Linux 4.8-rc6
[deliverable/linux.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
b5ab5e24 38#include <linux/idr.h>
400e64df 39#include <linux/elf.h>
a2b950ac 40#include <linux/crc32.h>
400e64df
OBC
41#include <linux/virtio_ids.h>
42#include <linux/virtio_ring.h>
cf59d3e9 43#include <asm/byteorder.h>
400e64df
OBC
44
45#include "remoteproc_internal.h"
46
fec47d86
DG
47static DEFINE_MUTEX(rproc_list_mutex);
48static LIST_HEAD(rproc_list);
49
400e64df 50typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec 51 struct resource_table *table, int len);
a2b950ac
OBC
52typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 void *, int offset, int avail);
400e64df 54
b5ab5e24
OBC
55/* Unique indices for remoteproc devices */
56static DEFINE_IDA(rproc_dev_index);
57
8afd519c
FGL
58static const char * const rproc_crash_names[] = {
59 [RPROC_MMUFAULT] = "mmufault",
b3d39032
BA
60 [RPROC_WATCHDOG] = "watchdog",
61 [RPROC_FATAL_ERROR] = "fatal error",
8afd519c
FGL
62};
63
64/* translate rproc_crash_type to string */
65static const char *rproc_crash_to_string(enum rproc_crash_type type)
66{
67 if (type < ARRAY_SIZE(rproc_crash_names))
68 return rproc_crash_names[type];
b23f7a09 69 return "unknown";
8afd519c
FGL
70}
71
400e64df
OBC
72/*
73 * This is the IOMMU fault handler we register with the IOMMU API
74 * (when relevant; not all remote processors access memory through
75 * an IOMMU).
76 *
77 * IOMMU core will invoke this handler whenever the remote processor
78 * will try to access an unmapped device address.
400e64df
OBC
79 */
80static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
77ca2332 81 unsigned long iova, int flags, void *token)
400e64df 82{
8afd519c
FGL
83 struct rproc *rproc = token;
84
400e64df
OBC
85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
86
8afd519c
FGL
87 rproc_report_crash(rproc, RPROC_MMUFAULT);
88
400e64df
OBC
89 /*
90 * Let the iommu core know we're not really handling this fault;
8afd519c 91 * we just used it as a recovery trigger.
400e64df
OBC
92 */
93 return -ENOSYS;
94}
95
96static int rproc_enable_iommu(struct rproc *rproc)
97{
98 struct iommu_domain *domain;
b5ab5e24 99 struct device *dev = rproc->dev.parent;
400e64df
OBC
100 int ret;
101
315491e5
SA
102 if (!rproc->has_iommu) {
103 dev_dbg(dev, "iommu not present\n");
0798e1da 104 return 0;
400e64df
OBC
105 }
106
107 domain = iommu_domain_alloc(dev->bus);
108 if (!domain) {
109 dev_err(dev, "can't alloc iommu domain\n");
110 return -ENOMEM;
111 }
112
77ca2332 113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
114
115 ret = iommu_attach_device(domain, dev);
116 if (ret) {
117 dev_err(dev, "can't attach iommu device: %d\n", ret);
118 goto free_domain;
119 }
120
121 rproc->domain = domain;
122
123 return 0;
124
125free_domain:
126 iommu_domain_free(domain);
127 return ret;
128}
129
130static void rproc_disable_iommu(struct rproc *rproc)
131{
132 struct iommu_domain *domain = rproc->domain;
b5ab5e24 133 struct device *dev = rproc->dev.parent;
400e64df
OBC
134
135 if (!domain)
136 return;
137
138 iommu_detach_device(domain, dev);
139 iommu_domain_free(domain);
400e64df
OBC
140}
141
a01f7cd6
SA
142/**
143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
144 * @rproc: handle of a remote processor
145 * @da: remoteproc device address to translate
146 * @len: length of the memory region @da is pointing to
147 *
400e64df
OBC
148 * Some remote processors will ask us to allocate them physically contiguous
149 * memory regions (which we call "carveouts"), and map them to specific
a01f7cd6
SA
150 * device addresses (which are hardcoded in the firmware). They may also have
151 * dedicated memory regions internal to the processors, and use them either
152 * exclusively or alongside carveouts.
400e64df
OBC
153 *
154 * They may then ask us to copy objects into specific device addresses (e.g.
155 * code/data sections) or expose us certain symbols in other device address
156 * (e.g. their trace buffer).
157 *
a01f7cd6
SA
158 * This function is a helper function with which we can go over the allocated
159 * carveouts and translate specific device addresses to kernel virtual addresses
160 * so we can access the referenced memory. This function also allows to perform
161 * translations on the internal remoteproc memory regions through a platform
162 * implementation specific da_to_va ops, if present.
163 *
164 * The function returns a valid kernel address on success or NULL on failure.
400e64df
OBC
165 *
166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
167 * but only on kernel direct mapped RAM memory. Instead, we're just using
a01f7cd6
SA
168 * here the output of the DMA API for the carveouts, which should be more
169 * correct.
400e64df 170 */
72854fb0 171void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
400e64df
OBC
172{
173 struct rproc_mem_entry *carveout;
174 void *ptr = NULL;
175
a01f7cd6
SA
176 if (rproc->ops->da_to_va) {
177 ptr = rproc->ops->da_to_va(rproc, da, len);
178 if (ptr)
179 goto out;
180 }
181
400e64df
OBC
182 list_for_each_entry(carveout, &rproc->carveouts, node) {
183 int offset = da - carveout->da;
184
185 /* try next carveout if da is too small */
186 if (offset < 0)
187 continue;
188
189 /* try next carveout if da is too large */
190 if (offset + len > carveout->len)
191 continue;
192
193 ptr = carveout->va + offset;
194
195 break;
196 }
197
a01f7cd6 198out:
400e64df
OBC
199 return ptr;
200}
4afc89d6 201EXPORT_SYMBOL(rproc_da_to_va);
400e64df 202
6db20ea8 203int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 204{
7a186941 205 struct rproc *rproc = rvdev->rproc;
b5ab5e24 206 struct device *dev = &rproc->dev;
6db20ea8 207 struct rproc_vring *rvring = &rvdev->vring[i];
c0d63157 208 struct fw_rsc_vdev *rsc;
7a186941
OBC
209 dma_addr_t dma;
210 void *va;
211 int ret, size, notifyid;
400e64df 212
7a186941 213 /* actual size of vring (in bytes) */
6db20ea8 214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 215
7a186941
OBC
216 /*
217 * Allocate non-cacheable memory for the vring. In the future
218 * this call will also configure the IOMMU for us
219 */
b5ab5e24 220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
7a186941 221 if (!va) {
b5ab5e24 222 dev_err(dev->parent, "dma_alloc_coherent failed\n");
400e64df
OBC
223 return -EINVAL;
224 }
225
6db20ea8
OBC
226 /*
227 * Assign an rproc-wide unique index for this vring
228 * TODO: assign a notifyid for rvdev updates as well
6db20ea8
OBC
229 * TODO: support predefined notifyids (via resource table)
230 */
15fc6110 231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
b39599b7 232 if (ret < 0) {
15fc6110 233 dev_err(dev, "idr_alloc failed: %d\n", ret);
b5ab5e24 234 dma_free_coherent(dev->parent, size, va, dma);
7a186941
OBC
235 return ret;
236 }
15fc6110 237 notifyid = ret;
400e64df 238
d09f53a7
EG
239 dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
240 (unsigned long long)dma, size, notifyid);
7a186941 241
6db20ea8
OBC
242 rvring->va = va;
243 rvring->dma = dma;
244 rvring->notifyid = notifyid;
400e64df 245
c0d63157
SB
246 /*
247 * Let the rproc know the notifyid and da of this vring.
248 * Not all platforms use dma_alloc_coherent to automatically
249 * set up the iommu. In this case the device address (da) will
250 * hold the physical address and not the device address.
251 */
252 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
253 rsc->vring[i].da = dma;
254 rsc->vring[i].notifyid = notifyid;
400e64df
OBC
255 return 0;
256}
257
6db20ea8
OBC
258static int
259rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
260{
261 struct rproc *rproc = rvdev->rproc;
b5ab5e24 262 struct device *dev = &rproc->dev;
6db20ea8
OBC
263 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
264 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 265
6db20ea8
OBC
266 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
267 i, vring->da, vring->num, vring->align);
7a186941 268
6db20ea8
OBC
269 /* make sure reserved bytes are zeroes */
270 if (vring->reserved) {
271 dev_err(dev, "vring rsc has non zero reserved bytes\n");
272 return -EINVAL;
273 }
7a186941 274
6db20ea8
OBC
275 /* verify queue size and vring alignment are sane */
276 if (!vring->num || !vring->align) {
277 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
278 vring->num, vring->align);
279 return -EINVAL;
7a186941 280 }
6db20ea8
OBC
281
282 rvring->len = vring->num;
283 rvring->align = vring->align;
284 rvring->rvdev = rvdev;
285
286 return 0;
287}
288
289void rproc_free_vring(struct rproc_vring *rvring)
290{
291 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
292 struct rproc *rproc = rvring->rvdev->rproc;
c0d63157
SB
293 int idx = rvring->rvdev->vring - rvring;
294 struct fw_rsc_vdev *rsc;
6db20ea8 295
b5ab5e24 296 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
6db20ea8 297 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33 298
c0d63157
SB
299 /* reset resource entry info */
300 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
301 rsc->vring[idx].da = 0;
302 rsc->vring[idx].notifyid = -1;
7a186941
OBC
303}
304
400e64df 305/**
fd2c15ec 306 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
307 * @rproc: the remote processor
308 * @rsc: the vring resource descriptor
fd2c15ec 309 * @avail: size of available data (for sanity checking the image)
400e64df 310 *
7a186941
OBC
311 * This resource entry requests the host to statically register a virtio
312 * device (vdev), and setup everything needed to support it. It contains
313 * everything needed to make it possible: the virtio device id, virtio
314 * device features, vrings information, virtio config space, etc...
315 *
316 * Before registering the vdev, the vrings are allocated from non-cacheable
317 * physically contiguous memory. Currently we only support two vrings per
318 * remote processor (temporary limitation). We might also want to consider
319 * doing the vring allocation only later when ->find_vqs() is invoked, and
320 * then release them upon ->del_vqs().
321 *
322 * Note: @da is currently not really handled correctly: we dynamically
323 * allocate it using the DMA API, ignoring requested hard coded addresses,
324 * and we don't take care of any required IOMMU programming. This is all
325 * going to be taken care of when the generic iommu-based DMA API will be
326 * merged. Meanwhile, statically-addressed iommu-based firmware images should
327 * use RSC_DEVMEM resource entries to map their required @da to the physical
328 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
329 *
330 * Returns 0 on success, or an appropriate error code otherwise
331 */
fd2c15ec 332static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
a2b950ac 333 int offset, int avail)
400e64df 334{
b5ab5e24 335 struct device *dev = &rproc->dev;
7a186941
OBC
336 struct rproc_vdev *rvdev;
337 int i, ret;
400e64df 338
fd2c15ec
OBC
339 /* make sure resource isn't truncated */
340 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
341 + rsc->config_len > avail) {
b5ab5e24 342 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
343 return -EINVAL;
344 }
345
fd2c15ec
OBC
346 /* make sure reserved bytes are zeroes */
347 if (rsc->reserved[0] || rsc->reserved[1]) {
348 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
349 return -EINVAL;
350 }
351
fd2c15ec
OBC
352 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
353 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
354
7a186941
OBC
355 /* we currently support only two vrings per rvdev */
356 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 357 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
358 return -EINVAL;
359 }
360
7a186941
OBC
361 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
362 if (!rvdev)
363 return -ENOMEM;
400e64df 364
7a186941 365 rvdev->rproc = rproc;
400e64df 366
6db20ea8 367 /* parse the vrings */
7a186941 368 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 369 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 370 if (ret)
6db20ea8 371 goto free_rvdev;
7a186941 372 }
400e64df 373
a2b950ac
OBC
374 /* remember the resource offset*/
375 rvdev->rsc_offset = offset;
fd2c15ec 376
7a186941 377 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 378
7a186941
OBC
379 /* it is now safe to add the virtio device */
380 ret = rproc_add_virtio_dev(rvdev, rsc->id);
381 if (ret)
cde42e07 382 goto remove_rvdev;
400e64df
OBC
383
384 return 0;
7a186941 385
cde42e07
SB
386remove_rvdev:
387 list_del(&rvdev->node);
6db20ea8 388free_rvdev:
7a186941
OBC
389 kfree(rvdev);
390 return ret;
400e64df
OBC
391}
392
393/**
394 * rproc_handle_trace() - handle a shared trace buffer resource
395 * @rproc: the remote processor
396 * @rsc: the trace resource descriptor
fd2c15ec 397 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
398 *
399 * In case the remote processor dumps trace logs into memory,
400 * export it via debugfs.
401 *
402 * Currently, the 'da' member of @rsc should contain the device address
403 * where the remote processor is dumping the traces. Later we could also
404 * support dynamically allocating this address using the generic
405 * DMA API (but currently there isn't a use case for that).
406 *
407 * Returns 0 on success, or an appropriate error code otherwise
408 */
fd2c15ec 409static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
a2b950ac 410 int offset, int avail)
400e64df
OBC
411{
412 struct rproc_mem_entry *trace;
b5ab5e24 413 struct device *dev = &rproc->dev;
400e64df
OBC
414 void *ptr;
415 char name[15];
416
fd2c15ec 417 if (sizeof(*rsc) > avail) {
b5ab5e24 418 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
419 return -EINVAL;
420 }
421
422 /* make sure reserved bytes are zeroes */
423 if (rsc->reserved) {
424 dev_err(dev, "trace rsc has non zero reserved bytes\n");
425 return -EINVAL;
426 }
427
400e64df
OBC
428 /* what's the kernel address of this resource ? */
429 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
430 if (!ptr) {
431 dev_err(dev, "erroneous trace resource entry\n");
432 return -EINVAL;
433 }
434
435 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
172e6ab1 436 if (!trace)
400e64df 437 return -ENOMEM;
400e64df
OBC
438
439 /* set the trace buffer dma properties */
440 trace->len = rsc->len;
441 trace->va = ptr;
442
443 /* make sure snprintf always null terminates, even if truncating */
444 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
445
446 /* create the debugfs entry */
447 trace->priv = rproc_create_trace_file(name, rproc, trace);
448 if (!trace->priv) {
449 trace->va = NULL;
450 kfree(trace);
451 return -EINVAL;
452 }
453
454 list_add_tail(&trace->node, &rproc->traces);
455
456 rproc->num_traces++;
457
fd2c15ec 458 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
400e64df
OBC
459 rsc->da, rsc->len);
460
461 return 0;
462}
463
464/**
465 * rproc_handle_devmem() - handle devmem resource entry
466 * @rproc: remote processor handle
467 * @rsc: the devmem resource entry
fd2c15ec 468 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
469 *
470 * Remote processors commonly need to access certain on-chip peripherals.
471 *
472 * Some of these remote processors access memory via an iommu device,
473 * and might require us to configure their iommu before they can access
474 * the on-chip peripherals they need.
475 *
476 * This resource entry is a request to map such a peripheral device.
477 *
478 * These devmem entries will contain the physical address of the device in
479 * the 'pa' member. If a specific device address is expected, then 'da' will
480 * contain it (currently this is the only use case supported). 'len' will
481 * contain the size of the physical region we need to map.
482 *
483 * Currently we just "trust" those devmem entries to contain valid physical
484 * addresses, but this is going to change: we want the implementations to
485 * tell us ranges of physical addresses the firmware is allowed to request,
486 * and not allow firmwares to request access to physical addresses that
487 * are outside those ranges.
488 */
fd2c15ec 489static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
a2b950ac 490 int offset, int avail)
400e64df
OBC
491{
492 struct rproc_mem_entry *mapping;
b5ab5e24 493 struct device *dev = &rproc->dev;
400e64df
OBC
494 int ret;
495
496 /* no point in handling this resource without a valid iommu domain */
497 if (!rproc->domain)
498 return -EINVAL;
499
fd2c15ec 500 if (sizeof(*rsc) > avail) {
b5ab5e24 501 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
502 return -EINVAL;
503 }
504
505 /* make sure reserved bytes are zeroes */
506 if (rsc->reserved) {
b5ab5e24 507 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
508 return -EINVAL;
509 }
510
400e64df 511 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
172e6ab1 512 if (!mapping)
400e64df 513 return -ENOMEM;
400e64df
OBC
514
515 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
516 if (ret) {
b5ab5e24 517 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
518 goto out;
519 }
520
521 /*
522 * We'll need this info later when we'll want to unmap everything
523 * (e.g. on shutdown).
524 *
525 * We can't trust the remote processor not to change the resource
526 * table, so we must maintain this info independently.
527 */
528 mapping->da = rsc->da;
529 mapping->len = rsc->len;
530 list_add_tail(&mapping->node, &rproc->mappings);
531
b5ab5e24 532 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
400e64df
OBC
533 rsc->pa, rsc->da, rsc->len);
534
535 return 0;
536
537out:
538 kfree(mapping);
539 return ret;
540}
541
542/**
543 * rproc_handle_carveout() - handle phys contig memory allocation requests
544 * @rproc: rproc handle
545 * @rsc: the resource entry
fd2c15ec 546 * @avail: size of available data (for image validation)
400e64df
OBC
547 *
548 * This function will handle firmware requests for allocation of physically
549 * contiguous memory regions.
550 *
551 * These request entries should come first in the firmware's resource table,
552 * as other firmware entries might request placing other data objects inside
553 * these memory regions (e.g. data/code segments, trace resource entries, ...).
554 *
555 * Allocating memory this way helps utilizing the reserved physical memory
556 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
557 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
558 * pressure is important; it may have a substantial impact on performance.
559 */
fd2c15ec 560static int rproc_handle_carveout(struct rproc *rproc,
a2b950ac
OBC
561 struct fw_rsc_carveout *rsc,
562 int offset, int avail)
563
400e64df
OBC
564{
565 struct rproc_mem_entry *carveout, *mapping;
b5ab5e24 566 struct device *dev = &rproc->dev;
400e64df
OBC
567 dma_addr_t dma;
568 void *va;
569 int ret;
570
fd2c15ec 571 if (sizeof(*rsc) > avail) {
b5ab5e24 572 dev_err(dev, "carveout rsc is truncated\n");
fd2c15ec
OBC
573 return -EINVAL;
574 }
575
576 /* make sure reserved bytes are zeroes */
577 if (rsc->reserved) {
578 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
579 return -EINVAL;
580 }
581
582 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
583 rsc->da, rsc->pa, rsc->len, rsc->flags);
584
400e64df 585 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
172e6ab1 586 if (!carveout)
7168d914 587 return -ENOMEM;
400e64df 588
b5ab5e24 589 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
400e64df 590 if (!va) {
b5ab5e24 591 dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
400e64df
OBC
592 ret = -ENOMEM;
593 goto free_carv;
594 }
595
d09f53a7
EG
596 dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
597 (unsigned long long)dma, rsc->len);
400e64df
OBC
598
599 /*
600 * Ok, this is non-standard.
601 *
602 * Sometimes we can't rely on the generic iommu-based DMA API
603 * to dynamically allocate the device address and then set the IOMMU
604 * tables accordingly, because some remote processors might
605 * _require_ us to use hard coded device addresses that their
606 * firmware was compiled with.
607 *
608 * In this case, we must use the IOMMU API directly and map
609 * the memory to the device address as expected by the remote
610 * processor.
611 *
612 * Obviously such remote processor devices should not be configured
613 * to use the iommu-based DMA API: we expect 'dma' to contain the
614 * physical address in this case.
615 */
616 if (rproc->domain) {
7168d914
DC
617 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
618 if (!mapping) {
619 dev_err(dev, "kzalloc mapping failed\n");
620 ret = -ENOMEM;
621 goto dma_free;
622 }
623
400e64df
OBC
624 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
625 rsc->flags);
626 if (ret) {
627 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 628 goto free_mapping;
400e64df
OBC
629 }
630
631 /*
632 * We'll need this info later when we'll want to unmap
633 * everything (e.g. on shutdown).
634 *
635 * We can't trust the remote processor not to change the
636 * resource table, so we must maintain this info independently.
637 */
638 mapping->da = rsc->da;
639 mapping->len = rsc->len;
640 list_add_tail(&mapping->node, &rproc->mappings);
641
d09f53a7
EG
642 dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
643 rsc->da, (unsigned long long)dma);
400e64df
OBC
644 }
645
0e49b72c
OBC
646 /*
647 * Some remote processors might need to know the pa
648 * even though they are behind an IOMMU. E.g., OMAP4's
649 * remote M3 processor needs this so it can control
650 * on-chip hardware accelerators that are not behind
651 * the IOMMU, and therefor must know the pa.
652 *
653 * Generally we don't want to expose physical addresses
654 * if we don't have to (remote processors are generally
655 * _not_ trusted), so we might want to do this only for
656 * remote processor that _must_ have this (e.g. OMAP4's
657 * dual M3 subsystem).
658 *
659 * Non-IOMMU processors might also want to have this info.
660 * In this case, the device address and the physical address
661 * are the same.
662 */
663 rsc->pa = dma;
664
400e64df
OBC
665 carveout->va = va;
666 carveout->len = rsc->len;
667 carveout->dma = dma;
668 carveout->da = rsc->da;
669
670 list_add_tail(&carveout->node, &rproc->carveouts);
671
672 return 0;
673
7168d914
DC
674free_mapping:
675 kfree(mapping);
400e64df 676dma_free:
b5ab5e24 677 dma_free_coherent(dev->parent, rsc->len, va, dma);
400e64df
OBC
678free_carv:
679 kfree(carveout);
400e64df
OBC
680 return ret;
681}
682
ba7290e0 683static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
a2b950ac 684 int offset, int avail)
ba7290e0
SB
685{
686 /* Summarize the number of notification IDs */
687 rproc->max_notifyid += rsc->num_of_vrings;
688
689 return 0;
690}
691
e12bc14b
OBC
692/*
693 * A lookup table for resource handlers. The indices are defined in
694 * enum fw_resource_type.
695 */
232fcdbb 696static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
697 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
698 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
699 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
7a186941 700 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
e12bc14b
OBC
701};
702
232fcdbb
SB
703static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
704 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
705};
706
ba7290e0
SB
707static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
708 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
709};
710
400e64df 711/* handle firmware resource entries before booting the remote processor */
a2b950ac 712static int rproc_handle_resources(struct rproc *rproc, int len,
232fcdbb 713 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 714{
b5ab5e24 715 struct device *dev = &rproc->dev;
e12bc14b 716 rproc_handle_resource_t handler;
fd2c15ec
OBC
717 int ret = 0, i;
718
a2b950ac
OBC
719 for (i = 0; i < rproc->table_ptr->num; i++) {
720 int offset = rproc->table_ptr->offset[i];
721 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
fd2c15ec
OBC
722 int avail = len - offset - sizeof(*hdr);
723 void *rsc = (void *)hdr + sizeof(*hdr);
724
725 /* make sure table isn't truncated */
726 if (avail < 0) {
727 dev_err(dev, "rsc table is truncated\n");
728 return -EINVAL;
729 }
400e64df 730
fd2c15ec 731 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 732
fd2c15ec
OBC
733 if (hdr->type >= RSC_LAST) {
734 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 735 continue;
400e64df
OBC
736 }
737
232fcdbb 738 handler = handlers[hdr->type];
e12bc14b
OBC
739 if (!handler)
740 continue;
741
a2b950ac 742 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
7a186941 743 if (ret)
400e64df 744 break;
fd2c15ec 745 }
400e64df
OBC
746
747 return ret;
748}
749
400e64df
OBC
750/**
751 * rproc_resource_cleanup() - clean up and free all acquired resources
752 * @rproc: rproc handle
753 *
754 * This function will free all resources acquired for @rproc, and it
7a186941 755 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
756 */
757static void rproc_resource_cleanup(struct rproc *rproc)
758{
759 struct rproc_mem_entry *entry, *tmp;
b5ab5e24 760 struct device *dev = &rproc->dev;
400e64df
OBC
761
762 /* clean up debugfs trace entries */
763 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
764 rproc_remove_trace_file(entry->priv);
765 rproc->num_traces--;
766 list_del(&entry->node);
767 kfree(entry);
768 }
769
400e64df
OBC
770 /* clean up iommu mapping entries */
771 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
772 size_t unmapped;
773
774 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
775 if (unmapped != entry->len) {
776 /* nothing much to do besides complaining */
e981f6d4 777 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
400e64df
OBC
778 unmapped);
779 }
780
781 list_del(&entry->node);
782 kfree(entry);
783 }
b6356a01
SA
784
785 /* clean up carveout allocations */
786 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
172e6ab1
SA
787 dma_free_coherent(dev->parent, entry->len, entry->va,
788 entry->dma);
b6356a01
SA
789 list_del(&entry->node);
790 kfree(entry);
791 }
400e64df
OBC
792}
793
400e64df
OBC
794/*
795 * take a firmware and boot a remote processor with it.
796 */
797static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
798{
b5ab5e24 799 struct device *dev = &rproc->dev;
400e64df 800 const char *name = rproc->firmware;
a2b950ac 801 struct resource_table *table, *loaded_table;
1e3e2c7c 802 int ret, tablesz;
400e64df 803
a2b950ac
OBC
804 if (!rproc->table_ptr)
805 return -ENOMEM;
806
400e64df
OBC
807 ret = rproc_fw_sanity_check(rproc, fw);
808 if (ret)
809 return ret;
810
e981f6d4 811 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
812
813 /*
814 * if enabling an IOMMU isn't relevant for this rproc, this is
815 * just a nop
816 */
817 ret = rproc_enable_iommu(rproc);
818 if (ret) {
819 dev_err(dev, "can't enable iommu: %d\n", ret);
820 return ret;
821 }
822
3e5f9eb5 823 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
89970d28 824 ret = -EINVAL;
400e64df 825
1e3e2c7c 826 /* look for the resource table */
bd484984 827 table = rproc_find_rsc_table(rproc, fw, &tablesz);
a66a5114
SA
828 if (!table) {
829 dev_err(dev, "Failed to find resource table\n");
1e3e2c7c 830 goto clean_up;
a66a5114 831 }
1e3e2c7c 832
a2b950ac
OBC
833 /* Verify that resource table in loaded fw is unchanged */
834 if (rproc->table_csum != crc32(0, table, tablesz)) {
835 dev_err(dev, "resource checksum failed, fw changed?\n");
a2b950ac
OBC
836 goto clean_up;
837 }
838
400e64df 839 /* handle fw resources which are required to boot rproc */
a2b950ac 840 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
400e64df
OBC
841 if (ret) {
842 dev_err(dev, "Failed to process resources: %d\n", ret);
843 goto clean_up;
844 }
845
846 /* load the ELF segments to memory */
bd484984 847 ret = rproc_load_segments(rproc, fw);
400e64df
OBC
848 if (ret) {
849 dev_err(dev, "Failed to load program segments: %d\n", ret);
850 goto clean_up;
851 }
852
a2b950ac
OBC
853 /*
854 * The starting device has been given the rproc->cached_table as the
855 * resource table. The address of the vring along with the other
856 * allocated resources (carveouts etc) is stored in cached_table.
857 * In order to pass this information to the remote device we must
858 * copy this information to device memory.
859 */
860 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
e395f9ce
BA
861 if (loaded_table)
862 memcpy(loaded_table, rproc->cached_table, tablesz);
a2b950ac 863
400e64df
OBC
864 /* power up the remote processor */
865 ret = rproc->ops->start(rproc);
866 if (ret) {
867 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
868 goto clean_up;
869 }
870
a2b950ac
OBC
871 /*
872 * Update table_ptr so that all subsequent vring allocations and
873 * virtio fields manipulation update the actual loaded resource table
874 * in device memory.
875 */
876 rproc->table_ptr = loaded_table;
877
400e64df
OBC
878 rproc->state = RPROC_RUNNING;
879
880 dev_info(dev, "remote processor %s is now up\n", rproc->name);
881
882 return 0;
883
884clean_up:
885 rproc_resource_cleanup(rproc);
886 rproc_disable_iommu(rproc);
887 return ret;
888}
889
890/*
891 * take a firmware and look for virtio devices to register.
892 *
893 * Note: this function is called asynchronously upon registration of the
894 * remote processor (so we must wait until it completes before we try
895 * to unregister the device. one other option is just to use kref here,
896 * that might be cleaner).
897 */
898static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
899{
900 struct rproc *rproc = context;
1e3e2c7c
OBC
901 struct resource_table *table;
902 int ret, tablesz;
400e64df
OBC
903
904 if (rproc_fw_sanity_check(rproc, fw) < 0)
905 goto out;
906
1e3e2c7c 907 /* look for the resource table */
bd484984 908 table = rproc_find_rsc_table(rproc, fw, &tablesz);
1e3e2c7c
OBC
909 if (!table)
910 goto out;
911
a2b950ac
OBC
912 rproc->table_csum = crc32(0, table, tablesz);
913
914 /*
915 * Create a copy of the resource table. When a virtio device starts
916 * and calls vring_new_virtqueue() the address of the allocated vring
917 * will be stored in the cached_table. Before the device is started,
918 * cached_table will be copied into devic memory.
919 */
95cee62c 920 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
a2b950ac
OBC
921 if (!rproc->cached_table)
922 goto out;
923
a2b950ac
OBC
924 rproc->table_ptr = rproc->cached_table;
925
ba7290e0
SB
926 /* count the number of notify-ids */
927 rproc->max_notifyid = -1;
172e6ab1
SA
928 ret = rproc_handle_resources(rproc, tablesz,
929 rproc_count_vrings_handler);
1e3e2c7c 930 if (ret)
400e64df 931 goto out;
400e64df 932
a2b950ac
OBC
933 /* look for virtio devices and register them */
934 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
935
400e64df 936out:
3cc6e787 937 release_firmware(fw);
160e7c84 938 /* allow rproc_del() contexts, if any, to proceed */
400e64df
OBC
939 complete_all(&rproc->firmware_loading_complete);
940}
941
70b85ef8
FGL
942static int rproc_add_virtio_devices(struct rproc *rproc)
943{
944 int ret;
945
946 /* rproc_del() calls must wait until async loader completes */
947 init_completion(&rproc->firmware_loading_complete);
948
949 /*
950 * We must retrieve early virtio configuration info from
951 * the firmware (e.g. whether to register a virtio device,
952 * what virtio features does it support, ...).
953 *
954 * We're initiating an asynchronous firmware loading, so we can
955 * be built-in kernel code, without hanging the boot process.
956 */
957 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
958 rproc->firmware, &rproc->dev, GFP_KERNEL,
959 rproc, rproc_fw_config_virtio);
960 if (ret < 0) {
961 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
962 complete_all(&rproc->firmware_loading_complete);
963 }
964
965 return ret;
966}
967
968/**
969 * rproc_trigger_recovery() - recover a remoteproc
970 * @rproc: the remote processor
971 *
972 * The recovery is done by reseting all the virtio devices, that way all the
973 * rpmsg drivers will be reseted along with the remote processor making the
974 * remoteproc functional again.
975 *
976 * This function can sleep, so it cannot be called from atomic context.
977 */
978int rproc_trigger_recovery(struct rproc *rproc)
979{
980 struct rproc_vdev *rvdev, *rvtmp;
981
982 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
983
984 init_completion(&rproc->crash_comp);
985
986 /* clean up remote vdev entries */
987 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
988 rproc_remove_virtio_dev(rvdev);
989
990 /* wait until there is no more rproc users */
991 wait_for_completion(&rproc->crash_comp);
992
a2b950ac
OBC
993 /* Free the copy of the resource table */
994 kfree(rproc->cached_table);
995
70b85ef8
FGL
996 return rproc_add_virtio_devices(rproc);
997}
998
8afd519c
FGL
999/**
1000 * rproc_crash_handler_work() - handle a crash
1001 *
1002 * This function needs to handle everything related to a crash, like cpu
1003 * registers and stack dump, information to help to debug the fatal error, etc.
1004 */
1005static void rproc_crash_handler_work(struct work_struct *work)
1006{
1007 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1008 struct device *dev = &rproc->dev;
1009
1010 dev_dbg(dev, "enter %s\n", __func__);
1011
1012 mutex_lock(&rproc->lock);
1013
1014 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1015 /* handle only the first crash detected */
1016 mutex_unlock(&rproc->lock);
1017 return;
1018 }
1019
1020 rproc->state = RPROC_CRASHED;
1021 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1022 rproc->name);
1023
1024 mutex_unlock(&rproc->lock);
1025
2e37abb8
FGL
1026 if (!rproc->recovery_disabled)
1027 rproc_trigger_recovery(rproc);
8afd519c
FGL
1028}
1029
400e64df 1030/**
3d87fa1d 1031 * __rproc_boot() - boot a remote processor
400e64df 1032 * @rproc: handle of a remote processor
3d87fa1d 1033 * @wait: wait for rproc registration completion
400e64df
OBC
1034 *
1035 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1036 *
1037 * If the remote processor is already powered on, this function immediately
1038 * returns (successfully).
1039 *
1040 * Returns 0 on success, and an appropriate error value otherwise.
1041 */
3d87fa1d 1042static int __rproc_boot(struct rproc *rproc, bool wait)
400e64df
OBC
1043{
1044 const struct firmware *firmware_p;
1045 struct device *dev;
1046 int ret;
1047
1048 if (!rproc) {
1049 pr_err("invalid rproc handle\n");
1050 return -EINVAL;
1051 }
1052
b5ab5e24 1053 dev = &rproc->dev;
400e64df
OBC
1054
1055 ret = mutex_lock_interruptible(&rproc->lock);
1056 if (ret) {
1057 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1058 return ret;
1059 }
1060
1061 /* loading a firmware is required */
1062 if (!rproc->firmware) {
1063 dev_err(dev, "%s: no firmware to load\n", __func__);
1064 ret = -EINVAL;
1065 goto unlock_mutex;
1066 }
1067
1068 /* prevent underlying implementation from being removed */
b5ab5e24 1069 if (!try_module_get(dev->parent->driver->owner)) {
400e64df
OBC
1070 dev_err(dev, "%s: can't get owner\n", __func__);
1071 ret = -EINVAL;
1072 goto unlock_mutex;
1073 }
1074
1075 /* skip the boot process if rproc is already powered up */
1076 if (atomic_inc_return(&rproc->power) > 1) {
1077 ret = 0;
1078 goto unlock_mutex;
1079 }
1080
1081 dev_info(dev, "powering up %s\n", rproc->name);
1082
1083 /* load firmware */
1084 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1085 if (ret < 0) {
1086 dev_err(dev, "request_firmware failed: %d\n", ret);
1087 goto downref_rproc;
1088 }
1089
3d87fa1d
LJ
1090 /* if rproc virtio is not yet configured, wait */
1091 if (wait)
1092 wait_for_completion(&rproc->firmware_loading_complete);
1093
400e64df
OBC
1094 ret = rproc_fw_boot(rproc, firmware_p);
1095
1096 release_firmware(firmware_p);
1097
1098downref_rproc:
1099 if (ret) {
b5ab5e24 1100 module_put(dev->parent->driver->owner);
400e64df
OBC
1101 atomic_dec(&rproc->power);
1102 }
1103unlock_mutex:
1104 mutex_unlock(&rproc->lock);
1105 return ret;
1106}
3d87fa1d
LJ
1107
1108/**
1109 * rproc_boot() - boot a remote processor
1110 * @rproc: handle of a remote processor
1111 */
1112int rproc_boot(struct rproc *rproc)
1113{
1114 return __rproc_boot(rproc, true);
1115}
400e64df
OBC
1116EXPORT_SYMBOL(rproc_boot);
1117
3d87fa1d
LJ
1118/**
1119 * rproc_boot_nowait() - boot a remote processor
1120 * @rproc: handle of a remote processor
1121 *
1122 * Same as rproc_boot() but don't wait for rproc registration completion
1123 */
1124int rproc_boot_nowait(struct rproc *rproc)
1125{
1126 return __rproc_boot(rproc, false);
1127}
1128
400e64df
OBC
1129/**
1130 * rproc_shutdown() - power off the remote processor
1131 * @rproc: the remote processor
1132 *
1133 * Power off a remote processor (previously booted with rproc_boot()).
1134 *
1135 * In case @rproc is still being used by an additional user(s), then
1136 * this function will just decrement the power refcount and exit,
1137 * without really powering off the device.
1138 *
1139 * Every call to rproc_boot() must (eventually) be accompanied by a call
1140 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1141 *
1142 * Notes:
1143 * - we're not decrementing the rproc's refcount, only the power refcount.
1144 * which means that the @rproc handle stays valid even after rproc_shutdown()
1145 * returns, and users can still use it with a subsequent rproc_boot(), if
1146 * needed.
400e64df
OBC
1147 */
1148void rproc_shutdown(struct rproc *rproc)
1149{
b5ab5e24 1150 struct device *dev = &rproc->dev;
400e64df
OBC
1151 int ret;
1152
1153 ret = mutex_lock_interruptible(&rproc->lock);
1154 if (ret) {
1155 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1156 return;
1157 }
1158
1159 /* if the remote proc is still needed, bail out */
1160 if (!atomic_dec_and_test(&rproc->power))
1161 goto out;
1162
1163 /* power off the remote processor */
1164 ret = rproc->ops->stop(rproc);
1165 if (ret) {
1166 atomic_inc(&rproc->power);
1167 dev_err(dev, "can't stop rproc: %d\n", ret);
1168 goto out;
1169 }
1170
1171 /* clean up all acquired resources */
1172 rproc_resource_cleanup(rproc);
1173
1174 rproc_disable_iommu(rproc);
1175
a2b950ac
OBC
1176 /* Give the next start a clean resource table */
1177 rproc->table_ptr = rproc->cached_table;
1178
70b85ef8
FGL
1179 /* if in crash state, unlock crash handler */
1180 if (rproc->state == RPROC_CRASHED)
1181 complete_all(&rproc->crash_comp);
1182
400e64df
OBC
1183 rproc->state = RPROC_OFFLINE;
1184
1185 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1186
1187out:
1188 mutex_unlock(&rproc->lock);
1189 if (!ret)
b5ab5e24 1190 module_put(dev->parent->driver->owner);
400e64df
OBC
1191}
1192EXPORT_SYMBOL(rproc_shutdown);
1193
fec47d86
DG
1194/**
1195 * rproc_get_by_phandle() - find a remote processor by phandle
1196 * @phandle: phandle to the rproc
1197 *
1198 * Finds an rproc handle using the remote processor's phandle, and then
1199 * return a handle to the rproc.
1200 *
1201 * This function increments the remote processor's refcount, so always
1202 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1203 *
1204 * Returns the rproc handle on success, and NULL on failure.
1205 */
8de3dbd0 1206#ifdef CONFIG_OF
fec47d86
DG
1207struct rproc *rproc_get_by_phandle(phandle phandle)
1208{
1209 struct rproc *rproc = NULL, *r;
1210 struct device_node *np;
1211
1212 np = of_find_node_by_phandle(phandle);
1213 if (!np)
1214 return NULL;
1215
1216 mutex_lock(&rproc_list_mutex);
1217 list_for_each_entry(r, &rproc_list, node) {
1218 if (r->dev.parent && r->dev.parent->of_node == np) {
1219 rproc = r;
1220 get_device(&rproc->dev);
1221 break;
1222 }
1223 }
1224 mutex_unlock(&rproc_list_mutex);
1225
1226 of_node_put(np);
1227
1228 return rproc;
1229}
8de3dbd0
OBC
1230#else
1231struct rproc *rproc_get_by_phandle(phandle phandle)
1232{
1233 return NULL;
1234}
1235#endif
fec47d86
DG
1236EXPORT_SYMBOL(rproc_get_by_phandle);
1237
400e64df 1238/**
160e7c84 1239 * rproc_add() - register a remote processor
400e64df
OBC
1240 * @rproc: the remote processor handle to register
1241 *
1242 * Registers @rproc with the remoteproc framework, after it has been
1243 * allocated with rproc_alloc().
1244 *
1245 * This is called by the platform-specific rproc implementation, whenever
1246 * a new remote processor device is probed.
1247 *
1248 * Returns 0 on success and an appropriate error code otherwise.
1249 *
1250 * Note: this function initiates an asynchronous firmware loading
1251 * context, which will look for virtio devices supported by the rproc's
1252 * firmware.
1253 *
1254 * If found, those virtio devices will be created and added, so as a result
7a186941 1255 * of registering this remote processor, additional virtio drivers might be
400e64df 1256 * probed.
400e64df 1257 */
160e7c84 1258int rproc_add(struct rproc *rproc)
400e64df 1259{
b5ab5e24 1260 struct device *dev = &rproc->dev;
70b85ef8 1261 int ret;
400e64df 1262
b5ab5e24
OBC
1263 ret = device_add(dev);
1264 if (ret < 0)
1265 return ret;
400e64df 1266
b5ab5e24 1267 dev_info(dev, "%s is available\n", rproc->name);
400e64df 1268
489d129a
OBC
1269 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1270 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1271
400e64df
OBC
1272 /* create debugfs entries */
1273 rproc_create_debug_dir(rproc);
d2e12e66
DG
1274 ret = rproc_add_virtio_devices(rproc);
1275 if (ret < 0)
1276 return ret;
400e64df 1277
d2e12e66
DG
1278 /* expose to rproc_get_by_phandle users */
1279 mutex_lock(&rproc_list_mutex);
1280 list_add(&rproc->node, &rproc_list);
1281 mutex_unlock(&rproc_list_mutex);
1282
1283 return 0;
400e64df 1284}
160e7c84 1285EXPORT_SYMBOL(rproc_add);
400e64df 1286
b5ab5e24
OBC
1287/**
1288 * rproc_type_release() - release a remote processor instance
1289 * @dev: the rproc's device
1290 *
1291 * This function should _never_ be called directly.
1292 *
1293 * It will be called by the driver core when no one holds a valid pointer
1294 * to @dev anymore.
1295 */
1296static void rproc_type_release(struct device *dev)
1297{
1298 struct rproc *rproc = container_of(dev, struct rproc, dev);
1299
7183a2a7
OBC
1300 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1301
1302 rproc_delete_debug_dir(rproc);
1303
b5ab5e24
OBC
1304 idr_destroy(&rproc->notifyids);
1305
1306 if (rproc->index >= 0)
1307 ida_simple_remove(&rproc_dev_index, rproc->index);
1308
1309 kfree(rproc);
1310}
1311
1312static struct device_type rproc_type = {
1313 .name = "remoteproc",
1314 .release = rproc_type_release,
1315};
400e64df
OBC
1316
1317/**
1318 * rproc_alloc() - allocate a remote processor handle
1319 * @dev: the underlying device
1320 * @name: name of this remote processor
1321 * @ops: platform-specific handlers (mainly start/stop)
8b4aec9a 1322 * @firmware: name of firmware file to load, can be NULL
400e64df
OBC
1323 * @len: length of private data needed by the rproc driver (in bytes)
1324 *
1325 * Allocates a new remote processor handle, but does not register
8b4aec9a 1326 * it yet. if @firmware is NULL, a default name is used.
400e64df
OBC
1327 *
1328 * This function should be used by rproc implementations during initialization
1329 * of the remote processor.
1330 *
1331 * After creating an rproc handle using this function, and when ready,
160e7c84 1332 * implementations should then call rproc_add() to complete
400e64df
OBC
1333 * the registration of the remote processor.
1334 *
1335 * On success the new rproc is returned, and on failure, NULL.
1336 *
1337 * Note: _never_ directly deallocate @rproc, even if it was not registered
160e7c84 1338 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
400e64df
OBC
1339 */
1340struct rproc *rproc_alloc(struct device *dev, const char *name,
1341 const struct rproc_ops *ops,
1342 const char *firmware, int len)
1343{
1344 struct rproc *rproc;
8b4aec9a
RT
1345 char *p, *template = "rproc-%s-fw";
1346 int name_len = 0;
400e64df
OBC
1347
1348 if (!dev || !name || !ops)
1349 return NULL;
1350
8b4aec9a
RT
1351 if (!firmware)
1352 /*
1353 * Make room for default firmware name (minus %s plus '\0').
1354 * If the caller didn't pass in a firmware name then
1355 * construct a default name. We're already glomming 'len'
1356 * bytes onto the end of the struct rproc allocation, so do
1357 * a few more for the default firmware name (but only if
1358 * the caller doesn't pass one).
1359 */
1360 name_len = strlen(name) + strlen(template) - 2 + 1;
1361
1362 rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
172e6ab1 1363 if (!rproc)
400e64df 1364 return NULL;
400e64df 1365
8b4aec9a
RT
1366 if (!firmware) {
1367 p = (char *)rproc + sizeof(struct rproc) + len;
1368 snprintf(p, name_len, template, name);
1369 } else {
1370 p = (char *)firmware;
1371 }
1372
1373 rproc->firmware = p;
400e64df
OBC
1374 rproc->name = name;
1375 rproc->ops = ops;
400e64df
OBC
1376 rproc->priv = &rproc[1];
1377
b5ab5e24
OBC
1378 device_initialize(&rproc->dev);
1379 rproc->dev.parent = dev;
1380 rproc->dev.type = &rproc_type;
1381
1382 /* Assign a unique device index and name */
1383 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1384 if (rproc->index < 0) {
1385 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1386 put_device(&rproc->dev);
1387 return NULL;
1388 }
1389
1390 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1391
400e64df
OBC
1392 atomic_set(&rproc->power, 0);
1393
4afc89d6
SB
1394 /* Set ELF as the default fw_ops handler */
1395 rproc->fw_ops = &rproc_elf_fw_ops;
400e64df
OBC
1396
1397 mutex_init(&rproc->lock);
1398
7a186941
OBC
1399 idr_init(&rproc->notifyids);
1400
400e64df
OBC
1401 INIT_LIST_HEAD(&rproc->carveouts);
1402 INIT_LIST_HEAD(&rproc->mappings);
1403 INIT_LIST_HEAD(&rproc->traces);
7a186941 1404 INIT_LIST_HEAD(&rproc->rvdevs);
400e64df 1405
8afd519c 1406 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
70b85ef8 1407 init_completion(&rproc->crash_comp);
8afd519c 1408
400e64df
OBC
1409 rproc->state = RPROC_OFFLINE;
1410
1411 return rproc;
1412}
1413EXPORT_SYMBOL(rproc_alloc);
1414
1415/**
160e7c84 1416 * rproc_put() - unroll rproc_alloc()
400e64df
OBC
1417 * @rproc: the remote processor handle
1418 *
c6b5a276 1419 * This function decrements the rproc dev refcount.
400e64df 1420 *
c6b5a276
OBC
1421 * If no one holds any reference to rproc anymore, then its refcount would
1422 * now drop to zero, and it would be freed.
400e64df 1423 */
160e7c84 1424void rproc_put(struct rproc *rproc)
400e64df 1425{
b5ab5e24 1426 put_device(&rproc->dev);
400e64df 1427}
160e7c84 1428EXPORT_SYMBOL(rproc_put);
400e64df
OBC
1429
1430/**
160e7c84 1431 * rproc_del() - unregister a remote processor
400e64df
OBC
1432 * @rproc: rproc handle to unregister
1433 *
400e64df
OBC
1434 * This function should be called when the platform specific rproc
1435 * implementation decides to remove the rproc device. it should
160e7c84 1436 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
1437 * has completed successfully.
1438 *
160e7c84 1439 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 1440 * of the outstanding reference created by rproc_alloc. To decrement that
160e7c84 1441 * one last refcount, one still needs to call rproc_put().
400e64df
OBC
1442 *
1443 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1444 */
160e7c84 1445int rproc_del(struct rproc *rproc)
400e64df 1446{
6db20ea8 1447 struct rproc_vdev *rvdev, *tmp;
7a186941 1448
400e64df
OBC
1449 if (!rproc)
1450 return -EINVAL;
1451
1452 /* if rproc is just being registered, wait */
1453 wait_for_completion(&rproc->firmware_loading_complete);
1454
7a186941 1455 /* clean up remote vdev entries */
6db20ea8 1456 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
7a186941 1457 rproc_remove_virtio_dev(rvdev);
400e64df 1458
a2b950ac
OBC
1459 /* Free the copy of the resource table */
1460 kfree(rproc->cached_table);
1461
fec47d86
DG
1462 /* the rproc is downref'ed as soon as it's removed from the klist */
1463 mutex_lock(&rproc_list_mutex);
1464 list_del(&rproc->node);
1465 mutex_unlock(&rproc_list_mutex);
1466
b5ab5e24 1467 device_del(&rproc->dev);
400e64df
OBC
1468
1469 return 0;
1470}
160e7c84 1471EXPORT_SYMBOL(rproc_del);
400e64df 1472
8afd519c
FGL
1473/**
1474 * rproc_report_crash() - rproc crash reporter function
1475 * @rproc: remote processor
1476 * @type: crash type
1477 *
1478 * This function must be called every time a crash is detected by the low-level
1479 * drivers implementing a specific remoteproc. This should not be called from a
1480 * non-remoteproc driver.
1481 *
1482 * This function can be called from atomic/interrupt context.
1483 */
1484void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1485{
1486 if (!rproc) {
1487 pr_err("NULL rproc pointer\n");
1488 return;
1489 }
1490
1491 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1492 rproc->name, rproc_crash_to_string(type));
1493
1494 /* create a new task to handle the error */
1495 schedule_work(&rproc->crash_handler);
1496}
1497EXPORT_SYMBOL(rproc_report_crash);
1498
400e64df
OBC
1499static int __init remoteproc_init(void)
1500{
1501 rproc_init_debugfs();
b5ab5e24 1502
400e64df
OBC
1503 return 0;
1504}
1505module_init(remoteproc_init);
1506
1507static void __exit remoteproc_exit(void)
1508{
f42f79af
SA
1509 ida_destroy(&rproc_dev_index);
1510
400e64df
OBC
1511 rproc_exit_debugfs();
1512}
1513module_exit(remoteproc_exit);
1514
1515MODULE_LICENSE("GPL v2");
1516MODULE_DESCRIPTION("Generic Remote Processor Framework");
This page took 0.317513 seconds and 5 git commands to generate.