libnvdimm, blk: use ->queuedata for driver private data
[deliverable/linux.git] / drivers / nvdimm / pmem.c
CommitLineData
9e853f23
RZ
1/*
2 * Persistent Memory Driver
3 *
9f53f9fa 4 * Copyright (c) 2014-2015, Intel Corporation.
9e853f23
RZ
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 */
17
18#include <asm/cacheflush.h>
19#include <linux/blkdev.h>
20#include <linux/hdreg.h>
21#include <linux/init.h>
22#include <linux/platform_device.h>
23#include <linux/module.h>
24#include <linux/moduleparam.h>
b95f5f43 25#include <linux/badblocks.h>
9476df7d 26#include <linux/memremap.h>
32ab0a3f 27#include <linux/vmalloc.h>
34c0fd54 28#include <linux/pfn_t.h>
9e853f23 29#include <linux/slab.h>
61031952 30#include <linux/pmem.h>
9f53f9fa 31#include <linux/nd.h>
32ab0a3f 32#include "pfn.h"
9f53f9fa 33#include "nd.h"
9e853f23
RZ
34
35struct pmem_device {
36 struct request_queue *pmem_queue;
37 struct gendisk *pmem_disk;
38
39 /* One contiguous memory region per device */
40 phys_addr_t phys_addr;
32ab0a3f
DW
41 /* when non-zero this device is hosting a 'pfn' instance */
42 phys_addr_t data_offset;
c4544205 43 u64 pfn_flags;
61031952 44 void __pmem *virt_addr;
cfe30b87 45 /* immutable base size of the namespace */
9e853f23 46 size_t size;
cfe30b87
DW
47 /* trim size when namespace capacity has been section aligned */
48 u32 pfn_pad;
b95f5f43 49 struct badblocks bb;
9e853f23
RZ
50};
51
e10624f8
DW
52static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
53{
54 if (bb->count) {
55 sector_t first_bad;
56 int num_bad;
57
58 return !!badblocks_check(bb, sector, len / 512, &first_bad,
59 &num_bad);
60 }
61
62 return false;
63}
64
59e64739
DW
65static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
66 unsigned int len)
67{
68 struct device *dev = disk_to_dev(pmem->pmem_disk);
69 sector_t sector;
70 long cleared;
71
72 sector = (offset - pmem->data_offset) / 512;
73 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
74
75 if (cleared > 0 && cleared / 512) {
76 dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
77 __func__, (unsigned long long) sector,
78 cleared / 512, cleared / 512 > 1 ? "s" : "");
79 badblocks_clear(&pmem->bb, sector, cleared / 512);
80 }
81 invalidate_pmem(pmem->virt_addr + offset, len);
82}
83
e10624f8 84static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
9e853f23
RZ
85 unsigned int len, unsigned int off, int rw,
86 sector_t sector)
87{
b5ebc8ec 88 int rc = 0;
59e64739 89 bool bad_pmem = false;
9e853f23 90 void *mem = kmap_atomic(page);
32ab0a3f 91 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
61031952 92 void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
9e853f23 93
59e64739
DW
94 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
95 bad_pmem = true;
96
9e853f23 97 if (rw == READ) {
59e64739 98 if (unlikely(bad_pmem))
b5ebc8ec
DW
99 rc = -EIO;
100 else {
fc0c2028 101 rc = memcpy_from_pmem(mem + off, pmem_addr, len);
b5ebc8ec
DW
102 flush_dcache_page(page);
103 }
9e853f23 104 } else {
0a370d26
DW
105 /*
106 * Note that we write the data both before and after
107 * clearing poison. The write before clear poison
108 * handles situations where the latest written data is
109 * preserved and the clear poison operation simply marks
110 * the address range as valid without changing the data.
111 * In this case application software can assume that an
112 * interrupted write will either return the new good
113 * data or an error.
114 *
115 * However, if pmem_clear_poison() leaves the data in an
116 * indeterminate state we need to perform the write
117 * after clear poison.
118 */
9e853f23 119 flush_dcache_page(page);
61031952 120 memcpy_to_pmem(pmem_addr, mem + off, len);
59e64739
DW
121 if (unlikely(bad_pmem)) {
122 pmem_clear_poison(pmem, pmem_off, len);
123 memcpy_to_pmem(pmem_addr, mem + off, len);
124 }
9e853f23
RZ
125 }
126
127 kunmap_atomic(mem);
b5ebc8ec 128 return rc;
9e853f23
RZ
129}
130
dece1635 131static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
9e853f23 132{
e10624f8 133 int rc = 0;
f0dc089c
DW
134 bool do_acct;
135 unsigned long start;
9e853f23 136 struct bio_vec bvec;
9e853f23 137 struct bvec_iter iter;
edc870e5
DW
138 struct block_device *bdev = bio->bi_bdev;
139 struct pmem_device *pmem = bdev->bd_disk->private_data;
9e853f23 140
f0dc089c 141 do_acct = nd_iostat_start(bio, &start);
e10624f8
DW
142 bio_for_each_segment(bvec, bio, iter) {
143 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
144 bvec.bv_offset, bio_data_dir(bio),
145 iter.bi_sector);
146 if (rc) {
147 bio->bi_error = rc;
148 break;
149 }
150 }
f0dc089c
DW
151 if (do_acct)
152 nd_iostat_end(bio, start);
61031952
RZ
153
154 if (bio_data_dir(bio))
155 wmb_pmem();
156
4246a0b6 157 bio_endio(bio);
dece1635 158 return BLK_QC_T_NONE;
9e853f23
RZ
159}
160
161static int pmem_rw_page(struct block_device *bdev, sector_t sector,
162 struct page *page, int rw)
163{
164 struct pmem_device *pmem = bdev->bd_disk->private_data;
e10624f8 165 int rc;
9e853f23 166
09cbfeaf 167 rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
ba8fe0f8
RZ
168 if (rw & WRITE)
169 wmb_pmem();
9e853f23 170
e10624f8
DW
171 /*
172 * The ->rw_page interface is subtle and tricky. The core
173 * retries on any error, so we can only invoke page_endio() in
174 * the successful completion case. Otherwise, we'll see crashes
175 * caused by double completion.
176 */
177 if (rc == 0)
178 page_endio(page, rw & WRITE, 0);
179
180 return rc;
9e853f23
RZ
181}
182
183static long pmem_direct_access(struct block_device *bdev, sector_t sector,
34c0fd54 184 void __pmem **kaddr, pfn_t *pfn)
9e853f23
RZ
185{
186 struct pmem_device *pmem = bdev->bd_disk->private_data;
32ab0a3f 187 resource_size_t offset = sector * 512 + pmem->data_offset;
589e75d1 188
e2e05394 189 *kaddr = pmem->virt_addr + offset;
34c0fd54 190 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
9e853f23 191
cfe30b87 192 return pmem->size - pmem->pfn_pad - offset;
9e853f23
RZ
193}
194
195static const struct block_device_operations pmem_fops = {
196 .owner = THIS_MODULE,
197 .rw_page = pmem_rw_page,
198 .direct_access = pmem_direct_access,
58138820 199 .revalidate_disk = nvdimm_revalidate_disk,
9e853f23
RZ
200};
201
9f53f9fa
DW
202static struct pmem_device *pmem_alloc(struct device *dev,
203 struct resource *res, int id)
9e853f23
RZ
204{
205 struct pmem_device *pmem;
468ded03 206 struct request_queue *q;
9e853f23 207
708ab62b 208 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
9e853f23 209 if (!pmem)
8c2f7e86 210 return ERR_PTR(-ENOMEM);
9e853f23
RZ
211
212 pmem->phys_addr = res->start;
213 pmem->size = resource_size(res);
96601adb 214 if (!arch_has_wmb_pmem())
61031952 215 dev_warn(dev, "unable to guarantee persistence of writes\n");
9e853f23 216
708ab62b
CH
217 if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
218 dev_name(dev))) {
9f53f9fa
DW
219 dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
220 &pmem->phys_addr, pmem->size);
8c2f7e86 221 return ERR_PTR(-EBUSY);
9e853f23
RZ
222 }
223
468ded03
DW
224 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
225 if (!q)
226 return ERR_PTR(-ENOMEM);
227
34c0fd54
DW
228 pmem->pfn_flags = PFN_DEV;
229 if (pmem_should_map_pages(dev)) {
4b94ffdc 230 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
5c2c2587 231 &q->q_usage_counter, NULL);
34c0fd54
DW
232 pmem->pfn_flags |= PFN_MAP;
233 } else
a639315d
DW
234 pmem->virt_addr = (void __pmem *) devm_memremap(dev,
235 pmem->phys_addr, pmem->size,
236 ARCH_MEMREMAP_PMEM);
b36f4761 237
468ded03
DW
238 if (IS_ERR(pmem->virt_addr)) {
239 blk_cleanup_queue(q);
b36f4761 240 return (void __force *) pmem->virt_addr;
468ded03 241 }
8c2f7e86 242
468ded03 243 pmem->pmem_queue = q;
8c2f7e86
DW
244 return pmem;
245}
246
247static void pmem_detach_disk(struct pmem_device *pmem)
248{
32ab0a3f
DW
249 if (!pmem->pmem_disk)
250 return;
251
8c2f7e86
DW
252 del_gendisk(pmem->pmem_disk);
253 put_disk(pmem->pmem_disk);
254 blk_cleanup_queue(pmem->pmem_queue);
255}
256
32ab0a3f
DW
257static int pmem_attach_disk(struct device *dev,
258 struct nd_namespace_common *ndns, struct pmem_device *pmem)
8c2f7e86 259{
a3901802 260 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
538ea4aa 261 int nid = dev_to_node(dev);
a3901802 262 struct resource bb_res;
8c2f7e86 263 struct gendisk *disk;
9e853f23 264
9e853f23 265 blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
6b47496a 266 blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
43d3fa3a 267 blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
9e853f23 268 blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
0f51c4fa 269 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
9e853f23 270
538ea4aa 271 disk = alloc_disk_node(0, nid);
8c2f7e86
DW
272 if (!disk) {
273 blk_cleanup_queue(pmem->pmem_queue);
274 return -ENOMEM;
275 }
9e853f23 276
9e853f23
RZ
277 disk->fops = &pmem_fops;
278 disk->private_data = pmem;
279 disk->queue = pmem->pmem_queue;
280 disk->flags = GENHD_FL_EXT_DEVT;
5212e11f 281 nvdimm_namespace_disk_name(ndns, disk->disk_name);
32ab0a3f 282 disk->driverfs_dev = dev;
cfe30b87
DW
283 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
284 / 512);
9e853f23 285 pmem->pmem_disk = disk;
710d69cc 286 devm_exit_badblocks(dev, &pmem->bb);
b95f5f43
DW
287 if (devm_init_badblocks(dev, &pmem->bb))
288 return -ENOMEM;
a3901802
DW
289 bb_res.start = nsio->res.start + pmem->data_offset;
290 bb_res.end = nsio->res.end;
291 if (is_nd_pfn(dev)) {
292 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
293 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
294
295 bb_res.start += __le32_to_cpu(pfn_sb->start_pad);
296 bb_res.end -= __le32_to_cpu(pfn_sb->end_trunc);
297 }
298 nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb,
299 &bb_res);
57f7f317 300 disk->bb = &pmem->bb;
9e853f23 301 add_disk(disk);
58138820 302 revalidate_disk(disk);
9e853f23 303
8c2f7e86
DW
304 return 0;
305}
9e853f23 306
8c2f7e86
DW
307static int pmem_rw_bytes(struct nd_namespace_common *ndns,
308 resource_size_t offset, void *buf, size_t size, int rw)
309{
310 struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
311
312 if (unlikely(offset + size > pmem->size)) {
313 dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
314 return -EFAULT;
315 }
316
710d69cc
DW
317 if (rw == READ) {
318 unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
319
320 if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
321 return -EIO;
fc0c2028 322 return memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
710d69cc 323 } else {
61031952
RZ
324 memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
325 wmb_pmem();
326 }
8c2f7e86
DW
327
328 return 0;
329}
330
32ab0a3f
DW
331static int nd_pfn_init(struct nd_pfn *nd_pfn)
332{
32ab0a3f
DW
333 struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
334 struct nd_namespace_common *ndns = nd_pfn->ndns;
cfe30b87
DW
335 u32 start_pad = 0, end_trunc = 0;
336 resource_size_t start, size;
337 struct nd_namespace_io *nsio;
32ab0a3f 338 struct nd_region *nd_region;
bd032943 339 struct nd_pfn_sb *pfn_sb;
32ab0a3f
DW
340 unsigned long npfns;
341 phys_addr_t offset;
342 u64 checksum;
343 int rc;
344
bd032943 345 pfn_sb = devm_kzalloc(&nd_pfn->dev, sizeof(*pfn_sb), GFP_KERNEL);
32ab0a3f
DW
346 if (!pfn_sb)
347 return -ENOMEM;
348
349 nd_pfn->pfn_sb = pfn_sb;
350 rc = nd_pfn_validate(nd_pfn);
3fa96268
DW
351 if (rc == -ENODEV)
352 /* no info block, do init */;
353 else
32ab0a3f
DW
354 return rc;
355
32ab0a3f
DW
356 nd_region = to_nd_region(nd_pfn->dev.parent);
357 if (nd_region->ro) {
358 dev_info(&nd_pfn->dev,
359 "%s is read-only, unable to init metadata\n",
360 dev_name(&nd_region->dev));
bd032943 361 return -ENXIO;
32ab0a3f
DW
362 }
363
364 memset(pfn_sb, 0, sizeof(*pfn_sb));
cfe30b87
DW
365
366 /*
367 * Check if pmem collides with 'System RAM' when section aligned and
368 * trim it accordingly
369 */
370 nsio = to_nd_namespace_io(&ndns->dev);
371 start = PHYS_SECTION_ALIGN_DOWN(nsio->res.start);
372 size = resource_size(&nsio->res);
373 if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
374 IORES_DESC_NONE) == REGION_MIXED) {
375
376 start = nsio->res.start;
377 start_pad = PHYS_SECTION_ALIGN_UP(start) - start;
378 }
379
380 start = nsio->res.start;
381 size = PHYS_SECTION_ALIGN_UP(start + size) - start;
382 if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
383 IORES_DESC_NONE) == REGION_MIXED) {
384 size = resource_size(&nsio->res);
385 end_trunc = start + size - PHYS_SECTION_ALIGN_DOWN(start + size);
386 }
387
388 if (start_pad + end_trunc)
389 dev_info(&nd_pfn->dev, "%s section collision, truncate %d bytes\n",
390 dev_name(&ndns->dev), start_pad + end_trunc);
391
32ab0a3f
DW
392 /*
393 * Note, we use 64 here for the standard size of struct page,
394 * debugging options may cause it to be larger in which case the
395 * implementation will limit the pfns advertised through
396 * ->direct_access() to those that are included in the memmap.
397 */
cfe30b87
DW
398 start += start_pad;
399 npfns = (pmem->size - start_pad - end_trunc - SZ_8K) / SZ_4K;
32ab0a3f 400 if (nd_pfn->mode == PFN_MODE_PMEM)
cfe30b87
DW
401 offset = ALIGN(start + SZ_8K + 64 * npfns, nd_pfn->align)
402 - start;
32ab0a3f 403 else if (nd_pfn->mode == PFN_MODE_RAM)
cfe30b87 404 offset = ALIGN(start + SZ_8K, nd_pfn->align) - start;
32ab0a3f 405 else
bd032943 406 return -ENXIO;
32ab0a3f 407
cfe30b87
DW
408 if (offset + start_pad + end_trunc >= pmem->size) {
409 dev_err(&nd_pfn->dev, "%s unable to satisfy requested alignment\n",
410 dev_name(&ndns->dev));
bd032943 411 return -ENXIO;
cfe30b87
DW
412 }
413
414 npfns = (pmem->size - offset - start_pad - end_trunc) / SZ_4K;
32ab0a3f
DW
415 pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
416 pfn_sb->dataoff = cpu_to_le64(offset);
417 pfn_sb->npfns = cpu_to_le64(npfns);
418 memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
419 memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
a34d5e8a 420 memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
32ab0a3f 421 pfn_sb->version_major = cpu_to_le16(1);
cfe30b87
DW
422 pfn_sb->version_minor = cpu_to_le16(1);
423 pfn_sb->start_pad = cpu_to_le32(start_pad);
424 pfn_sb->end_trunc = cpu_to_le32(end_trunc);
32ab0a3f
DW
425 checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
426 pfn_sb->checksum = cpu_to_le64(checksum);
427
bd032943 428 return nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
32ab0a3f
DW
429}
430
bd032943 431static void nvdimm_namespace_detach_pfn(struct nd_pfn *nd_pfn)
32ab0a3f 432{
32ab0a3f
DW
433 struct pmem_device *pmem;
434
435 /* free pmem disk */
436 pmem = dev_get_drvdata(&nd_pfn->dev);
437 pmem_detach_disk(pmem);
32ab0a3f
DW
438}
439
d9cbe09d
DW
440/*
441 * We hotplug memory at section granularity, pad the reserved area from
442 * the previous section base to the namespace base address.
443 */
444static unsigned long init_altmap_base(resource_size_t base)
445{
45f68802 446 unsigned long base_pfn = PHYS_PFN(base);
d9cbe09d
DW
447
448 return PFN_SECTION_ALIGN_DOWN(base_pfn);
449}
450
451static unsigned long init_altmap_reserve(resource_size_t base)
452{
45f68802
DW
453 unsigned long reserve = PHYS_PFN(SZ_8K);
454 unsigned long base_pfn = PHYS_PFN(base);
d9cbe09d
DW
455
456 reserve += base_pfn - PFN_SECTION_ALIGN_DOWN(base_pfn);
457 return reserve;
458}
459
cfe30b87 460static int __nvdimm_namespace_attach_pfn(struct nd_pfn *nd_pfn)
9e853f23 461{
32ab0a3f 462 int rc;
cfe30b87
DW
463 struct resource res;
464 struct request_queue *q;
465 struct pmem_device *pmem;
466 struct vmem_altmap *altmap;
467 struct device *dev = &nd_pfn->dev;
468 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
469 struct nd_namespace_common *ndns = nd_pfn->ndns;
470 u32 start_pad = __le32_to_cpu(pfn_sb->start_pad);
471 u32 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
472 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
473 resource_size_t base = nsio->res.start + start_pad;
d2c0f041 474 struct vmem_altmap __altmap = {
cfe30b87
DW
475 .base_pfn = init_altmap_base(base),
476 .reserve = init_altmap_reserve(base),
d2c0f041 477 };
32ab0a3f 478
cfe30b87
DW
479 pmem = dev_get_drvdata(dev);
480 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
481 pmem->pfn_pad = start_pad + end_trunc;
32ab0a3f
DW
482 nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
483 if (nd_pfn->mode == PFN_MODE_RAM) {
cfe30b87 484 if (pmem->data_offset < SZ_8K)
32ab0a3f
DW
485 return -EINVAL;
486 nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
487 altmap = NULL;
d2c0f041 488 } else if (nd_pfn->mode == PFN_MODE_PMEM) {
cfe30b87 489 nd_pfn->npfns = (pmem->size - pmem->pfn_pad - pmem->data_offset)
d2c0f041
DW
490 / PAGE_SIZE;
491 if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
492 dev_info(&nd_pfn->dev,
493 "number of pfns truncated from %lld to %ld\n",
494 le64_to_cpu(nd_pfn->pfn_sb->npfns),
495 nd_pfn->npfns);
496 altmap = & __altmap;
45f68802 497 altmap->free = PHYS_PFN(pmem->data_offset - SZ_8K);
d2c0f041 498 altmap->alloc = 0;
32ab0a3f
DW
499 } else {
500 rc = -ENXIO;
501 goto err;
502 }
503
504 /* establish pfn range for lookup, and switch to direct map */
5c2c2587 505 q = pmem->pmem_queue;
cfe30b87
DW
506 memcpy(&res, &nsio->res, sizeof(res));
507 res.start += start_pad;
508 res.end -= end_trunc;
a639315d 509 devm_memunmap(dev, (void __force *) pmem->virt_addr);
cfe30b87 510 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &res,
5c2c2587 511 &q->q_usage_counter, altmap);
34c0fd54 512 pmem->pfn_flags |= PFN_MAP;
32ab0a3f
DW
513 if (IS_ERR(pmem->virt_addr)) {
514 rc = PTR_ERR(pmem->virt_addr);
515 goto err;
516 }
517
518 /* attach pmem disk in "pfn-mode" */
32ab0a3f
DW
519 rc = pmem_attach_disk(dev, ndns, pmem);
520 if (rc)
521 goto err;
522
523 return rc;
524 err:
298f2bc5 525 nvdimm_namespace_detach_pfn(nd_pfn);
32ab0a3f 526 return rc;
cfe30b87
DW
527
528}
529
530static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
531{
532 struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
533 int rc;
534
535 if (!nd_pfn->uuid || !nd_pfn->ndns)
536 return -ENODEV;
537
538 rc = nd_pfn_init(nd_pfn);
539 if (rc)
540 return rc;
541 /* we need a valid pfn_sb before we can init a vmem_altmap */
542 return __nvdimm_namespace_attach_pfn(nd_pfn);
9e853f23
RZ
543}
544
9f53f9fa 545static int nd_pmem_probe(struct device *dev)
9e853f23 546{
9f53f9fa 547 struct nd_region *nd_region = to_nd_region(dev->parent);
8c2f7e86
DW
548 struct nd_namespace_common *ndns;
549 struct nd_namespace_io *nsio;
9e853f23 550 struct pmem_device *pmem;
9e853f23 551
8c2f7e86
DW
552 ndns = nvdimm_namespace_common_probe(dev);
553 if (IS_ERR(ndns))
554 return PTR_ERR(ndns);
bf9bccc1 555
8c2f7e86 556 nsio = to_nd_namespace_io(&ndns->dev);
9f53f9fa 557 pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
9e853f23
RZ
558 if (IS_ERR(pmem))
559 return PTR_ERR(pmem);
560
9f53f9fa 561 dev_set_drvdata(dev, pmem);
8c2f7e86 562 ndns->rw_bytes = pmem_rw_bytes;
710d69cc
DW
563 if (devm_init_badblocks(dev, &pmem->bb))
564 return -ENOMEM;
a3901802 565 nvdimm_badblocks_populate(nd_region, &pmem->bb, &nsio->res);
708ab62b 566
468ded03
DW
567 if (is_nd_btt(dev)) {
568 /* btt allocates its own request_queue */
569 blk_cleanup_queue(pmem->pmem_queue);
570 pmem->pmem_queue = NULL;
708ab62b 571 return nvdimm_namespace_attach_btt(ndns);
468ded03 572 }
708ab62b 573
32ab0a3f
DW
574 if (is_nd_pfn(dev))
575 return nvdimm_namespace_attach_pfn(ndns);
576
e32bc729 577 if (nd_btt_probe(dev, ndns, pmem) == 0
bd032943 578 || nd_pfn_probe(dev, ndns, pmem) == 0) {
468ded03
DW
579 /*
580 * We'll come back as either btt-pmem, or pfn-pmem, so
581 * drop the queue allocation for now.
582 */
583 blk_cleanup_queue(pmem->pmem_queue);
32ab0a3f
DW
584 return -ENXIO;
585 }
586
587 return pmem_attach_disk(dev, ndns, pmem);
9e853f23
RZ
588}
589
9f53f9fa 590static int nd_pmem_remove(struct device *dev)
9e853f23 591{
9f53f9fa 592 struct pmem_device *pmem = dev_get_drvdata(dev);
9e853f23 593
8c2f7e86 594 if (is_nd_btt(dev))
298f2bc5 595 nvdimm_namespace_detach_btt(to_nd_btt(dev));
32ab0a3f 596 else if (is_nd_pfn(dev))
298f2bc5 597 nvdimm_namespace_detach_pfn(to_nd_pfn(dev));
8c2f7e86
DW
598 else
599 pmem_detach_disk(pmem);
8c2f7e86 600
9e853f23
RZ
601 return 0;
602}
603
71999466
DW
604static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
605{
a3901802 606 struct nd_region *nd_region = to_nd_region(dev->parent);
298f2bc5
DW
607 struct pmem_device *pmem = dev_get_drvdata(dev);
608 resource_size_t offset = 0, end_trunc = 0;
609 struct nd_namespace_common *ndns;
610 struct nd_namespace_io *nsio;
611 struct resource res;
71999466
DW
612
613 if (event != NVDIMM_REVALIDATE_POISON)
614 return;
615
298f2bc5
DW
616 if (is_nd_btt(dev)) {
617 struct nd_btt *nd_btt = to_nd_btt(dev);
618
619 ndns = nd_btt->ndns;
620 } else if (is_nd_pfn(dev)) {
a3901802
DW
621 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
622 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
623
298f2bc5
DW
624 ndns = nd_pfn->ndns;
625 offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
626 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
627 } else
628 ndns = to_ndns(dev);
a3901802 629
298f2bc5
DW
630 nsio = to_nd_namespace_io(&ndns->dev);
631 res.start = nsio->res.start + offset;
632 res.end = nsio->res.end - end_trunc;
a3901802 633 nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
71999466
DW
634}
635
9f53f9fa
DW
636MODULE_ALIAS("pmem");
637MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
bf9bccc1 638MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
9f53f9fa
DW
639static struct nd_device_driver nd_pmem_driver = {
640 .probe = nd_pmem_probe,
641 .remove = nd_pmem_remove,
71999466 642 .notify = nd_pmem_notify,
9f53f9fa
DW
643 .drv = {
644 .name = "nd_pmem",
9e853f23 645 },
bf9bccc1 646 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
9e853f23
RZ
647};
648
649static int __init pmem_init(void)
650{
55155291 651 return nd_driver_register(&nd_pmem_driver);
9e853f23
RZ
652}
653module_init(pmem_init);
654
655static void pmem_exit(void)
656{
9f53f9fa 657 driver_unregister(&nd_pmem_driver.drv);
9e853f23
RZ
658}
659module_exit(pmem_exit);
660
661MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
662MODULE_LICENSE("GPL v2");
This page took 0.093656 seconds and 5 git commands to generate.