Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[deliverable/linux.git] / drivers / mtd / nand / rtc_from4.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand/rtc_from4.c
3 *
4 * Copyright (C) 2004 Red Hat, Inc.
61b03bd7 5 *
1da177e4
LT
6 * Derived from drivers/mtd/nand/spia.c
7 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
8 *
61b03bd7 9 * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 * Overview:
16 * This is a device driver for the AG-AND flash device found on the
61b03bd7
TG
17 * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
18 * which utilizes the Renesas HN29V1G91T-30 part.
1da177e4
LT
19 * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
20 */
21
22#include <linux/delay.h>
23#include <linux/kernel.h>
24#include <linux/init.h>
25#include <linux/slab.h>
26#include <linux/rslib.h>
1605cd3d 27#include <linux/bitrev.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/mtd/compatmac.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/nand.h>
32#include <linux/mtd/partitions.h>
33#include <asm/io.h>
34
35/*
36 * MTD structure for Renesas board
37 */
38static struct mtd_info *rtc_from4_mtd = NULL;
39
40#define RTC_FROM4_MAX_CHIPS 2
41
42/* HS77x9 processor register defines */
43#define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
44#define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
45#define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
46#define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
47#define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
48#define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
49#define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
50
51/*
52 * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
53 */
54/* Address where flash is mapped */
55#define RTC_FROM4_FIO_BASE 0x14000000
56
57/* CLE and ALE are tied to address lines 5 & 4, respectively */
58#define RTC_FROM4_CLE (1 << 5)
59#define RTC_FROM4_ALE (1 << 4)
60
61/* address lines A24-A22 used for chip selection */
62#define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
63#define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
64#define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
65/* mask address lines A24-A22 used for chip selection */
66#define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
67
68/* FPGA status register for checking device ready (bit zero) */
69#define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
70#define RTC_FROM4_DEVICE_READY 0x0001
71
72/* FPGA Reed-Solomon ECC Control register */
73
74#define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
75#define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
76#define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
77#define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
78
79/* FPGA Reed-Solomon ECC code base */
80#define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
81#define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
82
83/* FPGA Reed-Solomon ECC check register */
84#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
85#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
86
ed3786a5
DM
87#define ERR_STAT_ECC_AVAILABLE 0x20
88
1da177e4
LT
89/* Undefine for software ECC */
90#define RTC_FROM4_HWECC 1
91
ed3786a5
DM
92/* Define as 1 for no virtual erase blocks (in JFFS2) */
93#define RTC_FROM4_NO_VIRTBLOCKS 0
94
1da177e4
LT
95/*
96 * Module stuff
97 */
97f1a087 98static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
1da177e4 99
3c6bee1d 100static const struct mtd_partition partition_info[] = {
e0c7d767
DW
101 {
102 .name = "Renesas flash partition 1",
103 .offset = 0,
104 .size = MTDPART_SIZ_FULL},
1da177e4 105};
e0c7d767 106
1da177e4
LT
107#define NUM_PARTITIONS 1
108
61b03bd7 109/*
1da177e4 110 * hardware specific flash bbt decriptors
61b03bd7 111 * Note: this is to allow debugging by disabling
1da177e4
LT
112 * NAND_BBT_CREATE and/or NAND_BBT_WRITE
113 *
114 */
e0c7d767
DW
115static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
116static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1da177e4
LT
117
118static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
119 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
120 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
121 .offs = 40,
122 .len = 4,
123 .veroffs = 44,
124 .maxblocks = 4,
125 .pattern = bbt_pattern
126};
127
128static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
129 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
130 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
131 .offs = 40,
132 .len = 4,
133 .veroffs = 44,
134 .maxblocks = 4,
135 .pattern = mirror_pattern
136};
137
1da177e4
LT
138#ifdef RTC_FROM4_HWECC
139
140/* the Reed Solomon control structure */
141static struct rs_control *rs_decoder;
142
61b03bd7 143/*
1da177e4
LT
144 * hardware specific Out Of Band information
145 */
5bd34c09 146static struct nand_ecclayout rtc_from4_nand_oobinfo = {
1da177e4
LT
147 .eccbytes = 32,
148 .eccpos = {
e0c7d767
DW
149 0, 1, 2, 3, 4, 5, 6, 7,
150 8, 9, 10, 11, 12, 13, 14, 15,
151 16, 17, 18, 19, 20, 21, 22, 23,
152 24, 25, 26, 27, 28, 29, 30, 31},
153 .oobfree = {{32, 32}}
1da177e4
LT
154};
155
1da177e4
LT
156#endif
157
61b03bd7 158/*
1da177e4
LT
159 * rtc_from4_hwcontrol - hardware specific access to control-lines
160 * @mtd: MTD device structure
161 * @cmd: hardware control command
162 *
61b03bd7 163 * Address lines (A5 and A4) are used to control Command and Address Latch
1da177e4
LT
164 * Enable on this board, so set the read/write address appropriately.
165 *
61b03bd7 166 * Chip Enable is also controlled by the Chip Select (CS5) and
1da177e4
LT
167 * Address lines (A24-A22), so no action is required here.
168 *
169 */
7abd3ef9
TG
170static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
171 unsigned int ctrl)
1da177e4 172{
7abd3ef9 173 struct nand_chip *chip = (mtd->priv);
61b03bd7 174
7abd3ef9
TG
175 if (cmd == NAND_CMD_NONE)
176 return;
61b03bd7 177
7abd3ef9
TG
178 if (ctrl & NAND_CLE)
179 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
180 else
181 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
1da177e4
LT
182}
183
1da177e4
LT
184/*
185 * rtc_from4_nand_select_chip - hardware specific chip select
186 * @mtd: MTD device structure
187 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
188 *
189 * The chip select is based on address lines A24-A22.
190 * This driver uses flash slots 3 and 4 (A23-A22).
191 *
192 */
193static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
194{
e0c7d767 195 struct nand_chip *this = mtd->priv;
1da177e4
LT
196
197 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
198 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
199
e0c7d767 200 switch (chip) {
1da177e4 201
e0c7d767 202 case 0: /* select slot 3 chip */
1da177e4
LT
203 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
204 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
e0c7d767
DW
205 break;
206 case 1: /* select slot 4 chip */
1da177e4
LT
207 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
208 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
e0c7d767 209 break;
1da177e4 210
e0c7d767 211 }
1da177e4
LT
212}
213
1da177e4
LT
214/*
215 * rtc_from4_nand_device_ready - hardware specific ready/busy check
216 * @mtd: MTD device structure
217 *
218 * This board provides the Ready/Busy state in the status register
219 * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
220 *
221 */
222static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
223{
224 unsigned short status;
225
226 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
227
228 return (status & RTC_FROM4_DEVICE_READY);
229
230}
231
97f1a087
DM
232/*
233 * deplete - code to perform device recovery in case there was a power loss
234 * @mtd: MTD device structure
235 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
236 *
61b03bd7 237 * If there was a sudden loss of power during an erase operation, a
97f1a087
DM
238 * "device recovery" operation must be performed when power is restored
239 * to ensure correct operation. This routine performs the required steps
240 * for the requested chip.
241 *
242 * See page 86 of the data sheet for details.
243 *
244 */
245static void deplete(struct mtd_info *mtd, int chip)
246{
e0c7d767 247 struct nand_chip *this = mtd->priv;
97f1a087 248
e0c7d767
DW
249 /* wait until device is ready */
250 while (!this->dev_ready(mtd)) ;
97f1a087
DM
251
252 this->select_chip(mtd, chip);
61b03bd7 253
97f1a087 254 /* Send the commands for device recovery, phase 1 */
e0c7d767
DW
255 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
256 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
97f1a087
DM
257
258 /* Send the commands for device recovery, phase 2 */
e0c7d767
DW
259 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
260 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
97f1a087
DM
261
262}
263
1da177e4
LT
264#ifdef RTC_FROM4_HWECC
265/*
266 * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
267 * @mtd: MTD device structure
268 * @mode: I/O mode; read or write
269 *
61b03bd7 270 * enable hardware ECC for data read or write
1da177e4
LT
271 *
272 */
273static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
274{
e0c7d767 275 volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
1da177e4
LT
276 unsigned short status;
277
278 switch (mode) {
e0c7d767
DW
279 case NAND_ECC_READ:
280 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
1da177e4
LT
281
282 *rs_ecc_ctl = status;
283 break;
284
e0c7d767
DW
285 case NAND_ECC_READSYN:
286 status = 0x00;
1da177e4
LT
287
288 *rs_ecc_ctl = status;
289 break;
290
e0c7d767
DW
291 case NAND_ECC_WRITE:
292 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
1da177e4
LT
293
294 *rs_ecc_ctl = status;
295 break;
296
e0c7d767 297 default:
1da177e4
LT
298 BUG();
299 break;
300 }
301
302}
303
304/*
305 * rtc_from4_calculate_ecc - hardware specific code to read ECC code
306 * @mtd: MTD device structure
307 * @dat: buffer containing the data to generate ECC codes
308 * @ecc_code ECC codes calculated
309 *
310 * The ECC code is calculated by the FPGA. All we have to do is read the values
311 * from the FPGA registers.
312 *
313 * Note: We read from the inverted registers, since data is inverted before
314 * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
315 *
316 */
317static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
318{
e0c7d767 319 volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
1da177e4
LT
320 unsigned short value;
321 int i;
322
323 for (i = 0; i < 8; i++) {
324 value = *rs_eccn;
325 ecc_code[i] = (unsigned char)value;
326 rs_eccn++;
327 }
328 ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
329}
330
331/*
332 * rtc_from4_correct_data - hardware specific code to correct data using ECC code
333 * @mtd: MTD device structure
334 * @buf: buffer containing the data to generate ECC codes
335 * @ecc1 ECC codes read
336 * @ecc2 ECC codes calculated
337 *
338 * The FPGA tells us fast, if there's an error or not. If no, we go back happy
339 * else we read the ecc results from the fpga and call the rs library to decode
ed3786a5 340 * and hopefully correct the error.
1da177e4 341 *
1da177e4
LT
342 */
343static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
344{
345 int i, j, res;
61b03bd7 346 unsigned short status;
97f1a087 347 uint16_t par[6], syn[6];
1da177e4 348 uint8_t ecc[8];
e0c7d767 349 volatile unsigned short *rs_ecc;
1da177e4
LT
350
351 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
352
353 if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
354 return 0;
355 }
356
357 /* Read the syndrom pattern from the FPGA and correct the bitorder */
358 rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
e0c7d767 359 for (i = 0; i < 8; i++) {
ce106049 360 ecc[i] = bitrev8(*rs_ecc);
e0c7d767
DW
361 rs_ecc++;
362 }
1da177e4
LT
363
364 /* convert into 6 10bit syndrome fields */
e0c7d767
DW
365 par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
366 par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
367 par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
368 par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
369 par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
370 par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
1da177e4
LT
371
372 /* Convert to computable syndrome */
373 for (i = 0; i < 6; i++) {
374 syn[i] = par[0];
375 for (j = 1; j < 6; j++)
376 if (par[j] != rs_decoder->nn)
377 syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
378
379 /* Convert to index form */
380 syn[i] = rs_decoder->index_of[syn[i]];
381 }
382
e0c7d767
DW
383 /* Let the library code do its magic. */
384 res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
1da177e4 385 if (res > 0) {
e0c7d767 386 DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
1da177e4
LT
387 }
388 return res;
389}
ed3786a5 390
ed3786a5
DM
391/**
392 * rtc_from4_errstat - perform additional error status checks
393 * @mtd: MTD device structure
394 * @this: NAND chip structure
395 * @state: state or the operation
396 * @status: status code returned from read status
397 * @page: startpage inside the chip, must be called with (page & this->pagemask)
61b03bd7
TG
398 *
399 * Perform additional error status checks on erase and write failures
400 * to determine if errors are correctable. For this device, correctable
ed3786a5
DM
401 * 1-bit errors on erase and write are considered acceptable.
402 *
403 * note: see pages 34..37 of data sheet for details.
404 *
405 */
f5bbdacc
TG
406static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
407 int state, int status, int page)
ed3786a5 408{
e0c7d767
DW
409 int er_stat = 0;
410 int rtn, retlen;
411 size_t len;
ed3786a5 412 uint8_t *buf;
e0c7d767 413 int i;
ed3786a5 414
e0c7d767 415 this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
ed3786a5 416
e0c7d767 417 if (state == FL_ERASING) {
f5bbdacc 418
e0c7d767 419 for (i = 0; i < 4; i++) {
f5bbdacc
TG
420 if (!(status & 1 << (i + 1)))
421 continue;
422 this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
423 -1, -1);
424 rtn = this->read_byte(mtd);
425 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
426
427 /* err_ecc_not_avail */
428 if (!(rtn & ERR_STAT_ECC_AVAILABLE))
429 er_stat |= 1 << (i + 1);
ed3786a5 430 }
f5bbdacc 431
ed3786a5 432 } else if (state == FL_WRITING) {
f5bbdacc
TG
433
434 unsigned long corrected = mtd->ecc_stats.corrected;
435
ed3786a5 436 /* single bank write logic */
e0c7d767 437 this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
ed3786a5 438 rtn = this->read_byte(mtd);
e0c7d767 439 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
f5bbdacc 440
ed3786a5 441 if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
f5bbdacc
TG
442 /* err_ecc_not_avail */
443 er_stat |= 1 << 1;
444 goto out;
ed3786a5 445 }
f5bbdacc
TG
446
447 len = mtd->writesize;
448 buf = kmalloc(len, GFP_KERNEL);
449 if (!buf) {
450 printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
451 er_stat = 1;
452 goto out;
453 }
454
455 /* recovery read */
456 rtn = nand_do_read(mtd, page, len, &retlen, buf);
457
458 /* if read failed or > 1-bit error corrected */
459 if (rtn || (mtd->ecc_stats.corrected - corrected) > 1) {
460 er_stat |= 1 << 1;
461 kfree(buf);
ed3786a5
DM
462 }
463
464 rtn = status;
e0c7d767 465 if (er_stat == 0) { /* if ECC is available */
ed3786a5
DM
466 rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
467 }
468
469 return rtn;
470}
1da177e4
LT
471#endif
472
473/*
474 * Main initialization routine
475 */
cead4dbc 476static int __init rtc_from4_init(void)
1da177e4
LT
477{
478 struct nand_chip *this;
479 unsigned short bcr1, bcr2, wcr2;
97f1a087 480 int i;
1da177e4
LT
481
482 /* Allocate memory for MTD device structure and private data */
e0c7d767 483 rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
1da177e4 484 if (!rtc_from4_mtd) {
e0c7d767 485 printk("Unable to allocate Renesas NAND MTD device structure.\n");
1da177e4
LT
486 return -ENOMEM;
487 }
488
489 /* Get pointer to private data */
e0c7d767 490 this = (struct nand_chip *)(&rtc_from4_mtd[1]);
1da177e4
LT
491
492 /* Initialize structures */
e0c7d767
DW
493 memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
494 memset(this, 0, sizeof(struct nand_chip));
1da177e4
LT
495
496 /* Link the private data with the MTD structure */
497 rtc_from4_mtd->priv = this;
552d9205 498 rtc_from4_mtd->owner = THIS_MODULE;
1da177e4
LT
499
500 /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
501 bcr1 = *SH77X9_BCR1 & ~0x0002;
502 bcr1 |= 0x0002;
503 *SH77X9_BCR1 = bcr1;
504
505 /* set */
506 bcr2 = *SH77X9_BCR2 & ~0x0c00;
507 bcr2 |= 0x0800;
508 *SH77X9_BCR2 = bcr2;
509
510 /* set area 5 wait states */
511 wcr2 = *SH77X9_WCR2 & ~0x1c00;
512 wcr2 |= 0x1c00;
513 *SH77X9_WCR2 = wcr2;
514
515 /* Set address of NAND IO lines */
516 this->IO_ADDR_R = rtc_from4_fio_base;
517 this->IO_ADDR_W = rtc_from4_fio_base;
518 /* Set address of hardware control function */
7abd3ef9 519 this->cmd_ctrl = rtc_from4_hwcontrol;
1da177e4 520 /* Set address of chip select function */
e0c7d767 521 this->select_chip = rtc_from4_nand_select_chip;
1da177e4
LT
522 /* command delay time (in us) */
523 this->chip_delay = 100;
524 /* return the status of the Ready/Busy line */
525 this->dev_ready = rtc_from4_nand_device_ready;
526
527#ifdef RTC_FROM4_HWECC
528 printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
529
6dfc6d25
TG
530 this->ecc.mode = NAND_ECC_HW_SYNDROME;
531 this->ecc.size = 512;
532 this->ecc.bytes = 8;
ed3786a5
DM
533 /* return the status of extra status and ECC checks */
534 this->errstat = rtc_from4_errstat;
1da177e4 535 /* set the nand_oobinfo to support FPGA H/W error detection */
5bd34c09 536 this->ecc.layout = &rtc_from4_nand_oobinfo;
6dfc6d25
TG
537 this->ecc.hwctl = rtc_from4_enable_hwecc;
538 this->ecc.calculate = rtc_from4_calculate_ecc;
539 this->ecc.correct = rtc_from4_correct_data;
1da177e4
LT
540#else
541 printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
542
6dfc6d25 543 this->ecc.mode = NAND_ECC_SOFT;
1da177e4
LT
544#endif
545
546 /* set the bad block tables to support debugging */
547 this->bbt_td = &rtc_from4_bbt_main_descr;
548 this->bbt_md = &rtc_from4_bbt_mirror_descr;
549
550 /* Scan to find existence of the device */
551 if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
552 kfree(rtc_from4_mtd);
553 return -ENXIO;
554 }
555
97f1a087 556 /* Perform 'device recovery' for each chip in case there was a power loss. */
e0c7d767 557 for (i = 0; i < this->numchips; i++) {
97f1a087
DM
558 deplete(rtc_from4_mtd, i);
559 }
560
ed3786a5
DM
561#if RTC_FROM4_NO_VIRTBLOCKS
562 /* use a smaller erase block to minimize wasted space when a block is bad */
563 /* note: this uses eight times as much RAM as using the default and makes */
564 /* mounts take four times as long. */
565 rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
566#endif
567
1da177e4
LT
568 /* Register the partitions */
569 add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
570
571#ifdef RTC_FROM4_HWECC
572 /* We could create the decoder on demand, if memory is a concern.
61b03bd7 573 * This way we have it handy, if an error happens
1da177e4
LT
574 *
575 * Symbolsize is 10 (bits)
576 * Primitve polynomial is x^10+x^3+1
577 * first consecutive root is 0
578 * primitve element to generate roots = 1
579 * generator polinomial degree = 6
580 */
581 rs_decoder = init_rs(10, 0x409, 0, 1, 6);
582 if (!rs_decoder) {
e0c7d767 583 printk(KERN_ERR "Could not create a RS decoder\n");
1da177e4
LT
584 nand_release(rtc_from4_mtd);
585 kfree(rtc_from4_mtd);
586 return -ENOMEM;
587 }
588#endif
589 /* Return happy */
590 return 0;
591}
1da177e4 592
e0c7d767 593module_init(rtc_from4_init);
1da177e4
LT
594
595/*
596 * Clean up routine
597 */
e0c7d767 598static void __exit rtc_from4_cleanup(void)
1da177e4
LT
599{
600 /* Release resource, unregister partitions */
601 nand_release(rtc_from4_mtd);
602
603 /* Free the MTD device structure */
e0c7d767 604 kfree(rtc_from4_mtd);
1da177e4
LT
605
606#ifdef RTC_FROM4_HWECC
607 /* Free the reed solomon resources */
608 if (rs_decoder) {
609 free_rs(rs_decoder);
610 }
611#endif
612}
e0c7d767 613
1da177e4 614module_exit(rtc_from4_cleanup);
1da177e4
LT
615
616MODULE_LICENSE("GPL");
617MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
618MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
This page took 0.205427 seconds and 5 git commands to generate.