;
483
484 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
485 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
486 return ent->base + highbit - ent->shift;
487 return 0;
488}
489
490/**
491 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
492 * @xfer_mode: XFER_* of interest
493 *
494 * Return matching xfer_mask for @xfer_mode.
495 *
496 * LOCKING:
497 * None.
498 *
499 * RETURNS:
500 * Matching xfer_mask, 0 if no match found.
501 */
502static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
503{
504 const struct ata_xfer_ent *ent;
505
506 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
507 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
508 return 1 << (ent->shift + xfer_mode - ent->base);
509 return 0;
510}
511
512/**
513 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
514 * @xfer_mode: XFER_* of interest
515 *
516 * Return matching xfer_shift for @xfer_mode.
517 *
518 * LOCKING:
519 * None.
520 *
521 * RETURNS:
522 * Matching xfer_shift, -1 if no match found.
523 */
524static int ata_xfer_mode2shift(unsigned int xfer_mode)
525{
526 const struct ata_xfer_ent *ent;
527
528 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
529 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
530 return ent->shift;
531 return -1;
532}
533
1da177e4 534/**
1da7b0d0
TH
535 * ata_mode_string - convert xfer_mask to string
536 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
537 *
538 * Determine string which represents the highest speed
1da7b0d0 539 * (highest bit in @modemask).
1da177e4
LT
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Constant C string representing highest speed listed in
1da7b0d0 546 * @mode_mask, or the constant C string "<n/a>".
1da177e4 547 */
1da7b0d0 548static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 549{
75f554bc
TH
550 static const char * const xfer_mode_str[] = {
551 "PIO0",
552 "PIO1",
553 "PIO2",
554 "PIO3",
555 "PIO4",
b352e57d
AC
556 "PIO5",
557 "PIO6",
75f554bc
TH
558 "MWDMA0",
559 "MWDMA1",
560 "MWDMA2",
b352e57d
AC
561 "MWDMA3",
562 "MWDMA4",
75f554bc
TH
563 "UDMA/16",
564 "UDMA/25",
565 "UDMA/33",
566 "UDMA/44",
567 "UDMA/66",
568 "UDMA/100",
569 "UDMA/133",
570 "UDMA7",
571 };
1da7b0d0 572 int highbit;
1da177e4 573
1da7b0d0
TH
574 highbit = fls(xfer_mask) - 1;
575 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
576 return xfer_mode_str[highbit];
1da177e4 577 return "<n/a>";
1da177e4
LT
578}
579
4c360c81
TH
580static const char *sata_spd_string(unsigned int spd)
581{
582 static const char * const spd_str[] = {
583 "1.5 Gbps",
584 "3.0 Gbps",
585 };
586
587 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
588 return "<unknown>";
589 return spd_str[spd - 1];
590}
591
3373efd8 592void ata_dev_disable(struct ata_device *dev)
0b8efb0a 593{
0dd4b21f 594 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 595 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
596 dev->class++;
597 }
598}
599
1da177e4
LT
600/**
601 * ata_pio_devchk - PATA device presence detection
602 * @ap: ATA channel to examine
603 * @device: Device to examine (starting at zero)
604 *
605 * This technique was originally described in
606 * Hale Landis's ATADRVR (www.ata-atapi.com), and
607 * later found its way into the ATA/ATAPI spec.
608 *
609 * Write a pattern to the ATA shadow registers,
610 * and if a device is present, it will respond by
611 * correctly storing and echoing back the
612 * ATA shadow register contents.
613 *
614 * LOCKING:
615 * caller.
616 */
617
618static unsigned int ata_pio_devchk(struct ata_port *ap,
619 unsigned int device)
620{
621 struct ata_ioports *ioaddr = &ap->ioaddr;
622 u8 nsect, lbal;
623
624 ap->ops->dev_select(ap, device);
625
626 outb(0x55, ioaddr->nsect_addr);
627 outb(0xaa, ioaddr->lbal_addr);
628
629 outb(0xaa, ioaddr->nsect_addr);
630 outb(0x55, ioaddr->lbal_addr);
631
632 outb(0x55, ioaddr->nsect_addr);
633 outb(0xaa, ioaddr->lbal_addr);
634
635 nsect = inb(ioaddr->nsect_addr);
636 lbal = inb(ioaddr->lbal_addr);
637
638 if ((nsect == 0x55) && (lbal == 0xaa))
639 return 1; /* we found a device */
640
641 return 0; /* nothing found */
642}
643
644/**
645 * ata_mmio_devchk - PATA device presence detection
646 * @ap: ATA channel to examine
647 * @device: Device to examine (starting at zero)
648 *
649 * This technique was originally described in
650 * Hale Landis's ATADRVR (www.ata-atapi.com), and
651 * later found its way into the ATA/ATAPI spec.
652 *
653 * Write a pattern to the ATA shadow registers,
654 * and if a device is present, it will respond by
655 * correctly storing and echoing back the
656 * ATA shadow register contents.
657 *
658 * LOCKING:
659 * caller.
660 */
661
662static unsigned int ata_mmio_devchk(struct ata_port *ap,
663 unsigned int device)
664{
665 struct ata_ioports *ioaddr = &ap->ioaddr;
666 u8 nsect, lbal;
667
668 ap->ops->dev_select(ap, device);
669
670 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
671 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
672
673 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
674 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
675
676 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
677 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
678
679 nsect = readb((void __iomem *) ioaddr->nsect_addr);
680 lbal = readb((void __iomem *) ioaddr->lbal_addr);
681
682 if ((nsect == 0x55) && (lbal == 0xaa))
683 return 1; /* we found a device */
684
685 return 0; /* nothing found */
686}
687
688/**
689 * ata_devchk - PATA device presence detection
690 * @ap: ATA channel to examine
691 * @device: Device to examine (starting at zero)
692 *
693 * Dispatch ATA device presence detection, depending
694 * on whether we are using PIO or MMIO to talk to the
695 * ATA shadow registers.
696 *
697 * LOCKING:
698 * caller.
699 */
700
701static unsigned int ata_devchk(struct ata_port *ap,
702 unsigned int device)
703{
704 if (ap->flags & ATA_FLAG_MMIO)
705 return ata_mmio_devchk(ap, device);
706 return ata_pio_devchk(ap, device);
707}
708
709/**
710 * ata_dev_classify - determine device type based on ATA-spec signature
711 * @tf: ATA taskfile register set for device to be identified
712 *
713 * Determine from taskfile register contents whether a device is
714 * ATA or ATAPI, as per "Signature and persistence" section
715 * of ATA/PI spec (volume 1, sect 5.14).
716 *
717 * LOCKING:
718 * None.
719 *
720 * RETURNS:
721 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
722 * the event of failure.
723 */
724
057ace5e 725unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
726{
727 /* Apple's open source Darwin code hints that some devices only
728 * put a proper signature into the LBA mid/high registers,
729 * So, we only check those. It's sufficient for uniqueness.
730 */
731
732 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
733 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
734 DPRINTK("found ATA device by sig\n");
735 return ATA_DEV_ATA;
736 }
737
738 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
739 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
740 DPRINTK("found ATAPI device by sig\n");
741 return ATA_DEV_ATAPI;
742 }
743
744 DPRINTK("unknown device\n");
745 return ATA_DEV_UNKNOWN;
746}
747
748/**
749 * ata_dev_try_classify - Parse returned ATA device signature
750 * @ap: ATA channel to examine
751 * @device: Device to examine (starting at zero)
b4dc7623 752 * @r_err: Value of error register on completion
1da177e4
LT
753 *
754 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
755 * an ATA/ATAPI-defined set of values is placed in the ATA
756 * shadow registers, indicating the results of device detection
757 * and diagnostics.
758 *
759 * Select the ATA device, and read the values from the ATA shadow
760 * registers. Then parse according to the Error register value,
761 * and the spec-defined values examined by ata_dev_classify().
762 *
763 * LOCKING:
764 * caller.
b4dc7623
TH
765 *
766 * RETURNS:
767 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
768 */
769
b4dc7623
TH
770static unsigned int
771ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 772{
1da177e4
LT
773 struct ata_taskfile tf;
774 unsigned int class;
775 u8 err;
776
777 ap->ops->dev_select(ap, device);
778
779 memset(&tf, 0, sizeof(tf));
780
1da177e4 781 ap->ops->tf_read(ap, &tf);
0169e284 782 err = tf.feature;
b4dc7623
TH
783 if (r_err)
784 *r_err = err;
1da177e4 785
93590859
AC
786 /* see if device passed diags: if master then continue and warn later */
787 if (err == 0 && device == 0)
788 /* diagnostic fail : do nothing _YET_ */
789 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
790 else if (err == 1)
1da177e4
LT
791 /* do nothing */ ;
792 else if ((device == 0) && (err == 0x81))
793 /* do nothing */ ;
794 else
b4dc7623 795 return ATA_DEV_NONE;
1da177e4 796
b4dc7623 797 /* determine if device is ATA or ATAPI */
1da177e4 798 class = ata_dev_classify(&tf);
b4dc7623 799
1da177e4 800 if (class == ATA_DEV_UNKNOWN)
b4dc7623 801 return ATA_DEV_NONE;
1da177e4 802 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
803 return ATA_DEV_NONE;
804 return class;
1da177e4
LT
805}
806
807/**
6a62a04d 808 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
809 * @id: IDENTIFY DEVICE results we will examine
810 * @s: string into which data is output
811 * @ofs: offset into identify device page
812 * @len: length of string to return. must be an even number.
813 *
814 * The strings in the IDENTIFY DEVICE page are broken up into
815 * 16-bit chunks. Run through the string, and output each
816 * 8-bit chunk linearly, regardless of platform.
817 *
818 * LOCKING:
819 * caller.
820 */
821
6a62a04d
TH
822void ata_id_string(const u16 *id, unsigned char *s,
823 unsigned int ofs, unsigned int len)
1da177e4
LT
824{
825 unsigned int c;
826
827 while (len > 0) {
828 c = id[ofs] >> 8;
829 *s = c;
830 s++;
831
832 c = id[ofs] & 0xff;
833 *s = c;
834 s++;
835
836 ofs++;
837 len -= 2;
838 }
839}
840
0e949ff3 841/**
6a62a04d 842 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
843 * @id: IDENTIFY DEVICE results we will examine
844 * @s: string into which data is output
845 * @ofs: offset into identify device page
846 * @len: length of string to return. must be an odd number.
847 *
6a62a04d 848 * This function is identical to ata_id_string except that it
0e949ff3
TH
849 * trims trailing spaces and terminates the resulting string with
850 * null. @len must be actual maximum length (even number) + 1.
851 *
852 * LOCKING:
853 * caller.
854 */
6a62a04d
TH
855void ata_id_c_string(const u16 *id, unsigned char *s,
856 unsigned int ofs, unsigned int len)
0e949ff3
TH
857{
858 unsigned char *p;
859
860 WARN_ON(!(len & 1));
861
6a62a04d 862 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
863
864 p = s + strnlen(s, len - 1);
865 while (p > s && p[-1] == ' ')
866 p--;
867 *p = '\0';
868}
0baab86b 869
2940740b
TH
870static u64 ata_id_n_sectors(const u16 *id)
871{
872 if (ata_id_has_lba(id)) {
873 if (ata_id_has_lba48(id))
874 return ata_id_u64(id, 100);
875 else
876 return ata_id_u32(id, 60);
877 } else {
878 if (ata_id_current_chs_valid(id))
879 return ata_id_u32(id, 57);
880 else
881 return id[1] * id[3] * id[6];
882 }
883}
884
0baab86b
EF
885/**
886 * ata_noop_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
889 *
890 * This function performs no actual function.
891 *
892 * May be used as the dev_select() entry in ata_port_operations.
893 *
894 * LOCKING:
895 * caller.
896 */
1da177e4
LT
897void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
898{
899}
900
0baab86b 901
1da177e4
LT
902/**
903 * ata_std_dev_select - Select device 0/1 on ATA bus
904 * @ap: ATA channel to manipulate
905 * @device: ATA device (numbered from zero) to select
906 *
907 * Use the method defined in the ATA specification to
908 * make either device 0, or device 1, active on the
0baab86b
EF
909 * ATA channel. Works with both PIO and MMIO.
910 *
911 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
912 *
913 * LOCKING:
914 * caller.
915 */
916
917void ata_std_dev_select (struct ata_port *ap, unsigned int device)
918{
919 u8 tmp;
920
921 if (device == 0)
922 tmp = ATA_DEVICE_OBS;
923 else
924 tmp = ATA_DEVICE_OBS | ATA_DEV1;
925
926 if (ap->flags & ATA_FLAG_MMIO) {
927 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
928 } else {
929 outb(tmp, ap->ioaddr.device_addr);
930 }
931 ata_pause(ap); /* needed; also flushes, for mmio */
932}
933
934/**
935 * ata_dev_select - Select device 0/1 on ATA bus
936 * @ap: ATA channel to manipulate
937 * @device: ATA device (numbered from zero) to select
938 * @wait: non-zero to wait for Status register BSY bit to clear
939 * @can_sleep: non-zero if context allows sleeping
940 *
941 * Use the method defined in the ATA specification to
942 * make either device 0, or device 1, active on the
943 * ATA channel.
944 *
945 * This is a high-level version of ata_std_dev_select(),
946 * which additionally provides the services of inserting
947 * the proper pauses and status polling, where needed.
948 *
949 * LOCKING:
950 * caller.
951 */
952
953void ata_dev_select(struct ata_port *ap, unsigned int device,
954 unsigned int wait, unsigned int can_sleep)
955{
88574551 956 if (ata_msg_probe(ap))
0dd4b21f 957 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 958 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
959
960 if (wait)
961 ata_wait_idle(ap);
962
963 ap->ops->dev_select(ap, device);
964
965 if (wait) {
966 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
967 msleep(150);
968 ata_wait_idle(ap);
969 }
970}
971
972/**
973 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 974 * @id: IDENTIFY DEVICE page to dump
1da177e4 975 *
0bd3300a
TH
976 * Dump selected 16-bit words from the given IDENTIFY DEVICE
977 * page.
1da177e4
LT
978 *
979 * LOCKING:
980 * caller.
981 */
982
0bd3300a 983static inline void ata_dump_id(const u16 *id)
1da177e4
LT
984{
985 DPRINTK("49==0x%04x "
986 "53==0x%04x "
987 "63==0x%04x "
988 "64==0x%04x "
989 "75==0x%04x \n",
0bd3300a
TH
990 id[49],
991 id[53],
992 id[63],
993 id[64],
994 id[75]);
1da177e4
LT
995 DPRINTK("80==0x%04x "
996 "81==0x%04x "
997 "82==0x%04x "
998 "83==0x%04x "
999 "84==0x%04x \n",
0bd3300a
TH
1000 id[80],
1001 id[81],
1002 id[82],
1003 id[83],
1004 id[84]);
1da177e4
LT
1005 DPRINTK("88==0x%04x "
1006 "93==0x%04x\n",
0bd3300a
TH
1007 id[88],
1008 id[93]);
1da177e4
LT
1009}
1010
cb95d562
TH
1011/**
1012 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1013 * @id: IDENTIFY data to compute xfer mask from
1014 *
1015 * Compute the xfermask for this device. This is not as trivial
1016 * as it seems if we must consider early devices correctly.
1017 *
1018 * FIXME: pre IDE drive timing (do we care ?).
1019 *
1020 * LOCKING:
1021 * None.
1022 *
1023 * RETURNS:
1024 * Computed xfermask
1025 */
1026static unsigned int ata_id_xfermask(const u16 *id)
1027{
1028 unsigned int pio_mask, mwdma_mask, udma_mask;
1029
1030 /* Usual case. Word 53 indicates word 64 is valid */
1031 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1032 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1033 pio_mask <<= 3;
1034 pio_mask |= 0x7;
1035 } else {
1036 /* If word 64 isn't valid then Word 51 high byte holds
1037 * the PIO timing number for the maximum. Turn it into
1038 * a mask.
1039 */
7a0f1c8a 1040 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1041 if (mode < 5) /* Valid PIO range */
1042 pio_mask = (2 << mode) - 1;
1043 else
1044 pio_mask = 1;
cb95d562
TH
1045
1046 /* But wait.. there's more. Design your standards by
1047 * committee and you too can get a free iordy field to
1048 * process. However its the speeds not the modes that
1049 * are supported... Note drivers using the timing API
1050 * will get this right anyway
1051 */
1052 }
1053
1054 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1055
b352e57d
AC
1056 if (ata_id_is_cfa(id)) {
1057 /*
1058 * Process compact flash extended modes
1059 */
1060 int pio = id[163] & 0x7;
1061 int dma = (id[163] >> 3) & 7;
1062
1063 if (pio)
1064 pio_mask |= (1 << 5);
1065 if (pio > 1)
1066 pio_mask |= (1 << 6);
1067 if (dma)
1068 mwdma_mask |= (1 << 3);
1069 if (dma > 1)
1070 mwdma_mask |= (1 << 4);
1071 }
1072
fb21f0d0
TH
1073 udma_mask = 0;
1074 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1075 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1076
1077 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1078}
1079
86e45b6b
TH
1080/**
1081 * ata_port_queue_task - Queue port_task
1082 * @ap: The ata_port to queue port_task for
e2a7f77a 1083 * @fn: workqueue function to be scheduled
65f27f38 1084 * @data: data for @fn to use
e2a7f77a 1085 * @delay: delay time for workqueue function
86e45b6b
TH
1086 *
1087 * Schedule @fn(@data) for execution after @delay jiffies using
1088 * port_task. There is one port_task per port and it's the
1089 * user(low level driver)'s responsibility to make sure that only
1090 * one task is active at any given time.
1091 *
1092 * libata core layer takes care of synchronization between
1093 * port_task and EH. ata_port_queue_task() may be ignored for EH
1094 * synchronization.
1095 *
1096 * LOCKING:
1097 * Inherited from caller.
1098 */
65f27f38 1099void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1100 unsigned long delay)
1101{
1102 int rc;
1103
b51e9e5d 1104 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1105 return;
1106
65f27f38
DH
1107 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1108 ap->port_task_data = data;
86e45b6b 1109
52bad64d 1110 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1111
1112 /* rc == 0 means that another user is using port task */
1113 WARN_ON(rc == 0);
1114}
1115
1116/**
1117 * ata_port_flush_task - Flush port_task
1118 * @ap: The ata_port to flush port_task for
1119 *
1120 * After this function completes, port_task is guranteed not to
1121 * be running or scheduled.
1122 *
1123 * LOCKING:
1124 * Kernel thread context (may sleep)
1125 */
1126void ata_port_flush_task(struct ata_port *ap)
1127{
1128 unsigned long flags;
1129
1130 DPRINTK("ENTER\n");
1131
ba6a1308 1132 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1133 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1134 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1135
1136 DPRINTK("flush #1\n");
1137 flush_workqueue(ata_wq);
1138
1139 /*
1140 * At this point, if a task is running, it's guaranteed to see
1141 * the FLUSH flag; thus, it will never queue pio tasks again.
1142 * Cancel and flush.
1143 */
1144 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1145 if (ata_msg_ctl(ap))
88574551
TH
1146 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1147 __FUNCTION__);
86e45b6b
TH
1148 flush_workqueue(ata_wq);
1149 }
1150
ba6a1308 1151 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1152 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1153 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1154
0dd4b21f
BP
1155 if (ata_msg_ctl(ap))
1156 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1157}
1158
7102d230 1159static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1160{
77853bf2 1161 struct completion *waiting = qc->private_data;
a2a7a662 1162
a2a7a662 1163 complete(waiting);
a2a7a662
TH
1164}
1165
1166/**
2432697b 1167 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1168 * @dev: Device to which the command is sent
1169 * @tf: Taskfile registers for the command and the result
d69cf37d 1170 * @cdb: CDB for packet command
a2a7a662 1171 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1172 * @sg: sg list for the data buffer of the command
1173 * @n_elem: Number of sg entries
a2a7a662
TH
1174 *
1175 * Executes libata internal command with timeout. @tf contains
1176 * command on entry and result on return. Timeout and error
1177 * conditions are reported via return value. No recovery action
1178 * is taken after a command times out. It's caller's duty to
1179 * clean up after timeout.
1180 *
1181 * LOCKING:
1182 * None. Should be called with kernel context, might sleep.
551e8889
TH
1183 *
1184 * RETURNS:
1185 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1186 */
2432697b
TH
1187unsigned ata_exec_internal_sg(struct ata_device *dev,
1188 struct ata_taskfile *tf, const u8 *cdb,
1189 int dma_dir, struct scatterlist *sg,
1190 unsigned int n_elem)
a2a7a662 1191{
3373efd8 1192 struct ata_port *ap = dev->ap;
a2a7a662
TH
1193 u8 command = tf->command;
1194 struct ata_queued_cmd *qc;
2ab7db1f 1195 unsigned int tag, preempted_tag;
dedaf2b0 1196 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1197 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1198 unsigned long flags;
77853bf2 1199 unsigned int err_mask;
d95a717f 1200 int rc;
a2a7a662 1201
ba6a1308 1202 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1203
e3180499 1204 /* no internal command while frozen */
b51e9e5d 1205 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1206 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1207 return AC_ERR_SYSTEM;
1208 }
1209
2ab7db1f 1210 /* initialize internal qc */
a2a7a662 1211
2ab7db1f
TH
1212 /* XXX: Tag 0 is used for drivers with legacy EH as some
1213 * drivers choke if any other tag is given. This breaks
1214 * ata_tag_internal() test for those drivers. Don't use new
1215 * EH stuff without converting to it.
1216 */
1217 if (ap->ops->error_handler)
1218 tag = ATA_TAG_INTERNAL;
1219 else
1220 tag = 0;
1221
6cec4a39 1222 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1223 BUG();
f69499f4 1224 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1225
1226 qc->tag = tag;
1227 qc->scsicmd = NULL;
1228 qc->ap = ap;
1229 qc->dev = dev;
1230 ata_qc_reinit(qc);
1231
1232 preempted_tag = ap->active_tag;
dedaf2b0
TH
1233 preempted_sactive = ap->sactive;
1234 preempted_qc_active = ap->qc_active;
2ab7db1f 1235 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1236 ap->sactive = 0;
1237 ap->qc_active = 0;
2ab7db1f
TH
1238
1239 /* prepare & issue qc */
a2a7a662 1240 qc->tf = *tf;
d69cf37d
TH
1241 if (cdb)
1242 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1243 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1244 qc->dma_dir = dma_dir;
1245 if (dma_dir != DMA_NONE) {
2432697b
TH
1246 unsigned int i, buflen = 0;
1247
1248 for (i = 0; i < n_elem; i++)
1249 buflen += sg[i].length;
1250
1251 ata_sg_init(qc, sg, n_elem);
49c80429 1252 qc->nbytes = buflen;
a2a7a662
TH
1253 }
1254
77853bf2 1255 qc->private_data = &wait;
a2a7a662
TH
1256 qc->complete_fn = ata_qc_complete_internal;
1257
8e0e694a 1258 ata_qc_issue(qc);
a2a7a662 1259
ba6a1308 1260 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1261
a8601e5f 1262 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1263
1264 ata_port_flush_task(ap);
41ade50c 1265
d95a717f 1266 if (!rc) {
ba6a1308 1267 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1268
1269 /* We're racing with irq here. If we lose, the
1270 * following test prevents us from completing the qc
d95a717f
TH
1271 * twice. If we win, the port is frozen and will be
1272 * cleaned up by ->post_internal_cmd().
a2a7a662 1273 */
77853bf2 1274 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1275 qc->err_mask |= AC_ERR_TIMEOUT;
1276
1277 if (ap->ops->error_handler)
1278 ata_port_freeze(ap);
1279 else
1280 ata_qc_complete(qc);
f15a1daf 1281
0dd4b21f
BP
1282 if (ata_msg_warn(ap))
1283 ata_dev_printk(dev, KERN_WARNING,
88574551 1284 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1285 }
1286
ba6a1308 1287 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1288 }
1289
d95a717f
TH
1290 /* do post_internal_cmd */
1291 if (ap->ops->post_internal_cmd)
1292 ap->ops->post_internal_cmd(qc);
1293
18d90deb 1294 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
0dd4b21f 1295 if (ata_msg_warn(ap))
88574551 1296 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1297 "zero err_mask for failed "
88574551 1298 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1299 qc->err_mask |= AC_ERR_OTHER;
1300 }
1301
15869303 1302 /* finish up */
ba6a1308 1303 spin_lock_irqsave(ap->lock, flags);
15869303 1304
e61e0672 1305 *tf = qc->result_tf;
77853bf2
TH
1306 err_mask = qc->err_mask;
1307
1308 ata_qc_free(qc);
2ab7db1f 1309 ap->active_tag = preempted_tag;
dedaf2b0
TH
1310 ap->sactive = preempted_sactive;
1311 ap->qc_active = preempted_qc_active;
77853bf2 1312
1f7dd3e9
TH
1313 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1314 * Until those drivers are fixed, we detect the condition
1315 * here, fail the command with AC_ERR_SYSTEM and reenable the
1316 * port.
1317 *
1318 * Note that this doesn't change any behavior as internal
1319 * command failure results in disabling the device in the
1320 * higher layer for LLDDs without new reset/EH callbacks.
1321 *
1322 * Kill the following code as soon as those drivers are fixed.
1323 */
198e0fed 1324 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1325 err_mask |= AC_ERR_SYSTEM;
1326 ata_port_probe(ap);
1327 }
1328
ba6a1308 1329 spin_unlock_irqrestore(ap->lock, flags);
15869303 1330
77853bf2 1331 return err_mask;
a2a7a662
TH
1332}
1333
2432697b 1334/**
33480a0e 1335 * ata_exec_internal - execute libata internal command
2432697b
TH
1336 * @dev: Device to which the command is sent
1337 * @tf: Taskfile registers for the command and the result
1338 * @cdb: CDB for packet command
1339 * @dma_dir: Data tranfer direction of the command
1340 * @buf: Data buffer of the command
1341 * @buflen: Length of data buffer
1342 *
1343 * Wrapper around ata_exec_internal_sg() which takes simple
1344 * buffer instead of sg list.
1345 *
1346 * LOCKING:
1347 * None. Should be called with kernel context, might sleep.
1348 *
1349 * RETURNS:
1350 * Zero on success, AC_ERR_* mask on failure
1351 */
1352unsigned ata_exec_internal(struct ata_device *dev,
1353 struct ata_taskfile *tf, const u8 *cdb,
1354 int dma_dir, void *buf, unsigned int buflen)
1355{
33480a0e
TH
1356 struct scatterlist *psg = NULL, sg;
1357 unsigned int n_elem = 0;
2432697b 1358
33480a0e
TH
1359 if (dma_dir != DMA_NONE) {
1360 WARN_ON(!buf);
1361 sg_init_one(&sg, buf, buflen);
1362 psg = &sg;
1363 n_elem++;
1364 }
2432697b 1365
33480a0e 1366 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1367}
1368
977e6b9f
TH
1369/**
1370 * ata_do_simple_cmd - execute simple internal command
1371 * @dev: Device to which the command is sent
1372 * @cmd: Opcode to execute
1373 *
1374 * Execute a 'simple' command, that only consists of the opcode
1375 * 'cmd' itself, without filling any other registers
1376 *
1377 * LOCKING:
1378 * Kernel thread context (may sleep).
1379 *
1380 * RETURNS:
1381 * Zero on success, AC_ERR_* mask on failure
e58eb583 1382 */
77b08fb5 1383unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1384{
1385 struct ata_taskfile tf;
e58eb583
TH
1386
1387 ata_tf_init(dev, &tf);
1388
1389 tf.command = cmd;
1390 tf.flags |= ATA_TFLAG_DEVICE;
1391 tf.protocol = ATA_PROT_NODATA;
1392
977e6b9f 1393 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1394}
1395
1bc4ccff
AC
1396/**
1397 * ata_pio_need_iordy - check if iordy needed
1398 * @adev: ATA device
1399 *
1400 * Check if the current speed of the device requires IORDY. Used
1401 * by various controllers for chip configuration.
1402 */
1403
1404unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1405{
1406 int pio;
1407 int speed = adev->pio_mode - XFER_PIO_0;
1408
1409 if (speed < 2)
1410 return 0;
1411 if (speed > 2)
1412 return 1;
2e9edbf8 1413
1bc4ccff
AC
1414 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1415
1416 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1417 pio = adev->id[ATA_ID_EIDE_PIO];
1418 /* Is the speed faster than the drive allows non IORDY ? */
1419 if (pio) {
1420 /* This is cycle times not frequency - watch the logic! */
1421 if (pio > 240) /* PIO2 is 240nS per cycle */
1422 return 1;
1423 return 0;
1424 }
1425 }
1426 return 0;
1427}
1428
1da177e4 1429/**
49016aca 1430 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1431 * @dev: target device
1432 * @p_class: pointer to class of the target device (may be changed)
bff04647 1433 * @flags: ATA_READID_* flags
fe635c7e 1434 * @id: buffer to read IDENTIFY data into
1da177e4 1435 *
49016aca
TH
1436 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1437 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1438 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1439 * for pre-ATA4 drives.
1da177e4
LT
1440 *
1441 * LOCKING:
49016aca
TH
1442 * Kernel thread context (may sleep)
1443 *
1444 * RETURNS:
1445 * 0 on success, -errno otherwise.
1da177e4 1446 */
a9beec95 1447int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1448 unsigned int flags, u16 *id)
1da177e4 1449{
3373efd8 1450 struct ata_port *ap = dev->ap;
49016aca 1451 unsigned int class = *p_class;
a0123703 1452 struct ata_taskfile tf;
49016aca
TH
1453 unsigned int err_mask = 0;
1454 const char *reason;
1455 int rc;
1da177e4 1456
0dd4b21f 1457 if (ata_msg_ctl(ap))
88574551
TH
1458 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1459 __FUNCTION__, ap->id, dev->devno);
1da177e4 1460
49016aca 1461 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1462
49016aca 1463 retry:
3373efd8 1464 ata_tf_init(dev, &tf);
a0123703 1465
49016aca
TH
1466 switch (class) {
1467 case ATA_DEV_ATA:
a0123703 1468 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1469 break;
1470 case ATA_DEV_ATAPI:
a0123703 1471 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1472 break;
1473 default:
1474 rc = -ENODEV;
1475 reason = "unsupported class";
1476 goto err_out;
1da177e4
LT
1477 }
1478
a0123703 1479 tf.protocol = ATA_PROT_PIO;
800b3996 1480 tf.flags |= ATA_TFLAG_POLLING; /* for polling presence detection */
1da177e4 1481
3373efd8 1482 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1483 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1484 if (err_mask) {
800b3996 1485 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8
TH
1486 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1487 ap->id, dev->devno);
1488 return -ENOENT;
1489 }
1490
49016aca
TH
1491 rc = -EIO;
1492 reason = "I/O error";
1da177e4
LT
1493 goto err_out;
1494 }
1495
49016aca 1496 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1497
49016aca 1498 /* sanity check */
a4f5749b
TH
1499 rc = -EINVAL;
1500 reason = "device reports illegal type";
1501
1502 if (class == ATA_DEV_ATA) {
1503 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1504 goto err_out;
1505 } else {
1506 if (ata_id_is_ata(id))
1507 goto err_out;
49016aca
TH
1508 }
1509
bff04647 1510 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1511 /*
1512 * The exact sequence expected by certain pre-ATA4 drives is:
1513 * SRST RESET
1514 * IDENTIFY
1515 * INITIALIZE DEVICE PARAMETERS
1516 * anything else..
1517 * Some drives were very specific about that exact sequence.
1518 */
1519 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1520 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1521 if (err_mask) {
1522 rc = -EIO;
1523 reason = "INIT_DEV_PARAMS failed";
1524 goto err_out;
1525 }
1526
1527 /* current CHS translation info (id[53-58]) might be
1528 * changed. reread the identify device info.
1529 */
bff04647 1530 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1531 goto retry;
1532 }
1533 }
1534
1535 *p_class = class;
fe635c7e 1536
49016aca
TH
1537 return 0;
1538
1539 err_out:
88574551 1540 if (ata_msg_warn(ap))
0dd4b21f 1541 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1542 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1543 return rc;
1544}
1545
3373efd8 1546static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1547{
3373efd8 1548 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1549}
1550
a6e6ce8e
TH
1551static void ata_dev_config_ncq(struct ata_device *dev,
1552 char *desc, size_t desc_sz)
1553{
1554 struct ata_port *ap = dev->ap;
1555 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1556
1557 if (!ata_id_has_ncq(dev->id)) {
1558 desc[0] = '\0';
1559 return;
1560 }
6919a0a6
AC
1561 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1562 snprintf(desc, desc_sz, "NCQ (not used)");
1563 return;
1564 }
a6e6ce8e 1565 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1566 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1567 dev->flags |= ATA_DFLAG_NCQ;
1568 }
1569
1570 if (hdepth >= ddepth)
1571 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1572 else
1573 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1574}
1575
e6d902a3
BK
1576static void ata_set_port_max_cmd_len(struct ata_port *ap)
1577{
1578 int i;
1579
cca3974e
JG
1580 if (ap->scsi_host) {
1581 unsigned int len = 0;
1582
e6d902a3 1583 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1584 len = max(len, ap->device[i].cdb_len);
1585
1586 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1587 }
1588}
1589
49016aca 1590/**
ffeae418 1591 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1592 * @dev: Target device to configure
1593 *
1594 * Configure @dev according to @dev->id. Generic and low-level
1595 * driver specific fixups are also applied.
49016aca
TH
1596 *
1597 * LOCKING:
ffeae418
TH
1598 * Kernel thread context (may sleep)
1599 *
1600 * RETURNS:
1601 * 0 on success, -errno otherwise
49016aca 1602 */
efdaedc4 1603int ata_dev_configure(struct ata_device *dev)
49016aca 1604{
3373efd8 1605 struct ata_port *ap = dev->ap;
efdaedc4 1606 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1607 const u16 *id = dev->id;
ff8854b2 1608 unsigned int xfer_mask;
b352e57d 1609 char revbuf[7]; /* XYZ-99\0 */
e6d902a3 1610 int rc;
49016aca 1611
0dd4b21f 1612 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1613 ata_dev_printk(dev, KERN_INFO,
1614 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1615 __FUNCTION__, ap->id, dev->devno);
ffeae418 1616 return 0;
49016aca
TH
1617 }
1618
0dd4b21f 1619 if (ata_msg_probe(ap))
88574551
TH
1620 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1621 __FUNCTION__, ap->id, dev->devno);
1da177e4 1622
c39f5ebe 1623 /* print device capabilities */
0dd4b21f 1624 if (ata_msg_probe(ap))
88574551
TH
1625 ata_dev_printk(dev, KERN_DEBUG,
1626 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1627 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1628 __FUNCTION__,
f15a1daf
TH
1629 id[49], id[82], id[83], id[84],
1630 id[85], id[86], id[87], id[88]);
c39f5ebe 1631
208a9933 1632 /* initialize to-be-configured parameters */
ea1dd4e1 1633 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1634 dev->max_sectors = 0;
1635 dev->cdb_len = 0;
1636 dev->n_sectors = 0;
1637 dev->cylinders = 0;
1638 dev->heads = 0;
1639 dev->sectors = 0;
1640
1da177e4
LT
1641 /*
1642 * common ATA, ATAPI feature tests
1643 */
1644
ff8854b2 1645 /* find max transfer mode; for printk only */
1148c3a7 1646 xfer_mask = ata_id_xfermask(id);
1da177e4 1647
0dd4b21f
BP
1648 if (ata_msg_probe(ap))
1649 ata_dump_id(id);
1da177e4
LT
1650
1651 /* ATA-specific feature tests */
1652 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1653 if (ata_id_is_cfa(id)) {
1654 if (id[162] & 1) /* CPRM may make this media unusable */
1655 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1656 ap->id, dev->devno);
1657 snprintf(revbuf, 7, "CFA");
1658 }
1659 else
1660 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1661
1148c3a7 1662 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1663
1148c3a7 1664 if (ata_id_has_lba(id)) {
4c2d721a 1665 const char *lba_desc;
a6e6ce8e 1666 char ncq_desc[20];
8bf62ece 1667
4c2d721a
TH
1668 lba_desc = "LBA";
1669 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1670 if (ata_id_has_lba48(id)) {
8bf62ece 1671 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1672 lba_desc = "LBA48";
6fc49adb
TH
1673
1674 if (dev->n_sectors >= (1UL << 28) &&
1675 ata_id_has_flush_ext(id))
1676 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1677 }
8bf62ece 1678
a6e6ce8e
TH
1679 /* config NCQ */
1680 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1681
8bf62ece 1682 /* print device info to dmesg */
5afc8142 1683 if (ata_msg_drv(ap) && print_info)
b352e57d 1684 ata_dev_printk(dev, KERN_INFO, "%s, "
a6e6ce8e 1685 "max %s, %Lu sectors: %s %s\n",
b352e57d 1686 revbuf,
f15a1daf
TH
1687 ata_mode_string(xfer_mask),
1688 (unsigned long long)dev->n_sectors,
a6e6ce8e 1689 lba_desc, ncq_desc);
ffeae418 1690 } else {
8bf62ece
AL
1691 /* CHS */
1692
1693 /* Default translation */
1148c3a7
TH
1694 dev->cylinders = id[1];
1695 dev->heads = id[3];
1696 dev->sectors = id[6];
8bf62ece 1697
1148c3a7 1698 if (ata_id_current_chs_valid(id)) {
8bf62ece 1699 /* Current CHS translation is valid. */
1148c3a7
TH
1700 dev->cylinders = id[54];
1701 dev->heads = id[55];
1702 dev->sectors = id[56];
8bf62ece
AL
1703 }
1704
1705 /* print device info to dmesg */
5afc8142 1706 if (ata_msg_drv(ap) && print_info)
b352e57d 1707 ata_dev_printk(dev, KERN_INFO, "%s, "
f15a1daf 1708 "max %s, %Lu sectors: CHS %u/%u/%u\n",
b352e57d 1709 revbuf,
f15a1daf
TH
1710 ata_mode_string(xfer_mask),
1711 (unsigned long long)dev->n_sectors,
88574551
TH
1712 dev->cylinders, dev->heads,
1713 dev->sectors);
1da177e4
LT
1714 }
1715
07f6f7d0
AL
1716 if (dev->id[59] & 0x100) {
1717 dev->multi_count = dev->id[59] & 0xff;
5afc8142 1718 if (ata_msg_drv(ap) && print_info)
88574551
TH
1719 ata_dev_printk(dev, KERN_INFO,
1720 "ata%u: dev %u multi count %u\n",
1721 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1722 }
1723
6e7846e9 1724 dev->cdb_len = 16;
1da177e4
LT
1725 }
1726
1727 /* ATAPI-specific feature tests */
2c13b7ce 1728 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1729 char *cdb_intr_string = "";
1730
1148c3a7 1731 rc = atapi_cdb_len(id);
1da177e4 1732 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1733 if (ata_msg_warn(ap))
88574551
TH
1734 ata_dev_printk(dev, KERN_WARNING,
1735 "unsupported CDB len\n");
ffeae418 1736 rc = -EINVAL;
1da177e4
LT
1737 goto err_out_nosup;
1738 }
6e7846e9 1739 dev->cdb_len = (unsigned int) rc;
1da177e4 1740
08a556db 1741 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1742 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1743 cdb_intr_string = ", CDB intr";
1744 }
312f7da2 1745
1da177e4 1746 /* print device info to dmesg */
5afc8142 1747 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1748 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1749 ata_mode_string(xfer_mask),
1750 cdb_intr_string);
1da177e4
LT
1751 }
1752
914ed354
TH
1753 /* determine max_sectors */
1754 dev->max_sectors = ATA_MAX_SECTORS;
1755 if (dev->flags & ATA_DFLAG_LBA48)
1756 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1757
93590859
AC
1758 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1759 /* Let the user know. We don't want to disallow opens for
1760 rescue purposes, or in case the vendor is just a blithering
1761 idiot */
1762 if (print_info) {
1763 ata_dev_printk(dev, KERN_WARNING,
1764"Drive reports diagnostics failure. This may indicate a drive\n");
1765 ata_dev_printk(dev, KERN_WARNING,
1766"fault or invalid emulation. Contact drive vendor for information.\n");
1767 }
1768 }
1769
e6d902a3 1770 ata_set_port_max_cmd_len(ap);
6e7846e9 1771
4b2f3ede 1772 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1773 if (ata_dev_knobble(dev)) {
5afc8142 1774 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1775 ata_dev_printk(dev, KERN_INFO,
1776 "applying bridge limits\n");
5a529139 1777 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1778 dev->max_sectors = ATA_MAX_SECTORS;
1779 }
1780
1781 if (ap->ops->dev_config)
1782 ap->ops->dev_config(ap, dev);
1783
0dd4b21f
BP
1784 if (ata_msg_probe(ap))
1785 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1786 __FUNCTION__, ata_chk_status(ap));
ffeae418 1787 return 0;
1da177e4
LT
1788
1789err_out_nosup:
0dd4b21f 1790 if (ata_msg_probe(ap))
88574551
TH
1791 ata_dev_printk(dev, KERN_DEBUG,
1792 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1793 return rc;
1da177e4
LT
1794}
1795
1796/**
1797 * ata_bus_probe - Reset and probe ATA bus
1798 * @ap: Bus to probe
1799 *
0cba632b
JG
1800 * Master ATA bus probing function. Initiates a hardware-dependent
1801 * bus reset, then attempts to identify any devices found on
1802 * the bus.
1803 *
1da177e4 1804 * LOCKING:
0cba632b 1805 * PCI/etc. bus probe sem.
1da177e4
LT
1806 *
1807 * RETURNS:
96072e69 1808 * Zero on success, negative errno otherwise.
1da177e4
LT
1809 */
1810
80289167 1811int ata_bus_probe(struct ata_port *ap)
1da177e4 1812{
28ca5c57 1813 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1814 int tries[ATA_MAX_DEVICES];
1815 int i, rc, down_xfermask;
e82cbdb9 1816 struct ata_device *dev;
1da177e4 1817
28ca5c57 1818 ata_port_probe(ap);
c19ba8af 1819
14d2bac1
TH
1820 for (i = 0; i < ATA_MAX_DEVICES; i++)
1821 tries[i] = ATA_PROBE_MAX_TRIES;
1822
1823 retry:
1824 down_xfermask = 0;
1825
2044470c 1826 /* reset and determine device classes */
52783c5d 1827 ap->ops->phy_reset(ap);
2061a47a 1828
52783c5d
TH
1829 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1830 dev = &ap->device[i];
c19ba8af 1831
52783c5d
TH
1832 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1833 dev->class != ATA_DEV_UNKNOWN)
1834 classes[dev->devno] = dev->class;
1835 else
1836 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1837
52783c5d 1838 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1839 }
1da177e4 1840
52783c5d 1841 ata_port_probe(ap);
2044470c 1842
b6079ca4
AC
1843 /* after the reset the device state is PIO 0 and the controller
1844 state is undefined. Record the mode */
1845
1846 for (i = 0; i < ATA_MAX_DEVICES; i++)
1847 ap->device[i].pio_mode = XFER_PIO_0;
1848
28ca5c57 1849 /* read IDENTIFY page and configure devices */
1da177e4 1850 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1851 dev = &ap->device[i];
28ca5c57 1852
ec573755
TH
1853 if (tries[i])
1854 dev->class = classes[i];
ffeae418 1855
14d2bac1 1856 if (!ata_dev_enabled(dev))
ffeae418 1857 continue;
ffeae418 1858
bff04647
TH
1859 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1860 dev->id);
14d2bac1
TH
1861 if (rc)
1862 goto fail;
1863
efdaedc4
TH
1864 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1865 rc = ata_dev_configure(dev);
1866 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
1867 if (rc)
1868 goto fail;
1da177e4
LT
1869 }
1870
e82cbdb9 1871 /* configure transfer mode */
3adcebb2 1872 rc = ata_set_mode(ap, &dev);
51713d35
TH
1873 if (rc) {
1874 down_xfermask = 1;
1875 goto fail;
e82cbdb9 1876 }
1da177e4 1877
e82cbdb9
TH
1878 for (i = 0; i < ATA_MAX_DEVICES; i++)
1879 if (ata_dev_enabled(&ap->device[i]))
1880 return 0;
1da177e4 1881
e82cbdb9
TH
1882 /* no device present, disable port */
1883 ata_port_disable(ap);
1da177e4 1884 ap->ops->port_disable(ap);
96072e69 1885 return -ENODEV;
14d2bac1
TH
1886
1887 fail:
1888 switch (rc) {
1889 case -EINVAL:
1890 case -ENODEV:
1891 tries[dev->devno] = 0;
1892 break;
1893 case -EIO:
3c567b7d 1894 sata_down_spd_limit(ap);
14d2bac1
TH
1895 /* fall through */
1896 default:
1897 tries[dev->devno]--;
1898 if (down_xfermask &&
3373efd8 1899 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1900 tries[dev->devno] = 0;
1901 }
1902
ec573755 1903 if (!tries[dev->devno]) {
3373efd8
TH
1904 ata_down_xfermask_limit(dev, 1);
1905 ata_dev_disable(dev);
ec573755
TH
1906 }
1907
14d2bac1 1908 goto retry;
1da177e4
LT
1909}
1910
1911/**
0cba632b
JG
1912 * ata_port_probe - Mark port as enabled
1913 * @ap: Port for which we indicate enablement
1da177e4 1914 *
0cba632b
JG
1915 * Modify @ap data structure such that the system
1916 * thinks that the entire port is enabled.
1917 *
cca3974e 1918 * LOCKING: host lock, or some other form of
0cba632b 1919 * serialization.
1da177e4
LT
1920 */
1921
1922void ata_port_probe(struct ata_port *ap)
1923{
198e0fed 1924 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1925}
1926
3be680b7
TH
1927/**
1928 * sata_print_link_status - Print SATA link status
1929 * @ap: SATA port to printk link status about
1930 *
1931 * This function prints link speed and status of a SATA link.
1932 *
1933 * LOCKING:
1934 * None.
1935 */
1936static void sata_print_link_status(struct ata_port *ap)
1937{
6d5f9732 1938 u32 sstatus, scontrol, tmp;
3be680b7 1939
81952c54 1940 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1941 return;
81952c54 1942 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1943
81952c54 1944 if (ata_port_online(ap)) {
3be680b7 1945 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1946 ata_port_printk(ap, KERN_INFO,
1947 "SATA link up %s (SStatus %X SControl %X)\n",
1948 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1949 } else {
f15a1daf
TH
1950 ata_port_printk(ap, KERN_INFO,
1951 "SATA link down (SStatus %X SControl %X)\n",
1952 sstatus, scontrol);
3be680b7
TH
1953 }
1954}
1955
1da177e4 1956/**
780a87f7
JG
1957 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1958 * @ap: SATA port associated with target SATA PHY.
1da177e4 1959 *
780a87f7
JG
1960 * This function issues commands to standard SATA Sxxx
1961 * PHY registers, to wake up the phy (and device), and
1962 * clear any reset condition.
1da177e4
LT
1963 *
1964 * LOCKING:
0cba632b 1965 * PCI/etc. bus probe sem.
1da177e4
LT
1966 *
1967 */
1968void __sata_phy_reset(struct ata_port *ap)
1969{
1970 u32 sstatus;
1971 unsigned long timeout = jiffies + (HZ * 5);
1972
1973 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1974 /* issue phy wake/reset */
81952c54 1975 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1976 /* Couldn't find anything in SATA I/II specs, but
1977 * AHCI-1.1 10.4.2 says at least 1 ms. */
1978 mdelay(1);
1da177e4 1979 }
81952c54
TH
1980 /* phy wake/clear reset */
1981 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1982
1983 /* wait for phy to become ready, if necessary */
1984 do {
1985 msleep(200);
81952c54 1986 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1987 if ((sstatus & 0xf) != 1)
1988 break;
1989 } while (time_before(jiffies, timeout));
1990
3be680b7
TH
1991 /* print link status */
1992 sata_print_link_status(ap);
656563e3 1993
3be680b7 1994 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1995 if (!ata_port_offline(ap))
1da177e4 1996 ata_port_probe(ap);
3be680b7 1997 else
1da177e4 1998 ata_port_disable(ap);
1da177e4 1999
198e0fed 2000 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2001 return;
2002
2003 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2004 ata_port_disable(ap);
2005 return;
2006 }
2007
2008 ap->cbl = ATA_CBL_SATA;
2009}
2010
2011/**
780a87f7
JG
2012 * sata_phy_reset - Reset SATA bus.
2013 * @ap: SATA port associated with target SATA PHY.
1da177e4 2014 *
780a87f7
JG
2015 * This function resets the SATA bus, and then probes
2016 * the bus for devices.
1da177e4
LT
2017 *
2018 * LOCKING:
0cba632b 2019 * PCI/etc. bus probe sem.
1da177e4
LT
2020 *
2021 */
2022void sata_phy_reset(struct ata_port *ap)
2023{
2024 __sata_phy_reset(ap);
198e0fed 2025 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2026 return;
2027 ata_bus_reset(ap);
2028}
2029
ebdfca6e
AC
2030/**
2031 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2032 * @adev: device
2033 *
2034 * Obtain the other device on the same cable, or if none is
2035 * present NULL is returned
2036 */
2e9edbf8 2037
3373efd8 2038struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2039{
3373efd8 2040 struct ata_port *ap = adev->ap;
ebdfca6e 2041 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2042 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2043 return NULL;
2044 return pair;
2045}
2046
1da177e4 2047/**
780a87f7
JG
2048 * ata_port_disable - Disable port.
2049 * @ap: Port to be disabled.
1da177e4 2050 *
780a87f7
JG
2051 * Modify @ap data structure such that the system
2052 * thinks that the entire port is disabled, and should
2053 * never attempt to probe or communicate with devices
2054 * on this port.
2055 *
cca3974e 2056 * LOCKING: host lock, or some other form of
780a87f7 2057 * serialization.
1da177e4
LT
2058 */
2059
2060void ata_port_disable(struct ata_port *ap)
2061{
2062 ap->device[0].class = ATA_DEV_NONE;
2063 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2064 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2065}
2066
1c3fae4d 2067/**
3c567b7d 2068 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2069 * @ap: Port to adjust SATA spd limit for
2070 *
2071 * Adjust SATA spd limit of @ap downward. Note that this
2072 * function only adjusts the limit. The change must be applied
3c567b7d 2073 * using sata_set_spd().
1c3fae4d
TH
2074 *
2075 * LOCKING:
2076 * Inherited from caller.
2077 *
2078 * RETURNS:
2079 * 0 on success, negative errno on failure
2080 */
3c567b7d 2081int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2082{
81952c54
TH
2083 u32 sstatus, spd, mask;
2084 int rc, highbit;
1c3fae4d 2085
81952c54
TH
2086 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2087 if (rc)
2088 return rc;
1c3fae4d
TH
2089
2090 mask = ap->sata_spd_limit;
2091 if (mask <= 1)
2092 return -EINVAL;
2093 highbit = fls(mask) - 1;
2094 mask &= ~(1 << highbit);
2095
81952c54 2096 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2097 if (spd <= 1)
2098 return -EINVAL;
2099 spd--;
2100 mask &= (1 << spd) - 1;
2101 if (!mask)
2102 return -EINVAL;
2103
2104 ap->sata_spd_limit = mask;
2105
f15a1daf
TH
2106 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2107 sata_spd_string(fls(mask)));
1c3fae4d
TH
2108
2109 return 0;
2110}
2111
3c567b7d 2112static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2113{
2114 u32 spd, limit;
2115
2116 if (ap->sata_spd_limit == UINT_MAX)
2117 limit = 0;
2118 else
2119 limit = fls(ap->sata_spd_limit);
2120
2121 spd = (*scontrol >> 4) & 0xf;
2122 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2123
2124 return spd != limit;
2125}
2126
2127/**
3c567b7d 2128 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2129 * @ap: Port in question
2130 *
2131 * Test whether the spd limit in SControl matches
2132 * @ap->sata_spd_limit. This function is used to determine
2133 * whether hardreset is necessary to apply SATA spd
2134 * configuration.
2135 *
2136 * LOCKING:
2137 * Inherited from caller.
2138 *
2139 * RETURNS:
2140 * 1 if SATA spd configuration is needed, 0 otherwise.
2141 */
3c567b7d 2142int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2143{
2144 u32 scontrol;
2145
81952c54 2146 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2147 return 0;
2148
3c567b7d 2149 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2150}
2151
2152/**
3c567b7d 2153 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2154 * @ap: Port to set SATA spd for
2155 *
2156 * Set SATA spd of @ap according to sata_spd_limit.
2157 *
2158 * LOCKING:
2159 * Inherited from caller.
2160 *
2161 * RETURNS:
2162 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2163 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2164 */
3c567b7d 2165int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2166{
2167 u32 scontrol;
81952c54 2168 int rc;
1c3fae4d 2169
81952c54
TH
2170 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2171 return rc;
1c3fae4d 2172
3c567b7d 2173 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2174 return 0;
2175
81952c54
TH
2176 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2177 return rc;
2178
1c3fae4d
TH
2179 return 1;
2180}
2181
452503f9
AC
2182/*
2183 * This mode timing computation functionality is ported over from
2184 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2185 */
2186/*
b352e57d 2187 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2188 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2189 * for UDMA6, which is currently supported only by Maxtor drives.
2190 *
2191 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2192 */
2193
2194static const struct ata_timing ata_timing[] = {
2195
2196 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2197 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2198 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2199 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2200
b352e57d
AC
2201 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2202 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2203 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2204 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2205 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2206
2207/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2208
452503f9
AC
2209 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2210 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2211 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2212
452503f9
AC
2213 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2214 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2215 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2216
b352e57d
AC
2217 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2218 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2219 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2220 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2221
2222 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2223 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2224 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2225
2226/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2227
2228 { 0xFF }
2229};
2230
2231#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2232#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2233
2234static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2235{
2236 q->setup = EZ(t->setup * 1000, T);
2237 q->act8b = EZ(t->act8b * 1000, T);
2238 q->rec8b = EZ(t->rec8b * 1000, T);
2239 q->cyc8b = EZ(t->cyc8b * 1000, T);
2240 q->active = EZ(t->active * 1000, T);
2241 q->recover = EZ(t->recover * 1000, T);
2242 q->cycle = EZ(t->cycle * 1000, T);
2243 q->udma = EZ(t->udma * 1000, UT);
2244}
2245
2246void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2247 struct ata_timing *m, unsigned int what)
2248{
2249 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2250 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2251 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2252 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2253 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2254 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2255 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2256 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2257}
2258
2259static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2260{
2261 const struct ata_timing *t;
2262
2263 for (t = ata_timing; t->mode != speed; t++)
91190758 2264 if (t->mode == 0xFF)
452503f9 2265 return NULL;
2e9edbf8 2266 return t;
452503f9
AC
2267}
2268
2269int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2270 struct ata_timing *t, int T, int UT)
2271{
2272 const struct ata_timing *s;
2273 struct ata_timing p;
2274
2275 /*
2e9edbf8 2276 * Find the mode.
75b1f2f8 2277 */
452503f9
AC
2278
2279 if (!(s = ata_timing_find_mode(speed)))
2280 return -EINVAL;
2281
75b1f2f8
AL
2282 memcpy(t, s, sizeof(*s));
2283
452503f9
AC
2284 /*
2285 * If the drive is an EIDE drive, it can tell us it needs extended
2286 * PIO/MW_DMA cycle timing.
2287 */
2288
2289 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2290 memset(&p, 0, sizeof(p));
2291 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2292 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2293 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2294 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2295 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2296 }
2297 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2298 }
2299
2300 /*
2301 * Convert the timing to bus clock counts.
2302 */
2303
75b1f2f8 2304 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2305
2306 /*
c893a3ae
RD
2307 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2308 * S.M.A.R.T * and some other commands. We have to ensure that the
2309 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2310 */
2311
fd3367af 2312 if (speed > XFER_PIO_6) {
452503f9
AC
2313 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2314 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2315 }
2316
2317 /*
c893a3ae 2318 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2319 */
2320
2321 if (t->act8b + t->rec8b < t->cyc8b) {
2322 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2323 t->rec8b = t->cyc8b - t->act8b;
2324 }
2325
2326 if (t->active + t->recover < t->cycle) {
2327 t->active += (t->cycle - (t->active + t->recover)) / 2;
2328 t->recover = t->cycle - t->active;
2329 }
2330
2331 return 0;
2332}
2333
cf176e1a
TH
2334/**
2335 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2336 * @dev: Device to adjust xfer masks
2337 * @force_pio0: Force PIO0
2338 *
2339 * Adjust xfer masks of @dev downward. Note that this function
2340 * does not apply the change. Invoking ata_set_mode() afterwards
2341 * will apply the limit.
2342 *
2343 * LOCKING:
2344 * Inherited from caller.
2345 *
2346 * RETURNS:
2347 * 0 on success, negative errno on failure
2348 */
3373efd8 2349int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2350{
2351 unsigned long xfer_mask;
2352 int highbit;
2353
2354 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2355 dev->udma_mask);
2356
2357 if (!xfer_mask)
2358 goto fail;
2359 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2360 if (xfer_mask & ATA_MASK_UDMA)
2361 xfer_mask &= ~ATA_MASK_MWDMA;
2362
2363 highbit = fls(xfer_mask) - 1;
2364 xfer_mask &= ~(1 << highbit);
2365 if (force_pio0)
2366 xfer_mask &= 1 << ATA_SHIFT_PIO;
2367 if (!xfer_mask)
2368 goto fail;
2369
2370 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2371 &dev->udma_mask);
2372
f15a1daf
TH
2373 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2374 ata_mode_string(xfer_mask));
cf176e1a
TH
2375
2376 return 0;
2377
2378 fail:
2379 return -EINVAL;
2380}
2381
3373efd8 2382static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2383{
baa1e78a 2384 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2385 unsigned int err_mask;
2386 int rc;
1da177e4 2387
e8384607 2388 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2389 if (dev->xfer_shift == ATA_SHIFT_PIO)
2390 dev->flags |= ATA_DFLAG_PIO;
2391
3373efd8 2392 err_mask = ata_dev_set_xfermode(dev);
83206a29 2393 if (err_mask) {
f15a1daf
TH
2394 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2395 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2396 return -EIO;
2397 }
1da177e4 2398
baa1e78a 2399 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2400 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2401 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2402 if (rc)
83206a29 2403 return rc;
48a8a14f 2404
23e71c3d
TH
2405 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2406 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2407
f15a1daf
TH
2408 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2409 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2410 return 0;
1da177e4
LT
2411}
2412
1da177e4
LT
2413/**
2414 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2415 * @ap: port on which timings will be programmed
e82cbdb9 2416 * @r_failed_dev: out paramter for failed device
1da177e4 2417 *
e82cbdb9
TH
2418 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2419 * ata_set_mode() fails, pointer to the failing device is
2420 * returned in @r_failed_dev.
780a87f7 2421 *
1da177e4 2422 * LOCKING:
0cba632b 2423 * PCI/etc. bus probe sem.
e82cbdb9
TH
2424 *
2425 * RETURNS:
2426 * 0 on success, negative errno otherwise
1da177e4 2427 */
1ad8e7f9 2428int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2429{
e8e0619f 2430 struct ata_device *dev;
e82cbdb9 2431 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2432
3adcebb2 2433 /* has private set_mode? */
b229a7b0
A
2434 if (ap->ops->set_mode)
2435 return ap->ops->set_mode(ap, r_failed_dev);
3adcebb2 2436
a6d5a51c
TH
2437 /* step 1: calculate xfer_mask */
2438 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2439 unsigned int pio_mask, dma_mask;
a6d5a51c 2440
e8e0619f
TH
2441 dev = &ap->device[i];
2442
e1211e3f 2443 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2444 continue;
2445
3373efd8 2446 ata_dev_xfermask(dev);
1da177e4 2447
acf356b1
TH
2448 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2449 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2450 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2451 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2452
4f65977d 2453 found = 1;
5444a6f4
AC
2454 if (dev->dma_mode)
2455 used_dma = 1;
a6d5a51c 2456 }
4f65977d 2457 if (!found)
e82cbdb9 2458 goto out;
a6d5a51c
TH
2459
2460 /* step 2: always set host PIO timings */
e8e0619f
TH
2461 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2462 dev = &ap->device[i];
2463 if (!ata_dev_enabled(dev))
2464 continue;
2465
2466 if (!dev->pio_mode) {
f15a1daf 2467 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2468 rc = -EINVAL;
e82cbdb9 2469 goto out;
e8e0619f
TH
2470 }
2471
2472 dev->xfer_mode = dev->pio_mode;
2473 dev->xfer_shift = ATA_SHIFT_PIO;
2474 if (ap->ops->set_piomode)
2475 ap->ops->set_piomode(ap, dev);
2476 }
1da177e4 2477
a6d5a51c 2478 /* step 3: set host DMA timings */
e8e0619f
TH
2479 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2480 dev = &ap->device[i];
2481
2482 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2483 continue;
2484
2485 dev->xfer_mode = dev->dma_mode;
2486 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2487 if (ap->ops->set_dmamode)
2488 ap->ops->set_dmamode(ap, dev);
2489 }
1da177e4
LT
2490
2491 /* step 4: update devices' xfer mode */
83206a29 2492 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2493 dev = &ap->device[i];
1da177e4 2494
18d90deb 2495 /* don't update suspended devices' xfer mode */
02670bf3 2496 if (!ata_dev_ready(dev))
83206a29
TH
2497 continue;
2498
3373efd8 2499 rc = ata_dev_set_mode(dev);
5bbc53f4 2500 if (rc)
e82cbdb9 2501 goto out;
83206a29 2502 }
1da177e4 2503
e8e0619f
TH
2504 /* Record simplex status. If we selected DMA then the other
2505 * host channels are not permitted to do so.
5444a6f4 2506 */
cca3974e
JG
2507 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2508 ap->host->simplex_claimed = 1;
5444a6f4 2509
e8e0619f 2510 /* step5: chip specific finalisation */
1da177e4
LT
2511 if (ap->ops->post_set_mode)
2512 ap->ops->post_set_mode(ap);
2513
e82cbdb9
TH
2514 out:
2515 if (rc)
2516 *r_failed_dev = dev;
2517 return rc;
1da177e4
LT
2518}
2519
1fdffbce
JG
2520/**
2521 * ata_tf_to_host - issue ATA taskfile to host controller
2522 * @ap: port to which command is being issued
2523 * @tf: ATA taskfile register set
2524 *
2525 * Issues ATA taskfile register set to ATA host controller,
2526 * with proper synchronization with interrupt handler and
2527 * other threads.
2528 *
2529 * LOCKING:
cca3974e 2530 * spin_lock_irqsave(host lock)
1fdffbce
JG
2531 */
2532
2533static inline void ata_tf_to_host(struct ata_port *ap,
2534 const struct ata_taskfile *tf)
2535{
2536 ap->ops->tf_load(ap, tf);
2537 ap->ops->exec_command(ap, tf);
2538}
2539
1da177e4
LT
2540/**
2541 * ata_busy_sleep - sleep until BSY clears, or timeout
2542 * @ap: port containing status register to be polled
2543 * @tmout_pat: impatience timeout
2544 * @tmout: overall timeout
2545 *
780a87f7
JG
2546 * Sleep until ATA Status register bit BSY clears,
2547 * or a timeout occurs.
2548 *
d1adc1bb
TH
2549 * LOCKING:
2550 * Kernel thread context (may sleep).
2551 *
2552 * RETURNS:
2553 * 0 on success, -errno otherwise.
1da177e4 2554 */
d1adc1bb
TH
2555int ata_busy_sleep(struct ata_port *ap,
2556 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2557{
2558 unsigned long timer_start, timeout;
2559 u8 status;
2560
2561 status = ata_busy_wait(ap, ATA_BUSY, 300);
2562 timer_start = jiffies;
2563 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2564 while (status != 0xff && (status & ATA_BUSY) &&
2565 time_before(jiffies, timeout)) {
1da177e4
LT
2566 msleep(50);
2567 status = ata_busy_wait(ap, ATA_BUSY, 3);
2568 }
2569
d1adc1bb 2570 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2571 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2572 "port is slow to respond, please be patient "
2573 "(Status 0x%x)\n", status);
1da177e4
LT
2574
2575 timeout = timer_start + tmout;
d1adc1bb
TH
2576 while (status != 0xff && (status & ATA_BUSY) &&
2577 time_before(jiffies, timeout)) {
1da177e4
LT
2578 msleep(50);
2579 status = ata_chk_status(ap);
2580 }
2581
d1adc1bb
TH
2582 if (status == 0xff)
2583 return -ENODEV;
2584
1da177e4 2585 if (status & ATA_BUSY) {
f15a1daf 2586 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2587 "(%lu secs, Status 0x%x)\n",
2588 tmout / HZ, status);
d1adc1bb 2589 return -EBUSY;
1da177e4
LT
2590 }
2591
2592 return 0;
2593}
2594
2595static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2596{
2597 struct ata_ioports *ioaddr = &ap->ioaddr;
2598 unsigned int dev0 = devmask & (1 << 0);
2599 unsigned int dev1 = devmask & (1 << 1);
2600 unsigned long timeout;
2601
2602 /* if device 0 was found in ata_devchk, wait for its
2603 * BSY bit to clear
2604 */
2605 if (dev0)
2606 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2607
2608 /* if device 1 was found in ata_devchk, wait for
2609 * register access, then wait for BSY to clear
2610 */
2611 timeout = jiffies + ATA_TMOUT_BOOT;
2612 while (dev1) {
2613 u8 nsect, lbal;
2614
2615 ap->ops->dev_select(ap, 1);
2616 if (ap->flags & ATA_FLAG_MMIO) {
2617 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2618 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2619 } else {
2620 nsect = inb(ioaddr->nsect_addr);
2621 lbal = inb(ioaddr->lbal_addr);
2622 }
2623 if ((nsect == 1) && (lbal == 1))
2624 break;
2625 if (time_after(jiffies, timeout)) {
2626 dev1 = 0;
2627 break;
2628 }
2629 msleep(50); /* give drive a breather */
2630 }
2631 if (dev1)
2632 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2633
2634 /* is all this really necessary? */
2635 ap->ops->dev_select(ap, 0);
2636 if (dev1)
2637 ap->ops->dev_select(ap, 1);
2638 if (dev0)
2639 ap->ops->dev_select(ap, 0);
2640}
2641
1da177e4
LT
2642static unsigned int ata_bus_softreset(struct ata_port *ap,
2643 unsigned int devmask)
2644{
2645 struct ata_ioports *ioaddr = &ap->ioaddr;
2646
2647 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2648
2649 /* software reset. causes dev0 to be selected */
2650 if (ap->flags & ATA_FLAG_MMIO) {
2651 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2652 udelay(20); /* FIXME: flush */
2653 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2654 udelay(20); /* FIXME: flush */
2655 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2656 } else {
2657 outb(ap->ctl, ioaddr->ctl_addr);
2658 udelay(10);
2659 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2660 udelay(10);
2661 outb(ap->ctl, ioaddr->ctl_addr);
2662 }
2663
2664 /* spec mandates ">= 2ms" before checking status.
2665 * We wait 150ms, because that was the magic delay used for
2666 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2667 * between when the ATA command register is written, and then
2668 * status is checked. Because waiting for "a while" before
2669 * checking status is fine, post SRST, we perform this magic
2670 * delay here as well.
09c7ad79
AC
2671 *
2672 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2673 */
2674 msleep(150);
2675
2e9edbf8 2676 /* Before we perform post reset processing we want to see if
298a41ca
TH
2677 * the bus shows 0xFF because the odd clown forgets the D7
2678 * pulldown resistor.
2679 */
d1adc1bb
TH
2680 if (ata_check_status(ap) == 0xFF)
2681 return 0;
09c7ad79 2682
1da177e4
LT
2683 ata_bus_post_reset(ap, devmask);
2684
2685 return 0;
2686}
2687
2688/**
2689 * ata_bus_reset - reset host port and associated ATA channel
2690 * @ap: port to reset
2691 *
2692 * This is typically the first time we actually start issuing
2693 * commands to the ATA channel. We wait for BSY to clear, then
2694 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2695 * result. Determine what devices, if any, are on the channel
2696 * by looking at the device 0/1 error register. Look at the signature
2697 * stored in each device's taskfile registers, to determine if
2698 * the device is ATA or ATAPI.
2699 *
2700 * LOCKING:
0cba632b 2701 * PCI/etc. bus probe sem.
cca3974e 2702 * Obtains host lock.
1da177e4
LT
2703 *
2704 * SIDE EFFECTS:
198e0fed 2705 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2706 */
2707
2708void ata_bus_reset(struct ata_port *ap)
2709{
2710 struct ata_ioports *ioaddr = &ap->ioaddr;
2711 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2712 u8 err;
aec5c3c1 2713 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2714
2715 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2716
2717 /* determine if device 0/1 are present */
2718 if (ap->flags & ATA_FLAG_SATA_RESET)
2719 dev0 = 1;
2720 else {
2721 dev0 = ata_devchk(ap, 0);
2722 if (slave_possible)
2723 dev1 = ata_devchk(ap, 1);
2724 }
2725
2726 if (dev0)
2727 devmask |= (1 << 0);
2728 if (dev1)
2729 devmask |= (1 << 1);
2730
2731 /* select device 0 again */
2732 ap->ops->dev_select(ap, 0);
2733
2734 /* issue bus reset */
2735 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2736 if (ata_bus_softreset(ap, devmask))
2737 goto err_out;
1da177e4
LT
2738
2739 /*
2740 * determine by signature whether we have ATA or ATAPI devices
2741 */
b4dc7623 2742 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2743 if ((slave_possible) && (err != 0x81))
b4dc7623 2744 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2745
2746 /* re-enable interrupts */
2747 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2748 ata_irq_on(ap);
2749
2750 /* is double-select really necessary? */
2751 if (ap->device[1].class != ATA_DEV_NONE)
2752 ap->ops->dev_select(ap, 1);
2753 if (ap->device[0].class != ATA_DEV_NONE)
2754 ap->ops->dev_select(ap, 0);
2755
2756 /* if no devices were detected, disable this port */
2757 if ((ap->device[0].class == ATA_DEV_NONE) &&
2758 (ap->device[1].class == ATA_DEV_NONE))
2759 goto err_out;
2760
2761 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2762 /* set up device control for ATA_FLAG_SATA_RESET */
2763 if (ap->flags & ATA_FLAG_MMIO)
2764 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2765 else
2766 outb(ap->ctl, ioaddr->ctl_addr);
2767 }
2768
2769 DPRINTK("EXIT\n");
2770 return;
2771
2772err_out:
f15a1daf 2773 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2774 ap->ops->port_disable(ap);
2775
2776 DPRINTK("EXIT\n");
2777}
2778
d7bb4cc7
TH
2779/**
2780 * sata_phy_debounce - debounce SATA phy status
2781 * @ap: ATA port to debounce SATA phy status for
2782 * @params: timing parameters { interval, duratinon, timeout } in msec
2783 *
2784 * Make sure SStatus of @ap reaches stable state, determined by
2785 * holding the same value where DET is not 1 for @duration polled
2786 * every @interval, before @timeout. Timeout constraints the
2787 * beginning of the stable state. Because, after hot unplugging,
2788 * DET gets stuck at 1 on some controllers, this functions waits
2789 * until timeout then returns 0 if DET is stable at 1.
2790 *
2791 * LOCKING:
2792 * Kernel thread context (may sleep)
2793 *
2794 * RETURNS:
2795 * 0 on success, -errno on failure.
2796 */
2797int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2798{
d7bb4cc7
TH
2799 unsigned long interval_msec = params[0];
2800 unsigned long duration = params[1] * HZ / 1000;
2801 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2802 unsigned long last_jiffies;
2803 u32 last, cur;
2804 int rc;
2805
2806 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2807 return rc;
2808 cur &= 0xf;
2809
2810 last = cur;
2811 last_jiffies = jiffies;
2812
2813 while (1) {
2814 msleep(interval_msec);
2815 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2816 return rc;
2817 cur &= 0xf;
2818
2819 /* DET stable? */
2820 if (cur == last) {
2821 if (cur == 1 && time_before(jiffies, timeout))
2822 continue;
2823 if (time_after(jiffies, last_jiffies + duration))
2824 return 0;
2825 continue;
2826 }
2827
2828 /* unstable, start over */
2829 last = cur;
2830 last_jiffies = jiffies;
2831
2832 /* check timeout */
2833 if (time_after(jiffies, timeout))
2834 return -EBUSY;
2835 }
2836}
2837
2838/**
2839 * sata_phy_resume - resume SATA phy
2840 * @ap: ATA port to resume SATA phy for
2841 * @params: timing parameters { interval, duratinon, timeout } in msec
2842 *
2843 * Resume SATA phy of @ap and debounce it.
2844 *
2845 * LOCKING:
2846 * Kernel thread context (may sleep)
2847 *
2848 * RETURNS:
2849 * 0 on success, -errno on failure.
2850 */
2851int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2852{
2853 u32 scontrol;
81952c54
TH
2854 int rc;
2855
2856 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2857 return rc;
7a7921e8 2858
852ee16a 2859 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2860
2861 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2862 return rc;
7a7921e8 2863
d7bb4cc7
TH
2864 /* Some PHYs react badly if SStatus is pounded immediately
2865 * after resuming. Delay 200ms before debouncing.
2866 */
2867 msleep(200);
7a7921e8 2868
d7bb4cc7 2869 return sata_phy_debounce(ap, params);
7a7921e8
TH
2870}
2871
f5914a46
TH
2872static void ata_wait_spinup(struct ata_port *ap)
2873{
2874 struct ata_eh_context *ehc = &ap->eh_context;
2875 unsigned long end, secs;
2876 int rc;
2877
2878 /* first, debounce phy if SATA */
2879 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2880 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2881
2882 /* if debounced successfully and offline, no need to wait */
2883 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2884 return;
2885 }
2886
2887 /* okay, let's give the drive time to spin up */
2888 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2889 secs = ((end - jiffies) + HZ - 1) / HZ;
2890
2891 if (time_after(jiffies, end))
2892 return;
2893
2894 if (secs > 5)
2895 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2896 "(%lu secs)\n", secs);
2897
2898 schedule_timeout_uninterruptible(end - jiffies);
2899}
2900
2901/**
2902 * ata_std_prereset - prepare for reset
2903 * @ap: ATA port to be reset
2904 *
2905 * @ap is about to be reset. Initialize it.
2906 *
2907 * LOCKING:
2908 * Kernel thread context (may sleep)
2909 *
2910 * RETURNS:
2911 * 0 on success, -errno otherwise.
2912 */
2913int ata_std_prereset(struct ata_port *ap)
2914{
2915 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2916 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2917 int rc;
2918
28324304
TH
2919 /* handle link resume & hotplug spinup */
2920 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2921 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2922 ehc->i.action |= ATA_EH_HARDRESET;
2923
2924 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2925 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2926 ata_wait_spinup(ap);
f5914a46
TH
2927
2928 /* if we're about to do hardreset, nothing more to do */
2929 if (ehc->i.action & ATA_EH_HARDRESET)
2930 return 0;
2931
2932 /* if SATA, resume phy */
2933 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2934 rc = sata_phy_resume(ap, timing);
2935 if (rc && rc != -EOPNOTSUPP) {
2936 /* phy resume failed */
2937 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2938 "link for reset (errno=%d)\n", rc);
2939 return rc;
2940 }
2941 }
2942
2943 /* Wait for !BSY if the controller can wait for the first D2H
2944 * Reg FIS and we don't know that no device is attached.
2945 */
2946 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2947 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2948
2949 return 0;
2950}
2951
c2bd5804
TH
2952/**
2953 * ata_std_softreset - reset host port via ATA SRST
2954 * @ap: port to reset
c2bd5804
TH
2955 * @classes: resulting classes of attached devices
2956 *
52783c5d 2957 * Reset host port using ATA SRST.
c2bd5804
TH
2958 *
2959 * LOCKING:
2960 * Kernel thread context (may sleep)
2961 *
2962 * RETURNS:
2963 * 0 on success, -errno otherwise.
2964 */
2bf2cb26 2965int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2966{
2967 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2968 unsigned int devmask = 0, err_mask;
2969 u8 err;
2970
2971 DPRINTK("ENTER\n");
2972
81952c54 2973 if (ata_port_offline(ap)) {
3a39746a
TH
2974 classes[0] = ATA_DEV_NONE;
2975 goto out;
2976 }
2977
c2bd5804
TH
2978 /* determine if device 0/1 are present */
2979 if (ata_devchk(ap, 0))
2980 devmask |= (1 << 0);
2981 if (slave_possible && ata_devchk(ap, 1))
2982 devmask |= (1 << 1);
2983
c2bd5804
TH
2984 /* select device 0 again */
2985 ap->ops->dev_select(ap, 0);
2986
2987 /* issue bus reset */
2988 DPRINTK("about to softreset, devmask=%x\n", devmask);
2989 err_mask = ata_bus_softreset(ap, devmask);
2990 if (err_mask) {
f15a1daf
TH
2991 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2992 err_mask);
c2bd5804
TH
2993 return -EIO;
2994 }
2995
2996 /* determine by signature whether we have ATA or ATAPI devices */
2997 classes[0] = ata_dev_try_classify(ap, 0, &err);
2998 if (slave_possible && err != 0x81)
2999 classes[1] = ata_dev_try_classify(ap, 1, &err);
3000
3a39746a 3001 out:
c2bd5804
TH
3002 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3003 return 0;
3004}
3005
3006/**
b6103f6d 3007 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3008 * @ap: port to reset
b6103f6d 3009 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
3010 *
3011 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3012 *
3013 * LOCKING:
3014 * Kernel thread context (may sleep)
3015 *
3016 * RETURNS:
3017 * 0 on success, -errno otherwise.
3018 */
b6103f6d 3019int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 3020{
852ee16a 3021 u32 scontrol;
81952c54 3022 int rc;
852ee16a 3023
c2bd5804
TH
3024 DPRINTK("ENTER\n");
3025
3c567b7d 3026 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3027 /* SATA spec says nothing about how to reconfigure
3028 * spd. To be on the safe side, turn off phy during
3029 * reconfiguration. This works for at least ICH7 AHCI
3030 * and Sil3124.
3031 */
81952c54 3032 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3033 goto out;
81952c54 3034
a34b6fc0 3035 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3036
3037 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3038 goto out;
1c3fae4d 3039
3c567b7d 3040 sata_set_spd(ap);
1c3fae4d
TH
3041 }
3042
3043 /* issue phy wake/reset */
81952c54 3044 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3045 goto out;
81952c54 3046
852ee16a 3047 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3048
3049 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3050 goto out;
c2bd5804 3051
1c3fae4d 3052 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3053 * 10.4.2 says at least 1 ms.
3054 */
3055 msleep(1);
3056
1c3fae4d 3057 /* bring phy back */
b6103f6d
TH
3058 rc = sata_phy_resume(ap, timing);
3059 out:
3060 DPRINTK("EXIT, rc=%d\n", rc);
3061 return rc;
3062}
3063
3064/**
3065 * sata_std_hardreset - reset host port via SATA phy reset
3066 * @ap: port to reset
3067 * @class: resulting class of attached device
3068 *
3069 * SATA phy-reset host port using DET bits of SControl register,
3070 * wait for !BSY and classify the attached device.
3071 *
3072 * LOCKING:
3073 * Kernel thread context (may sleep)
3074 *
3075 * RETURNS:
3076 * 0 on success, -errno otherwise.
3077 */
3078int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3079{
3080 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3081 int rc;
3082
3083 DPRINTK("ENTER\n");
3084
3085 /* do hardreset */
3086 rc = sata_port_hardreset(ap, timing);
3087 if (rc) {
3088 ata_port_printk(ap, KERN_ERR,
3089 "COMRESET failed (errno=%d)\n", rc);
3090 return rc;
3091 }
c2bd5804 3092
c2bd5804 3093 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3094 if (ata_port_offline(ap)) {
c2bd5804
TH
3095 *class = ATA_DEV_NONE;
3096 DPRINTK("EXIT, link offline\n");
3097 return 0;
3098 }
3099
3100 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
3101 ata_port_printk(ap, KERN_ERR,
3102 "COMRESET failed (device not ready)\n");
c2bd5804
TH
3103 return -EIO;
3104 }
3105
3a39746a
TH
3106 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3107
c2bd5804
TH
3108 *class = ata_dev_try_classify(ap, 0, NULL);
3109
3110 DPRINTK("EXIT, class=%u\n", *class);
3111 return 0;
3112}
3113
3114/**
3115 * ata_std_postreset - standard postreset callback
3116 * @ap: the target ata_port
3117 * @classes: classes of attached devices
3118 *
3119 * This function is invoked after a successful reset. Note that
3120 * the device might have been reset more than once using
3121 * different reset methods before postreset is invoked.
c2bd5804 3122 *
c2bd5804
TH
3123 * LOCKING:
3124 * Kernel thread context (may sleep)
3125 */
3126void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3127{
dc2b3515
TH
3128 u32 serror;
3129
c2bd5804
TH
3130 DPRINTK("ENTER\n");
3131
c2bd5804 3132 /* print link status */
81952c54 3133 sata_print_link_status(ap);
c2bd5804 3134
dc2b3515
TH
3135 /* clear SError */
3136 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3137 sata_scr_write(ap, SCR_ERROR, serror);
3138
3a39746a 3139 /* re-enable interrupts */
e3180499
TH
3140 if (!ap->ops->error_handler) {
3141 /* FIXME: hack. create a hook instead */
3142 if (ap->ioaddr.ctl_addr)
3143 ata_irq_on(ap);
3144 }
c2bd5804
TH
3145
3146 /* is double-select really necessary? */
3147 if (classes[0] != ATA_DEV_NONE)
3148 ap->ops->dev_select(ap, 1);
3149 if (classes[1] != ATA_DEV_NONE)
3150 ap->ops->dev_select(ap, 0);
3151
3a39746a
TH
3152 /* bail out if no device is present */
3153 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3154 DPRINTK("EXIT, no device\n");
3155 return;
3156 }
3157
3158 /* set up device control */
3159 if (ap->ioaddr.ctl_addr) {
3160 if (ap->flags & ATA_FLAG_MMIO)
3161 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
3162 else
3163 outb(ap->ctl, ap->ioaddr.ctl_addr);
3164 }
c2bd5804
TH
3165
3166 DPRINTK("EXIT\n");
3167}
3168
623a3128
TH
3169/**
3170 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3171 * @dev: device to compare against
3172 * @new_class: class of the new device
3173 * @new_id: IDENTIFY page of the new device
3174 *
3175 * Compare @new_class and @new_id against @dev and determine
3176 * whether @dev is the device indicated by @new_class and
3177 * @new_id.
3178 *
3179 * LOCKING:
3180 * None.
3181 *
3182 * RETURNS:
3183 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3184 */
3373efd8
TH
3185static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3186 const u16 *new_id)
623a3128
TH
3187{
3188 const u16 *old_id = dev->id;
a0cf733b
TH
3189 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3190 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3191 u64 new_n_sectors;
3192
3193 if (dev->class != new_class) {
f15a1daf
TH
3194 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3195 dev->class, new_class);
623a3128
TH
3196 return 0;
3197 }
3198
a0cf733b
TH
3199 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3200 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3201 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3202 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3203 new_n_sectors = ata_id_n_sectors(new_id);
3204
3205 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3206 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3207 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3208 return 0;
3209 }
3210
3211 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3212 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3213 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3214 return 0;
3215 }
3216
3217 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3218 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3219 "%llu != %llu\n",
3220 (unsigned long long)dev->n_sectors,
3221 (unsigned long long)new_n_sectors);
623a3128
TH
3222 return 0;
3223 }
3224
3225 return 1;
3226}
3227
3228/**
3229 * ata_dev_revalidate - Revalidate ATA device
623a3128 3230 * @dev: device to revalidate
bff04647 3231 * @readid_flags: read ID flags
623a3128
TH
3232 *
3233 * Re-read IDENTIFY page and make sure @dev is still attached to
3234 * the port.
3235 *
3236 * LOCKING:
3237 * Kernel thread context (may sleep)
3238 *
3239 * RETURNS:
3240 * 0 on success, negative errno otherwise
3241 */
bff04647 3242int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3243{
5eb45c02 3244 unsigned int class = dev->class;
f15a1daf 3245 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3246 int rc;
3247
5eb45c02
TH
3248 if (!ata_dev_enabled(dev)) {
3249 rc = -ENODEV;
3250 goto fail;
3251 }
623a3128 3252
fe635c7e 3253 /* read ID data */
bff04647 3254 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3255 if (rc)
3256 goto fail;
3257
3258 /* is the device still there? */
3373efd8 3259 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3260 rc = -ENODEV;
3261 goto fail;
3262 }
3263
fe635c7e 3264 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3265
3266 /* configure device according to the new ID */
efdaedc4 3267 rc = ata_dev_configure(dev);
5eb45c02
TH
3268 if (rc == 0)
3269 return 0;
623a3128
TH
3270
3271 fail:
f15a1daf 3272 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3273 return rc;
3274}
3275
6919a0a6
AC
3276struct ata_blacklist_entry {
3277 const char *model_num;
3278 const char *model_rev;
3279 unsigned long horkage;
3280};
3281
3282static const struct ata_blacklist_entry ata_device_blacklist [] = {
3283 /* Devices with DMA related problems under Linux */
3284 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3285 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3286 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3287 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3288 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3289 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3290 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3291 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3292 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3293 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3294 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3295 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3296 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3297 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3298 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3299 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3300 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3301 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3302 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3303 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3304 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3305 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3306 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3307 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3308 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3309 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3310 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3311 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3312 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3313 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3314
3315 /* Devices we expect to fail diagnostics */
3316
3317 /* Devices where NCQ should be avoided */
3318 /* NCQ is slow */
3319 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3320
3321 /* Devices with NCQ limits */
3322
3323 /* End Marker */
3324 { }
1da177e4 3325};
2e9edbf8 3326
6919a0a6 3327unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3328{
8bfa79fc
TH
3329 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3330 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3331 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3332
8bfa79fc
TH
3333 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3334 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3335
6919a0a6 3336 while (ad->model_num) {
8bfa79fc 3337 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3338 if (ad->model_rev == NULL)
3339 return ad->horkage;
8bfa79fc 3340 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3341 return ad->horkage;
f4b15fef 3342 }
6919a0a6 3343 ad++;
f4b15fef 3344 }
1da177e4
LT
3345 return 0;
3346}
3347
6919a0a6
AC
3348static int ata_dma_blacklisted(const struct ata_device *dev)
3349{
3350 /* We don't support polling DMA.
3351 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3352 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3353 */
3354 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3355 (dev->flags & ATA_DFLAG_CDB_INTR))
3356 return 1;
3357 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3358}
3359
a6d5a51c
TH
3360/**
3361 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3362 * @dev: Device to compute xfermask for
3363 *
acf356b1
TH
3364 * Compute supported xfermask of @dev and store it in
3365 * dev->*_mask. This function is responsible for applying all
3366 * known limits including host controller limits, device
3367 * blacklist, etc...
a6d5a51c
TH
3368 *
3369 * LOCKING:
3370 * None.
a6d5a51c 3371 */
3373efd8 3372static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3373{
3373efd8 3374 struct ata_port *ap = dev->ap;
cca3974e 3375 struct ata_host *host = ap->host;
a6d5a51c 3376 unsigned long xfer_mask;
1da177e4 3377
37deecb5 3378 /* controller modes available */
565083e1
TH
3379 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3380 ap->mwdma_mask, ap->udma_mask);
3381
3382 /* Apply cable rule here. Don't apply it early because when
3383 * we handle hot plug the cable type can itself change.
3384 */
3385 if (ap->cbl == ATA_CBL_PATA40)
3386 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
fc085150
AC
3387 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3388 * host side are checked drive side as well. Cases where we know a
3389 * 40wire cable is used safely for 80 are not checked here.
3390 */
3391 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3392 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3393
1da177e4 3394
37deecb5
TH
3395 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3396 dev->mwdma_mask, dev->udma_mask);
3397 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3398
b352e57d
AC
3399 /*
3400 * CFA Advanced TrueIDE timings are not allowed on a shared
3401 * cable
3402 */
3403 if (ata_dev_pair(dev)) {
3404 /* No PIO5 or PIO6 */
3405 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3406 /* No MWDMA3 or MWDMA 4 */
3407 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3408 }
3409
37deecb5
TH
3410 if (ata_dma_blacklisted(dev)) {
3411 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3412 ata_dev_printk(dev, KERN_WARNING,
3413 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3414 }
a6d5a51c 3415
cca3974e 3416 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
37deecb5
TH
3417 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3418 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3419 "other device, disabling DMA\n");
5444a6f4 3420 }
565083e1 3421
5444a6f4
AC
3422 if (ap->ops->mode_filter)
3423 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3424
565083e1
TH
3425 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3426 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3427}
3428
1da177e4
LT
3429/**
3430 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3431 * @dev: Device to which command will be sent
3432 *
780a87f7
JG
3433 * Issue SET FEATURES - XFER MODE command to device @dev
3434 * on port @ap.
3435 *
1da177e4 3436 * LOCKING:
0cba632b 3437 * PCI/etc. bus probe sem.
83206a29
TH
3438 *
3439 * RETURNS:
3440 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3441 */
3442
3373efd8 3443static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3444{
a0123703 3445 struct ata_taskfile tf;
83206a29 3446 unsigned int err_mask;
1da177e4
LT
3447
3448 /* set up set-features taskfile */
3449 DPRINTK("set features - xfer mode\n");
3450
3373efd8 3451 ata_tf_init(dev, &tf);
a0123703
TH
3452 tf.command = ATA_CMD_SET_FEATURES;
3453 tf.feature = SETFEATURES_XFER;
3454 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3455 tf.protocol = ATA_PROT_NODATA;
3456 tf.nsect = dev->xfer_mode;
1da177e4 3457
3373efd8 3458 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3459
83206a29
TH
3460 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3461 return err_mask;
1da177e4
LT
3462}
3463
8bf62ece
AL
3464/**
3465 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3466 * @dev: Device to which command will be sent
e2a7f77a
RD
3467 * @heads: Number of heads (taskfile parameter)
3468 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3469 *
3470 * LOCKING:
6aff8f1f
TH
3471 * Kernel thread context (may sleep)
3472 *
3473 * RETURNS:
3474 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3475 */
3373efd8
TH
3476static unsigned int ata_dev_init_params(struct ata_device *dev,
3477 u16 heads, u16 sectors)
8bf62ece 3478{
a0123703 3479 struct ata_taskfile tf;
6aff8f1f 3480 unsigned int err_mask;
8bf62ece
AL
3481
3482 /* Number of sectors per track 1-255. Number of heads 1-16 */
3483 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3484 return AC_ERR_INVALID;
8bf62ece
AL
3485
3486 /* set up init dev params taskfile */
3487 DPRINTK("init dev params \n");
3488
3373efd8 3489 ata_tf_init(dev, &tf);
a0123703
TH
3490 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3491 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3492 tf.protocol = ATA_PROT_NODATA;
3493 tf.nsect = sectors;
3494 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3495
3373efd8 3496 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3497
6aff8f1f
TH
3498 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3499 return err_mask;
8bf62ece
AL
3500}
3501
1da177e4 3502/**
0cba632b
JG
3503 * ata_sg_clean - Unmap DMA memory associated with command
3504 * @qc: Command containing DMA memory to be released
3505 *
3506 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3507 *
3508 * LOCKING:
cca3974e 3509 * spin_lock_irqsave(host lock)
1da177e4 3510 */
70e6ad0c 3511void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3512{
3513 struct ata_port *ap = qc->ap;
cedc9a47 3514 struct scatterlist *sg = qc->__sg;
1da177e4 3515 int dir = qc->dma_dir;
cedc9a47 3516 void *pad_buf = NULL;
1da177e4 3517
a4631474
TH
3518 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3519 WARN_ON(sg == NULL);
1da177e4
LT
3520
3521 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3522 WARN_ON(qc->n_elem > 1);
1da177e4 3523
2c13b7ce 3524 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3525
cedc9a47
JG
3526 /* if we padded the buffer out to 32-bit bound, and data
3527 * xfer direction is from-device, we must copy from the
3528 * pad buffer back into the supplied buffer
3529 */
3530 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3531 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3532
3533 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3534 if (qc->n_elem)
2f1f610b 3535 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3536 /* restore last sg */
3537 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3538 if (pad_buf) {
3539 struct scatterlist *psg = &qc->pad_sgent;
3540 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3541 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3542 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3543 }
3544 } else {
2e242fa9 3545 if (qc->n_elem)
2f1f610b 3546 dma_unmap_single(ap->dev,
e1410f2d
JG
3547 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3548 dir);
cedc9a47
JG
3549 /* restore sg */
3550 sg->length += qc->pad_len;
3551 if (pad_buf)
3552 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3553 pad_buf, qc->pad_len);
3554 }
1da177e4
LT
3555
3556 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3557 qc->__sg = NULL;
1da177e4
LT
3558}
3559
3560/**
3561 * ata_fill_sg - Fill PCI IDE PRD table
3562 * @qc: Metadata associated with taskfile to be transferred
3563 *
780a87f7
JG
3564 * Fill PCI IDE PRD (scatter-gather) table with segments
3565 * associated with the current disk command.
3566 *
1da177e4 3567 * LOCKING:
cca3974e 3568 * spin_lock_irqsave(host lock)
1da177e4
LT
3569 *
3570 */
3571static void ata_fill_sg(struct ata_queued_cmd *qc)
3572{
1da177e4 3573 struct ata_port *ap = qc->ap;
cedc9a47
JG
3574 struct scatterlist *sg;
3575 unsigned int idx;
1da177e4 3576
a4631474 3577 WARN_ON(qc->__sg == NULL);
f131883e 3578 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3579
3580 idx = 0;
cedc9a47 3581 ata_for_each_sg(sg, qc) {
1da177e4
LT
3582 u32 addr, offset;
3583 u32 sg_len, len;
3584
3585 /* determine if physical DMA addr spans 64K boundary.
3586 * Note h/w doesn't support 64-bit, so we unconditionally
3587 * truncate dma_addr_t to u32.
3588 */
3589 addr = (u32) sg_dma_address(sg);
3590 sg_len = sg_dma_len(sg);
3591
3592 while (sg_len) {
3593 offset = addr & 0xffff;
3594 len = sg_len;
3595 if ((offset + sg_len) > 0x10000)
3596 len = 0x10000 - offset;
3597
3598 ap->prd[idx].addr = cpu_to_le32(addr);
3599 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3600 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3601
3602 idx++;
3603 sg_len -= len;
3604 addr += len;
3605 }
3606 }
3607
3608 if (idx)
3609 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3610}
3611/**
3612 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3613 * @qc: Metadata associated with taskfile to check
3614 *
780a87f7
JG
3615 * Allow low-level driver to filter ATA PACKET commands, returning
3616 * a status indicating whether or not it is OK to use DMA for the
3617 * supplied PACKET command.
3618 *
1da177e4 3619 * LOCKING:
cca3974e 3620 * spin_lock_irqsave(host lock)
0cba632b 3621 *
1da177e4
LT
3622 * RETURNS: 0 when ATAPI DMA can be used
3623 * nonzero otherwise
3624 */
3625int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3626{
3627 struct ata_port *ap = qc->ap;
3628 int rc = 0; /* Assume ATAPI DMA is OK by default */
3629
3630 if (ap->ops->check_atapi_dma)
3631 rc = ap->ops->check_atapi_dma(qc);
3632
3633 return rc;
3634}
3635/**
3636 * ata_qc_prep - Prepare taskfile for submission
3637 * @qc: Metadata associated with taskfile to be prepared
3638 *
780a87f7
JG
3639 * Prepare ATA taskfile for submission.
3640 *
1da177e4 3641 * LOCKING:
cca3974e 3642 * spin_lock_irqsave(host lock)
1da177e4
LT
3643 */
3644void ata_qc_prep(struct ata_queued_cmd *qc)
3645{
3646 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3647 return;
3648
3649 ata_fill_sg(qc);
3650}
3651
e46834cd
BK
3652void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3653
0cba632b
JG
3654/**
3655 * ata_sg_init_one - Associate command with memory buffer
3656 * @qc: Command to be associated
3657 * @buf: Memory buffer
3658 * @buflen: Length of memory buffer, in bytes.
3659 *
3660 * Initialize the data-related elements of queued_cmd @qc
3661 * to point to a single memory buffer, @buf of byte length @buflen.
3662 *
3663 * LOCKING:
cca3974e 3664 * spin_lock_irqsave(host lock)
0cba632b
JG
3665 */
3666
1da177e4
LT
3667void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3668{
1da177e4
LT
3669 qc->flags |= ATA_QCFLAG_SINGLE;
3670
cedc9a47 3671 qc->__sg = &qc->sgent;
1da177e4 3672 qc->n_elem = 1;
cedc9a47 3673 qc->orig_n_elem = 1;
1da177e4 3674 qc->buf_virt = buf;
233277ca 3675 qc->nbytes = buflen;
1da177e4 3676
61c0596c 3677 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
3678}
3679
0cba632b
JG
3680/**
3681 * ata_sg_init - Associate command with scatter-gather table.
3682 * @qc: Command to be associated
3683 * @sg: Scatter-gather table.
3684 * @n_elem: Number of elements in s/g table.
3685 *
3686 * Initialize the data-related elements of queued_cmd @qc
3687 * to point to a scatter-gather table @sg, containing @n_elem
3688 * elements.
3689 *
3690 * LOCKING:
cca3974e 3691 * spin_lock_irqsave(host lock)
0cba632b
JG
3692 */
3693
1da177e4
LT
3694void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3695 unsigned int n_elem)
3696{
3697 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3698 qc->__sg = sg;
1da177e4 3699 qc->n_elem = n_elem;
cedc9a47 3700 qc->orig_n_elem = n_elem;
1da177e4
LT
3701}
3702
3703/**
0cba632b
JG
3704 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3705 * @qc: Command with memory buffer to be mapped.
3706 *
3707 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3708 *
3709 * LOCKING:
cca3974e 3710 * spin_lock_irqsave(host lock)
1da177e4
LT
3711 *
3712 * RETURNS:
0cba632b 3713 * Zero on success, negative on error.
1da177e4
LT
3714 */
3715
3716static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3717{
3718 struct ata_port *ap = qc->ap;
3719 int dir = qc->dma_dir;
cedc9a47 3720 struct scatterlist *sg = qc->__sg;
1da177e4 3721 dma_addr_t dma_address;
2e242fa9 3722 int trim_sg = 0;
1da177e4 3723
cedc9a47
JG
3724 /* we must lengthen transfers to end on a 32-bit boundary */
3725 qc->pad_len = sg->length & 3;
3726 if (qc->pad_len) {
3727 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3728 struct scatterlist *psg = &qc->pad_sgent;
3729
a4631474 3730 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3731
3732 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3733
3734 if (qc->tf.flags & ATA_TFLAG_WRITE)
3735 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3736 qc->pad_len);
3737
3738 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3739 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3740 /* trim sg */
3741 sg->length -= qc->pad_len;
2e242fa9
TH
3742 if (sg->length == 0)
3743 trim_sg = 1;
cedc9a47
JG
3744
3745 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3746 sg->length, qc->pad_len);
3747 }
3748
2e242fa9
TH
3749 if (trim_sg) {
3750 qc->n_elem--;
e1410f2d
JG
3751 goto skip_map;
3752 }
3753
2f1f610b 3754 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3755 sg->length, dir);
537a95d9
TH
3756 if (dma_mapping_error(dma_address)) {
3757 /* restore sg */
3758 sg->length += qc->pad_len;
1da177e4 3759 return -1;
537a95d9 3760 }
1da177e4
LT
3761
3762 sg_dma_address(sg) = dma_address;
32529e01 3763 sg_dma_len(sg) = sg->length;
1da177e4 3764
2e242fa9 3765skip_map:
1da177e4
LT
3766 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3767 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3768
3769 return 0;
3770}
3771
3772/**
0cba632b
JG
3773 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3774 * @qc: Command with scatter-gather table to be mapped.
3775 *
3776 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3777 *
3778 * LOCKING:
cca3974e 3779 * spin_lock_irqsave(host lock)
1da177e4
LT
3780 *
3781 * RETURNS:
0cba632b 3782 * Zero on success, negative on error.
1da177e4
LT
3783 *
3784 */
3785
3786static int ata_sg_setup(struct ata_queued_cmd *qc)
3787{
3788 struct ata_port *ap = qc->ap;
cedc9a47
JG
3789 struct scatterlist *sg = qc->__sg;
3790 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3791 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3792
3793 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3794 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3795
cedc9a47
JG
3796 /* we must lengthen transfers to end on a 32-bit boundary */
3797 qc->pad_len = lsg->length & 3;
3798 if (qc->pad_len) {
3799 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3800 struct scatterlist *psg = &qc->pad_sgent;
3801 unsigned int offset;
3802
a4631474 3803 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3804
3805 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3806
3807 /*
3808 * psg->page/offset are used to copy to-be-written
3809 * data in this function or read data in ata_sg_clean.
3810 */
3811 offset = lsg->offset + lsg->length - qc->pad_len;
3812 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3813 psg->offset = offset_in_page(offset);
3814
3815 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3816 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3817 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3818 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3819 }
3820
3821 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3822 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3823 /* trim last sg */
3824 lsg->length -= qc->pad_len;
e1410f2d
JG
3825 if (lsg->length == 0)
3826 trim_sg = 1;
cedc9a47
JG
3827
3828 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3829 qc->n_elem - 1, lsg->length, qc->pad_len);
3830 }
3831
e1410f2d
JG
3832 pre_n_elem = qc->n_elem;
3833 if (trim_sg && pre_n_elem)
3834 pre_n_elem--;
3835
3836 if (!pre_n_elem) {
3837 n_elem = 0;
3838 goto skip_map;
3839 }
3840
1da177e4 3841 dir = qc->dma_dir;
2f1f610b 3842 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3843 if (n_elem < 1) {
3844 /* restore last sg */
3845 lsg->length += qc->pad_len;
1da177e4 3846 return -1;
537a95d9 3847 }
1da177e4
LT
3848
3849 DPRINTK("%d sg elements mapped\n", n_elem);
3850
e1410f2d 3851skip_map:
1da177e4
LT
3852 qc->n_elem = n_elem;
3853
3854 return 0;
3855}
3856
0baab86b 3857/**
c893a3ae 3858 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3859 * @buf: Buffer to swap
3860 * @buf_words: Number of 16-bit words in buffer.
3861 *
3862 * Swap halves of 16-bit words if needed to convert from
3863 * little-endian byte order to native cpu byte order, or
3864 * vice-versa.
3865 *
3866 * LOCKING:
6f0ef4fa 3867 * Inherited from caller.
0baab86b 3868 */
1da177e4
LT
3869void swap_buf_le16(u16 *buf, unsigned int buf_words)
3870{
3871#ifdef __BIG_ENDIAN
3872 unsigned int i;
3873
3874 for (i = 0; i < buf_words; i++)
3875 buf[i] = le16_to_cpu(buf[i]);
3876#endif /* __BIG_ENDIAN */
3877}
3878
6ae4cfb5
AL
3879/**
3880 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3881 * @adev: device for this I/O
6ae4cfb5
AL
3882 * @buf: data buffer
3883 * @buflen: buffer length
344babaa 3884 * @write_data: read/write
6ae4cfb5
AL
3885 *
3886 * Transfer data from/to the device data register by MMIO.
3887 *
3888 * LOCKING:
3889 * Inherited from caller.
6ae4cfb5
AL
3890 */
3891
88574551 3892void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3893 unsigned int buflen, int write_data)
1da177e4 3894{
a6b2c5d4 3895 struct ata_port *ap = adev->ap;
1da177e4
LT
3896 unsigned int i;
3897 unsigned int words = buflen >> 1;
3898 u16 *buf16 = (u16 *) buf;
3899 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3900
6ae4cfb5 3901 /* Transfer multiple of 2 bytes */
1da177e4
LT
3902 if (write_data) {
3903 for (i = 0; i < words; i++)
3904 writew(le16_to_cpu(buf16[i]), mmio);
3905 } else {
3906 for (i = 0; i < words; i++)
3907 buf16[i] = cpu_to_le16(readw(mmio));
3908 }
6ae4cfb5
AL
3909
3910 /* Transfer trailing 1 byte, if any. */
3911 if (unlikely(buflen & 0x01)) {
3912 u16 align_buf[1] = { 0 };
3913 unsigned char *trailing_buf = buf + buflen - 1;
3914
3915 if (write_data) {
3916 memcpy(align_buf, trailing_buf, 1);
3917 writew(le16_to_cpu(align_buf[0]), mmio);
3918 } else {
3919 align_buf[0] = cpu_to_le16(readw(mmio));
3920 memcpy(trailing_buf, align_buf, 1);
3921 }
3922 }
1da177e4
LT
3923}
3924
6ae4cfb5
AL
3925/**
3926 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3927 * @adev: device to target
6ae4cfb5
AL
3928 * @buf: data buffer
3929 * @buflen: buffer length
344babaa 3930 * @write_data: read/write
6ae4cfb5
AL
3931 *
3932 * Transfer data from/to the device data register by PIO.
3933 *
3934 * LOCKING:
3935 * Inherited from caller.
6ae4cfb5
AL
3936 */
3937
88574551 3938void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3939 unsigned int buflen, int write_data)
1da177e4 3940{
a6b2c5d4 3941 struct ata_port *ap = adev->ap;
6ae4cfb5 3942 unsigned int words = buflen >> 1;
1da177e4 3943
6ae4cfb5 3944 /* Transfer multiple of 2 bytes */
1da177e4 3945 if (write_data)
6ae4cfb5 3946 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3947 else
6ae4cfb5
AL
3948 insw(ap->ioaddr.data_addr, buf, words);
3949
3950 /* Transfer trailing 1 byte, if any. */
3951 if (unlikely(buflen & 0x01)) {
3952 u16 align_buf[1] = { 0 };
3953 unsigned char *trailing_buf = buf + buflen - 1;
3954
3955 if (write_data) {
3956 memcpy(align_buf, trailing_buf, 1);
3957 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3958 } else {
3959 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3960 memcpy(trailing_buf, align_buf, 1);
3961 }
3962 }
1da177e4
LT
3963}
3964
75e99585
AC
3965/**
3966 * ata_pio_data_xfer_noirq - Transfer data by PIO
3967 * @adev: device to target
3968 * @buf: data buffer
3969 * @buflen: buffer length
3970 * @write_data: read/write
3971 *
88574551 3972 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3973 * transfer with interrupts disabled.
3974 *
3975 * LOCKING:
3976 * Inherited from caller.
3977 */
3978
3979void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3980 unsigned int buflen, int write_data)
3981{
3982 unsigned long flags;
3983 local_irq_save(flags);
3984 ata_pio_data_xfer(adev, buf, buflen, write_data);
3985 local_irq_restore(flags);
3986}
3987
3988
6ae4cfb5
AL
3989/**
3990 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3991 * @qc: Command on going
3992 *
3993 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3994 *
3995 * LOCKING:
3996 * Inherited from caller.
3997 */
3998
1da177e4
LT
3999static void ata_pio_sector(struct ata_queued_cmd *qc)
4000{
4001 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4002 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4003 struct ata_port *ap = qc->ap;
4004 struct page *page;
4005 unsigned int offset;
4006 unsigned char *buf;
4007
726f0785 4008 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
14be71f4 4009 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4010
4011 page = sg[qc->cursg].page;
726f0785 4012 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4013
4014 /* get the current page and offset */
4015 page = nth_page(page, (offset >> PAGE_SHIFT));
4016 offset %= PAGE_SIZE;
4017
1da177e4
LT
4018 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4019
91b8b313
AL
4020 if (PageHighMem(page)) {
4021 unsigned long flags;
4022
a6b2c5d4 4023 /* FIXME: use a bounce buffer */
91b8b313
AL
4024 local_irq_save(flags);
4025 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4026
91b8b313 4027 /* do the actual data transfer */
a6b2c5d4 4028 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 4029
91b8b313
AL
4030 kunmap_atomic(buf, KM_IRQ0);
4031 local_irq_restore(flags);
4032 } else {
4033 buf = page_address(page);
a6b2c5d4 4034 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 4035 }
1da177e4 4036
726f0785
TH
4037 qc->curbytes += ATA_SECT_SIZE;
4038 qc->cursg_ofs += ATA_SECT_SIZE;
1da177e4 4039
726f0785 4040 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4041 qc->cursg++;
4042 qc->cursg_ofs = 0;
4043 }
1da177e4 4044}
1da177e4 4045
07f6f7d0
AL
4046/**
4047 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4048 * @qc: Command on going
4049 *
c81e29b4 4050 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
4051 * ATA device for the DRQ request.
4052 *
4053 * LOCKING:
4054 * Inherited from caller.
4055 */
1da177e4 4056
07f6f7d0
AL
4057static void ata_pio_sectors(struct ata_queued_cmd *qc)
4058{
4059 if (is_multi_taskfile(&qc->tf)) {
4060 /* READ/WRITE MULTIPLE */
4061 unsigned int nsect;
4062
587005de 4063 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4064
726f0785
TH
4065 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4066 qc->dev->multi_count);
07f6f7d0
AL
4067 while (nsect--)
4068 ata_pio_sector(qc);
4069 } else
4070 ata_pio_sector(qc);
4071}
4072
c71c1857
AL
4073/**
4074 * atapi_send_cdb - Write CDB bytes to hardware
4075 * @ap: Port to which ATAPI device is attached.
4076 * @qc: Taskfile currently active
4077 *
4078 * When device has indicated its readiness to accept
4079 * a CDB, this function is called. Send the CDB.
4080 *
4081 * LOCKING:
4082 * caller.
4083 */
4084
4085static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4086{
4087 /* send SCSI cdb */
4088 DPRINTK("send cdb\n");
db024d53 4089 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4090
a6b2c5d4 4091 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4092 ata_altstatus(ap); /* flush */
4093
4094 switch (qc->tf.protocol) {
4095 case ATA_PROT_ATAPI:
4096 ap->hsm_task_state = HSM_ST;
4097 break;
4098 case ATA_PROT_ATAPI_NODATA:
4099 ap->hsm_task_state = HSM_ST_LAST;
4100 break;
4101 case ATA_PROT_ATAPI_DMA:
4102 ap->hsm_task_state = HSM_ST_LAST;
4103 /* initiate bmdma */
4104 ap->ops->bmdma_start(qc);
4105 break;
4106 }
1da177e4
LT
4107}
4108
6ae4cfb5
AL
4109/**
4110 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4111 * @qc: Command on going
4112 * @bytes: number of bytes
4113 *
4114 * Transfer Transfer data from/to the ATAPI device.
4115 *
4116 * LOCKING:
4117 * Inherited from caller.
4118 *
4119 */
4120
1da177e4
LT
4121static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4122{
4123 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4124 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4125 struct ata_port *ap = qc->ap;
4126 struct page *page;
4127 unsigned char *buf;
4128 unsigned int offset, count;
4129
563a6e1f 4130 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4131 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4132
4133next_sg:
563a6e1f 4134 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4135 /*
563a6e1f
AL
4136 * The end of qc->sg is reached and the device expects
4137 * more data to transfer. In order not to overrun qc->sg
4138 * and fulfill length specified in the byte count register,
4139 * - for read case, discard trailing data from the device
4140 * - for write case, padding zero data to the device
4141 */
4142 u16 pad_buf[1] = { 0 };
4143 unsigned int words = bytes >> 1;
4144 unsigned int i;
4145
4146 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4147 ata_dev_printk(qc->dev, KERN_WARNING,
4148 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4149
4150 for (i = 0; i < words; i++)
a6b2c5d4 4151 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4152
14be71f4 4153 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4154 return;
4155 }
4156
cedc9a47 4157 sg = &qc->__sg[qc->cursg];
1da177e4 4158
1da177e4
LT
4159 page = sg->page;
4160 offset = sg->offset + qc->cursg_ofs;
4161
4162 /* get the current page and offset */
4163 page = nth_page(page, (offset >> PAGE_SHIFT));
4164 offset %= PAGE_SIZE;
4165
6952df03 4166 /* don't overrun current sg */
32529e01 4167 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4168
4169 /* don't cross page boundaries */
4170 count = min(count, (unsigned int)PAGE_SIZE - offset);
4171
7282aa4b
AL
4172 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4173
91b8b313
AL
4174 if (PageHighMem(page)) {
4175 unsigned long flags;
4176
a6b2c5d4 4177 /* FIXME: use bounce buffer */
91b8b313
AL
4178 local_irq_save(flags);
4179 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4180
91b8b313 4181 /* do the actual data transfer */
a6b2c5d4 4182 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4183
91b8b313
AL
4184 kunmap_atomic(buf, KM_IRQ0);
4185 local_irq_restore(flags);
4186 } else {
4187 buf = page_address(page);
a6b2c5d4 4188 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4189 }
1da177e4
LT
4190
4191 bytes -= count;
4192 qc->curbytes += count;
4193 qc->cursg_ofs += count;
4194
32529e01 4195 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4196 qc->cursg++;
4197 qc->cursg_ofs = 0;
4198 }
4199
563a6e1f 4200 if (bytes)
1da177e4 4201 goto next_sg;
1da177e4
LT
4202}
4203
6ae4cfb5
AL
4204/**
4205 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4206 * @qc: Command on going
4207 *
4208 * Transfer Transfer data from/to the ATAPI device.
4209 *
4210 * LOCKING:
4211 * Inherited from caller.
6ae4cfb5
AL
4212 */
4213
1da177e4
LT
4214static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4215{
4216 struct ata_port *ap = qc->ap;
4217 struct ata_device *dev = qc->dev;
4218 unsigned int ireason, bc_lo, bc_hi, bytes;
4219 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4220
eec4c3f3
AL
4221 /* Abuse qc->result_tf for temp storage of intermediate TF
4222 * here to save some kernel stack usage.
4223 * For normal completion, qc->result_tf is not relevant. For
4224 * error, qc->result_tf is later overwritten by ata_qc_complete().
4225 * So, the correctness of qc->result_tf is not affected.
4226 */
4227 ap->ops->tf_read(ap, &qc->result_tf);
4228 ireason = qc->result_tf.nsect;
4229 bc_lo = qc->result_tf.lbam;
4230 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4231 bytes = (bc_hi << 8) | bc_lo;
4232
4233 /* shall be cleared to zero, indicating xfer of data */
4234 if (ireason & (1 << 0))
4235 goto err_out;
4236
4237 /* make sure transfer direction matches expected */
4238 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4239 if (do_write != i_write)
4240 goto err_out;
4241
312f7da2
AL
4242 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4243
1da177e4
LT
4244 __atapi_pio_bytes(qc, bytes);
4245
4246 return;
4247
4248err_out:
f15a1daf 4249 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4250 qc->err_mask |= AC_ERR_HSM;
14be71f4 4251 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4252}
4253
4254/**
c234fb00
AL
4255 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4256 * @ap: the target ata_port
4257 * @qc: qc on going
1da177e4 4258 *
c234fb00
AL
4259 * RETURNS:
4260 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4261 */
c234fb00
AL
4262
4263static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4264{
c234fb00
AL
4265 if (qc->tf.flags & ATA_TFLAG_POLLING)
4266 return 1;
1da177e4 4267
c234fb00
AL
4268 if (ap->hsm_task_state == HSM_ST_FIRST) {
4269 if (qc->tf.protocol == ATA_PROT_PIO &&
4270 (qc->tf.flags & ATA_TFLAG_WRITE))
4271 return 1;
1da177e4 4272
c234fb00
AL
4273 if (is_atapi_taskfile(&qc->tf) &&
4274 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4275 return 1;
fe79e683
AL
4276 }
4277
c234fb00
AL
4278 return 0;
4279}
1da177e4 4280
c17ea20d
TH
4281/**
4282 * ata_hsm_qc_complete - finish a qc running on standard HSM
4283 * @qc: Command to complete
4284 * @in_wq: 1 if called from workqueue, 0 otherwise
4285 *
4286 * Finish @qc which is running on standard HSM.
4287 *
4288 * LOCKING:
cca3974e 4289 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4290 * Otherwise, none on entry and grabs host lock.
4291 */
4292static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4293{
4294 struct ata_port *ap = qc->ap;
4295 unsigned long flags;
4296
4297 if (ap->ops->error_handler) {
4298 if (in_wq) {
ba6a1308 4299 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4300
cca3974e
JG
4301 /* EH might have kicked in while host lock is
4302 * released.
c17ea20d
TH
4303 */
4304 qc = ata_qc_from_tag(ap, qc->tag);
4305 if (qc) {
4306 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4307 ata_irq_on(ap);
4308 ata_qc_complete(qc);
4309 } else
4310 ata_port_freeze(ap);
4311 }
4312
ba6a1308 4313 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4314 } else {
4315 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4316 ata_qc_complete(qc);
4317 else
4318 ata_port_freeze(ap);
4319 }
4320 } else {
4321 if (in_wq) {
ba6a1308 4322 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
4323 ata_irq_on(ap);
4324 ata_qc_complete(qc);
ba6a1308 4325 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4326 } else
4327 ata_qc_complete(qc);
4328 }
1da177e4 4329
c81e29b4 4330 ata_altstatus(ap); /* flush */
c17ea20d
TH
4331}
4332
bb5cb290
AL
4333/**
4334 * ata_hsm_move - move the HSM to the next state.
4335 * @ap: the target ata_port
4336 * @qc: qc on going
4337 * @status: current device status
4338 * @in_wq: 1 if called from workqueue, 0 otherwise
4339 *
4340 * RETURNS:
4341 * 1 when poll next status needed, 0 otherwise.
4342 */
9a1004d0
TH
4343int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4344 u8 status, int in_wq)
e2cec771 4345{
bb5cb290
AL
4346 unsigned long flags = 0;
4347 int poll_next;
4348
6912ccd5
AL
4349 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4350
bb5cb290
AL
4351 /* Make sure ata_qc_issue_prot() does not throw things
4352 * like DMA polling into the workqueue. Notice that
4353 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4354 */
c234fb00 4355 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4356
e2cec771 4357fsm_start:
999bb6f4
AL
4358 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4359 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4360
e2cec771
AL
4361 switch (ap->hsm_task_state) {
4362 case HSM_ST_FIRST:
bb5cb290
AL
4363 /* Send first data block or PACKET CDB */
4364
4365 /* If polling, we will stay in the work queue after
4366 * sending the data. Otherwise, interrupt handler
4367 * takes over after sending the data.
4368 */
4369 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4370
e2cec771 4371 /* check device status */
3655d1d3
AL
4372 if (unlikely((status & ATA_DRQ) == 0)) {
4373 /* handle BSY=0, DRQ=0 as error */
4374 if (likely(status & (ATA_ERR | ATA_DF)))
4375 /* device stops HSM for abort/error */
4376 qc->err_mask |= AC_ERR_DEV;
4377 else
4378 /* HSM violation. Let EH handle this */
4379 qc->err_mask |= AC_ERR_HSM;
4380
14be71f4 4381 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4382 goto fsm_start;
1da177e4
LT
4383 }
4384
71601958
AL
4385 /* Device should not ask for data transfer (DRQ=1)
4386 * when it finds something wrong.
eee6c32f
AL
4387 * We ignore DRQ here and stop the HSM by
4388 * changing hsm_task_state to HSM_ST_ERR and
4389 * let the EH abort the command or reset the device.
71601958
AL
4390 */
4391 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4392 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4393 ap->id, status);
3655d1d3 4394 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4395 ap->hsm_task_state = HSM_ST_ERR;
4396 goto fsm_start;
71601958 4397 }
1da177e4 4398
bb5cb290
AL
4399 /* Send the CDB (atapi) or the first data block (ata pio out).
4400 * During the state transition, interrupt handler shouldn't
4401 * be invoked before the data transfer is complete and
4402 * hsm_task_state is changed. Hence, the following locking.
4403 */
4404 if (in_wq)
ba6a1308 4405 spin_lock_irqsave(ap->lock, flags);
1da177e4 4406
bb5cb290
AL
4407 if (qc->tf.protocol == ATA_PROT_PIO) {
4408 /* PIO data out protocol.
4409 * send first data block.
4410 */
0565c26d 4411
bb5cb290
AL
4412 /* ata_pio_sectors() might change the state
4413 * to HSM_ST_LAST. so, the state is changed here
4414 * before ata_pio_sectors().
4415 */
4416 ap->hsm_task_state = HSM_ST;
4417 ata_pio_sectors(qc);
4418 ata_altstatus(ap); /* flush */
4419 } else
4420 /* send CDB */
4421 atapi_send_cdb(ap, qc);
4422
4423 if (in_wq)
ba6a1308 4424 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4425
4426 /* if polling, ata_pio_task() handles the rest.
4427 * otherwise, interrupt handler takes over from here.
4428 */
e2cec771 4429 break;
1c848984 4430
e2cec771
AL
4431 case HSM_ST:
4432 /* complete command or read/write the data register */
4433 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4434 /* ATAPI PIO protocol */
4435 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4436 /* No more data to transfer or device error.
4437 * Device error will be tagged in HSM_ST_LAST.
4438 */
e2cec771
AL
4439 ap->hsm_task_state = HSM_ST_LAST;
4440 goto fsm_start;
4441 }
1da177e4 4442
71601958
AL
4443 /* Device should not ask for data transfer (DRQ=1)
4444 * when it finds something wrong.
eee6c32f
AL
4445 * We ignore DRQ here and stop the HSM by
4446 * changing hsm_task_state to HSM_ST_ERR and
4447 * let the EH abort the command or reset the device.
71601958
AL
4448 */
4449 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4450 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4451 ap->id, status);
3655d1d3 4452 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4453 ap->hsm_task_state = HSM_ST_ERR;
4454 goto fsm_start;
71601958 4455 }
1da177e4 4456
e2cec771 4457 atapi_pio_bytes(qc);
7fb6ec28 4458
e2cec771
AL
4459 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4460 /* bad ireason reported by device */
4461 goto fsm_start;
1da177e4 4462
e2cec771
AL
4463 } else {
4464 /* ATA PIO protocol */
4465 if (unlikely((status & ATA_DRQ) == 0)) {
4466 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4467 if (likely(status & (ATA_ERR | ATA_DF)))
4468 /* device stops HSM for abort/error */
4469 qc->err_mask |= AC_ERR_DEV;
4470 else
55a8e2c8
TH
4471 /* HSM violation. Let EH handle this.
4472 * Phantom devices also trigger this
4473 * condition. Mark hint.
4474 */
4475 qc->err_mask |= AC_ERR_HSM |
4476 AC_ERR_NODEV_HINT;
3655d1d3 4477
e2cec771
AL
4478 ap->hsm_task_state = HSM_ST_ERR;
4479 goto fsm_start;
4480 }
1da177e4 4481
eee6c32f
AL
4482 /* For PIO reads, some devices may ask for
4483 * data transfer (DRQ=1) alone with ERR=1.
4484 * We respect DRQ here and transfer one
4485 * block of junk data before changing the
4486 * hsm_task_state to HSM_ST_ERR.
4487 *
4488 * For PIO writes, ERR=1 DRQ=1 doesn't make
4489 * sense since the data block has been
4490 * transferred to the device.
71601958
AL
4491 */
4492 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4493 /* data might be corrputed */
4494 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4495
4496 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4497 ata_pio_sectors(qc);
4498 ata_altstatus(ap);
4499 status = ata_wait_idle(ap);
4500 }
4501
3655d1d3
AL
4502 if (status & (ATA_BUSY | ATA_DRQ))
4503 qc->err_mask |= AC_ERR_HSM;
4504
eee6c32f
AL
4505 /* ata_pio_sectors() might change the
4506 * state to HSM_ST_LAST. so, the state
4507 * is changed after ata_pio_sectors().
4508 */
4509 ap->hsm_task_state = HSM_ST_ERR;
4510 goto fsm_start;
71601958
AL
4511 }
4512
e2cec771
AL
4513 ata_pio_sectors(qc);
4514
4515 if (ap->hsm_task_state == HSM_ST_LAST &&
4516 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4517 /* all data read */
4518 ata_altstatus(ap);
52a32205 4519 status = ata_wait_idle(ap);
e2cec771
AL
4520 goto fsm_start;
4521 }
4522 }
4523
4524 ata_altstatus(ap); /* flush */
bb5cb290 4525 poll_next = 1;
1da177e4
LT
4526 break;
4527
14be71f4 4528 case HSM_ST_LAST:
6912ccd5
AL
4529 if (unlikely(!ata_ok(status))) {
4530 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4531 ap->hsm_task_state = HSM_ST_ERR;
4532 goto fsm_start;
4533 }
4534
4535 /* no more data to transfer */
4332a771
AL
4536 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4537 ap->id, qc->dev->devno, status);
e2cec771 4538
6912ccd5
AL
4539 WARN_ON(qc->err_mask);
4540
e2cec771 4541 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4542
e2cec771 4543 /* complete taskfile transaction */
c17ea20d 4544 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4545
4546 poll_next = 0;
1da177e4
LT
4547 break;
4548
14be71f4 4549 case HSM_ST_ERR:
e2cec771
AL
4550 /* make sure qc->err_mask is available to
4551 * know what's wrong and recover
4552 */
4553 WARN_ON(qc->err_mask == 0);
4554
4555 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4556
999bb6f4 4557 /* complete taskfile transaction */
c17ea20d 4558 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4559
4560 poll_next = 0;
e2cec771
AL
4561 break;
4562 default:
bb5cb290 4563 poll_next = 0;
6912ccd5 4564 BUG();
1da177e4
LT
4565 }
4566
bb5cb290 4567 return poll_next;
1da177e4
LT
4568}
4569
65f27f38 4570static void ata_pio_task(struct work_struct *work)
8061f5f0 4571{
65f27f38
DH
4572 struct ata_port *ap =
4573 container_of(work, struct ata_port, port_task.work);
4574 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 4575 u8 status;
a1af3734 4576 int poll_next;
8061f5f0 4577
7fb6ec28 4578fsm_start:
a1af3734 4579 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4580
a1af3734
AL
4581 /*
4582 * This is purely heuristic. This is a fast path.
4583 * Sometimes when we enter, BSY will be cleared in
4584 * a chk-status or two. If not, the drive is probably seeking
4585 * or something. Snooze for a couple msecs, then
4586 * chk-status again. If still busy, queue delayed work.
4587 */
4588 status = ata_busy_wait(ap, ATA_BUSY, 5);
4589 if (status & ATA_BUSY) {
4590 msleep(2);
4591 status = ata_busy_wait(ap, ATA_BUSY, 10);
4592 if (status & ATA_BUSY) {
31ce6dae 4593 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4594 return;
4595 }
8061f5f0
TH
4596 }
4597
a1af3734
AL
4598 /* move the HSM */
4599 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4600
a1af3734
AL
4601 /* another command or interrupt handler
4602 * may be running at this point.
4603 */
4604 if (poll_next)
7fb6ec28 4605 goto fsm_start;
8061f5f0
TH
4606}
4607
1da177e4
LT
4608/**
4609 * ata_qc_new - Request an available ATA command, for queueing
4610 * @ap: Port associated with device @dev
4611 * @dev: Device from whom we request an available command structure
4612 *
4613 * LOCKING:
0cba632b 4614 * None.
1da177e4
LT
4615 */
4616
4617static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4618{
4619 struct ata_queued_cmd *qc = NULL;
4620 unsigned int i;
4621
e3180499 4622 /* no command while frozen */
b51e9e5d 4623 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4624 return NULL;
4625
2ab7db1f
TH
4626 /* the last tag is reserved for internal command. */
4627 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4628 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4629 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4630 break;
4631 }
4632
4633 if (qc)
4634 qc->tag = i;
4635
4636 return qc;
4637}
4638
4639/**
4640 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4641 * @dev: Device from whom we request an available command structure
4642 *
4643 * LOCKING:
0cba632b 4644 * None.
1da177e4
LT
4645 */
4646
3373efd8 4647struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4648{
3373efd8 4649 struct ata_port *ap = dev->ap;
1da177e4
LT
4650 struct ata_queued_cmd *qc;
4651
4652 qc = ata_qc_new(ap);
4653 if (qc) {
1da177e4
LT
4654 qc->scsicmd = NULL;
4655 qc->ap = ap;
4656 qc->dev = dev;
1da177e4 4657
2c13b7ce 4658 ata_qc_reinit(qc);
1da177e4
LT
4659 }
4660
4661 return qc;
4662}
4663
1da177e4
LT
4664/**
4665 * ata_qc_free - free unused ata_queued_cmd
4666 * @qc: Command to complete
4667 *
4668 * Designed to free unused ata_queued_cmd object
4669 * in case something prevents using it.
4670 *
4671 * LOCKING:
cca3974e 4672 * spin_lock_irqsave(host lock)
1da177e4
LT
4673 */
4674void ata_qc_free(struct ata_queued_cmd *qc)
4675{
4ba946e9
TH
4676 struct ata_port *ap = qc->ap;
4677 unsigned int tag;
4678
a4631474 4679 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4680
4ba946e9
TH
4681 qc->flags = 0;
4682 tag = qc->tag;
4683 if (likely(ata_tag_valid(tag))) {
4ba946e9 4684 qc->tag = ATA_TAG_POISON;
6cec4a39 4685 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4686 }
1da177e4
LT
4687}
4688
76014427 4689void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4690{
dedaf2b0
TH
4691 struct ata_port *ap = qc->ap;
4692
a4631474
TH
4693 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4694 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4695
4696 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4697 ata_sg_clean(qc);
4698
7401abf2 4699 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4700 if (qc->tf.protocol == ATA_PROT_NCQ)
4701 ap->sactive &= ~(1 << qc->tag);
4702 else
4703 ap->active_tag = ATA_TAG_POISON;
7401abf2 4704
3f3791d3
AL
4705 /* atapi: mark qc as inactive to prevent the interrupt handler
4706 * from completing the command twice later, before the error handler
4707 * is called. (when rc != 0 and atapi request sense is needed)
4708 */
4709 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4710 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4711
1da177e4 4712 /* call completion callback */
77853bf2 4713 qc->complete_fn(qc);
1da177e4
LT
4714}
4715
39599a53
TH
4716static void fill_result_tf(struct ata_queued_cmd *qc)
4717{
4718 struct ata_port *ap = qc->ap;
4719
4720 ap->ops->tf_read(ap, &qc->result_tf);
4721 qc->result_tf.flags = qc->tf.flags;
4722}
4723
f686bcb8
TH
4724/**
4725 * ata_qc_complete - Complete an active ATA command
4726 * @qc: Command to complete
4727 * @err_mask: ATA Status register contents
4728 *
4729 * Indicate to the mid and upper layers that an ATA
4730 * command has completed, with either an ok or not-ok status.
4731 *
4732 * LOCKING:
cca3974e 4733 * spin_lock_irqsave(host lock)
f686bcb8
TH
4734 */
4735void ata_qc_complete(struct ata_queued_cmd *qc)
4736{
4737 struct ata_port *ap = qc->ap;
4738
4739 /* XXX: New EH and old EH use different mechanisms to
4740 * synchronize EH with regular execution path.
4741 *
4742 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4743 * Normal execution path is responsible for not accessing a
4744 * failed qc. libata core enforces the rule by returning NULL
4745 * from ata_qc_from_tag() for failed qcs.
4746 *
4747 * Old EH depends on ata_qc_complete() nullifying completion
4748 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4749 * not synchronize with interrupt handler. Only PIO task is
4750 * taken care of.
4751 */
4752 if (ap->ops->error_handler) {
b51e9e5d 4753 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4754
4755 if (unlikely(qc->err_mask))
4756 qc->flags |= ATA_QCFLAG_FAILED;
4757
4758 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4759 if (!ata_tag_internal(qc->tag)) {
4760 /* always fill result TF for failed qc */
39599a53 4761 fill_result_tf(qc);
f686bcb8
TH
4762 ata_qc_schedule_eh(qc);
4763 return;
4764 }
4765 }
4766
4767 /* read result TF if requested */
4768 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4769 fill_result_tf(qc);
f686bcb8
TH
4770
4771 __ata_qc_complete(qc);
4772 } else {
4773 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4774 return;
4775
4776 /* read result TF if failed or requested */
4777 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4778 fill_result_tf(qc);
f686bcb8
TH
4779
4780 __ata_qc_complete(qc);
4781 }
4782}
4783
dedaf2b0
TH
4784/**
4785 * ata_qc_complete_multiple - Complete multiple qcs successfully
4786 * @ap: port in question
4787 * @qc_active: new qc_active mask
4788 * @finish_qc: LLDD callback invoked before completing a qc
4789 *
4790 * Complete in-flight commands. This functions is meant to be
4791 * called from low-level driver's interrupt routine to complete
4792 * requests normally. ap->qc_active and @qc_active is compared
4793 * and commands are completed accordingly.
4794 *
4795 * LOCKING:
cca3974e 4796 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4797 *
4798 * RETURNS:
4799 * Number of completed commands on success, -errno otherwise.
4800 */
4801int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4802 void (*finish_qc)(struct ata_queued_cmd *))
4803{
4804 int nr_done = 0;
4805 u32 done_mask;
4806 int i;
4807
4808 done_mask = ap->qc_active ^ qc_active;
4809
4810 if (unlikely(done_mask & qc_active)) {
4811 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4812 "(%08x->%08x)\n", ap->qc_active, qc_active);
4813 return -EINVAL;
4814 }
4815
4816 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4817 struct ata_queued_cmd *qc;
4818
4819 if (!(done_mask & (1 << i)))
4820 continue;
4821
4822 if ((qc = ata_qc_from_tag(ap, i))) {
4823 if (finish_qc)
4824 finish_qc(qc);
4825 ata_qc_complete(qc);
4826 nr_done++;
4827 }
4828 }
4829
4830 return nr_done;
4831}
4832
1da177e4
LT
4833static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4834{
4835 struct ata_port *ap = qc->ap;
4836
4837 switch (qc->tf.protocol) {
3dc1d881 4838 case ATA_PROT_NCQ:
1da177e4
LT
4839 case ATA_PROT_DMA:
4840 case ATA_PROT_ATAPI_DMA:
4841 return 1;
4842
4843 case ATA_PROT_ATAPI:
4844 case ATA_PROT_PIO:
1da177e4
LT
4845 if (ap->flags & ATA_FLAG_PIO_DMA)
4846 return 1;
4847
4848 /* fall through */
4849
4850 default:
4851 return 0;
4852 }
4853
4854 /* never reached */
4855}
4856
4857/**
4858 * ata_qc_issue - issue taskfile to device
4859 * @qc: command to issue to device
4860 *
4861 * Prepare an ATA command to submission to device.
4862 * This includes mapping the data into a DMA-able
4863 * area, filling in the S/G table, and finally
4864 * writing the taskfile to hardware, starting the command.
4865 *
4866 * LOCKING:
cca3974e 4867 * spin_lock_irqsave(host lock)
1da177e4 4868 */
8e0e694a 4869void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4870{
4871 struct ata_port *ap = qc->ap;
4872
dedaf2b0
TH
4873 /* Make sure only one non-NCQ command is outstanding. The
4874 * check is skipped for old EH because it reuses active qc to
4875 * request ATAPI sense.
4876 */
4877 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4878
4879 if (qc->tf.protocol == ATA_PROT_NCQ) {
4880 WARN_ON(ap->sactive & (1 << qc->tag));
4881 ap->sactive |= 1 << qc->tag;
4882 } else {
4883 WARN_ON(ap->sactive);
4884 ap->active_tag = qc->tag;
4885 }
4886
e4a70e76 4887 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4888 ap->qc_active |= 1 << qc->tag;
e4a70e76 4889
1da177e4
LT
4890 if (ata_should_dma_map(qc)) {
4891 if (qc->flags & ATA_QCFLAG_SG) {
4892 if (ata_sg_setup(qc))
8e436af9 4893 goto sg_err;
1da177e4
LT
4894 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4895 if (ata_sg_setup_one(qc))
8e436af9 4896 goto sg_err;
1da177e4
LT
4897 }
4898 } else {
4899 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4900 }
4901
4902 ap->ops->qc_prep(qc);
4903
8e0e694a
TH
4904 qc->err_mask |= ap->ops->qc_issue(qc);
4905 if (unlikely(qc->err_mask))
4906 goto err;
4907 return;
1da177e4 4908
8e436af9
TH
4909sg_err:
4910 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4911 qc->err_mask |= AC_ERR_SYSTEM;
4912err:
4913 ata_qc_complete(qc);
1da177e4
LT
4914}
4915
4916/**
4917 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4918 * @qc: command to issue to device
4919 *
4920 * Using various libata functions and hooks, this function
4921 * starts an ATA command. ATA commands are grouped into
4922 * classes called "protocols", and issuing each type of protocol
4923 * is slightly different.
4924 *
0baab86b
EF
4925 * May be used as the qc_issue() entry in ata_port_operations.
4926 *
1da177e4 4927 * LOCKING:
cca3974e 4928 * spin_lock_irqsave(host lock)
1da177e4
LT
4929 *
4930 * RETURNS:
9a3d9eb0 4931 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4932 */
4933
9a3d9eb0 4934unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4935{
4936 struct ata_port *ap = qc->ap;
4937
e50362ec
AL
4938 /* Use polling pio if the LLD doesn't handle
4939 * interrupt driven pio and atapi CDB interrupt.
4940 */
4941 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4942 switch (qc->tf.protocol) {
4943 case ATA_PROT_PIO:
e3472cbe 4944 case ATA_PROT_NODATA:
e50362ec
AL
4945 case ATA_PROT_ATAPI:
4946 case ATA_PROT_ATAPI_NODATA:
4947 qc->tf.flags |= ATA_TFLAG_POLLING;
4948 break;
4949 case ATA_PROT_ATAPI_DMA:
4950 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4951 /* see ata_dma_blacklisted() */
e50362ec
AL
4952 BUG();
4953 break;
4954 default:
4955 break;
4956 }
4957 }
4958
3d3cca37
TH
4959 /* Some controllers show flaky interrupt behavior after
4960 * setting xfer mode. Use polling instead.
4961 */
4962 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4963 qc->tf.feature == SETFEATURES_XFER) &&
4964 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4965 qc->tf.flags |= ATA_TFLAG_POLLING;
4966
312f7da2 4967 /* select the device */
1da177e4
LT
4968 ata_dev_select(ap, qc->dev->devno, 1, 0);
4969
312f7da2 4970 /* start the command */
1da177e4
LT
4971 switch (qc->tf.protocol) {
4972 case ATA_PROT_NODATA:
312f7da2
AL
4973 if (qc->tf.flags & ATA_TFLAG_POLLING)
4974 ata_qc_set_polling(qc);
4975
e5338254 4976 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4977 ap->hsm_task_state = HSM_ST_LAST;
4978
4979 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4980 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4981
1da177e4
LT
4982 break;
4983
4984 case ATA_PROT_DMA:
587005de 4985 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4986
1da177e4
LT
4987 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4988 ap->ops->bmdma_setup(qc); /* set up bmdma */
4989 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4990 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4991 break;
4992
312f7da2
AL
4993 case ATA_PROT_PIO:
4994 if (qc->tf.flags & ATA_TFLAG_POLLING)
4995 ata_qc_set_polling(qc);
1da177e4 4996
e5338254 4997 ata_tf_to_host(ap, &qc->tf);
312f7da2 4998
54f00389
AL
4999 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5000 /* PIO data out protocol */
5001 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5002 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5003
5004 /* always send first data block using
e27486db 5005 * the ata_pio_task() codepath.
54f00389 5006 */
312f7da2 5007 } else {
54f00389
AL
5008 /* PIO data in protocol */
5009 ap->hsm_task_state = HSM_ST;
5010
5011 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5012 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5013
5014 /* if polling, ata_pio_task() handles the rest.
5015 * otherwise, interrupt handler takes over from here.
5016 */
312f7da2
AL
5017 }
5018
1da177e4
LT
5019 break;
5020
1da177e4 5021 case ATA_PROT_ATAPI:
1da177e4 5022 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5023 if (qc->tf.flags & ATA_TFLAG_POLLING)
5024 ata_qc_set_polling(qc);
5025
e5338254 5026 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5027
312f7da2
AL
5028 ap->hsm_task_state = HSM_ST_FIRST;
5029
5030 /* send cdb by polling if no cdb interrupt */
5031 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5032 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5033 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5034 break;
5035
5036 case ATA_PROT_ATAPI_DMA:
587005de 5037 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5038
1da177e4
LT
5039 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5040 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5041 ap->hsm_task_state = HSM_ST_FIRST;
5042
5043 /* send cdb by polling if no cdb interrupt */
5044 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5045 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5046 break;
5047
5048 default:
5049 WARN_ON(1);
9a3d9eb0 5050 return AC_ERR_SYSTEM;
1da177e4
LT
5051 }
5052
5053 return 0;
5054}
5055
1da177e4
LT
5056/**
5057 * ata_host_intr - Handle host interrupt for given (port, task)
5058 * @ap: Port on which interrupt arrived (possibly...)
5059 * @qc: Taskfile currently active in engine
5060 *
5061 * Handle host interrupt for given queued command. Currently,
5062 * only DMA interrupts are handled. All other commands are
5063 * handled via polling with interrupts disabled (nIEN bit).
5064 *
5065 * LOCKING:
cca3974e 5066 * spin_lock_irqsave(host lock)
1da177e4
LT
5067 *
5068 * RETURNS:
5069 * One if interrupt was handled, zero if not (shared irq).
5070 */
5071
5072inline unsigned int ata_host_intr (struct ata_port *ap,
5073 struct ata_queued_cmd *qc)
5074{
ea54763f 5075 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5076 u8 status, host_stat = 0;
1da177e4 5077
312f7da2
AL
5078 VPRINTK("ata%u: protocol %d task_state %d\n",
5079 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5080
312f7da2
AL
5081 /* Check whether we are expecting interrupt in this state */
5082 switch (ap->hsm_task_state) {
5083 case HSM_ST_FIRST:
6912ccd5
AL
5084 /* Some pre-ATAPI-4 devices assert INTRQ
5085 * at this state when ready to receive CDB.
5086 */
1da177e4 5087
312f7da2
AL
5088 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5089 * The flag was turned on only for atapi devices.
5090 * No need to check is_atapi_taskfile(&qc->tf) again.
5091 */
5092 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5093 goto idle_irq;
1da177e4 5094 break;
312f7da2
AL
5095 case HSM_ST_LAST:
5096 if (qc->tf.protocol == ATA_PROT_DMA ||
5097 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5098 /* check status of DMA engine */
5099 host_stat = ap->ops->bmdma_status(ap);
5100 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5101
5102 /* if it's not our irq... */
5103 if (!(host_stat & ATA_DMA_INTR))
5104 goto idle_irq;
5105
5106 /* before we do anything else, clear DMA-Start bit */
5107 ap->ops->bmdma_stop(qc);
a4f16610
AL
5108
5109 if (unlikely(host_stat & ATA_DMA_ERR)) {
5110 /* error when transfering data to/from memory */
5111 qc->err_mask |= AC_ERR_HOST_BUS;
5112 ap->hsm_task_state = HSM_ST_ERR;
5113 }
312f7da2
AL
5114 }
5115 break;
5116 case HSM_ST:
5117 break;
1da177e4
LT
5118 default:
5119 goto idle_irq;
5120 }
5121
312f7da2
AL
5122 /* check altstatus */
5123 status = ata_altstatus(ap);
5124 if (status & ATA_BUSY)
5125 goto idle_irq;
1da177e4 5126
312f7da2
AL
5127 /* check main status, clearing INTRQ */
5128 status = ata_chk_status(ap);
5129 if (unlikely(status & ATA_BUSY))
5130 goto idle_irq;
1da177e4 5131
312f7da2
AL
5132 /* ack bmdma irq events */
5133 ap->ops->irq_clear(ap);
1da177e4 5134
bb5cb290 5135 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5136
5137 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5138 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5139 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5140
1da177e4
LT
5141 return 1; /* irq handled */
5142
5143idle_irq:
5144 ap->stats.idle_irq++;
5145
5146#ifdef ATA_IRQ_TRAP
5147 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 5148 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 5149 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5150 return 1;
1da177e4
LT
5151 }
5152#endif
5153 return 0; /* irq not handled */
5154}
5155
5156/**
5157 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5158 * @irq: irq line (unused)
cca3974e 5159 * @dev_instance: pointer to our ata_host information structure
1da177e4 5160 *
0cba632b
JG
5161 * Default interrupt handler for PCI IDE devices. Calls
5162 * ata_host_intr() for each port that is not disabled.
5163 *
1da177e4 5164 * LOCKING:
cca3974e 5165 * Obtains host lock during operation.
1da177e4
LT
5166 *
5167 * RETURNS:
0cba632b 5168 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5169 */
5170
7d12e780 5171irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5172{
cca3974e 5173 struct ata_host *host = dev_instance;
1da177e4
LT
5174 unsigned int i;
5175 unsigned int handled = 0;
5176 unsigned long flags;
5177
5178 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5179 spin_lock_irqsave(&host->lock, flags);
1da177e4 5180
cca3974e 5181 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5182 struct ata_port *ap;
5183
cca3974e 5184 ap = host->ports[i];
c1389503 5185 if (ap &&
029f5468 5186 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5187 struct ata_queued_cmd *qc;
5188
5189 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5190 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5191 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5192 handled |= ata_host_intr(ap, qc);
5193 }
5194 }
5195
cca3974e 5196 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5197
5198 return IRQ_RETVAL(handled);
5199}
5200
34bf2170
TH
5201/**
5202 * sata_scr_valid - test whether SCRs are accessible
5203 * @ap: ATA port to test SCR accessibility for
5204 *
5205 * Test whether SCRs are accessible for @ap.
5206 *
5207 * LOCKING:
5208 * None.
5209 *
5210 * RETURNS:
5211 * 1 if SCRs are accessible, 0 otherwise.
5212 */
5213int sata_scr_valid(struct ata_port *ap)
5214{
5215 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5216}
5217
5218/**
5219 * sata_scr_read - read SCR register of the specified port
5220 * @ap: ATA port to read SCR for
5221 * @reg: SCR to read
5222 * @val: Place to store read value
5223 *
5224 * Read SCR register @reg of @ap into *@val. This function is
5225 * guaranteed to succeed if the cable type of the port is SATA
5226 * and the port implements ->scr_read.
5227 *
5228 * LOCKING:
5229 * None.
5230 *
5231 * RETURNS:
5232 * 0 on success, negative errno on failure.
5233 */
5234int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5235{
5236 if (sata_scr_valid(ap)) {
5237 *val = ap->ops->scr_read(ap, reg);
5238 return 0;
5239 }
5240 return -EOPNOTSUPP;
5241}
5242
5243/**
5244 * sata_scr_write - write SCR register of the specified port
5245 * @ap: ATA port to write SCR for
5246 * @reg: SCR to write
5247 * @val: value to write
5248 *
5249 * Write @val to SCR register @reg of @ap. This function is
5250 * guaranteed to succeed if the cable type of the port is SATA
5251 * and the port implements ->scr_read.
5252 *
5253 * LOCKING:
5254 * None.
5255 *
5256 * RETURNS:
5257 * 0 on success, negative errno on failure.
5258 */
5259int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5260{
5261 if (sata_scr_valid(ap)) {
5262 ap->ops->scr_write(ap, reg, val);
5263 return 0;
5264 }
5265 return -EOPNOTSUPP;
5266}
5267
5268/**
5269 * sata_scr_write_flush - write SCR register of the specified port and flush
5270 * @ap: ATA port to write SCR for
5271 * @reg: SCR to write
5272 * @val: value to write
5273 *
5274 * This function is identical to sata_scr_write() except that this
5275 * function performs flush after writing to the register.
5276 *
5277 * LOCKING:
5278 * None.
5279 *
5280 * RETURNS:
5281 * 0 on success, negative errno on failure.
5282 */
5283int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5284{
5285 if (sata_scr_valid(ap)) {
5286 ap->ops->scr_write(ap, reg, val);
5287 ap->ops->scr_read(ap, reg);
5288 return 0;
5289 }
5290 return -EOPNOTSUPP;
5291}
5292
5293/**
5294 * ata_port_online - test whether the given port is online
5295 * @ap: ATA port to test
5296 *
5297 * Test whether @ap is online. Note that this function returns 0
5298 * if online status of @ap cannot be obtained, so
5299 * ata_port_online(ap) != !ata_port_offline(ap).
5300 *
5301 * LOCKING:
5302 * None.
5303 *
5304 * RETURNS:
5305 * 1 if the port online status is available and online.
5306 */
5307int ata_port_online(struct ata_port *ap)
5308{
5309 u32 sstatus;
5310
5311 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5312 return 1;
5313 return 0;
5314}
5315
5316/**
5317 * ata_port_offline - test whether the given port is offline
5318 * @ap: ATA port to test
5319 *
5320 * Test whether @ap is offline. Note that this function returns
5321 * 0 if offline status of @ap cannot be obtained, so
5322 * ata_port_online(ap) != !ata_port_offline(ap).
5323 *
5324 * LOCKING:
5325 * None.
5326 *
5327 * RETURNS:
5328 * 1 if the port offline status is available and offline.
5329 */
5330int ata_port_offline(struct ata_port *ap)
5331{
5332 u32 sstatus;
5333
5334 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5335 return 1;
5336 return 0;
5337}
0baab86b 5338
77b08fb5 5339int ata_flush_cache(struct ata_device *dev)
9b847548 5340{
977e6b9f 5341 unsigned int err_mask;
9b847548
JA
5342 u8 cmd;
5343
5344 if (!ata_try_flush_cache(dev))
5345 return 0;
5346
6fc49adb 5347 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5348 cmd = ATA_CMD_FLUSH_EXT;
5349 else
5350 cmd = ATA_CMD_FLUSH;
5351
977e6b9f
TH
5352 err_mask = ata_do_simple_cmd(dev, cmd);
5353 if (err_mask) {
5354 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5355 return -EIO;
5356 }
5357
5358 return 0;
9b847548
JA
5359}
5360
cca3974e
JG
5361static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5362 unsigned int action, unsigned int ehi_flags,
5363 int wait)
500530f6
TH
5364{
5365 unsigned long flags;
5366 int i, rc;
5367
cca3974e
JG
5368 for (i = 0; i < host->n_ports; i++) {
5369 struct ata_port *ap = host->ports[i];
500530f6
TH
5370
5371 /* Previous resume operation might still be in
5372 * progress. Wait for PM_PENDING to clear.
5373 */
5374 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5375 ata_port_wait_eh(ap);
5376 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5377 }
5378
5379 /* request PM ops to EH */
5380 spin_lock_irqsave(ap->lock, flags);
5381
5382 ap->pm_mesg = mesg;
5383 if (wait) {
5384 rc = 0;
5385 ap->pm_result = &rc;
5386 }
5387
5388 ap->pflags |= ATA_PFLAG_PM_PENDING;
5389 ap->eh_info.action |= action;
5390 ap->eh_info.flags |= ehi_flags;
5391
5392 ata_port_schedule_eh(ap);
5393
5394 spin_unlock_irqrestore(ap->lock, flags);
5395
5396 /* wait and check result */
5397 if (wait) {
5398 ata_port_wait_eh(ap);
5399 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5400 if (rc)
5401 return rc;
5402 }
5403 }
5404
5405 return 0;
5406}
5407
5408/**
cca3974e
JG
5409 * ata_host_suspend - suspend host
5410 * @host: host to suspend
500530f6
TH
5411 * @mesg: PM message
5412 *
cca3974e 5413 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5414 * function requests EH to perform PM operations and waits for EH
5415 * to finish.
5416 *
5417 * LOCKING:
5418 * Kernel thread context (may sleep).
5419 *
5420 * RETURNS:
5421 * 0 on success, -errno on failure.
5422 */
cca3974e 5423int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5424{
5425 int i, j, rc;
5426
cca3974e 5427 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5428 if (rc)
5429 goto fail;
5430
5431 /* EH is quiescent now. Fail if we have any ready device.
5432 * This happens if hotplug occurs between completion of device
5433 * suspension and here.
5434 */
cca3974e
JG
5435 for (i = 0; i < host->n_ports; i++) {
5436 struct ata_port *ap = host->ports[i];
500530f6
TH
5437
5438 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5439 struct ata_device *dev = &ap->device[j];
5440
5441 if (ata_dev_ready(dev)) {
5442 ata_port_printk(ap, KERN_WARNING,
5443 "suspend failed, device %d "
5444 "still active\n", dev->devno);
5445 rc = -EBUSY;
5446 goto fail;
5447 }
5448 }
5449 }
5450
cca3974e 5451 host->dev->power.power_state = mesg;
500530f6
TH
5452 return 0;
5453
5454 fail:
cca3974e 5455 ata_host_resume(host);
500530f6
TH
5456 return rc;
5457}
5458
5459/**
cca3974e
JG
5460 * ata_host_resume - resume host
5461 * @host: host to resume
500530f6 5462 *
cca3974e 5463 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5464 * function requests EH to perform PM operations and returns.
5465 * Note that all resume operations are performed parallely.
5466 *
5467 * LOCKING:
5468 * Kernel thread context (may sleep).
5469 */
cca3974e 5470void ata_host_resume(struct ata_host *host)
500530f6 5471{
cca3974e
JG
5472 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5473 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5474 host->dev->power.power_state = PMSG_ON;
500530f6
TH
5475}
5476
c893a3ae
RD
5477/**
5478 * ata_port_start - Set port up for dma.
5479 * @ap: Port to initialize
5480 *
5481 * Called just after data structures for each port are
5482 * initialized. Allocates space for PRD table.
5483 *
5484 * May be used as the port_start() entry in ata_port_operations.
5485 *
5486 * LOCKING:
5487 * Inherited from caller.
5488 */
f0d36efd 5489int ata_port_start(struct ata_port *ap)
1da177e4 5490{
2f1f610b 5491 struct device *dev = ap->dev;
6037d6bb 5492 int rc;
1da177e4 5493
f0d36efd
TH
5494 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5495 GFP_KERNEL);
1da177e4
LT
5496 if (!ap->prd)
5497 return -ENOMEM;
5498
6037d6bb 5499 rc = ata_pad_alloc(ap, dev);
f0d36efd 5500 if (rc)
6037d6bb 5501 return rc;
1da177e4 5502
f0d36efd
TH
5503 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5504 (unsigned long long)ap->prd_dma);
1da177e4
LT
5505 return 0;
5506}
5507
0baab86b
EF
5508/**
5509 * ata_port_stop - Undo ata_port_start()
5510 * @ap: Port to shut down
5511 *
5512 * Frees the PRD table.
5513 *
5514 * May be used as the port_stop() entry in ata_port_operations.
5515 *
5516 * LOCKING:
6f0ef4fa 5517 * Inherited from caller.
0baab86b 5518 */
1da177e4
LT
5519void ata_port_stop (struct ata_port *ap)
5520{
2f1f610b 5521 struct device *dev = ap->dev;
1da177e4 5522
f0d36efd 5523 dmam_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5524 ata_pad_free(ap, dev);
1da177e4
LT
5525}
5526
cca3974e 5527void ata_host_stop (struct ata_host *host)
aa8f0dc6 5528{
cca3974e
JG
5529 if (host->mmio_base)
5530 iounmap(host->mmio_base);
aa8f0dc6
JG
5531}
5532
3ef3b43d
TH
5533/**
5534 * ata_dev_init - Initialize an ata_device structure
5535 * @dev: Device structure to initialize
5536 *
5537 * Initialize @dev in preparation for probing.
5538 *
5539 * LOCKING:
5540 * Inherited from caller.
5541 */
5542void ata_dev_init(struct ata_device *dev)
5543{
5544 struct ata_port *ap = dev->ap;
72fa4b74
TH
5545 unsigned long flags;
5546
5a04bf4b
TH
5547 /* SATA spd limit is bound to the first device */
5548 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5549
72fa4b74
TH
5550 /* High bits of dev->flags are used to record warm plug
5551 * requests which occur asynchronously. Synchronize using
cca3974e 5552 * host lock.
72fa4b74 5553 */
ba6a1308 5554 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5555 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5556 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5557
72fa4b74
TH
5558 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5559 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5560 dev->pio_mask = UINT_MAX;
5561 dev->mwdma_mask = UINT_MAX;
5562 dev->udma_mask = UINT_MAX;
5563}
5564
1da177e4 5565/**
155a8a9c 5566 * ata_port_init - Initialize an ata_port structure
1da177e4 5567 * @ap: Structure to initialize
cca3974e 5568 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5569 * @ent: Probe information provided by low-level driver
5570 * @port_no: Port number associated with this ata_port
5571 *
155a8a9c 5572 * Initialize a new ata_port structure.
0cba632b 5573 *
1da177e4 5574 * LOCKING:
0cba632b 5575 * Inherited from caller.
1da177e4 5576 */
cca3974e 5577void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5578 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5579{
5580 unsigned int i;
5581
cca3974e 5582 ap->lock = &host->lock;
198e0fed 5583 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5584 ap->id = ata_unique_id++;
1da177e4 5585 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5586 ap->host = host;
2f1f610b 5587 ap->dev = ent->dev;
1da177e4 5588 ap->port_no = port_no;
fea63e38
TH
5589 if (port_no == 1 && ent->pinfo2) {
5590 ap->pio_mask = ent->pinfo2->pio_mask;
5591 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5592 ap->udma_mask = ent->pinfo2->udma_mask;
5593 ap->flags |= ent->pinfo2->flags;
5594 ap->ops = ent->pinfo2->port_ops;
5595 } else {
5596 ap->pio_mask = ent->pio_mask;
5597 ap->mwdma_mask = ent->mwdma_mask;
5598 ap->udma_mask = ent->udma_mask;
5599 ap->flags |= ent->port_flags;
5600 ap->ops = ent->port_ops;
5601 }
5a04bf4b 5602 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5603 ap->active_tag = ATA_TAG_POISON;
5604 ap->last_ctl = 0xFF;
bd5d825c
BP
5605
5606#if defined(ATA_VERBOSE_DEBUG)
5607 /* turn on all debugging levels */
5608 ap->msg_enable = 0x00FF;
5609#elif defined(ATA_DEBUG)
5610 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5611#else
0dd4b21f 5612 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5613#endif
1da177e4 5614
65f27f38
DH
5615 INIT_DELAYED_WORK(&ap->port_task, NULL);
5616 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5617 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5618 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5619 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5620
838df628
TH
5621 /* set cable type */
5622 ap->cbl = ATA_CBL_NONE;
5623 if (ap->flags & ATA_FLAG_SATA)
5624 ap->cbl = ATA_CBL_SATA;
5625
acf356b1
TH
5626 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5627 struct ata_device *dev = &ap->device[i];
38d87234 5628 dev->ap = ap;
72fa4b74 5629 dev->devno = i;
3ef3b43d 5630 ata_dev_init(dev);
acf356b1 5631 }
1da177e4
LT
5632
5633#ifdef ATA_IRQ_TRAP
5634 ap->stats.unhandled_irq = 1;
5635 ap->stats.idle_irq = 1;
5636#endif
5637
5638 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5639}
5640
155a8a9c 5641/**
4608c160
TH
5642 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5643 * @ap: ATA port to initialize SCSI host for
5644 * @shost: SCSI host associated with @ap
155a8a9c 5645 *
4608c160 5646 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5647 *
5648 * LOCKING:
5649 * Inherited from caller.
5650 */
4608c160 5651static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5652{
cca3974e 5653 ap->scsi_host = shost;
155a8a9c 5654
4608c160
TH
5655 shost->unique_id = ap->id;
5656 shost->max_id = 16;
5657 shost->max_lun = 1;
5658 shost->max_channel = 1;
5659 shost->max_cmd_len = 12;
155a8a9c
BK
5660}
5661
1da177e4 5662/**
996139f1 5663 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5664 * @ent: Information provided by low-level driver
cca3974e 5665 * @host: Collections of ports to which we add
1da177e4
LT
5666 * @port_no: Port number associated with this host
5667 *
0cba632b
JG
5668 * Attach low-level ATA driver to system.
5669 *
1da177e4 5670 * LOCKING:
0cba632b 5671 * PCI/etc. bus probe sem.
1da177e4
LT
5672 *
5673 * RETURNS:
0cba632b 5674 * New ata_port on success, for NULL on error.
1da177e4 5675 */
996139f1 5676static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5677 struct ata_host *host,
1da177e4
LT
5678 unsigned int port_no)
5679{
996139f1 5680 struct Scsi_Host *shost;
1da177e4 5681 struct ata_port *ap;
1da177e4
LT
5682
5683 DPRINTK("ENTER\n");
aec5c3c1 5684
52783c5d 5685 if (!ent->port_ops->error_handler &&
cca3974e 5686 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5687 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5688 port_no);
5689 return NULL;
5690 }
5691
996139f1
JG
5692 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5693 if (!shost)
1da177e4
LT
5694 return NULL;
5695
996139f1 5696 shost->transportt = &ata_scsi_transport_template;
30afc84c 5697
996139f1 5698 ap = ata_shost_to_port(shost);
1da177e4 5699
cca3974e 5700 ata_port_init(ap, host, ent, port_no);
996139f1 5701 ata_port_init_shost(ap, shost);
1da177e4 5702
1da177e4 5703 return ap;
1da177e4
LT
5704}
5705
f0d36efd
TH
5706static void ata_host_release(struct device *gendev, void *res)
5707{
5708 struct ata_host *host = dev_get_drvdata(gendev);
5709 int i;
5710
5711 for (i = 0; i < host->n_ports; i++) {
5712 struct ata_port *ap = host->ports[i];
5713
5714 if (!ap)
5715 continue;
5716
5717 if (ap->ops->port_stop)
5718 ap->ops->port_stop(ap);
5719
5720 scsi_host_put(ap->scsi_host);
5721 }
5722
5723 if (host->ops->host_stop)
5724 host->ops->host_stop(host);
5725}
5726
b03732f0 5727/**
cca3974e
JG
5728 * ata_sas_host_init - Initialize a host struct
5729 * @host: host to initialize
5730 * @dev: device host is attached to
5731 * @flags: host flags
5732 * @ops: port_ops
b03732f0
BK
5733 *
5734 * LOCKING:
5735 * PCI/etc. bus probe sem.
5736 *
5737 */
5738
cca3974e
JG
5739void ata_host_init(struct ata_host *host, struct device *dev,
5740 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5741{
cca3974e
JG
5742 spin_lock_init(&host->lock);
5743 host->dev = dev;
5744 host->flags = flags;
5745 host->ops = ops;
b03732f0
BK
5746}
5747
1da177e4 5748/**
0cba632b
JG
5749 * ata_device_add - Register hardware device with ATA and SCSI layers
5750 * @ent: Probe information describing hardware device to be registered
5751 *
5752 * This function processes the information provided in the probe
5753 * information struct @ent, allocates the necessary ATA and SCSI
5754 * host information structures, initializes them, and registers
5755 * everything with requisite kernel subsystems.
5756 *
5757 * This function requests irqs, probes the ATA bus, and probes
5758 * the SCSI bus.
1da177e4
LT
5759 *
5760 * LOCKING:
0cba632b 5761 * PCI/etc. bus probe sem.
1da177e4
LT
5762 *
5763 * RETURNS:
0cba632b 5764 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5765 */
057ace5e 5766int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5767{
6d0500df 5768 unsigned int i;
1da177e4 5769 struct device *dev = ent->dev;
cca3974e 5770 struct ata_host *host;
39b07ce6 5771 int rc;
1da177e4
LT
5772
5773 DPRINTK("ENTER\n");
f20b16ff 5774
02f076aa
AC
5775 if (ent->irq == 0) {
5776 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5777 return 0;
5778 }
f0d36efd
TH
5779
5780 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5781 return 0;
5782
1da177e4 5783 /* alloc a container for our list of ATA ports (buses) */
f0d36efd
TH
5784 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5785 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
cca3974e 5786 if (!host)
f0d36efd
TH
5787 goto err_out;
5788 devres_add(dev, host);
5789 dev_set_drvdata(dev, host);
1da177e4 5790
cca3974e
JG
5791 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5792 host->n_ports = ent->n_ports;
5793 host->irq = ent->irq;
5794 host->irq2 = ent->irq2;
5795 host->mmio_base = ent->mmio_base;
5796 host->private_data = ent->private_data;
1da177e4
LT
5797
5798 /* register each port bound to this device */
cca3974e 5799 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5800 struct ata_port *ap;
5801 unsigned long xfer_mode_mask;
2ec7df04 5802 int irq_line = ent->irq;
1da177e4 5803
cca3974e 5804 ap = ata_port_add(ent, host, i);
c38778c3 5805 host->ports[i] = ap;
1da177e4
LT
5806 if (!ap)
5807 goto err_out;
5808
dd5b06c4
TH
5809 /* dummy? */
5810 if (ent->dummy_port_mask & (1 << i)) {
5811 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5812 ap->ops = &ata_dummy_port_ops;
5813 continue;
5814 }
5815
5816 /* start port */
5817 rc = ap->ops->port_start(ap);
5818 if (rc) {
cca3974e
JG
5819 host->ports[i] = NULL;
5820 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5821 goto err_out;
5822 }
5823
2ec7df04
AC
5824 /* Report the secondary IRQ for second channel legacy */
5825 if (i == 1 && ent->irq2)
5826 irq_line = ent->irq2;
5827
1da177e4
LT
5828 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5829 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5830 (ap->pio_mask << ATA_SHIFT_PIO);
5831
5832 /* print per-port info to dmesg */
f15a1daf 5833 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
2ec7df04 5834 "ctl 0x%lX bmdma 0x%lX irq %d\n",
f15a1daf
TH
5835 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5836 ata_mode_string(xfer_mode_mask),
5837 ap->ioaddr.cmd_addr,
5838 ap->ioaddr.ctl_addr,
5839 ap->ioaddr.bmdma_addr,
2ec7df04 5840 irq_line);
1da177e4 5841
0f0a3ad3
TH
5842 /* freeze port before requesting IRQ */
5843 ata_eh_freeze_port(ap);
1da177e4
LT
5844 }
5845
2ec7df04 5846 /* obtain irq, that may be shared between channels */
f0d36efd
TH
5847 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5848 ent->irq_flags, DRV_NAME, host);
39b07ce6
JG
5849 if (rc) {
5850 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5851 ent->irq, rc);
1da177e4 5852 goto err_out;
39b07ce6 5853 }
1da177e4 5854
2ec7df04
AC
5855 /* do we have a second IRQ for the other channel, eg legacy mode */
5856 if (ent->irq2) {
5857 /* We will get weird core code crashes later if this is true
5858 so trap it now */
5859 BUG_ON(ent->irq == ent->irq2);
5860
f0d36efd
TH
5861 rc = devm_request_irq(dev, ent->irq2,
5862 ent->port_ops->irq_handler, ent->irq_flags,
5863 DRV_NAME, host);
2ec7df04
AC
5864 if (rc) {
5865 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5866 ent->irq2, rc);
f0d36efd 5867 goto err_out;
2ec7df04
AC
5868 }
5869 }
5870
f0d36efd
TH
5871 /* resource acquisition complete */
5872 devres_close_group(dev, ata_device_add);
5873
1da177e4
LT
5874 /* perform each probe synchronously */
5875 DPRINTK("probe begin\n");
cca3974e
JG
5876 for (i = 0; i < host->n_ports; i++) {
5877 struct ata_port *ap = host->ports[i];
5a04bf4b 5878 u32 scontrol;
1da177e4
LT
5879 int rc;
5880
5a04bf4b
TH
5881 /* init sata_spd_limit to the current value */
5882 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5883 int spd = (scontrol >> 4) & 0xf;
5884 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5885 }
5886 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5887
cca3974e 5888 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5889 if (rc) {
f15a1daf 5890 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5891 /* FIXME: do something useful here */
5892 /* FIXME: handle unconditional calls to
5893 * scsi_scan_host and ata_host_remove, below,
5894 * at the very least
5895 */
5896 }
3e706399 5897
52783c5d 5898 if (ap->ops->error_handler) {
1cdaf534 5899 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5900 unsigned long flags;
5901
5902 ata_port_probe(ap);
5903
5904 /* kick EH for boot probing */
ba6a1308 5905 spin_lock_irqsave(ap->lock, flags);
3e706399 5906
1cdaf534
TH
5907 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5908 ehi->action |= ATA_EH_SOFTRESET;
5909 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5910
b51e9e5d 5911 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5912 ata_port_schedule_eh(ap);
5913
ba6a1308 5914 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5915
5916 /* wait for EH to finish */
5917 ata_port_wait_eh(ap);
5918 } else {
5919 DPRINTK("ata%u: bus probe begin\n", ap->id);
5920 rc = ata_bus_probe(ap);
5921 DPRINTK("ata%u: bus probe end\n", ap->id);
5922
5923 if (rc) {
5924 /* FIXME: do something useful here?
5925 * Current libata behavior will
5926 * tear down everything when
5927 * the module is removed
5928 * or the h/w is unplugged.
5929 */
5930 }
5931 }
1da177e4
LT
5932 }
5933
5934 /* probes are done, now scan each port's disk(s) */
c893a3ae 5935 DPRINTK("host probe begin\n");
cca3974e
JG
5936 for (i = 0; i < host->n_ports; i++) {
5937 struct ata_port *ap = host->ports[i];
1da177e4 5938
644dd0cc 5939 ata_scsi_scan_host(ap);
1da177e4
LT
5940 }
5941
1da177e4
LT
5942 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5943 return ent->n_ports; /* success */
5944
f0d36efd
TH
5945 err_out:
5946 devres_release_group(dev, ata_device_add);
5947 dev_set_drvdata(dev, NULL);
5948 VPRINTK("EXIT, returning %d\n", rc);
1da177e4
LT
5949 return 0;
5950}
5951
720ba126
TH
5952/**
5953 * ata_port_detach - Detach ATA port in prepration of device removal
5954 * @ap: ATA port to be detached
5955 *
5956 * Detach all ATA devices and the associated SCSI devices of @ap;
5957 * then, remove the associated SCSI host. @ap is guaranteed to
5958 * be quiescent on return from this function.
5959 *
5960 * LOCKING:
5961 * Kernel thread context (may sleep).
5962 */
5963void ata_port_detach(struct ata_port *ap)
5964{
5965 unsigned long flags;
5966 int i;
5967
5968 if (!ap->ops->error_handler)
c3cf30a9 5969 goto skip_eh;
720ba126
TH
5970
5971 /* tell EH we're leaving & flush EH */
ba6a1308 5972 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5973 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5974 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5975
5976 ata_port_wait_eh(ap);
5977
5978 /* EH is now guaranteed to see UNLOADING, so no new device
5979 * will be attached. Disable all existing devices.
5980 */
ba6a1308 5981 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5982
5983 for (i = 0; i < ATA_MAX_DEVICES; i++)
5984 ata_dev_disable(&ap->device[i]);
5985
ba6a1308 5986 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5987
5988 /* Final freeze & EH. All in-flight commands are aborted. EH
5989 * will be skipped and retrials will be terminated with bad
5990 * target.
5991 */
ba6a1308 5992 spin_lock_irqsave(ap->lock, flags);
720ba126 5993 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5994 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5995
5996 ata_port_wait_eh(ap);
5997
5998 /* Flush hotplug task. The sequence is similar to
5999 * ata_port_flush_task().
6000 */
6001 flush_workqueue(ata_aux_wq);
6002 cancel_delayed_work(&ap->hotplug_task);
6003 flush_workqueue(ata_aux_wq);
6004
c3cf30a9 6005 skip_eh:
720ba126 6006 /* remove the associated SCSI host */
cca3974e 6007 scsi_remove_host(ap->scsi_host);
720ba126
TH
6008}
6009
0529c159
TH
6010/**
6011 * ata_host_detach - Detach all ports of an ATA host
6012 * @host: Host to detach
6013 *
6014 * Detach all ports of @host.
6015 *
6016 * LOCKING:
6017 * Kernel thread context (may sleep).
6018 */
6019void ata_host_detach(struct ata_host *host)
6020{
6021 int i;
6022
6023 for (i = 0; i < host->n_ports; i++)
6024 ata_port_detach(host->ports[i]);
6025}
6026
17b14451 6027/**
cca3974e
JG
6028 * ata_host_remove - PCI layer callback for device removal
6029 * @host: ATA host set that was removed
17b14451 6030 *
2e9edbf8 6031 * Unregister all objects associated with this host set. Free those
17b14451
AC
6032 * objects.
6033 *
6034 * LOCKING:
6035 * Inherited from calling layer (may sleep).
6036 */
cca3974e 6037void ata_host_remove(struct ata_host *host)
17b14451 6038{
0529c159 6039 ata_host_detach(host);
f0d36efd 6040 devres_release_group(host->dev, ata_device_add);
1da177e4
LT
6041}
6042
f6d950e2
BK
6043struct ata_probe_ent *
6044ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6045{
6046 struct ata_probe_ent *probe_ent;
6047
f0d36efd
TH
6048 /* XXX - the following if can go away once all LLDs are managed */
6049 if (!list_empty(&dev->devres_head))
6050 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
6051 else
6052 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
f6d950e2
BK
6053 if (!probe_ent) {
6054 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6055 kobject_name(&(dev->kobj)));
6056 return NULL;
6057 }
6058
6059 INIT_LIST_HEAD(&probe_ent->node);
6060 probe_ent->dev = dev;
6061
6062 probe_ent->sht = port->sht;
cca3974e 6063 probe_ent->port_flags = port->flags;
f6d950e2
BK
6064 probe_ent->pio_mask = port->pio_mask;
6065 probe_ent->mwdma_mask = port->mwdma_mask;
6066 probe_ent->udma_mask = port->udma_mask;
6067 probe_ent->port_ops = port->port_ops;
d639ca94 6068 probe_ent->private_data = port->private_data;
f6d950e2
BK
6069
6070 return probe_ent;
6071}
6072
1da177e4
LT
6073/**
6074 * ata_std_ports - initialize ioaddr with standard port offsets.
6075 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6076 *
6077 * Utility function which initializes data_addr, error_addr,
6078 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6079 * device_addr, status_addr, and command_addr to standard offsets
6080 * relative to cmd_addr.
6081 *
6082 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6083 */
0baab86b 6084
1da177e4
LT
6085void ata_std_ports(struct ata_ioports *ioaddr)
6086{
6087 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6088 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6089 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6090 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6091 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6092 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6093 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6094 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6095 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6096 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6097}
6098
0baab86b 6099
374b1873
JG
6100#ifdef CONFIG_PCI
6101
cca3974e 6102void ata_pci_host_stop (struct ata_host *host)
374b1873 6103{
cca3974e 6104 struct pci_dev *pdev = to_pci_dev(host->dev);
374b1873 6105
f0d36efd
TH
6106 /* XXX - the following if can go away once all LLDs are managed */
6107 if (!list_empty(&host->dev->devres_head))
6108 pcim_iounmap(pdev, host->mmio_base);
6109 else
6110 pci_iounmap(pdev, host->mmio_base);
374b1873
JG
6111}
6112
1da177e4
LT
6113/**
6114 * ata_pci_remove_one - PCI layer callback for device removal
6115 * @pdev: PCI device that was removed
6116 *
6117 * PCI layer indicates to libata via this hook that
6f0ef4fa 6118 * hot-unplug or module unload event has occurred.
1da177e4
LT
6119 * Handle this by unregistering all objects associated
6120 * with this PCI device. Free those objects. Then finally
6121 * release PCI resources and disable device.
6122 *
6123 * LOCKING:
6124 * Inherited from PCI layer (may sleep).
6125 */
f0d36efd 6126void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6127{
6128 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6129 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6130
f0d36efd
TH
6131 /* XXX - the following if can go away once all LLDs are managed */
6132 if (!list_empty(&host->dev->devres_head)) {
6133 ata_host_remove(host);
6134 pci_release_regions(pdev);
6135 pci_disable_device(pdev);
6136 dev_set_drvdata(dev, NULL);
6137 } else
6138 ata_host_detach(host);
1da177e4
LT
6139}
6140
6141/* move to PCI subsystem */
057ace5e 6142int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6143{
6144 unsigned long tmp = 0;
6145
6146 switch (bits->width) {
6147 case 1: {
6148 u8 tmp8 = 0;
6149 pci_read_config_byte(pdev, bits->reg, &tmp8);
6150 tmp = tmp8;
6151 break;
6152 }
6153 case 2: {
6154 u16 tmp16 = 0;
6155 pci_read_config_word(pdev, bits->reg, &tmp16);
6156 tmp = tmp16;
6157 break;
6158 }
6159 case 4: {
6160 u32 tmp32 = 0;
6161 pci_read_config_dword(pdev, bits->reg, &tmp32);
6162 tmp = tmp32;
6163 break;
6164 }
6165
6166 default:
6167 return -EINVAL;
6168 }
6169
6170 tmp &= bits->mask;
6171
6172 return (tmp == bits->val) ? 1 : 0;
6173}
9b847548 6174
3c5100c1 6175void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6176{
6177 pci_save_state(pdev);
500530f6 6178
3c5100c1 6179 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
6180 pci_disable_device(pdev);
6181 pci_set_power_state(pdev, PCI_D3hot);
6182 }
9b847548
JA
6183}
6184
553c4aa6 6185int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6186{
553c4aa6
TH
6187 int rc;
6188
9b847548
JA
6189 pci_set_power_state(pdev, PCI_D0);
6190 pci_restore_state(pdev);
553c4aa6 6191
f0d36efd
TH
6192 /* XXX - the following if can go away once all LLDs are managed */
6193 if (!list_empty(&pdev->dev.devres_head))
6194 rc = pcim_enable_device(pdev);
6195 else
6196 rc = pci_enable_device(pdev);
553c4aa6
TH
6197 if (rc) {
6198 dev_printk(KERN_ERR, &pdev->dev,
6199 "failed to enable device after resume (%d)\n", rc);
6200 return rc;
6201 }
6202
9b847548 6203 pci_set_master(pdev);
553c4aa6 6204 return 0;
500530f6
TH
6205}
6206
3c5100c1 6207int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6208{
cca3974e 6209 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6210 int rc = 0;
6211
cca3974e 6212 rc = ata_host_suspend(host, mesg);
500530f6
TH
6213 if (rc)
6214 return rc;
6215
3c5100c1 6216 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6217
6218 return 0;
6219}
6220
6221int ata_pci_device_resume(struct pci_dev *pdev)
6222{
cca3974e 6223 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6224 int rc;
500530f6 6225
553c4aa6
TH
6226 rc = ata_pci_device_do_resume(pdev);
6227 if (rc == 0)
6228 ata_host_resume(host);
6229 return rc;
9b847548 6230}
1da177e4
LT
6231#endif /* CONFIG_PCI */
6232
6233
1da177e4
LT
6234static int __init ata_init(void)
6235{
a8601e5f 6236 ata_probe_timeout *= HZ;
1da177e4
LT
6237 ata_wq = create_workqueue("ata");
6238 if (!ata_wq)
6239 return -ENOMEM;
6240
453b07ac
TH
6241 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6242 if (!ata_aux_wq) {
6243 destroy_workqueue(ata_wq);
6244 return -ENOMEM;
6245 }
6246
1da177e4
LT
6247 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6248 return 0;
6249}
6250
6251static void __exit ata_exit(void)
6252{
6253 destroy_workqueue(ata_wq);
453b07ac 6254 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6255}
6256
a4625085 6257subsys_initcall(ata_init);
1da177e4
LT
6258module_exit(ata_exit);
6259
67846b30 6260static unsigned long ratelimit_time;
34af946a 6261static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6262
6263int ata_ratelimit(void)
6264{
6265 int rc;
6266 unsigned long flags;
6267
6268 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6269
6270 if (time_after(jiffies, ratelimit_time)) {
6271 rc = 1;
6272 ratelimit_time = jiffies + (HZ/5);
6273 } else
6274 rc = 0;
6275
6276 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6277
6278 return rc;
6279}
6280
c22daff4
TH
6281/**
6282 * ata_wait_register - wait until register value changes
6283 * @reg: IO-mapped register
6284 * @mask: Mask to apply to read register value
6285 * @val: Wait condition
6286 * @interval_msec: polling interval in milliseconds
6287 * @timeout_msec: timeout in milliseconds
6288 *
6289 * Waiting for some bits of register to change is a common
6290 * operation for ATA controllers. This function reads 32bit LE
6291 * IO-mapped register @reg and tests for the following condition.
6292 *
6293 * (*@reg & mask) != val
6294 *
6295 * If the condition is met, it returns; otherwise, the process is
6296 * repeated after @interval_msec until timeout.
6297 *
6298 * LOCKING:
6299 * Kernel thread context (may sleep)
6300 *
6301 * RETURNS:
6302 * The final register value.
6303 */
6304u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6305 unsigned long interval_msec,
6306 unsigned long timeout_msec)
6307{
6308 unsigned long timeout;
6309 u32 tmp;
6310
6311 tmp = ioread32(reg);
6312
6313 /* Calculate timeout _after_ the first read to make sure
6314 * preceding writes reach the controller before starting to
6315 * eat away the timeout.
6316 */
6317 timeout = jiffies + (timeout_msec * HZ) / 1000;
6318
6319 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6320 msleep(interval_msec);
6321 tmp = ioread32(reg);
6322 }
6323
6324 return tmp;
6325}
6326
dd5b06c4
TH
6327/*
6328 * Dummy port_ops
6329 */
6330static void ata_dummy_noret(struct ata_port *ap) { }
6331static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6332static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6333
6334static u8 ata_dummy_check_status(struct ata_port *ap)
6335{
6336 return ATA_DRDY;
6337}
6338
6339static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6340{
6341 return AC_ERR_SYSTEM;
6342}
6343
6344const struct ata_port_operations ata_dummy_port_ops = {
6345 .port_disable = ata_port_disable,
6346 .check_status = ata_dummy_check_status,
6347 .check_altstatus = ata_dummy_check_status,
6348 .dev_select = ata_noop_dev_select,
6349 .qc_prep = ata_noop_qc_prep,
6350 .qc_issue = ata_dummy_qc_issue,
6351 .freeze = ata_dummy_noret,
6352 .thaw = ata_dummy_noret,
6353 .error_handler = ata_dummy_noret,
6354 .post_internal_cmd = ata_dummy_qc_noret,
6355 .irq_clear = ata_dummy_noret,
6356 .port_start = ata_dummy_ret0,
6357 .port_stop = ata_dummy_noret,
6358};
6359
1da177e4
LT
6360/*
6361 * libata is essentially a library of internal helper functions for
6362 * low-level ATA host controller drivers. As such, the API/ABI is
6363 * likely to change as new drivers are added and updated.
6364 * Do not depend on ABI/API stability.
6365 */
6366
e9c83914
TH
6367EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6368EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6369EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6370EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6371EXPORT_SYMBOL_GPL(ata_std_bios_param);
6372EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6373EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6374EXPORT_SYMBOL_GPL(ata_device_add);
0529c159 6375EXPORT_SYMBOL_GPL(ata_host_detach);
cca3974e 6376EXPORT_SYMBOL_GPL(ata_host_remove);
1da177e4
LT
6377EXPORT_SYMBOL_GPL(ata_sg_init);
6378EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6379EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6380EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6381EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6382EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6383EXPORT_SYMBOL_GPL(ata_tf_load);
6384EXPORT_SYMBOL_GPL(ata_tf_read);
6385EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6386EXPORT_SYMBOL_GPL(ata_std_dev_select);
6387EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6388EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6389EXPORT_SYMBOL_GPL(ata_check_status);
6390EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6391EXPORT_SYMBOL_GPL(ata_exec_command);
6392EXPORT_SYMBOL_GPL(ata_port_start);
6393EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 6394EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 6395EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
6396EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6397EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 6398EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 6399EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6400EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6401EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6402EXPORT_SYMBOL_GPL(ata_bmdma_start);
6403EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6404EXPORT_SYMBOL_GPL(ata_bmdma_status);
6405EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6406EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6407EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6408EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6409EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6410EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6411EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 6412EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6413EXPORT_SYMBOL_GPL(sata_phy_debounce);
6414EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6415EXPORT_SYMBOL_GPL(sata_phy_reset);
6416EXPORT_SYMBOL_GPL(__sata_phy_reset);
6417EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6418EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6419EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6420EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6421EXPORT_SYMBOL_GPL(sata_std_hardreset);
6422EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6423EXPORT_SYMBOL_GPL(ata_dev_classify);
6424EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6425EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6426EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6427EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6428EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6429EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6430EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6431EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6432EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6433EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6434EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6435EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6436EXPORT_SYMBOL_GPL(sata_scr_valid);
6437EXPORT_SYMBOL_GPL(sata_scr_read);
6438EXPORT_SYMBOL_GPL(sata_scr_write);
6439EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6440EXPORT_SYMBOL_GPL(ata_port_online);
6441EXPORT_SYMBOL_GPL(ata_port_offline);
cca3974e
JG
6442EXPORT_SYMBOL_GPL(ata_host_suspend);
6443EXPORT_SYMBOL_GPL(ata_host_resume);
6a62a04d
TH
6444EXPORT_SYMBOL_GPL(ata_id_string);
6445EXPORT_SYMBOL_GPL(ata_id_c_string);
6919a0a6 6446EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6447EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6448
1bc4ccff 6449EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6450EXPORT_SYMBOL_GPL(ata_timing_compute);
6451EXPORT_SYMBOL_GPL(ata_timing_merge);
6452
1da177e4
LT
6453#ifdef CONFIG_PCI
6454EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 6455EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
6456EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6457EXPORT_SYMBOL_GPL(ata_pci_init_one);
6458EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6459EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6460EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6461EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6462EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6463EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6464EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6465#endif /* CONFIG_PCI */
9b847548 6466
9b847548
JA
6467EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6468EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6469
ece1d636 6470EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6471EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6472EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6473EXPORT_SYMBOL_GPL(ata_port_freeze);
6474EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6475EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6476EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6477EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6478EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 1.418593 seconds and 5 git commands to generate.