[media] af9035: add log writing if unsupported Xtal freq is given
[deliverable/linux.git] / drivers / media / dvb / frontends / af9033.c
CommitLineData
4b64bb26
AP
1/*
2 * Afatech AF9033 demodulator driver
3 *
4 * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
5 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
21
22#include "af9033_priv.h"
23
24struct af9033_state {
25 struct i2c_adapter *i2c;
26 struct dvb_frontend fe;
27 struct af9033_config cfg;
28
29 u32 bandwidth_hz;
30 bool ts_mode_parallel;
31 bool ts_mode_serial;
32};
33
34/* write multiple registers */
35static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
36 int len)
37{
38 int ret;
39 u8 buf[3 + len];
40 struct i2c_msg msg[1] = {
41 {
42 .addr = state->cfg.i2c_addr,
43 .flags = 0,
44 .len = sizeof(buf),
45 .buf = buf,
46 }
47 };
48
49 buf[0] = (reg >> 16) & 0xff;
50 buf[1] = (reg >> 8) & 0xff;
51 buf[2] = (reg >> 0) & 0xff;
52 memcpy(&buf[3], val, len);
53
54 ret = i2c_transfer(state->i2c, msg, 1);
55 if (ret == 1) {
56 ret = 0;
57 } else {
58 printk(KERN_WARNING "%s: i2c wr failed=%d reg=%06x len=%d\n",
59 __func__, ret, reg, len);
60 ret = -EREMOTEIO;
61 }
62
63 return ret;
64}
65
66/* read multiple registers */
67static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
68{
69 int ret;
70 u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
71 (reg >> 0) & 0xff };
72 struct i2c_msg msg[2] = {
73 {
74 .addr = state->cfg.i2c_addr,
75 .flags = 0,
76 .len = sizeof(buf),
77 .buf = buf
78 }, {
79 .addr = state->cfg.i2c_addr,
80 .flags = I2C_M_RD,
81 .len = len,
82 .buf = val
83 }
84 };
85
86 ret = i2c_transfer(state->i2c, msg, 2);
87 if (ret == 2) {
88 ret = 0;
89 } else {
90 printk(KERN_WARNING "%s: i2c rd failed=%d reg=%06x len=%d\n",
91 __func__, ret, reg, len);
92 ret = -EREMOTEIO;
93 }
94
95 return ret;
96}
97
98
99/* write single register */
100static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
101{
102 return af9033_wr_regs(state, reg, &val, 1);
103}
104
105/* read single register */
106static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
107{
108 return af9033_rd_regs(state, reg, val, 1);
109}
110
111/* write single register with mask */
112static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
113 u8 mask)
114{
115 int ret;
116 u8 tmp;
117
118 /* no need for read if whole reg is written */
119 if (mask != 0xff) {
120 ret = af9033_rd_regs(state, reg, &tmp, 1);
121 if (ret)
122 return ret;
123
124 val &= mask;
125 tmp &= ~mask;
126 val |= tmp;
127 }
128
129 return af9033_wr_regs(state, reg, &val, 1);
130}
131
132/* read single register with mask */
133static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
134 u8 mask)
135{
136 int ret, i;
137 u8 tmp;
138
139 ret = af9033_rd_regs(state, reg, &tmp, 1);
140 if (ret)
141 return ret;
142
143 tmp &= mask;
144
145 /* find position of the first bit */
146 for (i = 0; i < 8; i++) {
147 if ((mask >> i) & 0x01)
148 break;
149 }
150 *val = tmp >> i;
151
152 return 0;
153}
154
155static u32 af9033_div(u32 a, u32 b, u32 x)
156{
157 u32 r = 0, c = 0, i;
158
159 pr_debug("%s: a=%d b=%d x=%d\n", __func__, a, b, x);
160
161 if (a > b) {
162 c = a / b;
163 a = a - c * b;
164 }
165
166 for (i = 0; i < x; i++) {
167 if (a >= b) {
168 r += 1;
169 a -= b;
170 }
171 a <<= 1;
172 r <<= 1;
173 }
174 r = (c << (u32)x) + r;
175
176 pr_debug("%s: a=%d b=%d x=%d r=%d r=%x\n", __func__, a, b, x, r, r);
177
178 return r;
179}
180
181static void af9033_release(struct dvb_frontend *fe)
182{
183 struct af9033_state *state = fe->demodulator_priv;
184
185 kfree(state);
186}
187
188static int af9033_init(struct dvb_frontend *fe)
189{
190 struct af9033_state *state = fe->demodulator_priv;
191 int ret, i, len;
192 const struct reg_val *init;
193 u8 buf[4];
194 u32 adc_cw, clock_cw;
195 struct reg_val_mask tab[] = {
196 { 0x80fb24, 0x00, 0x08 },
197 { 0x80004c, 0x00, 0xff },
198 { 0x00f641, state->cfg.tuner, 0xff },
199 { 0x80f5ca, 0x01, 0x01 },
200 { 0x80f715, 0x01, 0x01 },
201 { 0x00f41f, 0x04, 0x04 },
202 { 0x00f41a, 0x01, 0x01 },
203 { 0x80f731, 0x00, 0x01 },
204 { 0x00d91e, 0x00, 0x01 },
205 { 0x00d919, 0x00, 0x01 },
206 { 0x80f732, 0x00, 0x01 },
207 { 0x00d91f, 0x00, 0x01 },
208 { 0x00d91a, 0x00, 0x01 },
209 { 0x80f730, 0x00, 0x01 },
210 { 0x80f778, 0x00, 0xff },
211 { 0x80f73c, 0x01, 0x01 },
212 { 0x80f776, 0x00, 0x01 },
213 { 0x00d8fd, 0x01, 0xff },
214 { 0x00d830, 0x01, 0xff },
215 { 0x00d831, 0x00, 0xff },
216 { 0x00d832, 0x00, 0xff },
217 { 0x80f985, state->ts_mode_serial, 0x01 },
218 { 0x80f986, state->ts_mode_parallel, 0x01 },
219 { 0x00d827, 0x00, 0xff },
220 { 0x00d829, 0x00, 0xff },
221 };
222
223 /* program clock control */
224 clock_cw = af9033_div(state->cfg.clock, 1000000ul, 19ul);
225 buf[0] = (clock_cw >> 0) & 0xff;
226 buf[1] = (clock_cw >> 8) & 0xff;
227 buf[2] = (clock_cw >> 16) & 0xff;
228 buf[3] = (clock_cw >> 24) & 0xff;
229
230 pr_debug("%s: clock=%d clock_cw=%08x\n", __func__, state->cfg.clock,
231 clock_cw);
232
233 ret = af9033_wr_regs(state, 0x800025, buf, 4);
234 if (ret < 0)
235 goto err;
236
237 /* program ADC control */
238 for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
239 if (clock_adc_lut[i].clock == state->cfg.clock)
240 break;
241 }
242
243 adc_cw = af9033_div(clock_adc_lut[i].adc, 1000000ul, 19ul);
244 buf[0] = (adc_cw >> 0) & 0xff;
245 buf[1] = (adc_cw >> 8) & 0xff;
246 buf[2] = (adc_cw >> 16) & 0xff;
247
248 pr_debug("%s: adc=%d adc_cw=%06x\n", __func__, clock_adc_lut[i].adc,
249 adc_cw);
250
251 ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
252 if (ret < 0)
253 goto err;
254
255 /* program register table */
256 for (i = 0; i < ARRAY_SIZE(tab); i++) {
257 ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
258 tab[i].mask);
259 if (ret < 0)
260 goto err;
261 }
262
263 /* settings for TS interface */
264 if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
265 ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
266 if (ret < 0)
267 goto err;
268
269 ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
270 if (ret < 0)
271 goto err;
272 } else {
273 ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
274 if (ret < 0)
275 goto err;
276
277 ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
278 if (ret < 0)
279 goto err;
280 }
281
282 /* load OFSM settings */
283 pr_debug("%s: load ofsm settings\n", __func__);
284 len = ARRAY_SIZE(ofsm_init);
285 init = ofsm_init;
286 for (i = 0; i < len; i++) {
287 ret = af9033_wr_reg(state, init[i].reg, init[i].val);
288 if (ret < 0)
289 goto err;
290 }
291
292 /* load tuner specific settings */
293 pr_debug("%s: load tuner specific settings\n",
294 __func__);
295 switch (state->cfg.tuner) {
296 case AF9033_TUNER_TUA9001:
297 len = ARRAY_SIZE(tuner_init_tua9001);
298 init = tuner_init_tua9001;
299 break;
300 default:
301 pr_debug("%s: unsupported tuner ID=%d\n", __func__,
302 state->cfg.tuner);
303 ret = -ENODEV;
304 goto err;
305 }
306
307 for (i = 0; i < len; i++) {
308 ret = af9033_wr_reg(state, init[i].reg, init[i].val);
309 if (ret < 0)
310 goto err;
311 }
312
313 state->bandwidth_hz = 0; /* force to program all parameters */
314
315 return 0;
316
317err:
318 pr_debug("%s: failed=%d\n", __func__, ret);
319
320 return ret;
321}
322
323static int af9033_sleep(struct dvb_frontend *fe)
324{
325 struct af9033_state *state = fe->demodulator_priv;
326 int ret, i;
327 u8 tmp;
328
329 ret = af9033_wr_reg(state, 0x80004c, 1);
330 if (ret < 0)
331 goto err;
332
333 ret = af9033_wr_reg(state, 0x800000, 0);
334 if (ret < 0)
335 goto err;
336
337 for (i = 100, tmp = 1; i && tmp; i--) {
338 ret = af9033_rd_reg(state, 0x80004c, &tmp);
339 if (ret < 0)
340 goto err;
341
342 usleep_range(200, 10000);
343 }
344
3a871ca2 345 pr_debug("%s: loop=%d\n", __func__, i);
4b64bb26
AP
346
347 if (i == 0) {
348 ret = -ETIMEDOUT;
349 goto err;
350 }
351
352 ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
353 if (ret < 0)
354 goto err;
355
356 /* prevent current leak (?) */
357 if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
358 /* enable parallel TS */
359 ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
360 if (ret < 0)
361 goto err;
362
363 ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
364 if (ret < 0)
365 goto err;
366 }
367
368 return 0;
369
370err:
371 pr_debug("%s: failed=%d\n", __func__, ret);
372
373 return ret;
374}
375
376static int af9033_get_tune_settings(struct dvb_frontend *fe,
377 struct dvb_frontend_tune_settings *fesettings)
378{
379 fesettings->min_delay_ms = 800;
380 fesettings->step_size = 0;
381 fesettings->max_drift = 0;
382
383 return 0;
384}
385
386static int af9033_set_frontend(struct dvb_frontend *fe)
387{
388 struct af9033_state *state = fe->demodulator_priv;
389 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
390 int ret, i;
391 u8 tmp, buf[3], bandwidth_reg_val;
392 u32 if_frequency, freq_cw;
393
394 pr_debug("%s: frequency=%d bandwidth_hz=%d\n", __func__, c->frequency,
395 c->bandwidth_hz);
396
397 /* check bandwidth */
398 switch (c->bandwidth_hz) {
399 case 6000000:
400 bandwidth_reg_val = 0x00;
401 break;
402 case 7000000:
403 bandwidth_reg_val = 0x01;
404 break;
405 case 8000000:
406 bandwidth_reg_val = 0x02;
407 break;
408 default:
409 pr_debug("%s: invalid bandwidth_hz\n", __func__);
410 ret = -EINVAL;
411 goto err;
412 }
413
414 /* program tuner */
415 if (fe->ops.tuner_ops.set_params)
416 fe->ops.tuner_ops.set_params(fe);
417
418 /* program CFOE coefficients */
419 if (c->bandwidth_hz != state->bandwidth_hz) {
420 for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
421 if (coeff_lut[i].clock == state->cfg.clock &&
422 coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
423 break;
424 }
425 }
426 ret = af9033_wr_regs(state, 0x800001,
427 coeff_lut[i].val, sizeof(coeff_lut[i].val));
428 }
429
430 /* program frequency control */
431 if (c->bandwidth_hz != state->bandwidth_hz) {
432 /* get used IF frequency */
433 if (fe->ops.tuner_ops.get_if_frequency)
434 fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
435 else
436 if_frequency = 0;
437
438 /* FIXME: we support only Zero-IF currently */
439 if (if_frequency != 0) {
440 pr_debug("%s: only Zero-IF supported currently\n",
441 __func__);
442
443 ret = -ENODEV;
444 goto err;
445 }
446
447 freq_cw = 0;
448 buf[0] = (freq_cw >> 0) & 0xff;
449 buf[1] = (freq_cw >> 8) & 0xff;
450 buf[2] = (freq_cw >> 16) & 0x7f;
451 ret = af9033_wr_regs(state, 0x800029, buf, 3);
452 if (ret < 0)
453 goto err;
454
455 state->bandwidth_hz = c->bandwidth_hz;
456 }
457
458 ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
459 if (ret < 0)
460 goto err;
461
462 ret = af9033_wr_reg(state, 0x800040, 0x00);
463 if (ret < 0)
464 goto err;
465
466 ret = af9033_wr_reg(state, 0x800047, 0x00);
467 if (ret < 0)
468 goto err;
469
470 ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
471 if (ret < 0)
472 goto err;
473
474 if (c->frequency <= 230000000)
475 tmp = 0x00; /* VHF */
476 else
477 tmp = 0x01; /* UHF */
478
479 ret = af9033_wr_reg(state, 0x80004b, tmp);
480 if (ret < 0)
481 goto err;
482
483 ret = af9033_wr_reg(state, 0x800000, 0x00);
484 if (ret < 0)
485 goto err;
486
487 return 0;
488
489err:
490 pr_debug("%s: failed=%d\n", __func__, ret);
491
492 return ret;
493}
494
495static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
496{
497 struct af9033_state *state = fe->demodulator_priv;
498 int ret;
499 u8 tmp;
500
501 *status = 0;
502
503 /* radio channel status, 0=no result, 1=has signal, 2=no signal */
504 ret = af9033_rd_reg(state, 0x800047, &tmp);
505 if (ret < 0)
506 goto err;
507
508 /* has signal */
509 if (tmp == 0x01)
510 *status |= FE_HAS_SIGNAL;
511
512 if (tmp != 0x02) {
513 /* TPS lock */
514 ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
515 if (ret < 0)
516 goto err;
517
518 if (tmp)
519 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
520 FE_HAS_VITERBI;
521
522 /* full lock */
523 ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
524 if (ret < 0)
525 goto err;
526
527 if (tmp)
528 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
529 FE_HAS_VITERBI | FE_HAS_SYNC |
530 FE_HAS_LOCK;
531 }
532
533 return 0;
534
535err:
536 pr_debug("%s: failed=%d\n", __func__, ret);
537
538 return ret;
539}
540
541static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
542{
e898ef62
AP
543 struct af9033_state *state = fe->demodulator_priv;
544 int ret, i, len;
545 u8 buf[3], tmp;
546 u32 snr_val;
547 const struct val_snr *uninitialized_var(snr_lut);
548
549 /* read value */
550 ret = af9033_rd_regs(state, 0x80002c, buf, 3);
551 if (ret < 0)
552 goto err;
553
554 snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
555
556 /* read current modulation */
557 ret = af9033_rd_reg(state, 0x80f903, &tmp);
558 if (ret < 0)
559 goto err;
560
561 switch ((tmp >> 0) & 3) {
562 case 0:
563 len = ARRAY_SIZE(qpsk_snr_lut);
564 snr_lut = qpsk_snr_lut;
565 break;
566 case 1:
567 len = ARRAY_SIZE(qam16_snr_lut);
568 snr_lut = qam16_snr_lut;
569 break;
570 case 2:
571 len = ARRAY_SIZE(qam64_snr_lut);
572 snr_lut = qam64_snr_lut;
573 break;
574 default:
575 goto err;
576 }
577
578 for (i = 0; i < len; i++) {
579 tmp = snr_lut[i].snr;
580
581 if (snr_val < snr_lut[i].val)
582 break;
583 }
584
585 *snr = tmp * 10; /* dB/10 */
4b64bb26
AP
586
587 return 0;
e898ef62
AP
588
589err:
590 pr_debug("%s: failed=%d\n", __func__, ret);
591
592 return ret;
4b64bb26
AP
593}
594
595static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
596{
597 struct af9033_state *state = fe->demodulator_priv;
598 int ret;
599 u8 strength2;
600
601 /* read signal strength of 0-100 scale */
602 ret = af9033_rd_reg(state, 0x800048, &strength2);
603 if (ret < 0)
604 goto err;
605
606 /* scale value to 0x0000-0xffff */
607 *strength = strength2 * 0xffff / 100;
608
609 return 0;
610
611err:
612 pr_debug("%s: failed=%d\n", __func__, ret);
613
614 return ret;
615}
616
617static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
618{
619 *ber = 0;
620
621 return 0;
622}
623
624static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
625{
626 *ucblocks = 0;
627
628 return 0;
629}
630
631static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
632{
633 struct af9033_state *state = fe->demodulator_priv;
634 int ret;
635
636 pr_debug("%s: enable=%d\n", __func__, enable);
637
638 ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
639 if (ret < 0)
640 goto err;
641
642 return 0;
643
644err:
645 pr_debug("%s: failed=%d\n", __func__, ret);
646
647 return ret;
648}
649
650static struct dvb_frontend_ops af9033_ops;
651
652struct dvb_frontend *af9033_attach(const struct af9033_config *config,
653 struct i2c_adapter *i2c)
654{
655 int ret;
656 struct af9033_state *state;
657 u8 buf[8];
658
659 pr_debug("%s:\n", __func__);
660
661 /* allocate memory for the internal state */
662 state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
663 if (state == NULL)
664 goto err;
665
666 /* setup the state */
667 state->i2c = i2c;
668 memcpy(&state->cfg, config, sizeof(struct af9033_config));
669
8e8a5ac7
AP
670 if (state->cfg.clock != 12000000) {
671 printk(KERN_INFO "af9033: unsupported clock=%d, only " \
672 "12000000 Hz is supported currently\n",
673 state->cfg.clock);
674 goto err;
675 }
676
4b64bb26
AP
677 /* firmware version */
678 ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
679 if (ret < 0)
680 goto err;
681
682 ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
683 if (ret < 0)
684 goto err;
685
686 printk(KERN_INFO "af9033: firmware version: LINK=%d.%d.%d.%d " \
687 "OFDM=%d.%d.%d.%d\n", buf[0], buf[1], buf[2], buf[3],
688 buf[4], buf[5], buf[6], buf[7]);
689
690 /* configure internal TS mode */
691 switch (state->cfg.ts_mode) {
692 case AF9033_TS_MODE_PARALLEL:
693 state->ts_mode_parallel = true;
694 break;
695 case AF9033_TS_MODE_SERIAL:
696 state->ts_mode_serial = true;
697 break;
698 case AF9033_TS_MODE_USB:
699 /* usb mode for AF9035 */
700 default:
701 break;
702 }
703
704 /* create dvb_frontend */
705 memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
706 state->fe.demodulator_priv = state;
707
708 return &state->fe;
709
710err:
711 kfree(state);
712 return NULL;
713}
714EXPORT_SYMBOL(af9033_attach);
715
716static struct dvb_frontend_ops af9033_ops = {
717 .delsys = { SYS_DVBT },
718 .info = {
719 .name = "Afatech AF9033 (DVB-T)",
720 .frequency_min = 174000000,
721 .frequency_max = 862000000,
722 .frequency_stepsize = 250000,
723 .frequency_tolerance = 0,
724 .caps = FE_CAN_FEC_1_2 |
725 FE_CAN_FEC_2_3 |
726 FE_CAN_FEC_3_4 |
727 FE_CAN_FEC_5_6 |
728 FE_CAN_FEC_7_8 |
729 FE_CAN_FEC_AUTO |
730 FE_CAN_QPSK |
731 FE_CAN_QAM_16 |
732 FE_CAN_QAM_64 |
733 FE_CAN_QAM_AUTO |
734 FE_CAN_TRANSMISSION_MODE_AUTO |
735 FE_CAN_GUARD_INTERVAL_AUTO |
736 FE_CAN_HIERARCHY_AUTO |
737 FE_CAN_RECOVER |
738 FE_CAN_MUTE_TS
739 },
740
741 .release = af9033_release,
742
743 .init = af9033_init,
744 .sleep = af9033_sleep,
745
746 .get_tune_settings = af9033_get_tune_settings,
747 .set_frontend = af9033_set_frontend,
748
749 .read_status = af9033_read_status,
750 .read_snr = af9033_read_snr,
751 .read_signal_strength = af9033_read_signal_strength,
752 .read_ber = af9033_read_ber,
753 .read_ucblocks = af9033_read_ucblocks,
754
755 .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
756};
757
758MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
759MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
760MODULE_LICENSE("GPL");
This page took 0.079517 seconds and 5 git commands to generate.