Merge branches 'pm-core', 'pm-clk', 'pm-domains' and 'pm-pci'
[deliverable/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / ppatomctrl.c
CommitLineData
c82baa28 1/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/fb.h>
26
27#include "ppatomctrl.h"
28#include "atombios.h"
29#include "cgs_common.h"
30#include "pp_debug.h"
3ec2cdb8
EH
31#include "ppevvmath.h"
32
c82baa28 33#define MEM_ID_MASK 0xff000000
34#define MEM_ID_SHIFT 24
35#define CLOCK_RANGE_MASK 0x00ffffff
36#define CLOCK_RANGE_SHIFT 0
37#define LOW_NIBBLE_MASK 0xf
38#define DATA_EQU_PREV 0
39#define DATA_FROM_TABLE 4
40
41union voltage_object_info {
42 struct _ATOM_VOLTAGE_OBJECT_INFO v1;
43 struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
44 struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
45};
46
47static int atomctrl_retrieve_ac_timing(
48 uint8_t index,
49 ATOM_INIT_REG_BLOCK *reg_block,
50 pp_atomctrl_mc_reg_table *table)
51{
52 uint32_t i, j;
53 uint8_t tmem_id;
54 ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
55 ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
56
57 uint8_t num_ranges = 0;
58
59 while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
60 num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
61 tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
62
63 if (index == tmem_id) {
64 table->mc_reg_table_entry[num_ranges].mclk_max =
65 (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
66 CLOCK_RANGE_SHIFT);
67
68 for (i = 0, j = 1; i < table->last; i++) {
69 if ((table->mc_reg_address[i].uc_pre_reg_data &
70 LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
71 table->mc_reg_table_entry[num_ranges].mc_data[i] =
72 (uint32_t)*((uint32_t *)reg_data + j);
73 j++;
74 } else if ((table->mc_reg_address[i].uc_pre_reg_data &
75 LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
76 table->mc_reg_table_entry[num_ranges].mc_data[i] =
77 table->mc_reg_table_entry[num_ranges].mc_data[i-1];
78 }
79 }
80 num_ranges++;
81 }
82
83 reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
84 ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
85 }
86
87 PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
88 "Invalid VramInfo table.", return -1);
89 table->num_entries = num_ranges;
90
91 return 0;
92}
93
94/**
95 * Get memory clock AC timing registers index from VBIOS table
96 * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
97 * @param reg_block the address ATOM_INIT_REG_BLOCK
98 * @param table the address of MCRegTable
3ec2cdb8 99 * @return 0
c82baa28 100 */
101static int atomctrl_set_mc_reg_address_table(
102 ATOM_INIT_REG_BLOCK *reg_block,
103 pp_atomctrl_mc_reg_table *table)
104{
105 uint8_t i = 0;
106 uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
107 / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
108 ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
109
110 num_entries--; /* subtract 1 data end mark entry */
111
112 PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
113 "Invalid VramInfo table.", return -1);
114
115 /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
116 while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
117 (i < num_entries)) {
118 table->mc_reg_address[i].s1 =
119 (uint16_t)(le16_to_cpu(format->usRegIndex));
120 table->mc_reg_address[i].uc_pre_reg_data =
121 format->ucPreRegDataLength;
122
123 i++;
124 format = (ATOM_INIT_REG_INDEX_FORMAT *)
125 ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
126 }
127
128 table->last = i;
129 return 0;
130}
131
132
133int atomctrl_initialize_mc_reg_table(
134 struct pp_hwmgr *hwmgr,
135 uint8_t module_index,
136 pp_atomctrl_mc_reg_table *table)
137{
138 ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
139 ATOM_INIT_REG_BLOCK *reg_block;
140 int result = 0;
141 u8 frev, crev;
142 u16 size;
143
144 vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
145 cgs_atom_get_data_table(hwmgr->device,
146 GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
147
148 if (module_index >= vram_info->ucNumOfVRAMModule) {
149 printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
150 result = -1;
151 } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
152 printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
153 result = -1;
154 }
155
156 if (0 == result) {
157 reg_block = (ATOM_INIT_REG_BLOCK *)
158 ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
159 result = atomctrl_set_mc_reg_address_table(reg_block, table);
160 }
161
162 if (0 == result) {
163 result = atomctrl_retrieve_ac_timing(module_index,
164 reg_block, table);
165 }
166
167 return result;
168}
169
170/**
171 * Set DRAM timings based on engine clock and memory clock.
172 */
173int atomctrl_set_engine_dram_timings_rv770(
174 struct pp_hwmgr *hwmgr,
175 uint32_t engine_clock,
176 uint32_t memory_clock)
177{
178 SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
179
180 /* They are both in 10KHz Units. */
181 engine_clock_parameters.ulTargetEngineClock =
182 (uint32_t) engine_clock & SET_CLOCK_FREQ_MASK;
183 engine_clock_parameters.ulTargetEngineClock |=
184 (COMPUTE_ENGINE_PLL_PARAM << 24);
185
186 /* in 10 khz units.*/
187 engine_clock_parameters.sReserved.ulClock =
188 (uint32_t) memory_clock & SET_CLOCK_FREQ_MASK;
189 return cgs_atom_exec_cmd_table(hwmgr->device,
190 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
191 &engine_clock_parameters);
192}
193
194/**
195 * Private Function to get the PowerPlay Table Address.
196 * WARNING: The tabled returned by this function is in
197 * dynamically allocated memory.
198 * The caller has to release if by calling kfree.
199 */
200static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
201{
202 int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
203 u8 frev, crev;
204 u16 size;
205 union voltage_object_info *voltage_info;
206
207 voltage_info = (union voltage_object_info *)
208 cgs_atom_get_data_table(device, index,
209 &size, &frev, &crev);
210
211 if (voltage_info != NULL)
212 return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
213 else
214 return NULL;
215}
216
217static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
218 const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
219 uint8_t voltage_type, uint8_t voltage_mode)
220{
221 unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
222 unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
223 uint8_t *start = (uint8_t *)voltage_object_info_table;
224
225 while (offset < size) {
226 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
227 (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
228
229 if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
230 voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
231 return voltage_object;
232
233 offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
234 }
235
236 return NULL;
237}
238
239/** atomctrl_get_memory_pll_dividers_si().
240 *
241 * @param hwmgr input parameter: pointer to HwMgr
242 * @param clock_value input parameter: memory clock
243 * @param dividers output parameter: memory PLL dividers
244 * @param strobe_mode input parameter: 1 for strobe mode, 0 for performance mode
245 */
246int atomctrl_get_memory_pll_dividers_si(
247 struct pp_hwmgr *hwmgr,
248 uint32_t clock_value,
249 pp_atomctrl_memory_clock_param *mpll_param,
250 bool strobe_mode)
251{
252 COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
253 int result;
254
255 mpll_parameters.ulClock = (uint32_t) clock_value;
256 mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
257
258 result = cgs_atom_exec_cmd_table
259 (hwmgr->device,
260 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
261 &mpll_parameters);
262
263 if (0 == result) {
264 mpll_param->mpll_fb_divider.clk_frac =
265 mpll_parameters.ulFbDiv.usFbDivFrac;
266 mpll_param->mpll_fb_divider.cl_kf =
267 mpll_parameters.ulFbDiv.usFbDiv;
268 mpll_param->mpll_post_divider =
269 (uint32_t)mpll_parameters.ucPostDiv;
270 mpll_param->vco_mode =
271 (uint32_t)(mpll_parameters.ucPllCntlFlag &
272 MPLL_CNTL_FLAG_VCO_MODE_MASK);
273 mpll_param->yclk_sel =
274 (uint32_t)((mpll_parameters.ucPllCntlFlag &
275 MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
276 mpll_param->qdr =
277 (uint32_t)((mpll_parameters.ucPllCntlFlag &
278 MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
279 mpll_param->half_rate =
280 (uint32_t)((mpll_parameters.ucPllCntlFlag &
281 MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
282 mpll_param->dll_speed =
283 (uint32_t)(mpll_parameters.ucDllSpeed);
284 mpll_param->bw_ctrl =
285 (uint32_t)(mpll_parameters.ucBWCntl);
286 }
287
288 return result;
289}
290
3ec2cdb8
EH
291/** atomctrl_get_memory_pll_dividers_vi().
292 *
293 * @param hwmgr input parameter: pointer to HwMgr
294 * @param clock_value input parameter: memory clock
295 * @param dividers output parameter: memory PLL dividers
296 */
297int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
298 uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
299{
300 COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
301 int result;
302
303 mpll_parameters.ulClock.ulClock = (uint32_t)clock_value;
304
305 result = cgs_atom_exec_cmd_table(hwmgr->device,
306 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
307 &mpll_parameters);
308
309 if (!result)
310 mpll_param->mpll_post_divider =
311 (uint32_t)mpll_parameters.ulClock.ucPostDiv;
312
313 return result;
314}
315
d39d5c2c
AD
316int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
317 uint32_t clock_value,
318 pp_atomctrl_clock_dividers_kong *dividers)
319{
320 COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
321 int result;
322
323 pll_parameters.ulClock = clock_value;
324
325 result = cgs_atom_exec_cmd_table
326 (hwmgr->device,
327 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
328 &pll_parameters);
329
330 if (0 == result) {
331 dividers->pll_post_divider = pll_parameters.ucPostDiv;
332 dividers->real_clock = pll_parameters.ulClock;
333 }
334
335 return result;
336}
337
c82baa28 338int atomctrl_get_engine_pll_dividers_vi(
339 struct pp_hwmgr *hwmgr,
340 uint32_t clock_value,
341 pp_atomctrl_clock_dividers_vi *dividers)
342{
343 COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
344 int result;
345
346 pll_patameters.ulClock.ulClock = clock_value;
347 pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
348
349 result = cgs_atom_exec_cmd_table
350 (hwmgr->device,
351 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
352 &pll_patameters);
353
354 if (0 == result) {
355 dividers->pll_post_divider =
356 pll_patameters.ulClock.ucPostDiv;
357 dividers->real_clock =
358 pll_patameters.ulClock.ulClock;
359
360 dividers->ul_fb_div.ul_fb_div_frac =
361 pll_patameters.ulFbDiv.usFbDivFrac;
362 dividers->ul_fb_div.ul_fb_div =
363 pll_patameters.ulFbDiv.usFbDiv;
364
365 dividers->uc_pll_ref_div =
366 pll_patameters.ucPllRefDiv;
367 dividers->uc_pll_post_div =
368 pll_patameters.ucPllPostDiv;
369 dividers->uc_pll_cntl_flag =
370 pll_patameters.ucPllCntlFlag;
371 }
372
373 return result;
374}
375
a23eefa2
RZ
376int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
377 uint32_t clock_value,
378 pp_atomctrl_clock_dividers_ai *dividers)
379{
380 COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
381 int result;
382
383 pll_patameters.ulClock.ulClock = clock_value;
384 pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
385
386 result = cgs_atom_exec_cmd_table
387 (hwmgr->device,
388 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
389 &pll_patameters);
390
391 if (0 == result) {
392 dividers->usSclk_fcw_frac = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
393 dividers->usSclk_fcw_int = le16_to_cpu(pll_patameters.usSclk_fcw_int);
394 dividers->ucSclkPostDiv = pll_patameters.ucSclkPostDiv;
395 dividers->ucSclkVcoMode = pll_patameters.ucSclkVcoMode;
396 dividers->ucSclkPllRange = pll_patameters.ucSclkPllRange;
397 dividers->ucSscEnable = pll_patameters.ucSscEnable;
398 dividers->usSsc_fcw1_frac = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
399 dividers->usSsc_fcw1_int = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
400 dividers->usPcc_fcw_int = le16_to_cpu(pll_patameters.usPcc_fcw_int);
401 dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
402 dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
403 }
404 return result;
405}
406
c82baa28 407int atomctrl_get_dfs_pll_dividers_vi(
408 struct pp_hwmgr *hwmgr,
409 uint32_t clock_value,
410 pp_atomctrl_clock_dividers_vi *dividers)
411{
412 COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
413 int result;
414
415 pll_patameters.ulClock.ulClock = clock_value;
416 pll_patameters.ulClock.ucPostDiv =
417 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
418
419 result = cgs_atom_exec_cmd_table
420 (hwmgr->device,
421 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
422 &pll_patameters);
423
424 if (0 == result) {
425 dividers->pll_post_divider =
426 pll_patameters.ulClock.ucPostDiv;
427 dividers->real_clock =
428 pll_patameters.ulClock.ulClock;
429
430 dividers->ul_fb_div.ul_fb_div_frac =
431 pll_patameters.ulFbDiv.usFbDivFrac;
432 dividers->ul_fb_div.ul_fb_div =
433 pll_patameters.ulFbDiv.usFbDiv;
434
435 dividers->uc_pll_ref_div =
436 pll_patameters.ucPllRefDiv;
437 dividers->uc_pll_post_div =
438 pll_patameters.ucPllPostDiv;
439 dividers->uc_pll_cntl_flag =
440 pll_patameters.ucPllCntlFlag;
441 }
442
443 return result;
444}
445
446/**
447 * Get the reference clock in 10KHz
448 */
449uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
450{
451 ATOM_FIRMWARE_INFO *fw_info;
452 u8 frev, crev;
453 u16 size;
454 uint32_t clock;
455
456 fw_info = (ATOM_FIRMWARE_INFO *)
457 cgs_atom_get_data_table(hwmgr->device,
458 GetIndexIntoMasterTable(DATA, FirmwareInfo),
459 &size, &frev, &crev);
460
461 if (fw_info == NULL)
462 clock = 2700;
463 else
464 clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
465
466 return clock;
467}
468
469/**
3ec2cdb8 470 * Returns true if the given voltage type is controlled by GPIO pins.
c82baa28 471 * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
472 * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
473 * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
474 */
475bool atomctrl_is_voltage_controled_by_gpio_v3(
476 struct pp_hwmgr *hwmgr,
477 uint8_t voltage_type,
478 uint8_t voltage_mode)
479{
480 ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
481 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
482 bool ret;
483
484 PP_ASSERT_WITH_CODE((NULL != voltage_info),
3ec2cdb8 485 "Could not find Voltage Table in BIOS.", return false;);
c82baa28 486
487 ret = (NULL != atomctrl_lookup_voltage_type_v3
3ec2cdb8 488 (voltage_info, voltage_type, voltage_mode)) ? true : false;
c82baa28 489
490 return ret;
491}
492
493int atomctrl_get_voltage_table_v3(
494 struct pp_hwmgr *hwmgr,
495 uint8_t voltage_type,
496 uint8_t voltage_mode,
497 pp_atomctrl_voltage_table *voltage_table)
498{
499 ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
500 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
501 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
502 unsigned int i;
503
504 PP_ASSERT_WITH_CODE((NULL != voltage_info),
505 "Could not find Voltage Table in BIOS.", return -1;);
506
507 voltage_object = atomctrl_lookup_voltage_type_v3
508 (voltage_info, voltage_type, voltage_mode);
509
510 if (voltage_object == NULL)
511 return -1;
512
513 PP_ASSERT_WITH_CODE(
514 (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
515 PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
516 "Too many voltage entries!",
517 return -1;
518 );
519
520 for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
521 voltage_table->entries[i].value =
522 voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue;
523 voltage_table->entries[i].smio_low =
524 voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId;
525 }
526
527 voltage_table->mask_low =
528 voltage_object->asGpioVoltageObj.ulGpioMaskVal;
529 voltage_table->count =
530 voltage_object->asGpioVoltageObj.ucGpioEntryNum;
531 voltage_table->phase_delay =
532 voltage_object->asGpioVoltageObj.ucPhaseDelay;
533
534 return 0;
535}
536
537static bool atomctrl_lookup_gpio_pin(
538 ATOM_GPIO_PIN_LUT * gpio_lookup_table,
539 const uint32_t pinId,
540 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
541{
542 unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
543 unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
544 uint8_t *start = (uint8_t *)gpio_lookup_table;
545
546 while (offset < size) {
547 const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
548 (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
549
550 if (pinId == pin_assignment->ucGPIO_ID) {
551 gpio_pin_assignment->uc_gpio_pin_bit_shift =
552 pin_assignment->ucGpioPinBitShift;
553 gpio_pin_assignment->us_gpio_pin_aindex =
554 le16_to_cpu(pin_assignment->usGpioPin_AIndex);
195567e9 555 return false;
c82baa28 556 }
557
558 offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
559 }
560
195567e9 561 return true;
c82baa28 562}
563
564/**
565 * Private Function to get the PowerPlay Table Address.
566 * WARNING: The tabled returned by this function is in
567 * dynamically allocated memory.
568 * The caller has to release if by calling kfree.
569 */
570static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
571{
572 u8 frev, crev;
573 u16 size;
574 void *table_address;
575
576 table_address = (ATOM_GPIO_PIN_LUT *)
577 cgs_atom_get_data_table(device,
578 GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
579 &size, &frev, &crev);
580
581 PP_ASSERT_WITH_CODE((NULL != table_address),
582 "Error retrieving BIOS Table Address!", return NULL;);
583
584 return (ATOM_GPIO_PIN_LUT *)table_address;
585}
586
587/**
588 * Returns 1 if the given pin id find in lookup table.
589 */
590bool atomctrl_get_pp_assign_pin(
591 struct pp_hwmgr *hwmgr,
592 const uint32_t pinId,
593 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
594{
595 bool bRet = 0;
596 ATOM_GPIO_PIN_LUT *gpio_lookup_table =
597 get_gpio_lookup_table(hwmgr->device);
598
599 PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
600 "Could not find GPIO lookup Table in BIOS.", return -1);
601
602 bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
603 gpio_pin_assignment);
604
605 return bRet;
606}
607
3ec2cdb8
EH
608int atomctrl_calculate_voltage_evv_on_sclk(
609 struct pp_hwmgr *hwmgr,
610 uint8_t voltage_type,
611 uint32_t sclk,
612 uint16_t virtual_voltage_Id,
613 uint16_t *voltage,
614 uint16_t dpm_level,
615 bool debug)
616{
617 ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
618
619 EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
620 EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
621 EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
622 EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
623 EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
624 EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
625 EFUSE_INPUT_PARAMETER sInput_FuseValues;
626 READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
627
628 uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
629 fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
630 fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
631 fInt fLkg_FT, repeat;
632 fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
633 fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
634 fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
635 fInt fSclk_margin, fSclk, fEVV_V;
636 fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
637 uint32_t ul_FT_Lkg_V0NORM;
638 fInt fLn_MaxDivMin, fMin, fAverage, fRange;
639 fInt fRoots[2];
640 fInt fStepSize = GetScaledFraction(625, 100000);
641
642 int result;
643
644 getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
645 cgs_atom_get_data_table(hwmgr->device,
646 GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
647 NULL, NULL, NULL);
648
649 if (!getASICProfilingInfo)
650 return -1;
651
a23eefa2 652 if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
3ec2cdb8
EH
653 (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
654 getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
655 return -1;
656
657 /*-----------------------------------------------------------
658 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
659 *-----------------------------------------------------------
660 */
661 fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
662
663 switch (dpm_level) {
664 case 1:
665 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm1);
666 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM1, 1000);
667 break;
668 case 2:
669 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm2);
670 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM2, 1000);
671 break;
672 case 3:
673 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm3);
674 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM3, 1000);
675 break;
676 case 4:
677 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm4);
678 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM4, 1000);
679 break;
680 case 5:
681 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm5);
682 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM5, 1000);
683 break;
684 case 6:
685 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm6);
686 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM6, 1000);
687 break;
688 case 7:
689 fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm7);
690 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM7, 1000);
691 break;
692 default:
693 printk(KERN_ERR "DPM Level not supported\n");
694 fPowerDPMx = Convert_ULONG_ToFraction(1);
695 fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM0, 1000);
696 }
697
698 /*-------------------------
699 * DECODING FUSE VALUES
700 * ------------------------
701 */
702 /*Decode RO_Fused*/
703 sRO_fuse = getASICProfilingInfo->sRoFuse;
704
705 sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
706 sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
707 sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
708
709 sOutput_FuseValues.sEfuse = sInput_FuseValues;
710
711 result = cgs_atom_exec_cmd_table(hwmgr->device,
712 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
713 &sOutput_FuseValues);
714
715 if (result)
716 return result;
717
718 /* Finally, the actual fuse value */
719 ul_RO_fused = sOutput_FuseValues.ulEfuseValue;
720 fMin = GetScaledFraction(sRO_fuse.ulEfuseMin, 1);
721 fRange = GetScaledFraction(sRO_fuse.ulEfuseEncodeRange, 1);
722 fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
723
724 sCACm_fuse = getASICProfilingInfo->sCACm;
725
726 sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
727 sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
728 sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
729
730 sOutput_FuseValues.sEfuse = sInput_FuseValues;
731
732 result = cgs_atom_exec_cmd_table(hwmgr->device,
733 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
734 &sOutput_FuseValues);
735
736 if (result)
737 return result;
738
739 ul_CACm_fused = sOutput_FuseValues.ulEfuseValue;
740 fMin = GetScaledFraction(sCACm_fuse.ulEfuseMin, 1000);
741 fRange = GetScaledFraction(sCACm_fuse.ulEfuseEncodeRange, 1000);
742
743 fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
744
745 sCACb_fuse = getASICProfilingInfo->sCACb;
746
747 sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
748 sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
749 sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
750 sOutput_FuseValues.sEfuse = sInput_FuseValues;
751
752 result = cgs_atom_exec_cmd_table(hwmgr->device,
753 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
754 &sOutput_FuseValues);
755
756 if (result)
757 return result;
758
759 ul_CACb_fused = sOutput_FuseValues.ulEfuseValue;
760 fMin = GetScaledFraction(sCACb_fuse.ulEfuseMin, 1000);
761 fRange = GetScaledFraction(sCACb_fuse.ulEfuseEncodeRange, 1000);
762
763 fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
764
765 sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
766
767 sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
768 sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
769 sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
770
771 sOutput_FuseValues.sEfuse = sInput_FuseValues;
772
773 result = cgs_atom_exec_cmd_table(hwmgr->device,
774 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
775 &sOutput_FuseValues);
776
777 if (result)
778 return result;
779
780 ul_Kt_Beta_fused = sOutput_FuseValues.ulEfuseValue;
781 fAverage = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeAverage, 1000);
782 fRange = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeRange, 1000);
783
784 fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
785 fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
786
787 sKv_m_fuse = getASICProfilingInfo->sKv_m;
788
789 sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
790 sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
791 sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
792
793 sOutput_FuseValues.sEfuse = sInput_FuseValues;
794
795 result = cgs_atom_exec_cmd_table(hwmgr->device,
796 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
797 &sOutput_FuseValues);
798 if (result)
799 return result;
800
801 ul_Kv_m_fused = sOutput_FuseValues.ulEfuseValue;
802 fAverage = GetScaledFraction(sKv_m_fuse.ulEfuseEncodeAverage, 1000);
803 fRange = GetScaledFraction((sKv_m_fuse.ulEfuseEncodeRange & 0x7fffffff), 1000);
804 fRange = fMultiply(fRange, ConvertToFraction(-1));
805
806 fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
807 fAverage, fRange, sKv_m_fuse.ucEfuseLength);
808
809 sKv_b_fuse = getASICProfilingInfo->sKv_b;
810
811 sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
812 sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
813 sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
814 sOutput_FuseValues.sEfuse = sInput_FuseValues;
815
816 result = cgs_atom_exec_cmd_table(hwmgr->device,
817 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
818 &sOutput_FuseValues);
819
820 if (result)
821 return result;
822
823 ul_Kv_b_fused = sOutput_FuseValues.ulEfuseValue;
824 fAverage = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeAverage, 1000);
825 fRange = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeRange, 1000);
826
827 fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
828 fAverage, fRange, sKv_b_fuse.ucEfuseLength);
829
830 /* Decoding the Leakage - No special struct container */
831 /*
832 * usLkgEuseIndex=56
833 * ucLkgEfuseBitLSB=6
834 * ucLkgEfuseLength=10
835 * ulLkgEncodeLn_MaxDivMin=69077
836 * ulLkgEncodeMax=1000000
837 * ulLkgEncodeMin=1000
838 * ulEfuseLogisticAlpha=13
839 */
840
841 sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
842 sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
843 sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
844
845 sOutput_FuseValues.sEfuse = sInput_FuseValues;
846
847 result = cgs_atom_exec_cmd_table(hwmgr->device,
848 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
849 &sOutput_FuseValues);
850
851 if (result)
852 return result;
853
854 ul_FT_Lkg_V0NORM = sOutput_FuseValues.ulEfuseValue;
855 fLn_MaxDivMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin, 10000);
856 fMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeMin, 10000);
857
858 fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
859 fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
860 fLkg_FT = fFT_Lkg_V0NORM;
861
862 /*-------------------------------------------
863 * PART 2 - Grabbing all required values
864 *-------------------------------------------
865 */
866 fSM_A0 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A0, 1000000),
867 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
868 fSM_A1 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A1, 1000000),
869 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
870 fSM_A2 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A2, 100000),
871 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
872 fSM_A3 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A3, 1000000),
873 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
874 fSM_A4 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A4, 1000000),
875 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
876 fSM_A5 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A5, 1000),
877 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
878 fSM_A6 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A6, 1000),
879 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
880 fSM_A7 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A7, 1000),
881 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
882
883 fMargin_RO_a = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_a);
884 fMargin_RO_b = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_b);
885 fMargin_RO_c = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_c);
886
887 fMargin_fixed = ConvertToFraction(getASICProfilingInfo->ulMargin_fixed);
888
889 fMargin_FMAX_mean = GetScaledFraction(
890 getASICProfilingInfo->ulMargin_Fmax_mean, 10000);
891 fMargin_Plat_mean = GetScaledFraction(
892 getASICProfilingInfo->ulMargin_plat_mean, 10000);
893 fMargin_FMAX_sigma = GetScaledFraction(
894 getASICProfilingInfo->ulMargin_Fmax_sigma, 10000);
895 fMargin_Plat_sigma = GetScaledFraction(
896 getASICProfilingInfo->ulMargin_plat_sigma, 10000);
897
898 fMargin_DC_sigma = GetScaledFraction(
899 getASICProfilingInfo->ulMargin_DC_sigma, 100);
900 fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
901
902 fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
903 fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
904 fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
905 fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
906 fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
907
908 fSclk = GetScaledFraction(sclk, 100);
909
910 fV_max = fDivide(GetScaledFraction(
911 getASICProfilingInfo->ulMaxVddc, 1000), ConvertToFraction(4));
912 fT_prod = GetScaledFraction(getASICProfilingInfo->ulBoardCoreTemp, 10);
913 fLKG_Factor = GetScaledFraction(getASICProfilingInfo->ulEvvLkgFactor, 100);
914 fT_FT = GetScaledFraction(getASICProfilingInfo->ulLeakageTemp, 10);
915 fV_FT = fDivide(GetScaledFraction(
916 getASICProfilingInfo->ulLeakageVoltage, 1000), ConvertToFraction(4));
917 fV_min = fDivide(GetScaledFraction(
918 getASICProfilingInfo->ulMinVddc, 1000), ConvertToFraction(4));
919
920 /*-----------------------
921 * PART 3
922 *-----------------------
923 */
924
a23eefa2 925 fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
3ec2cdb8
EH
926 fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
927 fC_Term = fAdd(fMargin_RO_c,
928 fAdd(fMultiply(fSM_A0,fLkg_FT),
a23eefa2 929 fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
3ec2cdb8 930 fAdd(fMultiply(fSM_A3, fSclk),
a23eefa2 931 fSubtract(fSM_A7, fRO_fused)))));
3ec2cdb8
EH
932
933 fVDDC_base = fSubtract(fRO_fused,
934 fSubtract(fMargin_RO_c,
935 fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
a23eefa2 936 fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
3ec2cdb8
EH
937
938 repeat = fSubtract(fVDDC_base,
939 fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
940
941 fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
942 fGetSquare(repeat)),
943 fAdd(fMultiply(fMargin_RO_b, repeat),
944 fMargin_RO_c));
945
946 fDC_SCLK = fSubtract(fRO_fused,
947 fSubtract(fRO_DC_margin,
948 fSubtract(fSM_A3,
949 fMultiply(fSM_A2, repeat))));
a23eefa2 950 fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
3ec2cdb8
EH
951
952 fSigma_DC = fSubtract(fSclk, fDC_SCLK);
953
954 fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
955 fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
956 fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
957 fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
958
959 fSquared_Sigma_DC = fGetSquare(fSigma_DC);
960 fSquared_Sigma_CR = fGetSquare(fSigma_CR);
961 fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
962
963 fSclk_margin = fAdd(fMicro_FMAX,
964 fAdd(fMicro_CR,
965 fAdd(fMargin_fixed,
966 fSqrt(fAdd(fSquared_Sigma_FMAX,
967 fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
968 /*
969 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
970 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
971 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
972 */
973
974 fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
975 fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
976 fC_Term = fAdd(fRO_DC_margin,
977 fAdd(fMultiply(fSM_A0, fLkg_FT),
978 fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
979 fAdd(fSclk, fSclk_margin)),
980 fAdd(fMultiply(fSM_A3,
981 fAdd(fSclk, fSclk_margin)),
982 fSubtract(fSM_A7, fRO_fused)))));
983
984 SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
985
986 if (GreaterThan(fRoots[0], fRoots[1]))
987 fEVV_V = fRoots[1];
988 else
989 fEVV_V = fRoots[0];
990
991 if (GreaterThan(fV_min, fEVV_V))
992 fEVV_V = fV_min;
993 else if (GreaterThan(fEVV_V, fV_max))
994 fEVV_V = fSubtract(fV_max, fStepSize);
995
996 fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
997
998 /*-----------------
999 * PART 4
1000 *-----------------
1001 */
1002
1003 fV_x = fV_min;
1004
1005 while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1006 fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1007 fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1008 fGetSquare(fV_x)), fDerateTDP);
1009
1010 fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1011 fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1012 fT_prod), fKv_b_fused), fV_x)), fV_x)));
1013 fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1014 fKt_Beta_fused, fT_prod)));
1015 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1016 fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1017 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1018 fKt_Beta_fused, fT_FT)));
1019
1020 fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1021
1022 fTDP_Current = fDivide(fTDP_Power, fV_x);
1023
1024 fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1025 ConvertToFraction(10)));
1026
1027 fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1028
1029 if (GreaterThan(fV_max, fV_NL) &&
a23eefa2 1030 (GreaterThan(fV_NL, fEVV_V) ||
3ec2cdb8
EH
1031 Equal(fV_NL, fEVV_V))) {
1032 fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1033
1034 *voltage = (uint16_t)fV_NL.partial.real;
1035 break;
1036 } else
1037 fV_x = fAdd(fV_x, fStepSize);
1038 }
1039
1040 return result;
1041}
1042
c82baa28 1043/** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
edf600da 1044 * @param hwmgr input: pointer to hwManager
c82baa28 1045 * @param voltage_type input: type of EVV voltage VDDC or VDDGFX
1046 * @param sclk input: in 10Khz unit. DPM state SCLK frequency
edf600da 1047 * which is define in PPTable SCLK/VDDC dependence
c82baa28 1048 * table associated with this virtual_voltage_Id
1049 * @param virtual_voltage_Id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1050 * @param voltage output: real voltage level in unit of mv
1051 */
1052int atomctrl_get_voltage_evv_on_sclk(
1053 struct pp_hwmgr *hwmgr,
1054 uint8_t voltage_type,
1055 uint32_t sclk, uint16_t virtual_voltage_Id,
1056 uint16_t *voltage)
1057{
1058 int result;
1059 GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1060
1061 get_voltage_info_param_space.ucVoltageType =
1062 voltage_type;
1063 get_voltage_info_param_space.ucVoltageMode =
1064 ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1065 get_voltage_info_param_space.usVoltageLevel =
1066 virtual_voltage_Id;
1067 get_voltage_info_param_space.ulSCLKFreq =
1068 sclk;
1069
1070 result = cgs_atom_exec_cmd_table(hwmgr->device,
1071 GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1072 &get_voltage_info_param_space);
1073
1074 if (0 != result)
1075 return result;
1076
1077 *voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1078 (&get_voltage_info_param_space))->usVoltageLevel;
1079
1080 return result;
1081}
1082
1083/**
1084 * Get the mpll reference clock in 10KHz
1085 */
1086uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1087{
1088 ATOM_COMMON_TABLE_HEADER *fw_info;
1089 uint32_t clock;
1090 u8 frev, crev;
1091 u16 size;
1092
1093 fw_info = (ATOM_COMMON_TABLE_HEADER *)
1094 cgs_atom_get_data_table(hwmgr->device,
1095 GetIndexIntoMasterTable(DATA, FirmwareInfo),
1096 &size, &frev, &crev);
1097
1098 if (fw_info == NULL)
1099 clock = 2700;
1100 else {
1101 if ((fw_info->ucTableFormatRevision == 2) &&
1102 (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1103 ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1104 (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1105 clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1106 } else {
1107 ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1108 (ATOM_FIRMWARE_INFO *)fw_info;
1109 clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1110 }
1111 }
1112
1113 return clock;
1114}
1115
1116/**
1117 * Get the asic internal spread spectrum table
1118 */
1119static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1120{
1121 ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1122 u8 frev, crev;
1123 u16 size;
1124
1125 table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1126 cgs_atom_get_data_table(device,
1127 GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1128 &size, &frev, &crev);
1129
1130 return table;
1131}
1132
1133/**
1134 * Get the asic internal spread spectrum assignment
1135 */
1136static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1137 const uint8_t clockSource,
1138 const uint32_t clockSpeed,
1139 pp_atomctrl_internal_ss_info *ssEntry)
1140{
1141 ATOM_ASIC_INTERNAL_SS_INFO *table;
1142 ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1143 int entry_found = 0;
1144
1145 memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1146
1147 table = asic_internal_ss_get_ss_table(hwmgr->device);
1148
1149 if (NULL == table)
1150 return -1;
1151
1152 ssInfo = &table->asSpreadSpectrum[0];
1153
1154 while (((uint8_t *)ssInfo - (uint8_t *)table) <
1155 le16_to_cpu(table->sHeader.usStructureSize)) {
1156 if ((clockSource == ssInfo->ucClockIndication) &&
1157 ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1158 entry_found = 1;
1159 break;
1160 }
1161
1162 ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1163 sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1164 }
1165
1166 if (entry_found) {
1167 ssEntry->speed_spectrum_percentage =
1168 ssInfo->usSpreadSpectrumPercentage;
1169 ssEntry->speed_spectrum_rate = ssInfo->usSpreadRateInKhz;
1170
1171 if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1172 (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1173 (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1174 ssEntry->speed_spectrum_rate /= 100;
1175 }
1176
1177 switch (ssInfo->ucSpreadSpectrumMode) {
1178 case 0:
1179 ssEntry->speed_spectrum_mode =
1180 pp_atomctrl_spread_spectrum_mode_down;
1181 break;
1182 case 1:
1183 ssEntry->speed_spectrum_mode =
1184 pp_atomctrl_spread_spectrum_mode_center;
1185 break;
1186 default:
1187 ssEntry->speed_spectrum_mode =
1188 pp_atomctrl_spread_spectrum_mode_down;
1189 break;
1190 }
1191 }
1192
1193 return entry_found ? 0 : 1;
1194}
1195
1196/**
1197 * Get the memory clock spread spectrum info
1198 */
1199int atomctrl_get_memory_clock_spread_spectrum(
1200 struct pp_hwmgr *hwmgr,
1201 const uint32_t memory_clock,
1202 pp_atomctrl_internal_ss_info *ssInfo)
1203{
1204 return asic_internal_ss_get_ss_asignment(hwmgr,
1205 ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1206}
1207/**
1208 * Get the engine clock spread spectrum info
1209 */
1210int atomctrl_get_engine_clock_spread_spectrum(
1211 struct pp_hwmgr *hwmgr,
1212 const uint32_t engine_clock,
1213 pp_atomctrl_internal_ss_info *ssInfo)
1214{
1215 return asic_internal_ss_get_ss_asignment(hwmgr,
1216 ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1217}
1218
3ec2cdb8
EH
1219int atomctrl_read_efuse(void *device, uint16_t start_index,
1220 uint16_t end_index, uint32_t mask, uint32_t *efuse)
1221{
1222 int result;
1223 READ_EFUSE_VALUE_PARAMETER efuse_param;
1224
1225 efuse_param.sEfuse.usEfuseIndex = (start_index / 32) * 4;
1226 efuse_param.sEfuse.ucBitShift = (uint8_t)
1227 (start_index - ((start_index / 32) * 32));
1228 efuse_param.sEfuse.ucBitLength = (uint8_t)
1229 ((end_index - start_index) + 1);
c82baa28 1230
3ec2cdb8
EH
1231 result = cgs_atom_exec_cmd_table(device,
1232 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1233 &efuse_param);
1234 if (!result)
1235 *efuse = efuse_param.ulEfuseValue & mask;
1236
1237 return result;
1238}
a23eefa2
RZ
1239
1240int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1241 uint8_t level)
1242{
1243 DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1244 int result;
1245
1246 memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq = memory_clock & SET_CLOCK_FREQ_MASK;
1247 memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag = ADJUST_MC_SETTING_PARAM;
1248 memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1249
1250 result = cgs_atom_exec_cmd_table
1251 (hwmgr->device,
1252 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1253 &memory_clock_parameters);
1254
1255 return result;
1256}
1257
1258int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
e5eb3717 1259 uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
a23eefa2
RZ
1260{
1261
1262 int result;
1263 GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1264
1265 get_voltage_info_param_space.ucVoltageType = voltage_type;
1266 get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1267 get_voltage_info_param_space.usVoltageLevel = virtual_voltage_Id;
1268 get_voltage_info_param_space.ulSCLKFreq = sclk;
1269
1270 result = cgs_atom_exec_cmd_table(hwmgr->device,
1271 GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1272 &get_voltage_info_param_space);
1273
1274 if (0 != result)
1275 return result;
1276
e5eb3717 1277 *voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel;
a23eefa2
RZ
1278
1279 return result;
1280}
1281
1282int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1283{
1284
1285 int i;
1286 u8 frev, crev;
1287 u16 size;
1288
1289 ATOM_SMU_INFO_V2_1 *psmu_info =
1290 (ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device,
1291 GetIndexIntoMasterTable(DATA, SMU_Info),
1292 &size, &frev, &crev);
1293
1294
1295 for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1296 table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1297 table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1298 table->entry[i].usFcw_pcc = psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc;
1299 table->entry[i].usFcw_trans_upper = psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper;
1300 table->entry[i].usRcw_trans_lower = psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower;
1301 }
1302
1303 return 0;
1304}
432c3a3c
RZ
1305
1306int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl__avfs_parameters *param)
1307{
1308 ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1309
1310 if (param == NULL)
1311 return -EINVAL;
1312
1313 profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1314 cgs_atom_get_data_table(hwmgr->device,
1315 GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1316 NULL, NULL, NULL);
1317 if (!profile)
1318 return -1;
1319
1320 param->ulAVFS_meanNsigma_Acontant0 = profile->ulAVFS_meanNsigma_Acontant0;
1321 param->ulAVFS_meanNsigma_Acontant1 = profile->ulAVFS_meanNsigma_Acontant1;
1322 param->ulAVFS_meanNsigma_Acontant2 = profile->ulAVFS_meanNsigma_Acontant2;
1323 param->usAVFS_meanNsigma_DC_tol_sigma = profile->usAVFS_meanNsigma_DC_tol_sigma;
1324 param->usAVFS_meanNsigma_Platform_mean = profile->usAVFS_meanNsigma_Platform_mean;
1325 param->usAVFS_meanNsigma_Platform_sigma = profile->usAVFS_meanNsigma_Platform_sigma;
1326 param->ulGB_VDROOP_TABLE_CKSOFF_a0 = profile->ulGB_VDROOP_TABLE_CKSOFF_a0;
1327 param->ulGB_VDROOP_TABLE_CKSOFF_a1 = profile->ulGB_VDROOP_TABLE_CKSOFF_a1;
1328 param->ulGB_VDROOP_TABLE_CKSOFF_a2 = profile->ulGB_VDROOP_TABLE_CKSOFF_a2;
1329 param->ulGB_VDROOP_TABLE_CKSON_a0 = profile->ulGB_VDROOP_TABLE_CKSON_a0;
1330 param->ulGB_VDROOP_TABLE_CKSON_a1 = profile->ulGB_VDROOP_TABLE_CKSON_a1;
1331 param->ulGB_VDROOP_TABLE_CKSON_a2 = profile->ulGB_VDROOP_TABLE_CKSON_a2;
1332 param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1;
1333 param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2;
1334 param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b;
1335 param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = profile->ulAVFSGB_FUSE_TABLE_CKSON_m1;
1336 param->usAVFSGB_FUSE_TABLE_CKSON_m2 = profile->usAVFSGB_FUSE_TABLE_CKSON_m2;
1337 param->ulAVFSGB_FUSE_TABLE_CKSON_b = profile->ulAVFSGB_FUSE_TABLE_CKSON_b;
1338 param->usMaxVoltage_0_25mv = profile->usMaxVoltage_0_25mv;
1339 param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1340 param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1341 param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1342 param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1343 param->usPSM_Age_ComFactor = profile->usPSM_Age_ComFactor;
1344 param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1345
1346 return 0;
1347}
This page took 0.110966 seconds and 5 git commands to generate.