Merge branch 'x86-kbuild-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / mtd / nand / rtc_from4.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand/rtc_from4.c
3 *
4 * Copyright (C) 2004 Red Hat, Inc.
61b03bd7 5 *
1da177e4
LT
6 * Derived from drivers/mtd/nand/spia.c
7 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
8 *
1da177e4
LT
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * Overview:
14 * This is a device driver for the AG-AND flash device found on the
61b03bd7
TG
15 * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
16 * which utilizes the Renesas HN29V1G91T-30 part.
1da177e4
LT
17 * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
18 */
19
20#include <linux/delay.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/slab.h>
24#include <linux/rslib.h>
1605cd3d 25#include <linux/bitrev.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/mtd/compatmac.h>
28#include <linux/mtd/mtd.h>
29#include <linux/mtd/nand.h>
30#include <linux/mtd/partitions.h>
31#include <asm/io.h>
32
33/*
34 * MTD structure for Renesas board
35 */
36static struct mtd_info *rtc_from4_mtd = NULL;
37
38#define RTC_FROM4_MAX_CHIPS 2
39
40/* HS77x9 processor register defines */
41#define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
42#define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
43#define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
44#define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
45#define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
46#define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
47#define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
48
49/*
50 * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
51 */
52/* Address where flash is mapped */
53#define RTC_FROM4_FIO_BASE 0x14000000
54
55/* CLE and ALE are tied to address lines 5 & 4, respectively */
56#define RTC_FROM4_CLE (1 << 5)
57#define RTC_FROM4_ALE (1 << 4)
58
59/* address lines A24-A22 used for chip selection */
60#define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
61#define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
62#define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
63/* mask address lines A24-A22 used for chip selection */
64#define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
65
66/* FPGA status register for checking device ready (bit zero) */
67#define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
68#define RTC_FROM4_DEVICE_READY 0x0001
69
70/* FPGA Reed-Solomon ECC Control register */
71
72#define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
73#define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
74#define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
75#define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
76
77/* FPGA Reed-Solomon ECC code base */
78#define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
79#define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
80
81/* FPGA Reed-Solomon ECC check register */
82#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
83#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
84
ed3786a5
DM
85#define ERR_STAT_ECC_AVAILABLE 0x20
86
1da177e4
LT
87/* Undefine for software ECC */
88#define RTC_FROM4_HWECC 1
89
ed3786a5
DM
90/* Define as 1 for no virtual erase blocks (in JFFS2) */
91#define RTC_FROM4_NO_VIRTBLOCKS 0
92
1da177e4
LT
93/*
94 * Module stuff
95 */
97f1a087 96static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
1da177e4 97
3c6bee1d 98static const struct mtd_partition partition_info[] = {
e0c7d767
DW
99 {
100 .name = "Renesas flash partition 1",
101 .offset = 0,
102 .size = MTDPART_SIZ_FULL},
1da177e4 103};
e0c7d767 104
1da177e4
LT
105#define NUM_PARTITIONS 1
106
61b03bd7 107/*
1da177e4 108 * hardware specific flash bbt decriptors
61b03bd7 109 * Note: this is to allow debugging by disabling
1da177e4
LT
110 * NAND_BBT_CREATE and/or NAND_BBT_WRITE
111 *
112 */
e0c7d767
DW
113static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
114static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1da177e4
LT
115
116static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
117 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
118 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
119 .offs = 40,
120 .len = 4,
121 .veroffs = 44,
122 .maxblocks = 4,
123 .pattern = bbt_pattern
124};
125
126static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
127 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
128 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
129 .offs = 40,
130 .len = 4,
131 .veroffs = 44,
132 .maxblocks = 4,
133 .pattern = mirror_pattern
134};
135
1da177e4
LT
136#ifdef RTC_FROM4_HWECC
137
138/* the Reed Solomon control structure */
139static struct rs_control *rs_decoder;
140
61b03bd7 141/*
1da177e4
LT
142 * hardware specific Out Of Band information
143 */
5bd34c09 144static struct nand_ecclayout rtc_from4_nand_oobinfo = {
1da177e4
LT
145 .eccbytes = 32,
146 .eccpos = {
e0c7d767
DW
147 0, 1, 2, 3, 4, 5, 6, 7,
148 8, 9, 10, 11, 12, 13, 14, 15,
149 16, 17, 18, 19, 20, 21, 22, 23,
150 24, 25, 26, 27, 28, 29, 30, 31},
151 .oobfree = {{32, 32}}
1da177e4
LT
152};
153
1da177e4
LT
154#endif
155
61b03bd7 156/*
1da177e4
LT
157 * rtc_from4_hwcontrol - hardware specific access to control-lines
158 * @mtd: MTD device structure
159 * @cmd: hardware control command
160 *
61b03bd7 161 * Address lines (A5 and A4) are used to control Command and Address Latch
1da177e4
LT
162 * Enable on this board, so set the read/write address appropriately.
163 *
61b03bd7 164 * Chip Enable is also controlled by the Chip Select (CS5) and
1da177e4
LT
165 * Address lines (A24-A22), so no action is required here.
166 *
167 */
7abd3ef9
TG
168static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
169 unsigned int ctrl)
1da177e4 170{
7abd3ef9 171 struct nand_chip *chip = (mtd->priv);
61b03bd7 172
7abd3ef9
TG
173 if (cmd == NAND_CMD_NONE)
174 return;
61b03bd7 175
7abd3ef9
TG
176 if (ctrl & NAND_CLE)
177 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
178 else
179 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
1da177e4
LT
180}
181
1da177e4
LT
182/*
183 * rtc_from4_nand_select_chip - hardware specific chip select
184 * @mtd: MTD device structure
185 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
186 *
187 * The chip select is based on address lines A24-A22.
188 * This driver uses flash slots 3 and 4 (A23-A22).
189 *
190 */
191static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
192{
e0c7d767 193 struct nand_chip *this = mtd->priv;
1da177e4
LT
194
195 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
196 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
197
e0c7d767 198 switch (chip) {
1da177e4 199
e0c7d767 200 case 0: /* select slot 3 chip */
1da177e4
LT
201 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
202 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
e0c7d767
DW
203 break;
204 case 1: /* select slot 4 chip */
1da177e4
LT
205 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
206 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
e0c7d767 207 break;
1da177e4 208
e0c7d767 209 }
1da177e4
LT
210}
211
1da177e4
LT
212/*
213 * rtc_from4_nand_device_ready - hardware specific ready/busy check
214 * @mtd: MTD device structure
215 *
216 * This board provides the Ready/Busy state in the status register
217 * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
218 *
219 */
220static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
221{
222 unsigned short status;
223
224 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
225
226 return (status & RTC_FROM4_DEVICE_READY);
227
228}
229
97f1a087
DM
230/*
231 * deplete - code to perform device recovery in case there was a power loss
232 * @mtd: MTD device structure
233 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
234 *
61b03bd7 235 * If there was a sudden loss of power during an erase operation, a
97f1a087
DM
236 * "device recovery" operation must be performed when power is restored
237 * to ensure correct operation. This routine performs the required steps
238 * for the requested chip.
239 *
240 * See page 86 of the data sheet for details.
241 *
242 */
243static void deplete(struct mtd_info *mtd, int chip)
244{
e0c7d767 245 struct nand_chip *this = mtd->priv;
97f1a087 246
e0c7d767
DW
247 /* wait until device is ready */
248 while (!this->dev_ready(mtd)) ;
97f1a087
DM
249
250 this->select_chip(mtd, chip);
61b03bd7 251
97f1a087 252 /* Send the commands for device recovery, phase 1 */
e0c7d767
DW
253 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
254 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
97f1a087
DM
255
256 /* Send the commands for device recovery, phase 2 */
e0c7d767
DW
257 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
258 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
97f1a087
DM
259
260}
261
1da177e4
LT
262#ifdef RTC_FROM4_HWECC
263/*
264 * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
265 * @mtd: MTD device structure
266 * @mode: I/O mode; read or write
267 *
61b03bd7 268 * enable hardware ECC for data read or write
1da177e4
LT
269 *
270 */
271static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
272{
e0c7d767 273 volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
1da177e4
LT
274 unsigned short status;
275
276 switch (mode) {
e0c7d767
DW
277 case NAND_ECC_READ:
278 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
1da177e4
LT
279
280 *rs_ecc_ctl = status;
281 break;
282
e0c7d767
DW
283 case NAND_ECC_READSYN:
284 status = 0x00;
1da177e4
LT
285
286 *rs_ecc_ctl = status;
287 break;
288
e0c7d767
DW
289 case NAND_ECC_WRITE:
290 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
1da177e4
LT
291
292 *rs_ecc_ctl = status;
293 break;
294
e0c7d767 295 default:
1da177e4
LT
296 BUG();
297 break;
298 }
299
300}
301
302/*
303 * rtc_from4_calculate_ecc - hardware specific code to read ECC code
304 * @mtd: MTD device structure
305 * @dat: buffer containing the data to generate ECC codes
306 * @ecc_code ECC codes calculated
307 *
308 * The ECC code is calculated by the FPGA. All we have to do is read the values
309 * from the FPGA registers.
310 *
311 * Note: We read from the inverted registers, since data is inverted before
312 * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
313 *
314 */
315static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
316{
e0c7d767 317 volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
1da177e4
LT
318 unsigned short value;
319 int i;
320
321 for (i = 0; i < 8; i++) {
322 value = *rs_eccn;
323 ecc_code[i] = (unsigned char)value;
324 rs_eccn++;
325 }
326 ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
327}
328
329/*
330 * rtc_from4_correct_data - hardware specific code to correct data using ECC code
331 * @mtd: MTD device structure
332 * @buf: buffer containing the data to generate ECC codes
333 * @ecc1 ECC codes read
334 * @ecc2 ECC codes calculated
335 *
336 * The FPGA tells us fast, if there's an error or not. If no, we go back happy
337 * else we read the ecc results from the fpga and call the rs library to decode
ed3786a5 338 * and hopefully correct the error.
1da177e4 339 *
1da177e4
LT
340 */
341static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
342{
343 int i, j, res;
61b03bd7 344 unsigned short status;
97f1a087 345 uint16_t par[6], syn[6];
1da177e4 346 uint8_t ecc[8];
e0c7d767 347 volatile unsigned short *rs_ecc;
1da177e4
LT
348
349 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
350
351 if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
352 return 0;
353 }
354
355 /* Read the syndrom pattern from the FPGA and correct the bitorder */
356 rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
e0c7d767 357 for (i = 0; i < 8; i++) {
ce106049 358 ecc[i] = bitrev8(*rs_ecc);
e0c7d767
DW
359 rs_ecc++;
360 }
1da177e4
LT
361
362 /* convert into 6 10bit syndrome fields */
e0c7d767
DW
363 par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
364 par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
365 par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
366 par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
367 par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
368 par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
1da177e4
LT
369
370 /* Convert to computable syndrome */
371 for (i = 0; i < 6; i++) {
372 syn[i] = par[0];
373 for (j = 1; j < 6; j++)
374 if (par[j] != rs_decoder->nn)
375 syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
376
377 /* Convert to index form */
378 syn[i] = rs_decoder->index_of[syn[i]];
379 }
380
e0c7d767
DW
381 /* Let the library code do its magic. */
382 res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
1da177e4 383 if (res > 0) {
e0c7d767 384 DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
1da177e4
LT
385 }
386 return res;
387}
ed3786a5 388
ed3786a5
DM
389/**
390 * rtc_from4_errstat - perform additional error status checks
391 * @mtd: MTD device structure
392 * @this: NAND chip structure
393 * @state: state or the operation
394 * @status: status code returned from read status
395 * @page: startpage inside the chip, must be called with (page & this->pagemask)
61b03bd7
TG
396 *
397 * Perform additional error status checks on erase and write failures
398 * to determine if errors are correctable. For this device, correctable
ed3786a5
DM
399 * 1-bit errors on erase and write are considered acceptable.
400 *
401 * note: see pages 34..37 of data sheet for details.
402 *
403 */
f5bbdacc
TG
404static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
405 int state, int status, int page)
ed3786a5 406{
e0c7d767
DW
407 int er_stat = 0;
408 int rtn, retlen;
409 size_t len;
ed3786a5 410 uint8_t *buf;
e0c7d767 411 int i;
ed3786a5 412
e0c7d767 413 this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
ed3786a5 414
e0c7d767 415 if (state == FL_ERASING) {
f5bbdacc 416
e0c7d767 417 for (i = 0; i < 4; i++) {
f5bbdacc
TG
418 if (!(status & 1 << (i + 1)))
419 continue;
420 this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
421 -1, -1);
422 rtn = this->read_byte(mtd);
423 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
424
425 /* err_ecc_not_avail */
426 if (!(rtn & ERR_STAT_ECC_AVAILABLE))
427 er_stat |= 1 << (i + 1);
ed3786a5 428 }
f5bbdacc 429
ed3786a5 430 } else if (state == FL_WRITING) {
f5bbdacc
TG
431
432 unsigned long corrected = mtd->ecc_stats.corrected;
433
ed3786a5 434 /* single bank write logic */
e0c7d767 435 this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
ed3786a5 436 rtn = this->read_byte(mtd);
e0c7d767 437 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
f5bbdacc 438
ed3786a5 439 if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
f5bbdacc
TG
440 /* err_ecc_not_avail */
441 er_stat |= 1 << 1;
442 goto out;
ed3786a5 443 }
f5bbdacc
TG
444
445 len = mtd->writesize;
446 buf = kmalloc(len, GFP_KERNEL);
447 if (!buf) {
448 printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
449 er_stat = 1;
450 goto out;
451 }
452
453 /* recovery read */
454 rtn = nand_do_read(mtd, page, len, &retlen, buf);
455
456 /* if read failed or > 1-bit error corrected */
7dcb483d 457 if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
f5bbdacc
TG
458 er_stat |= 1 << 1;
459 kfree(buf);
ed3786a5 460 }
6f5afaed 461out:
ed3786a5 462 rtn = status;
e0c7d767 463 if (er_stat == 0) { /* if ECC is available */
ed3786a5
DM
464 rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
465 }
466
467 return rtn;
468}
1da177e4
LT
469#endif
470
471/*
472 * Main initialization routine
473 */
cead4dbc 474static int __init rtc_from4_init(void)
1da177e4
LT
475{
476 struct nand_chip *this;
477 unsigned short bcr1, bcr2, wcr2;
97f1a087 478 int i;
c27e9b80 479 int ret;
1da177e4
LT
480
481 /* Allocate memory for MTD device structure and private data */
e0c7d767 482 rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
1da177e4 483 if (!rtc_from4_mtd) {
e0c7d767 484 printk("Unable to allocate Renesas NAND MTD device structure.\n");
1da177e4
LT
485 return -ENOMEM;
486 }
487
488 /* Get pointer to private data */
e0c7d767 489 this = (struct nand_chip *)(&rtc_from4_mtd[1]);
1da177e4
LT
490
491 /* Initialize structures */
e0c7d767
DW
492 memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
493 memset(this, 0, sizeof(struct nand_chip));
1da177e4
LT
494
495 /* Link the private data with the MTD structure */
496 rtc_from4_mtd->priv = this;
552d9205 497 rtc_from4_mtd->owner = THIS_MODULE;
1da177e4
LT
498
499 /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
500 bcr1 = *SH77X9_BCR1 & ~0x0002;
501 bcr1 |= 0x0002;
502 *SH77X9_BCR1 = bcr1;
503
504 /* set */
505 bcr2 = *SH77X9_BCR2 & ~0x0c00;
506 bcr2 |= 0x0800;
507 *SH77X9_BCR2 = bcr2;
508
509 /* set area 5 wait states */
510 wcr2 = *SH77X9_WCR2 & ~0x1c00;
511 wcr2 |= 0x1c00;
512 *SH77X9_WCR2 = wcr2;
513
514 /* Set address of NAND IO lines */
515 this->IO_ADDR_R = rtc_from4_fio_base;
516 this->IO_ADDR_W = rtc_from4_fio_base;
517 /* Set address of hardware control function */
7abd3ef9 518 this->cmd_ctrl = rtc_from4_hwcontrol;
1da177e4 519 /* Set address of chip select function */
e0c7d767 520 this->select_chip = rtc_from4_nand_select_chip;
1da177e4
LT
521 /* command delay time (in us) */
522 this->chip_delay = 100;
523 /* return the status of the Ready/Busy line */
524 this->dev_ready = rtc_from4_nand_device_ready;
525
526#ifdef RTC_FROM4_HWECC
527 printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
528
6dfc6d25
TG
529 this->ecc.mode = NAND_ECC_HW_SYNDROME;
530 this->ecc.size = 512;
531 this->ecc.bytes = 8;
ed3786a5
DM
532 /* return the status of extra status and ECC checks */
533 this->errstat = rtc_from4_errstat;
1da177e4 534 /* set the nand_oobinfo to support FPGA H/W error detection */
5bd34c09 535 this->ecc.layout = &rtc_from4_nand_oobinfo;
6dfc6d25
TG
536 this->ecc.hwctl = rtc_from4_enable_hwecc;
537 this->ecc.calculate = rtc_from4_calculate_ecc;
538 this->ecc.correct = rtc_from4_correct_data;
c27e9b80
SS
539
540 /* We could create the decoder on demand, if memory is a concern.
541 * This way we have it handy, if an error happens
542 *
543 * Symbolsize is 10 (bits)
544 * Primitve polynomial is x^10+x^3+1
545 * first consecutive root is 0
546 * primitve element to generate roots = 1
547 * generator polinomial degree = 6
548 */
549 rs_decoder = init_rs(10, 0x409, 0, 1, 6);
550 if (!rs_decoder) {
551 printk(KERN_ERR "Could not create a RS decoder\n");
552 ret = -ENOMEM;
553 goto err_1;
554 }
1da177e4
LT
555#else
556 printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
557
6dfc6d25 558 this->ecc.mode = NAND_ECC_SOFT;
1da177e4
LT
559#endif
560
561 /* set the bad block tables to support debugging */
562 this->bbt_td = &rtc_from4_bbt_main_descr;
563 this->bbt_md = &rtc_from4_bbt_mirror_descr;
564
565 /* Scan to find existence of the device */
566 if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
c27e9b80
SS
567 ret = -ENXIO;
568 goto err_2;
1da177e4
LT
569 }
570
97f1a087 571 /* Perform 'device recovery' for each chip in case there was a power loss. */
e0c7d767 572 for (i = 0; i < this->numchips; i++) {
97f1a087
DM
573 deplete(rtc_from4_mtd, i);
574 }
575
ed3786a5
DM
576#if RTC_FROM4_NO_VIRTBLOCKS
577 /* use a smaller erase block to minimize wasted space when a block is bad */
578 /* note: this uses eight times as much RAM as using the default and makes */
579 /* mounts take four times as long. */
580 rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
581#endif
582
1da177e4 583 /* Register the partitions */
c27e9b80
SS
584 ret = add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
585 if (ret)
586 goto err_3;
1da177e4 587
1da177e4
LT
588 /* Return happy */
589 return 0;
c27e9b80
SS
590err_3:
591 nand_release(rtc_from4_mtd);
592err_2:
593 free_rs(rs_decoder);
594err_1:
595 kfree(rtc_from4_mtd);
596 return ret;
1da177e4 597}
1da177e4 598
e0c7d767 599module_init(rtc_from4_init);
1da177e4
LT
600
601/*
602 * Clean up routine
603 */
e0c7d767 604static void __exit rtc_from4_cleanup(void)
1da177e4
LT
605{
606 /* Release resource, unregister partitions */
607 nand_release(rtc_from4_mtd);
608
609 /* Free the MTD device structure */
e0c7d767 610 kfree(rtc_from4_mtd);
1da177e4
LT
611
612#ifdef RTC_FROM4_HWECC
613 /* Free the reed solomon resources */
614 if (rs_decoder) {
615 free_rs(rs_decoder);
616 }
617#endif
618}
e0c7d767 619
1da177e4 620module_exit(rtc_from4_cleanup);
1da177e4
LT
621
622MODULE_LICENSE("GPL");
623MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
624MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
This page took 0.393916 seconds and 5 git commands to generate.