[PATCH] libata-hp-prep: store attached SCSI device
[deliverable/linux.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
3373efd8
TH
64static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
68
69static unsigned int ata_unique_id = 1;
70static struct workqueue_struct *ata_wq;
71
418dc1f5 72int atapi_enabled = 1;
1623c81e
JG
73module_param(atapi_enabled, int, 0444);
74MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
75
95de719a
AL
76int atapi_dmadir = 0;
77module_param(atapi_dmadir, int, 0444);
78MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
79
c3c013a2
JG
80int libata_fua = 0;
81module_param_named(fua, libata_fua, int, 0444);
82MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
1da177e4
LT
84MODULE_AUTHOR("Jeff Garzik");
85MODULE_DESCRIPTION("Library module for ATA devices");
86MODULE_LICENSE("GPL");
87MODULE_VERSION(DRV_VERSION);
88
0baab86b 89
1da177e4
LT
90/**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
057ace5e 103void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
104{
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130}
131
132/**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
e12a1be6 137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
057ace5e 143void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
144{
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159}
160
8cbd6df1
AL
161static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 0,
8cbd6df1
AL
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
9a3dccc4
TH
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 189};
1da177e4
LT
190
191/**
8cbd6df1
AL
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
1da177e4 194 *
2e9edbf8 195 * Examine the device configuration and tf->flags to calculate
8cbd6df1 196 * the proper read/write commands and protocol to use.
1da177e4
LT
197 *
198 * LOCKING:
199 * caller.
200 */
9a3dccc4 201int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 202{
8cbd6df1
AL
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
9a3dccc4 205 u8 cmd;
1da177e4 206
9a3dccc4 207 int index, fua, lba48, write;
2e9edbf8 208
9a3dccc4 209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 212
8cbd6df1
AL
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
9a3dccc4 215 index = dev->multi_count ? 0 : 8;
8d238e01
AC
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
0565c26d 219 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
220 } else {
221 tf->protocol = ATA_PROT_DMA;
9a3dccc4 222 index = 16;
8cbd6df1 223 }
1da177e4 224
9a3dccc4
TH
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
1da177e4
LT
231}
232
cb95d562
TH
233/**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251{
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255}
256
c0489e4e
TH
257/**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271{
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278}
279
cb95d562 280static const struct ata_xfer_ent {
be9a50c8 281 int shift, bits;
cb95d562
TH
282 u8 base;
283} ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288};
289
290/**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304{
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312}
313
314/**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327{
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334}
335
336/**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348static int ata_xfer_mode2shift(unsigned int xfer_mode)
349{
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356}
357
1da177e4 358/**
1da7b0d0
TH
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
361 *
362 * Determine string which represents the highest speed
1da7b0d0 363 * (highest bit in @modemask).
1da177e4
LT
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
1da7b0d0 370 * @mode_mask, or the constant C string "<n/a>".
1da177e4 371 */
1da7b0d0 372static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 373{
75f554bc
TH
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
1da7b0d0 392 int highbit;
1da177e4 393
1da7b0d0
TH
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
1da177e4 397 return "<n/a>";
1da177e4
LT
398}
399
4c360c81
TH
400static const char *sata_spd_string(unsigned int spd)
401{
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410}
411
3373efd8 412void ata_dev_disable(struct ata_device *dev)
0b8efb0a 413{
e1211e3f 414 if (ata_dev_enabled(dev)) {
f15a1daf 415 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
416 dev->class++;
417 }
418}
419
1da177e4
LT
420/**
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
424 *
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
428 *
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
433 *
434 * LOCKING:
435 * caller.
436 */
437
438static unsigned int ata_pio_devchk(struct ata_port *ap,
439 unsigned int device)
440{
441 struct ata_ioports *ioaddr = &ap->ioaddr;
442 u8 nsect, lbal;
443
444 ap->ops->dev_select(ap, device);
445
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
448
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
451
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
454
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
457
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
460
461 return 0; /* nothing found */
462}
463
464/**
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
468 *
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
472 *
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
477 *
478 * LOCKING:
479 * caller.
480 */
481
482static unsigned int ata_mmio_devchk(struct ata_port *ap,
483 unsigned int device)
484{
485 struct ata_ioports *ioaddr = &ap->ioaddr;
486 u8 nsect, lbal;
487
488 ap->ops->dev_select(ap, device);
489
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
492
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
495
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
498
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
501
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
504
505 return 0; /* nothing found */
506}
507
508/**
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
512 *
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
516 *
517 * LOCKING:
518 * caller.
519 */
520
521static unsigned int ata_devchk(struct ata_port *ap,
522 unsigned int device)
523{
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
527}
528
529/**
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
532 *
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
543 */
544
057ace5e 545unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
546{
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
550 */
551
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
555 return ATA_DEV_ATA;
556 }
557
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
562 }
563
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
566}
567
568/**
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
b4dc7623 572 * @r_err: Value of error register on completion
1da177e4
LT
573 *
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
577 * and diagnostics.
578 *
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
582 *
583 * LOCKING:
584 * caller.
b4dc7623
TH
585 *
586 * RETURNS:
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
588 */
589
b4dc7623
TH
590static unsigned int
591ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 592{
1da177e4
LT
593 struct ata_taskfile tf;
594 unsigned int class;
595 u8 err;
596
597 ap->ops->dev_select(ap, device);
598
599 memset(&tf, 0, sizeof(tf));
600
1da177e4 601 ap->ops->tf_read(ap, &tf);
0169e284 602 err = tf.feature;
b4dc7623
TH
603 if (r_err)
604 *r_err = err;
1da177e4
LT
605
606 /* see if device passed diags */
607 if (err == 1)
608 /* do nothing */ ;
609 else if ((device == 0) && (err == 0x81))
610 /* do nothing */ ;
611 else
b4dc7623 612 return ATA_DEV_NONE;
1da177e4 613
b4dc7623 614 /* determine if device is ATA or ATAPI */
1da177e4 615 class = ata_dev_classify(&tf);
b4dc7623 616
1da177e4 617 if (class == ATA_DEV_UNKNOWN)
b4dc7623 618 return ATA_DEV_NONE;
1da177e4 619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
620 return ATA_DEV_NONE;
621 return class;
1da177e4
LT
622}
623
624/**
6a62a04d 625 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
630 *
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
634 *
635 * LOCKING:
636 * caller.
637 */
638
6a62a04d
TH
639void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
1da177e4
LT
641{
642 unsigned int c;
643
644 while (len > 0) {
645 c = id[ofs] >> 8;
646 *s = c;
647 s++;
648
649 c = id[ofs] & 0xff;
650 *s = c;
651 s++;
652
653 ofs++;
654 len -= 2;
655 }
656}
657
0e949ff3 658/**
6a62a04d 659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
664 *
6a62a04d 665 * This function is identical to ata_id_string except that it
0e949ff3
TH
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
668 *
669 * LOCKING:
670 * caller.
671 */
6a62a04d
TH
672void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
0e949ff3
TH
674{
675 unsigned char *p;
676
677 WARN_ON(!(len & 1));
678
6a62a04d 679 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
680
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
683 p--;
684 *p = '\0';
685}
0baab86b 686
2940740b
TH
687static u64 ata_id_n_sectors(const u16 *id)
688{
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
692 else
693 return ata_id_u32(id, 60);
694 } else {
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
697 else
698 return id[1] * id[3] * id[6];
699 }
700}
701
0baab86b
EF
702/**
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
706 *
707 * This function performs no actual function.
708 *
709 * May be used as the dev_select() entry in ata_port_operations.
710 *
711 * LOCKING:
712 * caller.
713 */
1da177e4
LT
714void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
715{
716}
717
0baab86b 718
1da177e4
LT
719/**
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
723 *
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
0baab86b
EF
726 * ATA channel. Works with both PIO and MMIO.
727 *
728 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
729 *
730 * LOCKING:
731 * caller.
732 */
733
734void ata_std_dev_select (struct ata_port *ap, unsigned int device)
735{
736 u8 tmp;
737
738 if (device == 0)
739 tmp = ATA_DEVICE_OBS;
740 else
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
742
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
745 } else {
746 outb(tmp, ap->ioaddr.device_addr);
747 }
748 ata_pause(ap); /* needed; also flushes, for mmio */
749}
750
751/**
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
757 *
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
760 * ATA channel.
761 *
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
765 *
766 * LOCKING:
767 * caller.
768 */
769
770void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
772{
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
775
776 if (wait)
777 ata_wait_idle(ap);
778
779 ap->ops->dev_select(ap, device);
780
781 if (wait) {
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
783 msleep(150);
784 ata_wait_idle(ap);
785 }
786}
787
788/**
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 790 * @id: IDENTIFY DEVICE page to dump
1da177e4 791 *
0bd3300a
TH
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
793 * page.
1da177e4
LT
794 *
795 * LOCKING:
796 * caller.
797 */
798
0bd3300a 799static inline void ata_dump_id(const u16 *id)
1da177e4
LT
800{
801 DPRINTK("49==0x%04x "
802 "53==0x%04x "
803 "63==0x%04x "
804 "64==0x%04x "
805 "75==0x%04x \n",
0bd3300a
TH
806 id[49],
807 id[53],
808 id[63],
809 id[64],
810 id[75]);
1da177e4
LT
811 DPRINTK("80==0x%04x "
812 "81==0x%04x "
813 "82==0x%04x "
814 "83==0x%04x "
815 "84==0x%04x \n",
0bd3300a
TH
816 id[80],
817 id[81],
818 id[82],
819 id[83],
820 id[84]);
1da177e4
LT
821 DPRINTK("88==0x%04x "
822 "93==0x%04x\n",
0bd3300a
TH
823 id[88],
824 id[93]);
1da177e4
LT
825}
826
cb95d562
TH
827/**
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
830 *
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
833 *
834 * FIXME: pre IDE drive timing (do we care ?).
835 *
836 * LOCKING:
837 * None.
838 *
839 * RETURNS:
840 * Computed xfermask
841 */
842static unsigned int ata_id_xfermask(const u16 *id)
843{
844 unsigned int pio_mask, mwdma_mask, udma_mask;
845
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
849 pio_mask <<= 3;
850 pio_mask |= 0x7;
851 } else {
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
854 * a mask.
855 */
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
857
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
863 */
864 }
865
866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
867
868 udma_mask = 0;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
871
872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
873}
874
86e45b6b
TH
875/**
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
878 * @fn: workqueue function to be scheduled
879 * @data: data value to pass to workqueue function
880 * @delay: delay time for workqueue function
86e45b6b
TH
881 *
882 * Schedule @fn(@data) for execution after @delay jiffies using
883 * port_task. There is one port_task per port and it's the
884 * user(low level driver)'s responsibility to make sure that only
885 * one task is active at any given time.
886 *
887 * libata core layer takes care of synchronization between
888 * port_task and EH. ata_port_queue_task() may be ignored for EH
889 * synchronization.
890 *
891 * LOCKING:
892 * Inherited from caller.
893 */
894void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
895 unsigned long delay)
896{
897 int rc;
898
2e755f68 899 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
900 return;
901
902 PREPARE_WORK(&ap->port_task, fn, data);
903
904 if (!delay)
905 rc = queue_work(ata_wq, &ap->port_task);
906 else
907 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
908
909 /* rc == 0 means that another user is using port task */
910 WARN_ON(rc == 0);
911}
912
913/**
914 * ata_port_flush_task - Flush port_task
915 * @ap: The ata_port to flush port_task for
916 *
917 * After this function completes, port_task is guranteed not to
918 * be running or scheduled.
919 *
920 * LOCKING:
921 * Kernel thread context (may sleep)
922 */
923void ata_port_flush_task(struct ata_port *ap)
924{
925 unsigned long flags;
926
927 DPRINTK("ENTER\n");
928
929 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 930 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
931 spin_unlock_irqrestore(&ap->host_set->lock, flags);
932
933 DPRINTK("flush #1\n");
934 flush_workqueue(ata_wq);
935
936 /*
937 * At this point, if a task is running, it's guaranteed to see
938 * the FLUSH flag; thus, it will never queue pio tasks again.
939 * Cancel and flush.
940 */
941 if (!cancel_delayed_work(&ap->port_task)) {
942 DPRINTK("flush #2\n");
943 flush_workqueue(ata_wq);
944 }
945
946 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 947 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
948 spin_unlock_irqrestore(&ap->host_set->lock, flags);
949
950 DPRINTK("EXIT\n");
951}
952
77853bf2 953void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 954{
77853bf2 955 struct completion *waiting = qc->private_data;
a2a7a662 956
a2a7a662 957 complete(waiting);
a2a7a662
TH
958}
959
960/**
961 * ata_exec_internal - execute libata internal command
a2a7a662
TH
962 * @dev: Device to which the command is sent
963 * @tf: Taskfile registers for the command and the result
d69cf37d 964 * @cdb: CDB for packet command
a2a7a662
TH
965 * @dma_dir: Data tranfer direction of the command
966 * @buf: Data buffer of the command
967 * @buflen: Length of data buffer
968 *
969 * Executes libata internal command with timeout. @tf contains
970 * command on entry and result on return. Timeout and error
971 * conditions are reported via return value. No recovery action
972 * is taken after a command times out. It's caller's duty to
973 * clean up after timeout.
974 *
975 * LOCKING:
976 * None. Should be called with kernel context, might sleep.
977 */
978
3373efd8 979unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
980 struct ata_taskfile *tf, const u8 *cdb,
981 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 982{
3373efd8 983 struct ata_port *ap = dev->ap;
a2a7a662
TH
984 u8 command = tf->command;
985 struct ata_queued_cmd *qc;
2ab7db1f 986 unsigned int tag, preempted_tag;
dedaf2b0 987 u32 preempted_sactive, preempted_qc_active;
a2a7a662
TH
988 DECLARE_COMPLETION(wait);
989 unsigned long flags;
77853bf2 990 unsigned int err_mask;
d95a717f 991 int rc;
a2a7a662
TH
992
993 spin_lock_irqsave(&ap->host_set->lock, flags);
994
e3180499
TH
995 /* no internal command while frozen */
996 if (ap->flags & ATA_FLAG_FROZEN) {
997 spin_unlock_irqrestore(&ap->host_set->lock, flags);
998 return AC_ERR_SYSTEM;
999 }
1000
2ab7db1f 1001 /* initialize internal qc */
a2a7a662 1002
2ab7db1f
TH
1003 /* XXX: Tag 0 is used for drivers with legacy EH as some
1004 * drivers choke if any other tag is given. This breaks
1005 * ata_tag_internal() test for those drivers. Don't use new
1006 * EH stuff without converting to it.
1007 */
1008 if (ap->ops->error_handler)
1009 tag = ATA_TAG_INTERNAL;
1010 else
1011 tag = 0;
1012
6cec4a39 1013 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1014 BUG();
f69499f4 1015 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1016
1017 qc->tag = tag;
1018 qc->scsicmd = NULL;
1019 qc->ap = ap;
1020 qc->dev = dev;
1021 ata_qc_reinit(qc);
1022
1023 preempted_tag = ap->active_tag;
dedaf2b0
TH
1024 preempted_sactive = ap->sactive;
1025 preempted_qc_active = ap->qc_active;
2ab7db1f 1026 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1027 ap->sactive = 0;
1028 ap->qc_active = 0;
2ab7db1f
TH
1029
1030 /* prepare & issue qc */
a2a7a662 1031 qc->tf = *tf;
d69cf37d
TH
1032 if (cdb)
1033 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1034 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1035 qc->dma_dir = dma_dir;
1036 if (dma_dir != DMA_NONE) {
1037 ata_sg_init_one(qc, buf, buflen);
1038 qc->nsect = buflen / ATA_SECT_SIZE;
1039 }
1040
77853bf2 1041 qc->private_data = &wait;
a2a7a662
TH
1042 qc->complete_fn = ata_qc_complete_internal;
1043
8e0e694a 1044 ata_qc_issue(qc);
a2a7a662
TH
1045
1046 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1047
d95a717f
TH
1048 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1049
1050 ata_port_flush_task(ap);
41ade50c 1051
d95a717f 1052 if (!rc) {
a2a7a662
TH
1053 spin_lock_irqsave(&ap->host_set->lock, flags);
1054
1055 /* We're racing with irq here. If we lose, the
1056 * following test prevents us from completing the qc
d95a717f
TH
1057 * twice. If we win, the port is frozen and will be
1058 * cleaned up by ->post_internal_cmd().
a2a7a662 1059 */
77853bf2 1060 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1061 qc->err_mask |= AC_ERR_TIMEOUT;
1062
1063 if (ap->ops->error_handler)
1064 ata_port_freeze(ap);
1065 else
1066 ata_qc_complete(qc);
f15a1daf
TH
1067
1068 ata_dev_printk(dev, KERN_WARNING,
1069 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1070 }
1071
1072 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1073 }
1074
d95a717f
TH
1075 /* do post_internal_cmd */
1076 if (ap->ops->post_internal_cmd)
1077 ap->ops->post_internal_cmd(qc);
1078
1079 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1080 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1081 "internal command, assuming AC_ERR_OTHER\n");
1082 qc->err_mask |= AC_ERR_OTHER;
1083 }
1084
15869303
TH
1085 /* finish up */
1086 spin_lock_irqsave(&ap->host_set->lock, flags);
1087
e61e0672 1088 *tf = qc->result_tf;
77853bf2
TH
1089 err_mask = qc->err_mask;
1090
1091 ata_qc_free(qc);
2ab7db1f 1092 ap->active_tag = preempted_tag;
dedaf2b0
TH
1093 ap->sactive = preempted_sactive;
1094 ap->qc_active = preempted_qc_active;
77853bf2 1095
1f7dd3e9
TH
1096 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1097 * Until those drivers are fixed, we detect the condition
1098 * here, fail the command with AC_ERR_SYSTEM and reenable the
1099 * port.
1100 *
1101 * Note that this doesn't change any behavior as internal
1102 * command failure results in disabling the device in the
1103 * higher layer for LLDDs without new reset/EH callbacks.
1104 *
1105 * Kill the following code as soon as those drivers are fixed.
1106 */
198e0fed 1107 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1108 err_mask |= AC_ERR_SYSTEM;
1109 ata_port_probe(ap);
1110 }
1111
15869303
TH
1112 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1113
77853bf2 1114 return err_mask;
a2a7a662
TH
1115}
1116
1bc4ccff
AC
1117/**
1118 * ata_pio_need_iordy - check if iordy needed
1119 * @adev: ATA device
1120 *
1121 * Check if the current speed of the device requires IORDY. Used
1122 * by various controllers for chip configuration.
1123 */
1124
1125unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1126{
1127 int pio;
1128 int speed = adev->pio_mode - XFER_PIO_0;
1129
1130 if (speed < 2)
1131 return 0;
1132 if (speed > 2)
1133 return 1;
2e9edbf8 1134
1bc4ccff
AC
1135 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1136
1137 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1138 pio = adev->id[ATA_ID_EIDE_PIO];
1139 /* Is the speed faster than the drive allows non IORDY ? */
1140 if (pio) {
1141 /* This is cycle times not frequency - watch the logic! */
1142 if (pio > 240) /* PIO2 is 240nS per cycle */
1143 return 1;
1144 return 0;
1145 }
1146 }
1147 return 0;
1148}
1149
1da177e4 1150/**
49016aca 1151 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1152 * @dev: target device
1153 * @p_class: pointer to class of the target device (may be changed)
1154 * @post_reset: is this read ID post-reset?
fe635c7e 1155 * @id: buffer to read IDENTIFY data into
1da177e4 1156 *
49016aca
TH
1157 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1158 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1159 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1160 * for pre-ATA4 drives.
1da177e4
LT
1161 *
1162 * LOCKING:
49016aca
TH
1163 * Kernel thread context (may sleep)
1164 *
1165 * RETURNS:
1166 * 0 on success, -errno otherwise.
1da177e4 1167 */
3373efd8
TH
1168static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1169 int post_reset, u16 *id)
1da177e4 1170{
3373efd8 1171 struct ata_port *ap = dev->ap;
49016aca 1172 unsigned int class = *p_class;
a0123703 1173 struct ata_taskfile tf;
49016aca
TH
1174 unsigned int err_mask = 0;
1175 const char *reason;
1176 int rc;
1da177e4 1177
49016aca 1178 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1179
49016aca 1180 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1181
49016aca 1182 retry:
3373efd8 1183 ata_tf_init(dev, &tf);
a0123703 1184
49016aca
TH
1185 switch (class) {
1186 case ATA_DEV_ATA:
a0123703 1187 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1188 break;
1189 case ATA_DEV_ATAPI:
a0123703 1190 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1191 break;
1192 default:
1193 rc = -ENODEV;
1194 reason = "unsupported class";
1195 goto err_out;
1da177e4
LT
1196 }
1197
a0123703 1198 tf.protocol = ATA_PROT_PIO;
1da177e4 1199
3373efd8 1200 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1201 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1202 if (err_mask) {
49016aca
TH
1203 rc = -EIO;
1204 reason = "I/O error";
1da177e4
LT
1205 goto err_out;
1206 }
1207
49016aca 1208 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1209
49016aca 1210 /* sanity check */
692785e7 1211 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1212 rc = -EINVAL;
1213 reason = "device reports illegal type";
1214 goto err_out;
1215 }
1216
1217 if (post_reset && class == ATA_DEV_ATA) {
1218 /*
1219 * The exact sequence expected by certain pre-ATA4 drives is:
1220 * SRST RESET
1221 * IDENTIFY
1222 * INITIALIZE DEVICE PARAMETERS
1223 * anything else..
1224 * Some drives were very specific about that exact sequence.
1225 */
1226 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1227 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1228 if (err_mask) {
1229 rc = -EIO;
1230 reason = "INIT_DEV_PARAMS failed";
1231 goto err_out;
1232 }
1233
1234 /* current CHS translation info (id[53-58]) might be
1235 * changed. reread the identify device info.
1236 */
1237 post_reset = 0;
1238 goto retry;
1239 }
1240 }
1241
1242 *p_class = class;
fe635c7e 1243
49016aca
TH
1244 return 0;
1245
1246 err_out:
f15a1daf
TH
1247 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1248 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1249 return rc;
1250}
1251
3373efd8 1252static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1253{
3373efd8 1254 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1255}
1256
a6e6ce8e
TH
1257static void ata_dev_config_ncq(struct ata_device *dev,
1258 char *desc, size_t desc_sz)
1259{
1260 struct ata_port *ap = dev->ap;
1261 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1262
1263 if (!ata_id_has_ncq(dev->id)) {
1264 desc[0] = '\0';
1265 return;
1266 }
1267
1268 if (ap->flags & ATA_FLAG_NCQ) {
1269 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1270 dev->flags |= ATA_DFLAG_NCQ;
1271 }
1272
1273 if (hdepth >= ddepth)
1274 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1275 else
1276 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1277}
1278
49016aca 1279/**
ffeae418 1280 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1281 * @dev: Target device to configure
4c2d721a 1282 * @print_info: Enable device info printout
ffeae418
TH
1283 *
1284 * Configure @dev according to @dev->id. Generic and low-level
1285 * driver specific fixups are also applied.
49016aca
TH
1286 *
1287 * LOCKING:
ffeae418
TH
1288 * Kernel thread context (may sleep)
1289 *
1290 * RETURNS:
1291 * 0 on success, -errno otherwise
49016aca 1292 */
3373efd8 1293static int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1294{
3373efd8 1295 struct ata_port *ap = dev->ap;
1148c3a7 1296 const u16 *id = dev->id;
ff8854b2 1297 unsigned int xfer_mask;
49016aca
TH
1298 int i, rc;
1299
e1211e3f 1300 if (!ata_dev_enabled(dev)) {
49016aca 1301 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1302 ap->id, dev->devno);
1303 return 0;
49016aca
TH
1304 }
1305
ffeae418 1306 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1307
c39f5ebe
TH
1308 /* print device capabilities */
1309 if (print_info)
f15a1daf
TH
1310 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1311 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1312 id[49], id[82], id[83], id[84],
1313 id[85], id[86], id[87], id[88]);
c39f5ebe 1314
208a9933 1315 /* initialize to-be-configured parameters */
ea1dd4e1 1316 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1317 dev->max_sectors = 0;
1318 dev->cdb_len = 0;
1319 dev->n_sectors = 0;
1320 dev->cylinders = 0;
1321 dev->heads = 0;
1322 dev->sectors = 0;
1323
1da177e4
LT
1324 /*
1325 * common ATA, ATAPI feature tests
1326 */
1327
ff8854b2 1328 /* find max transfer mode; for printk only */
1148c3a7 1329 xfer_mask = ata_id_xfermask(id);
1da177e4 1330
1148c3a7 1331 ata_dump_id(id);
1da177e4
LT
1332
1333 /* ATA-specific feature tests */
1334 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1335 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1336
1148c3a7 1337 if (ata_id_has_lba(id)) {
4c2d721a 1338 const char *lba_desc;
a6e6ce8e 1339 char ncq_desc[20];
8bf62ece 1340
4c2d721a
TH
1341 lba_desc = "LBA";
1342 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1343 if (ata_id_has_lba48(id)) {
8bf62ece 1344 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1345 lba_desc = "LBA48";
1346 }
8bf62ece 1347
a6e6ce8e
TH
1348 /* config NCQ */
1349 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1350
8bf62ece 1351 /* print device info to dmesg */
4c2d721a 1352 if (print_info)
f15a1daf 1353 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
a6e6ce8e 1354 "max %s, %Lu sectors: %s %s\n",
f15a1daf
TH
1355 ata_id_major_version(id),
1356 ata_mode_string(xfer_mask),
1357 (unsigned long long)dev->n_sectors,
a6e6ce8e 1358 lba_desc, ncq_desc);
ffeae418 1359 } else {
8bf62ece
AL
1360 /* CHS */
1361
1362 /* Default translation */
1148c3a7
TH
1363 dev->cylinders = id[1];
1364 dev->heads = id[3];
1365 dev->sectors = id[6];
8bf62ece 1366
1148c3a7 1367 if (ata_id_current_chs_valid(id)) {
8bf62ece 1368 /* Current CHS translation is valid. */
1148c3a7
TH
1369 dev->cylinders = id[54];
1370 dev->heads = id[55];
1371 dev->sectors = id[56];
8bf62ece
AL
1372 }
1373
1374 /* print device info to dmesg */
4c2d721a 1375 if (print_info)
f15a1daf
TH
1376 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1377 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1378 ata_id_major_version(id),
1379 ata_mode_string(xfer_mask),
1380 (unsigned long long)dev->n_sectors,
1381 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1382 }
1383
07f6f7d0
AL
1384 if (dev->id[59] & 0x100) {
1385 dev->multi_count = dev->id[59] & 0xff;
1386 DPRINTK("ata%u: dev %u multi count %u\n",
999bb6f4 1387 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1388 }
1389
6e7846e9 1390 dev->cdb_len = 16;
1da177e4
LT
1391 }
1392
1393 /* ATAPI-specific feature tests */
2c13b7ce 1394 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1395 char *cdb_intr_string = "";
1396
1148c3a7 1397 rc = atapi_cdb_len(id);
1da177e4 1398 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
f15a1daf
TH
1399 ata_dev_printk(dev, KERN_WARNING,
1400 "unsupported CDB len\n");
ffeae418 1401 rc = -EINVAL;
1da177e4
LT
1402 goto err_out_nosup;
1403 }
6e7846e9 1404 dev->cdb_len = (unsigned int) rc;
1da177e4 1405
08a556db 1406 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1407 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1408 cdb_intr_string = ", CDB intr";
1409 }
312f7da2 1410
1da177e4 1411 /* print device info to dmesg */
4c2d721a 1412 if (print_info)
12436c30
TH
1413 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1414 ata_mode_string(xfer_mask),
1415 cdb_intr_string);
1da177e4
LT
1416 }
1417
6e7846e9
TH
1418 ap->host->max_cmd_len = 0;
1419 for (i = 0; i < ATA_MAX_DEVICES; i++)
1420 ap->host->max_cmd_len = max_t(unsigned int,
1421 ap->host->max_cmd_len,
1422 ap->device[i].cdb_len);
1423
4b2f3ede 1424 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1425 if (ata_dev_knobble(dev)) {
4c2d721a 1426 if (print_info)
f15a1daf
TH
1427 ata_dev_printk(dev, KERN_INFO,
1428 "applying bridge limits\n");
5a529139 1429 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1430 dev->max_sectors = ATA_MAX_SECTORS;
1431 }
1432
1433 if (ap->ops->dev_config)
1434 ap->ops->dev_config(ap, dev);
1435
1da177e4 1436 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1437 return 0;
1da177e4
LT
1438
1439err_out_nosup:
1da177e4 1440 DPRINTK("EXIT, err\n");
ffeae418 1441 return rc;
1da177e4
LT
1442}
1443
1444/**
1445 * ata_bus_probe - Reset and probe ATA bus
1446 * @ap: Bus to probe
1447 *
0cba632b
JG
1448 * Master ATA bus probing function. Initiates a hardware-dependent
1449 * bus reset, then attempts to identify any devices found on
1450 * the bus.
1451 *
1da177e4 1452 * LOCKING:
0cba632b 1453 * PCI/etc. bus probe sem.
1da177e4
LT
1454 *
1455 * RETURNS:
96072e69 1456 * Zero on success, negative errno otherwise.
1da177e4
LT
1457 */
1458
1459static int ata_bus_probe(struct ata_port *ap)
1460{
28ca5c57 1461 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1462 int tries[ATA_MAX_DEVICES];
1463 int i, rc, down_xfermask;
e82cbdb9 1464 struct ata_device *dev;
1da177e4 1465
28ca5c57 1466 ata_port_probe(ap);
c19ba8af 1467
14d2bac1
TH
1468 for (i = 0; i < ATA_MAX_DEVICES; i++)
1469 tries[i] = ATA_PROBE_MAX_TRIES;
1470
1471 retry:
1472 down_xfermask = 0;
1473
2044470c
TH
1474 /* reset and determine device classes */
1475 for (i = 0; i < ATA_MAX_DEVICES; i++)
1476 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1477
2044470c 1478 if (ap->ops->probe_reset) {
c19ba8af 1479 rc = ap->ops->probe_reset(ap, classes);
28ca5c57 1480 if (rc) {
f15a1daf
TH
1481 ata_port_printk(ap, KERN_ERR,
1482 "reset failed (errno=%d)\n", rc);
28ca5c57 1483 return rc;
c19ba8af 1484 }
28ca5c57 1485 } else {
c19ba8af
TH
1486 ap->ops->phy_reset(ap);
1487
f8c2c420
TH
1488 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1489 if (!(ap->flags & ATA_FLAG_DISABLED))
28ca5c57 1490 classes[i] = ap->device[i].class;
f8c2c420
TH
1491 ap->device[i].class = ATA_DEV_UNKNOWN;
1492 }
2044470c 1493
28ca5c57
TH
1494 ata_port_probe(ap);
1495 }
1da177e4 1496
2044470c
TH
1497 for (i = 0; i < ATA_MAX_DEVICES; i++)
1498 if (classes[i] == ATA_DEV_UNKNOWN)
1499 classes[i] = ATA_DEV_NONE;
1500
b6079ca4
AC
1501 /* after the reset the device state is PIO 0 and the controller
1502 state is undefined. Record the mode */
1503
1504 for (i = 0; i < ATA_MAX_DEVICES; i++)
1505 ap->device[i].pio_mode = XFER_PIO_0;
1506
28ca5c57 1507 /* read IDENTIFY page and configure devices */
1da177e4 1508 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1509 dev = &ap->device[i];
28ca5c57 1510
ec573755
TH
1511 if (tries[i])
1512 dev->class = classes[i];
ffeae418 1513
14d2bac1 1514 if (!ata_dev_enabled(dev))
ffeae418 1515 continue;
ffeae418 1516
3373efd8 1517 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1518 if (rc)
1519 goto fail;
1520
3373efd8 1521 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1522 if (rc)
1523 goto fail;
1da177e4
LT
1524 }
1525
e82cbdb9 1526 /* configure transfer mode */
3adcebb2 1527 rc = ata_set_mode(ap, &dev);
51713d35
TH
1528 if (rc) {
1529 down_xfermask = 1;
1530 goto fail;
e82cbdb9 1531 }
1da177e4 1532
e82cbdb9
TH
1533 for (i = 0; i < ATA_MAX_DEVICES; i++)
1534 if (ata_dev_enabled(&ap->device[i]))
1535 return 0;
1da177e4 1536
e82cbdb9
TH
1537 /* no device present, disable port */
1538 ata_port_disable(ap);
1da177e4 1539 ap->ops->port_disable(ap);
96072e69 1540 return -ENODEV;
14d2bac1
TH
1541
1542 fail:
1543 switch (rc) {
1544 case -EINVAL:
1545 case -ENODEV:
1546 tries[dev->devno] = 0;
1547 break;
1548 case -EIO:
3c567b7d 1549 sata_down_spd_limit(ap);
14d2bac1
TH
1550 /* fall through */
1551 default:
1552 tries[dev->devno]--;
1553 if (down_xfermask &&
3373efd8 1554 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1555 tries[dev->devno] = 0;
1556 }
1557
ec573755 1558 if (!tries[dev->devno]) {
3373efd8
TH
1559 ata_down_xfermask_limit(dev, 1);
1560 ata_dev_disable(dev);
ec573755
TH
1561 }
1562
14d2bac1 1563 goto retry;
1da177e4
LT
1564}
1565
1566/**
0cba632b
JG
1567 * ata_port_probe - Mark port as enabled
1568 * @ap: Port for which we indicate enablement
1da177e4 1569 *
0cba632b
JG
1570 * Modify @ap data structure such that the system
1571 * thinks that the entire port is enabled.
1572 *
1573 * LOCKING: host_set lock, or some other form of
1574 * serialization.
1da177e4
LT
1575 */
1576
1577void ata_port_probe(struct ata_port *ap)
1578{
198e0fed 1579 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1580}
1581
3be680b7
TH
1582/**
1583 * sata_print_link_status - Print SATA link status
1584 * @ap: SATA port to printk link status about
1585 *
1586 * This function prints link speed and status of a SATA link.
1587 *
1588 * LOCKING:
1589 * None.
1590 */
1591static void sata_print_link_status(struct ata_port *ap)
1592{
6d5f9732 1593 u32 sstatus, scontrol, tmp;
3be680b7 1594
81952c54 1595 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1596 return;
81952c54 1597 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1598
81952c54 1599 if (ata_port_online(ap)) {
3be680b7 1600 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1601 ata_port_printk(ap, KERN_INFO,
1602 "SATA link up %s (SStatus %X SControl %X)\n",
1603 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1604 } else {
f15a1daf
TH
1605 ata_port_printk(ap, KERN_INFO,
1606 "SATA link down (SStatus %X SControl %X)\n",
1607 sstatus, scontrol);
3be680b7
TH
1608 }
1609}
1610
1da177e4 1611/**
780a87f7
JG
1612 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1613 * @ap: SATA port associated with target SATA PHY.
1da177e4 1614 *
780a87f7
JG
1615 * This function issues commands to standard SATA Sxxx
1616 * PHY registers, to wake up the phy (and device), and
1617 * clear any reset condition.
1da177e4
LT
1618 *
1619 * LOCKING:
0cba632b 1620 * PCI/etc. bus probe sem.
1da177e4
LT
1621 *
1622 */
1623void __sata_phy_reset(struct ata_port *ap)
1624{
1625 u32 sstatus;
1626 unsigned long timeout = jiffies + (HZ * 5);
1627
1628 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1629 /* issue phy wake/reset */
81952c54 1630 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1631 /* Couldn't find anything in SATA I/II specs, but
1632 * AHCI-1.1 10.4.2 says at least 1 ms. */
1633 mdelay(1);
1da177e4 1634 }
81952c54
TH
1635 /* phy wake/clear reset */
1636 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1637
1638 /* wait for phy to become ready, if necessary */
1639 do {
1640 msleep(200);
81952c54 1641 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1642 if ((sstatus & 0xf) != 1)
1643 break;
1644 } while (time_before(jiffies, timeout));
1645
3be680b7
TH
1646 /* print link status */
1647 sata_print_link_status(ap);
656563e3 1648
3be680b7 1649 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1650 if (!ata_port_offline(ap))
1da177e4 1651 ata_port_probe(ap);
3be680b7 1652 else
1da177e4 1653 ata_port_disable(ap);
1da177e4 1654
198e0fed 1655 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1656 return;
1657
1658 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1659 ata_port_disable(ap);
1660 return;
1661 }
1662
1663 ap->cbl = ATA_CBL_SATA;
1664}
1665
1666/**
780a87f7
JG
1667 * sata_phy_reset - Reset SATA bus.
1668 * @ap: SATA port associated with target SATA PHY.
1da177e4 1669 *
780a87f7
JG
1670 * This function resets the SATA bus, and then probes
1671 * the bus for devices.
1da177e4
LT
1672 *
1673 * LOCKING:
0cba632b 1674 * PCI/etc. bus probe sem.
1da177e4
LT
1675 *
1676 */
1677void sata_phy_reset(struct ata_port *ap)
1678{
1679 __sata_phy_reset(ap);
198e0fed 1680 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1681 return;
1682 ata_bus_reset(ap);
1683}
1684
ebdfca6e
AC
1685/**
1686 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1687 * @adev: device
1688 *
1689 * Obtain the other device on the same cable, or if none is
1690 * present NULL is returned
1691 */
2e9edbf8 1692
3373efd8 1693struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1694{
3373efd8 1695 struct ata_port *ap = adev->ap;
ebdfca6e 1696 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1697 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1698 return NULL;
1699 return pair;
1700}
1701
1da177e4 1702/**
780a87f7
JG
1703 * ata_port_disable - Disable port.
1704 * @ap: Port to be disabled.
1da177e4 1705 *
780a87f7
JG
1706 * Modify @ap data structure such that the system
1707 * thinks that the entire port is disabled, and should
1708 * never attempt to probe or communicate with devices
1709 * on this port.
1710 *
1711 * LOCKING: host_set lock, or some other form of
1712 * serialization.
1da177e4
LT
1713 */
1714
1715void ata_port_disable(struct ata_port *ap)
1716{
1717 ap->device[0].class = ATA_DEV_NONE;
1718 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1719 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1720}
1721
1c3fae4d 1722/**
3c567b7d 1723 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1724 * @ap: Port to adjust SATA spd limit for
1725 *
1726 * Adjust SATA spd limit of @ap downward. Note that this
1727 * function only adjusts the limit. The change must be applied
3c567b7d 1728 * using sata_set_spd().
1c3fae4d
TH
1729 *
1730 * LOCKING:
1731 * Inherited from caller.
1732 *
1733 * RETURNS:
1734 * 0 on success, negative errno on failure
1735 */
3c567b7d 1736int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1737{
81952c54
TH
1738 u32 sstatus, spd, mask;
1739 int rc, highbit;
1c3fae4d 1740
81952c54
TH
1741 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1742 if (rc)
1743 return rc;
1c3fae4d
TH
1744
1745 mask = ap->sata_spd_limit;
1746 if (mask <= 1)
1747 return -EINVAL;
1748 highbit = fls(mask) - 1;
1749 mask &= ~(1 << highbit);
1750
81952c54 1751 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1752 if (spd <= 1)
1753 return -EINVAL;
1754 spd--;
1755 mask &= (1 << spd) - 1;
1756 if (!mask)
1757 return -EINVAL;
1758
1759 ap->sata_spd_limit = mask;
1760
f15a1daf
TH
1761 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1762 sata_spd_string(fls(mask)));
1c3fae4d
TH
1763
1764 return 0;
1765}
1766
3c567b7d 1767static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1768{
1769 u32 spd, limit;
1770
1771 if (ap->sata_spd_limit == UINT_MAX)
1772 limit = 0;
1773 else
1774 limit = fls(ap->sata_spd_limit);
1775
1776 spd = (*scontrol >> 4) & 0xf;
1777 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1778
1779 return spd != limit;
1780}
1781
1782/**
3c567b7d 1783 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1784 * @ap: Port in question
1785 *
1786 * Test whether the spd limit in SControl matches
1787 * @ap->sata_spd_limit. This function is used to determine
1788 * whether hardreset is necessary to apply SATA spd
1789 * configuration.
1790 *
1791 * LOCKING:
1792 * Inherited from caller.
1793 *
1794 * RETURNS:
1795 * 1 if SATA spd configuration is needed, 0 otherwise.
1796 */
3c567b7d 1797int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1798{
1799 u32 scontrol;
1800
81952c54 1801 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1802 return 0;
1803
3c567b7d 1804 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1805}
1806
1807/**
3c567b7d 1808 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1809 * @ap: Port to set SATA spd for
1810 *
1811 * Set SATA spd of @ap according to sata_spd_limit.
1812 *
1813 * LOCKING:
1814 * Inherited from caller.
1815 *
1816 * RETURNS:
1817 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1818 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1819 */
3c567b7d 1820int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1821{
1822 u32 scontrol;
81952c54 1823 int rc;
1c3fae4d 1824
81952c54
TH
1825 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1826 return rc;
1c3fae4d 1827
3c567b7d 1828 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1829 return 0;
1830
81952c54
TH
1831 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1832 return rc;
1833
1c3fae4d
TH
1834 return 1;
1835}
1836
452503f9
AC
1837/*
1838 * This mode timing computation functionality is ported over from
1839 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1840 */
1841/*
1842 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1843 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1844 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1845 * is currently supported only by Maxtor drives.
452503f9
AC
1846 */
1847
1848static const struct ata_timing ata_timing[] = {
1849
1850 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1851 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1852 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1853 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1854
1855 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1856 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1857 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1858
1859/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1860
452503f9
AC
1861 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1862 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1863 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1864
452503f9
AC
1865 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1866 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1867 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1868
1869/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1870 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1871 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1872
1873 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1874 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1875 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1876
1877/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1878
1879 { 0xFF }
1880};
1881
1882#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1883#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1884
1885static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1886{
1887 q->setup = EZ(t->setup * 1000, T);
1888 q->act8b = EZ(t->act8b * 1000, T);
1889 q->rec8b = EZ(t->rec8b * 1000, T);
1890 q->cyc8b = EZ(t->cyc8b * 1000, T);
1891 q->active = EZ(t->active * 1000, T);
1892 q->recover = EZ(t->recover * 1000, T);
1893 q->cycle = EZ(t->cycle * 1000, T);
1894 q->udma = EZ(t->udma * 1000, UT);
1895}
1896
1897void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1898 struct ata_timing *m, unsigned int what)
1899{
1900 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1901 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1902 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1903 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1904 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1905 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1906 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1907 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1908}
1909
1910static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1911{
1912 const struct ata_timing *t;
1913
1914 for (t = ata_timing; t->mode != speed; t++)
91190758 1915 if (t->mode == 0xFF)
452503f9 1916 return NULL;
2e9edbf8 1917 return t;
452503f9
AC
1918}
1919
1920int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1921 struct ata_timing *t, int T, int UT)
1922{
1923 const struct ata_timing *s;
1924 struct ata_timing p;
1925
1926 /*
2e9edbf8 1927 * Find the mode.
75b1f2f8 1928 */
452503f9
AC
1929
1930 if (!(s = ata_timing_find_mode(speed)))
1931 return -EINVAL;
1932
75b1f2f8
AL
1933 memcpy(t, s, sizeof(*s));
1934
452503f9
AC
1935 /*
1936 * If the drive is an EIDE drive, it can tell us it needs extended
1937 * PIO/MW_DMA cycle timing.
1938 */
1939
1940 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1941 memset(&p, 0, sizeof(p));
1942 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1943 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1944 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1945 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1946 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1947 }
1948 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1949 }
1950
1951 /*
1952 * Convert the timing to bus clock counts.
1953 */
1954
75b1f2f8 1955 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1956
1957 /*
c893a3ae
RD
1958 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1959 * S.M.A.R.T * and some other commands. We have to ensure that the
1960 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1961 */
1962
1963 if (speed > XFER_PIO_4) {
1964 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1965 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1966 }
1967
1968 /*
c893a3ae 1969 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1970 */
1971
1972 if (t->act8b + t->rec8b < t->cyc8b) {
1973 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1974 t->rec8b = t->cyc8b - t->act8b;
1975 }
1976
1977 if (t->active + t->recover < t->cycle) {
1978 t->active += (t->cycle - (t->active + t->recover)) / 2;
1979 t->recover = t->cycle - t->active;
1980 }
1981
1982 return 0;
1983}
1984
cf176e1a
TH
1985/**
1986 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
1987 * @dev: Device to adjust xfer masks
1988 * @force_pio0: Force PIO0
1989 *
1990 * Adjust xfer masks of @dev downward. Note that this function
1991 * does not apply the change. Invoking ata_set_mode() afterwards
1992 * will apply the limit.
1993 *
1994 * LOCKING:
1995 * Inherited from caller.
1996 *
1997 * RETURNS:
1998 * 0 on success, negative errno on failure
1999 */
3373efd8 2000int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2001{
2002 unsigned long xfer_mask;
2003 int highbit;
2004
2005 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2006 dev->udma_mask);
2007
2008 if (!xfer_mask)
2009 goto fail;
2010 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2011 if (xfer_mask & ATA_MASK_UDMA)
2012 xfer_mask &= ~ATA_MASK_MWDMA;
2013
2014 highbit = fls(xfer_mask) - 1;
2015 xfer_mask &= ~(1 << highbit);
2016 if (force_pio0)
2017 xfer_mask &= 1 << ATA_SHIFT_PIO;
2018 if (!xfer_mask)
2019 goto fail;
2020
2021 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2022 &dev->udma_mask);
2023
f15a1daf
TH
2024 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2025 ata_mode_string(xfer_mask));
cf176e1a
TH
2026
2027 return 0;
2028
2029 fail:
2030 return -EINVAL;
2031}
2032
3373efd8 2033static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2034{
83206a29
TH
2035 unsigned int err_mask;
2036 int rc;
1da177e4 2037
e8384607 2038 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2039 if (dev->xfer_shift == ATA_SHIFT_PIO)
2040 dev->flags |= ATA_DFLAG_PIO;
2041
3373efd8 2042 err_mask = ata_dev_set_xfermode(dev);
83206a29 2043 if (err_mask) {
f15a1daf
TH
2044 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2045 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2046 return -EIO;
2047 }
1da177e4 2048
3373efd8 2049 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2050 if (rc)
83206a29 2051 return rc;
48a8a14f 2052
23e71c3d
TH
2053 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2054 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2055
f15a1daf
TH
2056 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2057 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2058 return 0;
1da177e4
LT
2059}
2060
1da177e4
LT
2061/**
2062 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2063 * @ap: port on which timings will be programmed
e82cbdb9 2064 * @r_failed_dev: out paramter for failed device
1da177e4 2065 *
e82cbdb9
TH
2066 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2067 * ata_set_mode() fails, pointer to the failing device is
2068 * returned in @r_failed_dev.
780a87f7 2069 *
1da177e4 2070 * LOCKING:
0cba632b 2071 * PCI/etc. bus probe sem.
e82cbdb9
TH
2072 *
2073 * RETURNS:
2074 * 0 on success, negative errno otherwise
1da177e4 2075 */
1ad8e7f9 2076int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2077{
e8e0619f 2078 struct ata_device *dev;
e82cbdb9 2079 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2080
3adcebb2
TH
2081 /* has private set_mode? */
2082 if (ap->ops->set_mode) {
2083 /* FIXME: make ->set_mode handle no device case and
2084 * return error code and failing device on failure.
2085 */
2086 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2087 if (ata_dev_enabled(&ap->device[i])) {
2088 ap->ops->set_mode(ap);
2089 break;
2090 }
2091 }
2092 return 0;
2093 }
2094
a6d5a51c
TH
2095 /* step 1: calculate xfer_mask */
2096 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2097 unsigned int pio_mask, dma_mask;
a6d5a51c 2098
e8e0619f
TH
2099 dev = &ap->device[i];
2100
e1211e3f 2101 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2102 continue;
2103
3373efd8 2104 ata_dev_xfermask(dev);
1da177e4 2105
acf356b1
TH
2106 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2107 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2108 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2109 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2110
4f65977d 2111 found = 1;
5444a6f4
AC
2112 if (dev->dma_mode)
2113 used_dma = 1;
a6d5a51c 2114 }
4f65977d 2115 if (!found)
e82cbdb9 2116 goto out;
a6d5a51c
TH
2117
2118 /* step 2: always set host PIO timings */
e8e0619f
TH
2119 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2120 dev = &ap->device[i];
2121 if (!ata_dev_enabled(dev))
2122 continue;
2123
2124 if (!dev->pio_mode) {
f15a1daf 2125 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2126 rc = -EINVAL;
e82cbdb9 2127 goto out;
e8e0619f
TH
2128 }
2129
2130 dev->xfer_mode = dev->pio_mode;
2131 dev->xfer_shift = ATA_SHIFT_PIO;
2132 if (ap->ops->set_piomode)
2133 ap->ops->set_piomode(ap, dev);
2134 }
1da177e4 2135
a6d5a51c 2136 /* step 3: set host DMA timings */
e8e0619f
TH
2137 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2138 dev = &ap->device[i];
2139
2140 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2141 continue;
2142
2143 dev->xfer_mode = dev->dma_mode;
2144 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2145 if (ap->ops->set_dmamode)
2146 ap->ops->set_dmamode(ap, dev);
2147 }
1da177e4
LT
2148
2149 /* step 4: update devices' xfer mode */
83206a29 2150 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2151 dev = &ap->device[i];
1da177e4 2152
e1211e3f 2153 if (!ata_dev_enabled(dev))
83206a29
TH
2154 continue;
2155
3373efd8 2156 rc = ata_dev_set_mode(dev);
5bbc53f4 2157 if (rc)
e82cbdb9 2158 goto out;
83206a29 2159 }
1da177e4 2160
e8e0619f
TH
2161 /* Record simplex status. If we selected DMA then the other
2162 * host channels are not permitted to do so.
5444a6f4 2163 */
5444a6f4
AC
2164 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2165 ap->host_set->simplex_claimed = 1;
2166
e8e0619f 2167 /* step5: chip specific finalisation */
1da177e4
LT
2168 if (ap->ops->post_set_mode)
2169 ap->ops->post_set_mode(ap);
2170
e82cbdb9
TH
2171 out:
2172 if (rc)
2173 *r_failed_dev = dev;
2174 return rc;
1da177e4
LT
2175}
2176
1fdffbce
JG
2177/**
2178 * ata_tf_to_host - issue ATA taskfile to host controller
2179 * @ap: port to which command is being issued
2180 * @tf: ATA taskfile register set
2181 *
2182 * Issues ATA taskfile register set to ATA host controller,
2183 * with proper synchronization with interrupt handler and
2184 * other threads.
2185 *
2186 * LOCKING:
2187 * spin_lock_irqsave(host_set lock)
2188 */
2189
2190static inline void ata_tf_to_host(struct ata_port *ap,
2191 const struct ata_taskfile *tf)
2192{
2193 ap->ops->tf_load(ap, tf);
2194 ap->ops->exec_command(ap, tf);
2195}
2196
1da177e4
LT
2197/**
2198 * ata_busy_sleep - sleep until BSY clears, or timeout
2199 * @ap: port containing status register to be polled
2200 * @tmout_pat: impatience timeout
2201 * @tmout: overall timeout
2202 *
780a87f7
JG
2203 * Sleep until ATA Status register bit BSY clears,
2204 * or a timeout occurs.
2205 *
2206 * LOCKING: None.
1da177e4
LT
2207 */
2208
6f8b9958
TH
2209unsigned int ata_busy_sleep (struct ata_port *ap,
2210 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2211{
2212 unsigned long timer_start, timeout;
2213 u8 status;
2214
2215 status = ata_busy_wait(ap, ATA_BUSY, 300);
2216 timer_start = jiffies;
2217 timeout = timer_start + tmout_pat;
2218 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2219 msleep(50);
2220 status = ata_busy_wait(ap, ATA_BUSY, 3);
2221 }
2222
2223 if (status & ATA_BUSY)
f15a1daf
TH
2224 ata_port_printk(ap, KERN_WARNING,
2225 "port is slow to respond, please be patient\n");
1da177e4
LT
2226
2227 timeout = timer_start + tmout;
2228 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2229 msleep(50);
2230 status = ata_chk_status(ap);
2231 }
2232
2233 if (status & ATA_BUSY) {
f15a1daf
TH
2234 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2235 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2236 return 1;
2237 }
2238
2239 return 0;
2240}
2241
2242static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2243{
2244 struct ata_ioports *ioaddr = &ap->ioaddr;
2245 unsigned int dev0 = devmask & (1 << 0);
2246 unsigned int dev1 = devmask & (1 << 1);
2247 unsigned long timeout;
2248
2249 /* if device 0 was found in ata_devchk, wait for its
2250 * BSY bit to clear
2251 */
2252 if (dev0)
2253 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2254
2255 /* if device 1 was found in ata_devchk, wait for
2256 * register access, then wait for BSY to clear
2257 */
2258 timeout = jiffies + ATA_TMOUT_BOOT;
2259 while (dev1) {
2260 u8 nsect, lbal;
2261
2262 ap->ops->dev_select(ap, 1);
2263 if (ap->flags & ATA_FLAG_MMIO) {
2264 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2265 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2266 } else {
2267 nsect = inb(ioaddr->nsect_addr);
2268 lbal = inb(ioaddr->lbal_addr);
2269 }
2270 if ((nsect == 1) && (lbal == 1))
2271 break;
2272 if (time_after(jiffies, timeout)) {
2273 dev1 = 0;
2274 break;
2275 }
2276 msleep(50); /* give drive a breather */
2277 }
2278 if (dev1)
2279 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2280
2281 /* is all this really necessary? */
2282 ap->ops->dev_select(ap, 0);
2283 if (dev1)
2284 ap->ops->dev_select(ap, 1);
2285 if (dev0)
2286 ap->ops->dev_select(ap, 0);
2287}
2288
1da177e4
LT
2289static unsigned int ata_bus_softreset(struct ata_port *ap,
2290 unsigned int devmask)
2291{
2292 struct ata_ioports *ioaddr = &ap->ioaddr;
2293
2294 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2295
2296 /* software reset. causes dev0 to be selected */
2297 if (ap->flags & ATA_FLAG_MMIO) {
2298 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2299 udelay(20); /* FIXME: flush */
2300 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2301 udelay(20); /* FIXME: flush */
2302 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2303 } else {
2304 outb(ap->ctl, ioaddr->ctl_addr);
2305 udelay(10);
2306 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2307 udelay(10);
2308 outb(ap->ctl, ioaddr->ctl_addr);
2309 }
2310
2311 /* spec mandates ">= 2ms" before checking status.
2312 * We wait 150ms, because that was the magic delay used for
2313 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2314 * between when the ATA command register is written, and then
2315 * status is checked. Because waiting for "a while" before
2316 * checking status is fine, post SRST, we perform this magic
2317 * delay here as well.
09c7ad79
AC
2318 *
2319 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2320 */
2321 msleep(150);
2322
2e9edbf8 2323 /* Before we perform post reset processing we want to see if
298a41ca
TH
2324 * the bus shows 0xFF because the odd clown forgets the D7
2325 * pulldown resistor.
2326 */
987d2f05 2327 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2328 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2329 return AC_ERR_OTHER;
987d2f05 2330 }
09c7ad79 2331
1da177e4
LT
2332 ata_bus_post_reset(ap, devmask);
2333
2334 return 0;
2335}
2336
2337/**
2338 * ata_bus_reset - reset host port and associated ATA channel
2339 * @ap: port to reset
2340 *
2341 * This is typically the first time we actually start issuing
2342 * commands to the ATA channel. We wait for BSY to clear, then
2343 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2344 * result. Determine what devices, if any, are on the channel
2345 * by looking at the device 0/1 error register. Look at the signature
2346 * stored in each device's taskfile registers, to determine if
2347 * the device is ATA or ATAPI.
2348 *
2349 * LOCKING:
0cba632b
JG
2350 * PCI/etc. bus probe sem.
2351 * Obtains host_set lock.
1da177e4
LT
2352 *
2353 * SIDE EFFECTS:
198e0fed 2354 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2355 */
2356
2357void ata_bus_reset(struct ata_port *ap)
2358{
2359 struct ata_ioports *ioaddr = &ap->ioaddr;
2360 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2361 u8 err;
aec5c3c1 2362 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2363
2364 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2365
2366 /* determine if device 0/1 are present */
2367 if (ap->flags & ATA_FLAG_SATA_RESET)
2368 dev0 = 1;
2369 else {
2370 dev0 = ata_devchk(ap, 0);
2371 if (slave_possible)
2372 dev1 = ata_devchk(ap, 1);
2373 }
2374
2375 if (dev0)
2376 devmask |= (1 << 0);
2377 if (dev1)
2378 devmask |= (1 << 1);
2379
2380 /* select device 0 again */
2381 ap->ops->dev_select(ap, 0);
2382
2383 /* issue bus reset */
2384 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2385 if (ata_bus_softreset(ap, devmask))
2386 goto err_out;
1da177e4
LT
2387
2388 /*
2389 * determine by signature whether we have ATA or ATAPI devices
2390 */
b4dc7623 2391 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2392 if ((slave_possible) && (err != 0x81))
b4dc7623 2393 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2394
2395 /* re-enable interrupts */
2396 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2397 ata_irq_on(ap);
2398
2399 /* is double-select really necessary? */
2400 if (ap->device[1].class != ATA_DEV_NONE)
2401 ap->ops->dev_select(ap, 1);
2402 if (ap->device[0].class != ATA_DEV_NONE)
2403 ap->ops->dev_select(ap, 0);
2404
2405 /* if no devices were detected, disable this port */
2406 if ((ap->device[0].class == ATA_DEV_NONE) &&
2407 (ap->device[1].class == ATA_DEV_NONE))
2408 goto err_out;
2409
2410 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2411 /* set up device control for ATA_FLAG_SATA_RESET */
2412 if (ap->flags & ATA_FLAG_MMIO)
2413 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2414 else
2415 outb(ap->ctl, ioaddr->ctl_addr);
2416 }
2417
2418 DPRINTK("EXIT\n");
2419 return;
2420
2421err_out:
f15a1daf 2422 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2423 ap->ops->port_disable(ap);
2424
2425 DPRINTK("EXIT\n");
2426}
2427
7a7921e8
TH
2428static int sata_phy_resume(struct ata_port *ap)
2429{
2430 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2431 u32 scontrol, sstatus;
81952c54
TH
2432 int rc;
2433
2434 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2435 return rc;
7a7921e8 2436
852ee16a 2437 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2438
2439 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2440 return rc;
7a7921e8
TH
2441
2442 /* Wait for phy to become ready, if necessary. */
2443 do {
2444 msleep(200);
81952c54
TH
2445 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2446 return rc;
7a7921e8
TH
2447 if ((sstatus & 0xf) != 1)
2448 return 0;
2449 } while (time_before(jiffies, timeout));
2450
81952c54 2451 return -EBUSY;
7a7921e8
TH
2452}
2453
8a19ac89
TH
2454/**
2455 * ata_std_probeinit - initialize probing
2456 * @ap: port to be probed
2457 *
2458 * @ap is about to be probed. Initialize it. This function is
2459 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2460 *
2461 * NOTE!!! Do not use this function as probeinit if a low level
2462 * driver implements only hardreset. Just pass NULL as probeinit
2463 * in that case. Using this function is probably okay but doing
2464 * so makes reset sequence different from the original
2465 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2466 */
17efc5f7 2467void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2468{
81952c54
TH
2469 /* resume link */
2470 sata_phy_resume(ap);
1c3fae4d 2471
81952c54
TH
2472 /* wait for device */
2473 if (ata_port_online(ap))
2474 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
8a19ac89
TH
2475}
2476
c2bd5804
TH
2477/**
2478 * ata_std_softreset - reset host port via ATA SRST
2479 * @ap: port to reset
c2bd5804
TH
2480 * @classes: resulting classes of attached devices
2481 *
2482 * Reset host port using ATA SRST. This function is to be used
2483 * as standard callback for ata_drive_*_reset() functions.
2484 *
2485 * LOCKING:
2486 * Kernel thread context (may sleep)
2487 *
2488 * RETURNS:
2489 * 0 on success, -errno otherwise.
2490 */
2bf2cb26 2491int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2492{
2493 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2494 unsigned int devmask = 0, err_mask;
2495 u8 err;
2496
2497 DPRINTK("ENTER\n");
2498
81952c54 2499 if (ata_port_offline(ap)) {
3a39746a
TH
2500 classes[0] = ATA_DEV_NONE;
2501 goto out;
2502 }
2503
c2bd5804
TH
2504 /* determine if device 0/1 are present */
2505 if (ata_devchk(ap, 0))
2506 devmask |= (1 << 0);
2507 if (slave_possible && ata_devchk(ap, 1))
2508 devmask |= (1 << 1);
2509
c2bd5804
TH
2510 /* select device 0 again */
2511 ap->ops->dev_select(ap, 0);
2512
2513 /* issue bus reset */
2514 DPRINTK("about to softreset, devmask=%x\n", devmask);
2515 err_mask = ata_bus_softreset(ap, devmask);
2516 if (err_mask) {
f15a1daf
TH
2517 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2518 err_mask);
c2bd5804
TH
2519 return -EIO;
2520 }
2521
2522 /* determine by signature whether we have ATA or ATAPI devices */
2523 classes[0] = ata_dev_try_classify(ap, 0, &err);
2524 if (slave_possible && err != 0x81)
2525 classes[1] = ata_dev_try_classify(ap, 1, &err);
2526
3a39746a 2527 out:
c2bd5804
TH
2528 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2529 return 0;
2530}
2531
2532/**
2533 * sata_std_hardreset - reset host port via SATA phy reset
2534 * @ap: port to reset
c2bd5804
TH
2535 * @class: resulting class of attached device
2536 *
2537 * SATA phy-reset host port using DET bits of SControl register.
2538 * This function is to be used as standard callback for
2539 * ata_drive_*_reset().
2540 *
2541 * LOCKING:
2542 * Kernel thread context (may sleep)
2543 *
2544 * RETURNS:
2545 * 0 on success, -errno otherwise.
2546 */
2bf2cb26 2547int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2548{
852ee16a 2549 u32 scontrol;
81952c54 2550 int rc;
852ee16a 2551
c2bd5804
TH
2552 DPRINTK("ENTER\n");
2553
3c567b7d 2554 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2555 /* SATA spec says nothing about how to reconfigure
2556 * spd. To be on the safe side, turn off phy during
2557 * reconfiguration. This works for at least ICH7 AHCI
2558 * and Sil3124.
2559 */
81952c54
TH
2560 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2561 return rc;
2562
1c3fae4d 2563 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2564
2565 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2566 return rc;
1c3fae4d 2567
3c567b7d 2568 sata_set_spd(ap);
1c3fae4d
TH
2569 }
2570
2571 /* issue phy wake/reset */
81952c54
TH
2572 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2573 return rc;
2574
852ee16a 2575 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2576
2577 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2578 return rc;
c2bd5804 2579
1c3fae4d 2580 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2581 * 10.4.2 says at least 1 ms.
2582 */
2583 msleep(1);
2584
1c3fae4d 2585 /* bring phy back */
7a7921e8 2586 sata_phy_resume(ap);
c2bd5804 2587
c2bd5804 2588 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2589 if (ata_port_offline(ap)) {
c2bd5804
TH
2590 *class = ATA_DEV_NONE;
2591 DPRINTK("EXIT, link offline\n");
2592 return 0;
2593 }
2594
2595 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2596 ata_port_printk(ap, KERN_ERR,
2597 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2598 return -EIO;
2599 }
2600
3a39746a
TH
2601 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2602
c2bd5804
TH
2603 *class = ata_dev_try_classify(ap, 0, NULL);
2604
2605 DPRINTK("EXIT, class=%u\n", *class);
2606 return 0;
2607}
2608
2609/**
2610 * ata_std_postreset - standard postreset callback
2611 * @ap: the target ata_port
2612 * @classes: classes of attached devices
2613 *
2614 * This function is invoked after a successful reset. Note that
2615 * the device might have been reset more than once using
2616 * different reset methods before postreset is invoked.
c2bd5804
TH
2617 *
2618 * This function is to be used as standard callback for
2619 * ata_drive_*_reset().
2620 *
2621 * LOCKING:
2622 * Kernel thread context (may sleep)
2623 */
2624void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2625{
dc2b3515
TH
2626 u32 serror;
2627
c2bd5804
TH
2628 DPRINTK("ENTER\n");
2629
c2bd5804 2630 /* print link status */
81952c54 2631 sata_print_link_status(ap);
c2bd5804 2632
dc2b3515
TH
2633 /* clear SError */
2634 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2635 sata_scr_write(ap, SCR_ERROR, serror);
2636
3a39746a 2637 /* re-enable interrupts */
e3180499
TH
2638 if (!ap->ops->error_handler) {
2639 /* FIXME: hack. create a hook instead */
2640 if (ap->ioaddr.ctl_addr)
2641 ata_irq_on(ap);
2642 }
c2bd5804
TH
2643
2644 /* is double-select really necessary? */
2645 if (classes[0] != ATA_DEV_NONE)
2646 ap->ops->dev_select(ap, 1);
2647 if (classes[1] != ATA_DEV_NONE)
2648 ap->ops->dev_select(ap, 0);
2649
3a39746a
TH
2650 /* bail out if no device is present */
2651 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2652 DPRINTK("EXIT, no device\n");
2653 return;
2654 }
2655
2656 /* set up device control */
2657 if (ap->ioaddr.ctl_addr) {
2658 if (ap->flags & ATA_FLAG_MMIO)
2659 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2660 else
2661 outb(ap->ctl, ap->ioaddr.ctl_addr);
2662 }
c2bd5804
TH
2663
2664 DPRINTK("EXIT\n");
2665}
2666
2667/**
2668 * ata_std_probe_reset - standard probe reset method
2669 * @ap: prot to perform probe-reset
2670 * @classes: resulting classes of attached devices
2671 *
2672 * The stock off-the-shelf ->probe_reset method.
2673 *
2674 * LOCKING:
2675 * Kernel thread context (may sleep)
2676 *
2677 * RETURNS:
2678 * 0 on success, -errno otherwise.
2679 */
2680int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2681{
2682 ata_reset_fn_t hardreset;
2683
2684 hardreset = NULL;
81952c54 2685 if (sata_scr_valid(ap))
c2bd5804
TH
2686 hardreset = sata_std_hardreset;
2687
8a19ac89 2688 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2689 ata_std_softreset, hardreset,
c2bd5804
TH
2690 ata_std_postreset, classes);
2691}
2692
2bf2cb26 2693int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
96bd39ec 2694 unsigned int *classes)
a62c0fc5
TH
2695{
2696 int i, rc;
2697
2698 for (i = 0; i < ATA_MAX_DEVICES; i++)
2699 classes[i] = ATA_DEV_UNKNOWN;
2700
2bf2cb26 2701 rc = reset(ap, classes);
a62c0fc5
TH
2702 if (rc)
2703 return rc;
2704
2705 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2706 * is complete and convert all ATA_DEV_UNKNOWN to
2707 * ATA_DEV_NONE.
2708 */
2709 for (i = 0; i < ATA_MAX_DEVICES; i++)
2710 if (classes[i] != ATA_DEV_UNKNOWN)
2711 break;
2712
2713 if (i < ATA_MAX_DEVICES)
2714 for (i = 0; i < ATA_MAX_DEVICES; i++)
2715 if (classes[i] == ATA_DEV_UNKNOWN)
2716 classes[i] = ATA_DEV_NONE;
2717
9974e7cc 2718 return 0;
a62c0fc5
TH
2719}
2720
2721/**
2722 * ata_drive_probe_reset - Perform probe reset with given methods
2723 * @ap: port to reset
7944ea95 2724 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2725 * @softreset: softreset method (can be NULL)
2726 * @hardreset: hardreset method (can be NULL)
2727 * @postreset: postreset method (can be NULL)
2728 * @classes: resulting classes of attached devices
2729 *
2730 * Reset the specified port and classify attached devices using
2731 * given methods. This function prefers softreset but tries all
2732 * possible reset sequences to reset and classify devices. This
2733 * function is intended to be used for constructing ->probe_reset
2734 * callback by low level drivers.
2735 *
2736 * Reset methods should follow the following rules.
2737 *
2738 * - Return 0 on sucess, -errno on failure.
2739 * - If classification is supported, fill classes[] with
2740 * recognized class codes.
2741 * - If classification is not supported, leave classes[] alone.
a62c0fc5
TH
2742 *
2743 * LOCKING:
2744 * Kernel thread context (may sleep)
2745 *
2746 * RETURNS:
2747 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2748 * if classification fails, and any error code from reset
2749 * methods.
2750 */
7944ea95 2751int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2752 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2753 ata_postreset_fn_t postreset, unsigned int *classes)
2754{
2755 int rc = -EINVAL;
2756
e3180499
TH
2757 ata_eh_freeze_port(ap);
2758
7944ea95
TH
2759 if (probeinit)
2760 probeinit(ap);
2761
3c567b7d 2762 if (softreset && !sata_set_spd_needed(ap)) {
96bd39ec 2763 rc = ata_do_reset(ap, softreset, classes);
9974e7cc
TH
2764 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2765 goto done;
f15a1daf
TH
2766 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2767 "will try hardreset in 5 secs\n");
edbabd86 2768 ssleep(5);
a62c0fc5
TH
2769 }
2770
2771 if (!hardreset)
9974e7cc 2772 goto done;
a62c0fc5 2773
90dac02c 2774 while (1) {
96bd39ec 2775 rc = ata_do_reset(ap, hardreset, classes);
90dac02c
TH
2776 if (rc == 0) {
2777 if (classes[0] != ATA_DEV_UNKNOWN)
2778 goto done;
2779 break;
2780 }
2781
3c567b7d 2782 if (sata_down_spd_limit(ap))
90dac02c 2783 goto done;
edbabd86 2784
f15a1daf
TH
2785 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2786 "will retry in 5 secs\n");
edbabd86 2787 ssleep(5);
90dac02c 2788 }
a62c0fc5 2789
edbabd86 2790 if (softreset) {
f15a1daf
TH
2791 ata_port_printk(ap, KERN_INFO,
2792 "hardreset succeeded without classification, "
2793 "will retry softreset in 5 secs\n");
edbabd86
TH
2794 ssleep(5);
2795
96bd39ec 2796 rc = ata_do_reset(ap, softreset, classes);
edbabd86 2797 }
a62c0fc5 2798
9974e7cc 2799 done:
96bd39ec
TH
2800 if (rc == 0) {
2801 if (postreset)
2802 postreset(ap, classes);
e3180499
TH
2803
2804 ata_eh_thaw_port(ap);
2805
96bd39ec
TH
2806 if (classes[0] == ATA_DEV_UNKNOWN)
2807 rc = -ENODEV;
2808 }
a62c0fc5
TH
2809 return rc;
2810}
2811
623a3128
TH
2812/**
2813 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2814 * @dev: device to compare against
2815 * @new_class: class of the new device
2816 * @new_id: IDENTIFY page of the new device
2817 *
2818 * Compare @new_class and @new_id against @dev and determine
2819 * whether @dev is the device indicated by @new_class and
2820 * @new_id.
2821 *
2822 * LOCKING:
2823 * None.
2824 *
2825 * RETURNS:
2826 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2827 */
3373efd8
TH
2828static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2829 const u16 *new_id)
623a3128
TH
2830{
2831 const u16 *old_id = dev->id;
2832 unsigned char model[2][41], serial[2][21];
2833 u64 new_n_sectors;
2834
2835 if (dev->class != new_class) {
f15a1daf
TH
2836 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2837 dev->class, new_class);
623a3128
TH
2838 return 0;
2839 }
2840
2841 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2842 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2843 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2844 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2845 new_n_sectors = ata_id_n_sectors(new_id);
2846
2847 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2848 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2849 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2850 return 0;
2851 }
2852
2853 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2854 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2855 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2856 return 0;
2857 }
2858
2859 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2860 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2861 "%llu != %llu\n",
2862 (unsigned long long)dev->n_sectors,
2863 (unsigned long long)new_n_sectors);
623a3128
TH
2864 return 0;
2865 }
2866
2867 return 1;
2868}
2869
2870/**
2871 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2872 * @dev: device to revalidate
2873 * @post_reset: is this revalidation after reset?
2874 *
2875 * Re-read IDENTIFY page and make sure @dev is still attached to
2876 * the port.
2877 *
2878 * LOCKING:
2879 * Kernel thread context (may sleep)
2880 *
2881 * RETURNS:
2882 * 0 on success, negative errno otherwise
2883 */
3373efd8 2884int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2885{
5eb45c02 2886 unsigned int class = dev->class;
f15a1daf 2887 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2888 int rc;
2889
5eb45c02
TH
2890 if (!ata_dev_enabled(dev)) {
2891 rc = -ENODEV;
2892 goto fail;
2893 }
623a3128 2894
fe635c7e 2895 /* read ID data */
3373efd8 2896 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2897 if (rc)
2898 goto fail;
2899
2900 /* is the device still there? */
3373efd8 2901 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2902 rc = -ENODEV;
2903 goto fail;
2904 }
2905
fe635c7e 2906 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2907
2908 /* configure device according to the new ID */
3373efd8 2909 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2910 if (rc == 0)
2911 return 0;
623a3128
TH
2912
2913 fail:
f15a1daf 2914 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2915 return rc;
2916}
2917
98ac62de 2918static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2919 "WDC AC11000H", NULL,
2920 "WDC AC22100H", NULL,
2921 "WDC AC32500H", NULL,
2922 "WDC AC33100H", NULL,
2923 "WDC AC31600H", NULL,
2924 "WDC AC32100H", "24.09P07",
2925 "WDC AC23200L", "21.10N21",
2926 "Compaq CRD-8241B", NULL,
2927 "CRD-8400B", NULL,
2928 "CRD-8480B", NULL,
2929 "CRD-8482B", NULL,
2930 "CRD-84", NULL,
2931 "SanDisk SDP3B", NULL,
2932 "SanDisk SDP3B-64", NULL,
2933 "SANYO CD-ROM CRD", NULL,
2934 "HITACHI CDR-8", NULL,
2e9edbf8 2935 "HITACHI CDR-8335", NULL,
f4b15fef 2936 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2937 "Toshiba CD-ROM XM-6202B", NULL,
2938 "TOSHIBA CD-ROM XM-1702BC", NULL,
2939 "CD-532E-A", NULL,
2940 "E-IDE CD-ROM CR-840", NULL,
2941 "CD-ROM Drive/F5A", NULL,
2942 "WPI CDD-820", NULL,
f4b15fef 2943 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2944 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2945 "SanDisk SDP3B-64", NULL,
2946 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2947 "_NEC DV5800A", NULL,
2948 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2949};
2e9edbf8 2950
f4b15fef
AC
2951static int ata_strim(char *s, size_t len)
2952{
2953 len = strnlen(s, len);
2954
2955 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2956 while ((len > 0) && (s[len - 1] == ' ')) {
2957 len--;
2958 s[len] = 0;
2959 }
2960 return len;
2961}
1da177e4 2962
057ace5e 2963static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2964{
f4b15fef
AC
2965 unsigned char model_num[40];
2966 unsigned char model_rev[16];
2967 unsigned int nlen, rlen;
1da177e4
LT
2968 int i;
2969
f4b15fef
AC
2970 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2971 sizeof(model_num));
2972 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2973 sizeof(model_rev));
2974 nlen = ata_strim(model_num, sizeof(model_num));
2975 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2976
f4b15fef
AC
2977 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2978 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2979 if (ata_dma_blacklist[i+1] == NULL)
2980 return 1;
2981 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2982 return 1;
2983 }
2984 }
1da177e4
LT
2985 return 0;
2986}
2987
a6d5a51c
TH
2988/**
2989 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
2990 * @dev: Device to compute xfermask for
2991 *
acf356b1
TH
2992 * Compute supported xfermask of @dev and store it in
2993 * dev->*_mask. This function is responsible for applying all
2994 * known limits including host controller limits, device
2995 * blacklist, etc...
a6d5a51c 2996 *
600511e8
TH
2997 * FIXME: The current implementation limits all transfer modes to
2998 * the fastest of the lowested device on the port. This is not
05c8e0ac 2999 * required on most controllers.
600511e8 3000 *
a6d5a51c
TH
3001 * LOCKING:
3002 * None.
a6d5a51c 3003 */
3373efd8 3004static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3005{
3373efd8 3006 struct ata_port *ap = dev->ap;
5444a6f4 3007 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
3008 unsigned long xfer_mask;
3009 int i;
1da177e4 3010
565083e1
TH
3011 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3012 ap->mwdma_mask, ap->udma_mask);
3013
3014 /* Apply cable rule here. Don't apply it early because when
3015 * we handle hot plug the cable type can itself change.
3016 */
3017 if (ap->cbl == ATA_CBL_PATA40)
3018 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 3019
5444a6f4 3020 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
3021 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3022 struct ata_device *d = &ap->device[i];
565083e1
TH
3023
3024 if (ata_dev_absent(d))
3025 continue;
3026
3027 if (ata_dev_disabled(d)) {
3028 /* to avoid violating device selection timing */
3029 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3030 UINT_MAX, UINT_MAX);
a6d5a51c 3031 continue;
565083e1
TH
3032 }
3033
3034 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3035 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
3036 xfer_mask &= ata_id_xfermask(d->id);
3037 if (ata_dma_blacklisted(d))
3038 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
3039 }
3040
a6d5a51c 3041 if (ata_dma_blacklisted(dev))
f15a1daf
TH
3042 ata_dev_printk(dev, KERN_WARNING,
3043 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 3044
5444a6f4
AC
3045 if (hs->flags & ATA_HOST_SIMPLEX) {
3046 if (hs->simplex_claimed)
3047 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3048 }
565083e1 3049
5444a6f4
AC
3050 if (ap->ops->mode_filter)
3051 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3052
565083e1
TH
3053 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3054 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3055}
3056
1da177e4
LT
3057/**
3058 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3059 * @dev: Device to which command will be sent
3060 *
780a87f7
JG
3061 * Issue SET FEATURES - XFER MODE command to device @dev
3062 * on port @ap.
3063 *
1da177e4 3064 * LOCKING:
0cba632b 3065 * PCI/etc. bus probe sem.
83206a29
TH
3066 *
3067 * RETURNS:
3068 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3069 */
3070
3373efd8 3071static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3072{
a0123703 3073 struct ata_taskfile tf;
83206a29 3074 unsigned int err_mask;
1da177e4
LT
3075
3076 /* set up set-features taskfile */
3077 DPRINTK("set features - xfer mode\n");
3078
3373efd8 3079 ata_tf_init(dev, &tf);
a0123703
TH
3080 tf.command = ATA_CMD_SET_FEATURES;
3081 tf.feature = SETFEATURES_XFER;
3082 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3083 tf.protocol = ATA_PROT_NODATA;
3084 tf.nsect = dev->xfer_mode;
1da177e4 3085
3373efd8 3086 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3087
83206a29
TH
3088 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3089 return err_mask;
1da177e4
LT
3090}
3091
8bf62ece
AL
3092/**
3093 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3094 * @dev: Device to which command will be sent
e2a7f77a
RD
3095 * @heads: Number of heads (taskfile parameter)
3096 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3097 *
3098 * LOCKING:
6aff8f1f
TH
3099 * Kernel thread context (may sleep)
3100 *
3101 * RETURNS:
3102 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3103 */
3373efd8
TH
3104static unsigned int ata_dev_init_params(struct ata_device *dev,
3105 u16 heads, u16 sectors)
8bf62ece 3106{
a0123703 3107 struct ata_taskfile tf;
6aff8f1f 3108 unsigned int err_mask;
8bf62ece
AL
3109
3110 /* Number of sectors per track 1-255. Number of heads 1-16 */
3111 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3112 return AC_ERR_INVALID;
8bf62ece
AL
3113
3114 /* set up init dev params taskfile */
3115 DPRINTK("init dev params \n");
3116
3373efd8 3117 ata_tf_init(dev, &tf);
a0123703
TH
3118 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3119 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3120 tf.protocol = ATA_PROT_NODATA;
3121 tf.nsect = sectors;
3122 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3123
3373efd8 3124 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3125
6aff8f1f
TH
3126 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3127 return err_mask;
8bf62ece
AL
3128}
3129
1da177e4 3130/**
0cba632b
JG
3131 * ata_sg_clean - Unmap DMA memory associated with command
3132 * @qc: Command containing DMA memory to be released
3133 *
3134 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3135 *
3136 * LOCKING:
0cba632b 3137 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3138 */
3139
3140static void ata_sg_clean(struct ata_queued_cmd *qc)
3141{
3142 struct ata_port *ap = qc->ap;
cedc9a47 3143 struct scatterlist *sg = qc->__sg;
1da177e4 3144 int dir = qc->dma_dir;
cedc9a47 3145 void *pad_buf = NULL;
1da177e4 3146
a4631474
TH
3147 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3148 WARN_ON(sg == NULL);
1da177e4
LT
3149
3150 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3151 WARN_ON(qc->n_elem > 1);
1da177e4 3152
2c13b7ce 3153 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3154
cedc9a47
JG
3155 /* if we padded the buffer out to 32-bit bound, and data
3156 * xfer direction is from-device, we must copy from the
3157 * pad buffer back into the supplied buffer
3158 */
3159 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3160 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3161
3162 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3163 if (qc->n_elem)
2f1f610b 3164 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3165 /* restore last sg */
3166 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3167 if (pad_buf) {
3168 struct scatterlist *psg = &qc->pad_sgent;
3169 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3170 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3171 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3172 }
3173 } else {
2e242fa9 3174 if (qc->n_elem)
2f1f610b 3175 dma_unmap_single(ap->dev,
e1410f2d
JG
3176 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3177 dir);
cedc9a47
JG
3178 /* restore sg */
3179 sg->length += qc->pad_len;
3180 if (pad_buf)
3181 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3182 pad_buf, qc->pad_len);
3183 }
1da177e4
LT
3184
3185 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3186 qc->__sg = NULL;
1da177e4
LT
3187}
3188
3189/**
3190 * ata_fill_sg - Fill PCI IDE PRD table
3191 * @qc: Metadata associated with taskfile to be transferred
3192 *
780a87f7
JG
3193 * Fill PCI IDE PRD (scatter-gather) table with segments
3194 * associated with the current disk command.
3195 *
1da177e4 3196 * LOCKING:
780a87f7 3197 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3198 *
3199 */
3200static void ata_fill_sg(struct ata_queued_cmd *qc)
3201{
1da177e4 3202 struct ata_port *ap = qc->ap;
cedc9a47
JG
3203 struct scatterlist *sg;
3204 unsigned int idx;
1da177e4 3205
a4631474 3206 WARN_ON(qc->__sg == NULL);
f131883e 3207 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3208
3209 idx = 0;
cedc9a47 3210 ata_for_each_sg(sg, qc) {
1da177e4
LT
3211 u32 addr, offset;
3212 u32 sg_len, len;
3213
3214 /* determine if physical DMA addr spans 64K boundary.
3215 * Note h/w doesn't support 64-bit, so we unconditionally
3216 * truncate dma_addr_t to u32.
3217 */
3218 addr = (u32) sg_dma_address(sg);
3219 sg_len = sg_dma_len(sg);
3220
3221 while (sg_len) {
3222 offset = addr & 0xffff;
3223 len = sg_len;
3224 if ((offset + sg_len) > 0x10000)
3225 len = 0x10000 - offset;
3226
3227 ap->prd[idx].addr = cpu_to_le32(addr);
3228 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3229 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3230
3231 idx++;
3232 sg_len -= len;
3233 addr += len;
3234 }
3235 }
3236
3237 if (idx)
3238 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3239}
3240/**
3241 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3242 * @qc: Metadata associated with taskfile to check
3243 *
780a87f7
JG
3244 * Allow low-level driver to filter ATA PACKET commands, returning
3245 * a status indicating whether or not it is OK to use DMA for the
3246 * supplied PACKET command.
3247 *
1da177e4 3248 * LOCKING:
0cba632b
JG
3249 * spin_lock_irqsave(host_set lock)
3250 *
1da177e4
LT
3251 * RETURNS: 0 when ATAPI DMA can be used
3252 * nonzero otherwise
3253 */
3254int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3255{
3256 struct ata_port *ap = qc->ap;
3257 int rc = 0; /* Assume ATAPI DMA is OK by default */
3258
3259 if (ap->ops->check_atapi_dma)
3260 rc = ap->ops->check_atapi_dma(qc);
3261
c2bbc551
AL
3262 /* We don't support polling DMA.
3263 * Use PIO if the LLDD handles only interrupts in
3264 * the HSM_ST_LAST state and the ATAPI device
3265 * generates CDB interrupts.
3266 */
3267 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3268 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3269 rc = 1;
3270
1da177e4
LT
3271 return rc;
3272}
3273/**
3274 * ata_qc_prep - Prepare taskfile for submission
3275 * @qc: Metadata associated with taskfile to be prepared
3276 *
780a87f7
JG
3277 * Prepare ATA taskfile for submission.
3278 *
1da177e4
LT
3279 * LOCKING:
3280 * spin_lock_irqsave(host_set lock)
3281 */
3282void ata_qc_prep(struct ata_queued_cmd *qc)
3283{
3284 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3285 return;
3286
3287 ata_fill_sg(qc);
3288}
3289
e46834cd
BK
3290void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3291
0cba632b
JG
3292/**
3293 * ata_sg_init_one - Associate command with memory buffer
3294 * @qc: Command to be associated
3295 * @buf: Memory buffer
3296 * @buflen: Length of memory buffer, in bytes.
3297 *
3298 * Initialize the data-related elements of queued_cmd @qc
3299 * to point to a single memory buffer, @buf of byte length @buflen.
3300 *
3301 * LOCKING:
3302 * spin_lock_irqsave(host_set lock)
3303 */
3304
1da177e4
LT
3305void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3306{
3307 struct scatterlist *sg;
3308
3309 qc->flags |= ATA_QCFLAG_SINGLE;
3310
3311 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3312 qc->__sg = &qc->sgent;
1da177e4 3313 qc->n_elem = 1;
cedc9a47 3314 qc->orig_n_elem = 1;
1da177e4
LT
3315 qc->buf_virt = buf;
3316
cedc9a47 3317 sg = qc->__sg;
f0612bbc 3318 sg_init_one(sg, buf, buflen);
1da177e4
LT
3319}
3320
0cba632b
JG
3321/**
3322 * ata_sg_init - Associate command with scatter-gather table.
3323 * @qc: Command to be associated
3324 * @sg: Scatter-gather table.
3325 * @n_elem: Number of elements in s/g table.
3326 *
3327 * Initialize the data-related elements of queued_cmd @qc
3328 * to point to a scatter-gather table @sg, containing @n_elem
3329 * elements.
3330 *
3331 * LOCKING:
3332 * spin_lock_irqsave(host_set lock)
3333 */
3334
1da177e4
LT
3335void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3336 unsigned int n_elem)
3337{
3338 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3339 qc->__sg = sg;
1da177e4 3340 qc->n_elem = n_elem;
cedc9a47 3341 qc->orig_n_elem = n_elem;
1da177e4
LT
3342}
3343
3344/**
0cba632b
JG
3345 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3346 * @qc: Command with memory buffer to be mapped.
3347 *
3348 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3349 *
3350 * LOCKING:
3351 * spin_lock_irqsave(host_set lock)
3352 *
3353 * RETURNS:
0cba632b 3354 * Zero on success, negative on error.
1da177e4
LT
3355 */
3356
3357static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3358{
3359 struct ata_port *ap = qc->ap;
3360 int dir = qc->dma_dir;
cedc9a47 3361 struct scatterlist *sg = qc->__sg;
1da177e4 3362 dma_addr_t dma_address;
2e242fa9 3363 int trim_sg = 0;
1da177e4 3364
cedc9a47
JG
3365 /* we must lengthen transfers to end on a 32-bit boundary */
3366 qc->pad_len = sg->length & 3;
3367 if (qc->pad_len) {
3368 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3369 struct scatterlist *psg = &qc->pad_sgent;
3370
a4631474 3371 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3372
3373 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3374
3375 if (qc->tf.flags & ATA_TFLAG_WRITE)
3376 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3377 qc->pad_len);
3378
3379 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3380 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3381 /* trim sg */
3382 sg->length -= qc->pad_len;
2e242fa9
TH
3383 if (sg->length == 0)
3384 trim_sg = 1;
cedc9a47
JG
3385
3386 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3387 sg->length, qc->pad_len);
3388 }
3389
2e242fa9
TH
3390 if (trim_sg) {
3391 qc->n_elem--;
e1410f2d
JG
3392 goto skip_map;
3393 }
3394
2f1f610b 3395 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3396 sg->length, dir);
537a95d9
TH
3397 if (dma_mapping_error(dma_address)) {
3398 /* restore sg */
3399 sg->length += qc->pad_len;
1da177e4 3400 return -1;
537a95d9 3401 }
1da177e4
LT
3402
3403 sg_dma_address(sg) = dma_address;
32529e01 3404 sg_dma_len(sg) = sg->length;
1da177e4 3405
2e242fa9 3406skip_map:
1da177e4
LT
3407 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3408 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3409
3410 return 0;
3411}
3412
3413/**
0cba632b
JG
3414 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3415 * @qc: Command with scatter-gather table to be mapped.
3416 *
3417 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3418 *
3419 * LOCKING:
3420 * spin_lock_irqsave(host_set lock)
3421 *
3422 * RETURNS:
0cba632b 3423 * Zero on success, negative on error.
1da177e4
LT
3424 *
3425 */
3426
3427static int ata_sg_setup(struct ata_queued_cmd *qc)
3428{
3429 struct ata_port *ap = qc->ap;
cedc9a47
JG
3430 struct scatterlist *sg = qc->__sg;
3431 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3432 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3433
3434 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3435 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3436
cedc9a47
JG
3437 /* we must lengthen transfers to end on a 32-bit boundary */
3438 qc->pad_len = lsg->length & 3;
3439 if (qc->pad_len) {
3440 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3441 struct scatterlist *psg = &qc->pad_sgent;
3442 unsigned int offset;
3443
a4631474 3444 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3445
3446 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3447
3448 /*
3449 * psg->page/offset are used to copy to-be-written
3450 * data in this function or read data in ata_sg_clean.
3451 */
3452 offset = lsg->offset + lsg->length - qc->pad_len;
3453 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3454 psg->offset = offset_in_page(offset);
3455
3456 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3457 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3458 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3459 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3460 }
3461
3462 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3463 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3464 /* trim last sg */
3465 lsg->length -= qc->pad_len;
e1410f2d
JG
3466 if (lsg->length == 0)
3467 trim_sg = 1;
cedc9a47
JG
3468
3469 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3470 qc->n_elem - 1, lsg->length, qc->pad_len);
3471 }
3472
e1410f2d
JG
3473 pre_n_elem = qc->n_elem;
3474 if (trim_sg && pre_n_elem)
3475 pre_n_elem--;
3476
3477 if (!pre_n_elem) {
3478 n_elem = 0;
3479 goto skip_map;
3480 }
3481
1da177e4 3482 dir = qc->dma_dir;
2f1f610b 3483 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3484 if (n_elem < 1) {
3485 /* restore last sg */
3486 lsg->length += qc->pad_len;
1da177e4 3487 return -1;
537a95d9 3488 }
1da177e4
LT
3489
3490 DPRINTK("%d sg elements mapped\n", n_elem);
3491
e1410f2d 3492skip_map:
1da177e4
LT
3493 qc->n_elem = n_elem;
3494
3495 return 0;
3496}
3497
0baab86b 3498/**
c893a3ae 3499 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3500 * @buf: Buffer to swap
3501 * @buf_words: Number of 16-bit words in buffer.
3502 *
3503 * Swap halves of 16-bit words if needed to convert from
3504 * little-endian byte order to native cpu byte order, or
3505 * vice-versa.
3506 *
3507 * LOCKING:
6f0ef4fa 3508 * Inherited from caller.
0baab86b 3509 */
1da177e4
LT
3510void swap_buf_le16(u16 *buf, unsigned int buf_words)
3511{
3512#ifdef __BIG_ENDIAN
3513 unsigned int i;
3514
3515 for (i = 0; i < buf_words; i++)
3516 buf[i] = le16_to_cpu(buf[i]);
3517#endif /* __BIG_ENDIAN */
3518}
3519
6ae4cfb5
AL
3520/**
3521 * ata_mmio_data_xfer - Transfer data by MMIO
a6b2c5d4 3522 * @dev: device for this I/O
6ae4cfb5
AL
3523 * @buf: data buffer
3524 * @buflen: buffer length
344babaa 3525 * @write_data: read/write
6ae4cfb5
AL
3526 *
3527 * Transfer data from/to the device data register by MMIO.
3528 *
3529 * LOCKING:
3530 * Inherited from caller.
6ae4cfb5
AL
3531 */
3532
a6b2c5d4
AC
3533void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3534 unsigned int buflen, int write_data)
1da177e4 3535{
a6b2c5d4 3536 struct ata_port *ap = adev->ap;
1da177e4
LT
3537 unsigned int i;
3538 unsigned int words = buflen >> 1;
3539 u16 *buf16 = (u16 *) buf;
3540 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3541
6ae4cfb5 3542 /* Transfer multiple of 2 bytes */
1da177e4
LT
3543 if (write_data) {
3544 for (i = 0; i < words; i++)
3545 writew(le16_to_cpu(buf16[i]), mmio);
3546 } else {
3547 for (i = 0; i < words; i++)
3548 buf16[i] = cpu_to_le16(readw(mmio));
3549 }
6ae4cfb5
AL
3550
3551 /* Transfer trailing 1 byte, if any. */
3552 if (unlikely(buflen & 0x01)) {
3553 u16 align_buf[1] = { 0 };
3554 unsigned char *trailing_buf = buf + buflen - 1;
3555
3556 if (write_data) {
3557 memcpy(align_buf, trailing_buf, 1);
3558 writew(le16_to_cpu(align_buf[0]), mmio);
3559 } else {
3560 align_buf[0] = cpu_to_le16(readw(mmio));
3561 memcpy(trailing_buf, align_buf, 1);
3562 }
3563 }
1da177e4
LT
3564}
3565
6ae4cfb5
AL
3566/**
3567 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3568 * @adev: device to target
6ae4cfb5
AL
3569 * @buf: data buffer
3570 * @buflen: buffer length
344babaa 3571 * @write_data: read/write
6ae4cfb5
AL
3572 *
3573 * Transfer data from/to the device data register by PIO.
3574 *
3575 * LOCKING:
3576 * Inherited from caller.
6ae4cfb5
AL
3577 */
3578
a6b2c5d4
AC
3579void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3580 unsigned int buflen, int write_data)
1da177e4 3581{
a6b2c5d4 3582 struct ata_port *ap = adev->ap;
6ae4cfb5 3583 unsigned int words = buflen >> 1;
1da177e4 3584
6ae4cfb5 3585 /* Transfer multiple of 2 bytes */
1da177e4 3586 if (write_data)
6ae4cfb5 3587 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3588 else
6ae4cfb5
AL
3589 insw(ap->ioaddr.data_addr, buf, words);
3590
3591 /* Transfer trailing 1 byte, if any. */
3592 if (unlikely(buflen & 0x01)) {
3593 u16 align_buf[1] = { 0 };
3594 unsigned char *trailing_buf = buf + buflen - 1;
3595
3596 if (write_data) {
3597 memcpy(align_buf, trailing_buf, 1);
3598 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3599 } else {
3600 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3601 memcpy(trailing_buf, align_buf, 1);
3602 }
3603 }
1da177e4
LT
3604}
3605
75e99585
AC
3606/**
3607 * ata_pio_data_xfer_noirq - Transfer data by PIO
3608 * @adev: device to target
3609 * @buf: data buffer
3610 * @buflen: buffer length
3611 * @write_data: read/write
3612 *
3613 * Transfer data from/to the device data register by PIO. Do the
3614 * transfer with interrupts disabled.
3615 *
3616 * LOCKING:
3617 * Inherited from caller.
3618 */
3619
3620void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3621 unsigned int buflen, int write_data)
3622{
3623 unsigned long flags;
3624 local_irq_save(flags);
3625 ata_pio_data_xfer(adev, buf, buflen, write_data);
3626 local_irq_restore(flags);
3627}
3628
3629
6ae4cfb5
AL
3630/**
3631 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3632 * @qc: Command on going
3633 *
3634 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3635 *
3636 * LOCKING:
3637 * Inherited from caller.
3638 */
3639
1da177e4
LT
3640static void ata_pio_sector(struct ata_queued_cmd *qc)
3641{
3642 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3643 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3644 struct ata_port *ap = qc->ap;
3645 struct page *page;
3646 unsigned int offset;
3647 unsigned char *buf;
3648
3649 if (qc->cursect == (qc->nsect - 1))
14be71f4 3650 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3651
3652 page = sg[qc->cursg].page;
3653 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3654
3655 /* get the current page and offset */
3656 page = nth_page(page, (offset >> PAGE_SHIFT));
3657 offset %= PAGE_SIZE;
3658
1da177e4
LT
3659 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3660
91b8b313
AL
3661 if (PageHighMem(page)) {
3662 unsigned long flags;
3663
a6b2c5d4 3664 /* FIXME: use a bounce buffer */
91b8b313
AL
3665 local_irq_save(flags);
3666 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3667
91b8b313 3668 /* do the actual data transfer */
a6b2c5d4 3669 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3670
91b8b313
AL
3671 kunmap_atomic(buf, KM_IRQ0);
3672 local_irq_restore(flags);
3673 } else {
3674 buf = page_address(page);
a6b2c5d4 3675 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3676 }
1da177e4
LT
3677
3678 qc->cursect++;
3679 qc->cursg_ofs++;
3680
32529e01 3681 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3682 qc->cursg++;
3683 qc->cursg_ofs = 0;
3684 }
1da177e4 3685}
1da177e4 3686
07f6f7d0
AL
3687/**
3688 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3689 * @qc: Command on going
3690 *
c81e29b4 3691 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3692 * ATA device for the DRQ request.
3693 *
3694 * LOCKING:
3695 * Inherited from caller.
3696 */
1da177e4 3697
07f6f7d0
AL
3698static void ata_pio_sectors(struct ata_queued_cmd *qc)
3699{
3700 if (is_multi_taskfile(&qc->tf)) {
3701 /* READ/WRITE MULTIPLE */
3702 unsigned int nsect;
3703
587005de 3704 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3705
07f6f7d0
AL
3706 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3707 while (nsect--)
3708 ata_pio_sector(qc);
3709 } else
3710 ata_pio_sector(qc);
3711}
3712
c71c1857
AL
3713/**
3714 * atapi_send_cdb - Write CDB bytes to hardware
3715 * @ap: Port to which ATAPI device is attached.
3716 * @qc: Taskfile currently active
3717 *
3718 * When device has indicated its readiness to accept
3719 * a CDB, this function is called. Send the CDB.
3720 *
3721 * LOCKING:
3722 * caller.
3723 */
3724
3725static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3726{
3727 /* send SCSI cdb */
3728 DPRINTK("send cdb\n");
db024d53 3729 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3730
a6b2c5d4 3731 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3732 ata_altstatus(ap); /* flush */
3733
3734 switch (qc->tf.protocol) {
3735 case ATA_PROT_ATAPI:
3736 ap->hsm_task_state = HSM_ST;
3737 break;
3738 case ATA_PROT_ATAPI_NODATA:
3739 ap->hsm_task_state = HSM_ST_LAST;
3740 break;
3741 case ATA_PROT_ATAPI_DMA:
3742 ap->hsm_task_state = HSM_ST_LAST;
3743 /* initiate bmdma */
3744 ap->ops->bmdma_start(qc);
3745 break;
3746 }
1da177e4
LT
3747}
3748
6ae4cfb5
AL
3749/**
3750 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3751 * @qc: Command on going
3752 * @bytes: number of bytes
3753 *
3754 * Transfer Transfer data from/to the ATAPI device.
3755 *
3756 * LOCKING:
3757 * Inherited from caller.
3758 *
3759 */
3760
1da177e4
LT
3761static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3762{
3763 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3764 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3765 struct ata_port *ap = qc->ap;
3766 struct page *page;
3767 unsigned char *buf;
3768 unsigned int offset, count;
3769
563a6e1f 3770 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3771 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3772
3773next_sg:
563a6e1f 3774 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3775 /*
563a6e1f
AL
3776 * The end of qc->sg is reached and the device expects
3777 * more data to transfer. In order not to overrun qc->sg
3778 * and fulfill length specified in the byte count register,
3779 * - for read case, discard trailing data from the device
3780 * - for write case, padding zero data to the device
3781 */
3782 u16 pad_buf[1] = { 0 };
3783 unsigned int words = bytes >> 1;
3784 unsigned int i;
3785
3786 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3787 ata_dev_printk(qc->dev, KERN_WARNING,
3788 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3789
3790 for (i = 0; i < words; i++)
a6b2c5d4 3791 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3792
14be71f4 3793 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3794 return;
3795 }
3796
cedc9a47 3797 sg = &qc->__sg[qc->cursg];
1da177e4 3798
1da177e4
LT
3799 page = sg->page;
3800 offset = sg->offset + qc->cursg_ofs;
3801
3802 /* get the current page and offset */
3803 page = nth_page(page, (offset >> PAGE_SHIFT));
3804 offset %= PAGE_SIZE;
3805
6952df03 3806 /* don't overrun current sg */
32529e01 3807 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3808
3809 /* don't cross page boundaries */
3810 count = min(count, (unsigned int)PAGE_SIZE - offset);
3811
7282aa4b
AL
3812 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3813
91b8b313
AL
3814 if (PageHighMem(page)) {
3815 unsigned long flags;
3816
a6b2c5d4 3817 /* FIXME: use bounce buffer */
91b8b313
AL
3818 local_irq_save(flags);
3819 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3820
91b8b313 3821 /* do the actual data transfer */
a6b2c5d4 3822 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3823
91b8b313
AL
3824 kunmap_atomic(buf, KM_IRQ0);
3825 local_irq_restore(flags);
3826 } else {
3827 buf = page_address(page);
a6b2c5d4 3828 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3829 }
1da177e4
LT
3830
3831 bytes -= count;
3832 qc->curbytes += count;
3833 qc->cursg_ofs += count;
3834
32529e01 3835 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3836 qc->cursg++;
3837 qc->cursg_ofs = 0;
3838 }
3839
563a6e1f 3840 if (bytes)
1da177e4 3841 goto next_sg;
1da177e4
LT
3842}
3843
6ae4cfb5
AL
3844/**
3845 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3846 * @qc: Command on going
3847 *
3848 * Transfer Transfer data from/to the ATAPI device.
3849 *
3850 * LOCKING:
3851 * Inherited from caller.
6ae4cfb5
AL
3852 */
3853
1da177e4
LT
3854static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3855{
3856 struct ata_port *ap = qc->ap;
3857 struct ata_device *dev = qc->dev;
3858 unsigned int ireason, bc_lo, bc_hi, bytes;
3859 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3860
eec4c3f3
AL
3861 /* Abuse qc->result_tf for temp storage of intermediate TF
3862 * here to save some kernel stack usage.
3863 * For normal completion, qc->result_tf is not relevant. For
3864 * error, qc->result_tf is later overwritten by ata_qc_complete().
3865 * So, the correctness of qc->result_tf is not affected.
3866 */
3867 ap->ops->tf_read(ap, &qc->result_tf);
3868 ireason = qc->result_tf.nsect;
3869 bc_lo = qc->result_tf.lbam;
3870 bc_hi = qc->result_tf.lbah;
1da177e4
LT
3871 bytes = (bc_hi << 8) | bc_lo;
3872
3873 /* shall be cleared to zero, indicating xfer of data */
3874 if (ireason & (1 << 0))
3875 goto err_out;
3876
3877 /* make sure transfer direction matches expected */
3878 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3879 if (do_write != i_write)
3880 goto err_out;
3881
312f7da2
AL
3882 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3883
1da177e4
LT
3884 __atapi_pio_bytes(qc, bytes);
3885
3886 return;
3887
3888err_out:
f15a1daf 3889 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3890 qc->err_mask |= AC_ERR_HSM;
14be71f4 3891 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3892}
3893
3894/**
c234fb00
AL
3895 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3896 * @ap: the target ata_port
3897 * @qc: qc on going
1da177e4 3898 *
c234fb00
AL
3899 * RETURNS:
3900 * 1 if ok in workqueue, 0 otherwise.
1da177e4 3901 */
c234fb00
AL
3902
3903static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 3904{
c234fb00
AL
3905 if (qc->tf.flags & ATA_TFLAG_POLLING)
3906 return 1;
1da177e4 3907
c234fb00
AL
3908 if (ap->hsm_task_state == HSM_ST_FIRST) {
3909 if (qc->tf.protocol == ATA_PROT_PIO &&
3910 (qc->tf.flags & ATA_TFLAG_WRITE))
3911 return 1;
1da177e4 3912
c234fb00
AL
3913 if (is_atapi_taskfile(&qc->tf) &&
3914 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3915 return 1;
fe79e683
AL
3916 }
3917
c234fb00
AL
3918 return 0;
3919}
1da177e4 3920
c17ea20d
TH
3921/**
3922 * ata_hsm_qc_complete - finish a qc running on standard HSM
3923 * @qc: Command to complete
3924 * @in_wq: 1 if called from workqueue, 0 otherwise
3925 *
3926 * Finish @qc which is running on standard HSM.
3927 *
3928 * LOCKING:
3929 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3930 * Otherwise, none on entry and grabs host lock.
3931 */
3932static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3933{
3934 struct ata_port *ap = qc->ap;
3935 unsigned long flags;
3936
3937 if (ap->ops->error_handler) {
3938 if (in_wq) {
3939 spin_lock_irqsave(&ap->host_set->lock, flags);
3940
3941 /* EH might have kicked in while host_set lock
3942 * is released.
3943 */
3944 qc = ata_qc_from_tag(ap, qc->tag);
3945 if (qc) {
3946 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3947 ata_irq_on(ap);
3948 ata_qc_complete(qc);
3949 } else
3950 ata_port_freeze(ap);
3951 }
3952
3953 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3954 } else {
3955 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3956 ata_qc_complete(qc);
3957 else
3958 ata_port_freeze(ap);
3959 }
3960 } else {
3961 if (in_wq) {
3962 spin_lock_irqsave(&ap->host_set->lock, flags);
3963 ata_irq_on(ap);
3964 ata_qc_complete(qc);
3965 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3966 } else
3967 ata_qc_complete(qc);
3968 }
1da177e4 3969
c81e29b4 3970 ata_altstatus(ap); /* flush */
c17ea20d
TH
3971}
3972
bb5cb290
AL
3973/**
3974 * ata_hsm_move - move the HSM to the next state.
3975 * @ap: the target ata_port
3976 * @qc: qc on going
3977 * @status: current device status
3978 * @in_wq: 1 if called from workqueue, 0 otherwise
3979 *
3980 * RETURNS:
3981 * 1 when poll next status needed, 0 otherwise.
3982 */
3983
3984static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3985 u8 status, int in_wq)
e2cec771 3986{
bb5cb290
AL
3987 unsigned long flags = 0;
3988 int poll_next;
3989
6912ccd5
AL
3990 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3991
bb5cb290
AL
3992 /* Make sure ata_qc_issue_prot() does not throw things
3993 * like DMA polling into the workqueue. Notice that
3994 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3995 */
c234fb00 3996 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 3997
e2cec771 3998fsm_start:
999bb6f4
AL
3999 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4000 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4001
e2cec771
AL
4002 switch (ap->hsm_task_state) {
4003 case HSM_ST_FIRST:
bb5cb290
AL
4004 /* Send first data block or PACKET CDB */
4005
4006 /* If polling, we will stay in the work queue after
4007 * sending the data. Otherwise, interrupt handler
4008 * takes over after sending the data.
4009 */
4010 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4011
e2cec771 4012 /* check device status */
3655d1d3
AL
4013 if (unlikely((status & ATA_DRQ) == 0)) {
4014 /* handle BSY=0, DRQ=0 as error */
4015 if (likely(status & (ATA_ERR | ATA_DF)))
4016 /* device stops HSM for abort/error */
4017 qc->err_mask |= AC_ERR_DEV;
4018 else
4019 /* HSM violation. Let EH handle this */
4020 qc->err_mask |= AC_ERR_HSM;
4021
14be71f4 4022 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4023 goto fsm_start;
1da177e4
LT
4024 }
4025
71601958
AL
4026 /* Device should not ask for data transfer (DRQ=1)
4027 * when it finds something wrong.
eee6c32f
AL
4028 * We ignore DRQ here and stop the HSM by
4029 * changing hsm_task_state to HSM_ST_ERR and
4030 * let the EH abort the command or reset the device.
71601958
AL
4031 */
4032 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4033 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4034 ap->id, status);
3655d1d3 4035 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4036 ap->hsm_task_state = HSM_ST_ERR;
4037 goto fsm_start;
71601958 4038 }
1da177e4 4039
bb5cb290
AL
4040 /* Send the CDB (atapi) or the first data block (ata pio out).
4041 * During the state transition, interrupt handler shouldn't
4042 * be invoked before the data transfer is complete and
4043 * hsm_task_state is changed. Hence, the following locking.
4044 */
4045 if (in_wq)
4046 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 4047
bb5cb290
AL
4048 if (qc->tf.protocol == ATA_PROT_PIO) {
4049 /* PIO data out protocol.
4050 * send first data block.
4051 */
0565c26d 4052
bb5cb290
AL
4053 /* ata_pio_sectors() might change the state
4054 * to HSM_ST_LAST. so, the state is changed here
4055 * before ata_pio_sectors().
4056 */
4057 ap->hsm_task_state = HSM_ST;
4058 ata_pio_sectors(qc);
4059 ata_altstatus(ap); /* flush */
4060 } else
4061 /* send CDB */
4062 atapi_send_cdb(ap, qc);
4063
4064 if (in_wq)
4065 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4066
4067 /* if polling, ata_pio_task() handles the rest.
4068 * otherwise, interrupt handler takes over from here.
4069 */
e2cec771 4070 break;
1c848984 4071
e2cec771
AL
4072 case HSM_ST:
4073 /* complete command or read/write the data register */
4074 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4075 /* ATAPI PIO protocol */
4076 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4077 /* No more data to transfer or device error.
4078 * Device error will be tagged in HSM_ST_LAST.
4079 */
e2cec771
AL
4080 ap->hsm_task_state = HSM_ST_LAST;
4081 goto fsm_start;
4082 }
1da177e4 4083
71601958
AL
4084 /* Device should not ask for data transfer (DRQ=1)
4085 * when it finds something wrong.
eee6c32f
AL
4086 * We ignore DRQ here and stop the HSM by
4087 * changing hsm_task_state to HSM_ST_ERR and
4088 * let the EH abort the command or reset the device.
71601958
AL
4089 */
4090 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4091 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4092 ap->id, status);
3655d1d3 4093 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4094 ap->hsm_task_state = HSM_ST_ERR;
4095 goto fsm_start;
71601958 4096 }
1da177e4 4097
e2cec771 4098 atapi_pio_bytes(qc);
7fb6ec28 4099
e2cec771
AL
4100 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4101 /* bad ireason reported by device */
4102 goto fsm_start;
1da177e4 4103
e2cec771
AL
4104 } else {
4105 /* ATA PIO protocol */
4106 if (unlikely((status & ATA_DRQ) == 0)) {
4107 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4108 if (likely(status & (ATA_ERR | ATA_DF)))
4109 /* device stops HSM for abort/error */
4110 qc->err_mask |= AC_ERR_DEV;
4111 else
4112 /* HSM violation. Let EH handle this */
4113 qc->err_mask |= AC_ERR_HSM;
4114
e2cec771
AL
4115 ap->hsm_task_state = HSM_ST_ERR;
4116 goto fsm_start;
4117 }
1da177e4 4118
eee6c32f
AL
4119 /* For PIO reads, some devices may ask for
4120 * data transfer (DRQ=1) alone with ERR=1.
4121 * We respect DRQ here and transfer one
4122 * block of junk data before changing the
4123 * hsm_task_state to HSM_ST_ERR.
4124 *
4125 * For PIO writes, ERR=1 DRQ=1 doesn't make
4126 * sense since the data block has been
4127 * transferred to the device.
71601958
AL
4128 */
4129 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4130 /* data might be corrputed */
4131 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4132
4133 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4134 ata_pio_sectors(qc);
4135 ata_altstatus(ap);
4136 status = ata_wait_idle(ap);
4137 }
4138
3655d1d3
AL
4139 if (status & (ATA_BUSY | ATA_DRQ))
4140 qc->err_mask |= AC_ERR_HSM;
4141
eee6c32f
AL
4142 /* ata_pio_sectors() might change the
4143 * state to HSM_ST_LAST. so, the state
4144 * is changed after ata_pio_sectors().
4145 */
4146 ap->hsm_task_state = HSM_ST_ERR;
4147 goto fsm_start;
71601958
AL
4148 }
4149
e2cec771
AL
4150 ata_pio_sectors(qc);
4151
4152 if (ap->hsm_task_state == HSM_ST_LAST &&
4153 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4154 /* all data read */
4155 ata_altstatus(ap);
52a32205 4156 status = ata_wait_idle(ap);
e2cec771
AL
4157 goto fsm_start;
4158 }
4159 }
4160
4161 ata_altstatus(ap); /* flush */
bb5cb290 4162 poll_next = 1;
1da177e4
LT
4163 break;
4164
14be71f4 4165 case HSM_ST_LAST:
6912ccd5
AL
4166 if (unlikely(!ata_ok(status))) {
4167 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4168 ap->hsm_task_state = HSM_ST_ERR;
4169 goto fsm_start;
4170 }
4171
4172 /* no more data to transfer */
4332a771
AL
4173 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4174 ap->id, qc->dev->devno, status);
e2cec771 4175
6912ccd5
AL
4176 WARN_ON(qc->err_mask);
4177
e2cec771 4178 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4179
e2cec771 4180 /* complete taskfile transaction */
c17ea20d 4181 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4182
4183 poll_next = 0;
1da177e4
LT
4184 break;
4185
14be71f4 4186 case HSM_ST_ERR:
e2cec771
AL
4187 /* make sure qc->err_mask is available to
4188 * know what's wrong and recover
4189 */
4190 WARN_ON(qc->err_mask == 0);
4191
4192 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4193
999bb6f4 4194 /* complete taskfile transaction */
c17ea20d 4195 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4196
4197 poll_next = 0;
e2cec771
AL
4198 break;
4199 default:
bb5cb290 4200 poll_next = 0;
6912ccd5 4201 BUG();
1da177e4
LT
4202 }
4203
bb5cb290 4204 return poll_next;
1da177e4
LT
4205}
4206
1da177e4 4207static void ata_pio_task(void *_data)
8061f5f0 4208{
c91af2c8
TH
4209 struct ata_queued_cmd *qc = _data;
4210 struct ata_port *ap = qc->ap;
8061f5f0 4211 u8 status;
a1af3734 4212 int poll_next;
8061f5f0 4213
7fb6ec28 4214fsm_start:
a1af3734 4215 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4216
a1af3734
AL
4217 /*
4218 * This is purely heuristic. This is a fast path.
4219 * Sometimes when we enter, BSY will be cleared in
4220 * a chk-status or two. If not, the drive is probably seeking
4221 * or something. Snooze for a couple msecs, then
4222 * chk-status again. If still busy, queue delayed work.
4223 */
4224 status = ata_busy_wait(ap, ATA_BUSY, 5);
4225 if (status & ATA_BUSY) {
4226 msleep(2);
4227 status = ata_busy_wait(ap, ATA_BUSY, 10);
4228 if (status & ATA_BUSY) {
31ce6dae 4229 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4230 return;
4231 }
8061f5f0
TH
4232 }
4233
a1af3734
AL
4234 /* move the HSM */
4235 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4236
a1af3734
AL
4237 /* another command or interrupt handler
4238 * may be running at this point.
4239 */
4240 if (poll_next)
7fb6ec28 4241 goto fsm_start;
8061f5f0
TH
4242}
4243
1da177e4
LT
4244/**
4245 * ata_qc_new - Request an available ATA command, for queueing
4246 * @ap: Port associated with device @dev
4247 * @dev: Device from whom we request an available command structure
4248 *
4249 * LOCKING:
0cba632b 4250 * None.
1da177e4
LT
4251 */
4252
4253static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4254{
4255 struct ata_queued_cmd *qc = NULL;
4256 unsigned int i;
4257
e3180499
TH
4258 /* no command while frozen */
4259 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4260 return NULL;
4261
2ab7db1f
TH
4262 /* the last tag is reserved for internal command. */
4263 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4264 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4265 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4266 break;
4267 }
4268
4269 if (qc)
4270 qc->tag = i;
4271
4272 return qc;
4273}
4274
4275/**
4276 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4277 * @dev: Device from whom we request an available command structure
4278 *
4279 * LOCKING:
0cba632b 4280 * None.
1da177e4
LT
4281 */
4282
3373efd8 4283struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4284{
3373efd8 4285 struct ata_port *ap = dev->ap;
1da177e4
LT
4286 struct ata_queued_cmd *qc;
4287
4288 qc = ata_qc_new(ap);
4289 if (qc) {
1da177e4
LT
4290 qc->scsicmd = NULL;
4291 qc->ap = ap;
4292 qc->dev = dev;
1da177e4 4293
2c13b7ce 4294 ata_qc_reinit(qc);
1da177e4
LT
4295 }
4296
4297 return qc;
4298}
4299
1da177e4
LT
4300/**
4301 * ata_qc_free - free unused ata_queued_cmd
4302 * @qc: Command to complete
4303 *
4304 * Designed to free unused ata_queued_cmd object
4305 * in case something prevents using it.
4306 *
4307 * LOCKING:
0cba632b 4308 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4309 */
4310void ata_qc_free(struct ata_queued_cmd *qc)
4311{
4ba946e9
TH
4312 struct ata_port *ap = qc->ap;
4313 unsigned int tag;
4314
a4631474 4315 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4316
4ba946e9
TH
4317 qc->flags = 0;
4318 tag = qc->tag;
4319 if (likely(ata_tag_valid(tag))) {
4ba946e9 4320 qc->tag = ATA_TAG_POISON;
6cec4a39 4321 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4322 }
1da177e4
LT
4323}
4324
76014427 4325void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4326{
dedaf2b0
TH
4327 struct ata_port *ap = qc->ap;
4328
a4631474
TH
4329 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4330 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4331
4332 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4333 ata_sg_clean(qc);
4334
7401abf2 4335 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4336 if (qc->tf.protocol == ATA_PROT_NCQ)
4337 ap->sactive &= ~(1 << qc->tag);
4338 else
4339 ap->active_tag = ATA_TAG_POISON;
7401abf2 4340
3f3791d3
AL
4341 /* atapi: mark qc as inactive to prevent the interrupt handler
4342 * from completing the command twice later, before the error handler
4343 * is called. (when rc != 0 and atapi request sense is needed)
4344 */
4345 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4346 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4347
1da177e4 4348 /* call completion callback */
77853bf2 4349 qc->complete_fn(qc);
1da177e4
LT
4350}
4351
f686bcb8
TH
4352/**
4353 * ata_qc_complete - Complete an active ATA command
4354 * @qc: Command to complete
4355 * @err_mask: ATA Status register contents
4356 *
4357 * Indicate to the mid and upper layers that an ATA
4358 * command has completed, with either an ok or not-ok status.
4359 *
4360 * LOCKING:
4361 * spin_lock_irqsave(host_set lock)
4362 */
4363void ata_qc_complete(struct ata_queued_cmd *qc)
4364{
4365 struct ata_port *ap = qc->ap;
4366
4367 /* XXX: New EH and old EH use different mechanisms to
4368 * synchronize EH with regular execution path.
4369 *
4370 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4371 * Normal execution path is responsible for not accessing a
4372 * failed qc. libata core enforces the rule by returning NULL
4373 * from ata_qc_from_tag() for failed qcs.
4374 *
4375 * Old EH depends on ata_qc_complete() nullifying completion
4376 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4377 * not synchronize with interrupt handler. Only PIO task is
4378 * taken care of.
4379 */
4380 if (ap->ops->error_handler) {
4381 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4382
4383 if (unlikely(qc->err_mask))
4384 qc->flags |= ATA_QCFLAG_FAILED;
4385
4386 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4387 if (!ata_tag_internal(qc->tag)) {
4388 /* always fill result TF for failed qc */
4389 ap->ops->tf_read(ap, &qc->result_tf);
4390 ata_qc_schedule_eh(qc);
4391 return;
4392 }
4393 }
4394
4395 /* read result TF if requested */
4396 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4397 ap->ops->tf_read(ap, &qc->result_tf);
4398
4399 __ata_qc_complete(qc);
4400 } else {
4401 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4402 return;
4403
4404 /* read result TF if failed or requested */
4405 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4406 ap->ops->tf_read(ap, &qc->result_tf);
4407
4408 __ata_qc_complete(qc);
4409 }
4410}
4411
dedaf2b0
TH
4412/**
4413 * ata_qc_complete_multiple - Complete multiple qcs successfully
4414 * @ap: port in question
4415 * @qc_active: new qc_active mask
4416 * @finish_qc: LLDD callback invoked before completing a qc
4417 *
4418 * Complete in-flight commands. This functions is meant to be
4419 * called from low-level driver's interrupt routine to complete
4420 * requests normally. ap->qc_active and @qc_active is compared
4421 * and commands are completed accordingly.
4422 *
4423 * LOCKING:
4424 * spin_lock_irqsave(host_set lock)
4425 *
4426 * RETURNS:
4427 * Number of completed commands on success, -errno otherwise.
4428 */
4429int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4430 void (*finish_qc)(struct ata_queued_cmd *))
4431{
4432 int nr_done = 0;
4433 u32 done_mask;
4434 int i;
4435
4436 done_mask = ap->qc_active ^ qc_active;
4437
4438 if (unlikely(done_mask & qc_active)) {
4439 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4440 "(%08x->%08x)\n", ap->qc_active, qc_active);
4441 return -EINVAL;
4442 }
4443
4444 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4445 struct ata_queued_cmd *qc;
4446
4447 if (!(done_mask & (1 << i)))
4448 continue;
4449
4450 if ((qc = ata_qc_from_tag(ap, i))) {
4451 if (finish_qc)
4452 finish_qc(qc);
4453 ata_qc_complete(qc);
4454 nr_done++;
4455 }
4456 }
4457
4458 return nr_done;
4459}
4460
1da177e4
LT
4461static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4462{
4463 struct ata_port *ap = qc->ap;
4464
4465 switch (qc->tf.protocol) {
3dc1d881 4466 case ATA_PROT_NCQ:
1da177e4
LT
4467 case ATA_PROT_DMA:
4468 case ATA_PROT_ATAPI_DMA:
4469 return 1;
4470
4471 case ATA_PROT_ATAPI:
4472 case ATA_PROT_PIO:
1da177e4
LT
4473 if (ap->flags & ATA_FLAG_PIO_DMA)
4474 return 1;
4475
4476 /* fall through */
4477
4478 default:
4479 return 0;
4480 }
4481
4482 /* never reached */
4483}
4484
4485/**
4486 * ata_qc_issue - issue taskfile to device
4487 * @qc: command to issue to device
4488 *
4489 * Prepare an ATA command to submission to device.
4490 * This includes mapping the data into a DMA-able
4491 * area, filling in the S/G table, and finally
4492 * writing the taskfile to hardware, starting the command.
4493 *
4494 * LOCKING:
4495 * spin_lock_irqsave(host_set lock)
1da177e4 4496 */
8e0e694a 4497void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4498{
4499 struct ata_port *ap = qc->ap;
4500
dedaf2b0
TH
4501 /* Make sure only one non-NCQ command is outstanding. The
4502 * check is skipped for old EH because it reuses active qc to
4503 * request ATAPI sense.
4504 */
4505 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4506
4507 if (qc->tf.protocol == ATA_PROT_NCQ) {
4508 WARN_ON(ap->sactive & (1 << qc->tag));
4509 ap->sactive |= 1 << qc->tag;
4510 } else {
4511 WARN_ON(ap->sactive);
4512 ap->active_tag = qc->tag;
4513 }
4514
e4a70e76 4515 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4516 ap->qc_active |= 1 << qc->tag;
e4a70e76 4517
1da177e4
LT
4518 if (ata_should_dma_map(qc)) {
4519 if (qc->flags & ATA_QCFLAG_SG) {
4520 if (ata_sg_setup(qc))
8e436af9 4521 goto sg_err;
1da177e4
LT
4522 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4523 if (ata_sg_setup_one(qc))
8e436af9 4524 goto sg_err;
1da177e4
LT
4525 }
4526 } else {
4527 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4528 }
4529
4530 ap->ops->qc_prep(qc);
4531
8e0e694a
TH
4532 qc->err_mask |= ap->ops->qc_issue(qc);
4533 if (unlikely(qc->err_mask))
4534 goto err;
4535 return;
1da177e4 4536
8e436af9
TH
4537sg_err:
4538 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4539 qc->err_mask |= AC_ERR_SYSTEM;
4540err:
4541 ata_qc_complete(qc);
1da177e4
LT
4542}
4543
4544/**
4545 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4546 * @qc: command to issue to device
4547 *
4548 * Using various libata functions and hooks, this function
4549 * starts an ATA command. ATA commands are grouped into
4550 * classes called "protocols", and issuing each type of protocol
4551 * is slightly different.
4552 *
0baab86b
EF
4553 * May be used as the qc_issue() entry in ata_port_operations.
4554 *
1da177e4
LT
4555 * LOCKING:
4556 * spin_lock_irqsave(host_set lock)
4557 *
4558 * RETURNS:
9a3d9eb0 4559 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4560 */
4561
9a3d9eb0 4562unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4563{
4564 struct ata_port *ap = qc->ap;
4565
e50362ec
AL
4566 /* Use polling pio if the LLD doesn't handle
4567 * interrupt driven pio and atapi CDB interrupt.
4568 */
4569 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4570 switch (qc->tf.protocol) {
4571 case ATA_PROT_PIO:
4572 case ATA_PROT_ATAPI:
4573 case ATA_PROT_ATAPI_NODATA:
4574 qc->tf.flags |= ATA_TFLAG_POLLING;
4575 break;
4576 case ATA_PROT_ATAPI_DMA:
4577 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
c2bbc551 4578 /* see ata_check_atapi_dma() */
e50362ec
AL
4579 BUG();
4580 break;
4581 default:
4582 break;
4583 }
4584 }
4585
312f7da2 4586 /* select the device */
1da177e4
LT
4587 ata_dev_select(ap, qc->dev->devno, 1, 0);
4588
312f7da2 4589 /* start the command */
1da177e4
LT
4590 switch (qc->tf.protocol) {
4591 case ATA_PROT_NODATA:
312f7da2
AL
4592 if (qc->tf.flags & ATA_TFLAG_POLLING)
4593 ata_qc_set_polling(qc);
4594
e5338254 4595 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4596 ap->hsm_task_state = HSM_ST_LAST;
4597
4598 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4599 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4600
1da177e4
LT
4601 break;
4602
4603 case ATA_PROT_DMA:
587005de 4604 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4605
1da177e4
LT
4606 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4607 ap->ops->bmdma_setup(qc); /* set up bmdma */
4608 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4609 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4610 break;
4611
312f7da2
AL
4612 case ATA_PROT_PIO:
4613 if (qc->tf.flags & ATA_TFLAG_POLLING)
4614 ata_qc_set_polling(qc);
1da177e4 4615
e5338254 4616 ata_tf_to_host(ap, &qc->tf);
312f7da2 4617
54f00389
AL
4618 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4619 /* PIO data out protocol */
4620 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4621 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4622
4623 /* always send first data block using
e27486db 4624 * the ata_pio_task() codepath.
54f00389 4625 */
312f7da2 4626 } else {
54f00389
AL
4627 /* PIO data in protocol */
4628 ap->hsm_task_state = HSM_ST;
4629
4630 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4631 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4632
4633 /* if polling, ata_pio_task() handles the rest.
4634 * otherwise, interrupt handler takes over from here.
4635 */
312f7da2
AL
4636 }
4637
1da177e4
LT
4638 break;
4639
1da177e4 4640 case ATA_PROT_ATAPI:
1da177e4 4641 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4642 if (qc->tf.flags & ATA_TFLAG_POLLING)
4643 ata_qc_set_polling(qc);
4644
e5338254 4645 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4646
312f7da2
AL
4647 ap->hsm_task_state = HSM_ST_FIRST;
4648
4649 /* send cdb by polling if no cdb interrupt */
4650 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4651 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4652 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4653 break;
4654
4655 case ATA_PROT_ATAPI_DMA:
587005de 4656 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4657
1da177e4
LT
4658 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4659 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4660 ap->hsm_task_state = HSM_ST_FIRST;
4661
4662 /* send cdb by polling if no cdb interrupt */
4663 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4664 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4665 break;
4666
4667 default:
4668 WARN_ON(1);
9a3d9eb0 4669 return AC_ERR_SYSTEM;
1da177e4
LT
4670 }
4671
4672 return 0;
4673}
4674
1da177e4
LT
4675/**
4676 * ata_host_intr - Handle host interrupt for given (port, task)
4677 * @ap: Port on which interrupt arrived (possibly...)
4678 * @qc: Taskfile currently active in engine
4679 *
4680 * Handle host interrupt for given queued command. Currently,
4681 * only DMA interrupts are handled. All other commands are
4682 * handled via polling with interrupts disabled (nIEN bit).
4683 *
4684 * LOCKING:
4685 * spin_lock_irqsave(host_set lock)
4686 *
4687 * RETURNS:
4688 * One if interrupt was handled, zero if not (shared irq).
4689 */
4690
4691inline unsigned int ata_host_intr (struct ata_port *ap,
4692 struct ata_queued_cmd *qc)
4693{
312f7da2 4694 u8 status, host_stat = 0;
1da177e4 4695
312f7da2
AL
4696 VPRINTK("ata%u: protocol %d task_state %d\n",
4697 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4698
312f7da2
AL
4699 /* Check whether we are expecting interrupt in this state */
4700 switch (ap->hsm_task_state) {
4701 case HSM_ST_FIRST:
6912ccd5
AL
4702 /* Some pre-ATAPI-4 devices assert INTRQ
4703 * at this state when ready to receive CDB.
4704 */
1da177e4 4705
312f7da2
AL
4706 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4707 * The flag was turned on only for atapi devices.
4708 * No need to check is_atapi_taskfile(&qc->tf) again.
4709 */
4710 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4711 goto idle_irq;
1da177e4 4712 break;
312f7da2
AL
4713 case HSM_ST_LAST:
4714 if (qc->tf.protocol == ATA_PROT_DMA ||
4715 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4716 /* check status of DMA engine */
4717 host_stat = ap->ops->bmdma_status(ap);
4718 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4719
4720 /* if it's not our irq... */
4721 if (!(host_stat & ATA_DMA_INTR))
4722 goto idle_irq;
4723
4724 /* before we do anything else, clear DMA-Start bit */
4725 ap->ops->bmdma_stop(qc);
a4f16610
AL
4726
4727 if (unlikely(host_stat & ATA_DMA_ERR)) {
4728 /* error when transfering data to/from memory */
4729 qc->err_mask |= AC_ERR_HOST_BUS;
4730 ap->hsm_task_state = HSM_ST_ERR;
4731 }
312f7da2
AL
4732 }
4733 break;
4734 case HSM_ST:
4735 break;
1da177e4
LT
4736 default:
4737 goto idle_irq;
4738 }
4739
312f7da2
AL
4740 /* check altstatus */
4741 status = ata_altstatus(ap);
4742 if (status & ATA_BUSY)
4743 goto idle_irq;
1da177e4 4744
312f7da2
AL
4745 /* check main status, clearing INTRQ */
4746 status = ata_chk_status(ap);
4747 if (unlikely(status & ATA_BUSY))
4748 goto idle_irq;
1da177e4 4749
312f7da2
AL
4750 /* ack bmdma irq events */
4751 ap->ops->irq_clear(ap);
1da177e4 4752
bb5cb290 4753 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4754 return 1; /* irq handled */
4755
4756idle_irq:
4757 ap->stats.idle_irq++;
4758
4759#ifdef ATA_IRQ_TRAP
4760 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4761 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4762 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4763 return 1;
1da177e4
LT
4764 }
4765#endif
4766 return 0; /* irq not handled */
4767}
4768
4769/**
4770 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4771 * @irq: irq line (unused)
4772 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4773 * @regs: unused
4774 *
0cba632b
JG
4775 * Default interrupt handler for PCI IDE devices. Calls
4776 * ata_host_intr() for each port that is not disabled.
4777 *
1da177e4 4778 * LOCKING:
0cba632b 4779 * Obtains host_set lock during operation.
1da177e4
LT
4780 *
4781 * RETURNS:
0cba632b 4782 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4783 */
4784
4785irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4786{
4787 struct ata_host_set *host_set = dev_instance;
4788 unsigned int i;
4789 unsigned int handled = 0;
4790 unsigned long flags;
4791
4792 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4793 spin_lock_irqsave(&host_set->lock, flags);
4794
4795 for (i = 0; i < host_set->n_ports; i++) {
4796 struct ata_port *ap;
4797
4798 ap = host_set->ports[i];
c1389503 4799 if (ap &&
029f5468 4800 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4801 struct ata_queued_cmd *qc;
4802
4803 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4804 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4805 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4806 handled |= ata_host_intr(ap, qc);
4807 }
4808 }
4809
4810 spin_unlock_irqrestore(&host_set->lock, flags);
4811
4812 return IRQ_RETVAL(handled);
4813}
4814
34bf2170
TH
4815/**
4816 * sata_scr_valid - test whether SCRs are accessible
4817 * @ap: ATA port to test SCR accessibility for
4818 *
4819 * Test whether SCRs are accessible for @ap.
4820 *
4821 * LOCKING:
4822 * None.
4823 *
4824 * RETURNS:
4825 * 1 if SCRs are accessible, 0 otherwise.
4826 */
4827int sata_scr_valid(struct ata_port *ap)
4828{
4829 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4830}
4831
4832/**
4833 * sata_scr_read - read SCR register of the specified port
4834 * @ap: ATA port to read SCR for
4835 * @reg: SCR to read
4836 * @val: Place to store read value
4837 *
4838 * Read SCR register @reg of @ap into *@val. This function is
4839 * guaranteed to succeed if the cable type of the port is SATA
4840 * and the port implements ->scr_read.
4841 *
4842 * LOCKING:
4843 * None.
4844 *
4845 * RETURNS:
4846 * 0 on success, negative errno on failure.
4847 */
4848int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4849{
4850 if (sata_scr_valid(ap)) {
4851 *val = ap->ops->scr_read(ap, reg);
4852 return 0;
4853 }
4854 return -EOPNOTSUPP;
4855}
4856
4857/**
4858 * sata_scr_write - write SCR register of the specified port
4859 * @ap: ATA port to write SCR for
4860 * @reg: SCR to write
4861 * @val: value to write
4862 *
4863 * Write @val to SCR register @reg of @ap. This function is
4864 * guaranteed to succeed if the cable type of the port is SATA
4865 * and the port implements ->scr_read.
4866 *
4867 * LOCKING:
4868 * None.
4869 *
4870 * RETURNS:
4871 * 0 on success, negative errno on failure.
4872 */
4873int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4874{
4875 if (sata_scr_valid(ap)) {
4876 ap->ops->scr_write(ap, reg, val);
4877 return 0;
4878 }
4879 return -EOPNOTSUPP;
4880}
4881
4882/**
4883 * sata_scr_write_flush - write SCR register of the specified port and flush
4884 * @ap: ATA port to write SCR for
4885 * @reg: SCR to write
4886 * @val: value to write
4887 *
4888 * This function is identical to sata_scr_write() except that this
4889 * function performs flush after writing to the register.
4890 *
4891 * LOCKING:
4892 * None.
4893 *
4894 * RETURNS:
4895 * 0 on success, negative errno on failure.
4896 */
4897int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4898{
4899 if (sata_scr_valid(ap)) {
4900 ap->ops->scr_write(ap, reg, val);
4901 ap->ops->scr_read(ap, reg);
4902 return 0;
4903 }
4904 return -EOPNOTSUPP;
4905}
4906
4907/**
4908 * ata_port_online - test whether the given port is online
4909 * @ap: ATA port to test
4910 *
4911 * Test whether @ap is online. Note that this function returns 0
4912 * if online status of @ap cannot be obtained, so
4913 * ata_port_online(ap) != !ata_port_offline(ap).
4914 *
4915 * LOCKING:
4916 * None.
4917 *
4918 * RETURNS:
4919 * 1 if the port online status is available and online.
4920 */
4921int ata_port_online(struct ata_port *ap)
4922{
4923 u32 sstatus;
4924
4925 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4926 return 1;
4927 return 0;
4928}
4929
4930/**
4931 * ata_port_offline - test whether the given port is offline
4932 * @ap: ATA port to test
4933 *
4934 * Test whether @ap is offline. Note that this function returns
4935 * 0 if offline status of @ap cannot be obtained, so
4936 * ata_port_online(ap) != !ata_port_offline(ap).
4937 *
4938 * LOCKING:
4939 * None.
4940 *
4941 * RETURNS:
4942 * 1 if the port offline status is available and offline.
4943 */
4944int ata_port_offline(struct ata_port *ap)
4945{
4946 u32 sstatus;
4947
4948 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4949 return 1;
4950 return 0;
4951}
0baab86b 4952
9b847548
JA
4953/*
4954 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4955 * without filling any other registers
4956 */
3373efd8 4957static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
9b847548
JA
4958{
4959 struct ata_taskfile tf;
4960 int err;
4961
3373efd8 4962 ata_tf_init(dev, &tf);
9b847548
JA
4963
4964 tf.command = cmd;
4965 tf.flags |= ATA_TFLAG_DEVICE;
4966 tf.protocol = ATA_PROT_NODATA;
4967
3373efd8 4968 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548 4969 if (err)
f15a1daf
TH
4970 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4971 __FUNCTION__, err);
9b847548
JA
4972
4973 return err;
4974}
4975
3373efd8 4976static int ata_flush_cache(struct ata_device *dev)
9b847548
JA
4977{
4978 u8 cmd;
4979
4980 if (!ata_try_flush_cache(dev))
4981 return 0;
4982
4983 if (ata_id_has_flush_ext(dev->id))
4984 cmd = ATA_CMD_FLUSH_EXT;
4985 else
4986 cmd = ATA_CMD_FLUSH;
4987
3373efd8 4988 return ata_do_simple_cmd(dev, cmd);
9b847548
JA
4989}
4990
3373efd8 4991static int ata_standby_drive(struct ata_device *dev)
9b847548 4992{
3373efd8 4993 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
9b847548
JA
4994}
4995
3373efd8 4996static int ata_start_drive(struct ata_device *dev)
9b847548 4997{
3373efd8 4998 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
9b847548
JA
4999}
5000
5001/**
5002 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 5003 * @dev: the device to resume
9b847548
JA
5004 *
5005 * Kick the drive back into action, by sending it an idle immediate
5006 * command and making sure its transfer mode matches between drive
5007 * and host.
5008 *
5009 */
3373efd8 5010int ata_device_resume(struct ata_device *dev)
9b847548 5011{
3373efd8
TH
5012 struct ata_port *ap = dev->ap;
5013
9b847548 5014 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 5015 struct ata_device *failed_dev;
e42d7be2 5016
0737ac89 5017 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
e42d7be2 5018
9b847548 5019 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 5020 while (ata_set_mode(ap, &failed_dev))
3373efd8 5021 ata_dev_disable(failed_dev);
9b847548 5022 }
e1211e3f 5023 if (!ata_dev_enabled(dev))
9b847548
JA
5024 return 0;
5025 if (dev->class == ATA_DEV_ATA)
3373efd8 5026 ata_start_drive(dev);
9b847548
JA
5027
5028 return 0;
5029}
5030
5031/**
5032 * ata_device_suspend - prepare a device for suspend
c893a3ae 5033 * @dev: the device to suspend
e2a7f77a 5034 * @state: target power management state
9b847548
JA
5035 *
5036 * Flush the cache on the drive, if appropriate, then issue a
5037 * standbynow command.
9b847548 5038 */
3373efd8 5039int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 5040{
3373efd8
TH
5041 struct ata_port *ap = dev->ap;
5042
e1211e3f 5043 if (!ata_dev_enabled(dev))
9b847548
JA
5044 return 0;
5045 if (dev->class == ATA_DEV_ATA)
3373efd8 5046 ata_flush_cache(dev);
9b847548 5047
082776e4 5048 if (state.event != PM_EVENT_FREEZE)
3373efd8 5049 ata_standby_drive(dev);
9b847548
JA
5050 ap->flags |= ATA_FLAG_SUSPENDED;
5051 return 0;
5052}
5053
c893a3ae
RD
5054/**
5055 * ata_port_start - Set port up for dma.
5056 * @ap: Port to initialize
5057 *
5058 * Called just after data structures for each port are
5059 * initialized. Allocates space for PRD table.
5060 *
5061 * May be used as the port_start() entry in ata_port_operations.
5062 *
5063 * LOCKING:
5064 * Inherited from caller.
5065 */
5066
1da177e4
LT
5067int ata_port_start (struct ata_port *ap)
5068{
2f1f610b 5069 struct device *dev = ap->dev;
6037d6bb 5070 int rc;
1da177e4
LT
5071
5072 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5073 if (!ap->prd)
5074 return -ENOMEM;
5075
6037d6bb
JG
5076 rc = ata_pad_alloc(ap, dev);
5077 if (rc) {
cedc9a47 5078 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5079 return rc;
cedc9a47
JG
5080 }
5081
1da177e4
LT
5082 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5083
5084 return 0;
5085}
5086
0baab86b
EF
5087
5088/**
5089 * ata_port_stop - Undo ata_port_start()
5090 * @ap: Port to shut down
5091 *
5092 * Frees the PRD table.
5093 *
5094 * May be used as the port_stop() entry in ata_port_operations.
5095 *
5096 * LOCKING:
6f0ef4fa 5097 * Inherited from caller.
0baab86b
EF
5098 */
5099
1da177e4
LT
5100void ata_port_stop (struct ata_port *ap)
5101{
2f1f610b 5102 struct device *dev = ap->dev;
1da177e4
LT
5103
5104 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5105 ata_pad_free(ap, dev);
1da177e4
LT
5106}
5107
aa8f0dc6
JG
5108void ata_host_stop (struct ata_host_set *host_set)
5109{
5110 if (host_set->mmio_base)
5111 iounmap(host_set->mmio_base);
5112}
5113
5114
1da177e4
LT
5115/**
5116 * ata_host_remove - Unregister SCSI host structure with upper layers
5117 * @ap: Port to unregister
5118 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5119 *
5120 * LOCKING:
6f0ef4fa 5121 * Inherited from caller.
1da177e4
LT
5122 */
5123
5124static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5125{
5126 struct Scsi_Host *sh = ap->host;
5127
5128 DPRINTK("ENTER\n");
5129
5130 if (do_unregister)
5131 scsi_remove_host(sh);
5132
5133 ap->ops->port_stop(ap);
5134}
5135
3ef3b43d
TH
5136/**
5137 * ata_dev_init - Initialize an ata_device structure
5138 * @dev: Device structure to initialize
5139 *
5140 * Initialize @dev in preparation for probing.
5141 *
5142 * LOCKING:
5143 * Inherited from caller.
5144 */
5145void ata_dev_init(struct ata_device *dev)
5146{
5147 struct ata_port *ap = dev->ap;
72fa4b74
TH
5148 unsigned long flags;
5149
5a04bf4b
TH
5150 /* SATA spd limit is bound to the first device */
5151 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5152
72fa4b74
TH
5153 /* High bits of dev->flags are used to record warm plug
5154 * requests which occur asynchronously. Synchronize using
5155 * host_set lock.
5156 */
5157 spin_lock_irqsave(&ap->host_set->lock, flags);
5158 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5159 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3ef3b43d 5160
72fa4b74
TH
5161 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5162 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5163 dev->pio_mask = UINT_MAX;
5164 dev->mwdma_mask = UINT_MAX;
5165 dev->udma_mask = UINT_MAX;
5166}
5167
1da177e4
LT
5168/**
5169 * ata_host_init - Initialize an ata_port structure
5170 * @ap: Structure to initialize
5171 * @host: associated SCSI mid-layer structure
5172 * @host_set: Collection of hosts to which @ap belongs
5173 * @ent: Probe information provided by low-level driver
5174 * @port_no: Port number associated with this ata_port
5175 *
0cba632b
JG
5176 * Initialize a new ata_port structure, and its associated
5177 * scsi_host.
5178 *
1da177e4 5179 * LOCKING:
0cba632b 5180 * Inherited from caller.
1da177e4 5181 */
1da177e4
LT
5182static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5183 struct ata_host_set *host_set,
057ace5e 5184 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5185{
5186 unsigned int i;
5187
5188 host->max_id = 16;
5189 host->max_lun = 1;
5190 host->max_channel = 1;
5191 host->unique_id = ata_unique_id++;
5192 host->max_cmd_len = 12;
12413197 5193
198e0fed 5194 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
5195 ap->id = host->unique_id;
5196 ap->host = host;
5197 ap->ctl = ATA_DEVCTL_OBS;
5198 ap->host_set = host_set;
2f1f610b 5199 ap->dev = ent->dev;
1da177e4
LT
5200 ap->port_no = port_no;
5201 ap->hard_port_no =
5202 ent->legacy_mode ? ent->hard_port_no : port_no;
5203 ap->pio_mask = ent->pio_mask;
5204 ap->mwdma_mask = ent->mwdma_mask;
5205 ap->udma_mask = ent->udma_mask;
5206 ap->flags |= ent->host_flags;
5207 ap->ops = ent->port_ops;
5a04bf4b 5208 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5209 ap->active_tag = ATA_TAG_POISON;
5210 ap->last_ctl = 0xFF;
ef282407 5211 ap->msg_enable = ATA_MSG_DRV;
1da177e4 5212
86e45b6b 5213 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 5214 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5215 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5216
838df628
TH
5217 /* set cable type */
5218 ap->cbl = ATA_CBL_NONE;
5219 if (ap->flags & ATA_FLAG_SATA)
5220 ap->cbl = ATA_CBL_SATA;
5221
acf356b1
TH
5222 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5223 struct ata_device *dev = &ap->device[i];
38d87234 5224 dev->ap = ap;
72fa4b74 5225 dev->devno = i;
3ef3b43d 5226 ata_dev_init(dev);
acf356b1 5227 }
1da177e4
LT
5228
5229#ifdef ATA_IRQ_TRAP
5230 ap->stats.unhandled_irq = 1;
5231 ap->stats.idle_irq = 1;
5232#endif
5233
5234 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5235}
5236
5237/**
5238 * ata_host_add - Attach low-level ATA driver to system
5239 * @ent: Information provided by low-level driver
5240 * @host_set: Collections of ports to which we add
5241 * @port_no: Port number associated with this host
5242 *
0cba632b
JG
5243 * Attach low-level ATA driver to system.
5244 *
1da177e4 5245 * LOCKING:
0cba632b 5246 * PCI/etc. bus probe sem.
1da177e4
LT
5247 *
5248 * RETURNS:
0cba632b 5249 * New ata_port on success, for NULL on error.
1da177e4
LT
5250 */
5251
057ace5e 5252static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
5253 struct ata_host_set *host_set,
5254 unsigned int port_no)
5255{
5256 struct Scsi_Host *host;
5257 struct ata_port *ap;
5258 int rc;
5259
5260 DPRINTK("ENTER\n");
aec5c3c1
TH
5261
5262 if (!ent->port_ops->probe_reset &&
5263 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5264 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5265 port_no);
5266 return NULL;
5267 }
5268
1da177e4
LT
5269 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5270 if (!host)
5271 return NULL;
5272
30afc84c
TH
5273 host->transportt = &ata_scsi_transport_template;
5274
35bb94b1 5275 ap = ata_shost_to_port(host);
1da177e4
LT
5276
5277 ata_host_init(ap, host, host_set, ent, port_no);
5278
5279 rc = ap->ops->port_start(ap);
5280 if (rc)
5281 goto err_out;
5282
5283 return ap;
5284
5285err_out:
5286 scsi_host_put(host);
5287 return NULL;
5288}
5289
5290/**
0cba632b
JG
5291 * ata_device_add - Register hardware device with ATA and SCSI layers
5292 * @ent: Probe information describing hardware device to be registered
5293 *
5294 * This function processes the information provided in the probe
5295 * information struct @ent, allocates the necessary ATA and SCSI
5296 * host information structures, initializes them, and registers
5297 * everything with requisite kernel subsystems.
5298 *
5299 * This function requests irqs, probes the ATA bus, and probes
5300 * the SCSI bus.
1da177e4
LT
5301 *
5302 * LOCKING:
0cba632b 5303 * PCI/etc. bus probe sem.
1da177e4
LT
5304 *
5305 * RETURNS:
0cba632b 5306 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
5307 */
5308
057ace5e 5309int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
5310{
5311 unsigned int count = 0, i;
5312 struct device *dev = ent->dev;
5313 struct ata_host_set *host_set;
5314
5315 DPRINTK("ENTER\n");
5316 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 5317 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
5318 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5319 if (!host_set)
5320 return 0;
1da177e4
LT
5321 spin_lock_init(&host_set->lock);
5322
5323 host_set->dev = dev;
5324 host_set->n_ports = ent->n_ports;
5325 host_set->irq = ent->irq;
5326 host_set->mmio_base = ent->mmio_base;
5327 host_set->private_data = ent->private_data;
5328 host_set->ops = ent->port_ops;
5444a6f4 5329 host_set->flags = ent->host_set_flags;
1da177e4
LT
5330
5331 /* register each port bound to this device */
5332 for (i = 0; i < ent->n_ports; i++) {
5333 struct ata_port *ap;
5334 unsigned long xfer_mode_mask;
5335
5336 ap = ata_host_add(ent, host_set, i);
5337 if (!ap)
5338 goto err_out;
5339
5340 host_set->ports[i] = ap;
5341 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5342 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5343 (ap->pio_mask << ATA_SHIFT_PIO);
5344
5345 /* print per-port info to dmesg */
f15a1daf
TH
5346 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5347 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5348 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5349 ata_mode_string(xfer_mode_mask),
5350 ap->ioaddr.cmd_addr,
5351 ap->ioaddr.ctl_addr,
5352 ap->ioaddr.bmdma_addr,
5353 ent->irq);
1da177e4
LT
5354
5355 ata_chk_status(ap);
5356 host_set->ops->irq_clear(ap);
e3180499 5357 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5358 count++;
5359 }
5360
57f3bda8
RD
5361 if (!count)
5362 goto err_free_ret;
1da177e4
LT
5363
5364 /* obtain irq, that is shared between channels */
5365 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5366 DRV_NAME, host_set))
5367 goto err_out;
5368
5369 /* perform each probe synchronously */
5370 DPRINTK("probe begin\n");
5371 for (i = 0; i < count; i++) {
5372 struct ata_port *ap;
5a04bf4b 5373 u32 scontrol;
1da177e4
LT
5374 int rc;
5375
5376 ap = host_set->ports[i];
5377
5a04bf4b
TH
5378 /* init sata_spd_limit to the current value */
5379 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5380 int spd = (scontrol >> 4) & 0xf;
5381 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5382 }
5383 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5384
c893a3ae 5385 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 5386 rc = ata_bus_probe(ap);
c893a3ae 5387 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
5388
5389 if (rc) {
5390 /* FIXME: do something useful here?
5391 * Current libata behavior will
5392 * tear down everything when
5393 * the module is removed
5394 * or the h/w is unplugged.
5395 */
5396 }
5397
5398 rc = scsi_add_host(ap->host, dev);
5399 if (rc) {
f15a1daf 5400 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5401 /* FIXME: do something useful here */
5402 /* FIXME: handle unconditional calls to
5403 * scsi_scan_host and ata_host_remove, below,
5404 * at the very least
5405 */
5406 }
5407 }
5408
5409 /* probes are done, now scan each port's disk(s) */
c893a3ae 5410 DPRINTK("host probe begin\n");
1da177e4
LT
5411 for (i = 0; i < count; i++) {
5412 struct ata_port *ap = host_set->ports[i];
5413
644dd0cc 5414 ata_scsi_scan_host(ap);
1da177e4
LT
5415 }
5416
5417 dev_set_drvdata(dev, host_set);
5418
5419 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5420 return ent->n_ports; /* success */
5421
5422err_out:
5423 for (i = 0; i < count; i++) {
5424 ata_host_remove(host_set->ports[i], 1);
5425 scsi_host_put(host_set->ports[i]->host);
5426 }
57f3bda8 5427err_free_ret:
1da177e4
LT
5428 kfree(host_set);
5429 VPRINTK("EXIT, returning 0\n");
5430 return 0;
5431}
5432
17b14451
AC
5433/**
5434 * ata_host_set_remove - PCI layer callback for device removal
5435 * @host_set: ATA host set that was removed
5436 *
2e9edbf8 5437 * Unregister all objects associated with this host set. Free those
17b14451
AC
5438 * objects.
5439 *
5440 * LOCKING:
5441 * Inherited from calling layer (may sleep).
5442 */
5443
17b14451
AC
5444void ata_host_set_remove(struct ata_host_set *host_set)
5445{
5446 struct ata_port *ap;
5447 unsigned int i;
5448
5449 for (i = 0; i < host_set->n_ports; i++) {
5450 ap = host_set->ports[i];
5451 scsi_remove_host(ap->host);
5452 }
5453
5454 free_irq(host_set->irq, host_set);
5455
5456 for (i = 0; i < host_set->n_ports; i++) {
5457 ap = host_set->ports[i];
5458
5459 ata_scsi_release(ap->host);
5460
5461 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5462 struct ata_ioports *ioaddr = &ap->ioaddr;
5463
5464 if (ioaddr->cmd_addr == 0x1f0)
5465 release_region(0x1f0, 8);
5466 else if (ioaddr->cmd_addr == 0x170)
5467 release_region(0x170, 8);
5468 }
5469
5470 scsi_host_put(ap->host);
5471 }
5472
5473 if (host_set->ops->host_stop)
5474 host_set->ops->host_stop(host_set);
5475
5476 kfree(host_set);
5477}
5478
1da177e4
LT
5479/**
5480 * ata_scsi_release - SCSI layer callback hook for host unload
5481 * @host: libata host to be unloaded
5482 *
5483 * Performs all duties necessary to shut down a libata port...
5484 * Kill port kthread, disable port, and release resources.
5485 *
5486 * LOCKING:
5487 * Inherited from SCSI layer.
5488 *
5489 * RETURNS:
5490 * One.
5491 */
5492
5493int ata_scsi_release(struct Scsi_Host *host)
5494{
35bb94b1 5495 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5496
5497 DPRINTK("ENTER\n");
5498
5499 ap->ops->port_disable(ap);
5500 ata_host_remove(ap, 0);
5501
5502 DPRINTK("EXIT\n");
5503 return 1;
5504}
5505
5506/**
5507 * ata_std_ports - initialize ioaddr with standard port offsets.
5508 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5509 *
5510 * Utility function which initializes data_addr, error_addr,
5511 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5512 * device_addr, status_addr, and command_addr to standard offsets
5513 * relative to cmd_addr.
5514 *
5515 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5516 */
0baab86b 5517
1da177e4
LT
5518void ata_std_ports(struct ata_ioports *ioaddr)
5519{
5520 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5521 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5522 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5523 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5524 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5525 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5526 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5527 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5528 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5529 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5530}
5531
0baab86b 5532
374b1873
JG
5533#ifdef CONFIG_PCI
5534
5535void ata_pci_host_stop (struct ata_host_set *host_set)
5536{
5537 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5538
5539 pci_iounmap(pdev, host_set->mmio_base);
5540}
5541
1da177e4
LT
5542/**
5543 * ata_pci_remove_one - PCI layer callback for device removal
5544 * @pdev: PCI device that was removed
5545 *
5546 * PCI layer indicates to libata via this hook that
6f0ef4fa 5547 * hot-unplug or module unload event has occurred.
1da177e4
LT
5548 * Handle this by unregistering all objects associated
5549 * with this PCI device. Free those objects. Then finally
5550 * release PCI resources and disable device.
5551 *
5552 * LOCKING:
5553 * Inherited from PCI layer (may sleep).
5554 */
5555
5556void ata_pci_remove_one (struct pci_dev *pdev)
5557{
5558 struct device *dev = pci_dev_to_dev(pdev);
5559 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5560
17b14451 5561 ata_host_set_remove(host_set);
1da177e4
LT
5562 pci_release_regions(pdev);
5563 pci_disable_device(pdev);
5564 dev_set_drvdata(dev, NULL);
5565}
5566
5567/* move to PCI subsystem */
057ace5e 5568int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5569{
5570 unsigned long tmp = 0;
5571
5572 switch (bits->width) {
5573 case 1: {
5574 u8 tmp8 = 0;
5575 pci_read_config_byte(pdev, bits->reg, &tmp8);
5576 tmp = tmp8;
5577 break;
5578 }
5579 case 2: {
5580 u16 tmp16 = 0;
5581 pci_read_config_word(pdev, bits->reg, &tmp16);
5582 tmp = tmp16;
5583 break;
5584 }
5585 case 4: {
5586 u32 tmp32 = 0;
5587 pci_read_config_dword(pdev, bits->reg, &tmp32);
5588 tmp = tmp32;
5589 break;
5590 }
5591
5592 default:
5593 return -EINVAL;
5594 }
5595
5596 tmp &= bits->mask;
5597
5598 return (tmp == bits->val) ? 1 : 0;
5599}
9b847548
JA
5600
5601int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5602{
5603 pci_save_state(pdev);
5604 pci_disable_device(pdev);
5605 pci_set_power_state(pdev, PCI_D3hot);
5606 return 0;
5607}
5608
5609int ata_pci_device_resume(struct pci_dev *pdev)
5610{
5611 pci_set_power_state(pdev, PCI_D0);
5612 pci_restore_state(pdev);
5613 pci_enable_device(pdev);
5614 pci_set_master(pdev);
5615 return 0;
5616}
1da177e4
LT
5617#endif /* CONFIG_PCI */
5618
5619
1da177e4
LT
5620static int __init ata_init(void)
5621{
5622 ata_wq = create_workqueue("ata");
5623 if (!ata_wq)
5624 return -ENOMEM;
5625
5626 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5627 return 0;
5628}
5629
5630static void __exit ata_exit(void)
5631{
5632 destroy_workqueue(ata_wq);
5633}
5634
5635module_init(ata_init);
5636module_exit(ata_exit);
5637
67846b30
JG
5638static unsigned long ratelimit_time;
5639static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5640
5641int ata_ratelimit(void)
5642{
5643 int rc;
5644 unsigned long flags;
5645
5646 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5647
5648 if (time_after(jiffies, ratelimit_time)) {
5649 rc = 1;
5650 ratelimit_time = jiffies + (HZ/5);
5651 } else
5652 rc = 0;
5653
5654 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5655
5656 return rc;
5657}
5658
c22daff4
TH
5659/**
5660 * ata_wait_register - wait until register value changes
5661 * @reg: IO-mapped register
5662 * @mask: Mask to apply to read register value
5663 * @val: Wait condition
5664 * @interval_msec: polling interval in milliseconds
5665 * @timeout_msec: timeout in milliseconds
5666 *
5667 * Waiting for some bits of register to change is a common
5668 * operation for ATA controllers. This function reads 32bit LE
5669 * IO-mapped register @reg and tests for the following condition.
5670 *
5671 * (*@reg & mask) != val
5672 *
5673 * If the condition is met, it returns; otherwise, the process is
5674 * repeated after @interval_msec until timeout.
5675 *
5676 * LOCKING:
5677 * Kernel thread context (may sleep)
5678 *
5679 * RETURNS:
5680 * The final register value.
5681 */
5682u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5683 unsigned long interval_msec,
5684 unsigned long timeout_msec)
5685{
5686 unsigned long timeout;
5687 u32 tmp;
5688
5689 tmp = ioread32(reg);
5690
5691 /* Calculate timeout _after_ the first read to make sure
5692 * preceding writes reach the controller before starting to
5693 * eat away the timeout.
5694 */
5695 timeout = jiffies + (timeout_msec * HZ) / 1000;
5696
5697 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5698 msleep(interval_msec);
5699 tmp = ioread32(reg);
5700 }
5701
5702 return tmp;
5703}
5704
1da177e4
LT
5705/*
5706 * libata is essentially a library of internal helper functions for
5707 * low-level ATA host controller drivers. As such, the API/ABI is
5708 * likely to change as new drivers are added and updated.
5709 * Do not depend on ABI/API stability.
5710 */
5711
5712EXPORT_SYMBOL_GPL(ata_std_bios_param);
5713EXPORT_SYMBOL_GPL(ata_std_ports);
5714EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5715EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5716EXPORT_SYMBOL_GPL(ata_sg_init);
5717EXPORT_SYMBOL_GPL(ata_sg_init_one);
f686bcb8 5718EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 5719EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 5720EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5721EXPORT_SYMBOL_GPL(ata_tf_load);
5722EXPORT_SYMBOL_GPL(ata_tf_read);
5723EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5724EXPORT_SYMBOL_GPL(ata_std_dev_select);
5725EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5726EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5727EXPORT_SYMBOL_GPL(ata_check_status);
5728EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5729EXPORT_SYMBOL_GPL(ata_exec_command);
5730EXPORT_SYMBOL_GPL(ata_port_start);
5731EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5732EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 5733EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
5734EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5735EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 5736EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 5737EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5738EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5739EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5740EXPORT_SYMBOL_GPL(ata_bmdma_start);
5741EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5742EXPORT_SYMBOL_GPL(ata_bmdma_status);
5743EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
5744EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5745EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5746EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5747EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5748EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 5749EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5750EXPORT_SYMBOL_GPL(sata_set_spd);
1da177e4
LT
5751EXPORT_SYMBOL_GPL(sata_phy_reset);
5752EXPORT_SYMBOL_GPL(__sata_phy_reset);
5753EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5754EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5755EXPORT_SYMBOL_GPL(ata_std_softreset);
5756EXPORT_SYMBOL_GPL(sata_std_hardreset);
5757EXPORT_SYMBOL_GPL(ata_std_postreset);
5758EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5759EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5760EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5761EXPORT_SYMBOL_GPL(ata_dev_classify);
5762EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5763EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5764EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5765EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5766EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5767EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5768EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5769EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 5770EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
a6e6ce8e 5771EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
5772EXPORT_SYMBOL_GPL(ata_scsi_release);
5773EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5774EXPORT_SYMBOL_GPL(sata_scr_valid);
5775EXPORT_SYMBOL_GPL(sata_scr_read);
5776EXPORT_SYMBOL_GPL(sata_scr_write);
5777EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5778EXPORT_SYMBOL_GPL(ata_port_online);
5779EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5780EXPORT_SYMBOL_GPL(ata_id_string);
5781EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5782EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5783
1bc4ccff 5784EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5785EXPORT_SYMBOL_GPL(ata_timing_compute);
5786EXPORT_SYMBOL_GPL(ata_timing_merge);
5787
1da177e4
LT
5788#ifdef CONFIG_PCI
5789EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5790EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5791EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5792EXPORT_SYMBOL_GPL(ata_pci_init_one);
5793EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5794EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5795EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5796EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5797EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5798#endif /* CONFIG_PCI */
9b847548
JA
5799
5800EXPORT_SYMBOL_GPL(ata_device_suspend);
5801EXPORT_SYMBOL_GPL(ata_device_resume);
5802EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5803EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5804
ece1d636 5805EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
5806EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5807EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
5808EXPORT_SYMBOL_GPL(ata_port_freeze);
5809EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5810EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
5811EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5812EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 5813EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.654679 seconds and 5 git commands to generate.