Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
1da177e4
LT
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722 14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722 30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
43b7c451 41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
9dc737a7
AR
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
3a3d5756
SH
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
55 ************************************************************************/
56
1da177e4
LT
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/errno.h>
60#include <linux/ioport.h>
61#include <linux/pci.h>
1e7f0bd8 62#include <linux/dma-mapping.h>
1da177e4
LT
63#include <linux/kernel.h>
64#include <linux/netdevice.h>
65#include <linux/etherdevice.h>
66#include <linux/skbuff.h>
67#include <linux/init.h>
68#include <linux/delay.h>
69#include <linux/stddef.h>
70#include <linux/ioctl.h>
71#include <linux/timex.h>
1da177e4 72#include <linux/ethtool.h>
1da177e4 73#include <linux/workqueue.h>
be3a6b02 74#include <linux/if_vlan.h>
7d3d0439
RA
75#include <linux/ip.h>
76#include <linux/tcp.h>
77#include <net/tcp.h>
1da177e4 78
1da177e4
LT
79#include <asm/system.h>
80#include <asm/uaccess.h>
20346722 81#include <asm/io.h>
fe931395 82#include <asm/div64.h>
330ce0de 83#include <asm/irq.h>
1da177e4
LT
84
85/* local include */
86#include "s2io.h"
87#include "s2io-regs.h"
88
29d0a2b0 89#define DRV_VERSION "2.0.26.25"
6c1792f4 90
1da177e4 91/* S2io Driver name & version. */
20346722 92static char s2io_driver_name[] = "Neterion";
6c1792f4 93static char s2io_driver_version[] = DRV_VERSION;
1da177e4 94
6d517a27
VP
95static int rxd_size[2] = {32,48};
96static int rxd_count[2] = {127,85};
da6971d8 97
1ee6dd77 98static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd 99{
100 int ret;
101
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105 return ret;
106}
107
20346722 108/*
1da177e4
LT
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
112 */
541ae68f 113#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
117
118#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 120
92b84437
SS
121static inline int is_s2io_card_up(const struct s2io_nic * sp)
122{
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
124}
125
1da177e4
LT
126/* Ethtool related variables and Macros. */
127static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
133};
134
fa1f0cb3 135static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
1da177e4 145 {"tmac_any_err_frms"},
bd1034f0 146 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
bd1034f0 161 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
1da177e4 168 {"rmac_discarded_frms"},
bd1034f0
AR
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
1da177e4
LT
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
bd1034f0
AR
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
bd1034f0
AR
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
1da177e4 207 {"rmac_pause_cnt"},
bd1034f0
AR
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
bd1034f0
AR
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
fa1f0cb3
SS
229 {"rxf_wr_cnt"}
230};
231
232static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
240 {"rmac_vlan_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
243 {"rmac_pf_discard"},
244 {"rmac_da_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
248 {"link_fault_cnt"}
249};
250
251static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac 252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
bd1034f0
AR
255 {"parity_err_cnt"},
256 {"serious_err_cnt"},
257 {"soft_reset_cnt"},
258 {"fifo_full_cnt"},
8116f3cf
SS
259 {"ring_0_full_cnt"},
260 {"ring_1_full_cnt"},
261 {"ring_2_full_cnt"},
262 {"ring_3_full_cnt"},
263 {"ring_4_full_cnt"},
264 {"ring_5_full_cnt"},
265 {"ring_6_full_cnt"},
266 {"ring_7_full_cnt"},
43b7c451
SH
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
287 {"mem_allocated"},
288 {"mem_freed"},
289 {"link_up_cnt"},
290 {"link_down_cnt"},
291 {"link_up_time"},
292 {"link_down_time"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
307 {"tda_err_cnt"},
308 {"pfc_err_cnt"},
309 {"pcc_err_cnt"},
310 {"tti_err_cnt"},
311 {"tpa_err_cnt"},
312 {"sm_err_cnt"},
313 {"lso_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
318 {"rc_err_cnt"},
319 {"prc_pcix_err_cnt"},
320 {"rpa_err_cnt"},
321 {"rda_err_cnt"},
322 {"rti_err_cnt"},
323 {"mc_err_cnt"}
1da177e4
LT
324};
325
4c3616cd
AMR
326#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3
SS
329
330#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
332
333#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4 335
4c3616cd 336#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
1da177e4
LT
337#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
338
25fff88e 339#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
344
2fd37688
SS
345/* copy mac addr to def_mac_addr array */
346static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
347{
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
354}
04025095 355
be3a6b02 356/* Add the vlan */
357static void s2io_vlan_rx_register(struct net_device *dev,
04025095 358 struct vlan_group *grp)
be3a6b02 359{
2fda096d 360 int i;
4cf1653a 361 struct s2io_nic *nic = netdev_priv(dev);
2fda096d
SR
362 unsigned long flags[MAX_TX_FIFOS];
363 struct mac_info *mac_control = &nic->mac_control;
364 struct config_param *config = &nic->config;
365
366 for (i = 0; i < config->tx_fifo_num; i++)
367 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
be3a6b02 368
be3a6b02 369 nic->vlgrp = grp;
2fda096d
SR
370 for (i = config->tx_fifo_num - 1; i >= 0; i--)
371 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
372 flags[i]);
be3a6b02 373}
374
cdb5bf02 375/* Unregister the vlan */
04025095 376static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
cdb5bf02
SH
377{
378 int i;
4cf1653a 379 struct s2io_nic *nic = netdev_priv(dev);
cdb5bf02
SH
380 unsigned long flags[MAX_TX_FIFOS];
381 struct mac_info *mac_control = &nic->mac_control;
382 struct config_param *config = &nic->config;
383
384 for (i = 0; i < config->tx_fifo_num; i++)
385 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
386
387 if (nic->vlgrp)
388 vlan_group_set_device(nic->vlgrp, vid, NULL);
389
390 for (i = config->tx_fifo_num - 1; i >= 0; i--)
391 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
392 flags[i]);
393}
394
20346722 395/*
1da177e4
LT
396 * Constants to be programmed into the Xena's registers, to configure
397 * the XAUI.
398 */
399
1da177e4 400#define END_SIGN 0x0
f71e1309 401static const u64 herc_act_dtx_cfg[] = {
541ae68f 402 /* Set address */
e960fc5c 403 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 404 /* Write data */
e960fc5c 405 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f 406 /* Set address */
407 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
408 /* Write data */
409 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
410 /* Set address */
e960fc5c 411 0x801205150D440000ULL, 0x801205150D4400E0ULL,
412 /* Write data */
413 0x801205150D440004ULL, 0x801205150D4400E4ULL,
414 /* Set address */
541ae68f 415 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
416 /* Write data */
417 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
418 /* Done */
419 END_SIGN
420};
421
f71e1309 422static const u64 xena_dtx_cfg[] = {
c92ca04b 423 /* Set address */
1da177e4 424 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
425 /* Write data */
426 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
427 /* Set address */
428 0x8001051500000000ULL, 0x80010515000000E0ULL,
429 /* Write data */
430 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
431 /* Set address */
1da177e4 432 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
433 /* Write data */
434 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
435 END_SIGN
436};
437
20346722 438/*
1da177e4
LT
439 * Constants for Fixing the MacAddress problem seen mostly on
440 * Alpha machines.
441 */
f71e1309 442static const u64 fix_mac[] = {
1da177e4
LT
443 0x0060000000000000ULL, 0x0060600000000000ULL,
444 0x0040600000000000ULL, 0x0000600000000000ULL,
445 0x0020600000000000ULL, 0x0060600000000000ULL,
446 0x0020600000000000ULL, 0x0060600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0000600000000000ULL,
456 0x0040600000000000ULL, 0x0060600000000000ULL,
457 END_SIGN
458};
459
b41477f3
AR
460MODULE_LICENSE("GPL");
461MODULE_VERSION(DRV_VERSION);
462
463
1da177e4 464/* Module Loadable parameters. */
6cfc482b 465S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 466S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 467S2IO_PARM_INT(multiq, 0);
b41477f3
AR
468S2IO_PARM_INT(rx_ring_mode, 1);
469S2IO_PARM_INT(use_continuous_tx_intrs, 1);
470S2IO_PARM_INT(rmac_pause_time, 0x100);
471S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
472S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
473S2IO_PARM_INT(shared_splits, 0);
474S2IO_PARM_INT(tmac_util_period, 5);
475S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 476S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
477/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
478S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 479/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 480S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 481/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 482S2IO_PARM_INT(intr_type, 2);
7d3d0439 483/* Large receive offload feature */
43b7c451
SH
484static unsigned int lro_enable;
485module_param_named(lro, lro_enable, uint, 0);
486
7d3d0439
RA
487/* Max pkts to be aggregated by LRO at one time. If not specified,
488 * aggregation happens until we hit max IP pkt size(64K)
489 */
b41477f3 490S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 491S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
492
493S2IO_PARM_INT(napi, 1);
494S2IO_PARM_INT(ufo, 0);
926930b2 495S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
496
497static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
498 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
499static unsigned int rx_ring_sz[MAX_RX_RINGS] =
500 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
501static unsigned int rts_frm_len[MAX_RX_RINGS] =
502 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
503
504module_param_array(tx_fifo_len, uint, NULL, 0);
505module_param_array(rx_ring_sz, uint, NULL, 0);
506module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 507
20346722 508/*
1da177e4 509 * S2IO device table.
20346722 510 * This table lists all the devices that this driver supports.
1da177e4
LT
511 */
512static struct pci_device_id s2io_tbl[] __devinitdata = {
513 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
514 PCI_ANY_ID, PCI_ANY_ID},
515 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
516 PCI_ANY_ID, PCI_ANY_ID},
517 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722 518 PCI_ANY_ID, PCI_ANY_ID},
519 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
520 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
521 {0,}
522};
523
524MODULE_DEVICE_TABLE(pci, s2io_tbl);
525
d796fdb7
LV
526static struct pci_error_handlers s2io_err_handler = {
527 .error_detected = s2io_io_error_detected,
528 .slot_reset = s2io_io_slot_reset,
529 .resume = s2io_io_resume,
530};
531
1da177e4
LT
532static struct pci_driver s2io_driver = {
533 .name = "S2IO",
534 .id_table = s2io_tbl,
535 .probe = s2io_init_nic,
536 .remove = __devexit_p(s2io_rem_nic),
d796fdb7 537 .err_handler = &s2io_err_handler,
1da177e4
LT
538};
539
540/* A simplifier macro used both by init and free shared_mem Fns(). */
541#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
542
3a3d5756
SH
543/* netqueue manipulation helper functions */
544static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
545{
fd2ea0a7
DM
546 if (!sp->config.multiq) {
547 int i;
548
3a3d5756
SH
549 for (i = 0; i < sp->config.tx_fifo_num; i++)
550 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
3a3d5756 551 }
fd2ea0a7 552 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
553}
554
555static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
556{
fd2ea0a7 557 if (!sp->config.multiq)
3a3d5756
SH
558 sp->mac_control.fifos[fifo_no].queue_state =
559 FIFO_QUEUE_STOP;
fd2ea0a7
DM
560
561 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
562}
563
564static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
565{
fd2ea0a7
DM
566 if (!sp->config.multiq) {
567 int i;
568
3a3d5756
SH
569 for (i = 0; i < sp->config.tx_fifo_num; i++)
570 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 571 }
fd2ea0a7 572 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
573}
574
575static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
576{
fd2ea0a7 577 if (!sp->config.multiq)
3a3d5756
SH
578 sp->mac_control.fifos[fifo_no].queue_state =
579 FIFO_QUEUE_START;
fd2ea0a7
DM
580
581 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
582}
583
584static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
585{
fd2ea0a7
DM
586 if (!sp->config.multiq) {
587 int i;
588
3a3d5756
SH
589 for (i = 0; i < sp->config.tx_fifo_num; i++)
590 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 591 }
fd2ea0a7 592 netif_tx_wake_all_queues(sp->dev);
3a3d5756
SH
593}
594
595static inline void s2io_wake_tx_queue(
596 struct fifo_info *fifo, int cnt, u8 multiq)
597{
598
3a3d5756
SH
599 if (multiq) {
600 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
601 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
b19fa1fa 602 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
603 if (netif_queue_stopped(fifo->dev)) {
604 fifo->queue_state = FIFO_QUEUE_START;
605 netif_wake_queue(fifo->dev);
606 }
607 }
608}
609
1da177e4
LT
610/**
611 * init_shared_mem - Allocation and Initialization of Memory
612 * @nic: Device private variable.
20346722 613 * Description: The function allocates all the memory areas shared
614 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
615 * Rx descriptors and the statistics block.
616 */
617
618static int init_shared_mem(struct s2io_nic *nic)
619{
620 u32 size;
621 void *tmp_v_addr, *tmp_v_addr_next;
622 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 623 struct RxD_block *pre_rxd_blk = NULL;
372cc597 624 int i, j, blk_cnt;
1da177e4
LT
625 int lst_size, lst_per_page;
626 struct net_device *dev = nic->dev;
8ae418cf 627 unsigned long tmp;
1ee6dd77 628 struct buffAdd *ba;
1da177e4 629
1ee6dd77 630 struct mac_info *mac_control;
1da177e4 631 struct config_param *config;
491976b2 632 unsigned long long mem_allocated = 0;
1da177e4
LT
633
634 mac_control = &nic->mac_control;
635 config = &nic->config;
636
637
638 /* Allocation and initialization of TXDLs in FIOFs */
639 size = 0;
640 for (i = 0; i < config->tx_fifo_num; i++) {
641 size += config->tx_cfg[i].fifo_len;
642 }
643 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 644 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 645 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 646 return -EINVAL;
1da177e4
LT
647 }
648
2fda096d
SR
649 size = 0;
650 for (i = 0; i < config->tx_fifo_num; i++) {
651 size = config->tx_cfg[i].fifo_len;
652 /*
653 * Legal values are from 2 to 8192
654 */
655 if (size < 2) {
656 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
657 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
658 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
659 "are 2 to 8192\n");
660 return -EINVAL;
661 }
662 }
663
1ee6dd77 664 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
665 lst_per_page = PAGE_SIZE / lst_size;
666
667 for (i = 0; i < config->tx_fifo_num; i++) {
668 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 669 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
bd684e43 670 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
20346722 671 GFP_KERNEL);
672 if (!mac_control->fifos[i].list_info) {
0c61ed5f 673 DBG_PRINT(INFO_DBG,
1da177e4
LT
674 "Malloc failed for list_info\n");
675 return -ENOMEM;
676 }
491976b2 677 mem_allocated += list_holder_size;
1da177e4
LT
678 }
679 for (i = 0; i < config->tx_fifo_num; i++) {
680 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
681 lst_per_page);
20346722 682 mac_control->fifos[i].tx_curr_put_info.offset = 0;
683 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 684 config->tx_cfg[i].fifo_len - 1;
20346722 685 mac_control->fifos[i].tx_curr_get_info.offset = 0;
686 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 687 config->tx_cfg[i].fifo_len - 1;
20346722 688 mac_control->fifos[i].fifo_no = i;
689 mac_control->fifos[i].nic = nic;
fed5eccd 690 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
3a3d5756 691 mac_control->fifos[i].dev = dev;
20346722 692
1da177e4
LT
693 for (j = 0; j < page_num; j++) {
694 int k = 0;
695 dma_addr_t tmp_p;
696 void *tmp_v;
697 tmp_v = pci_alloc_consistent(nic->pdev,
698 PAGE_SIZE, &tmp_p);
699 if (!tmp_v) {
0c61ed5f 700 DBG_PRINT(INFO_DBG,
1da177e4 701 "pci_alloc_consistent ");
0c61ed5f 702 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
1da177e4
LT
703 return -ENOMEM;
704 }
776bd20f 705 /* If we got a zero DMA address(can happen on
706 * certain platforms like PPC), reallocate.
707 * Store virtual address of page we don't want,
708 * to be freed later.
709 */
710 if (!tmp_p) {
711 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 712 DBG_PRINT(INIT_DBG,
776bd20f 713 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 714 DBG_PRINT(INIT_DBG,
6b4d617d 715 "Virtual address %p\n", tmp_v);
776bd20f 716 tmp_v = pci_alloc_consistent(nic->pdev,
717 PAGE_SIZE, &tmp_p);
718 if (!tmp_v) {
0c61ed5f 719 DBG_PRINT(INFO_DBG,
776bd20f 720 "pci_alloc_consistent ");
0c61ed5f 721 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
776bd20f 722 return -ENOMEM;
723 }
491976b2 724 mem_allocated += PAGE_SIZE;
776bd20f 725 }
1da177e4
LT
726 while (k < lst_per_page) {
727 int l = (j * lst_per_page) + k;
728 if (l == config->tx_cfg[i].fifo_len)
20346722 729 break;
730 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 731 tmp_v + (k * lst_size);
20346722 732 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
733 tmp_p + (k * lst_size);
734 k++;
735 }
736 }
737 }
1da177e4 738
2fda096d
SR
739 for (i = 0; i < config->tx_fifo_num; i++) {
740 size = config->tx_cfg[i].fifo_len;
741 mac_control->fifos[i].ufo_in_band_v
742 = kcalloc(size, sizeof(u64), GFP_KERNEL);
743 if (!mac_control->fifos[i].ufo_in_band_v)
744 return -ENOMEM;
745 mem_allocated += (size * sizeof(u64));
746 }
fed5eccd 747
1da177e4
LT
748 /* Allocation and initialization of RXDs in Rings */
749 size = 0;
750 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
751 if (config->rx_cfg[i].num_rxd %
752 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
753 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
754 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
755 i);
756 DBG_PRINT(ERR_DBG, "RxDs per Block");
757 return FAILURE;
758 }
759 size += config->rx_cfg[i].num_rxd;
20346722 760 mac_control->rings[i].block_count =
da6971d8
AR
761 config->rx_cfg[i].num_rxd /
762 (rxd_count[nic->rxd_mode] + 1 );
763 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
764 mac_control->rings[i].block_count;
1da177e4 765 }
da6971d8 766 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 767 size = (size * (sizeof(struct RxD1)));
da6971d8 768 else
1ee6dd77 769 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
770
771 for (i = 0; i < config->rx_ring_num; i++) {
20346722 772 mac_control->rings[i].rx_curr_get_info.block_index = 0;
773 mac_control->rings[i].rx_curr_get_info.offset = 0;
774 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 775 config->rx_cfg[i].num_rxd - 1;
20346722 776 mac_control->rings[i].rx_curr_put_info.block_index = 0;
777 mac_control->rings[i].rx_curr_put_info.offset = 0;
778 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 779 config->rx_cfg[i].num_rxd - 1;
20346722 780 mac_control->rings[i].nic = nic;
781 mac_control->rings[i].ring_no = i;
0425b46a 782 mac_control->rings[i].lro = lro_enable;
20346722 783
da6971d8
AR
784 blk_cnt = config->rx_cfg[i].num_rxd /
785 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
786 /* Allocating all the Rx blocks */
787 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 788 struct rx_block_info *rx_blocks;
da6971d8
AR
789 int l;
790
791 rx_blocks = &mac_control->rings[i].rx_blocks[j];
792 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
793 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
794 &tmp_p_addr);
795 if (tmp_v_addr == NULL) {
796 /*
20346722 797 * In case of failure, free_shared_mem()
798 * is called, which should free any
799 * memory that was alloced till the
1da177e4
LT
800 * failure happened.
801 */
da6971d8 802 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
803 return -ENOMEM;
804 }
491976b2 805 mem_allocated += size;
1da177e4 806 memset(tmp_v_addr, 0, size);
da6971d8
AR
807 rx_blocks->block_virt_addr = tmp_v_addr;
808 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 809 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
810 rxd_count[nic->rxd_mode],
811 GFP_KERNEL);
372cc597
SS
812 if (!rx_blocks->rxds)
813 return -ENOMEM;
8a4bdbaa 814 mem_allocated +=
491976b2 815 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
da6971d8
AR
816 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
817 rx_blocks->rxds[l].virt_addr =
818 rx_blocks->block_virt_addr +
819 (rxd_size[nic->rxd_mode] * l);
820 rx_blocks->rxds[l].dma_addr =
821 rx_blocks->block_dma_addr +
822 (rxd_size[nic->rxd_mode] * l);
823 }
1da177e4
LT
824 }
825 /* Interlinking all Rx Blocks */
826 for (j = 0; j < blk_cnt; j++) {
20346722 827 tmp_v_addr =
828 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 829 tmp_v_addr_next =
20346722 830 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 831 blk_cnt].block_virt_addr;
20346722 832 tmp_p_addr =
833 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 834 tmp_p_addr_next =
20346722 835 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
836 blk_cnt].block_dma_addr;
837
1ee6dd77 838 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
839 pre_rxd_blk->reserved_2_pNext_RxD_block =
840 (unsigned long) tmp_v_addr_next;
1da177e4
LT
841 pre_rxd_blk->pNext_RxD_Blk_physical =
842 (u64) tmp_p_addr_next;
843 }
844 }
6d517a27 845 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
846 /*
847 * Allocation of Storages for buffer addresses in 2BUFF mode
848 * and the buffers as well.
849 */
850 for (i = 0; i < config->rx_ring_num; i++) {
851 blk_cnt = config->rx_cfg[i].num_rxd /
852 (rxd_count[nic->rxd_mode]+ 1);
853 mac_control->rings[i].ba =
1ee6dd77 854 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 855 GFP_KERNEL);
da6971d8 856 if (!mac_control->rings[i].ba)
1da177e4 857 return -ENOMEM;
491976b2 858 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
da6971d8
AR
859 for (j = 0; j < blk_cnt; j++) {
860 int k = 0;
861 mac_control->rings[i].ba[j] =
1ee6dd77 862 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
863 (rxd_count[nic->rxd_mode] + 1)),
864 GFP_KERNEL);
865 if (!mac_control->rings[i].ba[j])
1da177e4 866 return -ENOMEM;
491976b2
SH
867 mem_allocated += (sizeof(struct buffAdd) * \
868 (rxd_count[nic->rxd_mode] + 1));
da6971d8
AR
869 while (k != rxd_count[nic->rxd_mode]) {
870 ba = &mac_control->rings[i].ba[j][k];
871
872 ba->ba_0_org = (void *) kmalloc
873 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
874 if (!ba->ba_0_org)
875 return -ENOMEM;
8a4bdbaa 876 mem_allocated +=
491976b2 877 (BUF0_LEN + ALIGN_SIZE);
da6971d8
AR
878 tmp = (unsigned long)ba->ba_0_org;
879 tmp += ALIGN_SIZE;
880 tmp &= ~((unsigned long) ALIGN_SIZE);
881 ba->ba_0 = (void *) tmp;
882
883 ba->ba_1_org = (void *) kmalloc
884 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
885 if (!ba->ba_1_org)
886 return -ENOMEM;
8a4bdbaa 887 mem_allocated
491976b2 888 += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
889 tmp = (unsigned long) ba->ba_1_org;
890 tmp += ALIGN_SIZE;
891 tmp &= ~((unsigned long) ALIGN_SIZE);
892 ba->ba_1 = (void *) tmp;
893 k++;
894 }
1da177e4
LT
895 }
896 }
897 }
1da177e4
LT
898
899 /* Allocation and initialization of Statistics block */
1ee6dd77 900 size = sizeof(struct stat_block);
1da177e4
LT
901 mac_control->stats_mem = pci_alloc_consistent
902 (nic->pdev, size, &mac_control->stats_mem_phy);
903
904 if (!mac_control->stats_mem) {
20346722 905 /*
906 * In case of failure, free_shared_mem() is called, which
907 * should free any memory that was alloced till the
1da177e4
LT
908 * failure happened.
909 */
910 return -ENOMEM;
911 }
491976b2 912 mem_allocated += size;
1da177e4
LT
913 mac_control->stats_mem_sz = size;
914
915 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 916 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 917 memset(tmp_v_addr, 0, size);
1da177e4
LT
918 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
919 (unsigned long long) tmp_p_addr);
491976b2 920 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
921 return SUCCESS;
922}
923
20346722 924/**
925 * free_shared_mem - Free the allocated Memory
1da177e4
LT
926 * @nic: Device private variable.
927 * Description: This function is to free all memory locations allocated by
928 * the init_shared_mem() function and return it to the kernel.
929 */
930
931static void free_shared_mem(struct s2io_nic *nic)
932{
933 int i, j, blk_cnt, size;
934 void *tmp_v_addr;
935 dma_addr_t tmp_p_addr;
1ee6dd77 936 struct mac_info *mac_control;
1da177e4
LT
937 struct config_param *config;
938 int lst_size, lst_per_page;
8910b49f 939 struct net_device *dev;
491976b2 940 int page_num = 0;
1da177e4
LT
941
942 if (!nic)
943 return;
944
8910b49f
MG
945 dev = nic->dev;
946
1da177e4
LT
947 mac_control = &nic->mac_control;
948 config = &nic->config;
949
1ee6dd77 950 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
951 lst_per_page = PAGE_SIZE / lst_size;
952
953 for (i = 0; i < config->tx_fifo_num; i++) {
491976b2
SH
954 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
955 lst_per_page);
1da177e4
LT
956 for (j = 0; j < page_num; j++) {
957 int mem_blks = (j * lst_per_page);
776bd20f 958 if (!mac_control->fifos[i].list_info)
6aa20a22 959 return;
776bd20f 960 if (!mac_control->fifos[i].list_info[mem_blks].
961 list_virt_addr)
1da177e4
LT
962 break;
963 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722 964 mac_control->fifos[i].
965 list_info[mem_blks].
1da177e4 966 list_virt_addr,
20346722 967 mac_control->fifos[i].
968 list_info[mem_blks].
1da177e4 969 list_phy_addr);
8a4bdbaa 970 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 971 += PAGE_SIZE;
1da177e4 972 }
776bd20f 973 /* If we got a zero DMA address during allocation,
974 * free the page now
975 */
976 if (mac_control->zerodma_virt_addr) {
977 pci_free_consistent(nic->pdev, PAGE_SIZE,
978 mac_control->zerodma_virt_addr,
979 (dma_addr_t)0);
6aa20a22 980 DBG_PRINT(INIT_DBG,
6b4d617d
AM
981 "%s: Freeing TxDL with zero DMA addr. ",
982 dev->name);
983 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
984 mac_control->zerodma_virt_addr);
8a4bdbaa 985 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 986 += PAGE_SIZE;
776bd20f 987 }
20346722 988 kfree(mac_control->fifos[i].list_info);
8a4bdbaa 989 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 990 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1da177e4
LT
991 }
992
1da177e4 993 size = SIZE_OF_BLOCK;
1da177e4 994 for (i = 0; i < config->rx_ring_num; i++) {
20346722 995 blk_cnt = mac_control->rings[i].block_count;
1da177e4 996 for (j = 0; j < blk_cnt; j++) {
20346722 997 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
998 block_virt_addr;
999 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1000 block_dma_addr;
1da177e4
LT
1001 if (tmp_v_addr == NULL)
1002 break;
1003 pci_free_consistent(nic->pdev, size,
1004 tmp_v_addr, tmp_p_addr);
491976b2 1005 nic->mac_control.stats_info->sw_stat.mem_freed += size;
da6971d8 1006 kfree(mac_control->rings[i].rx_blocks[j].rxds);
8a4bdbaa 1007 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1008 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1da177e4
LT
1009 }
1010 }
1011
6d517a27 1012 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
1013 /* Freeing buffer storage addresses in 2BUFF mode. */
1014 for (i = 0; i < config->rx_ring_num; i++) {
1015 blk_cnt = config->rx_cfg[i].num_rxd /
1016 (rxd_count[nic->rxd_mode] + 1);
1017 for (j = 0; j < blk_cnt; j++) {
1018 int k = 0;
1019 if (!mac_control->rings[i].ba[j])
1020 continue;
1021 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 1022 struct buffAdd *ba =
da6971d8
AR
1023 &mac_control->rings[i].ba[j][k];
1024 kfree(ba->ba_0_org);
491976b2
SH
1025 nic->mac_control.stats_info->sw_stat.\
1026 mem_freed += (BUF0_LEN + ALIGN_SIZE);
da6971d8 1027 kfree(ba->ba_1_org);
491976b2
SH
1028 nic->mac_control.stats_info->sw_stat.\
1029 mem_freed += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
1030 k++;
1031 }
1032 kfree(mac_control->rings[i].ba[j]);
9caab458
SS
1033 nic->mac_control.stats_info->sw_stat.mem_freed +=
1034 (sizeof(struct buffAdd) *
1035 (rxd_count[nic->rxd_mode] + 1));
1da177e4 1036 }
da6971d8 1037 kfree(mac_control->rings[i].ba);
8a4bdbaa 1038 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1039 (sizeof(struct buffAdd *) * blk_cnt);
1da177e4 1040 }
1da177e4 1041 }
1da177e4 1042
2fda096d
SR
1043 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1044 if (mac_control->fifos[i].ufo_in_band_v) {
1045 nic->mac_control.stats_info->sw_stat.mem_freed
1046 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1047 kfree(mac_control->fifos[i].ufo_in_band_v);
1048 }
1049 }
1050
1da177e4 1051 if (mac_control->stats_mem) {
2fda096d
SR
1052 nic->mac_control.stats_info->sw_stat.mem_freed +=
1053 mac_control->stats_mem_sz;
1da177e4
LT
1054 pci_free_consistent(nic->pdev,
1055 mac_control->stats_mem_sz,
1056 mac_control->stats_mem,
1057 mac_control->stats_mem_phy);
491976b2 1058 }
1da177e4
LT
1059}
1060
541ae68f 1061/**
1062 * s2io_verify_pci_mode -
1063 */
1064
1ee6dd77 1065static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1066{
1ee6dd77 1067 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1068 register u64 val64 = 0;
1069 int mode;
1070
1071 val64 = readq(&bar0->pci_mode);
1072 mode = (u8)GET_PCI_MODE(val64);
1073
1074 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1075 return -1; /* Unknown PCI mode */
1076 return mode;
1077}
1078
c92ca04b
AR
1079#define NEC_VENID 0x1033
1080#define NEC_DEVID 0x0125
1081static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1082{
1083 struct pci_dev *tdev = NULL;
26d36b64
AC
1084 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1085 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1086 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1087 pci_dev_put(tdev);
c92ca04b 1088 return 1;
7ad62dbc 1089 }
c92ca04b
AR
1090 }
1091 }
1092 return 0;
1093}
541ae68f 1094
7b32a312 1095static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f 1096/**
1097 * s2io_print_pci_mode -
1098 */
1ee6dd77 1099static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1100{
1ee6dd77 1101 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1102 register u64 val64 = 0;
1103 int mode;
1104 struct config_param *config = &nic->config;
1105
1106 val64 = readq(&bar0->pci_mode);
1107 mode = (u8)GET_PCI_MODE(val64);
1108
1109 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1110 return -1; /* Unknown PCI mode */
1111
c92ca04b
AR
1112 config->bus_speed = bus_speed[mode];
1113
1114 if (s2io_on_nec_bridge(nic->pdev)) {
1115 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1116 nic->dev->name);
1117 return mode;
1118 }
1119
541ae68f 1120 if (val64 & PCI_MODE_32_BITS) {
1121 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1122 } else {
1123 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1124 }
1125
1126 switch(mode) {
1127 case PCI_MODE_PCI_33:
1128 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f 1129 break;
1130 case PCI_MODE_PCI_66:
1131 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f 1132 break;
1133 case PCI_MODE_PCIX_M1_66:
1134 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f 1135 break;
1136 case PCI_MODE_PCIX_M1_100:
1137 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f 1138 break;
1139 case PCI_MODE_PCIX_M1_133:
1140 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f 1141 break;
1142 case PCI_MODE_PCIX_M2_66:
1143 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f 1144 break;
1145 case PCI_MODE_PCIX_M2_100:
1146 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f 1147 break;
1148 case PCI_MODE_PCIX_M2_133:
1149 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f 1150 break;
1151 default:
1152 return -1; /* Unsupported bus speed */
1153 }
1154
1155 return mode;
1156}
1157
b7c5678f
RV
1158/**
1159 * init_tti - Initialization transmit traffic interrupt scheme
1160 * @nic: device private variable
1161 * @link: link status (UP/DOWN) used to enable/disable continuous
1162 * transmit interrupts
1163 * Description: The function configures transmit traffic interrupts
1164 * Return Value: SUCCESS on success and
1165 * '-1' on failure
1166 */
1167
0d66afe7 1168static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1169{
1170 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1171 register u64 val64 = 0;
1172 int i;
1173 struct config_param *config;
1174
1175 config = &nic->config;
1176
1177 for (i = 0; i < config->tx_fifo_num; i++) {
1178 /*
1179 * TTI Initialization. Default Tx timer gets us about
1180 * 250 interrupts per sec. Continuous interrupts are enabled
1181 * by default.
1182 */
1183 if (nic->device_type == XFRAME_II_DEVICE) {
1184 int count = (nic->config.bus_speed * 125)/2;
1185 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1186 } else
1187 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1188
1189 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1190 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1191 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1192 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1193 if (i == 0)
1194 if (use_continuous_tx_intrs && (link == LINK_UP))
1195 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1196 writeq(val64, &bar0->tti_data1_mem);
1197
ac731ab6
SH
1198 if (nic->config.intr_type == MSI_X) {
1199 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1200 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1201 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1202 TTI_DATA2_MEM_TX_UFC_D(0x300);
1203 } else {
1204 if ((nic->config.tx_steering_type ==
1205 TX_DEFAULT_STEERING) &&
1206 (config->tx_fifo_num > 1) &&
1207 (i >= nic->udp_fifo_idx) &&
1208 (i < (nic->udp_fifo_idx +
1209 nic->total_udp_fifos)))
1210 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1211 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1212 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1213 TTI_DATA2_MEM_TX_UFC_D(0x120);
1214 else
1215 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1216 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1217 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1218 TTI_DATA2_MEM_TX_UFC_D(0x80);
1219 }
b7c5678f
RV
1220
1221 writeq(val64, &bar0->tti_data2_mem);
1222
1223 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1224 TTI_CMD_MEM_OFFSET(i);
1225 writeq(val64, &bar0->tti_command_mem);
1226
1227 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1228 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1229 return FAILURE;
1230 }
1231
1232 return SUCCESS;
1233}
1234
20346722 1235/**
1236 * init_nic - Initialization of hardware
b7c5678f 1237 * @nic: device private variable
20346722 1238 * Description: The function sequentially configures every block
1239 * of the H/W from their reset values.
1240 * Return Value: SUCCESS on success and
1da177e4
LT
1241 * '-1' on failure (endian settings incorrect).
1242 */
1243
1244static int init_nic(struct s2io_nic *nic)
1245{
1ee6dd77 1246 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1247 struct net_device *dev = nic->dev;
1248 register u64 val64 = 0;
1249 void __iomem *add;
1250 u32 time;
1251 int i, j;
1ee6dd77 1252 struct mac_info *mac_control;
1da177e4 1253 struct config_param *config;
c92ca04b 1254 int dtx_cnt = 0;
1da177e4 1255 unsigned long long mem_share;
20346722 1256 int mem_size;
1da177e4
LT
1257
1258 mac_control = &nic->mac_control;
1259 config = &nic->config;
1260
5e25b9dd 1261 /* to set the swapper controle on the card */
20346722 1262 if(s2io_set_swapper(nic)) {
1da177e4 1263 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
9f74ffde 1264 return -EIO;
1da177e4
LT
1265 }
1266
541ae68f 1267 /*
1268 * Herc requires EOI to be removed from reset before XGXS, so..
1269 */
1270 if (nic->device_type & XFRAME_II_DEVICE) {
1271 val64 = 0xA500000000ULL;
1272 writeq(val64, &bar0->sw_reset);
1273 msleep(500);
1274 val64 = readq(&bar0->sw_reset);
1275 }
1276
1da177e4
LT
1277 /* Remove XGXS from reset state */
1278 val64 = 0;
1279 writeq(val64, &bar0->sw_reset);
1da177e4 1280 msleep(500);
20346722 1281 val64 = readq(&bar0->sw_reset);
1da177e4 1282
7962024e
SH
1283 /* Ensure that it's safe to access registers by checking
1284 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1285 */
1286 if (nic->device_type == XFRAME_II_DEVICE) {
1287 for (i = 0; i < 50; i++) {
1288 val64 = readq(&bar0->adapter_status);
1289 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1290 break;
1291 msleep(10);
1292 }
1293 if (i == 50)
1294 return -ENODEV;
1295 }
1296
1da177e4
LT
1297 /* Enable Receiving broadcasts */
1298 add = &bar0->mac_cfg;
1299 val64 = readq(&bar0->mac_cfg);
1300 val64 |= MAC_RMAC_BCAST_ENABLE;
1301 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1302 writel((u32) val64, add);
1303 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1304 writel((u32) (val64 >> 32), (add + 4));
1305
1306 /* Read registers in all blocks */
1307 val64 = readq(&bar0->mac_int_mask);
1308 val64 = readq(&bar0->mc_int_mask);
1309 val64 = readq(&bar0->xgxs_int_mask);
1310
1311 /* Set MTU */
1312 val64 = dev->mtu;
1313 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1314
541ae68f 1315 if (nic->device_type & XFRAME_II_DEVICE) {
1316 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1317 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1318 &bar0->dtx_control, UF);
541ae68f 1319 if (dtx_cnt & 0x1)
1320 msleep(1); /* Necessary!! */
1da177e4
LT
1321 dtx_cnt++;
1322 }
541ae68f 1323 } else {
c92ca04b
AR
1324 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1325 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1326 &bar0->dtx_control, UF);
1327 val64 = readq(&bar0->dtx_control);
1328 dtx_cnt++;
1da177e4
LT
1329 }
1330 }
1331
1332 /* Tx DMA Initialization */
1333 val64 = 0;
1334 writeq(val64, &bar0->tx_fifo_partition_0);
1335 writeq(val64, &bar0->tx_fifo_partition_1);
1336 writeq(val64, &bar0->tx_fifo_partition_2);
1337 writeq(val64, &bar0->tx_fifo_partition_3);
1338
1339
1340 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1341 val64 |=
b7c5678f 1342 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1da177e4 1343 13) | vBIT(config->tx_cfg[i].fifo_priority,
b7c5678f 1344 ((j * 32) + 5), 3);
1da177e4
LT
1345
1346 if (i == (config->tx_fifo_num - 1)) {
1347 if (i % 2 == 0)
1348 i++;
1349 }
1350
1351 switch (i) {
1352 case 1:
1353 writeq(val64, &bar0->tx_fifo_partition_0);
1354 val64 = 0;
b7c5678f 1355 j = 0;
1da177e4
LT
1356 break;
1357 case 3:
1358 writeq(val64, &bar0->tx_fifo_partition_1);
1359 val64 = 0;
b7c5678f 1360 j = 0;
1da177e4
LT
1361 break;
1362 case 5:
1363 writeq(val64, &bar0->tx_fifo_partition_2);
1364 val64 = 0;
b7c5678f 1365 j = 0;
1da177e4
LT
1366 break;
1367 case 7:
1368 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1369 val64 = 0;
1370 j = 0;
1371 break;
1372 default:
1373 j++;
1da177e4
LT
1374 break;
1375 }
1376 }
1377
5e25b9dd 1378 /*
1379 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1380 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1381 */
541ae68f 1382 if ((nic->device_type == XFRAME_I_DEVICE) &&
44c10138 1383 (nic->pdev->revision < 4))
5e25b9dd 1384 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1385
1da177e4
LT
1386 val64 = readq(&bar0->tx_fifo_partition_0);
1387 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1388 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1389
20346722 1390 /*
1391 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1392 * integrity checking.
1393 */
1394 val64 = readq(&bar0->tx_pa_cfg);
1395 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1396 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1397 writeq(val64, &bar0->tx_pa_cfg);
1398
1399 /* Rx DMA intialization. */
1400 val64 = 0;
1401 for (i = 0; i < config->rx_ring_num; i++) {
1402 val64 |=
1403 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1404 3);
1405 }
1406 writeq(val64, &bar0->rx_queue_priority);
1407
20346722 1408 /*
1409 * Allocating equal share of memory to all the
1da177e4
LT
1410 * configured Rings.
1411 */
1412 val64 = 0;
541ae68f 1413 if (nic->device_type & XFRAME_II_DEVICE)
1414 mem_size = 32;
1415 else
1416 mem_size = 64;
1417
1da177e4
LT
1418 for (i = 0; i < config->rx_ring_num; i++) {
1419 switch (i) {
1420 case 0:
20346722 1421 mem_share = (mem_size / config->rx_ring_num +
1422 mem_size % config->rx_ring_num);
1da177e4
LT
1423 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1424 continue;
1425 case 1:
20346722 1426 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1427 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1428 continue;
1429 case 2:
20346722 1430 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1431 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1432 continue;
1433 case 3:
20346722 1434 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1435 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1436 continue;
1437 case 4:
20346722 1438 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1439 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1440 continue;
1441 case 5:
20346722 1442 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1443 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1444 continue;
1445 case 6:
20346722 1446 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1447 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1448 continue;
1449 case 7:
20346722 1450 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1451 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1452 continue;
1453 }
1454 }
1455 writeq(val64, &bar0->rx_queue_cfg);
1456
20346722 1457 /*
5e25b9dd 1458 * Filling Tx round robin registers
b7c5678f 1459 * as per the number of FIFOs for equal scheduling priority
1da177e4 1460 */
5e25b9dd 1461 switch (config->tx_fifo_num) {
1462 case 1:
b7c5678f 1463 val64 = 0x0;
5e25b9dd 1464 writeq(val64, &bar0->tx_w_round_robin_0);
1465 writeq(val64, &bar0->tx_w_round_robin_1);
1466 writeq(val64, &bar0->tx_w_round_robin_2);
1467 writeq(val64, &bar0->tx_w_round_robin_3);
1468 writeq(val64, &bar0->tx_w_round_robin_4);
1469 break;
1470 case 2:
b7c5678f 1471 val64 = 0x0001000100010001ULL;
5e25b9dd 1472 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1473 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1474 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1475 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1476 val64 = 0x0001000100000000ULL;
5e25b9dd 1477 writeq(val64, &bar0->tx_w_round_robin_4);
1478 break;
1479 case 3:
b7c5678f 1480 val64 = 0x0001020001020001ULL;
5e25b9dd 1481 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1482 val64 = 0x0200010200010200ULL;
5e25b9dd 1483 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1484 val64 = 0x0102000102000102ULL;
5e25b9dd 1485 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1486 val64 = 0x0001020001020001ULL;
5e25b9dd 1487 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1488 val64 = 0x0200010200000000ULL;
5e25b9dd 1489 writeq(val64, &bar0->tx_w_round_robin_4);
1490 break;
1491 case 4:
b7c5678f 1492 val64 = 0x0001020300010203ULL;
5e25b9dd 1493 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1494 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1495 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1496 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1497 val64 = 0x0001020300000000ULL;
5e25b9dd 1498 writeq(val64, &bar0->tx_w_round_robin_4);
1499 break;
1500 case 5:
b7c5678f 1501 val64 = 0x0001020304000102ULL;
5e25b9dd 1502 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1503 val64 = 0x0304000102030400ULL;
5e25b9dd 1504 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1505 val64 = 0x0102030400010203ULL;
5e25b9dd 1506 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1507 val64 = 0x0400010203040001ULL;
5e25b9dd 1508 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1509 val64 = 0x0203040000000000ULL;
5e25b9dd 1510 writeq(val64, &bar0->tx_w_round_robin_4);
1511 break;
1512 case 6:
b7c5678f 1513 val64 = 0x0001020304050001ULL;
5e25b9dd 1514 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1515 val64 = 0x0203040500010203ULL;
5e25b9dd 1516 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1517 val64 = 0x0405000102030405ULL;
5e25b9dd 1518 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1519 val64 = 0x0001020304050001ULL;
5e25b9dd 1520 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1521 val64 = 0x0203040500000000ULL;
5e25b9dd 1522 writeq(val64, &bar0->tx_w_round_robin_4);
1523 break;
1524 case 7:
b7c5678f 1525 val64 = 0x0001020304050600ULL;
5e25b9dd 1526 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1527 val64 = 0x0102030405060001ULL;
5e25b9dd 1528 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1529 val64 = 0x0203040506000102ULL;
5e25b9dd 1530 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1531 val64 = 0x0304050600010203ULL;
5e25b9dd 1532 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1533 val64 = 0x0405060000000000ULL;
5e25b9dd 1534 writeq(val64, &bar0->tx_w_round_robin_4);
1535 break;
1536 case 8:
b7c5678f 1537 val64 = 0x0001020304050607ULL;
5e25b9dd 1538 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1539 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1540 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1541 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1542 val64 = 0x0001020300000000ULL;
5e25b9dd 1543 writeq(val64, &bar0->tx_w_round_robin_4);
1544 break;
1545 }
1546
b41477f3 1547 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1548 val64 = readq(&bar0->tx_fifo_partition_0);
1549 val64 |= (TX_FIFO_PARTITION_EN);
1550 writeq(val64, &bar0->tx_fifo_partition_0);
1551
5e25b9dd 1552 /* Filling the Rx round robin registers as per the
0425b46a
SH
1553 * number of Rings and steering based on QoS with
1554 * equal priority.
1555 */
5e25b9dd 1556 switch (config->rx_ring_num) {
1557 case 1:
0425b46a
SH
1558 val64 = 0x0;
1559 writeq(val64, &bar0->rx_w_round_robin_0);
1560 writeq(val64, &bar0->rx_w_round_robin_1);
1561 writeq(val64, &bar0->rx_w_round_robin_2);
1562 writeq(val64, &bar0->rx_w_round_robin_3);
1563 writeq(val64, &bar0->rx_w_round_robin_4);
1564
5e25b9dd 1565 val64 = 0x8080808080808080ULL;
1566 writeq(val64, &bar0->rts_qos_steering);
1567 break;
1568 case 2:
0425b46a 1569 val64 = 0x0001000100010001ULL;
5e25b9dd 1570 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1571 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1572 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1573 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1574 val64 = 0x0001000100000000ULL;
5e25b9dd 1575 writeq(val64, &bar0->rx_w_round_robin_4);
1576
1577 val64 = 0x8080808040404040ULL;
1578 writeq(val64, &bar0->rts_qos_steering);
1579 break;
1580 case 3:
0425b46a 1581 val64 = 0x0001020001020001ULL;
5e25b9dd 1582 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1583 val64 = 0x0200010200010200ULL;
5e25b9dd 1584 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1585 val64 = 0x0102000102000102ULL;
5e25b9dd 1586 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1587 val64 = 0x0001020001020001ULL;
5e25b9dd 1588 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1589 val64 = 0x0200010200000000ULL;
5e25b9dd 1590 writeq(val64, &bar0->rx_w_round_robin_4);
1591
1592 val64 = 0x8080804040402020ULL;
1593 writeq(val64, &bar0->rts_qos_steering);
1594 break;
1595 case 4:
0425b46a 1596 val64 = 0x0001020300010203ULL;
5e25b9dd 1597 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1598 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1599 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1600 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1601 val64 = 0x0001020300000000ULL;
5e25b9dd 1602 writeq(val64, &bar0->rx_w_round_robin_4);
1603
1604 val64 = 0x8080404020201010ULL;
1605 writeq(val64, &bar0->rts_qos_steering);
1606 break;
1607 case 5:
0425b46a 1608 val64 = 0x0001020304000102ULL;
5e25b9dd 1609 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1610 val64 = 0x0304000102030400ULL;
5e25b9dd 1611 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1612 val64 = 0x0102030400010203ULL;
5e25b9dd 1613 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1614 val64 = 0x0400010203040001ULL;
5e25b9dd 1615 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1616 val64 = 0x0203040000000000ULL;
5e25b9dd 1617 writeq(val64, &bar0->rx_w_round_robin_4);
1618
1619 val64 = 0x8080404020201008ULL;
1620 writeq(val64, &bar0->rts_qos_steering);
1621 break;
1622 case 6:
0425b46a 1623 val64 = 0x0001020304050001ULL;
5e25b9dd 1624 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1625 val64 = 0x0203040500010203ULL;
5e25b9dd 1626 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1627 val64 = 0x0405000102030405ULL;
5e25b9dd 1628 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1629 val64 = 0x0001020304050001ULL;
5e25b9dd 1630 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1631 val64 = 0x0203040500000000ULL;
5e25b9dd 1632 writeq(val64, &bar0->rx_w_round_robin_4);
1633
1634 val64 = 0x8080404020100804ULL;
1635 writeq(val64, &bar0->rts_qos_steering);
1636 break;
1637 case 7:
0425b46a 1638 val64 = 0x0001020304050600ULL;
5e25b9dd 1639 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1640 val64 = 0x0102030405060001ULL;
5e25b9dd 1641 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1642 val64 = 0x0203040506000102ULL;
5e25b9dd 1643 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1644 val64 = 0x0304050600010203ULL;
5e25b9dd 1645 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1646 val64 = 0x0405060000000000ULL;
5e25b9dd 1647 writeq(val64, &bar0->rx_w_round_robin_4);
1648
1649 val64 = 0x8080402010080402ULL;
1650 writeq(val64, &bar0->rts_qos_steering);
1651 break;
1652 case 8:
0425b46a 1653 val64 = 0x0001020304050607ULL;
5e25b9dd 1654 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1655 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1656 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1657 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1658 val64 = 0x0001020300000000ULL;
5e25b9dd 1659 writeq(val64, &bar0->rx_w_round_robin_4);
1660
1661 val64 = 0x8040201008040201ULL;
1662 writeq(val64, &bar0->rts_qos_steering);
1663 break;
1664 }
1da177e4
LT
1665
1666 /* UDP Fix */
1667 val64 = 0;
20346722 1668 for (i = 0; i < 8; i++)
1da177e4
LT
1669 writeq(val64, &bar0->rts_frm_len_n[i]);
1670
5e25b9dd 1671 /* Set the default rts frame length for the rings configured */
1672 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1673 for (i = 0 ; i < config->rx_ring_num ; i++)
1674 writeq(val64, &bar0->rts_frm_len_n[i]);
1675
1676 /* Set the frame length for the configured rings
1677 * desired by the user
1678 */
1679 for (i = 0; i < config->rx_ring_num; i++) {
1680 /* If rts_frm_len[i] == 0 then it is assumed that user not
1681 * specified frame length steering.
1682 * If the user provides the frame length then program
1683 * the rts_frm_len register for those values or else
1684 * leave it as it is.
1685 */
1686 if (rts_frm_len[i] != 0) {
1687 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1688 &bar0->rts_frm_len_n[i]);
1689 }
1690 }
8a4bdbaa 1691
9fc93a41
SS
1692 /* Disable differentiated services steering logic */
1693 for (i = 0; i < 64; i++) {
1694 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1695 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1696 dev->name);
1697 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
9f74ffde 1698 return -ENODEV;
9fc93a41
SS
1699 }
1700 }
1701
20346722 1702 /* Program statistics memory */
1da177e4 1703 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1704
541ae68f 1705 if (nic->device_type == XFRAME_II_DEVICE) {
1706 val64 = STAT_BC(0x320);
1707 writeq(val64, &bar0->stat_byte_cnt);
1708 }
1709
20346722 1710 /*
1da177e4
LT
1711 * Initializing the sampling rate for the device to calculate the
1712 * bandwidth utilization.
1713 */
1714 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1715 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1716 writeq(val64, &bar0->mac_link_util);
1717
20346722 1718 /*
1719 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1720 * Scheme.
1721 */
1da177e4 1722
b7c5678f
RV
1723 /* Initialize TTI */
1724 if (SUCCESS != init_tti(nic, nic->last_link_state))
1725 return -ENODEV;
1da177e4 1726
8a4bdbaa
SS
1727 /* RTI Initialization */
1728 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1729 /*
8a4bdbaa
SS
1730 * Programmed to generate Apprx 500 Intrs per
1731 * second
1732 */
1733 int count = (nic->config.bus_speed * 125)/4;
1734 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1735 } else
1736 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1737 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1738 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1739 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1740
1741 writeq(val64, &bar0->rti_data1_mem);
1742
1743 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1744 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1745 if (nic->config.intr_type == MSI_X)
1746 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1747 RTI_DATA2_MEM_RX_UFC_D(0x40));
1748 else
1749 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1750 RTI_DATA2_MEM_RX_UFC_D(0x80));
1751 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1752
8a4bdbaa
SS
1753 for (i = 0; i < config->rx_ring_num; i++) {
1754 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1755 | RTI_CMD_MEM_OFFSET(i);
1756 writeq(val64, &bar0->rti_command_mem);
1da177e4 1757
8a4bdbaa
SS
1758 /*
1759 * Once the operation completes, the Strobe bit of the
1760 * command register will be reset. We poll for this
1761 * particular condition. We wait for a maximum of 500ms
1762 * for the operation to complete, if it's not complete
1763 * by then we return error.
1764 */
1765 time = 0;
1766 while (TRUE) {
1767 val64 = readq(&bar0->rti_command_mem);
1768 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1769 break;
b6e3f982 1770
8a4bdbaa
SS
1771 if (time > 10) {
1772 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1773 dev->name);
9f74ffde 1774 return -ENODEV;
b6e3f982 1775 }
8a4bdbaa
SS
1776 time++;
1777 msleep(50);
1da177e4 1778 }
1da177e4
LT
1779 }
1780
20346722 1781 /*
1782 * Initializing proper values as Pause threshold into all
1da177e4
LT
1783 * the 8 Queues on Rx side.
1784 */
1785 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1786 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1787
1788 /* Disable RMAC PAD STRIPPING */
509a2671 1789 add = &bar0->mac_cfg;
1da177e4
LT
1790 val64 = readq(&bar0->mac_cfg);
1791 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1792 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1793 writel((u32) (val64), add);
1794 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1795 writel((u32) (val64 >> 32), (add + 4));
1796 val64 = readq(&bar0->mac_cfg);
1797
7d3d0439
RA
1798 /* Enable FCS stripping by adapter */
1799 add = &bar0->mac_cfg;
1800 val64 = readq(&bar0->mac_cfg);
1801 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1802 if (nic->device_type == XFRAME_II_DEVICE)
1803 writeq(val64, &bar0->mac_cfg);
1804 else {
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806 writel((u32) (val64), add);
1807 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1808 writel((u32) (val64 >> 32), (add + 4));
1809 }
1810
20346722 1811 /*
1812 * Set the time value to be inserted in the pause frame
1da177e4
LT
1813 * generated by xena.
1814 */
1815 val64 = readq(&bar0->rmac_pause_cfg);
1816 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1817 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1818 writeq(val64, &bar0->rmac_pause_cfg);
1819
20346722 1820 /*
1da177e4
LT
1821 * Set the Threshold Limit for Generating the pause frame
1822 * If the amount of data in any Queue exceeds ratio of
1823 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1824 * pause frame is generated
1825 */
1826 val64 = 0;
1827 for (i = 0; i < 4; i++) {
1828 val64 |=
1829 (((u64) 0xFF00 | nic->mac_control.
1830 mc_pause_threshold_q0q3)
1831 << (i * 2 * 8));
1832 }
1833 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1834
1835 val64 = 0;
1836 for (i = 0; i < 4; i++) {
1837 val64 |=
1838 (((u64) 0xFF00 | nic->mac_control.
1839 mc_pause_threshold_q4q7)
1840 << (i * 2 * 8));
1841 }
1842 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1843
20346722 1844 /*
1845 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1846 * exceeded the limit pointed by shared_splits
1847 */
1848 val64 = readq(&bar0->pic_control);
1849 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1850 writeq(val64, &bar0->pic_control);
1851
863c11a9
AR
1852 if (nic->config.bus_speed == 266) {
1853 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1854 writeq(0x0, &bar0->read_retry_delay);
1855 writeq(0x0, &bar0->write_retry_delay);
1856 }
1857
541ae68f 1858 /*
1859 * Programming the Herc to split every write transaction
1860 * that does not start on an ADB to reduce disconnects.
1861 */
1862 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1863 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1864 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1865 writeq(val64, &bar0->misc_control);
1866 val64 = readq(&bar0->pic_control2);
b7b5a128 1867 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1868 writeq(val64, &bar0->pic_control2);
541ae68f 1869 }
c92ca04b
AR
1870 if (strstr(nic->product_name, "CX4")) {
1871 val64 = TMAC_AVG_IPG(0x17);
1872 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d 1873 }
1874
1da177e4
LT
1875 return SUCCESS;
1876}
a371a07d 1877#define LINK_UP_DOWN_INTERRUPT 1
1878#define MAC_RMAC_ERR_TIMER 2
1879
1ee6dd77 1880static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1881{
1882 if (nic->device_type == XFRAME_II_DEVICE)
1883 return LINK_UP_DOWN_INTERRUPT;
1884 else
1885 return MAC_RMAC_ERR_TIMER;
1886}
8116f3cf 1887
9caab458
SS
1888/**
1889 * do_s2io_write_bits - update alarm bits in alarm register
1890 * @value: alarm bits
1891 * @flag: interrupt status
1892 * @addr: address value
1893 * Description: update alarm bits in alarm register
1894 * Return Value:
1895 * NONE.
1896 */
1897static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1898{
1899 u64 temp64;
1900
1901 temp64 = readq(addr);
1902
1903 if(flag == ENABLE_INTRS)
1904 temp64 &= ~((u64) value);
1905 else
1906 temp64 |= ((u64) value);
1907 writeq(temp64, addr);
1908}
1da177e4 1909
43b7c451 1910static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1911{
1912 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1913 register u64 gen_int_mask = 0;
01e16faa 1914 u64 interruptible;
9caab458 1915
01e16faa 1916 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
9caab458
SS
1917 if (mask & TX_DMA_INTR) {
1918
1919 gen_int_mask |= TXDMA_INT_M;
1920
1921 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1922 TXDMA_PCC_INT | TXDMA_TTI_INT |
1923 TXDMA_LSO_INT | TXDMA_TPA_INT |
1924 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1925
1926 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1927 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1928 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1929 &bar0->pfc_err_mask);
1930
1931 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1932 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1933 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1934
1935 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1936 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1937 PCC_N_SERR | PCC_6_COF_OV_ERR |
1938 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1939 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1940 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1941
1942 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1943 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1944
1945 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1946 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1947 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1948 flag, &bar0->lso_err_mask);
1949
1950 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1951 flag, &bar0->tpa_err_mask);
1952
1953 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1954
1955 }
1956
1957 if (mask & TX_MAC_INTR) {
1958 gen_int_mask |= TXMAC_INT_M;
1959 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1960 &bar0->mac_int_mask);
1961 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1962 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1963 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1964 flag, &bar0->mac_tmac_err_mask);
1965 }
1966
1967 if (mask & TX_XGXS_INTR) {
1968 gen_int_mask |= TXXGXS_INT_M;
1969 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1970 &bar0->xgxs_int_mask);
1971 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1972 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1973 flag, &bar0->xgxs_txgxs_err_mask);
1974 }
1975
1976 if (mask & RX_DMA_INTR) {
1977 gen_int_mask |= RXDMA_INT_M;
1978 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1979 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1980 flag, &bar0->rxdma_int_mask);
1981 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1982 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1983 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1984 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1985 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1986 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1987 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1988 &bar0->prc_pcix_err_mask);
1989 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1990 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1991 &bar0->rpa_err_mask);
1992 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1993 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1994 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1995 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1996 flag, &bar0->rda_err_mask);
1997 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1998 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1999 flag, &bar0->rti_err_mask);
2000 }
2001
2002 if (mask & RX_MAC_INTR) {
2003 gen_int_mask |= RXMAC_INT_M;
2004 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2005 &bar0->mac_int_mask);
01e16faa 2006 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
9caab458 2007 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
01e16faa
SH
2008 RMAC_DOUBLE_ECC_ERR;
2009 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2010 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2011 do_s2io_write_bits(interruptible,
9caab458
SS
2012 flag, &bar0->mac_rmac_err_mask);
2013 }
2014
2015 if (mask & RX_XGXS_INTR)
2016 {
2017 gen_int_mask |= RXXGXS_INT_M;
2018 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2019 &bar0->xgxs_int_mask);
2020 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2021 &bar0->xgxs_rxgxs_err_mask);
2022 }
2023
2024 if (mask & MC_INTR) {
2025 gen_int_mask |= MC_INT_M;
2026 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2027 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2028 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2029 &bar0->mc_err_mask);
2030 }
2031 nic->general_int_mask = gen_int_mask;
2032
2033 /* Remove this line when alarm interrupts are enabled */
2034 nic->general_int_mask = 0;
2035}
20346722 2036/**
2037 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
2038 * @nic: device private variable,
2039 * @mask: A mask indicating which Intr block must be modified and,
2040 * @flag: A flag indicating whether to enable or disable the Intrs.
2041 * Description: This function will either disable or enable the interrupts
20346722 2042 * depending on the flag argument. The mask argument can be used to
2043 * enable/disable any Intr block.
1da177e4
LT
2044 * Return Value: NONE.
2045 */
2046
2047static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2048{
1ee6dd77 2049 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2050 register u64 temp64 = 0, intr_mask = 0;
2051
2052 intr_mask = nic->general_int_mask;
1da177e4
LT
2053
2054 /* Top level interrupt classification */
2055 /* PIC Interrupts */
9caab458 2056 if (mask & TX_PIC_INTR) {
1da177e4 2057 /* Enable PIC Intrs in the general intr mask register */
9caab458 2058 intr_mask |= TXPIC_INT_M;
1da177e4 2059 if (flag == ENABLE_INTRS) {
20346722 2060 /*
a371a07d 2061 * If Hercules adapter enable GPIO otherwise
b41477f3 2062 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722 2063 * interrupts for now.
2064 * TODO
1da177e4 2065 */
a371a07d 2066 if (s2io_link_fault_indication(nic) ==
2067 LINK_UP_DOWN_INTERRUPT ) {
9caab458
SS
2068 do_s2io_write_bits(PIC_INT_GPIO, flag,
2069 &bar0->pic_int_mask);
2070 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2071 &bar0->gpio_int_mask);
2072 } else
a371a07d 2073 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2074 } else if (flag == DISABLE_INTRS) {
20346722 2075 /*
2076 * Disable PIC Intrs in the general
2077 * intr mask register
1da177e4
LT
2078 */
2079 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2080 }
2081 }
2082
1da177e4
LT
2083 /* Tx traffic interrupts */
2084 if (mask & TX_TRAFFIC_INTR) {
9caab458 2085 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2086 if (flag == ENABLE_INTRS) {
20346722 2087 /*
1da177e4 2088 * Enable all the Tx side interrupts
20346722 2089 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2090 */
2091 writeq(0x0, &bar0->tx_traffic_mask);
2092 } else if (flag == DISABLE_INTRS) {
20346722 2093 /*
2094 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2095 * register.
2096 */
2097 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2098 }
2099 }
2100
2101 /* Rx traffic interrupts */
2102 if (mask & RX_TRAFFIC_INTR) {
9caab458 2103 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2104 if (flag == ENABLE_INTRS) {
1da177e4
LT
2105 /* writing 0 Enables all 8 RX interrupt levels */
2106 writeq(0x0, &bar0->rx_traffic_mask);
2107 } else if (flag == DISABLE_INTRS) {
20346722 2108 /*
2109 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2110 * register.
2111 */
2112 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2113 }
2114 }
9caab458
SS
2115
2116 temp64 = readq(&bar0->general_int_mask);
2117 if (flag == ENABLE_INTRS)
2118 temp64 &= ~((u64) intr_mask);
2119 else
2120 temp64 = DISABLE_ALL_INTRS;
2121 writeq(temp64, &bar0->general_int_mask);
2122
2123 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2124}
2125
19a60522
SS
2126/**
2127 * verify_pcc_quiescent- Checks for PCC quiescent state
2128 * Return: 1 If PCC is quiescence
2129 * 0 If PCC is not quiescence
2130 */
1ee6dd77 2131static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2132{
19a60522 2133 int ret = 0, herc;
1ee6dd77 2134 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2135 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2136
19a60522 2137 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 2138
2139 if (flag == FALSE) {
44c10138 2140 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2141 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2142 ret = 1;
19a60522
SS
2143 } else {
2144 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2145 ret = 1;
20346722 2146 }
2147 } else {
44c10138 2148 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2149 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2150 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2151 ret = 1;
5e25b9dd 2152 } else {
2153 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2154 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2155 ret = 1;
20346722 2156 }
2157 }
2158
2159 return ret;
2160}
2161/**
2162 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2163 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2164 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2165 * differs and the calling function passes the input argument flag to
2166 * indicate this.
20346722 2167 * Return: 1 If xena is quiescence
1da177e4
LT
2168 * 0 If Xena is not quiescence
2169 */
2170
1ee6dd77 2171static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2172{
19a60522 2173 int mode;
1ee6dd77 2174 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2175 u64 val64 = readq(&bar0->adapter_status);
2176 mode = s2io_verify_pci_mode(sp);
1da177e4 2177
19a60522
SS
2178 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2179 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2180 return 0;
2181 }
2182 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2183 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2184 return 0;
2185 }
2186 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2187 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2188 return 0;
2189 }
2190 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2191 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2192 return 0;
2193 }
2194 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2195 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2196 return 0;
2197 }
2198 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2199 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2200 return 0;
2201 }
2202 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2203 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2204 return 0;
2205 }
2206 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2207 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2208 return 0;
1da177e4
LT
2209 }
2210
19a60522
SS
2211 /*
2212 * In PCI 33 mode, the P_PLL is not used, and therefore,
2213 * the the P_PLL_LOCK bit in the adapter_status register will
2214 * not be asserted.
2215 */
2216 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2217 sp->device_type == XFRAME_II_DEVICE && mode !=
2218 PCI_MODE_PCI_33) {
2219 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2220 return 0;
2221 }
2222 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2223 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2224 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2225 return 0;
2226 }
2227 return 1;
1da177e4
LT
2228}
2229
2230/**
2231 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2232 * @sp: Pointer to device specifc structure
20346722 2233 * Description :
1da177e4
LT
2234 * New procedure to clear mac address reading problems on Alpha platforms
2235 *
2236 */
2237
1ee6dd77 2238static void fix_mac_address(struct s2io_nic * sp)
1da177e4 2239{
1ee6dd77 2240 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2241 u64 val64;
2242 int i = 0;
2243
2244 while (fix_mac[i] != END_SIGN) {
2245 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2246 udelay(10);
1da177e4
LT
2247 val64 = readq(&bar0->gpio_control);
2248 }
2249}
2250
2251/**
20346722 2252 * start_nic - Turns the device on
1da177e4 2253 * @nic : device private variable.
20346722 2254 * Description:
2255 * This function actually turns the device on. Before this function is
2256 * called,all Registers are configured from their reset states
2257 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2258 * calling this function, the device interrupts are cleared and the NIC is
2259 * literally switched on by writing into the adapter control register.
20346722 2260 * Return Value:
1da177e4
LT
2261 * SUCCESS on success and -1 on failure.
2262 */
2263
2264static int start_nic(struct s2io_nic *nic)
2265{
1ee6dd77 2266 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2267 struct net_device *dev = nic->dev;
2268 register u64 val64 = 0;
20346722 2269 u16 subid, i;
1ee6dd77 2270 struct mac_info *mac_control;
1da177e4
LT
2271 struct config_param *config;
2272
2273 mac_control = &nic->mac_control;
2274 config = &nic->config;
2275
2276 /* PRC Initialization and configuration */
2277 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2278 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
2279 &bar0->prc_rxd0_n[i]);
2280
2281 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2282 if (nic->rxd_mode == RXD_MODE_1)
2283 val64 |= PRC_CTRL_RC_ENABLED;
2284 else
2285 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2286 if (nic->device_type == XFRAME_II_DEVICE)
2287 val64 |= PRC_CTRL_GROUP_READS;
2288 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2289 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2290 writeq(val64, &bar0->prc_ctrl_n[i]);
2291 }
2292
da6971d8
AR
2293 if (nic->rxd_mode == RXD_MODE_3B) {
2294 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2295 val64 = readq(&bar0->rx_pa_cfg);
2296 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2297 writeq(val64, &bar0->rx_pa_cfg);
2298 }
1da177e4 2299
926930b2
SS
2300 if (vlan_tag_strip == 0) {
2301 val64 = readq(&bar0->rx_pa_cfg);
2302 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2303 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 2304 nic->vlan_strip_flag = 0;
926930b2
SS
2305 }
2306
20346722 2307 /*
1da177e4
LT
2308 * Enabling MC-RLDRAM. After enabling the device, we timeout
2309 * for around 100ms, which is approximately the time required
2310 * for the device to be ready for operation.
2311 */
2312 val64 = readq(&bar0->mc_rldram_mrs);
2313 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2314 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2315 val64 = readq(&bar0->mc_rldram_mrs);
2316
20346722 2317 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2318
2319 /* Enabling ECC Protection. */
2320 val64 = readq(&bar0->adapter_control);
2321 val64 &= ~ADAPTER_ECC_EN;
2322 writeq(val64, &bar0->adapter_control);
2323
20346722 2324 /*
2325 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2326 * it.
2327 */
2328 val64 = readq(&bar0->adapter_status);
19a60522 2329 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2330 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2331 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2332 (unsigned long long) val64);
2333 return FAILURE;
2334 }
2335
20346722 2336 /*
1da177e4 2337 * With some switches, link might be already up at this point.
20346722 2338 * Because of this weird behavior, when we enable laser,
2339 * we may not get link. We need to handle this. We cannot
2340 * figure out which switch is misbehaving. So we are forced to
2341 * make a global change.
1da177e4
LT
2342 */
2343
2344 /* Enabling Laser. */
2345 val64 = readq(&bar0->adapter_control);
2346 val64 |= ADAPTER_EOI_TX_ON;
2347 writeq(val64, &bar0->adapter_control);
2348
c92ca04b
AR
2349 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2350 /*
2351 * Dont see link state interrupts initally on some switches,
2352 * so directly scheduling the link state task here.
2353 */
2354 schedule_work(&nic->set_link_task);
2355 }
1da177e4
LT
2356 /* SXE-002: Initialize link and activity LED */
2357 subid = nic->pdev->subsystem_device;
541ae68f 2358 if (((subid & 0xFF) >= 0x07) &&
2359 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2360 val64 = readq(&bar0->gpio_control);
2361 val64 |= 0x0000800000000000ULL;
2362 writeq(val64, &bar0->gpio_control);
2363 val64 = 0x0411040400000000ULL;
509a2671 2364 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2365 }
2366
1da177e4
LT
2367 return SUCCESS;
2368}
fed5eccd
AR
2369/**
2370 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2371 */
1ee6dd77
RB
2372static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2373 TxD *txdlp, int get_off)
fed5eccd 2374{
1ee6dd77 2375 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2376 struct sk_buff *skb;
1ee6dd77 2377 struct TxD *txds;
fed5eccd
AR
2378 u16 j, frg_cnt;
2379
2380 txds = txdlp;
2fda096d 2381 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
fed5eccd
AR
2382 pci_unmap_single(nic->pdev, (dma_addr_t)
2383 txds->Buffer_Pointer, sizeof(u64),
2384 PCI_DMA_TODEVICE);
2385 txds++;
2386 }
2387
2388 skb = (struct sk_buff *) ((unsigned long)
2389 txds->Host_Control);
2390 if (!skb) {
1ee6dd77 2391 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2392 return NULL;
2393 }
2394 pci_unmap_single(nic->pdev, (dma_addr_t)
2395 txds->Buffer_Pointer,
2396 skb->len - skb->data_len,
2397 PCI_DMA_TODEVICE);
2398 frg_cnt = skb_shinfo(skb)->nr_frags;
2399 if (frg_cnt) {
2400 txds++;
2401 for (j = 0; j < frg_cnt; j++, txds++) {
2402 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2403 if (!txds->Buffer_Pointer)
2404 break;
6aa20a22 2405 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2406 txds->Buffer_Pointer,
2407 frag->size, PCI_DMA_TODEVICE);
2408 }
2409 }
1ee6dd77 2410 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2411 return(skb);
2412}
1da177e4 2413
20346722 2414/**
2415 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2416 * @nic : device private variable.
20346722 2417 * Description:
1da177e4 2418 * Free all queued Tx buffers.
20346722 2419 * Return Value: void
1da177e4
LT
2420*/
2421
2422static void free_tx_buffers(struct s2io_nic *nic)
2423{
2424 struct net_device *dev = nic->dev;
2425 struct sk_buff *skb;
1ee6dd77 2426 struct TxD *txdp;
1da177e4 2427 int i, j;
1ee6dd77 2428 struct mac_info *mac_control;
1da177e4 2429 struct config_param *config;
fed5eccd 2430 int cnt = 0;
1da177e4
LT
2431
2432 mac_control = &nic->mac_control;
2433 config = &nic->config;
2434
2435 for (i = 0; i < config->tx_fifo_num; i++) {
2fda096d
SR
2436 unsigned long flags;
2437 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
b35b3b49 2438 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
491976b2
SH
2439 txdp = (struct TxD *) \
2440 mac_control->fifos[i].list_info[j].list_virt_addr;
fed5eccd
AR
2441 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2442 if (skb) {
8a4bdbaa 2443 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 2444 += skb->truesize;
fed5eccd
AR
2445 dev_kfree_skb(skb);
2446 cnt++;
1da177e4 2447 }
1da177e4
LT
2448 }
2449 DBG_PRINT(INTR_DBG,
2450 "%s:forcibly freeing %d skbs on FIFO%d\n",
2451 dev->name, cnt, i);
20346722 2452 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2453 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2fda096d 2454 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
1da177e4
LT
2455 }
2456}
2457
20346722 2458/**
2459 * stop_nic - To stop the nic
1da177e4 2460 * @nic ; device private variable.
20346722 2461 * Description:
2462 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2463 * function does. This function is called to stop the device.
2464 * Return Value:
2465 * void.
2466 */
2467
2468static void stop_nic(struct s2io_nic *nic)
2469{
1ee6dd77 2470 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2471 register u64 val64 = 0;
5d3213cc 2472 u16 interruptible;
1ee6dd77 2473 struct mac_info *mac_control;
1da177e4
LT
2474 struct config_param *config;
2475
2476 mac_control = &nic->mac_control;
2477 config = &nic->config;
2478
2479 /* Disable all interrupts */
9caab458 2480 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2481 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2482 interruptible |= TX_PIC_INTR;
1da177e4
LT
2483 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484
5d3213cc
AR
2485 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486 val64 = readq(&bar0->adapter_control);
2487 val64 &= ~(ADAPTER_CNTL_EN);
2488 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2489}
2490
20346722 2491/**
2492 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2493 * @ring_info: per ring structure
3f78d885
SH
2494 * @from_card_up: If this is true, we will map the buffer to get
2495 * the dma address for buf0 and buf1 to give it to the card.
2496 * Else we will sync the already mapped buffer to give it to the card.
20346722 2497 * Description:
1da177e4
LT
2498 * The function allocates Rx side skbs and puts the physical
2499 * address of these buffers into the RxD buffer pointers, so that the NIC
2500 * can DMA the received frame into these locations.
2501 * The NIC supports 3 receive modes, viz
2502 * 1. single buffer,
2503 * 2. three buffer and
2504 * 3. Five buffer modes.
20346722 2505 * Each mode defines how many fragments the received frame will be split
2506 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2507 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508 * is split into 3 fragments. As of now only single buffer mode is
2509 * supported.
2510 * Return Value:
2511 * SUCCESS on success or an appropriate -ve value on failure.
2512 */
8d8bb39b
FT
2513static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2514 int from_card_up)
1da177e4 2515{
1da177e4 2516 struct sk_buff *skb;
1ee6dd77 2517 struct RxD_t *rxdp;
0425b46a 2518 int off, size, block_no, block_no1;
1da177e4 2519 u32 alloc_tab = 0;
20346722 2520 u32 alloc_cnt;
20346722 2521 u64 tmp;
1ee6dd77 2522 struct buffAdd *ba;
1ee6dd77 2523 struct RxD_t *first_rxdp = NULL;
363dc367 2524 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2525 int rxd_index = 0;
6d517a27
VP
2526 struct RxD1 *rxdp1;
2527 struct RxD3 *rxdp3;
0425b46a 2528 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2529
0425b46a 2530 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2531
0425b46a 2532 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2533 while (alloc_tab < alloc_cnt) {
0425b46a 2534 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2535
0425b46a
SH
2536 off = ring->rx_curr_put_info.offset;
2537
2538 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539
2540 rxd_index = off + 1;
2541 if (block_no)
2542 rxd_index += (block_no * ring->rxd_count);
da6971d8 2543
7d2e3cb7 2544 if ((block_no == block_no1) &&
0425b46a
SH
2545 (off == ring->rx_curr_get_info.offset) &&
2546 (rxdp->Host_Control)) {
da6971d8 2547 DBG_PRINT(INTR_DBG, "%s: Get and Put",
0425b46a 2548 ring->dev->name);
1da177e4
LT
2549 DBG_PRINT(INTR_DBG, " info equated\n");
2550 goto end;
2551 }
0425b46a
SH
2552 if (off && (off == ring->rxd_count)) {
2553 ring->rx_curr_put_info.block_index++;
2554 if (ring->rx_curr_put_info.block_index ==
2555 ring->block_count)
2556 ring->rx_curr_put_info.block_index = 0;
2557 block_no = ring->rx_curr_put_info.block_index;
2558 off = 0;
2559 ring->rx_curr_put_info.offset = off;
2560 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2561 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2562 ring->dev->name, rxdp);
2563
1da177e4 2564 }
c9fcbf47 2565
da6971d8 2566 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
0425b46a 2567 ((ring->rxd_mode == RXD_MODE_3B) &&
b7b5a128 2568 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2569 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2570 goto end;
2571 }
da6971d8 2572 /* calculate size of skb based on ring mode */
0425b46a 2573 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
da6971d8 2574 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2575 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2576 size += NET_IP_ALIGN;
da6971d8 2577 else
0425b46a 2578 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2579
da6971d8
AR
2580 /* allocate skb */
2581 skb = dev_alloc_skb(size);
2582 if(!skb) {
0425b46a 2583 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
0c61ed5f 2584 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
303bcb4b 2585 if (first_rxdp) {
2586 wmb();
2587 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588 }
0425b46a 2589 stats->mem_alloc_fail_cnt++;
7d2e3cb7 2590
da6971d8
AR
2591 return -ENOMEM ;
2592 }
0425b46a
SH
2593 stats->mem_allocated += skb->truesize;
2594
2595 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2596 /* 1 buffer mode - normal operation mode */
6d517a27 2597 rxdp1 = (struct RxD1*)rxdp;
1ee6dd77 2598 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2599 skb_reserve(skb, NET_IP_ALIGN);
6d517a27 2600 rxdp1->Buffer0_ptr = pci_map_single
0425b46a 2601 (ring->pdev, skb->data, size - NET_IP_ALIGN,
863c11a9 2602 PCI_DMA_FROMDEVICE);
8d8bb39b
FT
2603 if (pci_dma_mapping_error(nic->pdev,
2604 rxdp1->Buffer0_ptr))
491abf25
VP
2605 goto pci_map_failed;
2606
8a4bdbaa 2607 rxdp->Control_2 =
491976b2 2608 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
0425b46a
SH
2609 rxdp->Host_Control = (unsigned long) (skb);
2610 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2611 /*
6d517a27
VP
2612 * 2 buffer mode -
2613 * 2 buffer mode provides 128
da6971d8 2614 * byte aligned receive buffers.
da6971d8
AR
2615 */
2616
6d517a27 2617 rxdp3 = (struct RxD3*)rxdp;
491976b2 2618 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2619 Buffer0_ptr = rxdp3->Buffer0_ptr;
2620 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2621 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2622 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2623 rxdp3->Buffer0_ptr = Buffer0_ptr;
2624 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2625
0425b46a 2626 ba = &ring->ba[block_no][off];
da6971d8
AR
2627 skb_reserve(skb, BUF0_LEN);
2628 tmp = (u64)(unsigned long) skb->data;
2629 tmp += ALIGN_SIZE;
2630 tmp &= ~ALIGN_SIZE;
2631 skb->data = (void *) (unsigned long)tmp;
27a884dc 2632 skb_reset_tail_pointer(skb);
da6971d8 2633
3f78d885 2634 if (from_card_up) {
6d517a27 2635 rxdp3->Buffer0_ptr =
0425b46a
SH
2636 pci_map_single(ring->pdev, ba->ba_0,
2637 BUF0_LEN, PCI_DMA_FROMDEVICE);
8d8bb39b
FT
2638 if (pci_dma_mapping_error(nic->pdev,
2639 rxdp3->Buffer0_ptr))
3f78d885
SH
2640 goto pci_map_failed;
2641 } else
0425b46a 2642 pci_dma_sync_single_for_device(ring->pdev,
6d517a27 2643 (dma_addr_t) rxdp3->Buffer0_ptr,
75c30b13 2644 BUF0_LEN, PCI_DMA_FROMDEVICE);
491abf25 2645
da6971d8 2646 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2647 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2648 /* Two buffer mode */
2649
2650 /*
6aa20a22 2651 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2652 * L4 payload
2653 */
6d517a27 2654 rxdp3->Buffer2_ptr = pci_map_single
0425b46a 2655 (ring->pdev, skb->data, ring->mtu + 4,
da6971d8
AR
2656 PCI_DMA_FROMDEVICE);
2657
8d8bb39b
FT
2658 if (pci_dma_mapping_error(nic->pdev,
2659 rxdp3->Buffer2_ptr))
491abf25
VP
2660 goto pci_map_failed;
2661
3f78d885 2662 if (from_card_up) {
0425b46a
SH
2663 rxdp3->Buffer1_ptr =
2664 pci_map_single(ring->pdev,
75c30b13
AR
2665 ba->ba_1, BUF1_LEN,
2666 PCI_DMA_FROMDEVICE);
0425b46a 2667
8d8bb39b
FT
2668 if (pci_dma_mapping_error(nic->pdev,
2669 rxdp3->Buffer1_ptr)) {
3f78d885
SH
2670 pci_unmap_single
2671 (ring->pdev,
2672 (dma_addr_t)(unsigned long)
2673 skb->data,
2674 ring->mtu + 4,
2675 PCI_DMA_FROMDEVICE);
2676 goto pci_map_failed;
2677 }
75c30b13 2678 }
da6971d8
AR
2679 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2680 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
0425b46a 2681 (ring->mtu + 4);
da6971d8 2682 }
b7b5a128 2683 rxdp->Control_2 |= s2BIT(0);
0425b46a 2684 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2685 }
303bcb4b 2686 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2687 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2688 off++;
0425b46a 2689 if (off == (ring->rxd_count + 1))
da6971d8 2690 off = 0;
0425b46a 2691 ring->rx_curr_put_info.offset = off;
20346722 2692
da6971d8 2693 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b 2694 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2695 if (first_rxdp) {
2696 wmb();
2697 first_rxdp->Control_1 |= RXD_OWN_XENA;
2698 }
2699 first_rxdp = rxdp;
2700 }
0425b46a 2701 ring->rx_bufs_left += 1;
1da177e4
LT
2702 alloc_tab++;
2703 }
2704
2705 end:
303bcb4b 2706 /* Transfer ownership of first descriptor to adapter just before
2707 * exiting. Before that, use memory barrier so that ownership
2708 * and other fields are seen by adapter correctly.
2709 */
2710 if (first_rxdp) {
2711 wmb();
2712 first_rxdp->Control_1 |= RXD_OWN_XENA;
2713 }
2714
1da177e4 2715 return SUCCESS;
491abf25
VP
2716pci_map_failed:
2717 stats->pci_map_fail_cnt++;
2718 stats->mem_freed += skb->truesize;
2719 dev_kfree_skb_irq(skb);
2720 return -ENOMEM;
1da177e4
LT
2721}
2722
da6971d8
AR
2723static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2724{
2725 struct net_device *dev = sp->dev;
2726 int j;
2727 struct sk_buff *skb;
1ee6dd77
RB
2728 struct RxD_t *rxdp;
2729 struct mac_info *mac_control;
2730 struct buffAdd *ba;
6d517a27
VP
2731 struct RxD1 *rxdp1;
2732 struct RxD3 *rxdp3;
da6971d8
AR
2733
2734 mac_control = &sp->mac_control;
2735 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2736 rxdp = mac_control->rings[ring_no].
2737 rx_blocks[blk].rxds[j].virt_addr;
2738 skb = (struct sk_buff *)
2739 ((unsigned long) rxdp->Host_Control);
2740 if (!skb) {
2741 continue;
2742 }
2743 if (sp->rxd_mode == RXD_MODE_1) {
6d517a27 2744 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2745 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2746 rxdp1->Buffer0_ptr,
2747 dev->mtu +
2748 HEADER_ETHERNET_II_802_3_SIZE
2749 + HEADER_802_2_SIZE +
2750 HEADER_SNAP_SIZE,
2751 PCI_DMA_FROMDEVICE);
1ee6dd77 2752 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2753 } else if(sp->rxd_mode == RXD_MODE_3B) {
6d517a27 2754 rxdp3 = (struct RxD3*)rxdp;
da6971d8
AR
2755 ba = &mac_control->rings[ring_no].
2756 ba[blk][j];
2757 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2758 rxdp3->Buffer0_ptr,
2759 BUF0_LEN,
da6971d8
AR
2760 PCI_DMA_FROMDEVICE);
2761 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2762 rxdp3->Buffer1_ptr,
2763 BUF1_LEN,
da6971d8
AR
2764 PCI_DMA_FROMDEVICE);
2765 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2766 rxdp3->Buffer2_ptr,
2767 dev->mtu + 4,
da6971d8 2768 PCI_DMA_FROMDEVICE);
1ee6dd77 2769 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2770 }
491976b2 2771 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
da6971d8 2772 dev_kfree_skb(skb);
0425b46a 2773 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2774 }
2775}
2776
1da177e4 2777/**
20346722 2778 * free_rx_buffers - Frees all Rx buffers
1da177e4 2779 * @sp: device private variable.
20346722 2780 * Description:
1da177e4
LT
2781 * This function will free all Rx buffers allocated by host.
2782 * Return Value:
2783 * NONE.
2784 */
2785
2786static void free_rx_buffers(struct s2io_nic *sp)
2787{
2788 struct net_device *dev = sp->dev;
da6971d8 2789 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2790 struct mac_info *mac_control;
1da177e4 2791 struct config_param *config;
1da177e4
LT
2792
2793 mac_control = &sp->mac_control;
2794 config = &sp->config;
2795
2796 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2797 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2798 free_rxd_blk(sp,i,blk);
1da177e4 2799
20346722 2800 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2801 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2802 mac_control->rings[i].rx_curr_put_info.offset = 0;
2803 mac_control->rings[i].rx_curr_get_info.offset = 0;
0425b46a 2804 mac_control->rings[i].rx_bufs_left = 0;
1da177e4
LT
2805 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2806 dev->name, buf_cnt, i);
2807 }
2808}
2809
8d8bb39b 2810static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
f61e0a35 2811{
8d8bb39b 2812 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
f61e0a35
SH
2813 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2814 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2815 }
2816 return 0;
2817}
2818
1da177e4
LT
2819/**
2820 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2821 * @napi : pointer to the napi structure.
20346722 2822 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2823 * during one pass through the 'Poll" function.
2824 * Description:
2825 * Comes into picture only if NAPI support has been incorporated. It does
2826 * the same thing that rx_intr_handler does, but not in a interrupt context
2827 * also It will process only a given number of packets.
2828 * Return value:
2829 * 0 on success and 1 if there are No Rx packets to be processed.
2830 */
2831
f61e0a35 2832static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2833{
f61e0a35
SH
2834 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2835 struct net_device *dev = ring->dev;
1da177e4 2836 struct config_param *config;
f61e0a35
SH
2837 struct mac_info *mac_control;
2838 int pkts_processed = 0;
1a79d1c3
AV
2839 u8 __iomem *addr = NULL;
2840 u8 val8 = 0;
4cf1653a 2841 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2842 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2843 int budget_org = budget;
1da177e4 2844
1da177e4 2845 config = &nic->config;
f61e0a35 2846 mac_control = &nic->mac_control;
1da177e4 2847
f61e0a35
SH
2848 if (unlikely(!is_s2io_card_up(nic)))
2849 return 0;
1da177e4 2850
f61e0a35 2851 pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2852 s2io_chk_rx_buffers(nic, ring);
1da177e4 2853
f61e0a35
SH
2854 if (pkts_processed < budget_org) {
2855 netif_rx_complete(dev, napi);
2856 /*Re Enable MSI-Rx Vector*/
1a79d1c3 2857 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
2858 addr += 7 - ring->ring_no;
2859 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2860 writeb(val8, addr);
2861 val8 = readb(addr);
1da177e4 2862 }
f61e0a35
SH
2863 return pkts_processed;
2864}
2865static int s2io_poll_inta(struct napi_struct *napi, int budget)
2866{
2867 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2868 struct ring_info *ring;
2869 struct net_device *dev = nic->dev;
2870 struct config_param *config;
2871 struct mac_info *mac_control;
2872 int pkts_processed = 0;
2873 int ring_pkts_processed, i;
2874 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2875 int budget_org = budget;
1da177e4 2876
f61e0a35
SH
2877 config = &nic->config;
2878 mac_control = &nic->mac_control;
1da177e4 2879
f61e0a35
SH
2880 if (unlikely(!is_s2io_card_up(nic)))
2881 return 0;
1da177e4 2882
1da177e4 2883 for (i = 0; i < config->rx_ring_num; i++) {
f61e0a35
SH
2884 ring = &mac_control->rings[i];
2885 ring_pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2886 s2io_chk_rx_buffers(nic, ring);
f61e0a35
SH
2887 pkts_processed += ring_pkts_processed;
2888 budget -= ring_pkts_processed;
2889 if (budget <= 0)
1da177e4 2890 break;
1da177e4 2891 }
f61e0a35
SH
2892 if (pkts_processed < budget_org) {
2893 netif_rx_complete(dev, napi);
2894 /* Re enable the Rx interrupts for the ring */
2895 writeq(0, &bar0->rx_traffic_mask);
2896 readl(&bar0->rx_traffic_mask);
2897 }
2898 return pkts_processed;
1da177e4 2899}
20346722 2900
b41477f3 2901#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2902/**
b41477f3 2903 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2904 * @dev : pointer to the device structure.
2905 * Description:
b41477f3
AR
2906 * This function will be called by upper layer to check for events on the
2907 * interface in situations where interrupts are disabled. It is used for
2908 * specific in-kernel networking tasks, such as remote consoles and kernel
2909 * debugging over the network (example netdump in RedHat).
612eff0e 2910 */
612eff0e
BH
2911static void s2io_netpoll(struct net_device *dev)
2912{
4cf1653a 2913 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2914 struct mac_info *mac_control;
612eff0e 2915 struct config_param *config;
1ee6dd77 2916 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2917 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2918 int i;
2919
d796fdb7
LV
2920 if (pci_channel_offline(nic->pdev))
2921 return;
2922
612eff0e
BH
2923 disable_irq(dev->irq);
2924
612eff0e
BH
2925 mac_control = &nic->mac_control;
2926 config = &nic->config;
2927
612eff0e 2928 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2929 writeq(val64, &bar0->tx_traffic_int);
2930
6aa20a22 2931 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2932 * run out of skbs and will fail and eventually netpoll application such
2933 * as netdump will fail.
2934 */
2935 for (i = 0; i < config->tx_fifo_num; i++)
2936 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2937
b41477f3 2938 /* check for received packet and indicate up to network */
612eff0e 2939 for (i = 0; i < config->rx_ring_num; i++)
f61e0a35 2940 rx_intr_handler(&mac_control->rings[i], 0);
612eff0e
BH
2941
2942 for (i = 0; i < config->rx_ring_num; i++) {
8d8bb39b
FT
2943 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2944 -ENOMEM) {
0c61ed5f
RV
2945 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2946 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
612eff0e
BH
2947 break;
2948 }
2949 }
612eff0e
BH
2950 enable_irq(dev->irq);
2951 return;
2952}
2953#endif
2954
20346722 2955/**
1da177e4 2956 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2957 * @ring_info: per ring structure.
2958 * @budget: budget for napi processing.
20346722 2959 * Description:
2960 * If the interrupt is because of a received frame or if the
1da177e4 2961 * receive ring contains fresh as yet un-processed frames,this function is
20346722 2962 * called. It picks out the RxD at which place the last Rx processing had
2963 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2964 * the offset.
2965 * Return Value:
f61e0a35 2966 * No. of napi packets processed.
1da177e4 2967 */
f61e0a35 2968static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2969{
c9fcbf47 2970 int get_block, put_block;
1ee6dd77
RB
2971 struct rx_curr_get_info get_info, put_info;
2972 struct RxD_t *rxdp;
1da177e4 2973 struct sk_buff *skb;
f61e0a35 2974 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 2975 int i;
6d517a27
VP
2976 struct RxD1* rxdp1;
2977 struct RxD3* rxdp3;
7d3d0439 2978
20346722 2979 get_info = ring_data->rx_curr_get_info;
2980 get_block = get_info.block_index;
1ee6dd77 2981 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2982 put_block = put_info.block_index;
da6971d8 2983 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 2984
da6971d8 2985 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2986 /*
2987 * If your are next to put index then it's
2988 * FIFO full condition
2989 */
da6971d8
AR
2990 if ((get_block == put_block) &&
2991 (get_info.offset + 1) == put_info.offset) {
0425b46a
SH
2992 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2993 ring_data->dev->name);
da6971d8
AR
2994 break;
2995 }
20346722 2996 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2997 if (skb == NULL) {
2998 DBG_PRINT(ERR_DBG, "%s: The skb is ",
0425b46a 2999 ring_data->dev->name);
20346722 3000 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
f61e0a35 3001 return 0;
1da177e4 3002 }
0425b46a 3003 if (ring_data->rxd_mode == RXD_MODE_1) {
6d517a27 3004 rxdp1 = (struct RxD1*)rxdp;
0425b46a 3005 pci_unmap_single(ring_data->pdev, (dma_addr_t)
6d517a27 3006 rxdp1->Buffer0_ptr,
0425b46a 3007 ring_data->mtu +
6d517a27
VP
3008 HEADER_ETHERNET_II_802_3_SIZE +
3009 HEADER_802_2_SIZE +
3010 HEADER_SNAP_SIZE,
3011 PCI_DMA_FROMDEVICE);
0425b46a 3012 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
6d517a27 3013 rxdp3 = (struct RxD3*)rxdp;
0425b46a 3014 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
6d517a27
VP
3015 rxdp3->Buffer0_ptr,
3016 BUF0_LEN, PCI_DMA_FROMDEVICE);
0425b46a 3017 pci_unmap_single(ring_data->pdev, (dma_addr_t)
6d517a27 3018 rxdp3->Buffer2_ptr,
0425b46a 3019 ring_data->mtu + 4,
6d517a27 3020 PCI_DMA_FROMDEVICE);
da6971d8 3021 }
863c11a9 3022 prefetch(skb->data);
20346722 3023 rx_osm_handler(ring_data, rxdp);
3024 get_info.offset++;
da6971d8
AR
3025 ring_data->rx_curr_get_info.offset = get_info.offset;
3026 rxdp = ring_data->rx_blocks[get_block].
3027 rxds[get_info.offset].virt_addr;
0425b46a 3028 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 3029 get_info.offset = 0;
da6971d8 3030 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 3031 get_block++;
da6971d8
AR
3032 if (get_block == ring_data->block_count)
3033 get_block = 0;
3034 ring_data->rx_curr_get_info.block_index = get_block;
20346722 3035 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3036 }
1da177e4 3037
f61e0a35
SH
3038 if (ring_data->nic->config.napi) {
3039 budget--;
3040 napi_pkts++;
3041 if (!budget)
0425b46a
SH
3042 break;
3043 }
20346722 3044 pkt_cnt++;
1da177e4
LT
3045 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3046 break;
3047 }
0425b46a 3048 if (ring_data->lro) {
7d3d0439
RA
3049 /* Clear all LRO sessions before exiting */
3050 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 3051 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 3052 if (lro->in_use) {
0425b46a 3053 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 3054 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
3055 clear_lro_session(lro);
3056 }
3057 }
3058 }
f61e0a35 3059 return(napi_pkts);
1da177e4 3060}
20346722 3061
3062/**
1da177e4
LT
3063 * tx_intr_handler - Transmit interrupt handler
3064 * @nic : device private variable
20346722 3065 * Description:
3066 * If an interrupt was raised to indicate DMA complete of the
3067 * Tx packet, this function is called. It identifies the last TxD
3068 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3069 * DMA'ed into the NICs internal memory.
3070 * Return Value:
3071 * NONE
3072 */
3073
1ee6dd77 3074static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3075{
1ee6dd77 3076 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3077 struct tx_curr_get_info get_info, put_info;
3a3d5756 3078 struct sk_buff *skb = NULL;
1ee6dd77 3079 struct TxD *txdlp;
3a3d5756 3080 int pkt_cnt = 0;
2fda096d 3081 unsigned long flags = 0;
f9046eb3 3082 u8 err_mask;
1da177e4 3083
2fda096d
SR
3084 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3085 return;
3086
20346722 3087 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
3088 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3089 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722 3090 list_virt_addr;
3091 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3092 (get_info.offset != put_info.offset) &&
3093 (txdlp->Host_Control)) {
3094 /* Check for TxD errors */
3095 if (txdlp->Control_1 & TXD_T_CODE) {
3096 unsigned long long err;
3097 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
3098 if (err & 0x1) {
3099 nic->mac_control.stats_info->sw_stat.
3100 parity_err_cnt++;
3101 }
491976b2
SH
3102
3103 /* update t_code statistics */
f9046eb3
OH
3104 err_mask = err >> 48;
3105 switch(err_mask) {
491976b2
SH
3106 case 2:
3107 nic->mac_control.stats_info->sw_stat.
3108 tx_buf_abort_cnt++;
3109 break;
3110
3111 case 3:
3112 nic->mac_control.stats_info->sw_stat.
3113 tx_desc_abort_cnt++;
3114 break;
3115
3116 case 7:
3117 nic->mac_control.stats_info->sw_stat.
3118 tx_parity_err_cnt++;
3119 break;
3120
3121 case 10:
3122 nic->mac_control.stats_info->sw_stat.
3123 tx_link_loss_cnt++;
3124 break;
3125
3126 case 15:
3127 nic->mac_control.stats_info->sw_stat.
3128 tx_list_proc_err_cnt++;
3129 break;
3130 }
20346722 3131 }
1da177e4 3132
fed5eccd 3133 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3134 if (skb == NULL) {
2fda096d 3135 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
20346722 3136 DBG_PRINT(ERR_DBG, "%s: Null skb ",
b39d66a8 3137 __func__);
20346722 3138 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3139 return;
3140 }
3a3d5756 3141 pkt_cnt++;
20346722 3142
20346722 3143 /* Updating the statistics block */
dc56e634 3144 nic->dev->stats.tx_bytes += skb->len;
491976b2 3145 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
20346722 3146 dev_kfree_skb_irq(skb);
3147
3148 get_info.offset++;
863c11a9
AR
3149 if (get_info.offset == get_info.fifo_len + 1)
3150 get_info.offset = 0;
1ee6dd77 3151 txdlp = (struct TxD *) fifo_data->list_info
20346722 3152 [get_info.offset].list_virt_addr;
3153 fifo_data->tx_curr_get_info.offset =
3154 get_info.offset;
1da177e4
LT
3155 }
3156
3a3d5756 3157 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3158
3159 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3160}
3161
bd1034f0
AR
3162/**
3163 * s2io_mdio_write - Function to write in to MDIO registers
3164 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3165 * @addr : address value
3166 * @value : data value
3167 * @dev : pointer to net_device structure
3168 * Description:
3169 * This function is used to write values to the MDIO registers
3170 * NONE
3171 */
3172static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3173{
3174 u64 val64 = 0x0;
4cf1653a 3175 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3176 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3177
3178 //address transaction
3179 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3180 | MDIO_MMD_DEV_ADDR(mmd_type)
3181 | MDIO_MMS_PRT_ADDR(0x0);
3182 writeq(val64, &bar0->mdio_control);
3183 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184 writeq(val64, &bar0->mdio_control);
3185 udelay(100);
3186
3187 //Data transaction
3188 val64 = 0x0;
3189 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3190 | MDIO_MMD_DEV_ADDR(mmd_type)
3191 | MDIO_MMS_PRT_ADDR(0x0)
3192 | MDIO_MDIO_DATA(value)
3193 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3194 writeq(val64, &bar0->mdio_control);
3195 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3196 writeq(val64, &bar0->mdio_control);
3197 udelay(100);
3198
3199 val64 = 0x0;
3200 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3201 | MDIO_MMD_DEV_ADDR(mmd_type)
3202 | MDIO_MMS_PRT_ADDR(0x0)
3203 | MDIO_OP(MDIO_OP_READ_TRANS);
3204 writeq(val64, &bar0->mdio_control);
3205 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3206 writeq(val64, &bar0->mdio_control);
3207 udelay(100);
3208
3209}
3210
3211/**
3212 * s2io_mdio_read - Function to write in to MDIO registers
3213 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3214 * @addr : address value
3215 * @dev : pointer to net_device structure
3216 * Description:
3217 * This function is used to read values to the MDIO registers
3218 * NONE
3219 */
3220static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3221{
3222 u64 val64 = 0x0;
3223 u64 rval64 = 0x0;
4cf1653a 3224 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3225 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3226
3227 /* address transaction */
3228 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3229 | MDIO_MMD_DEV_ADDR(mmd_type)
3230 | MDIO_MMS_PRT_ADDR(0x0);
3231 writeq(val64, &bar0->mdio_control);
3232 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3233 writeq(val64, &bar0->mdio_control);
3234 udelay(100);
3235
3236 /* Data transaction */
3237 val64 = 0x0;
3238 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3239 | MDIO_MMD_DEV_ADDR(mmd_type)
3240 | MDIO_MMS_PRT_ADDR(0x0)
3241 | MDIO_OP(MDIO_OP_READ_TRANS);
3242 writeq(val64, &bar0->mdio_control);
3243 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3244 writeq(val64, &bar0->mdio_control);
3245 udelay(100);
3246
3247 /* Read the value from regs */
3248 rval64 = readq(&bar0->mdio_control);
3249 rval64 = rval64 & 0xFFFF0000;
3250 rval64 = rval64 >> 16;
3251 return rval64;
3252}
3253/**
3254 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3255 * @counter : couter value to be updated
3256 * @flag : flag to indicate the status
3257 * @type : counter type
3258 * Description:
3259 * This function is to check the status of the xpak counters value
3260 * NONE
3261 */
3262
3263static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3264{
3265 u64 mask = 0x3;
3266 u64 val64;
3267 int i;
3268 for(i = 0; i <index; i++)
3269 mask = mask << 0x2;
3270
3271 if(flag > 0)
3272 {
3273 *counter = *counter + 1;
3274 val64 = *regs_stat & mask;
3275 val64 = val64 >> (index * 0x2);
3276 val64 = val64 + 1;
3277 if(val64 == 3)
3278 {
3279 switch(type)
3280 {
3281 case 1:
3282 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3283 "service. Excessive temperatures may "
3284 "result in premature transceiver "
3285 "failure \n");
3286 break;
3287 case 2:
3288 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3289 "service Excessive bias currents may "
3290 "indicate imminent laser diode "
3291 "failure \n");
3292 break;
3293 case 3:
3294 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3295 "service Excessive laser output "
3296 "power may saturate far-end "
3297 "receiver\n");
3298 break;
3299 default:
3300 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3301 "type \n");
3302 }
3303 val64 = 0x0;
3304 }
3305 val64 = val64 << (index * 0x2);
3306 *regs_stat = (*regs_stat & (~mask)) | (val64);
3307
3308 } else {
3309 *regs_stat = *regs_stat & (~mask);
3310 }
3311}
3312
3313/**
3314 * s2io_updt_xpak_counter - Function to update the xpak counters
3315 * @dev : pointer to net_device struct
3316 * Description:
3317 * This function is to upate the status of the xpak counters value
3318 * NONE
3319 */
3320static void s2io_updt_xpak_counter(struct net_device *dev)
3321{
3322 u16 flag = 0x0;
3323 u16 type = 0x0;
3324 u16 val16 = 0x0;
3325 u64 val64 = 0x0;
3326 u64 addr = 0x0;
3327
4cf1653a 3328 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3329 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3330
3331 /* Check the communication with the MDIO slave */
3332 addr = 0x0000;
3333 val64 = 0x0;
3334 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3335 if((val64 == 0xFFFF) || (val64 == 0x0000))
3336 {
3337 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3338 "Returned %llx\n", (unsigned long long)val64);
3339 return;
3340 }
3341
3342 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3343 if(val64 != 0x2040)
3344 {
3345 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3346 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3347 (unsigned long long)val64);
3348 return;
3349 }
3350
3351 /* Loading the DOM register to MDIO register */
3352 addr = 0xA100;
3353 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3354 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3355
3356 /* Reading the Alarm flags */
3357 addr = 0xA070;
3358 val64 = 0x0;
3359 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3360
3361 flag = CHECKBIT(val64, 0x7);
3362 type = 1;
3363 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3364 &stat_info->xpak_stat.xpak_regs_stat,
3365 0x0, flag, type);
3366
3367 if(CHECKBIT(val64, 0x6))
3368 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3369
3370 flag = CHECKBIT(val64, 0x3);
3371 type = 2;
3372 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3373 &stat_info->xpak_stat.xpak_regs_stat,
3374 0x2, flag, type);
3375
3376 if(CHECKBIT(val64, 0x2))
3377 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3378
3379 flag = CHECKBIT(val64, 0x1);
3380 type = 3;
3381 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3382 &stat_info->xpak_stat.xpak_regs_stat,
3383 0x4, flag, type);
3384
3385 if(CHECKBIT(val64, 0x0))
3386 stat_info->xpak_stat.alarm_laser_output_power_low++;
3387
3388 /* Reading the Warning flags */
3389 addr = 0xA074;
3390 val64 = 0x0;
3391 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3392
3393 if(CHECKBIT(val64, 0x7))
3394 stat_info->xpak_stat.warn_transceiver_temp_high++;
3395
3396 if(CHECKBIT(val64, 0x6))
3397 stat_info->xpak_stat.warn_transceiver_temp_low++;
3398
3399 if(CHECKBIT(val64, 0x3))
3400 stat_info->xpak_stat.warn_laser_bias_current_high++;
3401
3402 if(CHECKBIT(val64, 0x2))
3403 stat_info->xpak_stat.warn_laser_bias_current_low++;
3404
3405 if(CHECKBIT(val64, 0x1))
3406 stat_info->xpak_stat.warn_laser_output_power_high++;
3407
3408 if(CHECKBIT(val64, 0x0))
3409 stat_info->xpak_stat.warn_laser_output_power_low++;
3410}
3411
20346722 3412/**
1da177e4 3413 * wait_for_cmd_complete - waits for a command to complete.
20346722 3414 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3415 * s2io_nic structure.
20346722 3416 * Description: Function that waits for a command to Write into RMAC
3417 * ADDR DATA registers to be completed and returns either success or
3418 * error depending on whether the command was complete or not.
1da177e4
LT
3419 * Return value:
3420 * SUCCESS on success and FAILURE on failure.
3421 */
3422
9fc93a41
SS
3423static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3424 int bit_state)
1da177e4 3425{
9fc93a41 3426 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3427 u64 val64;
3428
9fc93a41
SS
3429 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3430 return FAILURE;
3431
3432 do {
c92ca04b 3433 val64 = readq(addr);
9fc93a41
SS
3434 if (bit_state == S2IO_BIT_RESET) {
3435 if (!(val64 & busy_bit)) {
3436 ret = SUCCESS;
3437 break;
3438 }
3439 } else {
3440 if (!(val64 & busy_bit)) {
3441 ret = SUCCESS;
3442 break;
3443 }
1da177e4 3444 }
c92ca04b
AR
3445
3446 if(in_interrupt())
9fc93a41 3447 mdelay(delay);
c92ca04b 3448 else
9fc93a41 3449 msleep(delay);
c92ca04b 3450
9fc93a41
SS
3451 if (++cnt >= 10)
3452 delay = 50;
3453 } while (cnt < 20);
1da177e4
LT
3454 return ret;
3455}
19a60522
SS
3456/*
3457 * check_pci_device_id - Checks if the device id is supported
3458 * @id : device id
3459 * Description: Function to check if the pci device id is supported by driver.
3460 * Return value: Actual device id if supported else PCI_ANY_ID
3461 */
3462static u16 check_pci_device_id(u16 id)
3463{
3464 switch (id) {
3465 case PCI_DEVICE_ID_HERC_WIN:
3466 case PCI_DEVICE_ID_HERC_UNI:
3467 return XFRAME_II_DEVICE;
3468 case PCI_DEVICE_ID_S2IO_UNI:
3469 case PCI_DEVICE_ID_S2IO_WIN:
3470 return XFRAME_I_DEVICE;
3471 default:
3472 return PCI_ANY_ID;
3473 }
3474}
1da177e4 3475
20346722 3476/**
3477 * s2io_reset - Resets the card.
1da177e4
LT
3478 * @sp : private member of the device structure.
3479 * Description: Function to Reset the card. This function then also
20346722 3480 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3481 * the card reset also resets the configuration space.
3482 * Return value:
3483 * void.
3484 */
3485
1ee6dd77 3486static void s2io_reset(struct s2io_nic * sp)
1da177e4 3487{
1ee6dd77 3488 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3489 u64 val64;
5e25b9dd 3490 u16 subid, pci_cmd;
19a60522
SS
3491 int i;
3492 u16 val16;
491976b2
SH
3493 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3494 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3495
19a60522 3496 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
b39d66a8 3497 __func__, sp->dev->name);
1da177e4 3498
0b1f7ebe 3499 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3500 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3501
1da177e4
LT
3502 val64 = SW_RESET_ALL;
3503 writeq(val64, &bar0->sw_reset);
c92ca04b
AR
3504 if (strstr(sp->product_name, "CX4")) {
3505 msleep(750);
3506 }
19a60522
SS
3507 msleep(250);
3508 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3509
19a60522
SS
3510 /* Restore the PCI state saved during initialization. */
3511 pci_restore_state(sp->pdev);
3512 pci_read_config_word(sp->pdev, 0x2, &val16);
3513 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3514 break;
3515 msleep(200);
3516 }
1da177e4 3517
19a60522 3518 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
b39d66a8 3519 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
19a60522
SS
3520 }
3521
3522 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3523
3524 s2io_init_pci(sp);
1da177e4 3525
20346722 3526 /* Set swapper to enable I/O register access */
3527 s2io_set_swapper(sp);
3528
faa4f796
SH
3529 /* restore mac_addr entries */
3530 do_s2io_restore_unicast_mc(sp);
3531
cc6e7c44
RA
3532 /* Restore the MSIX table entries from local variables */
3533 restore_xmsi_data(sp);
3534
5e25b9dd 3535 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3536 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3537 /* Clear "detected parity error" bit */
303bcb4b 3538 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3539
303bcb4b 3540 /* Clearing PCIX Ecc status register */
3541 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3542
303bcb4b 3543 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3544 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3545 }
5e25b9dd 3546
20346722 3547 /* Reset device statistics maintained by OS */
3548 memset(&sp->stats, 0, sizeof (struct net_device_stats));
8a4bdbaa 3549
491976b2
SH
3550 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3551 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3552 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3553 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
363dc367 3554 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
491976b2
SH
3555 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3556 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3557 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3558 /* save link up/down time/cnt, reset/memory/watchdog cnt */
363dc367 3559 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
491976b2
SH
3560 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3561 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3562 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3563 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3564 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
363dc367 3565 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
491976b2
SH
3566 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3567 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3568 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
20346722 3569
1da177e4
LT
3570 /* SXE-002: Configure link and activity LED to turn it off */
3571 subid = sp->pdev->subsystem_device;
541ae68f 3572 if (((subid & 0xFF) >= 0x07) &&
3573 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3574 val64 = readq(&bar0->gpio_control);
3575 val64 |= 0x0000800000000000ULL;
3576 writeq(val64, &bar0->gpio_control);
3577 val64 = 0x0411040400000000ULL;
509a2671 3578 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3579 }
3580
541ae68f 3581 /*
3582 * Clear spurious ECC interrupts that would have occured on
3583 * XFRAME II cards after reset.
3584 */
3585 if (sp->device_type == XFRAME_II_DEVICE) {
3586 val64 = readq(&bar0->pcc_err_reg);
3587 writeq(val64, &bar0->pcc_err_reg);
3588 }
3589
1da177e4
LT
3590 sp->device_enabled_once = FALSE;
3591}
3592
3593/**
20346722 3594 * s2io_set_swapper - to set the swapper controle on the card
3595 * @sp : private member of the device structure,
1da177e4 3596 * pointer to the s2io_nic structure.
20346722 3597 * Description: Function to set the swapper control on the card
1da177e4
LT
3598 * correctly depending on the 'endianness' of the system.
3599 * Return value:
3600 * SUCCESS on success and FAILURE on failure.
3601 */
3602
1ee6dd77 3603static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3604{
3605 struct net_device *dev = sp->dev;
1ee6dd77 3606 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3607 u64 val64, valt, valr;
3608
20346722 3609 /*
1da177e4
LT
3610 * Set proper endian settings and verify the same by reading
3611 * the PIF Feed-back register.
3612 */
3613
3614 val64 = readq(&bar0->pif_rd_swapper_fb);
3615 if (val64 != 0x0123456789ABCDEFULL) {
3616 int i = 0;
3617 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3618 0x8100008181000081ULL, /* FE=1, SE=0 */
3619 0x4200004242000042ULL, /* FE=0, SE=1 */
3620 0}; /* FE=0, SE=0 */
3621
3622 while(i<4) {
3623 writeq(value[i], &bar0->swapper_ctrl);
3624 val64 = readq(&bar0->pif_rd_swapper_fb);
3625 if (val64 == 0x0123456789ABCDEFULL)
3626 break;
3627 i++;
3628 }
3629 if (i == 4) {
3630 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3631 dev->name);
3632 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3633 (unsigned long long) val64);
3634 return FAILURE;
3635 }
3636 valr = value[i];
3637 } else {
3638 valr = readq(&bar0->swapper_ctrl);
3639 }
3640
3641 valt = 0x0123456789ABCDEFULL;
3642 writeq(valt, &bar0->xmsi_address);
3643 val64 = readq(&bar0->xmsi_address);
3644
3645 if(val64 != valt) {
3646 int i = 0;
3647 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3648 0x0081810000818100ULL, /* FE=1, SE=0 */
3649 0x0042420000424200ULL, /* FE=0, SE=1 */
3650 0}; /* FE=0, SE=0 */
3651
3652 while(i<4) {
3653 writeq((value[i] | valr), &bar0->swapper_ctrl);
3654 writeq(valt, &bar0->xmsi_address);
3655 val64 = readq(&bar0->xmsi_address);
3656 if(val64 == valt)
3657 break;
3658 i++;
3659 }
3660 if(i == 4) {
20346722 3661 unsigned long long x = val64;
1da177e4 3662 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3663 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3664 return FAILURE;
3665 }
3666 }
3667 val64 = readq(&bar0->swapper_ctrl);
3668 val64 &= 0xFFFF000000000000ULL;
3669
3670#ifdef __BIG_ENDIAN
20346722 3671 /*
3672 * The device by default set to a big endian format, so a
1da177e4
LT
3673 * big endian driver need not set anything.
3674 */
3675 val64 |= (SWAPPER_CTRL_TXP_FE |
3676 SWAPPER_CTRL_TXP_SE |
3677 SWAPPER_CTRL_TXD_R_FE |
3678 SWAPPER_CTRL_TXD_W_FE |
3679 SWAPPER_CTRL_TXF_R_FE |
3680 SWAPPER_CTRL_RXD_R_FE |
3681 SWAPPER_CTRL_RXD_W_FE |
3682 SWAPPER_CTRL_RXF_W_FE |
3683 SWAPPER_CTRL_XMSI_FE |
1da177e4 3684 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3685 if (sp->config.intr_type == INTA)
cc6e7c44 3686 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3687 writeq(val64, &bar0->swapper_ctrl);
3688#else
20346722 3689 /*
1da177e4 3690 * Initially we enable all bits to make it accessible by the
20346722 3691 * driver, then we selectively enable only those bits that
1da177e4
LT
3692 * we want to set.
3693 */
3694 val64 |= (SWAPPER_CTRL_TXP_FE |
3695 SWAPPER_CTRL_TXP_SE |
3696 SWAPPER_CTRL_TXD_R_FE |
3697 SWAPPER_CTRL_TXD_R_SE |
3698 SWAPPER_CTRL_TXD_W_FE |
3699 SWAPPER_CTRL_TXD_W_SE |
3700 SWAPPER_CTRL_TXF_R_FE |
3701 SWAPPER_CTRL_RXD_R_FE |
3702 SWAPPER_CTRL_RXD_R_SE |
3703 SWAPPER_CTRL_RXD_W_FE |
3704 SWAPPER_CTRL_RXD_W_SE |
3705 SWAPPER_CTRL_RXF_W_FE |
3706 SWAPPER_CTRL_XMSI_FE |
1da177e4 3707 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3708 if (sp->config.intr_type == INTA)
cc6e7c44 3709 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3710 writeq(val64, &bar0->swapper_ctrl);
3711#endif
3712 val64 = readq(&bar0->swapper_ctrl);
3713
20346722 3714 /*
3715 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3716 * feedback register.
3717 */
3718 val64 = readq(&bar0->pif_rd_swapper_fb);
3719 if (val64 != 0x0123456789ABCDEFULL) {
3720 /* Endian settings are incorrect, calls for another dekko. */
3721 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3722 dev->name);
3723 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3724 (unsigned long long) val64);
3725 return FAILURE;
3726 }
3727
3728 return SUCCESS;
3729}
3730
1ee6dd77 3731static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3732{
1ee6dd77 3733 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3734 u64 val64;
3735 int ret = 0, cnt = 0;
3736
3737 do {
3738 val64 = readq(&bar0->xmsi_access);
b7b5a128 3739 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3740 break;
3741 mdelay(1);
3742 cnt++;
3743 } while(cnt < 5);
3744 if (cnt == 5) {
3745 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3746 ret = 1;
3747 }
3748
3749 return ret;
3750}
3751
1ee6dd77 3752static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3753{
1ee6dd77 3754 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3755 u64 val64;
f61e0a35
SH
3756 int i, msix_index;
3757
3758
3759 if (nic->device_type == XFRAME_I_DEVICE)
3760 return;
cc6e7c44 3761
75c30b13 3762 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
f61e0a35 3763 msix_index = (i) ? ((i-1) * 8 + 1): 0;
cc6e7c44
RA
3764 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3765 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3766 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3767 writeq(val64, &bar0->xmsi_access);
f61e0a35 3768 if (wait_for_msix_trans(nic, msix_index)) {
b39d66a8 3769 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
cc6e7c44
RA
3770 continue;
3771 }
3772 }
3773}
3774
1ee6dd77 3775static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3776{
1ee6dd77 3777 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3778 u64 val64, addr, data;
f61e0a35
SH
3779 int i, msix_index;
3780
3781 if (nic->device_type == XFRAME_I_DEVICE)
3782 return;
cc6e7c44
RA
3783
3784 /* Store and display */
75c30b13 3785 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
f61e0a35
SH
3786 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3787 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3788 writeq(val64, &bar0->xmsi_access);
f61e0a35 3789 if (wait_for_msix_trans(nic, msix_index)) {
b39d66a8 3790 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
cc6e7c44
RA
3791 continue;
3792 }
3793 addr = readq(&bar0->xmsi_address);
3794 data = readq(&bar0->xmsi_data);
3795 if (addr && data) {
3796 nic->msix_info[i].addr = addr;
3797 nic->msix_info[i].data = data;
3798 }
3799 }
3800}
3801
1ee6dd77 3802static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3803{
1ee6dd77 3804 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3805 u64 rx_mat;
cc6e7c44
RA
3806 u16 msi_control; /* Temp variable */
3807 int ret, i, j, msix_indx = 1;
3808
f61e0a35 3809 nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
cc6e7c44 3810 GFP_KERNEL);
bd684e43 3811 if (!nic->entries) {
491976b2 3812 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
b39d66a8 3813 __func__);
c53d4945 3814 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44
RA
3815 return -ENOMEM;
3816 }
8a4bdbaa 3817 nic->mac_control.stats_info->sw_stat.mem_allocated
f61e0a35
SH
3818 += (nic->num_entries * sizeof(struct msix_entry));
3819
3820 memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3821
3822 nic->s2io_entries =
f61e0a35 3823 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
cc6e7c44 3824 GFP_KERNEL);
bd684e43 3825 if (!nic->s2io_entries) {
8a4bdbaa 3826 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
b39d66a8 3827 __func__);
c53d4945 3828 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44 3829 kfree(nic->entries);
8a4bdbaa 3830 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3831 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3832 return -ENOMEM;
3833 }
8a4bdbaa 3834 nic->mac_control.stats_info->sw_stat.mem_allocated
f61e0a35
SH
3835 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3836 memset(nic->s2io_entries, 0,
3837 nic->num_entries * sizeof(struct s2io_msix_entry));
cc6e7c44 3838
ac731ab6
SH
3839 nic->entries[0].entry = 0;
3840 nic->s2io_entries[0].entry = 0;
3841 nic->s2io_entries[0].in_use = MSIX_FLG;
3842 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3843 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3844
f61e0a35
SH
3845 for (i = 1; i < nic->num_entries; i++) {
3846 nic->entries[i].entry = ((i - 1) * 8) + 1;
3847 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3848 nic->s2io_entries[i].arg = NULL;
3849 nic->s2io_entries[i].in_use = 0;
3850 }
3851
8a4bdbaa 3852 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3853 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3854 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3855 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3856 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3857 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3858 msix_indx += 8;
cc6e7c44 3859 }
8a4bdbaa 3860 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3861 readq(&bar0->rx_mat);
cc6e7c44 3862
f61e0a35 3863 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3864 /* We fail init if error or we get less vectors than min required */
cc6e7c44
RA
3865 if (ret) {
3866 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3867 kfree(nic->entries);
8a4bdbaa 3868 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3869 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44 3870 kfree(nic->s2io_entries);
8a4bdbaa 3871 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3872 += (nic->num_entries * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3873 nic->entries = NULL;
3874 nic->s2io_entries = NULL;
3875 return -ENOMEM;
3876 }
3877
3878 /*
3879 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3880 * in the herc NIC. (Temp change, needs to be removed later)
3881 */
3882 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3883 msi_control |= 0x1; /* Enable MSI */
3884 pci_write_config_word(nic->pdev, 0x42, msi_control);
3885
3886 return 0;
3887}
3888
8abc4d5b 3889/* Handle software interrupt used during MSI(X) test */
33390a70 3890static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3891{
3892 struct s2io_nic *sp = dev_id;
3893
3894 sp->msi_detected = 1;
3895 wake_up(&sp->msi_wait);
3896
3897 return IRQ_HANDLED;
3898}
3899
3900/* Test interrupt path by forcing a a software IRQ */
33390a70 3901static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3902{
3903 struct pci_dev *pdev = sp->pdev;
3904 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3905 int err;
3906 u64 val64, saved64;
3907
3908 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3909 sp->name, sp);
3910 if (err) {
3911 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3912 sp->dev->name, pci_name(pdev), pdev->irq);
3913 return err;
3914 }
3915
3916 init_waitqueue_head (&sp->msi_wait);
3917 sp->msi_detected = 0;
3918
3919 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3920 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3921 val64 |= SCHED_INT_CTRL_TIMER_EN;
3922 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3923 writeq(val64, &bar0->scheduled_int_ctrl);
3924
3925 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3926
3927 if (!sp->msi_detected) {
3928 /* MSI(X) test failed, go back to INTx mode */
2450022a 3929 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
8abc4d5b
SS
3930 "using MSI(X) during test\n", sp->dev->name,
3931 pci_name(pdev));
3932
3933 err = -EOPNOTSUPP;
3934 }
3935
3936 free_irq(sp->entries[1].vector, sp);
3937
3938 writeq(saved64, &bar0->scheduled_int_ctrl);
3939
3940 return err;
3941}
18b2b7bd
SH
3942
3943static void remove_msix_isr(struct s2io_nic *sp)
3944{
3945 int i;
3946 u16 msi_control;
3947
f61e0a35 3948 for (i = 0; i < sp->num_entries; i++) {
18b2b7bd
SH
3949 if (sp->s2io_entries[i].in_use ==
3950 MSIX_REGISTERED_SUCCESS) {
3951 int vector = sp->entries[i].vector;
3952 void *arg = sp->s2io_entries[i].arg;
3953 free_irq(vector, arg);
3954 }
3955 }
3956
3957 kfree(sp->entries);
3958 kfree(sp->s2io_entries);
3959 sp->entries = NULL;
3960 sp->s2io_entries = NULL;
3961
3962 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3963 msi_control &= 0xFFFE; /* Disable MSI */
3964 pci_write_config_word(sp->pdev, 0x42, msi_control);
3965
3966 pci_disable_msix(sp->pdev);
3967}
3968
3969static void remove_inta_isr(struct s2io_nic *sp)
3970{
3971 struct net_device *dev = sp->dev;
3972
3973 free_irq(sp->pdev->irq, dev);
3974}
3975
1da177e4
LT
3976/* ********************************************************* *
3977 * Functions defined below concern the OS part of the driver *
3978 * ********************************************************* */
3979
20346722 3980/**
1da177e4
LT
3981 * s2io_open - open entry point of the driver
3982 * @dev : pointer to the device structure.
3983 * Description:
3984 * This function is the open entry point of the driver. It mainly calls a
3985 * function to allocate Rx buffers and inserts them into the buffer
20346722 3986 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3987 * Return value:
3988 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3989 * file on failure.
3990 */
3991
ac1f60db 3992static int s2io_open(struct net_device *dev)
1da177e4 3993{
4cf1653a 3994 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
3995 int err = 0;
3996
20346722 3997 /*
3998 * Make sure you have link off by default every time
1da177e4
LT
3999 * Nic is initialized
4000 */
4001 netif_carrier_off(dev);
0b1f7ebe 4002 sp->last_link_state = 0;
1da177e4
LT
4003
4004 /* Initialize H/W and enable interrupts */
c92ca04b
AR
4005 err = s2io_card_up(sp);
4006 if (err) {
1da177e4
LT
4007 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4008 dev->name);
e6a8fee2 4009 goto hw_init_failed;
1da177e4
LT
4010 }
4011
2fd37688 4012 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 4013 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 4014 s2io_card_down(sp);
20346722 4015 err = -ENODEV;
e6a8fee2 4016 goto hw_init_failed;
1da177e4 4017 }
3a3d5756 4018 s2io_start_all_tx_queue(sp);
1da177e4 4019 return 0;
20346722 4020
20346722 4021hw_init_failed:
eaae7f72 4022 if (sp->config.intr_type == MSI_X) {
491976b2 4023 if (sp->entries) {
cc6e7c44 4024 kfree(sp->entries);
8a4bdbaa 4025 sp->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 4026 += (sp->num_entries * sizeof(struct msix_entry));
491976b2
SH
4027 }
4028 if (sp->s2io_entries) {
cc6e7c44 4029 kfree(sp->s2io_entries);
8a4bdbaa 4030 sp->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 4031 += (sp->num_entries * sizeof(struct s2io_msix_entry));
491976b2 4032 }
cc6e7c44 4033 }
20346722 4034 return err;
1da177e4
LT
4035}
4036
4037/**
4038 * s2io_close -close entry point of the driver
4039 * @dev : device pointer.
4040 * Description:
4041 * This is the stop entry point of the driver. It needs to undo exactly
4042 * whatever was done by the open entry point,thus it's usually referred to
4043 * as the close function.Among other things this function mainly stops the
4044 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4045 * Return value:
4046 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4047 * file on failure.
4048 */
4049
ac1f60db 4050static int s2io_close(struct net_device *dev)
1da177e4 4051{
4cf1653a 4052 struct s2io_nic *sp = netdev_priv(dev);
faa4f796
SH
4053 struct config_param *config = &sp->config;
4054 u64 tmp64;
4055 int offset;
cc6e7c44 4056
9f74ffde
SH
4057 /* Return if the device is already closed *
4058 * Can happen when s2io_card_up failed in change_mtu *
4059 */
4060 if (!is_s2io_card_up(sp))
4061 return 0;
4062
3a3d5756 4063 s2io_stop_all_tx_queue(sp);
faa4f796
SH
4064 /* delete all populated mac entries */
4065 for (offset = 1; offset < config->max_mc_addr; offset++) {
4066 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4067 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4068 do_s2io_delete_unicast_mc(sp, tmp64);
4069 }
4070
e6a8fee2 4071 s2io_card_down(sp);
cc6e7c44 4072
1da177e4
LT
4073 return 0;
4074}
4075
4076/**
4077 * s2io_xmit - Tx entry point of te driver
4078 * @skb : the socket buffer containing the Tx data.
4079 * @dev : device pointer.
4080 * Description :
4081 * This function is the Tx entry point of the driver. S2IO NIC supports
4082 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4083 * NOTE: when device cant queue the pkt,just the trans_start variable will
4084 * not be upadted.
4085 * Return value:
4086 * 0 on success & 1 on failure.
4087 */
4088
ac1f60db 4089static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4090{
4cf1653a 4091 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
4092 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4093 register u64 val64;
1ee6dd77
RB
4094 struct TxD *txdp;
4095 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4096 unsigned long flags = 0;
be3a6b02 4097 u16 vlan_tag = 0;
2fda096d 4098 struct fifo_info *fifo = NULL;
1ee6dd77 4099 struct mac_info *mac_control;
1da177e4 4100 struct config_param *config;
6cfc482b 4101 int do_spin_lock = 1;
75c30b13 4102 int offload_type;
6cfc482b 4103 int enable_per_list_interrupt = 0;
491abf25 4104 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
4105
4106 mac_control = &sp->mac_control;
4107 config = &sp->config;
4108
20346722 4109 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4110
4111 if (unlikely(skb->len <= 0)) {
4112 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4113 dev_kfree_skb_any(skb);
4114 return 0;
2fda096d 4115 }
491976b2 4116
92b84437 4117 if (!is_s2io_card_up(sp)) {
20346722 4118 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4119 dev->name);
20346722 4120 dev_kfree_skb(skb);
4121 return 0;
1da177e4
LT
4122 }
4123
4124 queue = 0;
3a3d5756 4125 if (sp->vlgrp && vlan_tx_tag_present(skb))
be3a6b02 4126 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4127 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4128 if (skb->protocol == htons(ETH_P_IP)) {
4129 struct iphdr *ip;
4130 struct tcphdr *th;
4131 ip = ip_hdr(skb);
4132
4133 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4134 th = (struct tcphdr *)(((unsigned char *)ip) +
4135 ip->ihl*4);
4136
4137 if (ip->protocol == IPPROTO_TCP) {
4138 queue_len = sp->total_tcp_fifos;
4139 queue = (ntohs(th->source) +
4140 ntohs(th->dest)) &
4141 sp->fifo_selector[queue_len - 1];
4142 if (queue >= queue_len)
4143 queue = queue_len - 1;
4144 } else if (ip->protocol == IPPROTO_UDP) {
4145 queue_len = sp->total_udp_fifos;
4146 queue = (ntohs(th->source) +
4147 ntohs(th->dest)) &
4148 sp->fifo_selector[queue_len - 1];
4149 if (queue >= queue_len)
4150 queue = queue_len - 1;
4151 queue += sp->udp_fifo_idx;
4152 if (skb->len > 1024)
4153 enable_per_list_interrupt = 1;
4154 do_spin_lock = 0;
4155 }
4156 }
4157 }
4158 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4159 /* get fifo number based on skb->priority value */
4160 queue = config->fifo_mapping
4161 [skb->priority & (MAX_TX_FIFOS - 1)];
4162 fifo = &mac_control->fifos[queue];
3a3d5756 4163
6cfc482b
SH
4164 if (do_spin_lock)
4165 spin_lock_irqsave(&fifo->tx_lock, flags);
4166 else {
4167 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4168 return NETDEV_TX_LOCKED;
4169 }
be3a6b02 4170
3a3d5756
SH
4171 if (sp->config.multiq) {
4172 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4173 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4174 return NETDEV_TX_BUSY;
4175 }
b19fa1fa 4176 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
4177 if (netif_queue_stopped(dev)) {
4178 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179 return NETDEV_TX_BUSY;
4180 }
4181 }
4182
2fda096d
SR
4183 put_off = (u16) fifo->tx_curr_put_info.offset;
4184 get_off = (u16) fifo->tx_curr_get_info.offset;
4185 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
20346722 4186
2fda096d 4187 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4188 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
4189 if (txdp->Host_Control ||
4190 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4191 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4192 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4193 dev_kfree_skb(skb);
2fda096d 4194 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
4195 return 0;
4196 }
0b1f7ebe 4197
75c30b13 4198 offload_type = s2io_offload_type(skb);
75c30b13 4199 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4200 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4201 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4202 }
84fa7933 4203 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
4204 txdp->Control_2 |=
4205 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4206 TXD_TX_CKO_UDP_EN);
4207 }
fed5eccd
AR
4208 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4209 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4210 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4211 if (enable_per_list_interrupt)
4212 if (put_off & (queue_len >> 5))
4213 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4214 if (vlan_tag) {
be3a6b02 4215 txdp->Control_2 |= TXD_VLAN_ENABLE;
4216 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4217 }
4218
fed5eccd 4219 frg_len = skb->len - skb->data_len;
75c30b13 4220 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4221 int ufo_size;
4222
75c30b13 4223 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4224 ufo_size &= ~7;
4225 txdp->Control_1 |= TXD_UFO_EN;
4226 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4227 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4228#ifdef __BIG_ENDIAN
3459feb8 4229 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4230 fifo->ufo_in_band_v[put_off] =
3459feb8 4231 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4232#else
2fda096d 4233 fifo->ufo_in_band_v[put_off] =
3459feb8 4234 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4235#endif
2fda096d 4236 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4237 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
2fda096d 4238 fifo->ufo_in_band_v,
fed5eccd 4239 sizeof(u64), PCI_DMA_TODEVICE);
8d8bb39b 4240 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25 4241 goto pci_map_failed;
fed5eccd 4242 txdp++;
fed5eccd 4243 }
1da177e4 4244
fed5eccd
AR
4245 txdp->Buffer_Pointer = pci_map_single
4246 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
8d8bb39b 4247 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25
VP
4248 goto pci_map_failed;
4249
fed5eccd
AR
4250 txdp->Host_Control = (unsigned long) skb;
4251 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4252 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4253 txdp->Control_1 |= TXD_UFO_EN;
4254
4255 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4256 /* For fragmented SKB. */
4257 for (i = 0; i < frg_cnt; i++) {
4258 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe 4259 /* A '0' length fragment will be ignored */
4260 if (!frag->size)
4261 continue;
1da177e4
LT
4262 txdp++;
4263 txdp->Buffer_Pointer = (u64) pci_map_page
4264 (sp->pdev, frag->page, frag->page_offset,
4265 frag->size, PCI_DMA_TODEVICE);
efd51b5c 4266 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4267 if (offload_type == SKB_GSO_UDP)
fed5eccd 4268 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4269 }
4270 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4271
75c30b13 4272 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4273 frg_cnt++; /* as Txd0 was used for inband header */
4274
1da177e4 4275 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4276 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4277 writeq(val64, &tx_fifo->TxDL_Pointer);
4278
4279 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4280 TX_FIFO_LAST_LIST);
75c30b13 4281 if (offload_type)
fed5eccd 4282 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4283
1da177e4
LT
4284 writeq(val64, &tx_fifo->List_Control);
4285
303bcb4b 4286 mmiowb();
4287
1da177e4 4288 put_off++;
2fda096d 4289 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4290 put_off = 0;
2fda096d 4291 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4292
4293 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4294 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4295 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4296 DBG_PRINT(TX_DBG,
4297 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4298 put_off, get_off);
3a3d5756 4299 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4300 }
491976b2 4301 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
1da177e4 4302 dev->trans_start = jiffies;
2fda096d 4303 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4304
f6f4bfa3
SH
4305 if (sp->config.intr_type == MSI_X)
4306 tx_intr_handler(fifo);
4307
491abf25
VP
4308 return 0;
4309pci_map_failed:
4310 stats->pci_map_fail_cnt++;
3a3d5756 4311 s2io_stop_tx_queue(sp, fifo->fifo_no);
491abf25
VP
4312 stats->mem_freed += skb->truesize;
4313 dev_kfree_skb(skb);
2fda096d 4314 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
4315 return 0;
4316}
4317
25fff88e 4318static void
4319s2io_alarm_handle(unsigned long data)
4320{
1ee6dd77 4321 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4322 struct net_device *dev = sp->dev;
25fff88e 4323
8116f3cf 4324 s2io_handle_errors(dev);
25fff88e 4325 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4326}
4327
7d12e780 4328static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4329{
1ee6dd77
RB
4330 struct ring_info *ring = (struct ring_info *)dev_id;
4331 struct s2io_nic *sp = ring->nic;
f61e0a35
SH
4332 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4333 struct net_device *dev = sp->dev;
cc6e7c44 4334
f61e0a35 4335 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4336 return IRQ_HANDLED;
92b84437 4337
f61e0a35 4338 if (sp->config.napi) {
1a79d1c3
AV
4339 u8 __iomem *addr = NULL;
4340 u8 val8 = 0;
f61e0a35 4341
1a79d1c3 4342 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
4343 addr += (7 - ring->ring_no);
4344 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4345 writeb(val8, addr);
4346 val8 = readb(addr);
4347 netif_rx_schedule(dev, &ring->napi);
4348 } else {
4349 rx_intr_handler(ring, 0);
8d8bb39b 4350 s2io_chk_rx_buffers(sp, ring);
f61e0a35 4351 }
7d3d0439 4352
cc6e7c44
RA
4353 return IRQ_HANDLED;
4354}
4355
7d12e780 4356static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4357{
ac731ab6
SH
4358 int i;
4359 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4360 struct s2io_nic *sp = fifos->nic;
4361 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4362 struct config_param *config = &sp->config;
4363 u64 reason;
cc6e7c44 4364
ac731ab6
SH
4365 if (unlikely(!is_s2io_card_up(sp)))
4366 return IRQ_NONE;
4367
4368 reason = readq(&bar0->general_int_status);
4369 if (unlikely(reason == S2IO_MINUS_ONE))
4370 /* Nothing much can be done. Get out */
92b84437 4371 return IRQ_HANDLED;
92b84437 4372
01e16faa
SH
4373 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4374 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
ac731ab6 4375
01e16faa
SH
4376 if (reason & GEN_INTR_TXPIC)
4377 s2io_txpic_intr_handle(sp);
ac731ab6 4378
01e16faa
SH
4379 if (reason & GEN_INTR_TXTRAFFIC)
4380 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
ac731ab6 4381
01e16faa
SH
4382 for (i = 0; i < config->tx_fifo_num; i++)
4383 tx_intr_handler(&fifos[i]);
ac731ab6 4384
01e16faa
SH
4385 writeq(sp->general_int_mask, &bar0->general_int_mask);
4386 readl(&bar0->general_int_status);
4387 return IRQ_HANDLED;
4388 }
4389 /* The interrupt was not raised by us */
4390 return IRQ_NONE;
cc6e7c44 4391}
ac731ab6 4392
1ee6dd77 4393static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4394{
1ee6dd77 4395 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d 4396 u64 val64;
4397
4398 val64 = readq(&bar0->pic_int_status);
4399 if (val64 & PIC_INT_GPIO) {
4400 val64 = readq(&bar0->gpio_int_reg);
4401 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4402 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4403 /*
4404 * This is unstable state so clear both up/down
4405 * interrupt and adapter to re-evaluate the link state.
4406 */
a371a07d 4407 val64 |= GPIO_INT_REG_LINK_DOWN;
4408 val64 |= GPIO_INT_REG_LINK_UP;
4409 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4410 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4411 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4412 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4413 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4414 }
c92ca04b
AR
4415 else if (val64 & GPIO_INT_REG_LINK_UP) {
4416 val64 = readq(&bar0->adapter_status);
c92ca04b 4417 /* Enable Adapter */
19a60522
SS
4418 val64 = readq(&bar0->adapter_control);
4419 val64 |= ADAPTER_CNTL_EN;
4420 writeq(val64, &bar0->adapter_control);
4421 val64 |= ADAPTER_LED_ON;
4422 writeq(val64, &bar0->adapter_control);
4423 if (!sp->device_enabled_once)
4424 sp->device_enabled_once = 1;
c92ca04b 4425
19a60522
SS
4426 s2io_link(sp, LINK_UP);
4427 /*
4428 * unmask link down interrupt and mask link-up
4429 * intr
4430 */
4431 val64 = readq(&bar0->gpio_int_mask);
4432 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4433 val64 |= GPIO_INT_MASK_LINK_UP;
4434 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4435
c92ca04b
AR
4436 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4437 val64 = readq(&bar0->adapter_status);
19a60522
SS
4438 s2io_link(sp, LINK_DOWN);
4439 /* Link is down so unmaks link up interrupt */
4440 val64 = readq(&bar0->gpio_int_mask);
4441 val64 &= ~GPIO_INT_MASK_LINK_UP;
4442 val64 |= GPIO_INT_MASK_LINK_DOWN;
4443 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4444
4445 /* turn off LED */
4446 val64 = readq(&bar0->adapter_control);
4447 val64 = val64 &(~ADAPTER_LED_ON);
4448 writeq(val64, &bar0->adapter_control);
a371a07d 4449 }
4450 }
c92ca04b 4451 val64 = readq(&bar0->gpio_int_mask);
a371a07d 4452}
4453
8116f3cf
SS
4454/**
4455 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4456 * @value: alarm bits
4457 * @addr: address value
4458 * @cnt: counter variable
4459 * Description: Check for alarm and increment the counter
4460 * Return Value:
4461 * 1 - if alarm bit set
4462 * 0 - if alarm bit is not set
4463 */
43b7c451 4464static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
8116f3cf
SS
4465 unsigned long long *cnt)
4466{
4467 u64 val64;
4468 val64 = readq(addr);
4469 if ( val64 & value ) {
4470 writeq(val64, addr);
4471 (*cnt)++;
4472 return 1;
4473 }
4474 return 0;
4475
4476}
4477
4478/**
4479 * s2io_handle_errors - Xframe error indication handler
4480 * @nic: device private variable
4481 * Description: Handle alarms such as loss of link, single or
4482 * double ECC errors, critical and serious errors.
4483 * Return Value:
4484 * NONE
4485 */
4486static void s2io_handle_errors(void * dev_id)
4487{
4488 struct net_device *dev = (struct net_device *) dev_id;
4cf1653a 4489 struct s2io_nic *sp = netdev_priv(dev);
8116f3cf
SS
4490 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4491 u64 temp64 = 0,val64=0;
4492 int i = 0;
4493
4494 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4495 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4496
92b84437 4497 if (!is_s2io_card_up(sp))
8116f3cf
SS
4498 return;
4499
4500 if (pci_channel_offline(sp->pdev))
4501 return;
4502
4503 memset(&sw_stat->ring_full_cnt, 0,
4504 sizeof(sw_stat->ring_full_cnt));
4505
4506 /* Handling the XPAK counters update */
4507 if(stats->xpak_timer_count < 72000) {
4508 /* waiting for an hour */
4509 stats->xpak_timer_count++;
4510 } else {
4511 s2io_updt_xpak_counter(dev);
4512 /* reset the count to zero */
4513 stats->xpak_timer_count = 0;
4514 }
4515
4516 /* Handling link status change error Intr */
4517 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4518 val64 = readq(&bar0->mac_rmac_err_reg);
4519 writeq(val64, &bar0->mac_rmac_err_reg);
4520 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4521 schedule_work(&sp->set_link_task);
4522 }
4523
4524 /* In case of a serious error, the device will be Reset. */
4525 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4526 &sw_stat->serious_err_cnt))
4527 goto reset;
4528
4529 /* Check for data parity error */
4530 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4531 &sw_stat->parity_err_cnt))
4532 goto reset;
4533
4534 /* Check for ring full counter */
4535 if (sp->device_type == XFRAME_II_DEVICE) {
4536 val64 = readq(&bar0->ring_bump_counter1);
4537 for (i=0; i<4; i++) {
4538 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4539 temp64 >>= 64 - ((i+1)*16);
4540 sw_stat->ring_full_cnt[i] += temp64;
4541 }
4542
4543 val64 = readq(&bar0->ring_bump_counter2);
4544 for (i=0; i<4; i++) {
4545 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4546 temp64 >>= 64 - ((i+1)*16);
4547 sw_stat->ring_full_cnt[i+4] += temp64;
4548 }
4549 }
4550
4551 val64 = readq(&bar0->txdma_int_status);
4552 /*check for pfc_err*/
4553 if (val64 & TXDMA_PFC_INT) {
4554 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4555 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4556 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4557 &sw_stat->pfc_err_cnt))
4558 goto reset;
4559 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4560 &sw_stat->pfc_err_cnt);
4561 }
4562
4563 /*check for tda_err*/
4564 if (val64 & TXDMA_TDA_INT) {
4565 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4566 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4567 &sw_stat->tda_err_cnt))
4568 goto reset;
4569 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4570 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4571 }
4572 /*check for pcc_err*/
4573 if (val64 & TXDMA_PCC_INT) {
4574 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4575 | PCC_N_SERR | PCC_6_COF_OV_ERR
4576 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4577 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4578 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4579 &sw_stat->pcc_err_cnt))
4580 goto reset;
4581 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4582 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4583 }
4584
4585 /*check for tti_err*/
4586 if (val64 & TXDMA_TTI_INT) {
4587 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4588 &sw_stat->tti_err_cnt))
4589 goto reset;
4590 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4591 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4592 }
4593
4594 /*check for lso_err*/
4595 if (val64 & TXDMA_LSO_INT) {
4596 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4597 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4598 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4599 goto reset;
4600 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4601 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4602 }
4603
4604 /*check for tpa_err*/
4605 if (val64 & TXDMA_TPA_INT) {
4606 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4607 &sw_stat->tpa_err_cnt))
4608 goto reset;
4609 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4610 &sw_stat->tpa_err_cnt);
4611 }
4612
4613 /*check for sm_err*/
4614 if (val64 & TXDMA_SM_INT) {
4615 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4616 &sw_stat->sm_err_cnt))
4617 goto reset;
4618 }
4619
4620 val64 = readq(&bar0->mac_int_status);
4621 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4622 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4623 &bar0->mac_tmac_err_reg,
4624 &sw_stat->mac_tmac_err_cnt))
4625 goto reset;
4626 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4627 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4628 &bar0->mac_tmac_err_reg,
4629 &sw_stat->mac_tmac_err_cnt);
4630 }
4631
4632 val64 = readq(&bar0->xgxs_int_status);
4633 if (val64 & XGXS_INT_STATUS_TXGXS) {
4634 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4635 &bar0->xgxs_txgxs_err_reg,
4636 &sw_stat->xgxs_txgxs_err_cnt))
4637 goto reset;
4638 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4639 &bar0->xgxs_txgxs_err_reg,
4640 &sw_stat->xgxs_txgxs_err_cnt);
4641 }
4642
4643 val64 = readq(&bar0->rxdma_int_status);
4644 if (val64 & RXDMA_INT_RC_INT_M) {
4645 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4646 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4647 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4648 goto reset;
4649 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4650 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4651 &sw_stat->rc_err_cnt);
4652 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4653 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4654 &sw_stat->prc_pcix_err_cnt))
4655 goto reset;
4656 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4657 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4658 &sw_stat->prc_pcix_err_cnt);
4659 }
4660
4661 if (val64 & RXDMA_INT_RPA_INT_M) {
4662 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4663 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4664 goto reset;
4665 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4666 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4667 }
4668
4669 if (val64 & RXDMA_INT_RDA_INT_M) {
4670 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4671 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4672 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4673 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4674 goto reset;
4675 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4676 | RDA_MISC_ERR | RDA_PCIX_ERR,
4677 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4678 }
4679
4680 if (val64 & RXDMA_INT_RTI_INT_M) {
4681 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4682 &sw_stat->rti_err_cnt))
4683 goto reset;
4684 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4685 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4686 }
4687
4688 val64 = readq(&bar0->mac_int_status);
4689 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4690 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4691 &bar0->mac_rmac_err_reg,
4692 &sw_stat->mac_rmac_err_cnt))
4693 goto reset;
4694 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4695 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4696 &sw_stat->mac_rmac_err_cnt);
4697 }
4698
4699 val64 = readq(&bar0->xgxs_int_status);
4700 if (val64 & XGXS_INT_STATUS_RXGXS) {
4701 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4702 &bar0->xgxs_rxgxs_err_reg,
4703 &sw_stat->xgxs_rxgxs_err_cnt))
4704 goto reset;
4705 }
4706
4707 val64 = readq(&bar0->mc_int_status);
4708 if(val64 & MC_INT_STATUS_MC_INT) {
4709 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4710 &sw_stat->mc_err_cnt))
4711 goto reset;
4712
4713 /* Handling Ecc errors */
4714 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4715 writeq(val64, &bar0->mc_err_reg);
4716 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4717 sw_stat->double_ecc_errs++;
4718 if (sp->device_type != XFRAME_II_DEVICE) {
4719 /*
4720 * Reset XframeI only if critical error
4721 */
4722 if (val64 &
4723 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4724 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4725 goto reset;
4726 }
4727 } else
4728 sw_stat->single_ecc_errs++;
4729 }
4730 }
4731 return;
4732
4733reset:
3a3d5756 4734 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4735 schedule_work(&sp->rst_timer_task);
4736 sw_stat->soft_reset_cnt++;
4737 return;
4738}
4739
1da177e4
LT
4740/**
4741 * s2io_isr - ISR handler of the device .
4742 * @irq: the irq of the device.
4743 * @dev_id: a void pointer to the dev structure of the NIC.
20346722 4744 * Description: This function is the ISR handler of the device. It
4745 * identifies the reason for the interrupt and calls the relevant
4746 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4747 * recv buffers, if their numbers are below the panic value which is
4748 * presently set to 25% of the original number of rcv buffers allocated.
4749 * Return value:
20346722 4750 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4751 * IRQ_NONE: will be returned if interrupt is not from our device
4752 */
7d12e780 4753static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4754{
4755 struct net_device *dev = (struct net_device *) dev_id;
4cf1653a 4756 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4757 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4758 int i;
19a60522 4759 u64 reason = 0;
1ee6dd77 4760 struct mac_info *mac_control;
1da177e4
LT
4761 struct config_param *config;
4762
d796fdb7
LV
4763 /* Pretend we handled any irq's from a disconnected card */
4764 if (pci_channel_offline(sp->pdev))
4765 return IRQ_NONE;
4766
596c5c97 4767 if (!is_s2io_card_up(sp))
92b84437 4768 return IRQ_NONE;
92b84437 4769
1da177e4
LT
4770 mac_control = &sp->mac_control;
4771 config = &sp->config;
4772
20346722 4773 /*
1da177e4
LT
4774 * Identify the cause for interrupt and call the appropriate
4775 * interrupt handler. Causes for the interrupt could be;
4776 * 1. Rx of packet.
4777 * 2. Tx complete.
4778 * 3. Link down.
1da177e4
LT
4779 */
4780 reason = readq(&bar0->general_int_status);
4781
596c5c97
SS
4782 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4783 /* Nothing much can be done. Get out */
4784 return IRQ_HANDLED;
1da177e4 4785 }
5d3213cc 4786
596c5c97
SS
4787 if (reason & (GEN_INTR_RXTRAFFIC |
4788 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4789 {
4790 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4791
4792 if (config->napi) {
4793 if (reason & GEN_INTR_RXTRAFFIC) {
f61e0a35
SH
4794 netif_rx_schedule(dev, &sp->napi);
4795 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4796 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4797 readl(&bar0->rx_traffic_int);
db874e65 4798 }
596c5c97
SS
4799 } else {
4800 /*
4801 * rx_traffic_int reg is an R1 register, writing all 1's
4802 * will ensure that the actual interrupt causing bit
4803 * get's cleared and hence a read can be avoided.
4804 */
4805 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4806 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97
SS
4807
4808 for (i = 0; i < config->rx_ring_num; i++)
f61e0a35 4809 rx_intr_handler(&mac_control->rings[i], 0);
db874e65 4810 }
596c5c97 4811
db874e65 4812 /*
596c5c97 4813 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4814 * will ensure that the actual interrupt causing bit get's
4815 * cleared and hence a read can be avoided.
4816 */
596c5c97
SS
4817 if (reason & GEN_INTR_TXTRAFFIC)
4818 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4819
596c5c97
SS
4820 for (i = 0; i < config->tx_fifo_num; i++)
4821 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4822
596c5c97
SS
4823 if (reason & GEN_INTR_TXPIC)
4824 s2io_txpic_intr_handle(sp);
fe113638 4825
596c5c97
SS
4826 /*
4827 * Reallocate the buffers from the interrupt handler itself.
4828 */
4829 if (!config->napi) {
4830 for (i = 0; i < config->rx_ring_num; i++)
8d8bb39b 4831 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
596c5c97
SS
4832 }
4833 writeq(sp->general_int_mask, &bar0->general_int_mask);
4834 readl(&bar0->general_int_status);
20346722 4835
596c5c97 4836 return IRQ_HANDLED;
db874e65 4837
596c5c97
SS
4838 }
4839 else if (!reason) {
4840 /* The interrupt was not raised by us */
4841 return IRQ_NONE;
4842 }
db874e65 4843
1da177e4
LT
4844 return IRQ_HANDLED;
4845}
4846
7ba013ac 4847/**
4848 * s2io_updt_stats -
4849 */
1ee6dd77 4850static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4851{
1ee6dd77 4852 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac 4853 u64 val64;
4854 int cnt = 0;
4855
92b84437 4856 if (is_s2io_card_up(sp)) {
7ba013ac 4857 /* Apprx 30us on a 133 MHz bus */
4858 val64 = SET_UPDT_CLICKS(10) |
4859 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4860 writeq(val64, &bar0->stat_cfg);
4861 do {
4862 udelay(100);
4863 val64 = readq(&bar0->stat_cfg);
b7b5a128 4864 if (!(val64 & s2BIT(0)))
7ba013ac 4865 break;
4866 cnt++;
4867 if (cnt == 5)
4868 break; /* Updt failed */
4869 } while(1);
8a4bdbaa 4870 }
7ba013ac 4871}
4872
1da177e4 4873/**
20346722 4874 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4875 * @dev : pointer to the device structure.
4876 * Description:
20346722 4877 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4878 * structure and returns a pointer to the same.
4879 * Return value:
4880 * pointer to the updated net_device_stats structure.
4881 */
4882
ac1f60db 4883static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4884{
4cf1653a 4885 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4886 struct mac_info *mac_control;
1da177e4 4887 struct config_param *config;
0425b46a 4888 int i;
1da177e4 4889
20346722 4890
1da177e4
LT
4891 mac_control = &sp->mac_control;
4892 config = &sp->config;
4893
7ba013ac 4894 /* Configure Stats for immediate updt */
4895 s2io_updt_stats(sp);
4896
dc56e634
BL
4897 /* Using sp->stats as a staging area, because reset (due to mtu
4898 change, for example) will clear some hardware counters */
4899 dev->stats.tx_packets +=
4900 le32_to_cpu(mac_control->stats_info->tmac_frms) -
4901 sp->stats.tx_packets;
7ba013ac 4902 sp->stats.tx_packets =
4903 le32_to_cpu(mac_control->stats_info->tmac_frms);
dc56e634
BL
4904 dev->stats.tx_errors +=
4905 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4906 sp->stats.tx_errors;
20346722 4907 sp->stats.tx_errors =
4908 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
dc56e634
BL
4909 dev->stats.rx_errors +=
4910 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4911 sp->stats.rx_errors;
20346722 4912 sp->stats.rx_errors =
ee705dba 4913 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
dc56e634
BL
4914 dev->stats.multicast =
4915 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) -
4916 sp->stats.multicast;
20346722 4917 sp->stats.multicast =
4918 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
dc56e634
BL
4919 dev->stats.rx_length_errors =
4920 le64_to_cpu(mac_control->stats_info->rmac_long_frms) -
4921 sp->stats.rx_length_errors;
1da177e4 4922 sp->stats.rx_length_errors =
ee705dba 4923 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4 4924
0425b46a 4925 /* collect per-ring rx_packets and rx_bytes */
dc56e634 4926 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
0425b46a 4927 for (i = 0; i < config->rx_ring_num; i++) {
dc56e634
BL
4928 dev->stats.rx_packets += mac_control->rings[i].rx_packets;
4929 dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
0425b46a
SH
4930 }
4931
dc56e634 4932 return (&dev->stats);
1da177e4
LT
4933}
4934
4935/**
4936 * s2io_set_multicast - entry point for multicast address enable/disable.
4937 * @dev : pointer to the device structure
4938 * Description:
20346722 4939 * This function is a driver entry point which gets called by the kernel
4940 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4941 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4942 * determine, if multicast address must be enabled or if promiscuous mode
4943 * is to be disabled etc.
4944 * Return value:
4945 * void.
4946 */
4947
4948static void s2io_set_multicast(struct net_device *dev)
4949{
4950 int i, j, prev_cnt;
4951 struct dev_mc_list *mclist;
4cf1653a 4952 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4953 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4954 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4955 0xfeffffffffffULL;
faa4f796 4956 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 4957 void __iomem *add;
faa4f796 4958 struct config_param *config = &sp->config;
1da177e4
LT
4959
4960 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4961 /* Enable all Multicast addresses */
4962 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4963 &bar0->rmac_addr_data0_mem);
4964 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4965 &bar0->rmac_addr_data1_mem);
4966 val64 = RMAC_ADDR_CMD_MEM_WE |
4967 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796 4968 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
4969 writeq(val64, &bar0->rmac_addr_cmd_mem);
4970 /* Wait till command completes */
c92ca04b 4971 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4972 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4973 S2IO_BIT_RESET);
1da177e4
LT
4974
4975 sp->m_cast_flg = 1;
faa4f796 4976 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
4977 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4978 /* Disable all Multicast addresses */
4979 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4980 &bar0->rmac_addr_data0_mem);
5e25b9dd 4981 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4982 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4983 val64 = RMAC_ADDR_CMD_MEM_WE |
4984 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4985 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4986 writeq(val64, &bar0->rmac_addr_cmd_mem);
4987 /* Wait till command completes */
c92ca04b 4988 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4989 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4990 S2IO_BIT_RESET);
1da177e4
LT
4991
4992 sp->m_cast_flg = 0;
4993 sp->all_multi_pos = 0;
4994 }
4995
4996 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4997 /* Put the NIC into promiscuous mode */
4998 add = &bar0->mac_cfg;
4999 val64 = readq(&bar0->mac_cfg);
5000 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5001
5002 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5003 writel((u32) val64, add);
5004 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5005 writel((u32) (val64 >> 32), (add + 4));
5006
926930b2
SS
5007 if (vlan_tag_strip != 1) {
5008 val64 = readq(&bar0->rx_pa_cfg);
5009 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5010 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5011 sp->vlan_strip_flag = 0;
926930b2
SS
5012 }
5013
1da177e4
LT
5014 val64 = readq(&bar0->mac_cfg);
5015 sp->promisc_flg = 1;
776bd20f 5016 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5017 dev->name);
5018 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5019 /* Remove the NIC from promiscuous mode */
5020 add = &bar0->mac_cfg;
5021 val64 = readq(&bar0->mac_cfg);
5022 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5023
5024 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5025 writel((u32) val64, add);
5026 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5027 writel((u32) (val64 >> 32), (add + 4));
5028
926930b2
SS
5029 if (vlan_tag_strip != 0) {
5030 val64 = readq(&bar0->rx_pa_cfg);
5031 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5032 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5033 sp->vlan_strip_flag = 1;
926930b2
SS
5034 }
5035
1da177e4
LT
5036 val64 = readq(&bar0->mac_cfg);
5037 sp->promisc_flg = 0;
776bd20f 5038 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
5039 dev->name);
5040 }
5041
5042 /* Update individual M_CAST address list */
5043 if ((!sp->m_cast_flg) && dev->mc_count) {
5044 if (dev->mc_count >
faa4f796 5045 (config->max_mc_addr - config->max_mac_addr)) {
1da177e4
LT
5046 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5047 dev->name);
5048 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5049 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5050 return;
5051 }
5052
5053 prev_cnt = sp->mc_addr_count;
5054 sp->mc_addr_count = dev->mc_count;
5055
5056 /* Clear out the previous list of Mc in the H/W. */
5057 for (i = 0; i < prev_cnt; i++) {
5058 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5059 &bar0->rmac_addr_data0_mem);
5060 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 5061 &bar0->rmac_addr_data1_mem);
1da177e4
LT
5062 val64 = RMAC_ADDR_CMD_MEM_WE |
5063 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5064 RMAC_ADDR_CMD_MEM_OFFSET
faa4f796 5065 (config->mc_start_offset + i);
1da177e4
LT
5066 writeq(val64, &bar0->rmac_addr_cmd_mem);
5067
5068 /* Wait for command completes */
c92ca04b 5069 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
5070 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5071 S2IO_BIT_RESET)) {
1da177e4
LT
5072 DBG_PRINT(ERR_DBG, "%s: Adding ",
5073 dev->name);
5074 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5075 return;
5076 }
5077 }
5078
5079 /* Create the new Rx filter list and update the same in H/W. */
5080 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5081 i++, mclist = mclist->next) {
5082 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5083 ETH_ALEN);
a7a80d5a 5084 mac_addr = 0;
1da177e4
LT
5085 for (j = 0; j < ETH_ALEN; j++) {
5086 mac_addr |= mclist->dmi_addr[j];
5087 mac_addr <<= 8;
5088 }
5089 mac_addr >>= 8;
5090 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5091 &bar0->rmac_addr_data0_mem);
5092 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 5093 &bar0->rmac_addr_data1_mem);
1da177e4
LT
5094 val64 = RMAC_ADDR_CMD_MEM_WE |
5095 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5096 RMAC_ADDR_CMD_MEM_OFFSET
faa4f796 5097 (i + config->mc_start_offset);
1da177e4
LT
5098 writeq(val64, &bar0->rmac_addr_cmd_mem);
5099
5100 /* Wait for command completes */
c92ca04b 5101 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
5102 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5103 S2IO_BIT_RESET)) {
1da177e4
LT
5104 DBG_PRINT(ERR_DBG, "%s: Adding ",
5105 dev->name);
5106 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5107 return;
5108 }
5109 }
5110 }
5111}
5112
faa4f796
SH
5113/* read from CAM unicast & multicast addresses and store it in
5114 * def_mac_addr structure
5115 */
5116void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5117{
5118 int offset;
5119 u64 mac_addr = 0x0;
5120 struct config_param *config = &sp->config;
5121
5122 /* store unicast & multicast mac addresses */
5123 for (offset = 0; offset < config->max_mc_addr; offset++) {
5124 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5125 /* if read fails disable the entry */
5126 if (mac_addr == FAILURE)
5127 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5128 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5129 }
5130}
5131
5132/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5133static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5134{
5135 int offset;
5136 struct config_param *config = &sp->config;
5137 /* restore unicast mac address */
5138 for (offset = 0; offset < config->max_mac_addr; offset++)
5139 do_s2io_prog_unicast(sp->dev,
5140 sp->def_mac_addr[offset].mac_addr);
5141
5142 /* restore multicast mac address */
5143 for (offset = config->mc_start_offset;
5144 offset < config->max_mc_addr; offset++)
5145 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5146}
5147
5148/* add a multicast MAC address to CAM */
5149static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5150{
5151 int i;
5152 u64 mac_addr = 0;
5153 struct config_param *config = &sp->config;
5154
5155 for (i = 0; i < ETH_ALEN; i++) {
5156 mac_addr <<= 8;
5157 mac_addr |= addr[i];
5158 }
5159 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5160 return SUCCESS;
5161
5162 /* check if the multicast mac already preset in CAM */
5163 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5164 u64 tmp64;
5165 tmp64 = do_s2io_read_unicast_mc(sp, i);
5166 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5167 break;
5168
5169 if (tmp64 == mac_addr)
5170 return SUCCESS;
5171 }
5172 if (i == config->max_mc_addr) {
5173 DBG_PRINT(ERR_DBG,
5174 "CAM full no space left for multicast MAC\n");
5175 return FAILURE;
5176 }
5177 /* Update the internal structure with this new mac address */
5178 do_s2io_copy_mac_addr(sp, i, mac_addr);
5179
5180 return (do_s2io_add_mac(sp, mac_addr, i));
5181}
5182
5183/* add MAC address to CAM */
5184static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5185{
5186 u64 val64;
5187 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5188
5189 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5190 &bar0->rmac_addr_data0_mem);
5191
5192 val64 =
5193 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5194 RMAC_ADDR_CMD_MEM_OFFSET(off);
5195 writeq(val64, &bar0->rmac_addr_cmd_mem);
5196
5197 /* Wait till command completes */
5198 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5199 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5200 S2IO_BIT_RESET)) {
faa4f796 5201 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5202 return FAILURE;
5203 }
5204 return SUCCESS;
5205}
faa4f796
SH
5206/* deletes a specified unicast/multicast mac entry from CAM */
5207static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5208{
5209 int offset;
5210 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5211 struct config_param *config = &sp->config;
5212
5213 for (offset = 1;
5214 offset < config->max_mc_addr; offset++) {
5215 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5216 if (tmp64 == addr) {
5217 /* disable the entry by writing 0xffffffffffffULL */
5218 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5219 return FAILURE;
5220 /* store the new mac list from CAM */
5221 do_s2io_store_unicast_mc(sp);
5222 return SUCCESS;
5223 }
5224 }
5225 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5226 (unsigned long long)addr);
5227 return FAILURE;
5228}
5229
5230/* read mac entries from CAM */
5231static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5232{
5233 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5234 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5235
5236 /* read mac addr */
5237 val64 =
5238 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5239 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5240 writeq(val64, &bar0->rmac_addr_cmd_mem);
5241
5242 /* Wait till command completes */
5243 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5244 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5245 S2IO_BIT_RESET)) {
5246 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5247 return FAILURE;
5248 }
5249 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5250 return (tmp64 >> 16);
5251}
2fd37688
SS
5252
5253/**
5254 * s2io_set_mac_addr driver entry point
5255 */
faa4f796 5256
2fd37688
SS
5257static int s2io_set_mac_addr(struct net_device *dev, void *p)
5258{
5259 struct sockaddr *addr = p;
5260
5261 if (!is_valid_ether_addr(addr->sa_data))
5262 return -EINVAL;
5263
5264 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5265
5266 /* store the MAC address in CAM */
5267 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5268}
1da177e4 5269/**
2fd37688 5270 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5271 * @dev : pointer to the device structure.
5272 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5273 * Description : This procedure will program the Xframe to receive
1da177e4 5274 * frames with new Mac Address
20346722 5275 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5276 * as defined in errno.h file on failure.
5277 */
faa4f796 5278
2fd37688 5279static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5280{
4cf1653a 5281 struct s2io_nic *sp = netdev_priv(dev);
2fd37688 5282 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5283 int i;
faa4f796
SH
5284 u64 tmp64;
5285 struct config_param *config = &sp->config;
1da177e4 5286
20346722 5287 /*
2fd37688
SS
5288 * Set the new MAC address as the new unicast filter and reflect this
5289 * change on the device address registered with the OS. It will be
5290 * at offset 0.
5291 */
1da177e4
LT
5292 for (i = 0; i < ETH_ALEN; i++) {
5293 mac_addr <<= 8;
5294 mac_addr |= addr[i];
2fd37688
SS
5295 perm_addr <<= 8;
5296 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5297 }
5298
2fd37688
SS
5299 /* check if the dev_addr is different than perm_addr */
5300 if (mac_addr == perm_addr)
d8d70caf
SS
5301 return SUCCESS;
5302
faa4f796
SH
5303 /* check if the mac already preset in CAM */
5304 for (i = 1; i < config->max_mac_addr; i++) {
5305 tmp64 = do_s2io_read_unicast_mc(sp, i);
5306 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5307 break;
5308
5309 if (tmp64 == mac_addr) {
5310 DBG_PRINT(INFO_DBG,
5311 "MAC addr:0x%llx already present in CAM\n",
5312 (unsigned long long)mac_addr);
5313 return SUCCESS;
5314 }
5315 }
5316 if (i == config->max_mac_addr) {
5317 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5318 return FAILURE;
5319 }
d8d70caf 5320 /* Update the internal structure with this new mac address */
faa4f796
SH
5321 do_s2io_copy_mac_addr(sp, i, mac_addr);
5322 return (do_s2io_add_mac(sp, mac_addr, i));
1da177e4
LT
5323}
5324
5325/**
20346722 5326 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5327 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5328 * @info: pointer to the structure with parameters given by ethtool to set
5329 * link information.
5330 * Description:
20346722 5331 * The function sets different link parameters provided by the user onto
1da177e4
LT
5332 * the NIC.
5333 * Return value:
5334 * 0 on success.
5335*/
5336
5337static int s2io_ethtool_sset(struct net_device *dev,
5338 struct ethtool_cmd *info)
5339{
4cf1653a 5340 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5341 if ((info->autoneg == AUTONEG_ENABLE) ||
5342 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5343 return -EINVAL;
5344 else {
5345 s2io_close(sp->dev);
5346 s2io_open(sp->dev);
5347 }
5348
5349 return 0;
5350}
5351
5352/**
20346722 5353 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5354 * @sp : private member of the device structure, pointer to the
5355 * s2io_nic structure.
5356 * @info : pointer to the structure with parameters given by ethtool
5357 * to return link information.
5358 * Description:
5359 * Returns link specific information like speed, duplex etc.. to ethtool.
5360 * Return value :
5361 * return 0 on success.
5362 */
5363
5364static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5365{
4cf1653a 5366 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5367 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5368 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5369 info->port = PORT_FIBRE;
1a7eb72b
SS
5370
5371 /* info->transceiver */
5372 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5373
5374 if (netif_carrier_ok(sp->dev)) {
5375 info->speed = 10000;
5376 info->duplex = DUPLEX_FULL;
5377 } else {
5378 info->speed = -1;
5379 info->duplex = -1;
5380 }
5381
5382 info->autoneg = AUTONEG_DISABLE;
5383 return 0;
5384}
5385
5386/**
20346722 5387 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5388 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5389 * s2io_nic structure.
5390 * @info : pointer to the structure with parameters given by ethtool to
5391 * return driver information.
5392 * Description:
5393 * Returns driver specefic information like name, version etc.. to ethtool.
5394 * Return value:
5395 * void
5396 */
5397
5398static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5399 struct ethtool_drvinfo *info)
5400{
4cf1653a 5401 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5402
dbc2309d
JL
5403 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5404 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5405 strncpy(info->fw_version, "", sizeof(info->fw_version));
5406 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5407 info->regdump_len = XENA_REG_SPACE;
5408 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5409}
5410
5411/**
5412 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5413 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5414 * s2io_nic structure.
20346722 5415 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5416 * dumping the registers.
5417 * @reg_space: The input argumnet into which all the registers are dumped.
5418 * Description:
5419 * Dumps the entire register space of xFrame NIC into the user given
5420 * buffer area.
5421 * Return value :
5422 * void .
5423*/
5424
5425static void s2io_ethtool_gregs(struct net_device *dev,
5426 struct ethtool_regs *regs, void *space)
5427{
5428 int i;
5429 u64 reg;
5430 u8 *reg_space = (u8 *) space;
4cf1653a 5431 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5432
5433 regs->len = XENA_REG_SPACE;
5434 regs->version = sp->pdev->subsystem_device;
5435
5436 for (i = 0; i < regs->len; i += 8) {
5437 reg = readq(sp->bar0 + i);
5438 memcpy((reg_space + i), &reg, 8);
5439 }
5440}
5441
5442/**
5443 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5444 * @data : address of the private member of the device structure, which
1da177e4 5445 * is a pointer to the s2io_nic structure, provided as an u32.
20346722 5446 * Description: This is actually the timer function that alternates the
5447 * adapter LED bit of the adapter control bit to set/reset every time on
5448 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
5449 * once every second.
5450*/
5451static void s2io_phy_id(unsigned long data)
5452{
1ee6dd77
RB
5453 struct s2io_nic *sp = (struct s2io_nic *) data;
5454 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5455 u64 val64 = 0;
5456 u16 subid;
5457
5458 subid = sp->pdev->subsystem_device;
541ae68f 5459 if ((sp->device_type == XFRAME_II_DEVICE) ||
5460 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5461 val64 = readq(&bar0->gpio_control);
5462 val64 ^= GPIO_CTRL_GPIO_0;
5463 writeq(val64, &bar0->gpio_control);
5464 } else {
5465 val64 = readq(&bar0->adapter_control);
5466 val64 ^= ADAPTER_LED_ON;
5467 writeq(val64, &bar0->adapter_control);
5468 }
5469
5470 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5471}
5472
5473/**
5474 * s2io_ethtool_idnic - To physically identify the nic on the system.
5475 * @sp : private member of the device structure, which is a pointer to the
5476 * s2io_nic structure.
20346722 5477 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5478 * ethtool.
5479 * Description: Used to physically identify the NIC on the system.
20346722 5480 * The Link LED will blink for a time specified by the user for
1da177e4 5481 * identification.
20346722 5482 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5483 * identification is possible only if it's link is up.
5484 * Return value:
5485 * int , returns 0 on success
5486 */
5487
5488static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5489{
5490 u64 val64 = 0, last_gpio_ctrl_val;
4cf1653a 5491 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5492 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5493 u16 subid;
5494
5495 subid = sp->pdev->subsystem_device;
5496 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f 5497 if ((sp->device_type == XFRAME_I_DEVICE) &&
5498 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5499 val64 = readq(&bar0->adapter_control);
5500 if (!(val64 & ADAPTER_CNTL_EN)) {
5501 printk(KERN_ERR
5502 "Adapter Link down, cannot blink LED\n");
5503 return -EFAULT;
5504 }
5505 }
5506 if (sp->id_timer.function == NULL) {
5507 init_timer(&sp->id_timer);
5508 sp->id_timer.function = s2io_phy_id;
5509 sp->id_timer.data = (unsigned long) sp;
5510 }
5511 mod_timer(&sp->id_timer, jiffies);
5512 if (data)
20346722 5513 msleep_interruptible(data * HZ);
1da177e4 5514 else
20346722 5515 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5516 del_timer_sync(&sp->id_timer);
5517
541ae68f 5518 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5519 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5520 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5521 }
5522
5523 return 0;
5524}
5525
0cec35eb
SH
5526static void s2io_ethtool_gringparam(struct net_device *dev,
5527 struct ethtool_ringparam *ering)
5528{
4cf1653a 5529 struct s2io_nic *sp = netdev_priv(dev);
0cec35eb
SH
5530 int i,tx_desc_count=0,rx_desc_count=0;
5531
5532 if (sp->rxd_mode == RXD_MODE_1)
5533 ering->rx_max_pending = MAX_RX_DESC_1;
5534 else if (sp->rxd_mode == RXD_MODE_3B)
5535 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5536
5537 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5538 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5539 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
8a4bdbaa 5540
0cec35eb
SH
5541 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5542 ering->tx_pending = tx_desc_count;
5543 rx_desc_count = 0;
8a4bdbaa 5544 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5545 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5546
0cec35eb
SH
5547 ering->rx_pending = rx_desc_count;
5548
5549 ering->rx_mini_max_pending = 0;
5550 ering->rx_mini_pending = 0;
5551 if(sp->rxd_mode == RXD_MODE_1)
5552 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5553 else if (sp->rxd_mode == RXD_MODE_3B)
5554 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5555 ering->rx_jumbo_pending = rx_desc_count;
5556}
5557
1da177e4
LT
5558/**
5559 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722 5560 * @sp : private member of the device structure, which is a pointer to the
5561 * s2io_nic structure.
1da177e4
LT
5562 * @ep : pointer to the structure with pause parameters given by ethtool.
5563 * Description:
5564 * Returns the Pause frame generation and reception capability of the NIC.
5565 * Return value:
5566 * void
5567 */
5568static void s2io_ethtool_getpause_data(struct net_device *dev,
5569 struct ethtool_pauseparam *ep)
5570{
5571 u64 val64;
4cf1653a 5572 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5573 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5574
5575 val64 = readq(&bar0->rmac_pause_cfg);
5576 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5577 ep->tx_pause = TRUE;
5578 if (val64 & RMAC_PAUSE_RX_ENABLE)
5579 ep->rx_pause = TRUE;
5580 ep->autoneg = FALSE;
5581}
5582
5583/**
5584 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5585 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5586 * s2io_nic structure.
5587 * @ep : pointer to the structure with pause parameters given by ethtool.
5588 * Description:
5589 * It can be used to set or reset Pause frame generation or reception
5590 * support of the NIC.
5591 * Return value:
5592 * int, returns 0 on Success
5593 */
5594
5595static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 5596 struct ethtool_pauseparam *ep)
1da177e4
LT
5597{
5598 u64 val64;
4cf1653a 5599 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5600 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5601
5602 val64 = readq(&bar0->rmac_pause_cfg);
5603 if (ep->tx_pause)
5604 val64 |= RMAC_PAUSE_GEN_ENABLE;
5605 else
5606 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5607 if (ep->rx_pause)
5608 val64 |= RMAC_PAUSE_RX_ENABLE;
5609 else
5610 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5611 writeq(val64, &bar0->rmac_pause_cfg);
5612 return 0;
5613}
5614
5615/**
5616 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5617 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5618 * s2io_nic structure.
5619 * @off : offset at which the data must be written
5620 * @data : Its an output parameter where the data read at the given
20346722 5621 * offset is stored.
1da177e4 5622 * Description:
20346722 5623 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5624 * read data.
5625 * NOTE: Will allow to read only part of the EEPROM visible through the
5626 * I2C bus.
5627 * Return value:
5628 * -1 on failure and 0 on success.
5629 */
5630
5631#define S2IO_DEV_ID 5
1ee6dd77 5632static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
5633{
5634 int ret = -1;
5635 u32 exit_cnt = 0;
5636 u64 val64;
1ee6dd77 5637 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5638
ad4ebed0 5639 if (sp->device_type == XFRAME_I_DEVICE) {
5640 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5641 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5642 I2C_CONTROL_CNTL_START;
5643 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5644
ad4ebed0 5645 while (exit_cnt < 5) {
5646 val64 = readq(&bar0->i2c_control);
5647 if (I2C_CONTROL_CNTL_END(val64)) {
5648 *data = I2C_CONTROL_GET_DATA(val64);
5649 ret = 0;
5650 break;
5651 }
5652 msleep(50);
5653 exit_cnt++;
1da177e4 5654 }
1da177e4
LT
5655 }
5656
ad4ebed0 5657 if (sp->device_type == XFRAME_II_DEVICE) {
5658 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5659 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5660 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5661 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5662 val64 |= SPI_CONTROL_REQ;
5663 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5664 while (exit_cnt < 5) {
5665 val64 = readq(&bar0->spi_control);
5666 if (val64 & SPI_CONTROL_NACK) {
5667 ret = 1;
5668 break;
5669 } else if (val64 & SPI_CONTROL_DONE) {
5670 *data = readq(&bar0->spi_data);
5671 *data &= 0xffffff;
5672 ret = 0;
5673 break;
5674 }
5675 msleep(50);
5676 exit_cnt++;
5677 }
5678 }
1da177e4
LT
5679 return ret;
5680}
5681
5682/**
5683 * write_eeprom - actually writes the relevant part of the data value.
5684 * @sp : private member of the device structure, which is a pointer to the
5685 * s2io_nic structure.
5686 * @off : offset at which the data must be written
5687 * @data : The data that is to be written
20346722 5688 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5689 * the Eeprom. (max of 3)
5690 * Description:
5691 * Actually writes the relevant part of the data value into the Eeprom
5692 * through the I2C bus.
5693 * Return value:
5694 * 0 on success, -1 on failure.
5695 */
5696
1ee6dd77 5697static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
5698{
5699 int exit_cnt = 0, ret = -1;
5700 u64 val64;
1ee6dd77 5701 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5702
ad4ebed0 5703 if (sp->device_type == XFRAME_I_DEVICE) {
5704 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5705 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5706 I2C_CONTROL_CNTL_START;
5707 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5708
5709 while (exit_cnt < 5) {
5710 val64 = readq(&bar0->i2c_control);
5711 if (I2C_CONTROL_CNTL_END(val64)) {
5712 if (!(val64 & I2C_CONTROL_NACK))
5713 ret = 0;
5714 break;
5715 }
5716 msleep(50);
5717 exit_cnt++;
5718 }
5719 }
1da177e4 5720
ad4ebed0 5721 if (sp->device_type == XFRAME_II_DEVICE) {
5722 int write_cnt = (cnt == 8) ? 0 : cnt;
5723 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5724
5725 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5726 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5727 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5728 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5729 val64 |= SPI_CONTROL_REQ;
5730 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5731 while (exit_cnt < 5) {
5732 val64 = readq(&bar0->spi_control);
5733 if (val64 & SPI_CONTROL_NACK) {
5734 ret = 1;
5735 break;
5736 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5737 ret = 0;
ad4ebed0 5738 break;
5739 }
5740 msleep(50);
5741 exit_cnt++;
1da177e4 5742 }
1da177e4 5743 }
1da177e4
LT
5744 return ret;
5745}
1ee6dd77 5746static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5747{
b41477f3
AR
5748 u8 *vpd_data;
5749 u8 data;
9dc737a7
AR
5750 int i=0, cnt, fail = 0;
5751 int vpd_addr = 0x80;
5752
5753 if (nic->device_type == XFRAME_II_DEVICE) {
5754 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5755 vpd_addr = 0x80;
5756 }
5757 else {
5758 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5759 vpd_addr = 0x50;
5760 }
19a60522 5761 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5762
b41477f3 5763 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945
SH
5764 if (!vpd_data) {
5765 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
b41477f3 5766 return;
c53d4945 5767 }
491976b2 5768 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
b41477f3 5769
9dc737a7
AR
5770 for (i = 0; i < 256; i +=4 ) {
5771 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5772 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5773 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5774 for (cnt = 0; cnt <5; cnt++) {
5775 msleep(2);
5776 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5777 if (data == 0x80)
5778 break;
5779 }
5780 if (cnt >= 5) {
5781 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5782 fail = 1;
5783 break;
5784 }
5785 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5786 (u32 *)&vpd_data[i]);
5787 }
19a60522
SS
5788
5789 if(!fail) {
5790 /* read serial number of adapter */
5791 for (cnt = 0; cnt < 256; cnt++) {
5792 if ((vpd_data[cnt] == 'S') &&
5793 (vpd_data[cnt+1] == 'N') &&
5794 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5795 memset(nic->serial_num, 0, VPD_STRING_LEN);
5796 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5797 vpd_data[cnt+2]);
5798 break;
5799 }
5800 }
5801 }
5802
5803 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5804 memset(nic->product_name, 0, vpd_data[1]);
5805 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5806 }
b41477f3 5807 kfree(vpd_data);
491976b2 5808 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
9dc737a7
AR
5809}
5810
1da177e4
LT
5811/**
5812 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5813 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5814 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5815 * containing all relevant information.
5816 * @data_buf : user defined value to be written into Eeprom.
5817 * Description: Reads the values stored in the Eeprom at given offset
5818 * for a given length. Stores these values int the input argument data
5819 * buffer 'data_buf' and returns these to the caller (ethtool.)
5820 * Return value:
5821 * int 0 on success
5822 */
5823
5824static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5825 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5826{
ad4ebed0 5827 u32 i, valid;
5828 u64 data;
4cf1653a 5829 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5830
5831 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5832
5833 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5834 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5835
5836 for (i = 0; i < eeprom->len; i += 4) {
5837 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5838 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5839 return -EFAULT;
5840 }
5841 valid = INV(data);
5842 memcpy((data_buf + i), &valid, 4);
5843 }
5844 return 0;
5845}
5846
5847/**
5848 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5849 * @sp : private member of the device structure, which is a pointer to the
5850 * s2io_nic structure.
20346722 5851 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5852 * containing all relevant information.
5853 * @data_buf ; user defined value to be written into Eeprom.
5854 * Description:
5855 * Tries to write the user provided value in the Eeprom, at the offset
5856 * given by the user.
5857 * Return value:
5858 * 0 on success, -EFAULT on failure.
5859 */
5860
5861static int s2io_ethtool_seeprom(struct net_device *dev,
5862 struct ethtool_eeprom *eeprom,
5863 u8 * data_buf)
5864{
5865 int len = eeprom->len, cnt = 0;
ad4ebed0 5866 u64 valid = 0, data;
4cf1653a 5867 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5868
5869 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5870 DBG_PRINT(ERR_DBG,
5871 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5872 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5873 eeprom->magic);
5874 return -EFAULT;
5875 }
5876
5877 while (len) {
5878 data = (u32) data_buf[cnt] & 0x000000FF;
5879 if (data) {
5880 valid = (u32) (data << 24);
5881 } else
5882 valid = data;
5883
5884 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5885 DBG_PRINT(ERR_DBG,
5886 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5887 DBG_PRINT(ERR_DBG,
5888 "write into the specified offset\n");
5889 return -EFAULT;
5890 }
5891 cnt++;
5892 len--;
5893 }
5894
5895 return 0;
5896}
5897
5898/**
20346722 5899 * s2io_register_test - reads and writes into all clock domains.
5900 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5901 * s2io_nic structure.
5902 * @data : variable that returns the result of each of the test conducted b
5903 * by the driver.
5904 * Description:
5905 * Read and write into all clock domains. The NIC has 3 clock domains,
5906 * see that registers in all the three regions are accessible.
5907 * Return value:
5908 * 0 on success.
5909 */
5910
1ee6dd77 5911static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5912{
1ee6dd77 5913 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5914 u64 val64 = 0, exp_val;
1da177e4
LT
5915 int fail = 0;
5916
20346722 5917 val64 = readq(&bar0->pif_rd_swapper_fb);
5918 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5919 fail = 1;
5920 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5921 }
5922
5923 val64 = readq(&bar0->rmac_pause_cfg);
5924 if (val64 != 0xc000ffff00000000ULL) {
5925 fail = 1;
5926 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5927 }
5928
5929 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5930 if (sp->device_type == XFRAME_II_DEVICE)
5931 exp_val = 0x0404040404040404ULL;
5932 else
5933 exp_val = 0x0808080808080808ULL;
5934 if (val64 != exp_val) {
1da177e4
LT
5935 fail = 1;
5936 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5937 }
5938
5939 val64 = readq(&bar0->xgxs_efifo_cfg);
5940 if (val64 != 0x000000001923141EULL) {
5941 fail = 1;
5942 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5943 }
5944
5945 val64 = 0x5A5A5A5A5A5A5A5AULL;
5946 writeq(val64, &bar0->xmsi_data);
5947 val64 = readq(&bar0->xmsi_data);
5948 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5949 fail = 1;
5950 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5951 }
5952
5953 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5954 writeq(val64, &bar0->xmsi_data);
5955 val64 = readq(&bar0->xmsi_data);
5956 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5957 fail = 1;
5958 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5959 }
5960
5961 *data = fail;
ad4ebed0 5962 return fail;
1da177e4
LT
5963}
5964
5965/**
20346722 5966 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5967 * @sp : private member of the device structure, which is a pointer to the
5968 * s2io_nic structure.
5969 * @data:variable that returns the result of each of the test conducted by
5970 * the driver.
5971 * Description:
20346722 5972 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5973 * register.
5974 * Return value:
5975 * 0 on success.
5976 */
5977
1ee6dd77 5978static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5979{
5980 int fail = 0;
ad4ebed0 5981 u64 ret_data, org_4F0, org_7F0;
5982 u8 saved_4F0 = 0, saved_7F0 = 0;
5983 struct net_device *dev = sp->dev;
1da177e4
LT
5984
5985 /* Test Write Error at offset 0 */
ad4ebed0 5986 /* Note that SPI interface allows write access to all areas
5987 * of EEPROM. Hence doing all negative testing only for Xframe I.
5988 */
5989 if (sp->device_type == XFRAME_I_DEVICE)
5990 if (!write_eeprom(sp, 0, 0, 3))
5991 fail = 1;
5992
5993 /* Save current values at offsets 0x4F0 and 0x7F0 */
5994 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5995 saved_4F0 = 1;
5996 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5997 saved_7F0 = 1;
1da177e4
LT
5998
5999 /* Test Write at offset 4f0 */
ad4ebed0 6000 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
6001 fail = 1;
6002 if (read_eeprom(sp, 0x4F0, &ret_data))
6003 fail = 1;
6004
ad4ebed0 6005 if (ret_data != 0x012345) {
26b7625c
AM
6006 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6007 "Data written %llx Data read %llx\n",
6008 dev->name, (unsigned long long)0x12345,
6009 (unsigned long long)ret_data);
1da177e4 6010 fail = 1;
ad4ebed0 6011 }
1da177e4
LT
6012
6013 /* Reset the EEPROM data go FFFF */
ad4ebed0 6014 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6015
6016 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6017 if (sp->device_type == XFRAME_I_DEVICE)
6018 if (!write_eeprom(sp, 0x07C, 0, 3))
6019 fail = 1;
1da177e4 6020
ad4ebed0 6021 /* Test Write Request at offset 0x7f0 */
6022 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6023 fail = 1;
ad4ebed0 6024 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6025 fail = 1;
6026
ad4ebed0 6027 if (ret_data != 0x012345) {
26b7625c
AM
6028 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6029 "Data written %llx Data read %llx\n",
6030 dev->name, (unsigned long long)0x12345,
6031 (unsigned long long)ret_data);
1da177e4 6032 fail = 1;
ad4ebed0 6033 }
1da177e4
LT
6034
6035 /* Reset the EEPROM data go FFFF */
ad4ebed0 6036 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6037
ad4ebed0 6038 if (sp->device_type == XFRAME_I_DEVICE) {
6039 /* Test Write Error at offset 0x80 */
6040 if (!write_eeprom(sp, 0x080, 0, 3))
6041 fail = 1;
1da177e4 6042
ad4ebed0 6043 /* Test Write Error at offset 0xfc */
6044 if (!write_eeprom(sp, 0x0FC, 0, 3))
6045 fail = 1;
1da177e4 6046
ad4ebed0 6047 /* Test Write Error at offset 0x100 */
6048 if (!write_eeprom(sp, 0x100, 0, 3))
6049 fail = 1;
1da177e4 6050
ad4ebed0 6051 /* Test Write Error at offset 4ec */
6052 if (!write_eeprom(sp, 0x4EC, 0, 3))
6053 fail = 1;
6054 }
6055
6056 /* Restore values at offsets 0x4F0 and 0x7F0 */
6057 if (saved_4F0)
6058 write_eeprom(sp, 0x4F0, org_4F0, 3);
6059 if (saved_7F0)
6060 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6061
6062 *data = fail;
ad4ebed0 6063 return fail;
1da177e4
LT
6064}
6065
6066/**
6067 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6068 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6069 * s2io_nic structure.
20346722 6070 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6071 * the driver.
6072 * Description:
6073 * This invokes the MemBist test of the card. We give around
6074 * 2 secs time for the Test to complete. If it's still not complete
20346722 6075 * within this peiod, we consider that the test failed.
1da177e4
LT
6076 * Return value:
6077 * 0 on success and -1 on failure.
6078 */
6079
1ee6dd77 6080static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
6081{
6082 u8 bist = 0;
6083 int cnt = 0, ret = -1;
6084
6085 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6086 bist |= PCI_BIST_START;
6087 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6088
6089 while (cnt < 20) {
6090 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6091 if (!(bist & PCI_BIST_START)) {
6092 *data = (bist & PCI_BIST_CODE_MASK);
6093 ret = 0;
6094 break;
6095 }
6096 msleep(100);
6097 cnt++;
6098 }
6099
6100 return ret;
6101}
6102
6103/**
20346722 6104 * s2io-link_test - verifies the link state of the nic
6105 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6106 * s2io_nic structure.
6107 * @data: variable that returns the result of each of the test conducted by
6108 * the driver.
6109 * Description:
20346722 6110 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6111 * argument 'data' appropriately.
6112 * Return value:
6113 * 0 on success.
6114 */
6115
1ee6dd77 6116static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 6117{
1ee6dd77 6118 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6119 u64 val64;
6120
6121 val64 = readq(&bar0->adapter_status);
c92ca04b 6122 if(!(LINK_IS_UP(val64)))
1da177e4 6123 *data = 1;
c92ca04b
AR
6124 else
6125 *data = 0;
1da177e4 6126
b41477f3 6127 return *data;
1da177e4
LT
6128}
6129
6130/**
20346722 6131 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6132 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6133 * s2io_nic structure.
20346722 6134 * @data - variable that returns the result of each of the test
1da177e4
LT
6135 * conducted by the driver.
6136 * Description:
20346722 6137 * This is one of the offline test that tests the read and write
1da177e4
LT
6138 * access to the RldRam chip on the NIC.
6139 * Return value:
6140 * 0 on success.
6141 */
6142
1ee6dd77 6143static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 6144{
1ee6dd77 6145 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6146 u64 val64;
ad4ebed0 6147 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6148
6149 val64 = readq(&bar0->adapter_control);
6150 val64 &= ~ADAPTER_ECC_EN;
6151 writeq(val64, &bar0->adapter_control);
6152
6153 val64 = readq(&bar0->mc_rldram_test_ctrl);
6154 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6155 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6156
6157 val64 = readq(&bar0->mc_rldram_mrs);
6158 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6159 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6160
6161 val64 |= MC_RLDRAM_MRS_ENABLE;
6162 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6163
6164 while (iteration < 2) {
6165 val64 = 0x55555555aaaa0000ULL;
6166 if (iteration == 1) {
6167 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6168 }
6169 writeq(val64, &bar0->mc_rldram_test_d0);
6170
6171 val64 = 0xaaaa5a5555550000ULL;
6172 if (iteration == 1) {
6173 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6174 }
6175 writeq(val64, &bar0->mc_rldram_test_d1);
6176
6177 val64 = 0x55aaaaaaaa5a0000ULL;
6178 if (iteration == 1) {
6179 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6180 }
6181 writeq(val64, &bar0->mc_rldram_test_d2);
6182
ad4ebed0 6183 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6184 writeq(val64, &bar0->mc_rldram_test_add);
6185
ad4ebed0 6186 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6187 MC_RLDRAM_TEST_GO;
6188 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6189
6190 for (cnt = 0; cnt < 5; cnt++) {
6191 val64 = readq(&bar0->mc_rldram_test_ctrl);
6192 if (val64 & MC_RLDRAM_TEST_DONE)
6193 break;
6194 msleep(200);
6195 }
6196
6197 if (cnt == 5)
6198 break;
6199
ad4ebed0 6200 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6201 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6202
6203 for (cnt = 0; cnt < 5; cnt++) {
6204 val64 = readq(&bar0->mc_rldram_test_ctrl);
6205 if (val64 & MC_RLDRAM_TEST_DONE)
6206 break;
6207 msleep(500);
6208 }
6209
6210 if (cnt == 5)
6211 break;
6212
6213 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6214 if (!(val64 & MC_RLDRAM_TEST_PASS))
6215 test_fail = 1;
1da177e4
LT
6216
6217 iteration++;
6218 }
6219
ad4ebed0 6220 *data = test_fail;
1da177e4 6221
ad4ebed0 6222 /* Bring the adapter out of test mode */
6223 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6224
6225 return test_fail;
1da177e4
LT
6226}
6227
6228/**
6229 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6230 * @sp : private member of the device structure, which is a pointer to the
6231 * s2io_nic structure.
6232 * @ethtest : pointer to a ethtool command specific structure that will be
6233 * returned to the user.
20346722 6234 * @data : variable that returns the result of each of the test
1da177e4
LT
6235 * conducted by the driver.
6236 * Description:
6237 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6238 * the health of the card.
6239 * Return value:
6240 * void
6241 */
6242
6243static void s2io_ethtool_test(struct net_device *dev,
6244 struct ethtool_test *ethtest,
6245 uint64_t * data)
6246{
4cf1653a 6247 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6248 int orig_state = netif_running(sp->dev);
6249
6250 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6251 /* Offline Tests. */
20346722 6252 if (orig_state)
1da177e4 6253 s2io_close(sp->dev);
1da177e4
LT
6254
6255 if (s2io_register_test(sp, &data[0]))
6256 ethtest->flags |= ETH_TEST_FL_FAILED;
6257
6258 s2io_reset(sp);
1da177e4
LT
6259
6260 if (s2io_rldram_test(sp, &data[3]))
6261 ethtest->flags |= ETH_TEST_FL_FAILED;
6262
6263 s2io_reset(sp);
1da177e4
LT
6264
6265 if (s2io_eeprom_test(sp, &data[1]))
6266 ethtest->flags |= ETH_TEST_FL_FAILED;
6267
6268 if (s2io_bist_test(sp, &data[4]))
6269 ethtest->flags |= ETH_TEST_FL_FAILED;
6270
6271 if (orig_state)
6272 s2io_open(sp->dev);
6273
6274 data[2] = 0;
6275 } else {
6276 /* Online Tests. */
6277 if (!orig_state) {
6278 DBG_PRINT(ERR_DBG,
6279 "%s: is not up, cannot run test\n",
6280 dev->name);
6281 data[0] = -1;
6282 data[1] = -1;
6283 data[2] = -1;
6284 data[3] = -1;
6285 data[4] = -1;
6286 }
6287
6288 if (s2io_link_test(sp, &data[2]))
6289 ethtest->flags |= ETH_TEST_FL_FAILED;
6290
6291 data[0] = 0;
6292 data[1] = 0;
6293 data[3] = 0;
6294 data[4] = 0;
6295 }
6296}
6297
6298static void s2io_get_ethtool_stats(struct net_device *dev,
6299 struct ethtool_stats *estats,
6300 u64 * tmp_stats)
6301{
8116f3cf 6302 int i = 0, k;
4cf1653a 6303 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 6304 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 6305
7ba013ac 6306 s2io_updt_stats(sp);
541ae68f 6307 tmp_stats[i++] =
6308 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6309 le32_to_cpu(stat_info->tmac_frms);
6310 tmp_stats[i++] =
6311 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6312 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 6313 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f 6314 tmp_stats[i++] =
6315 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6316 le32_to_cpu(stat_info->tmac_mcst_frms);
6317 tmp_stats[i++] =
6318 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6319 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 6320 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
6321 tmp_stats[i++] =
6322 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6323 le32_to_cpu(stat_info->tmac_ttl_octets);
6324 tmp_stats[i++] =
6325 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6326 le32_to_cpu(stat_info->tmac_ucst_frms);
6327 tmp_stats[i++] =
6328 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6329 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f 6330 tmp_stats[i++] =
6331 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6332 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 6333 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 6334 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f 6335 tmp_stats[i++] =
6336 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6337 le32_to_cpu(stat_info->tmac_vld_ip);
6338 tmp_stats[i++] =
6339 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6340 le32_to_cpu(stat_info->tmac_drop_ip);
6341 tmp_stats[i++] =
6342 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6343 le32_to_cpu(stat_info->tmac_icmp);
6344 tmp_stats[i++] =
6345 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6346 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 6347 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f 6348 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6349 le32_to_cpu(stat_info->tmac_udp);
6350 tmp_stats[i++] =
6351 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6352 le32_to_cpu(stat_info->rmac_vld_frms);
6353 tmp_stats[i++] =
6354 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6355 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
6356 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6357 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f 6358 tmp_stats[i++] =
6359 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6360 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6361 tmp_stats[i++] =
6362 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6363 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 6364 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 6365 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
6366 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6367 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
6368 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6369 tmp_stats[i++] =
6370 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6371 le32_to_cpu(stat_info->rmac_ttl_octets);
6372 tmp_stats[i++] =
6373 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6374 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6375 tmp_stats[i++] =
6376 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6377 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f 6378 tmp_stats[i++] =
6379 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6380 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
6381 tmp_stats[i++] =
6382 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6383 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6384 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6385 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f 6386 tmp_stats[i++] =
6387 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6388 le32_to_cpu(stat_info->rmac_usized_frms);
6389 tmp_stats[i++] =
6390 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6391 le32_to_cpu(stat_info->rmac_osized_frms);
6392 tmp_stats[i++] =
6393 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6394 le32_to_cpu(stat_info->rmac_frag_frms);
6395 tmp_stats[i++] =
6396 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6397 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
6398 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6399 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6400 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6401 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6402 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6403 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6404 tmp_stats[i++] =
6405 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 6406 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
6407 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6408 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
6409 tmp_stats[i++] =
6410 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 6411 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
6412 tmp_stats[i++] =
6413 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 6414 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 6415 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
6416 tmp_stats[i++] =
6417 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f 6418 le32_to_cpu(stat_info->rmac_udp);
6419 tmp_stats[i++] =
6420 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6421 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
6422 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6423 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6424 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6425 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6426 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6427 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6428 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6429 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6430 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6431 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6432 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6433 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6434 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6435 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6436 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6437 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6438 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f 6439 tmp_stats[i++] =
6440 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6441 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
6442 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6443 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f 6444 tmp_stats[i++] =
6445 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6446 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 6447 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
6448 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6452 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6454 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6465 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
6466
6467 /* Enhanced statistics exist only for Hercules */
6468 if(sp->device_type == XFRAME_II_DEVICE) {
6469 tmp_stats[i++] =
6470 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6471 tmp_stats[i++] =
6472 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6473 tmp_stats[i++] =
6474 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6475 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6476 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6477 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6478 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6479 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6480 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6481 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6482 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6483 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6484 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6485 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6486 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6487 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6488 }
6489
7ba013ac 6490 tmp_stats[i++] = 0;
6491 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6492 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
6493 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6494 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6495 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6496 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
8116f3cf
SS
6497 for (k = 0; k < MAX_RX_RINGS; k++)
6498 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
bd1034f0
AR
6499 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6500 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6501 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6502 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6503 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6504 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6505 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6506 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6507 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6508 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6509 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6510 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
6511 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6512 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6513 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6514 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 6515 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
6516 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6517 int count = 0;
6aa20a22 6518 /*
bd1034f0
AR
6519 * Since 64-bit divide does not work on all platforms,
6520 * do repeated subtraction.
6521 */
6522 while (tmp >= stat_info->sw_stat.num_aggregations) {
6523 tmp -= stat_info->sw_stat.num_aggregations;
6524 count++;
6525 }
6526 tmp_stats[i++] = count;
fe931395 6527 }
bd1034f0
AR
6528 else
6529 tmp_stats[i++] = 0;
c53d4945 6530 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
491abf25 6531 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
c53d4945 6532 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
491976b2
SH
6533 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6534 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6535 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6536 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6537 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6538 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6539
6540 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6542 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6544 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6545
6546 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
8116f3cf
SS
6555 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6570 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6571 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
1da177e4
LT
6572}
6573
ac1f60db 6574static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
6575{
6576 return (XENA_REG_SPACE);
6577}
6578
6579
ac1f60db 6580static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 6581{
4cf1653a 6582 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6583
6584 return (sp->rx_csum);
6585}
ac1f60db
AB
6586
6587static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6588{
4cf1653a 6589 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6590
6591 if (data)
6592 sp->rx_csum = 1;
6593 else
6594 sp->rx_csum = 0;
6595
6596 return 0;
6597}
ac1f60db
AB
6598
6599static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
6600{
6601 return (XENA_EEPROM_SPACE);
6602}
6603
b9f2c044 6604static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6605{
4cf1653a 6606 struct s2io_nic *sp = netdev_priv(dev);
b9f2c044
JG
6607
6608 switch (sset) {
6609 case ETH_SS_TEST:
6610 return S2IO_TEST_LEN;
6611 case ETH_SS_STATS:
6612 switch(sp->device_type) {
6613 case XFRAME_I_DEVICE:
6614 return XFRAME_I_STAT_LEN;
6615 case XFRAME_II_DEVICE:
6616 return XFRAME_II_STAT_LEN;
6617 default:
6618 return 0;
6619 }
6620 default:
6621 return -EOPNOTSUPP;
6622 }
1da177e4 6623}
ac1f60db
AB
6624
6625static void s2io_ethtool_get_strings(struct net_device *dev,
6626 u32 stringset, u8 * data)
1da177e4 6627{
fa1f0cb3 6628 int stat_size = 0;
4cf1653a 6629 struct s2io_nic *sp = netdev_priv(dev);
fa1f0cb3 6630
1da177e4
LT
6631 switch (stringset) {
6632 case ETH_SS_TEST:
6633 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6634 break;
6635 case ETH_SS_STATS:
fa1f0cb3
SS
6636 stat_size = sizeof(ethtool_xena_stats_keys);
6637 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6638 if(sp->device_type == XFRAME_II_DEVICE) {
6639 memcpy(data + stat_size,
6640 &ethtool_enhanced_stats_keys,
6641 sizeof(ethtool_enhanced_stats_keys));
6642 stat_size += sizeof(ethtool_enhanced_stats_keys);
6643 }
6644
6645 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6646 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6647 }
6648}
1da177e4 6649
ac1f60db 6650static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6651{
6652 if (data)
6653 dev->features |= NETIF_F_IP_CSUM;
6654 else
6655 dev->features &= ~NETIF_F_IP_CSUM;
6656
6657 return 0;
6658}
6659
75c30b13
AR
6660static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6661{
6662 return (dev->features & NETIF_F_TSO) != 0;
6663}
6664static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6665{
6666 if (data)
6667 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6668 else
6669 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6670
6671 return 0;
6672}
1da177e4 6673
7282d491 6674static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6675 .get_settings = s2io_ethtool_gset,
6676 .set_settings = s2io_ethtool_sset,
6677 .get_drvinfo = s2io_ethtool_gdrvinfo,
6678 .get_regs_len = s2io_ethtool_get_regs_len,
6679 .get_regs = s2io_ethtool_gregs,
6680 .get_link = ethtool_op_get_link,
6681 .get_eeprom_len = s2io_get_eeprom_len,
6682 .get_eeprom = s2io_ethtool_geeprom,
6683 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6684 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6685 .get_pauseparam = s2io_ethtool_getpause_data,
6686 .set_pauseparam = s2io_ethtool_setpause_data,
6687 .get_rx_csum = s2io_ethtool_get_rx_csum,
6688 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6689 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
1da177e4 6690 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6691 .get_tso = s2io_ethtool_op_get_tso,
6692 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6693 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6694 .self_test = s2io_ethtool_test,
6695 .get_strings = s2io_ethtool_get_strings,
6696 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6697 .get_ethtool_stats = s2io_get_ethtool_stats,
6698 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6699};
6700
6701/**
20346722 6702 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6703 * @dev : Device pointer.
6704 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6705 * a proprietary structure used to pass information to the driver.
6706 * @cmd : This is used to distinguish between the different commands that
6707 * can be passed to the IOCTL functions.
6708 * Description:
20346722 6709 * Currently there are no special functionality supported in IOCTL, hence
6710 * function always return EOPNOTSUPPORTED
1da177e4
LT
6711 */
6712
ac1f60db 6713static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6714{
6715 return -EOPNOTSUPP;
6716}
6717
6718/**
6719 * s2io_change_mtu - entry point to change MTU size for the device.
6720 * @dev : device pointer.
6721 * @new_mtu : the new MTU size for the device.
6722 * Description: A driver entry point to change MTU size for the device.
6723 * Before changing the MTU the device must be stopped.
6724 * Return value:
6725 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6726 * file on failure.
6727 */
6728
ac1f60db 6729static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6730{
4cf1653a 6731 struct s2io_nic *sp = netdev_priv(dev);
9f74ffde 6732 int ret = 0;
1da177e4
LT
6733
6734 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6735 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6736 dev->name);
6737 return -EPERM;
6738 }
6739
1da177e4 6740 dev->mtu = new_mtu;
d8892c6e 6741 if (netif_running(dev)) {
3a3d5756 6742 s2io_stop_all_tx_queue(sp);
e6a8fee2 6743 s2io_card_down(sp);
9f74ffde
SH
6744 ret = s2io_card_up(sp);
6745 if (ret) {
d8892c6e 6746 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
b39d66a8 6747 __func__);
9f74ffde 6748 return ret;
d8892c6e 6749 }
3a3d5756 6750 s2io_wake_all_tx_queue(sp);
d8892c6e 6751 } else { /* Device is down */
1ee6dd77 6752 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e 6753 u64 val64 = new_mtu;
6754
6755 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6756 }
1da177e4 6757
9f74ffde 6758 return ret;
1da177e4
LT
6759}
6760
1da177e4
LT
6761/**
6762 * s2io_set_link - Set the LInk status
6763 * @data: long pointer to device private structue
6764 * Description: Sets the link status for the adapter
6765 */
6766
c4028958 6767static void s2io_set_link(struct work_struct *work)
1da177e4 6768{
1ee6dd77 6769 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 6770 struct net_device *dev = nic->dev;
1ee6dd77 6771 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6772 register u64 val64;
6773 u16 subid;
6774
22747d6b
FR
6775 rtnl_lock();
6776
6777 if (!netif_running(dev))
6778 goto out_unlock;
6779
92b84437 6780 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6781 /* The card is being reset, no point doing anything */
22747d6b 6782 goto out_unlock;
1da177e4
LT
6783 }
6784
6785 subid = nic->pdev->subsystem_device;
a371a07d 6786 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6787 /*
6788 * Allow a small delay for the NICs self initiated
6789 * cleanup to complete.
6790 */
6791 msleep(100);
6792 }
1da177e4
LT
6793
6794 val64 = readq(&bar0->adapter_status);
19a60522
SS
6795 if (LINK_IS_UP(val64)) {
6796 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6797 if (verify_xena_quiescence(nic)) {
6798 val64 = readq(&bar0->adapter_control);
6799 val64 |= ADAPTER_CNTL_EN;
1da177e4 6800 writeq(val64, &bar0->adapter_control);
19a60522
SS
6801 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6802 nic->device_type, subid)) {
6803 val64 = readq(&bar0->gpio_control);
6804 val64 |= GPIO_CTRL_GPIO_0;
6805 writeq(val64, &bar0->gpio_control);
6806 val64 = readq(&bar0->gpio_control);
6807 } else {
6808 val64 |= ADAPTER_LED_ON;
6809 writeq(val64, &bar0->adapter_control);
a371a07d 6810 }
1da177e4 6811 nic->device_enabled_once = TRUE;
19a60522
SS
6812 } else {
6813 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6814 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
3a3d5756 6815 s2io_stop_all_tx_queue(nic);
1da177e4 6816 }
19a60522 6817 }
92c48799
SS
6818 val64 = readq(&bar0->adapter_control);
6819 val64 |= ADAPTER_LED_ON;
6820 writeq(val64, &bar0->adapter_control);
6821 s2io_link(nic, LINK_UP);
19a60522
SS
6822 } else {
6823 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6824 subid)) {
6825 val64 = readq(&bar0->gpio_control);
6826 val64 &= ~GPIO_CTRL_GPIO_0;
6827 writeq(val64, &bar0->gpio_control);
6828 val64 = readq(&bar0->gpio_control);
1da177e4 6829 }
92c48799
SS
6830 /* turn off LED */
6831 val64 = readq(&bar0->adapter_control);
6832 val64 = val64 &(~ADAPTER_LED_ON);
6833 writeq(val64, &bar0->adapter_control);
19a60522 6834 s2io_link(nic, LINK_DOWN);
1da177e4 6835 }
92b84437 6836 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6837
6838out_unlock:
d8d70caf 6839 rtnl_unlock();
1da177e4
LT
6840}
6841
1ee6dd77
RB
6842static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6843 struct buffAdd *ba,
6844 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6845 u64 *temp2, int size)
5d3213cc
AR
6846{
6847 struct net_device *dev = sp->dev;
491abf25 6848 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6849
6850 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6851 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6852 /* allocate skb */
6853 if (*skb) {
6854 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6855 /*
6856 * As Rx frame are not going to be processed,
6857 * using same mapped address for the Rxd
6858 * buffer pointer
6859 */
6d517a27 6860 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6861 } else {
6862 *skb = dev_alloc_skb(size);
6863 if (!(*skb)) {
0c61ed5f 6864 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
c53d4945
SH
6865 DBG_PRINT(INFO_DBG, "memory to allocate ");
6866 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6867 sp->mac_control.stats_info->sw_stat. \
6868 mem_alloc_fail_cnt++;
5d3213cc
AR
6869 return -ENOMEM ;
6870 }
8a4bdbaa 6871 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6872 += (*skb)->truesize;
5d3213cc
AR
6873 /* storing the mapped addr in a temp variable
6874 * such it will be used for next rxd whose
6875 * Host Control is NULL
6876 */
6d517a27 6877 rxdp1->Buffer0_ptr = *temp0 =
5d3213cc
AR
6878 pci_map_single( sp->pdev, (*skb)->data,
6879 size - NET_IP_ALIGN,
6880 PCI_DMA_FROMDEVICE);
8d8bb39b 6881 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
491abf25 6882 goto memalloc_failed;
5d3213cc
AR
6883 rxdp->Host_Control = (unsigned long) (*skb);
6884 }
6885 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6886 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6887 /* Two buffer Mode */
6888 if (*skb) {
6d517a27
VP
6889 rxdp3->Buffer2_ptr = *temp2;
6890 rxdp3->Buffer0_ptr = *temp0;
6891 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6892 } else {
6893 *skb = dev_alloc_skb(size);
2ceaac75 6894 if (!(*skb)) {
c53d4945
SH
6895 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6896 DBG_PRINT(INFO_DBG, "memory to allocate ");
6897 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6898 sp->mac_control.stats_info->sw_stat. \
6899 mem_alloc_fail_cnt++;
2ceaac75
DR
6900 return -ENOMEM;
6901 }
8a4bdbaa 6902 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6903 += (*skb)->truesize;
6d517a27 6904 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6905 pci_map_single(sp->pdev, (*skb)->data,
6906 dev->mtu + 4,
6907 PCI_DMA_FROMDEVICE);
8d8bb39b 6908 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
491abf25 6909 goto memalloc_failed;
6d517a27 6910 rxdp3->Buffer0_ptr = *temp0 =
5d3213cc
AR
6911 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6912 PCI_DMA_FROMDEVICE);
8d8bb39b
FT
6913 if (pci_dma_mapping_error(sp->pdev,
6914 rxdp3->Buffer0_ptr)) {
491abf25 6915 pci_unmap_single (sp->pdev,
3e847423 6916 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6917 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6918 goto memalloc_failed;
6919 }
5d3213cc
AR
6920 rxdp->Host_Control = (unsigned long) (*skb);
6921
6922 /* Buffer-1 will be dummy buffer not used */
6d517a27 6923 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6924 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5d3213cc 6925 PCI_DMA_FROMDEVICE);
8d8bb39b
FT
6926 if (pci_dma_mapping_error(sp->pdev,
6927 rxdp3->Buffer1_ptr)) {
491abf25 6928 pci_unmap_single (sp->pdev,
3e847423
AV
6929 (dma_addr_t)rxdp3->Buffer0_ptr,
6930 BUF0_LEN, PCI_DMA_FROMDEVICE);
6931 pci_unmap_single (sp->pdev,
6932 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6933 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6934 goto memalloc_failed;
6935 }
5d3213cc
AR
6936 }
6937 }
6938 return 0;
491abf25
VP
6939 memalloc_failed:
6940 stats->pci_map_fail_cnt++;
6941 stats->mem_freed += (*skb)->truesize;
6942 dev_kfree_skb(*skb);
6943 return -ENOMEM;
5d3213cc 6944}
491abf25 6945
1ee6dd77
RB
6946static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6947 int size)
5d3213cc
AR
6948{
6949 struct net_device *dev = sp->dev;
6950 if (sp->rxd_mode == RXD_MODE_1) {
6951 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6952 } else if (sp->rxd_mode == RXD_MODE_3B) {
6953 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6954 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6955 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
5d3213cc
AR
6956 }
6957}
6958
1ee6dd77 6959static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6960{
6961 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6962 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6963 struct config_param *config = &sp->config;
6964 struct net_device *dev = sp->dev;
1ee6dd77 6965 struct RxD_t *rxdp = NULL;
5d3213cc 6966 struct sk_buff *skb = NULL;
1ee6dd77 6967 struct buffAdd *ba = NULL;
5d3213cc
AR
6968 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6969
6970 /* Calculate the size based on ring mode */
6971 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6972 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6973 if (sp->rxd_mode == RXD_MODE_1)
6974 size += NET_IP_ALIGN;
6975 else if (sp->rxd_mode == RXD_MODE_3B)
6976 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6977
6978 for (i = 0; i < config->rx_ring_num; i++) {
6979 blk_cnt = config->rx_cfg[i].num_rxd /
6980 (rxd_count[sp->rxd_mode] +1);
6981
6982 for (j = 0; j < blk_cnt; j++) {
6983 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6984 rxdp = mac_control->rings[i].
6985 rx_blocks[j].rxds[k].virt_addr;
6d517a27 6986 if(sp->rxd_mode == RXD_MODE_3B)
5d3213cc 6987 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 6988 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
6989 &skb,(u64 *)&temp0_64,
6990 (u64 *)&temp1_64,
ac1f90d6 6991 (u64 *)&temp2_64,
20cbe73c 6992 size) == -ENOMEM) {
ac1f90d6
SS
6993 return 0;
6994 }
5d3213cc
AR
6995
6996 set_rxd_buffer_size(sp, rxdp, size);
6997 wmb();
6998 /* flip the Ownership bit to Hardware */
6999 rxdp->Control_1 |= RXD_OWN_XENA;
7000 }
7001 }
7002 }
7003 return 0;
7004
7005}
7006
1ee6dd77 7007static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 7008{
e6a8fee2 7009 int ret = 0;
c92ca04b 7010 struct net_device *dev = sp->dev;
e6a8fee2 7011 int err = 0;
1da177e4 7012
eaae7f72 7013 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7014 ret = s2io_enable_msi_x(sp);
7015 if (ret) {
7016 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 7017 sp->config.intr_type = INTA;
20346722 7018 }
1da177e4 7019
1ee6dd77 7020 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 7021 store_xmsi_data(sp);
c92ca04b 7022
e6a8fee2 7023 /* After proper initialization of H/W, register ISR */
eaae7f72 7024 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
7025 int i, msix_rx_cnt = 0;
7026
f61e0a35
SH
7027 for (i = 0; i < sp->num_entries; i++) {
7028 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7029 if (sp->s2io_entries[i].type ==
ac731ab6
SH
7030 MSIX_RING_TYPE) {
7031 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7032 dev->name, i);
7033 err = request_irq(sp->entries[i].vector,
7034 s2io_msix_ring_handle, 0,
7035 sp->desc[i],
7036 sp->s2io_entries[i].arg);
7037 } else if (sp->s2io_entries[i].type ==
7038 MSIX_ALARM_TYPE) {
7039 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
e6a8fee2 7040 dev->name, i);
ac731ab6
SH
7041 err = request_irq(sp->entries[i].vector,
7042 s2io_msix_fifo_handle, 0,
7043 sp->desc[i],
7044 sp->s2io_entries[i].arg);
7045
fb6a825b 7046 }
ac731ab6
SH
7047 /* if either data or addr is zero print it. */
7048 if (!(sp->msix_info[i].addr &&
fb6a825b 7049 sp->msix_info[i].data)) {
ac731ab6
SH
7050 DBG_PRINT(ERR_DBG,
7051 "%s @Addr:0x%llx Data:0x%llx\n",
7052 sp->desc[i],
fb6a825b
SS
7053 (unsigned long long)
7054 sp->msix_info[i].addr,
3459feb8 7055 (unsigned long long)
ac731ab6
SH
7056 ntohl(sp->msix_info[i].data));
7057 } else
fb6a825b 7058 msix_rx_cnt++;
ac731ab6
SH
7059 if (err) {
7060 remove_msix_isr(sp);
7061
7062 DBG_PRINT(ERR_DBG,
7063 "%s:MSI-X-%d registration "
7064 "failed\n", dev->name, i);
7065
7066 DBG_PRINT(ERR_DBG,
7067 "%s: Defaulting to INTA\n",
7068 dev->name);
7069 sp->config.intr_type = INTA;
7070 break;
fb6a825b 7071 }
ac731ab6
SH
7072 sp->s2io_entries[i].in_use =
7073 MSIX_REGISTERED_SUCCESS;
c92ca04b 7074 }
e6a8fee2 7075 }
18b2b7bd 7076 if (!err) {
18b2b7bd 7077 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
ac731ab6
SH
7078 --msix_rx_cnt);
7079 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7080 " through alarm vector\n");
18b2b7bd 7081 }
e6a8fee2 7082 }
eaae7f72 7083 if (sp->config.intr_type == INTA) {
e6a8fee2
AR
7084 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7085 sp->name, dev);
7086 if (err) {
7087 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7088 dev->name);
7089 return -1;
7090 }
7091 }
7092 return 0;
7093}
1ee6dd77 7094static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2 7095{
18b2b7bd
SH
7096 if (sp->config.intr_type == MSI_X)
7097 remove_msix_isr(sp);
7098 else
7099 remove_inta_isr(sp);
e6a8fee2
AR
7100}
7101
d796fdb7 7102static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
e6a8fee2
AR
7103{
7104 int cnt = 0;
1ee6dd77 7105 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7106 register u64 val64 = 0;
5f490c96
SH
7107 struct config_param *config;
7108 config = &sp->config;
e6a8fee2 7109
9f74ffde
SH
7110 if (!is_s2io_card_up(sp))
7111 return;
7112
e6a8fee2
AR
7113 del_timer_sync(&sp->alarm_timer);
7114 /* If s2io_set_link task is executing, wait till it completes. */
92b84437 7115 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
e6a8fee2
AR
7116 msleep(50);
7117 }
92b84437 7118 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7119
5f490c96 7120 /* Disable napi */
f61e0a35
SH
7121 if (sp->config.napi) {
7122 int off = 0;
7123 if (config->intr_type == MSI_X) {
7124 for (; off < sp->config.rx_ring_num; off++)
7125 napi_disable(&sp->mac_control.rings[off].napi);
7126 }
7127 else
7128 napi_disable(&sp->napi);
7129 }
5f490c96 7130
e6a8fee2 7131 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7132 if (do_io)
7133 stop_nic(sp);
e6a8fee2
AR
7134
7135 s2io_rem_isr(sp);
1da177e4 7136
01e16faa
SH
7137 /* stop the tx queue, indicate link down */
7138 s2io_link(sp, LINK_DOWN);
7139
1da177e4 7140 /* Check if the device is Quiescent and then Reset the NIC */
d796fdb7 7141 while(do_io) {
5d3213cc
AR
7142 /* As per the HW requirement we need to replenish the
7143 * receive buffer to avoid the ring bump. Since there is
7144 * no intention of processing the Rx frame at this pointwe are
7145 * just settting the ownership bit of rxd in Each Rx
7146 * ring to HW and set the appropriate buffer size
7147 * based on the ring mode
7148 */
7149 rxd_owner_bit_reset(sp);
7150
1da177e4 7151 val64 = readq(&bar0->adapter_status);
19a60522
SS
7152 if (verify_xena_quiescence(sp)) {
7153 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
7154 break;
7155 }
7156
7157 msleep(50);
7158 cnt++;
7159 if (cnt == 10) {
7160 DBG_PRINT(ERR_DBG,
7161 "s2io_close:Device not Quiescent ");
7162 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7163 (unsigned long long) val64);
7164 break;
7165 }
d796fdb7
LV
7166 }
7167 if (do_io)
7168 s2io_reset(sp);
1da177e4 7169
7ba013ac 7170 /* Free all Tx buffers */
1da177e4 7171 free_tx_buffers(sp);
7ba013ac 7172
7173 /* Free all Rx buffers */
1da177e4
LT
7174 free_rx_buffers(sp);
7175
92b84437 7176 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7177}
7178
d796fdb7
LV
7179static void s2io_card_down(struct s2io_nic * sp)
7180{
7181 do_s2io_card_down(sp, 1);
7182}
7183
1ee6dd77 7184static int s2io_card_up(struct s2io_nic * sp)
1da177e4 7185{
cc6e7c44 7186 int i, ret = 0;
1ee6dd77 7187 struct mac_info *mac_control;
1da177e4
LT
7188 struct config_param *config;
7189 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 7190 u16 interruptible;
1da177e4
LT
7191
7192 /* Initialize the H/W I/O registers */
9f74ffde
SH
7193 ret = init_nic(sp);
7194 if (ret != 0) {
1da177e4
LT
7195 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7196 dev->name);
9f74ffde
SH
7197 if (ret != -EIO)
7198 s2io_reset(sp);
7199 return ret;
1da177e4
LT
7200 }
7201
20346722 7202 /*
7203 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7204 * Rx ring and initializing buffers into 30 Rx blocks
7205 */
7206 mac_control = &sp->mac_control;
7207 config = &sp->config;
7208
7209 for (i = 0; i < config->rx_ring_num; i++) {
0425b46a 7210 mac_control->rings[i].mtu = dev->mtu;
8d8bb39b 7211 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
0425b46a 7212 if (ret) {
1da177e4
LT
7213 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7214 dev->name);
7215 s2io_reset(sp);
7216 free_rx_buffers(sp);
7217 return -ENOMEM;
7218 }
7219 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
0425b46a 7220 mac_control->rings[i].rx_bufs_left);
1da177e4 7221 }
5f490c96
SH
7222
7223 /* Initialise napi */
f61e0a35
SH
7224 if (config->napi) {
7225 int i;
7226 if (config->intr_type == MSI_X) {
7227 for (i = 0; i < sp->config.rx_ring_num; i++)
7228 napi_enable(&sp->mac_control.rings[i].napi);
7229 } else {
7230 napi_enable(&sp->napi);
7231 }
7232 }
5f490c96 7233
19a60522
SS
7234 /* Maintain the state prior to the open */
7235 if (sp->promisc_flg)
7236 sp->promisc_flg = 0;
7237 if (sp->m_cast_flg) {
7238 sp->m_cast_flg = 0;
7239 sp->all_multi_pos= 0;
7240 }
1da177e4
LT
7241
7242 /* Setting its receive mode */
7243 s2io_set_multicast(dev);
7244
7d3d0439 7245 if (sp->lro) {
b41477f3 7246 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
7247 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7248 /* Check if we can use(if specified) user provided value */
7249 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7250 sp->lro_max_aggr_per_sess = lro_max_pkts;
7251 }
7252
1da177e4
LT
7253 /* Enable Rx Traffic and interrupts on the NIC */
7254 if (start_nic(sp)) {
7255 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7256 s2io_reset(sp);
e6a8fee2
AR
7257 free_rx_buffers(sp);
7258 return -ENODEV;
7259 }
7260
7261 /* Add interrupt service routine */
7262 if (s2io_add_isr(sp) != 0) {
eaae7f72 7263 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7264 s2io_rem_isr(sp);
7265 s2io_reset(sp);
1da177e4
LT
7266 free_rx_buffers(sp);
7267 return -ENODEV;
7268 }
7269
25fff88e 7270 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7271
01e16faa
SH
7272 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7273
e6a8fee2 7274 /* Enable select interrupts */
9caab458 7275 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
01e16faa
SH
7276 if (sp->config.intr_type != INTA) {
7277 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7278 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7279 } else {
e6a8fee2 7280 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7281 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7282 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7283 }
7284
1da177e4
LT
7285 return 0;
7286}
7287
20346722 7288/**
1da177e4
LT
7289 * s2io_restart_nic - Resets the NIC.
7290 * @data : long pointer to the device private structure
7291 * Description:
7292 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7293 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7294 * the run time of the watch dog routine which is run holding a
7295 * spin lock.
7296 */
7297
c4028958 7298static void s2io_restart_nic(struct work_struct *work)
1da177e4 7299{
1ee6dd77 7300 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7301 struct net_device *dev = sp->dev;
1da177e4 7302
22747d6b
FR
7303 rtnl_lock();
7304
7305 if (!netif_running(dev))
7306 goto out_unlock;
7307
e6a8fee2 7308 s2io_card_down(sp);
1da177e4
LT
7309 if (s2io_card_up(sp)) {
7310 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7311 dev->name);
7312 }
3a3d5756 7313 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7314 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7315 dev->name);
22747d6b
FR
7316out_unlock:
7317 rtnl_unlock();
1da177e4
LT
7318}
7319
20346722 7320/**
7321 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7322 * @dev : Pointer to net device structure
7323 * Description:
7324 * This function is triggered if the Tx Queue is stopped
7325 * for a pre-defined amount of time when the Interface is still up.
7326 * If the Interface is jammed in such a situation, the hardware is
7327 * reset (by s2io_close) and restarted again (by s2io_open) to
7328 * overcome any problem that might have been caused in the hardware.
7329 * Return value:
7330 * void
7331 */
7332
7333static void s2io_tx_watchdog(struct net_device *dev)
7334{
4cf1653a 7335 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
7336
7337 if (netif_carrier_ok(dev)) {
c53d4945 7338 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
1da177e4 7339 schedule_work(&sp->rst_timer_task);
bd1034f0 7340 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
7341 }
7342}
7343
7344/**
7345 * rx_osm_handler - To perform some OS related operations on SKB.
7346 * @sp: private member of the device structure,pointer to s2io_nic structure.
7347 * @skb : the socket buffer pointer.
7348 * @len : length of the packet
7349 * @cksum : FCS checksum of the frame.
7350 * @ring_no : the ring from which this RxD was extracted.
20346722 7351 * Description:
b41477f3 7352 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7353 * some OS related operations on the SKB before passing it to the upper
7354 * layers. It mainly checks if the checksum is OK, if so adds it to the
7355 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7356 * to the upper layer. If the checksum is wrong, it increments the Rx
7357 * packet error count, frees the SKB and returns error.
7358 * Return value:
7359 * SUCCESS on success and -1 on failure.
7360 */
1ee6dd77 7361static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7362{
1ee6dd77 7363 struct s2io_nic *sp = ring_data->nic;
0425b46a 7364 struct net_device *dev = (struct net_device *) ring_data->dev;
20346722 7365 struct sk_buff *skb = (struct sk_buff *)
7366 ((unsigned long) rxdp->Host_Control);
7367 int ring_no = ring_data->ring_no;
1da177e4 7368 u16 l3_csum, l4_csum;
863c11a9 7369 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
2e6a684b 7370 struct lro *uninitialized_var(lro);
f9046eb3 7371 u8 err_mask;
da6971d8 7372
20346722 7373 skb->dev = dev;
c92ca04b 7374
863c11a9 7375 if (err) {
bd1034f0
AR
7376 /* Check for parity error */
7377 if (err & 0x1) {
7378 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7379 }
f9046eb3
OH
7380 err_mask = err >> 48;
7381 switch(err_mask) {
491976b2
SH
7382 case 1:
7383 sp->mac_control.stats_info->sw_stat.
7384 rx_parity_err_cnt++;
7385 break;
7386
7387 case 2:
7388 sp->mac_control.stats_info->sw_stat.
7389 rx_abort_cnt++;
7390 break;
7391
7392 case 3:
7393 sp->mac_control.stats_info->sw_stat.
7394 rx_parity_abort_cnt++;
7395 break;
7396
7397 case 4:
7398 sp->mac_control.stats_info->sw_stat.
7399 rx_rda_fail_cnt++;
7400 break;
7401
7402 case 5:
7403 sp->mac_control.stats_info->sw_stat.
7404 rx_unkn_prot_cnt++;
7405 break;
7406
7407 case 6:
7408 sp->mac_control.stats_info->sw_stat.
7409 rx_fcs_err_cnt++;
7410 break;
bd1034f0 7411
491976b2
SH
7412 case 7:
7413 sp->mac_control.stats_info->sw_stat.
7414 rx_buf_size_err_cnt++;
7415 break;
7416
7417 case 8:
7418 sp->mac_control.stats_info->sw_stat.
7419 rx_rxd_corrupt_cnt++;
7420 break;
7421
7422 case 15:
7423 sp->mac_control.stats_info->sw_stat.
7424 rx_unkn_err_cnt++;
7425 break;
7426 }
863c11a9
AR
7427 /*
7428 * Drop the packet if bad transfer code. Exception being
7429 * 0x5, which could be due to unsupported IPv6 extension header.
7430 * In this case, we let stack handle the packet.
7431 * Note that in this case, since checksum will be incorrect,
7432 * stack will validate the same.
7433 */
f9046eb3
OH
7434 if (err_mask != 0x5) {
7435 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7436 dev->name, err_mask);
dc56e634 7437 dev->stats.rx_crc_errors++;
8a4bdbaa 7438 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2 7439 += skb->truesize;
863c11a9 7440 dev_kfree_skb(skb);
0425b46a 7441 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7442 rxdp->Host_Control = 0;
7443 return 0;
7444 }
20346722 7445 }
1da177e4 7446
20346722 7447 /* Updating statistics */
0425b46a 7448 ring_data->rx_packets++;
20346722 7449 rxdp->Host_Control = 0;
da6971d8
AR
7450 if (sp->rxd_mode == RXD_MODE_1) {
7451 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7452
0425b46a 7453 ring_data->rx_bytes += len;
da6971d8
AR
7454 skb_put(skb, len);
7455
6d517a27 7456 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7457 int get_block = ring_data->rx_curr_get_info.block_index;
7458 int get_off = ring_data->rx_curr_get_info.offset;
7459 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7460 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7461 unsigned char *buff = skb_push(skb, buf0_len);
7462
1ee6dd77 7463 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
0425b46a 7464 ring_data->rx_bytes += buf0_len + buf2_len;
da6971d8 7465 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7466 skb_put(skb, buf2_len);
da6971d8 7467 }
20346722 7468
0425b46a
SH
7469 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7470 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722 7471 (sp->rx_csum)) {
7472 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7473 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7474 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7475 /*
1da177e4
LT
7476 * NIC verifies if the Checksum of the received
7477 * frame is Ok or not and accordingly returns
7478 * a flag in the RxD.
7479 */
7480 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7481 if (ring_data->lro) {
7d3d0439
RA
7482 u32 tcp_len;
7483 u8 *tcp;
7484 int ret = 0;
7485
0425b46a
SH
7486 ret = s2io_club_tcp_session(ring_data,
7487 skb->data, &tcp, &tcp_len, &lro,
7488 rxdp, sp);
7d3d0439
RA
7489 switch (ret) {
7490 case 3: /* Begin anew */
7491 lro->parent = skb;
7492 goto aggregate;
7493 case 1: /* Aggregate */
7494 {
7495 lro_append_pkt(sp, lro,
7496 skb, tcp_len);
7497 goto aggregate;
7498 }
7499 case 4: /* Flush session */
7500 {
7501 lro_append_pkt(sp, lro,
7502 skb, tcp_len);
cdb5bf02
SH
7503 queue_rx_frame(lro->parent,
7504 lro->vlan_tag);
7d3d0439
RA
7505 clear_lro_session(lro);
7506 sp->mac_control.stats_info->
7507 sw_stat.flush_max_pkts++;
7508 goto aggregate;
7509 }
7510 case 2: /* Flush both */
7511 lro->parent->data_len =
7512 lro->frags_len;
7513 sp->mac_control.stats_info->
7514 sw_stat.sending_both++;
cdb5bf02
SH
7515 queue_rx_frame(lro->parent,
7516 lro->vlan_tag);
7d3d0439
RA
7517 clear_lro_session(lro);
7518 goto send_up;
7519 case 0: /* sessions exceeded */
c92ca04b
AR
7520 case -1: /* non-TCP or not
7521 * L2 aggregatable
7522 */
7d3d0439
RA
7523 case 5: /*
7524 * First pkt in session not
7525 * L3/L4 aggregatable
7526 */
7527 break;
7528 default:
7529 DBG_PRINT(ERR_DBG,
7530 "%s: Samadhana!!\n",
b39d66a8 7531 __func__);
7d3d0439
RA
7532 BUG();
7533 }
7534 }
1da177e4 7535 } else {
20346722 7536 /*
7537 * Packet with erroneous checksum, let the
1da177e4
LT
7538 * upper layers deal with it.
7539 */
7540 skb->ip_summed = CHECKSUM_NONE;
7541 }
cdb5bf02 7542 } else
1da177e4 7543 skb->ip_summed = CHECKSUM_NONE;
cdb5bf02 7544
491976b2 7545 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7d3d0439 7546send_up:
cdb5bf02 7547 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7548aggregate:
0425b46a 7549 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7550 return SUCCESS;
7551}
7552
7553/**
7554 * s2io_link - stops/starts the Tx queue.
7555 * @sp : private member of the device structure, which is a pointer to the
7556 * s2io_nic structure.
7557 * @link : inidicates whether link is UP/DOWN.
7558 * Description:
7559 * This function stops/starts the Tx queue depending on whether the link
20346722 7560 * status of the NIC is is down or up. This is called by the Alarm
7561 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7562 * Return value:
7563 * void.
7564 */
7565
1ee6dd77 7566static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
7567{
7568 struct net_device *dev = (struct net_device *) sp->dev;
7569
7570 if (link != sp->last_link_state) {
b7c5678f 7571 init_tti(sp, link);
1da177e4
LT
7572 if (link == LINK_DOWN) {
7573 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7574 s2io_stop_all_tx_queue(sp);
1da177e4 7575 netif_carrier_off(dev);
491976b2 7576 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
8a4bdbaa 7577 sp->mac_control.stats_info->sw_stat.link_up_time =
491976b2
SH
7578 jiffies - sp->start_time;
7579 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
1da177e4
LT
7580 } else {
7581 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
491976b2 7582 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
8a4bdbaa 7583 sp->mac_control.stats_info->sw_stat.link_down_time =
491976b2
SH
7584 jiffies - sp->start_time;
7585 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
1da177e4 7586 netif_carrier_on(dev);
3a3d5756 7587 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7588 }
7589 }
7590 sp->last_link_state = link;
491976b2 7591 sp->start_time = jiffies;
1da177e4
LT
7592}
7593
20346722 7594/**
7595 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7596 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7597 * s2io_nic structure.
7598 * Description:
7599 * This function initializes a few of the PCI and PCI-X configuration registers
7600 * with recommended values.
7601 * Return value:
7602 * void
7603 */
7604
1ee6dd77 7605static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 7606{
20346722 7607 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7608
7609 /* Enable Data Parity Error Recovery in PCI-X command register. */
7610 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7611 &(pcix_cmd));
1da177e4 7612 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7613 (pcix_cmd | 1));
1da177e4 7614 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7615 &(pcix_cmd));
1da177e4
LT
7616
7617 /* Set the PErr Response bit in PCI command register. */
7618 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7619 pci_write_config_word(sp->pdev, PCI_COMMAND,
7620 (pci_cmd | PCI_COMMAND_PARITY));
7621 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7622}
7623
3a3d5756
SH
7624static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7625 u8 *dev_multiq)
9dc737a7 7626{
2fda096d 7627 if ((tx_fifo_num > MAX_TX_FIFOS) ||
6cfc482b 7628 (tx_fifo_num < 1)) {
2fda096d
SR
7629 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7630 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7631
7632 if (tx_fifo_num < 1)
7633 tx_fifo_num = 1;
7634 else
7635 tx_fifo_num = MAX_TX_FIFOS;
7636
2fda096d
SR
7637 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7638 DBG_PRINT(ERR_DBG, "tx fifos\n");
9dc737a7 7639 }
2fda096d 7640
6cfc482b 7641 if (multiq)
3a3d5756 7642 *dev_multiq = multiq;
6cfc482b
SH
7643
7644 if (tx_steering_type && (1 == tx_fifo_num)) {
7645 if (tx_steering_type != TX_DEFAULT_STEERING)
7646 DBG_PRINT(ERR_DBG,
7647 "s2io: Tx steering is not supported with "
7648 "one fifo. Disabling Tx steering.\n");
7649 tx_steering_type = NO_STEERING;
7650 }
7651
7652 if ((tx_steering_type < NO_STEERING) ||
7653 (tx_steering_type > TX_DEFAULT_STEERING)) {
7654 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7655 "supported\n");
7656 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7657 tx_steering_type = NO_STEERING;
3a3d5756
SH
7658 }
7659
0425b46a
SH
7660 if (rx_ring_num > MAX_RX_RINGS) {
7661 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
9dc737a7 7662 "supported\n");
0425b46a
SH
7663 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7664 MAX_RX_RINGS);
7665 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7666 }
0425b46a 7667
eccb8628 7668 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9dc737a7
AR
7669 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7670 "Defaulting to INTA\n");
7671 *dev_intr_type = INTA;
7672 }
596c5c97 7673
9dc737a7
AR
7674 if ((*dev_intr_type == MSI_X) &&
7675 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7676 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 7677 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
7678 "Defaulting to INTA\n");
7679 *dev_intr_type = INTA;
7680 }
fb6a825b 7681
6d517a27 7682 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9dc737a7 7683 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6d517a27
VP
7684 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7685 rx_ring_mode = 1;
9dc737a7
AR
7686 }
7687 return SUCCESS;
7688}
7689
9fc93a41
SS
7690/**
7691 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7692 * or Traffic class respectively.
b7c5678f 7693 * @nic: device private variable
9fc93a41
SS
7694 * Description: The function configures the receive steering to
7695 * desired receive ring.
7696 * Return Value: SUCCESS on success and
7697 * '-1' on failure (endian settings incorrect).
7698 */
7699static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7700{
7701 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7702 register u64 val64 = 0;
7703
7704 if (ds_codepoint > 63)
7705 return FAILURE;
7706
7707 val64 = RTS_DS_MEM_DATA(ring);
7708 writeq(val64, &bar0->rts_ds_mem_data);
7709
7710 val64 = RTS_DS_MEM_CTRL_WE |
7711 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7712 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7713
7714 writeq(val64, &bar0->rts_ds_mem_ctrl);
7715
7716 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7717 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7718 S2IO_BIT_RESET);
7719}
7720
04025095
SH
7721static const struct net_device_ops s2io_netdev_ops = {
7722 .ndo_open = s2io_open,
7723 .ndo_stop = s2io_close,
7724 .ndo_get_stats = s2io_get_stats,
7725 .ndo_start_xmit = s2io_xmit,
7726 .ndo_validate_addr = eth_validate_addr,
7727 .ndo_set_multicast_list = s2io_set_multicast,
7728 .ndo_do_ioctl = s2io_ioctl,
7729 .ndo_set_mac_address = s2io_set_mac_addr,
7730 .ndo_change_mtu = s2io_change_mtu,
7731 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7732 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7733 .ndo_tx_timeout = s2io_tx_watchdog,
7734#ifdef CONFIG_NET_POLL_CONTROLLER
7735 .ndo_poll_controller = s2io_netpoll,
7736#endif
7737};
7738
1da177e4 7739/**
20346722 7740 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7741 * @pdev : structure containing the PCI related information of the device.
7742 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7743 * Description:
7744 * The function initializes an adapter identified by the pci_dec structure.
20346722 7745 * All OS related initialization including memory and device structure and
7746 * initlaization of the device private variable is done. Also the swapper
7747 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7748 * registers of the device.
7749 * Return value:
7750 * returns 0 on success and negative on failure.
7751 */
7752
7753static int __devinit
7754s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7755{
1ee6dd77 7756 struct s2io_nic *sp;
1da177e4 7757 struct net_device *dev;
1da177e4
LT
7758 int i, j, ret;
7759 int dma_flag = FALSE;
7760 u32 mac_up, mac_down;
7761 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7762 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7763 u16 subid;
1ee6dd77 7764 struct mac_info *mac_control;
1da177e4 7765 struct config_param *config;
541ae68f 7766 int mode;
cc6e7c44 7767 u8 dev_intr_type = intr_type;
3a3d5756 7768 u8 dev_multiq = 0;
1da177e4 7769
3a3d5756
SH
7770 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7771 if (ret)
9dc737a7 7772 return ret;
1da177e4
LT
7773
7774 if ((ret = pci_enable_device(pdev))) {
7775 DBG_PRINT(ERR_DBG,
7776 "s2io_init_nic: pci_enable_device failed\n");
7777 return ret;
7778 }
7779
1e7f0bd8 7780 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7781 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7782 dma_flag = TRUE;
1da177e4 7783 if (pci_set_consistent_dma_mask
1e7f0bd8 7784 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7785 DBG_PRINT(ERR_DBG,
7786 "Unable to obtain 64bit DMA for \
7787 consistent allocations\n");
7788 pci_disable_device(pdev);
7789 return -ENOMEM;
7790 }
1e7f0bd8 7791 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
7792 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7793 } else {
7794 pci_disable_device(pdev);
7795 return -ENOMEM;
7796 }
eccb8628 7797 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
b39d66a8 7798 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
eccb8628
VP
7799 pci_disable_device(pdev);
7800 return -ENODEV;
1da177e4 7801 }
3a3d5756 7802 if (dev_multiq)
6cfc482b 7803 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756 7804 else
b19fa1fa 7805 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7806 if (dev == NULL) {
7807 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7808 pci_disable_device(pdev);
7809 pci_release_regions(pdev);
7810 return -ENODEV;
7811 }
7812
7813 pci_set_master(pdev);
7814 pci_set_drvdata(pdev, dev);
1da177e4
LT
7815 SET_NETDEV_DEV(dev, &pdev->dev);
7816
7817 /* Private member variable initialized to s2io NIC structure */
4cf1653a 7818 sp = netdev_priv(dev);
1ee6dd77 7819 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7820 sp->dev = dev;
7821 sp->pdev = pdev;
1da177e4 7822 sp->high_dma_flag = dma_flag;
1da177e4 7823 sp->device_enabled_once = FALSE;
da6971d8
AR
7824 if (rx_ring_mode == 1)
7825 sp->rxd_mode = RXD_MODE_1;
7826 if (rx_ring_mode == 2)
7827 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7828
eaae7f72 7829 sp->config.intr_type = dev_intr_type;
1da177e4 7830
541ae68f 7831 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7832 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7833 sp->device_type = XFRAME_II_DEVICE;
7834 else
7835 sp->device_type = XFRAME_I_DEVICE;
7836
43b7c451 7837 sp->lro = lro_enable;
6aa20a22 7838
1da177e4
LT
7839 /* Initialize some PCI/PCI-X fields of the NIC. */
7840 s2io_init_pci(sp);
7841
20346722 7842 /*
1da177e4 7843 * Setting the device configuration parameters.
20346722 7844 * Most of these parameters can be specified by the user during
7845 * module insertion as they are module loadable parameters. If
7846 * these parameters are not not specified during load time, they
1da177e4
LT
7847 * are initialized with default values.
7848 */
7849 mac_control = &sp->mac_control;
7850 config = &sp->config;
7851
596c5c97 7852 config->napi = napi;
6cfc482b 7853 config->tx_steering_type = tx_steering_type;
596c5c97 7854
1da177e4 7855 /* Tx side parameters. */
6cfc482b
SH
7856 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7857 config->tx_fifo_num = MAX_TX_FIFOS;
7858 else
7859 config->tx_fifo_num = tx_fifo_num;
7860
7861 /* Initialize the fifos used for tx steering */
7862 if (config->tx_fifo_num < 5) {
7863 if (config->tx_fifo_num == 1)
7864 sp->total_tcp_fifos = 1;
7865 else
7866 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7867 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7868 sp->total_udp_fifos = 1;
7869 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7870 } else {
7871 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7872 FIFO_OTHER_MAX_NUM);
7873 sp->udp_fifo_idx = sp->total_tcp_fifos;
7874 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7875 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7876 }
7877
3a3d5756 7878 config->multiq = dev_multiq;
6cfc482b 7879 for (i = 0; i < config->tx_fifo_num; i++) {
1da177e4
LT
7880 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7881 config->tx_cfg[i].fifo_priority = i;
7882 }
7883
20346722 7884 /* mapping the QoS priority to the configured fifos */
7885 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7886 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7887
6cfc482b
SH
7888 /* map the hashing selector table to the configured fifos */
7889 for (i = 0; i < config->tx_fifo_num; i++)
7890 sp->fifo_selector[i] = fifo_selector[i];
7891
7892
1da177e4
LT
7893 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7894 for (i = 0; i < config->tx_fifo_num; i++) {
7895 config->tx_cfg[i].f_no_snoop =
7896 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7897 if (config->tx_cfg[i].fifo_len < 65) {
7898 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7899 break;
7900 }
7901 }
fed5eccd
AR
7902 /* + 2 because one Txd for skb->data and one Txd for UFO */
7903 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7904
7905 /* Rx side parameters. */
1da177e4 7906 config->rx_ring_num = rx_ring_num;
0425b46a 7907 for (i = 0; i < config->rx_ring_num; i++) {
1da177e4 7908 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7909 (rxd_count[sp->rxd_mode] + 1);
1da177e4 7910 config->rx_cfg[i].ring_priority = i;
0425b46a
SH
7911 mac_control->rings[i].rx_bufs_left = 0;
7912 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7913 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7914 mac_control->rings[i].pdev = sp->pdev;
7915 mac_control->rings[i].dev = sp->dev;
1da177e4
LT
7916 }
7917
7918 for (i = 0; i < rx_ring_num; i++) {
7919 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7920 config->rx_cfg[i].f_no_snoop =
7921 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7922 }
7923
7924 /* Setting Mac Control parameters */
7925 mac_control->rmac_pause_time = rmac_pause_time;
7926 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7927 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7928
7929
1da177e4
LT
7930 /* initialize the shared memory used by the NIC and the host */
7931 if (init_shared_mem(sp)) {
7932 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7933 dev->name);
1da177e4
LT
7934 ret = -ENOMEM;
7935 goto mem_alloc_failed;
7936 }
7937
275f165f 7938 sp->bar0 = pci_ioremap_bar(pdev, 0);
1da177e4 7939 if (!sp->bar0) {
19a60522 7940 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7941 dev->name);
7942 ret = -ENOMEM;
7943 goto bar0_remap_failed;
7944 }
7945
275f165f 7946 sp->bar1 = pci_ioremap_bar(pdev, 2);
1da177e4 7947 if (!sp->bar1) {
19a60522 7948 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7949 dev->name);
7950 ret = -ENOMEM;
7951 goto bar1_remap_failed;
7952 }
7953
7954 dev->irq = pdev->irq;
7955 dev->base_addr = (unsigned long) sp->bar0;
7956
7957 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7958 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7959 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7960 (sp->bar1 + (j * 0x00020000));
7961 }
7962
7963 /* Driver entry points */
04025095 7964 dev->netdev_ops = &s2io_netdev_ops;
1da177e4 7965 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02 7966 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
612eff0e 7967
1da177e4
LT
7968 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7969 if (sp->high_dma_flag == TRUE)
7970 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7971 dev->features |= NETIF_F_TSO;
f83ef8c0 7972 dev->features |= NETIF_F_TSO6;
db874e65 7973 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7974 dev->features |= NETIF_F_UFO;
7975 dev->features |= NETIF_F_HW_CSUM;
7976 }
1da177e4 7977 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7978 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7979 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7980
e960fc5c 7981 pci_save_state(sp->pdev);
1da177e4
LT
7982
7983 /* Setting swapper control on the NIC, for proper reset operation */
7984 if (s2io_set_swapper(sp)) {
7985 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7986 dev->name);
7987 ret = -EAGAIN;
7988 goto set_swap_failed;
7989 }
7990
541ae68f 7991 /* Verify if the Herc works on the slot its placed into */
7992 if (sp->device_type & XFRAME_II_DEVICE) {
7993 mode = s2io_verify_pci_mode(sp);
7994 if (mode < 0) {
b39d66a8 7995 DBG_PRINT(ERR_DBG, "%s: ", __func__);
541ae68f 7996 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7997 ret = -EBADSLT;
7998 goto set_swap_failed;
7999 }
8000 }
8001
f61e0a35
SH
8002 if (sp->config.intr_type == MSI_X) {
8003 sp->num_entries = config->rx_ring_num + 1;
8004 ret = s2io_enable_msi_x(sp);
8005
8006 if (!ret) {
8007 ret = s2io_test_msi(sp);
8008 /* rollback MSI-X, will re-enable during add_isr() */
8009 remove_msix_isr(sp);
8010 }
8011 if (ret) {
8012
8013 DBG_PRINT(ERR_DBG,
8014 "%s: MSI-X requested but failed to enable\n",
8015 dev->name);
8016 sp->config.intr_type = INTA;
8017 }
8018 }
8019
8020 if (config->intr_type == MSI_X) {
8021 for (i = 0; i < config->rx_ring_num ; i++)
8022 netif_napi_add(dev, &mac_control->rings[i].napi,
8023 s2io_poll_msix, 64);
8024 } else {
8025 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8026 }
8027
541ae68f 8028 /* Not needed for Herc */
8029 if (sp->device_type & XFRAME_I_DEVICE) {
8030 /*
8031 * Fix for all "FFs" MAC address problems observed on
8032 * Alpha platforms
8033 */
8034 fix_mac_address(sp);
8035 s2io_reset(sp);
8036 }
1da177e4
LT
8037
8038 /*
1da177e4
LT
8039 * MAC address initialization.
8040 * For now only one mac address will be read and used.
8041 */
8042 bar0 = sp->bar0;
8043 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796 8044 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8045 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8046 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 8047 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
8048 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8049 mac_down = (u32) tmp64;
8050 mac_up = (u32) (tmp64 >> 32);
8051
1da177e4
LT
8052 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8053 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8054 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8055 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8056 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8057 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8058
1da177e4
LT
8059 /* Set the factory defined MAC address initially */
8060 dev->addr_len = ETH_ALEN;
8061 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8062 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8063
faa4f796
SH
8064 /* initialize number of multicast & unicast MAC entries variables */
8065 if (sp->device_type == XFRAME_I_DEVICE) {
8066 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8067 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8068 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8069 } else if (sp->device_type == XFRAME_II_DEVICE) {
8070 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8071 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8072 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8073 }
8074
8075 /* store mac addresses from CAM to s2io_nic structure */
8076 do_s2io_store_unicast_mc(sp);
8077
f61e0a35
SH
8078 /* Configure MSIX vector for number of rings configured plus one */
8079 if ((sp->device_type == XFRAME_II_DEVICE) &&
8080 (config->intr_type == MSI_X))
8081 sp->num_entries = config->rx_ring_num + 1;
8082
c77dd43e
SS
8083 /* Store the values of the MSIX table in the s2io_nic structure */
8084 store_xmsi_data(sp);
b41477f3
AR
8085 /* reset Nic and bring it to known state */
8086 s2io_reset(sp);
8087
1da177e4 8088 /*
99993af6 8089 * Initialize link state flags
541ae68f 8090 * and the card state parameter
1da177e4 8091 */
92b84437 8092 sp->state = 0;
1da177e4 8093
1da177e4 8094 /* Initialize spinlocks */
2fda096d
SR
8095 for (i = 0; i < sp->config.tx_fifo_num; i++)
8096 spin_lock_init(&mac_control->fifos[i].tx_lock);
db874e65 8097
20346722 8098 /*
8099 * SXE-002: Configure link and activity LED to init state
8100 * on driver load.
1da177e4
LT
8101 */
8102 subid = sp->pdev->subsystem_device;
8103 if ((subid & 0xFF) >= 0x07) {
8104 val64 = readq(&bar0->gpio_control);
8105 val64 |= 0x0000800000000000ULL;
8106 writeq(val64, &bar0->gpio_control);
8107 val64 = 0x0411040400000000ULL;
8108 writeq(val64, (void __iomem *) bar0 + 0x2700);
8109 val64 = readq(&bar0->gpio_control);
8110 }
8111
8112 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8113
8114 if (register_netdev(dev)) {
8115 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8116 ret = -ENODEV;
8117 goto register_failed;
8118 }
9dc737a7 8119 s2io_vpd_read(sp);
0c61ed5f 8120 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
b41477f3 8121 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
44c10138 8122 sp->product_name, pdev->revision);
b41477f3
AR
8123 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8124 s2io_driver_version);
e174961c 8125 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
19a60522 8126 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 8127 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8128 mode = s2io_print_pci_mode(sp);
541ae68f 8129 if (mode < 0) {
9dc737a7 8130 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 8131 ret = -EBADSLT;
9dc737a7 8132 unregister_netdev(dev);
541ae68f 8133 goto set_swap_failed;
8134 }
541ae68f 8135 }
9dc737a7
AR
8136 switch(sp->rxd_mode) {
8137 case RXD_MODE_1:
8138 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8139 dev->name);
8140 break;
8141 case RXD_MODE_3B:
8142 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8143 dev->name);
8144 break;
9dc737a7 8145 }
db874e65 8146
f61e0a35
SH
8147 switch (sp->config.napi) {
8148 case 0:
8149 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8150 break;
8151 case 1:
db874e65 8152 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8153 break;
8154 }
3a3d5756
SH
8155
8156 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8157 sp->config.tx_fifo_num);
8158
0425b46a
SH
8159 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8160 sp->config.rx_ring_num);
8161
eaae7f72 8162 switch(sp->config.intr_type) {
9dc737a7
AR
8163 case INTA:
8164 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8165 break;
9dc737a7
AR
8166 case MSI_X:
8167 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8168 break;
8169 }
3a3d5756 8170 if (sp->config.multiq) {
a505f4ff
IJ
8171 for (i = 0; i < sp->config.tx_fifo_num; i++)
8172 mac_control->fifos[i].multiq = config->multiq;
3a3d5756
SH
8173 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8174 dev->name);
8175 } else
8176 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8177 dev->name);
8178
6cfc482b
SH
8179 switch (sp->config.tx_steering_type) {
8180 case NO_STEERING:
8181 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8182 " transmit\n", dev->name);
8183 break;
8184 case TX_PRIORITY_STEERING:
8185 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8186 " transmit\n", dev->name);
8187 break;
8188 case TX_DEFAULT_STEERING:
8189 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8190 " transmit\n", dev->name);
8191 }
8192
7d3d0439
RA
8193 if (sp->lro)
8194 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 8195 dev->name);
db874e65
SS
8196 if (ufo)
8197 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8198 " enabled\n", dev->name);
7ba013ac 8199 /* Initialize device name */
9dc737a7 8200 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8201
cd0fce03
BL
8202 if (vlan_tag_strip)
8203 sp->vlan_strip_flag = 1;
8204 else
8205 sp->vlan_strip_flag = 0;
8206
20346722 8207 /*
8208 * Make Link state as off at this point, when the Link change
8209 * interrupt comes the state will be automatically changed to
1da177e4
LT
8210 * the right state.
8211 */
8212 netif_carrier_off(dev);
1da177e4
LT
8213
8214 return 0;
8215
8216 register_failed:
8217 set_swap_failed:
8218 iounmap(sp->bar1);
8219 bar1_remap_failed:
8220 iounmap(sp->bar0);
8221 bar0_remap_failed:
8222 mem_alloc_failed:
8223 free_shared_mem(sp);
8224 pci_disable_device(pdev);
eccb8628 8225 pci_release_regions(pdev);
1da177e4
LT
8226 pci_set_drvdata(pdev, NULL);
8227 free_netdev(dev);
8228
8229 return ret;
8230}
8231
8232/**
20346722 8233 * s2io_rem_nic - Free the PCI device
1da177e4 8234 * @pdev: structure containing the PCI related information of the device.
20346722 8235 * Description: This function is called by the Pci subsystem to release a
1da177e4 8236 * PCI device and free up all resource held up by the device. This could
20346722 8237 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8238 * from memory.
8239 */
8240
8241static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8242{
8243 struct net_device *dev =
8244 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 8245 struct s2io_nic *sp;
1da177e4
LT
8246
8247 if (dev == NULL) {
8248 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8249 return;
8250 }
8251
22747d6b
FR
8252 flush_scheduled_work();
8253
4cf1653a 8254 sp = netdev_priv(dev);
1da177e4
LT
8255 unregister_netdev(dev);
8256
8257 free_shared_mem(sp);
8258 iounmap(sp->bar0);
8259 iounmap(sp->bar1);
eccb8628 8260 pci_release_regions(pdev);
1da177e4 8261 pci_set_drvdata(pdev, NULL);
1da177e4 8262 free_netdev(dev);
19a60522 8263 pci_disable_device(pdev);
1da177e4
LT
8264}
8265
8266/**
8267 * s2io_starter - Entry point for the driver
8268 * Description: This function is the entry point for the driver. It verifies
8269 * the module loadable parameters and initializes PCI configuration space.
8270 */
8271
43b7c451 8272static int __init s2io_starter(void)
1da177e4 8273{
29917620 8274 return pci_register_driver(&s2io_driver);
1da177e4
LT
8275}
8276
8277/**
20346722 8278 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8279 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8280 */
8281
372cc597 8282static __exit void s2io_closer(void)
1da177e4
LT
8283{
8284 pci_unregister_driver(&s2io_driver);
8285 DBG_PRINT(INIT_DBG, "cleanup done\n");
8286}
8287
8288module_init(s2io_starter);
8289module_exit(s2io_closer);
7d3d0439 8290
6aa20a22 8291static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
cdb5bf02
SH
8292 struct tcphdr **tcp, struct RxD_t *rxdp,
8293 struct s2io_nic *sp)
7d3d0439
RA
8294{
8295 int ip_off;
8296 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8297
8298 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8299 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
b39d66a8 8300 __func__);
7d3d0439
RA
8301 return -1;
8302 }
8303
cdb5bf02
SH
8304 /* Checking for DIX type or DIX type with VLAN */
8305 if ((l2_type == 0)
8306 || (l2_type == 4)) {
8307 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8308 /*
8309 * If vlan stripping is disabled and the frame is VLAN tagged,
8310 * shift the offset by the VLAN header size bytes.
8311 */
cd0fce03 8312 if ((!sp->vlan_strip_flag) &&
cdb5bf02
SH
8313 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8314 ip_off += HEADER_VLAN_SIZE;
8315 } else {
7d3d0439 8316 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8317 return -1;
7d3d0439
RA
8318 }
8319
8320 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8321 ip_len = (u8)((*ip)->ihl);
8322 ip_len <<= 2;
8323 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8324
8325 return 0;
8326}
8327
1ee6dd77 8328static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8329 struct tcphdr *tcp)
8330{
b39d66a8 8331 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
7d3d0439
RA
8332 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8333 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8334 return -1;
8335 return 0;
8336}
8337
8338static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8339{
8340 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8341}
8342
1ee6dd77 8343static void initiate_new_session(struct lro *lro, u8 *l2h,
cdb5bf02 8344 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439 8345{
b39d66a8 8346 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
7d3d0439
RA
8347 lro->l2h = l2h;
8348 lro->iph = ip;
8349 lro->tcph = tcp;
8350 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8351 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8352 lro->sg_num = 1;
8353 lro->total_len = ntohs(ip->tot_len);
8354 lro->frags_len = 0;
cdb5bf02 8355 lro->vlan_tag = vlan_tag;
6aa20a22 8356 /*
7d3d0439
RA
8357 * check if we saw TCP timestamp. Other consistency checks have
8358 * already been done.
8359 */
8360 if (tcp->doff == 8) {
c8855953
SR
8361 __be32 *ptr;
8362 ptr = (__be32 *)(tcp+1);
7d3d0439 8363 lro->saw_ts = 1;
c8855953 8364 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8365 lro->cur_tsecr = *(ptr+2);
8366 }
8367 lro->in_use = 1;
8368}
8369
1ee6dd77 8370static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8371{
8372 struct iphdr *ip = lro->iph;
8373 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8374 __sum16 nchk;
1ee6dd77 8375 struct stat_block *statinfo = sp->mac_control.stats_info;
b39d66a8 8376 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
7d3d0439
RA
8377
8378 /* Update L3 header */
8379 ip->tot_len = htons(lro->total_len);
8380 ip->check = 0;
8381 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8382 ip->check = nchk;
8383
8384 /* Update L4 header */
8385 tcp->ack_seq = lro->tcp_ack;
8386 tcp->window = lro->window;
8387
8388 /* Update tsecr field if this session has timestamps enabled */
8389 if (lro->saw_ts) {
c8855953 8390 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8391 *(ptr+2) = lro->cur_tsecr;
8392 }
8393
8394 /* Update counters required for calculation of
8395 * average no. of packets aggregated.
8396 */
8397 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8398 statinfo->sw_stat.num_aggregations++;
8399}
8400
1ee6dd77 8401static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8402 struct tcphdr *tcp, u32 l4_pyld)
8403{
b39d66a8 8404 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
7d3d0439
RA
8405 lro->total_len += l4_pyld;
8406 lro->frags_len += l4_pyld;
8407 lro->tcp_next_seq += l4_pyld;
8408 lro->sg_num++;
8409
8410 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8411 lro->tcp_ack = tcp->ack_seq;
8412 lro->window = tcp->window;
6aa20a22 8413
7d3d0439 8414 if (lro->saw_ts) {
c8855953 8415 __be32 *ptr;
7d3d0439 8416 /* Update tsecr and tsval from this packet */
c8855953
SR
8417 ptr = (__be32 *)(tcp+1);
8418 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8419 lro->cur_tsecr = *(ptr + 2);
8420 }
8421}
8422
1ee6dd77 8423static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8424 struct tcphdr *tcp, u32 tcp_pyld_len)
8425{
7d3d0439
RA
8426 u8 *ptr;
8427
b39d66a8 8428 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
79dc1901 8429
7d3d0439
RA
8430 if (!tcp_pyld_len) {
8431 /* Runt frame or a pure ack */
8432 return -1;
8433 }
8434
8435 if (ip->ihl != 5) /* IP has options */
8436 return -1;
8437
75c30b13
AR
8438 /* If we see CE codepoint in IP header, packet is not mergeable */
8439 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8440 return -1;
8441
8442 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 8443 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 8444 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8445 /*
8446 * Currently recognize only the ack control word and
8447 * any other control field being set would result in
8448 * flushing the LRO session
8449 */
8450 return -1;
8451 }
8452
6aa20a22 8453 /*
7d3d0439
RA
8454 * Allow only one TCP timestamp option. Don't aggregate if
8455 * any other options are detected.
8456 */
8457 if (tcp->doff != 5 && tcp->doff != 8)
8458 return -1;
8459
8460 if (tcp->doff == 8) {
6aa20a22 8461 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8462 while (*ptr == TCPOPT_NOP)
8463 ptr++;
8464 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8465 return -1;
8466
8467 /* Ensure timestamp value increases monotonically */
8468 if (l_lro)
c8855953 8469 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8470 return -1;
8471
8472 /* timestamp echo reply should be non-zero */
c8855953 8473 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8474 return -1;
8475 }
8476
8477 return 0;
8478}
8479
8480static int
0425b46a
SH
8481s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8482 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8483 struct s2io_nic *sp)
7d3d0439
RA
8484{
8485 struct iphdr *ip;
8486 struct tcphdr *tcph;
8487 int ret = 0, i;
cdb5bf02 8488 u16 vlan_tag = 0;
7d3d0439
RA
8489
8490 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
cdb5bf02 8491 rxdp, sp))) {
7d3d0439
RA
8492 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8493 ip->saddr, ip->daddr);
cdb5bf02 8494 } else
7d3d0439 8495 return ret;
7d3d0439 8496
cdb5bf02 8497 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8498 tcph = (struct tcphdr *)*tcp;
8499 *tcp_len = get_l4_pyld_length(ip, tcph);
8500 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 8501 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8502 if (l_lro->in_use) {
8503 if (check_for_socket_match(l_lro, ip, tcph))
8504 continue;
8505 /* Sock pair matched */
8506 *lro = l_lro;
8507
8508 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8509 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
b39d66a8 8510 "0x%x, actual 0x%x\n", __func__,
7d3d0439
RA
8511 (*lro)->tcp_next_seq,
8512 ntohl(tcph->seq));
8513
8514 sp->mac_control.stats_info->
8515 sw_stat.outof_sequence_pkts++;
8516 ret = 2;
8517 break;
8518 }
8519
8520 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8521 ret = 1; /* Aggregate */
8522 else
8523 ret = 2; /* Flush both */
8524 break;
8525 }
8526 }
8527
8528 if (ret == 0) {
8529 /* Before searching for available LRO objects,
8530 * check if the pkt is L3/L4 aggregatable. If not
8531 * don't create new LRO session. Just send this
8532 * packet up.
8533 */
8534 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8535 return 5;
8536 }
8537
8538 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 8539 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8540 if (!(l_lro->in_use)) {
8541 *lro = l_lro;
8542 ret = 3; /* Begin anew */
8543 break;
8544 }
8545 }
8546 }
8547
8548 if (ret == 0) { /* sessions exceeded */
8549 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
b39d66a8 8550 __func__);
7d3d0439
RA
8551 *lro = NULL;
8552 return ret;
8553 }
8554
8555 switch (ret) {
8556 case 3:
cdb5bf02
SH
8557 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8558 vlan_tag);
7d3d0439
RA
8559 break;
8560 case 2:
8561 update_L3L4_header(sp, *lro);
8562 break;
8563 case 1:
8564 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8565 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8566 update_L3L4_header(sp, *lro);
8567 ret = 4; /* Flush the LRO */
8568 }
8569 break;
8570 default:
8571 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
b39d66a8 8572 __func__);
7d3d0439
RA
8573 break;
8574 }
8575
8576 return ret;
8577}
8578
1ee6dd77 8579static void clear_lro_session(struct lro *lro)
7d3d0439 8580{
1ee6dd77 8581 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8582
8583 memset(lro, 0, lro_struct_size);
8584}
8585
cdb5bf02 8586static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8587{
8588 struct net_device *dev = skb->dev;
4cf1653a 8589 struct s2io_nic *sp = netdev_priv(dev);
7d3d0439
RA
8590
8591 skb->protocol = eth_type_trans(skb, dev);
cdb5bf02 8592 if (sp->vlgrp && vlan_tag
cd0fce03 8593 && (sp->vlan_strip_flag)) {
cdb5bf02
SH
8594 /* Queueing the vlan frame to the upper layer */
8595 if (sp->config.napi)
8596 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8597 else
8598 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8599 } else {
8600 if (sp->config.napi)
8601 netif_receive_skb(skb);
8602 else
8603 netif_rx(skb);
8604 }
7d3d0439
RA
8605}
8606
1ee6dd77
RB
8607static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8608 struct sk_buff *skb,
7d3d0439
RA
8609 u32 tcp_len)
8610{
75c30b13 8611 struct sk_buff *first = lro->parent;
7d3d0439
RA
8612
8613 first->len += tcp_len;
8614 first->data_len = lro->frags_len;
8615 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8616 if (skb_shinfo(first)->frag_list)
8617 lro->last_frag->next = skb;
7d3d0439
RA
8618 else
8619 skb_shinfo(first)->frag_list = skb;
372cc597 8620 first->truesize += skb->truesize;
75c30b13 8621 lro->last_frag = skb;
7d3d0439
RA
8622 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8623 return;
8624}
d796fdb7
LV
8625
8626/**
8627 * s2io_io_error_detected - called when PCI error is detected
8628 * @pdev: Pointer to PCI device
8453d43f 8629 * @state: The current pci connection state
d796fdb7
LV
8630 *
8631 * This function is called after a PCI bus error affecting
8632 * this device has been detected.
8633 */
8634static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8635 pci_channel_state_t state)
8636{
8637 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8638 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8639
8640 netif_device_detach(netdev);
8641
8642 if (netif_running(netdev)) {
8643 /* Bring down the card, while avoiding PCI I/O */
8644 do_s2io_card_down(sp, 0);
d796fdb7
LV
8645 }
8646 pci_disable_device(pdev);
8647
8648 return PCI_ERS_RESULT_NEED_RESET;
8649}
8650
8651/**
8652 * s2io_io_slot_reset - called after the pci bus has been reset.
8653 * @pdev: Pointer to PCI device
8654 *
8655 * Restart the card from scratch, as if from a cold-boot.
8656 * At this point, the card has exprienced a hard reset,
8657 * followed by fixups by BIOS, and has its config space
8658 * set up identically to what it was at cold boot.
8659 */
8660static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8661{
8662 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8663 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8664
8665 if (pci_enable_device(pdev)) {
8666 printk(KERN_ERR "s2io: "
8667 "Cannot re-enable PCI device after reset.\n");
8668 return PCI_ERS_RESULT_DISCONNECT;
8669 }
8670
8671 pci_set_master(pdev);
8672 s2io_reset(sp);
8673
8674 return PCI_ERS_RESULT_RECOVERED;
8675}
8676
8677/**
8678 * s2io_io_resume - called when traffic can start flowing again.
8679 * @pdev: Pointer to PCI device
8680 *
8681 * This callback is called when the error recovery driver tells
8682 * us that its OK to resume normal operation.
8683 */
8684static void s2io_io_resume(struct pci_dev *pdev)
8685{
8686 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8687 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8688
8689 if (netif_running(netdev)) {
8690 if (s2io_card_up(sp)) {
8691 printk(KERN_ERR "s2io: "
8692 "Can't bring device back up after reset.\n");
8693 return;
8694 }
8695
8696 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8697 s2io_card_down(sp);
8698 printk(KERN_ERR "s2io: "
8699 "Can't resetore mac addr after reset.\n");
8700 return;
8701 }
8702 }
8703
8704 netif_device_attach(netdev);
fd2ea0a7 8705 netif_tx_wake_all_queues(netdev);
d796fdb7 8706}
This page took 1.370641 seconds and 5 git commands to generate.