[PATCH] libata irq-pio: misc fixes
[deliverable/linux.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
64static unsigned int ata_busy_sleep (struct ata_port *ap,
65 unsigned long tmout_pat,
66 unsigned long tmout);
59a10b17 67static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
8bf62ece 68static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
69static void ata_set_mode(struct ata_port *ap);
70static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
057ace5e 71static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
1da177e4 72static int fgb(u32 bitmap);
057ace5e 73static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
74 u8 *xfer_mode_out,
75 unsigned int *xfer_shift_out);
1da177e4 76static void __ata_qc_complete(struct ata_queued_cmd *qc);
e33b9dfa 77static void ata_pio_error(struct ata_port *ap);
1da177e4
LT
78
79static unsigned int ata_unique_id = 1;
80static struct workqueue_struct *ata_wq;
81
1623c81e
JG
82int atapi_enabled = 0;
83module_param(atapi_enabled, int, 0444);
84MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85
1da177e4
LT
86MODULE_AUTHOR("Jeff Garzik");
87MODULE_DESCRIPTION("Library module for ATA devices");
88MODULE_LICENSE("GPL");
89MODULE_VERSION(DRV_VERSION);
90
91/**
6f0ef4fa 92 * ata_tf_load_pio - send taskfile registers to host controller
1da177e4
LT
93 * @ap: Port to which output is sent
94 * @tf: ATA taskfile register set
95 *
96 * Outputs ATA taskfile to standard ATA host controller.
97 *
98 * LOCKING:
99 * Inherited from caller.
100 */
101
057ace5e 102static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
103{
104 struct ata_ioports *ioaddr = &ap->ioaddr;
105 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
106
107 if (tf->ctl != ap->last_ctl) {
108 outb(tf->ctl, ioaddr->ctl_addr);
109 ap->last_ctl = tf->ctl;
110 ata_wait_idle(ap);
111 }
112
113 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
114 outb(tf->hob_feature, ioaddr->feature_addr);
115 outb(tf->hob_nsect, ioaddr->nsect_addr);
116 outb(tf->hob_lbal, ioaddr->lbal_addr);
117 outb(tf->hob_lbam, ioaddr->lbam_addr);
118 outb(tf->hob_lbah, ioaddr->lbah_addr);
119 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
120 tf->hob_feature,
121 tf->hob_nsect,
122 tf->hob_lbal,
123 tf->hob_lbam,
124 tf->hob_lbah);
125 }
126
127 if (is_addr) {
128 outb(tf->feature, ioaddr->feature_addr);
129 outb(tf->nsect, ioaddr->nsect_addr);
130 outb(tf->lbal, ioaddr->lbal_addr);
131 outb(tf->lbam, ioaddr->lbam_addr);
132 outb(tf->lbah, ioaddr->lbah_addr);
133 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
134 tf->feature,
135 tf->nsect,
136 tf->lbal,
137 tf->lbam,
138 tf->lbah);
139 }
140
141 if (tf->flags & ATA_TFLAG_DEVICE) {
142 outb(tf->device, ioaddr->device_addr);
143 VPRINTK("device 0x%X\n", tf->device);
144 }
145
146 ata_wait_idle(ap);
147}
148
149/**
150 * ata_tf_load_mmio - send taskfile registers to host controller
151 * @ap: Port to which output is sent
152 * @tf: ATA taskfile register set
153 *
154 * Outputs ATA taskfile to standard ATA host controller using MMIO.
155 *
156 * LOCKING:
157 * Inherited from caller.
158 */
159
057ace5e 160static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
161{
162 struct ata_ioports *ioaddr = &ap->ioaddr;
163 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
164
165 if (tf->ctl != ap->last_ctl) {
166 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
167 ap->last_ctl = tf->ctl;
168 ata_wait_idle(ap);
169 }
170
171 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
172 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
173 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
174 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
175 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
176 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
177 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
178 tf->hob_feature,
179 tf->hob_nsect,
180 tf->hob_lbal,
181 tf->hob_lbam,
182 tf->hob_lbah);
183 }
184
185 if (is_addr) {
186 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
187 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
188 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
189 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
190 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
191 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
192 tf->feature,
193 tf->nsect,
194 tf->lbal,
195 tf->lbam,
196 tf->lbah);
197 }
198
199 if (tf->flags & ATA_TFLAG_DEVICE) {
200 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
201 VPRINTK("device 0x%X\n", tf->device);
202 }
203
204 ata_wait_idle(ap);
205}
206
0baab86b
EF
207
208/**
209 * ata_tf_load - send taskfile registers to host controller
210 * @ap: Port to which output is sent
211 * @tf: ATA taskfile register set
212 *
213 * Outputs ATA taskfile to standard ATA host controller using MMIO
214 * or PIO as indicated by the ATA_FLAG_MMIO flag.
215 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
216 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
217 * hob_lbal, hob_lbam, and hob_lbah.
218 *
219 * This function waits for idle (!BUSY and !DRQ) after writing
220 * registers. If the control register has a new value, this
221 * function also waits for idle after writing control and before
222 * writing the remaining registers.
223 *
224 * May be used as the tf_load() entry in ata_port_operations.
225 *
226 * LOCKING:
227 * Inherited from caller.
228 */
057ace5e 229void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
230{
231 if (ap->flags & ATA_FLAG_MMIO)
232 ata_tf_load_mmio(ap, tf);
233 else
234 ata_tf_load_pio(ap, tf);
235}
236
237/**
0baab86b 238 * ata_exec_command_pio - issue ATA command to host controller
1da177e4
LT
239 * @ap: port to which command is being issued
240 * @tf: ATA taskfile register set
241 *
0baab86b 242 * Issues PIO write to ATA command register, with proper
1da177e4
LT
243 * synchronization with interrupt handler / other threads.
244 *
245 * LOCKING:
246 * spin_lock_irqsave(host_set lock)
247 */
248
057ace5e 249static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
250{
251 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
252
253 outb(tf->command, ap->ioaddr.command_addr);
254 ata_pause(ap);
255}
256
257
258/**
259 * ata_exec_command_mmio - issue ATA command to host controller
260 * @ap: port to which command is being issued
261 * @tf: ATA taskfile register set
262 *
263 * Issues MMIO write to ATA command register, with proper
264 * synchronization with interrupt handler / other threads.
265 *
266 * LOCKING:
267 * spin_lock_irqsave(host_set lock)
268 */
269
057ace5e 270static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
271{
272 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
273
274 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
275 ata_pause(ap);
276}
277
0baab86b
EF
278
279/**
280 * ata_exec_command - issue ATA command to host controller
281 * @ap: port to which command is being issued
282 * @tf: ATA taskfile register set
283 *
284 * Issues PIO/MMIO write to ATA command register, with proper
285 * synchronization with interrupt handler / other threads.
286 *
287 * LOCKING:
288 * spin_lock_irqsave(host_set lock)
289 */
057ace5e 290void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
291{
292 if (ap->flags & ATA_FLAG_MMIO)
293 ata_exec_command_mmio(ap, tf);
294 else
295 ata_exec_command_pio(ap, tf);
296}
297
1da177e4
LT
298/**
299 * ata_tf_to_host - issue ATA taskfile to host controller
300 * @ap: port to which command is being issued
301 * @tf: ATA taskfile register set
302 *
303 * Issues ATA taskfile register set to ATA host controller,
304 * with proper synchronization with interrupt handler and
305 * other threads.
306 *
307 * LOCKING:
1da177e4
LT
308 * spin_lock_irqsave(host_set lock)
309 */
310
e5338254
JG
311static inline void ata_tf_to_host(struct ata_port *ap,
312 const struct ata_taskfile *tf)
1da177e4
LT
313{
314 ap->ops->tf_load(ap, tf);
315 ap->ops->exec_command(ap, tf);
316}
317
318/**
0baab86b 319 * ata_tf_read_pio - input device's ATA taskfile shadow registers
1da177e4
LT
320 * @ap: Port from which input is read
321 * @tf: ATA taskfile register set for storing input
322 *
323 * Reads ATA taskfile registers for currently-selected device
324 * into @tf.
325 *
326 * LOCKING:
327 * Inherited from caller.
328 */
329
330static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
331{
332 struct ata_ioports *ioaddr = &ap->ioaddr;
333
ac19bff2 334 tf->command = ata_check_status(ap);
0169e284 335 tf->feature = inb(ioaddr->error_addr);
1da177e4
LT
336 tf->nsect = inb(ioaddr->nsect_addr);
337 tf->lbal = inb(ioaddr->lbal_addr);
338 tf->lbam = inb(ioaddr->lbam_addr);
339 tf->lbah = inb(ioaddr->lbah_addr);
340 tf->device = inb(ioaddr->device_addr);
341
342 if (tf->flags & ATA_TFLAG_LBA48) {
343 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
344 tf->hob_feature = inb(ioaddr->error_addr);
345 tf->hob_nsect = inb(ioaddr->nsect_addr);
346 tf->hob_lbal = inb(ioaddr->lbal_addr);
347 tf->hob_lbam = inb(ioaddr->lbam_addr);
348 tf->hob_lbah = inb(ioaddr->lbah_addr);
349 }
350}
351
352/**
353 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
354 * @ap: Port from which input is read
355 * @tf: ATA taskfile register set for storing input
356 *
357 * Reads ATA taskfile registers for currently-selected device
358 * into @tf via MMIO.
359 *
360 * LOCKING:
361 * Inherited from caller.
362 */
363
364static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
365{
366 struct ata_ioports *ioaddr = &ap->ioaddr;
367
ac19bff2 368 tf->command = ata_check_status(ap);
0169e284 369 tf->feature = readb((void __iomem *)ioaddr->error_addr);
1da177e4
LT
370 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
371 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
372 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
373 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
374 tf->device = readb((void __iomem *)ioaddr->device_addr);
375
376 if (tf->flags & ATA_TFLAG_LBA48) {
377 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
378 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
379 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
380 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
381 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
382 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
383 }
384}
385
0baab86b
EF
386
387/**
388 * ata_tf_read - input device's ATA taskfile shadow registers
389 * @ap: Port from which input is read
390 * @tf: ATA taskfile register set for storing input
391 *
392 * Reads ATA taskfile registers for currently-selected device
393 * into @tf.
394 *
395 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
396 * is set, also reads the hob registers.
397 *
398 * May be used as the tf_read() entry in ata_port_operations.
399 *
400 * LOCKING:
401 * Inherited from caller.
402 */
1da177e4
LT
403void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
404{
405 if (ap->flags & ATA_FLAG_MMIO)
406 ata_tf_read_mmio(ap, tf);
407 else
408 ata_tf_read_pio(ap, tf);
409}
410
411/**
412 * ata_check_status_pio - Read device status reg & clear interrupt
413 * @ap: port where the device is
414 *
415 * Reads ATA taskfile status register for currently-selected device
0baab86b 416 * and return its value. This also clears pending interrupts
1da177e4
LT
417 * from this device
418 *
419 * LOCKING:
420 * Inherited from caller.
421 */
422static u8 ata_check_status_pio(struct ata_port *ap)
423{
424 return inb(ap->ioaddr.status_addr);
425}
426
427/**
428 * ata_check_status_mmio - Read device status reg & clear interrupt
429 * @ap: port where the device is
430 *
431 * Reads ATA taskfile status register for currently-selected device
0baab86b 432 * via MMIO and return its value. This also clears pending interrupts
1da177e4
LT
433 * from this device
434 *
435 * LOCKING:
436 * Inherited from caller.
437 */
438static u8 ata_check_status_mmio(struct ata_port *ap)
439{
440 return readb((void __iomem *) ap->ioaddr.status_addr);
441}
442
0baab86b
EF
443
444/**
445 * ata_check_status - Read device status reg & clear interrupt
446 * @ap: port where the device is
447 *
448 * Reads ATA taskfile status register for currently-selected device
449 * and return its value. This also clears pending interrupts
450 * from this device
451 *
452 * May be used as the check_status() entry in ata_port_operations.
453 *
454 * LOCKING:
455 * Inherited from caller.
456 */
1da177e4
LT
457u8 ata_check_status(struct ata_port *ap)
458{
459 if (ap->flags & ATA_FLAG_MMIO)
460 return ata_check_status_mmio(ap);
461 return ata_check_status_pio(ap);
462}
463
0baab86b
EF
464
465/**
466 * ata_altstatus - Read device alternate status reg
467 * @ap: port where the device is
468 *
469 * Reads ATA taskfile alternate status register for
470 * currently-selected device and return its value.
471 *
472 * Note: may NOT be used as the check_altstatus() entry in
473 * ata_port_operations.
474 *
475 * LOCKING:
476 * Inherited from caller.
477 */
1da177e4
LT
478u8 ata_altstatus(struct ata_port *ap)
479{
480 if (ap->ops->check_altstatus)
481 return ap->ops->check_altstatus(ap);
482
483 if (ap->flags & ATA_FLAG_MMIO)
484 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
485 return inb(ap->ioaddr.altstatus_addr);
486}
487
0baab86b 488
1da177e4
LT
489/**
490 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
491 * @tf: Taskfile to convert
492 * @fis: Buffer into which data will output
493 * @pmp: Port multiplier port
494 *
495 * Converts a standard ATA taskfile to a Serial ATA
496 * FIS structure (Register - Host to Device).
497 *
498 * LOCKING:
499 * Inherited from caller.
500 */
501
057ace5e 502void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
503{
504 fis[0] = 0x27; /* Register - Host to Device FIS */
505 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
506 bit 7 indicates Command FIS */
507 fis[2] = tf->command;
508 fis[3] = tf->feature;
509
510 fis[4] = tf->lbal;
511 fis[5] = tf->lbam;
512 fis[6] = tf->lbah;
513 fis[7] = tf->device;
514
515 fis[8] = tf->hob_lbal;
516 fis[9] = tf->hob_lbam;
517 fis[10] = tf->hob_lbah;
518 fis[11] = tf->hob_feature;
519
520 fis[12] = tf->nsect;
521 fis[13] = tf->hob_nsect;
522 fis[14] = 0;
523 fis[15] = tf->ctl;
524
525 fis[16] = 0;
526 fis[17] = 0;
527 fis[18] = 0;
528 fis[19] = 0;
529}
530
531/**
532 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
533 * @fis: Buffer from which data will be input
534 * @tf: Taskfile to output
535 *
536 * Converts a standard ATA taskfile to a Serial ATA
537 * FIS structure (Register - Host to Device).
538 *
539 * LOCKING:
540 * Inherited from caller.
541 */
542
057ace5e 543void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
544{
545 tf->command = fis[2]; /* status */
546 tf->feature = fis[3]; /* error */
547
548 tf->lbal = fis[4];
549 tf->lbam = fis[5];
550 tf->lbah = fis[6];
551 tf->device = fis[7];
552
553 tf->hob_lbal = fis[8];
554 tf->hob_lbam = fis[9];
555 tf->hob_lbah = fis[10];
556
557 tf->nsect = fis[12];
558 tf->hob_nsect = fis[13];
559}
560
8cbd6df1
AL
561static const u8 ata_rw_cmds[] = {
562 /* pio multi */
563 ATA_CMD_READ_MULTI,
564 ATA_CMD_WRITE_MULTI,
565 ATA_CMD_READ_MULTI_EXT,
566 ATA_CMD_WRITE_MULTI_EXT,
567 /* pio */
568 ATA_CMD_PIO_READ,
569 ATA_CMD_PIO_WRITE,
570 ATA_CMD_PIO_READ_EXT,
571 ATA_CMD_PIO_WRITE_EXT,
572 /* dma */
573 ATA_CMD_READ,
574 ATA_CMD_WRITE,
575 ATA_CMD_READ_EXT,
576 ATA_CMD_WRITE_EXT
577};
1da177e4
LT
578
579/**
8cbd6df1
AL
580 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
581 * @qc: command to examine and configure
1da177e4 582 *
8cbd6df1
AL
583 * Examine the device configuration and tf->flags to calculate
584 * the proper read/write commands and protocol to use.
1da177e4
LT
585 *
586 * LOCKING:
587 * caller.
588 */
8cbd6df1 589void ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 590{
8cbd6df1
AL
591 struct ata_taskfile *tf = &qc->tf;
592 struct ata_device *dev = qc->dev;
1da177e4 593
8cbd6df1
AL
594 int index, lba48, write;
595
596 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
597 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 598
8cbd6df1
AL
599 if (dev->flags & ATA_DFLAG_PIO) {
600 tf->protocol = ATA_PROT_PIO;
601 index = dev->multi_count ? 0 : 4;
602 } else {
603 tf->protocol = ATA_PROT_DMA;
604 index = 8;
605 }
1da177e4 606
8cbd6df1 607 tf->command = ata_rw_cmds[index + lba48 + write];
1da177e4
LT
608}
609
610static const char * xfer_mode_str[] = {
611 "UDMA/16",
612 "UDMA/25",
613 "UDMA/33",
614 "UDMA/44",
615 "UDMA/66",
616 "UDMA/100",
617 "UDMA/133",
618 "UDMA7",
619 "MWDMA0",
620 "MWDMA1",
621 "MWDMA2",
622 "PIO0",
623 "PIO1",
624 "PIO2",
625 "PIO3",
626 "PIO4",
627};
628
629/**
630 * ata_udma_string - convert UDMA bit offset to string
631 * @mask: mask of bits supported; only highest bit counts.
632 *
633 * Determine string which represents the highest speed
634 * (highest bit in @udma_mask).
635 *
636 * LOCKING:
637 * None.
638 *
639 * RETURNS:
640 * Constant C string representing highest speed listed in
641 * @udma_mask, or the constant C string "<n/a>".
642 */
643
644static const char *ata_mode_string(unsigned int mask)
645{
646 int i;
647
648 for (i = 7; i >= 0; i--)
649 if (mask & (1 << i))
650 goto out;
651 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
652 if (mask & (1 << i))
653 goto out;
654 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
655 if (mask & (1 << i))
656 goto out;
657
658 return "<n/a>";
659
660out:
661 return xfer_mode_str[i];
662}
663
664/**
665 * ata_pio_devchk - PATA device presence detection
666 * @ap: ATA channel to examine
667 * @device: Device to examine (starting at zero)
668 *
669 * This technique was originally described in
670 * Hale Landis's ATADRVR (www.ata-atapi.com), and
671 * later found its way into the ATA/ATAPI spec.
672 *
673 * Write a pattern to the ATA shadow registers,
674 * and if a device is present, it will respond by
675 * correctly storing and echoing back the
676 * ATA shadow register contents.
677 *
678 * LOCKING:
679 * caller.
680 */
681
682static unsigned int ata_pio_devchk(struct ata_port *ap,
683 unsigned int device)
684{
685 struct ata_ioports *ioaddr = &ap->ioaddr;
686 u8 nsect, lbal;
687
688 ap->ops->dev_select(ap, device);
689
690 outb(0x55, ioaddr->nsect_addr);
691 outb(0xaa, ioaddr->lbal_addr);
692
693 outb(0xaa, ioaddr->nsect_addr);
694 outb(0x55, ioaddr->lbal_addr);
695
696 outb(0x55, ioaddr->nsect_addr);
697 outb(0xaa, ioaddr->lbal_addr);
698
699 nsect = inb(ioaddr->nsect_addr);
700 lbal = inb(ioaddr->lbal_addr);
701
702 if ((nsect == 0x55) && (lbal == 0xaa))
703 return 1; /* we found a device */
704
705 return 0; /* nothing found */
706}
707
708/**
709 * ata_mmio_devchk - PATA device presence detection
710 * @ap: ATA channel to examine
711 * @device: Device to examine (starting at zero)
712 *
713 * This technique was originally described in
714 * Hale Landis's ATADRVR (www.ata-atapi.com), and
715 * later found its way into the ATA/ATAPI spec.
716 *
717 * Write a pattern to the ATA shadow registers,
718 * and if a device is present, it will respond by
719 * correctly storing and echoing back the
720 * ATA shadow register contents.
721 *
722 * LOCKING:
723 * caller.
724 */
725
726static unsigned int ata_mmio_devchk(struct ata_port *ap,
727 unsigned int device)
728{
729 struct ata_ioports *ioaddr = &ap->ioaddr;
730 u8 nsect, lbal;
731
732 ap->ops->dev_select(ap, device);
733
734 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
735 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
736
737 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
738 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
739
740 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
741 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
742
743 nsect = readb((void __iomem *) ioaddr->nsect_addr);
744 lbal = readb((void __iomem *) ioaddr->lbal_addr);
745
746 if ((nsect == 0x55) && (lbal == 0xaa))
747 return 1; /* we found a device */
748
749 return 0; /* nothing found */
750}
751
752/**
753 * ata_devchk - PATA device presence detection
754 * @ap: ATA channel to examine
755 * @device: Device to examine (starting at zero)
756 *
757 * Dispatch ATA device presence detection, depending
758 * on whether we are using PIO or MMIO to talk to the
759 * ATA shadow registers.
760 *
761 * LOCKING:
762 * caller.
763 */
764
765static unsigned int ata_devchk(struct ata_port *ap,
766 unsigned int device)
767{
768 if (ap->flags & ATA_FLAG_MMIO)
769 return ata_mmio_devchk(ap, device);
770 return ata_pio_devchk(ap, device);
771}
772
773/**
774 * ata_dev_classify - determine device type based on ATA-spec signature
775 * @tf: ATA taskfile register set for device to be identified
776 *
777 * Determine from taskfile register contents whether a device is
778 * ATA or ATAPI, as per "Signature and persistence" section
779 * of ATA/PI spec (volume 1, sect 5.14).
780 *
781 * LOCKING:
782 * None.
783 *
784 * RETURNS:
785 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
786 * the event of failure.
787 */
788
057ace5e 789unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
790{
791 /* Apple's open source Darwin code hints that some devices only
792 * put a proper signature into the LBA mid/high registers,
793 * So, we only check those. It's sufficient for uniqueness.
794 */
795
796 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
797 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
798 DPRINTK("found ATA device by sig\n");
799 return ATA_DEV_ATA;
800 }
801
802 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
803 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
804 DPRINTK("found ATAPI device by sig\n");
805 return ATA_DEV_ATAPI;
806 }
807
808 DPRINTK("unknown device\n");
809 return ATA_DEV_UNKNOWN;
810}
811
812/**
813 * ata_dev_try_classify - Parse returned ATA device signature
814 * @ap: ATA channel to examine
815 * @device: Device to examine (starting at zero)
816 *
817 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
818 * an ATA/ATAPI-defined set of values is placed in the ATA
819 * shadow registers, indicating the results of device detection
820 * and diagnostics.
821 *
822 * Select the ATA device, and read the values from the ATA shadow
823 * registers. Then parse according to the Error register value,
824 * and the spec-defined values examined by ata_dev_classify().
825 *
826 * LOCKING:
827 * caller.
828 */
829
830static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
831{
832 struct ata_device *dev = &ap->device[device];
833 struct ata_taskfile tf;
834 unsigned int class;
835 u8 err;
836
837 ap->ops->dev_select(ap, device);
838
839 memset(&tf, 0, sizeof(tf));
840
1da177e4 841 ap->ops->tf_read(ap, &tf);
0169e284 842 err = tf.feature;
1da177e4
LT
843
844 dev->class = ATA_DEV_NONE;
845
846 /* see if device passed diags */
847 if (err == 1)
848 /* do nothing */ ;
849 else if ((device == 0) && (err == 0x81))
850 /* do nothing */ ;
851 else
852 return err;
853
854 /* determine if device if ATA or ATAPI */
855 class = ata_dev_classify(&tf);
856 if (class == ATA_DEV_UNKNOWN)
857 return err;
858 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
859 return err;
860
861 dev->class = class;
862
863 return err;
864}
865
866/**
867 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
868 * @id: IDENTIFY DEVICE results we will examine
869 * @s: string into which data is output
870 * @ofs: offset into identify device page
871 * @len: length of string to return. must be an even number.
872 *
873 * The strings in the IDENTIFY DEVICE page are broken up into
874 * 16-bit chunks. Run through the string, and output each
875 * 8-bit chunk linearly, regardless of platform.
876 *
877 * LOCKING:
878 * caller.
879 */
880
057ace5e 881void ata_dev_id_string(const u16 *id, unsigned char *s,
1da177e4
LT
882 unsigned int ofs, unsigned int len)
883{
884 unsigned int c;
885
886 while (len > 0) {
887 c = id[ofs] >> 8;
888 *s = c;
889 s++;
890
891 c = id[ofs] & 0xff;
892 *s = c;
893 s++;
894
895 ofs++;
896 len -= 2;
897 }
898}
899
0baab86b
EF
900
901/**
902 * ata_noop_dev_select - Select device 0/1 on ATA bus
903 * @ap: ATA channel to manipulate
904 * @device: ATA device (numbered from zero) to select
905 *
906 * This function performs no actual function.
907 *
908 * May be used as the dev_select() entry in ata_port_operations.
909 *
910 * LOCKING:
911 * caller.
912 */
1da177e4
LT
913void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
914{
915}
916
0baab86b 917
1da177e4
LT
918/**
919 * ata_std_dev_select - Select device 0/1 on ATA bus
920 * @ap: ATA channel to manipulate
921 * @device: ATA device (numbered from zero) to select
922 *
923 * Use the method defined in the ATA specification to
924 * make either device 0, or device 1, active on the
0baab86b
EF
925 * ATA channel. Works with both PIO and MMIO.
926 *
927 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
928 *
929 * LOCKING:
930 * caller.
931 */
932
933void ata_std_dev_select (struct ata_port *ap, unsigned int device)
934{
935 u8 tmp;
936
937 if (device == 0)
938 tmp = ATA_DEVICE_OBS;
939 else
940 tmp = ATA_DEVICE_OBS | ATA_DEV1;
941
942 if (ap->flags & ATA_FLAG_MMIO) {
943 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
944 } else {
945 outb(tmp, ap->ioaddr.device_addr);
946 }
947 ata_pause(ap); /* needed; also flushes, for mmio */
948}
949
950/**
951 * ata_dev_select - Select device 0/1 on ATA bus
952 * @ap: ATA channel to manipulate
953 * @device: ATA device (numbered from zero) to select
954 * @wait: non-zero to wait for Status register BSY bit to clear
955 * @can_sleep: non-zero if context allows sleeping
956 *
957 * Use the method defined in the ATA specification to
958 * make either device 0, or device 1, active on the
959 * ATA channel.
960 *
961 * This is a high-level version of ata_std_dev_select(),
962 * which additionally provides the services of inserting
963 * the proper pauses and status polling, where needed.
964 *
965 * LOCKING:
966 * caller.
967 */
968
969void ata_dev_select(struct ata_port *ap, unsigned int device,
970 unsigned int wait, unsigned int can_sleep)
971{
972 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
973 ap->id, device, wait);
974
975 if (wait)
976 ata_wait_idle(ap);
977
978 ap->ops->dev_select(ap, device);
979
980 if (wait) {
981 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
982 msleep(150);
983 ata_wait_idle(ap);
984 }
985}
986
987/**
988 * ata_dump_id - IDENTIFY DEVICE info debugging output
989 * @dev: Device whose IDENTIFY DEVICE page we will dump
990 *
991 * Dump selected 16-bit words from a detected device's
992 * IDENTIFY PAGE page.
993 *
994 * LOCKING:
995 * caller.
996 */
997
057ace5e 998static inline void ata_dump_id(const struct ata_device *dev)
1da177e4
LT
999{
1000 DPRINTK("49==0x%04x "
1001 "53==0x%04x "
1002 "63==0x%04x "
1003 "64==0x%04x "
1004 "75==0x%04x \n",
1005 dev->id[49],
1006 dev->id[53],
1007 dev->id[63],
1008 dev->id[64],
1009 dev->id[75]);
1010 DPRINTK("80==0x%04x "
1011 "81==0x%04x "
1012 "82==0x%04x "
1013 "83==0x%04x "
1014 "84==0x%04x \n",
1015 dev->id[80],
1016 dev->id[81],
1017 dev->id[82],
1018 dev->id[83],
1019 dev->id[84]);
1020 DPRINTK("88==0x%04x "
1021 "93==0x%04x\n",
1022 dev->id[88],
1023 dev->id[93]);
1024}
1025
11e29e21
AC
1026/*
1027 * Compute the PIO modes available for this device. This is not as
1028 * trivial as it seems if we must consider early devices correctly.
1029 *
1030 * FIXME: pre IDE drive timing (do we care ?).
1031 */
1032
057ace5e 1033static unsigned int ata_pio_modes(const struct ata_device *adev)
11e29e21
AC
1034{
1035 u16 modes;
1036
1037 /* Usual case. Word 53 indicates word 88 is valid */
1038 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 2)) {
1039 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1040 modes <<= 3;
1041 modes |= 0x7;
1042 return modes;
1043 }
1044
1045 /* If word 88 isn't valid then Word 51 holds the PIO timing number
1046 for the maximum. Turn it into a mask and return it */
1047 modes = (2 << (adev->id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
1048 return modes;
1049}
1050
1da177e4
LT
1051/**
1052 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1053 * @ap: port on which device we wish to probe resides
1054 * @device: device bus address, starting at zero
1055 *
1056 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1057 * command, and read back the 512-byte device information page.
1058 * The device information page is fed to us via the standard
1059 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1060 * using standard PIO-IN paths)
1061 *
1062 * After reading the device information page, we use several
1063 * bits of information from it to initialize data structures
1064 * that will be used during the lifetime of the ata_device.
1065 * Other data from the info page is used to disqualify certain
1066 * older ATA devices we do not wish to support.
1067 *
1068 * LOCKING:
1069 * Inherited from caller. Some functions called by this function
1070 * obtain the host_set lock.
1071 */
1072
1073static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1074{
1075 struct ata_device *dev = &ap->device[device];
8bf62ece 1076 unsigned int major_version;
1da177e4
LT
1077 u16 tmp;
1078 unsigned long xfer_modes;
1da177e4
LT
1079 unsigned int using_edd;
1080 DECLARE_COMPLETION(wait);
1081 struct ata_queued_cmd *qc;
1082 unsigned long flags;
1083 int rc;
1084
1085 if (!ata_dev_present(dev)) {
1086 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1087 ap->id, device);
1088 return;
1089 }
1090
1091 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1092 using_edd = 0;
1093 else
1094 using_edd = 1;
1095
1096 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1097
1098 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1099 dev->class == ATA_DEV_NONE);
1100
1101 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1102
1103 qc = ata_qc_new_init(ap, dev);
1104 BUG_ON(qc == NULL);
1105
1106 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1107 qc->dma_dir = DMA_FROM_DEVICE;
1108 qc->tf.protocol = ATA_PROT_PIO;
1109 qc->nsect = 1;
1110
1111retry:
1112 if (dev->class == ATA_DEV_ATA) {
1113 qc->tf.command = ATA_CMD_ID_ATA;
1114 DPRINTK("do ATA identify\n");
1115 } else {
1116 qc->tf.command = ATA_CMD_ID_ATAPI;
1117 DPRINTK("do ATAPI identify\n");
1118 }
1119
1120 qc->waiting = &wait;
1121 qc->complete_fn = ata_qc_complete_noop;
1122
1123 spin_lock_irqsave(&ap->host_set->lock, flags);
1124 rc = ata_qc_issue(qc);
1125 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1126
1127 if (rc)
1128 goto err_out;
1129 else
1130 wait_for_completion(&wait);
1131
0169e284
JG
1132 spin_lock_irqsave(&ap->host_set->lock, flags);
1133 ap->ops->tf_read(ap, &qc->tf);
1134 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1135
1136 if (qc->tf.command & ATA_ERR) {
1da177e4
LT
1137 /*
1138 * arg! EDD works for all test cases, but seems to return
1139 * the ATA signature for some ATAPI devices. Until the
1140 * reason for this is found and fixed, we fix up the mess
1141 * here. If IDENTIFY DEVICE returns command aborted
1142 * (as ATAPI devices do), then we issue an
1143 * IDENTIFY PACKET DEVICE.
1144 *
1145 * ATA software reset (SRST, the default) does not appear
1146 * to have this problem.
1147 */
1148 if ((using_edd) && (qc->tf.command == ATA_CMD_ID_ATA)) {
0169e284 1149 u8 err = qc->tf.feature;
1da177e4
LT
1150 if (err & ATA_ABORTED) {
1151 dev->class = ATA_DEV_ATAPI;
1152 qc->cursg = 0;
1153 qc->cursg_ofs = 0;
1154 qc->cursect = 0;
1155 qc->nsect = 1;
1156 goto retry;
1157 }
1158 }
1159 goto err_out;
1160 }
1161
1162 swap_buf_le16(dev->id, ATA_ID_WORDS);
1163
1164 /* print device capabilities */
1165 printk(KERN_DEBUG "ata%u: dev %u cfg "
1166 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1167 ap->id, device, dev->id[49],
1168 dev->id[82], dev->id[83], dev->id[84],
1169 dev->id[85], dev->id[86], dev->id[87],
1170 dev->id[88]);
1171
1172 /*
1173 * common ATA, ATAPI feature tests
1174 */
1175
8bf62ece
AL
1176 /* we require DMA support (bits 8 of word 49) */
1177 if (!ata_id_has_dma(dev->id)) {
1178 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1da177e4
LT
1179 goto err_out_nosup;
1180 }
1181
1182 /* quick-n-dirty find max transfer mode; for printk only */
1183 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1184 if (!xfer_modes)
1185 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
11e29e21
AC
1186 if (!xfer_modes)
1187 xfer_modes = ata_pio_modes(dev);
1da177e4
LT
1188
1189 ata_dump_id(dev);
1190
1191 /* ATA-specific feature tests */
1192 if (dev->class == ATA_DEV_ATA) {
1193 if (!ata_id_is_ata(dev->id)) /* sanity check */
1194 goto err_out_nosup;
1195
8bf62ece 1196 /* get major version */
1da177e4 1197 tmp = dev->id[ATA_ID_MAJOR_VER];
8bf62ece
AL
1198 for (major_version = 14; major_version >= 1; major_version--)
1199 if (tmp & (1 << major_version))
1da177e4
LT
1200 break;
1201
8bf62ece
AL
1202 /*
1203 * The exact sequence expected by certain pre-ATA4 drives is:
1204 * SRST RESET
1205 * IDENTIFY
1206 * INITIALIZE DEVICE PARAMETERS
1207 * anything else..
1208 * Some drives were very specific about that exact sequence.
1209 */
59a10b17 1210 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
8bf62ece
AL
1211 ata_dev_init_params(ap, dev);
1212
59a10b17
AL
1213 /* current CHS translation info (id[53-58]) might be
1214 * changed. reread the identify device info.
1215 */
1216 ata_dev_reread_id(ap, dev);
1217 }
1218
8bf62ece
AL
1219 if (ata_id_has_lba(dev->id)) {
1220 dev->flags |= ATA_DFLAG_LBA;
1221
1222 if (ata_id_has_lba48(dev->id)) {
1223 dev->flags |= ATA_DFLAG_LBA48;
1224 dev->n_sectors = ata_id_u64(dev->id, 100);
1225 } else {
1226 dev->n_sectors = ata_id_u32(dev->id, 60);
1227 }
1228
1229 /* print device info to dmesg */
1230 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1231 ap->id, device,
1232 major_version,
1233 ata_mode_string(xfer_modes),
1234 (unsigned long long)dev->n_sectors,
1235 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1236 } else {
1237 /* CHS */
1238
1239 /* Default translation */
1240 dev->cylinders = dev->id[1];
1241 dev->heads = dev->id[3];
1242 dev->sectors = dev->id[6];
1243 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1244
1245 if (ata_id_current_chs_valid(dev->id)) {
1246 /* Current CHS translation is valid. */
1247 dev->cylinders = dev->id[54];
1248 dev->heads = dev->id[55];
1249 dev->sectors = dev->id[56];
1250
1251 dev->n_sectors = ata_id_u32(dev->id, 57);
1252 }
1253
1254 /* print device info to dmesg */
1255 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1256 ap->id, device,
1257 major_version,
1258 ata_mode_string(xfer_modes),
1259 (unsigned long long)dev->n_sectors,
1260 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1da177e4 1261
1da177e4
LT
1262 }
1263
1264 ap->host->max_cmd_len = 16;
1da177e4
LT
1265 }
1266
1267 /* ATAPI-specific feature tests */
1268 else {
1269 if (ata_id_is_ata(dev->id)) /* sanity check */
1270 goto err_out_nosup;
1271
1272 rc = atapi_cdb_len(dev->id);
1273 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1274 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1275 goto err_out_nosup;
1276 }
1277 ap->cdb_len = (unsigned int) rc;
1278 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1279
312f7da2
AL
1280 if (ata_id_cdb_intr(dev->id))
1281 dev->flags |= ATA_DFLAG_CDB_INTR;
1282
1da177e4
LT
1283 /* print device info to dmesg */
1284 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1285 ap->id, device,
1286 ata_mode_string(xfer_modes));
1287 }
1288
1289 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1290 return;
1291
1292err_out_nosup:
1293 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1294 ap->id, device);
1295err_out:
1296 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1297 DPRINTK("EXIT, err\n");
1298}
1299
6f2f3812 1300
057ace5e 1301static inline u8 ata_dev_knobble(const struct ata_port *ap)
6f2f3812
BC
1302{
1303 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1304}
1305
1306/**
1307 * ata_dev_config - Run device specific handlers and check for
1308 * SATA->PATA bridges
8a60a071 1309 * @ap: Bus
6f2f3812
BC
1310 * @i: Device
1311 *
1312 * LOCKING:
1313 */
8a60a071 1314
6f2f3812
BC
1315void ata_dev_config(struct ata_port *ap, unsigned int i)
1316{
1317 /* limit bridge transfers to udma5, 200 sectors */
1318 if (ata_dev_knobble(ap)) {
1319 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1320 ap->id, ap->device->devno);
1321 ap->udma_mask &= ATA_UDMA5;
1322 ap->host->max_sectors = ATA_MAX_SECTORS;
1323 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1324 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1325 }
1326
1327 if (ap->ops->dev_config)
1328 ap->ops->dev_config(ap, &ap->device[i]);
1329}
1330
1da177e4
LT
1331/**
1332 * ata_bus_probe - Reset and probe ATA bus
1333 * @ap: Bus to probe
1334 *
0cba632b
JG
1335 * Master ATA bus probing function. Initiates a hardware-dependent
1336 * bus reset, then attempts to identify any devices found on
1337 * the bus.
1338 *
1da177e4 1339 * LOCKING:
0cba632b 1340 * PCI/etc. bus probe sem.
1da177e4
LT
1341 *
1342 * RETURNS:
1343 * Zero on success, non-zero on error.
1344 */
1345
1346static int ata_bus_probe(struct ata_port *ap)
1347{
1348 unsigned int i, found = 0;
1349
1350 ap->ops->phy_reset(ap);
1351 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1352 goto err_out;
1353
1354 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1355 ata_dev_identify(ap, i);
1356 if (ata_dev_present(&ap->device[i])) {
1357 found = 1;
6f2f3812 1358 ata_dev_config(ap,i);
1da177e4
LT
1359 }
1360 }
1361
1362 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1363 goto err_out_disable;
1364
1365 ata_set_mode(ap);
1366 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1367 goto err_out_disable;
1368
1369 return 0;
1370
1371err_out_disable:
1372 ap->ops->port_disable(ap);
1373err_out:
1374 return -1;
1375}
1376
1377/**
0cba632b
JG
1378 * ata_port_probe - Mark port as enabled
1379 * @ap: Port for which we indicate enablement
1da177e4 1380 *
0cba632b
JG
1381 * Modify @ap data structure such that the system
1382 * thinks that the entire port is enabled.
1383 *
1384 * LOCKING: host_set lock, or some other form of
1385 * serialization.
1da177e4
LT
1386 */
1387
1388void ata_port_probe(struct ata_port *ap)
1389{
1390 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1391}
1392
1393/**
780a87f7
JG
1394 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1395 * @ap: SATA port associated with target SATA PHY.
1da177e4 1396 *
780a87f7
JG
1397 * This function issues commands to standard SATA Sxxx
1398 * PHY registers, to wake up the phy (and device), and
1399 * clear any reset condition.
1da177e4
LT
1400 *
1401 * LOCKING:
0cba632b 1402 * PCI/etc. bus probe sem.
1da177e4
LT
1403 *
1404 */
1405void __sata_phy_reset(struct ata_port *ap)
1406{
1407 u32 sstatus;
1408 unsigned long timeout = jiffies + (HZ * 5);
1409
1410 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1411 /* issue phy wake/reset */
1412 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1413 /* Couldn't find anything in SATA I/II specs, but
1414 * AHCI-1.1 10.4.2 says at least 1 ms. */
1415 mdelay(1);
1da177e4 1416 }
cdcca89e 1417 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1418
1419 /* wait for phy to become ready, if necessary */
1420 do {
1421 msleep(200);
1422 sstatus = scr_read(ap, SCR_STATUS);
1423 if ((sstatus & 0xf) != 1)
1424 break;
1425 } while (time_before(jiffies, timeout));
1426
1427 /* TODO: phy layer with polling, timeouts, etc. */
1428 if (sata_dev_present(ap))
1429 ata_port_probe(ap);
1430 else {
1431 sstatus = scr_read(ap, SCR_STATUS);
1432 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1433 ap->id, sstatus);
1434 ata_port_disable(ap);
1435 }
1436
1437 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1438 return;
1439
1440 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1441 ata_port_disable(ap);
1442 return;
1443 }
1444
1445 ap->cbl = ATA_CBL_SATA;
1446}
1447
1448/**
780a87f7
JG
1449 * sata_phy_reset - Reset SATA bus.
1450 * @ap: SATA port associated with target SATA PHY.
1da177e4 1451 *
780a87f7
JG
1452 * This function resets the SATA bus, and then probes
1453 * the bus for devices.
1da177e4
LT
1454 *
1455 * LOCKING:
0cba632b 1456 * PCI/etc. bus probe sem.
1da177e4
LT
1457 *
1458 */
1459void sata_phy_reset(struct ata_port *ap)
1460{
1461 __sata_phy_reset(ap);
1462 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1463 return;
1464 ata_bus_reset(ap);
1465}
1466
1467/**
780a87f7
JG
1468 * ata_port_disable - Disable port.
1469 * @ap: Port to be disabled.
1da177e4 1470 *
780a87f7
JG
1471 * Modify @ap data structure such that the system
1472 * thinks that the entire port is disabled, and should
1473 * never attempt to probe or communicate with devices
1474 * on this port.
1475 *
1476 * LOCKING: host_set lock, or some other form of
1477 * serialization.
1da177e4
LT
1478 */
1479
1480void ata_port_disable(struct ata_port *ap)
1481{
1482 ap->device[0].class = ATA_DEV_NONE;
1483 ap->device[1].class = ATA_DEV_NONE;
1484 ap->flags |= ATA_FLAG_PORT_DISABLED;
1485}
1486
452503f9
AC
1487/*
1488 * This mode timing computation functionality is ported over from
1489 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1490 */
1491/*
1492 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1493 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1494 * for PIO 5, which is a nonstandard extension and UDMA6, which
1495 * is currently supported only by Maxtor drives.
1496 */
1497
1498static const struct ata_timing ata_timing[] = {
1499
1500 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1501 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1502 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1503 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1504
1505 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1506 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1507 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1508
1509/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1510
1511 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1512 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1513 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1514
1515 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1516 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1517 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1518
1519/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1520 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1521 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1522
1523 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1524 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1525 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1526
1527/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1528
1529 { 0xFF }
1530};
1531
1532#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1533#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1534
1535static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1536{
1537 q->setup = EZ(t->setup * 1000, T);
1538 q->act8b = EZ(t->act8b * 1000, T);
1539 q->rec8b = EZ(t->rec8b * 1000, T);
1540 q->cyc8b = EZ(t->cyc8b * 1000, T);
1541 q->active = EZ(t->active * 1000, T);
1542 q->recover = EZ(t->recover * 1000, T);
1543 q->cycle = EZ(t->cycle * 1000, T);
1544 q->udma = EZ(t->udma * 1000, UT);
1545}
1546
1547void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1548 struct ata_timing *m, unsigned int what)
1549{
1550 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1551 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1552 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1553 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1554 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1555 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1556 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1557 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1558}
1559
1560static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1561{
1562 const struct ata_timing *t;
1563
1564 for (t = ata_timing; t->mode != speed; t++)
91190758 1565 if (t->mode == 0xFF)
452503f9
AC
1566 return NULL;
1567 return t;
1568}
1569
1570int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1571 struct ata_timing *t, int T, int UT)
1572{
1573 const struct ata_timing *s;
1574 struct ata_timing p;
1575
1576 /*
1577 * Find the mode.
1578 */
1579
1580 if (!(s = ata_timing_find_mode(speed)))
1581 return -EINVAL;
1582
1583 /*
1584 * If the drive is an EIDE drive, it can tell us it needs extended
1585 * PIO/MW_DMA cycle timing.
1586 */
1587
1588 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1589 memset(&p, 0, sizeof(p));
1590 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1591 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1592 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1593 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1594 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1595 }
1596 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1597 }
1598
1599 /*
1600 * Convert the timing to bus clock counts.
1601 */
1602
1603 ata_timing_quantize(s, t, T, UT);
1604
1605 /*
1606 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1607 * and some other commands. We have to ensure that the DMA cycle timing is
1608 * slower/equal than the fastest PIO timing.
1609 */
1610
1611 if (speed > XFER_PIO_4) {
1612 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1613 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1614 }
1615
1616 /*
1617 * Lenghten active & recovery time so that cycle time is correct.
1618 */
1619
1620 if (t->act8b + t->rec8b < t->cyc8b) {
1621 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1622 t->rec8b = t->cyc8b - t->act8b;
1623 }
1624
1625 if (t->active + t->recover < t->cycle) {
1626 t->active += (t->cycle - (t->active + t->recover)) / 2;
1627 t->recover = t->cycle - t->active;
1628 }
1629
1630 return 0;
1631}
1632
057ace5e 1633static const struct {
1da177e4
LT
1634 unsigned int shift;
1635 u8 base;
1636} xfer_mode_classes[] = {
1637 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1638 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1639 { ATA_SHIFT_PIO, XFER_PIO_0 },
1640};
1641
1642static inline u8 base_from_shift(unsigned int shift)
1643{
1644 int i;
1645
1646 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1647 if (xfer_mode_classes[i].shift == shift)
1648 return xfer_mode_classes[i].base;
1649
1650 return 0xff;
1651}
1652
1653static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1654{
1655 int ofs, idx;
1656 u8 base;
1657
1658 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1659 return;
1660
1661 if (dev->xfer_shift == ATA_SHIFT_PIO)
1662 dev->flags |= ATA_DFLAG_PIO;
1663
1664 ata_dev_set_xfermode(ap, dev);
1665
1666 base = base_from_shift(dev->xfer_shift);
1667 ofs = dev->xfer_mode - base;
1668 idx = ofs + dev->xfer_shift;
1669 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1670
1671 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1672 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1673
1674 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1675 ap->id, dev->devno, xfer_mode_str[idx]);
1676}
1677
1678static int ata_host_set_pio(struct ata_port *ap)
1679{
1680 unsigned int mask;
1681 int x, i;
1682 u8 base, xfer_mode;
1683
1684 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1685 x = fgb(mask);
1686 if (x < 0) {
1687 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1688 return -1;
1689 }
1690
1691 base = base_from_shift(ATA_SHIFT_PIO);
1692 xfer_mode = base + x;
1693
1694 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1695 (int)base, (int)xfer_mode, mask, x);
1696
1697 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1698 struct ata_device *dev = &ap->device[i];
1699 if (ata_dev_present(dev)) {
1700 dev->pio_mode = xfer_mode;
1701 dev->xfer_mode = xfer_mode;
1702 dev->xfer_shift = ATA_SHIFT_PIO;
1703 if (ap->ops->set_piomode)
1704 ap->ops->set_piomode(ap, dev);
1705 }
1706 }
1707
1708 return 0;
1709}
1710
1711static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1712 unsigned int xfer_shift)
1713{
1714 int i;
1715
1716 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1717 struct ata_device *dev = &ap->device[i];
1718 if (ata_dev_present(dev)) {
1719 dev->dma_mode = xfer_mode;
1720 dev->xfer_mode = xfer_mode;
1721 dev->xfer_shift = xfer_shift;
1722 if (ap->ops->set_dmamode)
1723 ap->ops->set_dmamode(ap, dev);
1724 }
1725 }
1726}
1727
1728/**
1729 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1730 * @ap: port on which timings will be programmed
1731 *
780a87f7
JG
1732 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1733 *
1da177e4 1734 * LOCKING:
0cba632b 1735 * PCI/etc. bus probe sem.
1da177e4
LT
1736 *
1737 */
1738static void ata_set_mode(struct ata_port *ap)
1739{
8cbd6df1 1740 unsigned int xfer_shift;
1da177e4
LT
1741 u8 xfer_mode;
1742 int rc;
1743
1744 /* step 1: always set host PIO timings */
1745 rc = ata_host_set_pio(ap);
1746 if (rc)
1747 goto err_out;
1748
1749 /* step 2: choose the best data xfer mode */
1750 xfer_mode = xfer_shift = 0;
1751 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1752 if (rc)
1753 goto err_out;
1754
1755 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1756 if (xfer_shift != ATA_SHIFT_PIO)
1757 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1758
1759 /* step 4: update devices' xfer mode */
1760 ata_dev_set_mode(ap, &ap->device[0]);
1761 ata_dev_set_mode(ap, &ap->device[1]);
1762
1763 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1764 return;
1765
1766 if (ap->ops->post_set_mode)
1767 ap->ops->post_set_mode(ap);
1768
1da177e4
LT
1769 return;
1770
1771err_out:
1772 ata_port_disable(ap);
1773}
1774
1775/**
1776 * ata_busy_sleep - sleep until BSY clears, or timeout
1777 * @ap: port containing status register to be polled
1778 * @tmout_pat: impatience timeout
1779 * @tmout: overall timeout
1780 *
780a87f7
JG
1781 * Sleep until ATA Status register bit BSY clears,
1782 * or a timeout occurs.
1783 *
1784 * LOCKING: None.
1da177e4
LT
1785 *
1786 */
1787
1788static unsigned int ata_busy_sleep (struct ata_port *ap,
1789 unsigned long tmout_pat,
1790 unsigned long tmout)
1791{
1792 unsigned long timer_start, timeout;
1793 u8 status;
1794
1795 status = ata_busy_wait(ap, ATA_BUSY, 300);
1796 timer_start = jiffies;
1797 timeout = timer_start + tmout_pat;
1798 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1799 msleep(50);
1800 status = ata_busy_wait(ap, ATA_BUSY, 3);
1801 }
1802
1803 if (status & ATA_BUSY)
1804 printk(KERN_WARNING "ata%u is slow to respond, "
1805 "please be patient\n", ap->id);
1806
1807 timeout = timer_start + tmout;
1808 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1809 msleep(50);
1810 status = ata_chk_status(ap);
1811 }
1812
1813 if (status & ATA_BUSY) {
1814 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1815 ap->id, tmout / HZ);
1816 return 1;
1817 }
1818
1819 return 0;
1820}
1821
1822static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1823{
1824 struct ata_ioports *ioaddr = &ap->ioaddr;
1825 unsigned int dev0 = devmask & (1 << 0);
1826 unsigned int dev1 = devmask & (1 << 1);
1827 unsigned long timeout;
1828
1829 /* if device 0 was found in ata_devchk, wait for its
1830 * BSY bit to clear
1831 */
1832 if (dev0)
1833 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1834
1835 /* if device 1 was found in ata_devchk, wait for
1836 * register access, then wait for BSY to clear
1837 */
1838 timeout = jiffies + ATA_TMOUT_BOOT;
1839 while (dev1) {
1840 u8 nsect, lbal;
1841
1842 ap->ops->dev_select(ap, 1);
1843 if (ap->flags & ATA_FLAG_MMIO) {
1844 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1845 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1846 } else {
1847 nsect = inb(ioaddr->nsect_addr);
1848 lbal = inb(ioaddr->lbal_addr);
1849 }
1850 if ((nsect == 1) && (lbal == 1))
1851 break;
1852 if (time_after(jiffies, timeout)) {
1853 dev1 = 0;
1854 break;
1855 }
1856 msleep(50); /* give drive a breather */
1857 }
1858 if (dev1)
1859 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1860
1861 /* is all this really necessary? */
1862 ap->ops->dev_select(ap, 0);
1863 if (dev1)
1864 ap->ops->dev_select(ap, 1);
1865 if (dev0)
1866 ap->ops->dev_select(ap, 0);
1867}
1868
1869/**
0cba632b
JG
1870 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1871 * @ap: Port to reset and probe
1872 *
1873 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1874 * probe the bus. Not often used these days.
1da177e4
LT
1875 *
1876 * LOCKING:
0cba632b 1877 * PCI/etc. bus probe sem.
e5338254 1878 * Obtains host_set lock.
1da177e4
LT
1879 *
1880 */
1881
1882static unsigned int ata_bus_edd(struct ata_port *ap)
1883{
1884 struct ata_taskfile tf;
e5338254 1885 unsigned long flags;
1da177e4
LT
1886
1887 /* set up execute-device-diag (bus reset) taskfile */
1888 /* also, take interrupts to a known state (disabled) */
1889 DPRINTK("execute-device-diag\n");
1890 ata_tf_init(ap, &tf, 0);
1891 tf.ctl |= ATA_NIEN;
1892 tf.command = ATA_CMD_EDD;
1893 tf.protocol = ATA_PROT_NODATA;
1894
1895 /* do bus reset */
e5338254 1896 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 1897 ata_tf_to_host(ap, &tf);
e5338254 1898 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1da177e4
LT
1899
1900 /* spec says at least 2ms. but who knows with those
1901 * crazy ATAPI devices...
1902 */
1903 msleep(150);
1904
1905 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1906}
1907
1908static unsigned int ata_bus_softreset(struct ata_port *ap,
1909 unsigned int devmask)
1910{
1911 struct ata_ioports *ioaddr = &ap->ioaddr;
1912
1913 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1914
1915 /* software reset. causes dev0 to be selected */
1916 if (ap->flags & ATA_FLAG_MMIO) {
1917 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1918 udelay(20); /* FIXME: flush */
1919 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1920 udelay(20); /* FIXME: flush */
1921 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1922 } else {
1923 outb(ap->ctl, ioaddr->ctl_addr);
1924 udelay(10);
1925 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1926 udelay(10);
1927 outb(ap->ctl, ioaddr->ctl_addr);
1928 }
1929
1930 /* spec mandates ">= 2ms" before checking status.
1931 * We wait 150ms, because that was the magic delay used for
1932 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1933 * between when the ATA command register is written, and then
1934 * status is checked. Because waiting for "a while" before
1935 * checking status is fine, post SRST, we perform this magic
1936 * delay here as well.
1937 */
1938 msleep(150);
1939
1940 ata_bus_post_reset(ap, devmask);
1941
1942 return 0;
1943}
1944
1945/**
1946 * ata_bus_reset - reset host port and associated ATA channel
1947 * @ap: port to reset
1948 *
1949 * This is typically the first time we actually start issuing
1950 * commands to the ATA channel. We wait for BSY to clear, then
1951 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1952 * result. Determine what devices, if any, are on the channel
1953 * by looking at the device 0/1 error register. Look at the signature
1954 * stored in each device's taskfile registers, to determine if
1955 * the device is ATA or ATAPI.
1956 *
1957 * LOCKING:
0cba632b
JG
1958 * PCI/etc. bus probe sem.
1959 * Obtains host_set lock.
1da177e4
LT
1960 *
1961 * SIDE EFFECTS:
1962 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1963 */
1964
1965void ata_bus_reset(struct ata_port *ap)
1966{
1967 struct ata_ioports *ioaddr = &ap->ioaddr;
1968 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1969 u8 err;
1970 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1971
1972 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1973
1974 /* determine if device 0/1 are present */
1975 if (ap->flags & ATA_FLAG_SATA_RESET)
1976 dev0 = 1;
1977 else {
1978 dev0 = ata_devchk(ap, 0);
1979 if (slave_possible)
1980 dev1 = ata_devchk(ap, 1);
1981 }
1982
1983 if (dev0)
1984 devmask |= (1 << 0);
1985 if (dev1)
1986 devmask |= (1 << 1);
1987
1988 /* select device 0 again */
1989 ap->ops->dev_select(ap, 0);
1990
1991 /* issue bus reset */
1992 if (ap->flags & ATA_FLAG_SRST)
1993 rc = ata_bus_softreset(ap, devmask);
1994 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1995 /* set up device control */
1996 if (ap->flags & ATA_FLAG_MMIO)
1997 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1998 else
1999 outb(ap->ctl, ioaddr->ctl_addr);
2000 rc = ata_bus_edd(ap);
2001 }
2002
2003 if (rc)
2004 goto err_out;
2005
2006 /*
2007 * determine by signature whether we have ATA or ATAPI devices
2008 */
2009 err = ata_dev_try_classify(ap, 0);
2010 if ((slave_possible) && (err != 0x81))
2011 ata_dev_try_classify(ap, 1);
2012
2013 /* re-enable interrupts */
2014 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2015 ata_irq_on(ap);
2016
2017 /* is double-select really necessary? */
2018 if (ap->device[1].class != ATA_DEV_NONE)
2019 ap->ops->dev_select(ap, 1);
2020 if (ap->device[0].class != ATA_DEV_NONE)
2021 ap->ops->dev_select(ap, 0);
2022
2023 /* if no devices were detected, disable this port */
2024 if ((ap->device[0].class == ATA_DEV_NONE) &&
2025 (ap->device[1].class == ATA_DEV_NONE))
2026 goto err_out;
2027
2028 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2029 /* set up device control for ATA_FLAG_SATA_RESET */
2030 if (ap->flags & ATA_FLAG_MMIO)
2031 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2032 else
2033 outb(ap->ctl, ioaddr->ctl_addr);
2034 }
2035
2036 DPRINTK("EXIT\n");
2037 return;
2038
2039err_out:
2040 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2041 ap->ops->port_disable(ap);
2042
2043 DPRINTK("EXIT\n");
2044}
2045
057ace5e
JG
2046static void ata_pr_blacklisted(const struct ata_port *ap,
2047 const struct ata_device *dev)
1da177e4
LT
2048{
2049 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2050 ap->id, dev->devno);
2051}
2052
2053static const char * ata_dma_blacklist [] = {
2054 "WDC AC11000H",
2055 "WDC AC22100H",
2056 "WDC AC32500H",
2057 "WDC AC33100H",
2058 "WDC AC31600H",
2059 "WDC AC32100H",
2060 "WDC AC23200L",
2061 "Compaq CRD-8241B",
2062 "CRD-8400B",
2063 "CRD-8480B",
2064 "CRD-8482B",
2065 "CRD-84",
2066 "SanDisk SDP3B",
2067 "SanDisk SDP3B-64",
2068 "SANYO CD-ROM CRD",
2069 "HITACHI CDR-8",
2070 "HITACHI CDR-8335",
2071 "HITACHI CDR-8435",
2072 "Toshiba CD-ROM XM-6202B",
e922256a 2073 "TOSHIBA CD-ROM XM-1702BC",
1da177e4
LT
2074 "CD-532E-A",
2075 "E-IDE CD-ROM CR-840",
2076 "CD-ROM Drive/F5A",
2077 "WPI CDD-820",
2078 "SAMSUNG CD-ROM SC-148C",
2079 "SAMSUNG CD-ROM SC",
2080 "SanDisk SDP3B-64",
1da177e4
LT
2081 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2082 "_NEC DV5800A",
2083};
2084
057ace5e 2085static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4
LT
2086{
2087 unsigned char model_num[40];
2088 char *s;
2089 unsigned int len;
2090 int i;
2091
2092 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2093 sizeof(model_num));
2094 s = &model_num[0];
2095 len = strnlen(s, sizeof(model_num));
2096
2097 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2098 while ((len > 0) && (s[len - 1] == ' ')) {
2099 len--;
2100 s[len] = 0;
2101 }
2102
2103 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2104 if (!strncmp(ata_dma_blacklist[i], s, len))
2105 return 1;
2106
2107 return 0;
2108}
2109
057ace5e 2110static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
1da177e4 2111{
057ace5e 2112 const struct ata_device *master, *slave;
1da177e4
LT
2113 unsigned int mask;
2114
2115 master = &ap->device[0];
2116 slave = &ap->device[1];
2117
2118 assert (ata_dev_present(master) || ata_dev_present(slave));
2119
2120 if (shift == ATA_SHIFT_UDMA) {
2121 mask = ap->udma_mask;
2122 if (ata_dev_present(master)) {
2123 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2124 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2125 mask = 0;
2126 ata_pr_blacklisted(ap, master);
2127 }
2128 }
2129 if (ata_dev_present(slave)) {
2130 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2131 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2132 mask = 0;
2133 ata_pr_blacklisted(ap, slave);
2134 }
2135 }
2136 }
2137 else if (shift == ATA_SHIFT_MWDMA) {
2138 mask = ap->mwdma_mask;
2139 if (ata_dev_present(master)) {
2140 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2141 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2142 mask = 0;
2143 ata_pr_blacklisted(ap, master);
2144 }
2145 }
2146 if (ata_dev_present(slave)) {
2147 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2148 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2149 mask = 0;
2150 ata_pr_blacklisted(ap, slave);
2151 }
2152 }
2153 }
2154 else if (shift == ATA_SHIFT_PIO) {
2155 mask = ap->pio_mask;
2156 if (ata_dev_present(master)) {
2157 /* spec doesn't return explicit support for
2158 * PIO0-2, so we fake it
2159 */
2160 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2161 tmp_mode <<= 3;
2162 tmp_mode |= 0x7;
2163 mask &= tmp_mode;
2164 }
2165 if (ata_dev_present(slave)) {
2166 /* spec doesn't return explicit support for
2167 * PIO0-2, so we fake it
2168 */
2169 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2170 tmp_mode <<= 3;
2171 tmp_mode |= 0x7;
2172 mask &= tmp_mode;
2173 }
2174 }
2175 else {
2176 mask = 0xffffffff; /* shut up compiler warning */
2177 BUG();
2178 }
2179
2180 return mask;
2181}
2182
2183/* find greatest bit */
2184static int fgb(u32 bitmap)
2185{
2186 unsigned int i;
2187 int x = -1;
2188
2189 for (i = 0; i < 32; i++)
2190 if (bitmap & (1 << i))
2191 x = i;
2192
2193 return x;
2194}
2195
2196/**
2197 * ata_choose_xfer_mode - attempt to find best transfer mode
2198 * @ap: Port for which an xfer mode will be selected
2199 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2200 * @xfer_shift_out: (output) bit shift that selects this mode
2201 *
0cba632b
JG
2202 * Based on host and device capabilities, determine the
2203 * maximum transfer mode that is amenable to all.
2204 *
1da177e4 2205 * LOCKING:
0cba632b 2206 * PCI/etc. bus probe sem.
1da177e4
LT
2207 *
2208 * RETURNS:
2209 * Zero on success, negative on error.
2210 */
2211
057ace5e 2212static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
2213 u8 *xfer_mode_out,
2214 unsigned int *xfer_shift_out)
2215{
2216 unsigned int mask, shift;
2217 int x, i;
2218
2219 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2220 shift = xfer_mode_classes[i].shift;
2221 mask = ata_get_mode_mask(ap, shift);
2222
2223 x = fgb(mask);
2224 if (x >= 0) {
2225 *xfer_mode_out = xfer_mode_classes[i].base + x;
2226 *xfer_shift_out = shift;
2227 return 0;
2228 }
2229 }
2230
2231 return -1;
2232}
2233
2234/**
2235 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2236 * @ap: Port associated with device @dev
2237 * @dev: Device to which command will be sent
2238 *
780a87f7
JG
2239 * Issue SET FEATURES - XFER MODE command to device @dev
2240 * on port @ap.
2241 *
1da177e4 2242 * LOCKING:
0cba632b 2243 * PCI/etc. bus probe sem.
1da177e4
LT
2244 */
2245
2246static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2247{
2248 DECLARE_COMPLETION(wait);
2249 struct ata_queued_cmd *qc;
2250 int rc;
2251 unsigned long flags;
2252
2253 /* set up set-features taskfile */
2254 DPRINTK("set features - xfer mode\n");
2255
2256 qc = ata_qc_new_init(ap, dev);
2257 BUG_ON(qc == NULL);
2258
2259 qc->tf.command = ATA_CMD_SET_FEATURES;
2260 qc->tf.feature = SETFEATURES_XFER;
2261 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2262 qc->tf.protocol = ATA_PROT_NODATA;
2263 qc->tf.nsect = dev->xfer_mode;
2264
2265 qc->waiting = &wait;
2266 qc->complete_fn = ata_qc_complete_noop;
2267
2268 spin_lock_irqsave(&ap->host_set->lock, flags);
2269 rc = ata_qc_issue(qc);
2270 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2271
2272 if (rc)
2273 ata_port_disable(ap);
2274 else
2275 wait_for_completion(&wait);
2276
2277 DPRINTK("EXIT\n");
2278}
2279
59a10b17
AL
2280/**
2281 * ata_dev_reread_id - Reread the device identify device info
2282 * @ap: port where the device is
2283 * @dev: device to reread the identify device info
2284 *
2285 * LOCKING:
2286 */
2287
2288static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2289{
2290 DECLARE_COMPLETION(wait);
2291 struct ata_queued_cmd *qc;
2292 unsigned long flags;
2293 int rc;
2294
2295 qc = ata_qc_new_init(ap, dev);
2296 BUG_ON(qc == NULL);
2297
2298 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
2299 qc->dma_dir = DMA_FROM_DEVICE;
2300
2301 if (dev->class == ATA_DEV_ATA) {
2302 qc->tf.command = ATA_CMD_ID_ATA;
2303 DPRINTK("do ATA identify\n");
2304 } else {
2305 qc->tf.command = ATA_CMD_ID_ATAPI;
2306 DPRINTK("do ATAPI identify\n");
2307 }
2308
2309 qc->tf.flags |= ATA_TFLAG_DEVICE;
2310 qc->tf.protocol = ATA_PROT_PIO;
2311 qc->nsect = 1;
2312
2313 qc->waiting = &wait;
2314 qc->complete_fn = ata_qc_complete_noop;
2315
2316 spin_lock_irqsave(&ap->host_set->lock, flags);
2317 rc = ata_qc_issue(qc);
2318 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2319
2320 if (rc)
2321 goto err_out;
2322
2323 wait_for_completion(&wait);
2324
2325 swap_buf_le16(dev->id, ATA_ID_WORDS);
2326
2327 ata_dump_id(dev);
2328
2329 DPRINTK("EXIT\n");
2330
2331 return;
2332err_out:
2333 ata_port_disable(ap);
2334}
2335
8bf62ece
AL
2336/**
2337 * ata_dev_init_params - Issue INIT DEV PARAMS command
2338 * @ap: Port associated with device @dev
2339 * @dev: Device to which command will be sent
2340 *
2341 * LOCKING:
2342 */
2343
2344static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2345{
2346 DECLARE_COMPLETION(wait);
2347 struct ata_queued_cmd *qc;
2348 int rc;
2349 unsigned long flags;
2350 u16 sectors = dev->id[6];
2351 u16 heads = dev->id[3];
2352
2353 /* Number of sectors per track 1-255. Number of heads 1-16 */
2354 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2355 return;
2356
2357 /* set up init dev params taskfile */
2358 DPRINTK("init dev params \n");
2359
2360 qc = ata_qc_new_init(ap, dev);
2361 BUG_ON(qc == NULL);
2362
2363 qc->tf.command = ATA_CMD_INIT_DEV_PARAMS;
2364 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2365 qc->tf.protocol = ATA_PROT_NODATA;
2366 qc->tf.nsect = sectors;
2367 qc->tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2368
2369 qc->waiting = &wait;
2370 qc->complete_fn = ata_qc_complete_noop;
2371
2372 spin_lock_irqsave(&ap->host_set->lock, flags);
2373 rc = ata_qc_issue(qc);
2374 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2375
2376 if (rc)
2377 ata_port_disable(ap);
2378 else
2379 wait_for_completion(&wait);
2380
2381 DPRINTK("EXIT\n");
2382}
2383
1da177e4 2384/**
0cba632b
JG
2385 * ata_sg_clean - Unmap DMA memory associated with command
2386 * @qc: Command containing DMA memory to be released
2387 *
2388 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2389 *
2390 * LOCKING:
0cba632b 2391 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2392 */
2393
2394static void ata_sg_clean(struct ata_queued_cmd *qc)
2395{
2396 struct ata_port *ap = qc->ap;
cedc9a47 2397 struct scatterlist *sg = qc->__sg;
1da177e4 2398 int dir = qc->dma_dir;
cedc9a47 2399 void *pad_buf = NULL;
1da177e4
LT
2400
2401 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2402 assert(sg != NULL);
2403
2404 if (qc->flags & ATA_QCFLAG_SINGLE)
2405 assert(qc->n_elem == 1);
2406
2407 DPRINTK("unmapping %u sg elements\n", qc->n_elem);
2408
cedc9a47
JG
2409 /* if we padded the buffer out to 32-bit bound, and data
2410 * xfer direction is from-device, we must copy from the
2411 * pad buffer back into the supplied buffer
2412 */
2413 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2414 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2415
2416 if (qc->flags & ATA_QCFLAG_SG) {
1da177e4 2417 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2418 /* restore last sg */
2419 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2420 if (pad_buf) {
2421 struct scatterlist *psg = &qc->pad_sgent;
2422 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2423 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2424 kunmap_atomic(psg->page, KM_IRQ0);
2425 }
2426 } else {
1da177e4
LT
2427 dma_unmap_single(ap->host_set->dev, sg_dma_address(&sg[0]),
2428 sg_dma_len(&sg[0]), dir);
cedc9a47
JG
2429 /* restore sg */
2430 sg->length += qc->pad_len;
2431 if (pad_buf)
2432 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2433 pad_buf, qc->pad_len);
2434 }
1da177e4
LT
2435
2436 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2437 qc->__sg = NULL;
1da177e4
LT
2438}
2439
2440/**
2441 * ata_fill_sg - Fill PCI IDE PRD table
2442 * @qc: Metadata associated with taskfile to be transferred
2443 *
780a87f7
JG
2444 * Fill PCI IDE PRD (scatter-gather) table with segments
2445 * associated with the current disk command.
2446 *
1da177e4 2447 * LOCKING:
780a87f7 2448 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2449 *
2450 */
2451static void ata_fill_sg(struct ata_queued_cmd *qc)
2452{
1da177e4 2453 struct ata_port *ap = qc->ap;
cedc9a47
JG
2454 struct scatterlist *sg;
2455 unsigned int idx;
1da177e4 2456
cedc9a47 2457 assert(qc->__sg != NULL);
1da177e4
LT
2458 assert(qc->n_elem > 0);
2459
2460 idx = 0;
cedc9a47 2461 ata_for_each_sg(sg, qc) {
1da177e4
LT
2462 u32 addr, offset;
2463 u32 sg_len, len;
2464
2465 /* determine if physical DMA addr spans 64K boundary.
2466 * Note h/w doesn't support 64-bit, so we unconditionally
2467 * truncate dma_addr_t to u32.
2468 */
2469 addr = (u32) sg_dma_address(sg);
2470 sg_len = sg_dma_len(sg);
2471
2472 while (sg_len) {
2473 offset = addr & 0xffff;
2474 len = sg_len;
2475 if ((offset + sg_len) > 0x10000)
2476 len = 0x10000 - offset;
2477
2478 ap->prd[idx].addr = cpu_to_le32(addr);
2479 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2480 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2481
2482 idx++;
2483 sg_len -= len;
2484 addr += len;
2485 }
2486 }
2487
2488 if (idx)
2489 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2490}
2491/**
2492 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2493 * @qc: Metadata associated with taskfile to check
2494 *
780a87f7
JG
2495 * Allow low-level driver to filter ATA PACKET commands, returning
2496 * a status indicating whether or not it is OK to use DMA for the
2497 * supplied PACKET command.
2498 *
1da177e4 2499 * LOCKING:
0cba632b
JG
2500 * spin_lock_irqsave(host_set lock)
2501 *
1da177e4
LT
2502 * RETURNS: 0 when ATAPI DMA can be used
2503 * nonzero otherwise
2504 */
2505int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2506{
2507 struct ata_port *ap = qc->ap;
2508 int rc = 0; /* Assume ATAPI DMA is OK by default */
2509
2510 if (ap->ops->check_atapi_dma)
2511 rc = ap->ops->check_atapi_dma(qc);
2512
2513 return rc;
2514}
2515/**
2516 * ata_qc_prep - Prepare taskfile for submission
2517 * @qc: Metadata associated with taskfile to be prepared
2518 *
780a87f7
JG
2519 * Prepare ATA taskfile for submission.
2520 *
1da177e4
LT
2521 * LOCKING:
2522 * spin_lock_irqsave(host_set lock)
2523 */
2524void ata_qc_prep(struct ata_queued_cmd *qc)
2525{
2526 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2527 return;
2528
2529 ata_fill_sg(qc);
2530}
2531
0cba632b
JG
2532/**
2533 * ata_sg_init_one - Associate command with memory buffer
2534 * @qc: Command to be associated
2535 * @buf: Memory buffer
2536 * @buflen: Length of memory buffer, in bytes.
2537 *
2538 * Initialize the data-related elements of queued_cmd @qc
2539 * to point to a single memory buffer, @buf of byte length @buflen.
2540 *
2541 * LOCKING:
2542 * spin_lock_irqsave(host_set lock)
2543 */
2544
1da177e4
LT
2545void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2546{
2547 struct scatterlist *sg;
2548
2549 qc->flags |= ATA_QCFLAG_SINGLE;
2550
2551 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2552 qc->__sg = &qc->sgent;
1da177e4 2553 qc->n_elem = 1;
cedc9a47 2554 qc->orig_n_elem = 1;
1da177e4
LT
2555 qc->buf_virt = buf;
2556
cedc9a47 2557 sg = qc->__sg;
f0612bbc 2558 sg_init_one(sg, buf, buflen);
1da177e4
LT
2559}
2560
0cba632b
JG
2561/**
2562 * ata_sg_init - Associate command with scatter-gather table.
2563 * @qc: Command to be associated
2564 * @sg: Scatter-gather table.
2565 * @n_elem: Number of elements in s/g table.
2566 *
2567 * Initialize the data-related elements of queued_cmd @qc
2568 * to point to a scatter-gather table @sg, containing @n_elem
2569 * elements.
2570 *
2571 * LOCKING:
2572 * spin_lock_irqsave(host_set lock)
2573 */
2574
1da177e4
LT
2575void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2576 unsigned int n_elem)
2577{
2578 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2579 qc->__sg = sg;
1da177e4 2580 qc->n_elem = n_elem;
cedc9a47 2581 qc->orig_n_elem = n_elem;
1da177e4
LT
2582}
2583
2584/**
0cba632b
JG
2585 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2586 * @qc: Command with memory buffer to be mapped.
2587 *
2588 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2589 *
2590 * LOCKING:
2591 * spin_lock_irqsave(host_set lock)
2592 *
2593 * RETURNS:
0cba632b 2594 * Zero on success, negative on error.
1da177e4
LT
2595 */
2596
2597static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2598{
2599 struct ata_port *ap = qc->ap;
2600 int dir = qc->dma_dir;
cedc9a47 2601 struct scatterlist *sg = qc->__sg;
1da177e4
LT
2602 dma_addr_t dma_address;
2603
cedc9a47
JG
2604 /* we must lengthen transfers to end on a 32-bit boundary */
2605 qc->pad_len = sg->length & 3;
2606 if (qc->pad_len) {
2607 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2608 struct scatterlist *psg = &qc->pad_sgent;
2609
2610 assert(qc->dev->class == ATA_DEV_ATAPI);
2611
2612 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2613
2614 if (qc->tf.flags & ATA_TFLAG_WRITE)
2615 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2616 qc->pad_len);
2617
2618 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2619 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2620 /* trim sg */
2621 sg->length -= qc->pad_len;
2622
2623 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2624 sg->length, qc->pad_len);
2625 }
2626
1da177e4 2627 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
32529e01 2628 sg->length, dir);
537a95d9
TH
2629 if (dma_mapping_error(dma_address)) {
2630 /* restore sg */
2631 sg->length += qc->pad_len;
1da177e4 2632 return -1;
537a95d9 2633 }
1da177e4
LT
2634
2635 sg_dma_address(sg) = dma_address;
32529e01 2636 sg_dma_len(sg) = sg->length;
1da177e4
LT
2637
2638 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2639 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2640
2641 return 0;
2642}
2643
2644/**
0cba632b
JG
2645 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2646 * @qc: Command with scatter-gather table to be mapped.
2647 *
2648 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
2649 *
2650 * LOCKING:
2651 * spin_lock_irqsave(host_set lock)
2652 *
2653 * RETURNS:
0cba632b 2654 * Zero on success, negative on error.
1da177e4
LT
2655 *
2656 */
2657
2658static int ata_sg_setup(struct ata_queued_cmd *qc)
2659{
2660 struct ata_port *ap = qc->ap;
cedc9a47
JG
2661 struct scatterlist *sg = qc->__sg;
2662 struct scatterlist *lsg = &sg[qc->n_elem - 1];
1da177e4
LT
2663 int n_elem, dir;
2664
2665 VPRINTK("ENTER, ata%u\n", ap->id);
2666 assert(qc->flags & ATA_QCFLAG_SG);
2667
cedc9a47
JG
2668 /* we must lengthen transfers to end on a 32-bit boundary */
2669 qc->pad_len = lsg->length & 3;
2670 if (qc->pad_len) {
2671 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2672 struct scatterlist *psg = &qc->pad_sgent;
2673 unsigned int offset;
2674
2675 assert(qc->dev->class == ATA_DEV_ATAPI);
2676
2677 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2678
2679 /*
2680 * psg->page/offset are used to copy to-be-written
2681 * data in this function or read data in ata_sg_clean.
2682 */
2683 offset = lsg->offset + lsg->length - qc->pad_len;
2684 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2685 psg->offset = offset_in_page(offset);
2686
2687 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2688 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2689 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2690 kunmap_atomic(psg->page, KM_IRQ0);
2691 }
2692
2693 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2694 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2695 /* trim last sg */
2696 lsg->length -= qc->pad_len;
2697
2698 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2699 qc->n_elem - 1, lsg->length, qc->pad_len);
2700 }
2701
1da177e4
LT
2702 dir = qc->dma_dir;
2703 n_elem = dma_map_sg(ap->host_set->dev, sg, qc->n_elem, dir);
537a95d9
TH
2704 if (n_elem < 1) {
2705 /* restore last sg */
2706 lsg->length += qc->pad_len;
1da177e4 2707 return -1;
537a95d9 2708 }
1da177e4
LT
2709
2710 DPRINTK("%d sg elements mapped\n", n_elem);
2711
2712 qc->n_elem = n_elem;
2713
2714 return 0;
2715}
2716
40e8c82c
TH
2717/**
2718 * ata_poll_qc_complete - turn irq back on and finish qc
2719 * @qc: Command to complete
8e8b77dd 2720 * @err_mask: ATA status register content
40e8c82c
TH
2721 *
2722 * LOCKING:
2723 * None. (grabs host lock)
2724 */
2725
a7dac447 2726void ata_poll_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask)
40e8c82c
TH
2727{
2728 struct ata_port *ap = qc->ap;
b8f6153e 2729 unsigned long flags;
40e8c82c 2730
b8f6153e 2731 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c 2732 ata_irq_on(ap);
a7dac447 2733 ata_qc_complete(qc, err_mask);
b8f6153e 2734 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
2735}
2736
1da177e4
LT
2737/**
2738 * ata_pio_poll -
6f0ef4fa 2739 * @ap: the target ata_port
1da177e4
LT
2740 *
2741 * LOCKING:
0cba632b 2742 * None. (executing in kernel thread context)
1da177e4
LT
2743 *
2744 * RETURNS:
6f0ef4fa 2745 * timeout value to use
1da177e4
LT
2746 */
2747
2748static unsigned long ata_pio_poll(struct ata_port *ap)
2749{
2750 u8 status;
14be71f4
AL
2751 unsigned int poll_state = HSM_ST_UNKNOWN;
2752 unsigned int reg_state = HSM_ST_UNKNOWN;
2753 const unsigned int tmout_state = HSM_ST_TMOUT;
2754
2755 switch (ap->hsm_task_state) {
2756 case HSM_ST:
2757 case HSM_ST_POLL:
2758 poll_state = HSM_ST_POLL;
2759 reg_state = HSM_ST;
1da177e4 2760 break;
14be71f4
AL
2761 case HSM_ST_LAST:
2762 case HSM_ST_LAST_POLL:
2763 poll_state = HSM_ST_LAST_POLL;
2764 reg_state = HSM_ST_LAST;
1da177e4
LT
2765 break;
2766 default:
2767 BUG();
2768 break;
2769 }
2770
2771 status = ata_chk_status(ap);
2772 if (status & ATA_BUSY) {
2773 if (time_after(jiffies, ap->pio_task_timeout)) {
14be71f4 2774 ap->hsm_task_state = tmout_state;
1da177e4
LT
2775 return 0;
2776 }
14be71f4 2777 ap->hsm_task_state = poll_state;
1da177e4
LT
2778 return ATA_SHORT_PAUSE;
2779 }
2780
14be71f4 2781 ap->hsm_task_state = reg_state;
1da177e4
LT
2782 return 0;
2783}
2784
2785/**
6f0ef4fa
RD
2786 * ata_pio_complete - check if drive is busy or idle
2787 * @ap: the target ata_port
1da177e4
LT
2788 *
2789 * LOCKING:
0cba632b 2790 * None. (executing in kernel thread context)
7fb6ec28
JG
2791 *
2792 * RETURNS:
2793 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
2794 */
2795
7fb6ec28 2796static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
2797{
2798 struct ata_queued_cmd *qc;
2799 u8 drv_stat;
2800
2801 /*
31433ea3
AC
2802 * This is purely heuristic. This is a fast path. Sometimes when
2803 * we enter, BSY will be cleared in a chk-status or two. If not,
2804 * the drive is probably seeking or something. Snooze for a couple
2805 * msecs, then chk-status again. If still busy, fall back to
14be71f4 2806 * HSM_ST_POLL state.
1da177e4
LT
2807 */
2808 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2809 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2810 msleep(2);
2811 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2812 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
14be71f4 2813 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 2814 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 2815 return 0;
1da177e4
LT
2816 }
2817 }
2818
2819 drv_stat = ata_wait_idle(ap);
2820 if (!ata_ok(drv_stat)) {
14be71f4 2821 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 2822 return 0;
1da177e4
LT
2823 }
2824
2825 qc = ata_qc_from_tag(ap, ap->active_tag);
2826 assert(qc != NULL);
2827
14be71f4 2828 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 2829
a7dac447 2830 ata_poll_qc_complete(qc, 0);
7fb6ec28
JG
2831
2832 /* another command may start at this point */
2833
2834 return 1;
1da177e4
LT
2835}
2836
0baab86b
EF
2837
2838/**
6f0ef4fa 2839 * swap_buf_le16 - swap halves of 16-words in place
0baab86b
EF
2840 * @buf: Buffer to swap
2841 * @buf_words: Number of 16-bit words in buffer.
2842 *
2843 * Swap halves of 16-bit words if needed to convert from
2844 * little-endian byte order to native cpu byte order, or
2845 * vice-versa.
2846 *
2847 * LOCKING:
6f0ef4fa 2848 * Inherited from caller.
0baab86b 2849 */
1da177e4
LT
2850void swap_buf_le16(u16 *buf, unsigned int buf_words)
2851{
2852#ifdef __BIG_ENDIAN
2853 unsigned int i;
2854
2855 for (i = 0; i < buf_words; i++)
2856 buf[i] = le16_to_cpu(buf[i]);
2857#endif /* __BIG_ENDIAN */
2858}
2859
6ae4cfb5
AL
2860/**
2861 * ata_mmio_data_xfer - Transfer data by MMIO
2862 * @ap: port to read/write
2863 * @buf: data buffer
2864 * @buflen: buffer length
344babaa 2865 * @write_data: read/write
6ae4cfb5
AL
2866 *
2867 * Transfer data from/to the device data register by MMIO.
2868 *
2869 * LOCKING:
2870 * Inherited from caller.
6ae4cfb5
AL
2871 */
2872
1da177e4
LT
2873static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2874 unsigned int buflen, int write_data)
2875{
2876 unsigned int i;
2877 unsigned int words = buflen >> 1;
2878 u16 *buf16 = (u16 *) buf;
2879 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2880
6ae4cfb5 2881 /* Transfer multiple of 2 bytes */
1da177e4
LT
2882 if (write_data) {
2883 for (i = 0; i < words; i++)
2884 writew(le16_to_cpu(buf16[i]), mmio);
2885 } else {
2886 for (i = 0; i < words; i++)
2887 buf16[i] = cpu_to_le16(readw(mmio));
2888 }
6ae4cfb5
AL
2889
2890 /* Transfer trailing 1 byte, if any. */
2891 if (unlikely(buflen & 0x01)) {
2892 u16 align_buf[1] = { 0 };
2893 unsigned char *trailing_buf = buf + buflen - 1;
2894
2895 if (write_data) {
2896 memcpy(align_buf, trailing_buf, 1);
2897 writew(le16_to_cpu(align_buf[0]), mmio);
2898 } else {
2899 align_buf[0] = cpu_to_le16(readw(mmio));
2900 memcpy(trailing_buf, align_buf, 1);
2901 }
2902 }
1da177e4
LT
2903}
2904
6ae4cfb5
AL
2905/**
2906 * ata_pio_data_xfer - Transfer data by PIO
2907 * @ap: port to read/write
2908 * @buf: data buffer
2909 * @buflen: buffer length
344babaa 2910 * @write_data: read/write
6ae4cfb5
AL
2911 *
2912 * Transfer data from/to the device data register by PIO.
2913 *
2914 * LOCKING:
2915 * Inherited from caller.
6ae4cfb5
AL
2916 */
2917
1da177e4
LT
2918static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2919 unsigned int buflen, int write_data)
2920{
6ae4cfb5 2921 unsigned int words = buflen >> 1;
1da177e4 2922
6ae4cfb5 2923 /* Transfer multiple of 2 bytes */
1da177e4 2924 if (write_data)
6ae4cfb5 2925 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 2926 else
6ae4cfb5
AL
2927 insw(ap->ioaddr.data_addr, buf, words);
2928
2929 /* Transfer trailing 1 byte, if any. */
2930 if (unlikely(buflen & 0x01)) {
2931 u16 align_buf[1] = { 0 };
2932 unsigned char *trailing_buf = buf + buflen - 1;
2933
2934 if (write_data) {
2935 memcpy(align_buf, trailing_buf, 1);
2936 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
2937 } else {
2938 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
2939 memcpy(trailing_buf, align_buf, 1);
2940 }
2941 }
1da177e4
LT
2942}
2943
6ae4cfb5
AL
2944/**
2945 * ata_data_xfer - Transfer data from/to the data register.
2946 * @ap: port to read/write
2947 * @buf: data buffer
2948 * @buflen: buffer length
2949 * @do_write: read/write
2950 *
2951 * Transfer data from/to the device data register.
2952 *
2953 * LOCKING:
2954 * Inherited from caller.
6ae4cfb5
AL
2955 */
2956
1da177e4
LT
2957static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
2958 unsigned int buflen, int do_write)
2959{
2960 if (ap->flags & ATA_FLAG_MMIO)
2961 ata_mmio_data_xfer(ap, buf, buflen, do_write);
2962 else
2963 ata_pio_data_xfer(ap, buf, buflen, do_write);
2964}
2965
6ae4cfb5
AL
2966/**
2967 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
2968 * @qc: Command on going
2969 *
2970 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
2971 *
2972 * LOCKING:
2973 * Inherited from caller.
2974 */
2975
1da177e4
LT
2976static void ata_pio_sector(struct ata_queued_cmd *qc)
2977{
2978 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 2979 struct scatterlist *sg = qc->__sg;
1da177e4
LT
2980 struct ata_port *ap = qc->ap;
2981 struct page *page;
2982 unsigned int offset;
2983 unsigned char *buf;
2984
2985 if (qc->cursect == (qc->nsect - 1))
14be71f4 2986 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
2987
2988 page = sg[qc->cursg].page;
2989 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
2990
2991 /* get the current page and offset */
2992 page = nth_page(page, (offset >> PAGE_SHIFT));
2993 offset %= PAGE_SIZE;
2994
1da177e4
LT
2995 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2996
91b8b313
AL
2997 if (PageHighMem(page)) {
2998 unsigned long flags;
2999
3000 local_irq_save(flags);
3001 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3002
91b8b313
AL
3003 /* do the actual data transfer */
3004 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3005
91b8b313
AL
3006 kunmap_atomic(buf, KM_IRQ0);
3007 local_irq_restore(flags);
3008 } else {
3009 buf = page_address(page);
3010 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3011 }
7282aa4b
AL
3012
3013 qc->cursect++;
3014 qc->cursg_ofs++;
3015
3016 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3017 qc->cursg++;
3018 qc->cursg_ofs = 0;
3019 }
1da177e4
LT
3020}
3021
c71c1857
AL
3022/**
3023 * atapi_send_cdb - Write CDB bytes to hardware
3024 * @ap: Port to which ATAPI device is attached.
3025 * @qc: Taskfile currently active
3026 *
3027 * When device has indicated its readiness to accept
3028 * a CDB, this function is called. Send the CDB.
3029 *
3030 * LOCKING:
3031 * caller.
3032 */
3033
3034static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3035{
3036 /* send SCSI cdb */
3037 DPRINTK("send cdb\n");
3038 assert(ap->cdb_len >= 12);
3039
3040 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
3041 ata_altstatus(ap); /* flush */
3042
3043 switch (qc->tf.protocol) {
3044 case ATA_PROT_ATAPI:
3045 ap->hsm_task_state = HSM_ST;
3046 break;
3047 case ATA_PROT_ATAPI_NODATA:
3048 ap->hsm_task_state = HSM_ST_LAST;
3049 break;
3050 case ATA_PROT_ATAPI_DMA:
3051 ap->hsm_task_state = HSM_ST_LAST;
3052 /* initiate bmdma */
3053 ap->ops->bmdma_start(qc);
3054 break;
3055 }
3056}
3057
3058/**
3059 * ata_dataout_task - Write first data block to hardware
3060 * @_data: Port to which ATA/ATAPI device is attached.
3061 *
3062 * When device has indicated its readiness to accept
3063 * the data, this function sends out the CDB or
3064 * the first data block by PIO.
3065 * After this,
3066 * - If polling, ata_pio_task() handles the rest.
3067 * - Otherwise, interrupt handler takes over.
3068 *
3069 * LOCKING:
3070 * Kernel thread context (may sleep)
3071 */
3072
3073static void ata_dataout_task(void *_data)
3074{
3075 struct ata_port *ap = _data;
3076 struct ata_queued_cmd *qc;
3077 u8 status;
3078 unsigned long flags;
3079
3080 qc = ata_qc_from_tag(ap, ap->active_tag);
3081 assert(qc != NULL);
3082 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3083
3084 /* sleep-wait for BSY to clear */
3085 DPRINTK("busy wait\n");
3086 if (ata_busy_sleep(ap, ATA_TMOUT_DATAOUT_QUICK, ATA_TMOUT_DATAOUT))
3087 goto err_out;
3088
3089 /* make sure DRQ is set */
3090 status = ata_chk_status(ap);
3091 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)
3092 goto err_out;
3093
3094 /* Send the CDB (atapi) or the first data block (ata pio out).
3095 * During the state transition, interrupt handler shouldn't
3096 * be invoked before the data transfer is complete and
3097 * hsm_task_state is changed. Hence, the following locking.
3098 */
3099 spin_lock_irqsave(&ap->host_set->lock, flags);
3100
3101 if (qc->tf.protocol == ATA_PROT_PIO) {
3102 /* PIO data out protocol.
3103 * send first data block.
3104 */
3105
3106 /* ata_pio_sector() might change the state to HSM_ST_LAST.
3107 * so, the state is changed here before ata_pio_sector().
3108 */
3109 ap->hsm_task_state = HSM_ST;
3110 ata_pio_sector(qc);
3111 ata_altstatus(ap); /* flush */
3112 } else
3113 /* send CDB */
3114 atapi_send_cdb(ap, qc);
3115
3116 /* if polling, ata_pio_task() handles the rest.
3117 * otherwise, interrupt handler takes over from here.
3118 */
3119 if (qc->tf.flags & ATA_TFLAG_POLLING)
3120 queue_work(ata_wq, &ap->pio_task);
3121
3122 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3123
3124 return;
3125
3126err_out:
3127 ata_pio_error(ap);
3128}
3129
6ae4cfb5
AL
3130/**
3131 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3132 * @qc: Command on going
3133 * @bytes: number of bytes
3134 *
3135 * Transfer Transfer data from/to the ATAPI device.
3136 *
3137 * LOCKING:
3138 * Inherited from caller.
3139 *
3140 */
3141
1da177e4
LT
3142static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3143{
3144 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3145 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3146 struct ata_port *ap = qc->ap;
3147 struct page *page;
3148 unsigned char *buf;
3149 unsigned int offset, count;
3150
563a6e1f 3151 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3152 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3153
3154next_sg:
563a6e1f 3155 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3156 /*
563a6e1f
AL
3157 * The end of qc->sg is reached and the device expects
3158 * more data to transfer. In order not to overrun qc->sg
3159 * and fulfill length specified in the byte count register,
3160 * - for read case, discard trailing data from the device
3161 * - for write case, padding zero data to the device
3162 */
3163 u16 pad_buf[1] = { 0 };
3164 unsigned int words = bytes >> 1;
3165 unsigned int i;
3166
3167 if (words) /* warning if bytes > 1 */
7fb6ec28 3168 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3169 ap->id, bytes);
3170
3171 for (i = 0; i < words; i++)
3172 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3173
14be71f4 3174 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3175 return;
3176 }
3177
cedc9a47 3178 sg = &qc->__sg[qc->cursg];
1da177e4 3179
1da177e4
LT
3180 page = sg->page;
3181 offset = sg->offset + qc->cursg_ofs;
3182
3183 /* get the current page and offset */
3184 page = nth_page(page, (offset >> PAGE_SHIFT));
3185 offset %= PAGE_SIZE;
3186
6952df03 3187 /* don't overrun current sg */
32529e01 3188 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3189
3190 /* don't cross page boundaries */
3191 count = min(count, (unsigned int)PAGE_SIZE - offset);
3192
7282aa4b
AL
3193 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3194
91b8b313
AL
3195 if (PageHighMem(page)) {
3196 unsigned long flags;
3197
3198 local_irq_save(flags);
3199 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3200
91b8b313
AL
3201 /* do the actual data transfer */
3202 ata_data_xfer(ap, buf + offset, count, do_write);
7282aa4b 3203
91b8b313
AL
3204 kunmap_atomic(buf, KM_IRQ0);
3205 local_irq_restore(flags);
3206 } else {
3207 buf = page_address(page);
3208 ata_data_xfer(ap, buf + offset, count, do_write);
3209 }
7282aa4b 3210
1da177e4
LT
3211 bytes -= count;
3212 qc->curbytes += count;
3213 qc->cursg_ofs += count;
3214
32529e01 3215 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3216 qc->cursg++;
3217 qc->cursg_ofs = 0;
3218 }
3219
563a6e1f 3220 if (bytes)
1da177e4 3221 goto next_sg;
1da177e4
LT
3222}
3223
6ae4cfb5
AL
3224/**
3225 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3226 * @qc: Command on going
3227 *
3228 * Transfer Transfer data from/to the ATAPI device.
3229 *
3230 * LOCKING:
3231 * Inherited from caller.
6ae4cfb5
AL
3232 */
3233
1da177e4
LT
3234static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3235{
3236 struct ata_port *ap = qc->ap;
3237 struct ata_device *dev = qc->dev;
3238 unsigned int ireason, bc_lo, bc_hi, bytes;
3239 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3240
3241 ap->ops->tf_read(ap, &qc->tf);
3242 ireason = qc->tf.nsect;
3243 bc_lo = qc->tf.lbam;
3244 bc_hi = qc->tf.lbah;
3245 bytes = (bc_hi << 8) | bc_lo;
3246
3247 /* shall be cleared to zero, indicating xfer of data */
3248 if (ireason & (1 << 0))
3249 goto err_out;
3250
3251 /* make sure transfer direction matches expected */
3252 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3253 if (do_write != i_write)
3254 goto err_out;
3255
312f7da2
AL
3256 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3257
1da177e4
LT
3258 __atapi_pio_bytes(qc, bytes);
3259
3260 return;
3261
3262err_out:
3263 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3264 ap->id, dev->devno);
14be71f4 3265 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3266}
3267
3268/**
6f0ef4fa
RD
3269 * ata_pio_block - start PIO on a block
3270 * @ap: the target ata_port
1da177e4
LT
3271 *
3272 * LOCKING:
0cba632b 3273 * None. (executing in kernel thread context)
1da177e4
LT
3274 */
3275
3276static void ata_pio_block(struct ata_port *ap)
3277{
3278 struct ata_queued_cmd *qc;
3279 u8 status;
3280
3281 /*
6f0ef4fa 3282 * This is purely heuristic. This is a fast path.
1da177e4
LT
3283 * Sometimes when we enter, BSY will be cleared in
3284 * a chk-status or two. If not, the drive is probably seeking
3285 * or something. Snooze for a couple msecs, then
3286 * chk-status again. If still busy, fall back to
14be71f4 3287 * HSM_ST_POLL state.
1da177e4
LT
3288 */
3289 status = ata_busy_wait(ap, ATA_BUSY, 5);
3290 if (status & ATA_BUSY) {
3291 msleep(2);
3292 status = ata_busy_wait(ap, ATA_BUSY, 10);
3293 if (status & ATA_BUSY) {
14be71f4 3294 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3295 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3296 return;
3297 }
3298 }
3299
3300 qc = ata_qc_from_tag(ap, ap->active_tag);
3301 assert(qc != NULL);
3302
3303 if (is_atapi_taskfile(&qc->tf)) {
3304 /* no more data to transfer or unsupported ATAPI command */
3305 if ((status & ATA_DRQ) == 0) {
14be71f4 3306 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3307 return;
3308 }
3309
3310 atapi_pio_bytes(qc);
3311 } else {
3312 /* handle BSY=0, DRQ=0 as error */
3313 if ((status & ATA_DRQ) == 0) {
14be71f4 3314 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3315 return;
3316 }
3317
3318 ata_pio_sector(qc);
3319 }
467b16d4
AL
3320
3321 ata_altstatus(ap); /* flush */
1da177e4
LT
3322}
3323
3324static void ata_pio_error(struct ata_port *ap)
3325{
3326 struct ata_queued_cmd *qc;
a7dac447
JG
3327
3328 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
1da177e4
LT
3329
3330 qc = ata_qc_from_tag(ap, ap->active_tag);
3331 assert(qc != NULL);
3332
14be71f4 3333 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3334
a7dac447 3335 ata_poll_qc_complete(qc, AC_ERR_ATA_BUS);
1da177e4
LT
3336}
3337
3338static void ata_pio_task(void *_data)
3339{
3340 struct ata_port *ap = _data;
7fb6ec28
JG
3341 unsigned long timeout;
3342 int qc_completed;
3343
3344fsm_start:
3345 timeout = 0;
3346 qc_completed = 0;
1da177e4 3347
14be71f4 3348 switch (ap->hsm_task_state) {
14be71f4 3349 case HSM_ST:
1da177e4
LT
3350 ata_pio_block(ap);
3351 break;
3352
14be71f4 3353 case HSM_ST_LAST:
7fb6ec28 3354 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3355 break;
3356
14be71f4
AL
3357 case HSM_ST_POLL:
3358 case HSM_ST_LAST_POLL:
1da177e4
LT
3359 timeout = ata_pio_poll(ap);
3360 break;
3361
14be71f4
AL
3362 case HSM_ST_TMOUT:
3363 case HSM_ST_ERR:
1da177e4
LT
3364 ata_pio_error(ap);
3365 return;
467b16d4
AL
3366
3367 default:
3368 BUG();
3369 return;
1da177e4
LT
3370 }
3371
3372 if (timeout)
7fb6ec28
JG
3373 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3374 else if (!qc_completed)
3375 goto fsm_start;
1da177e4
LT
3376}
3377
1da177e4
LT
3378/**
3379 * ata_qc_timeout - Handle timeout of queued command
3380 * @qc: Command that timed out
3381 *
3382 * Some part of the kernel (currently, only the SCSI layer)
3383 * has noticed that the active command on port @ap has not
3384 * completed after a specified length of time. Handle this
3385 * condition by disabling DMA (if necessary) and completing
3386 * transactions, with error if necessary.
3387 *
3388 * This also handles the case of the "lost interrupt", where
3389 * for some reason (possibly hardware bug, possibly driver bug)
3390 * an interrupt was not delivered to the driver, even though the
3391 * transaction completed successfully.
3392 *
3393 * LOCKING:
0cba632b 3394 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3395 */
3396
3397static void ata_qc_timeout(struct ata_queued_cmd *qc)
3398{
3399 struct ata_port *ap = qc->ap;
b8f6153e 3400 struct ata_host_set *host_set = ap->host_set;
1da177e4
LT
3401 struct ata_device *dev = qc->dev;
3402 u8 host_stat = 0, drv_stat;
b8f6153e 3403 unsigned long flags;
1da177e4
LT
3404
3405 DPRINTK("ENTER\n");
3406
3407 /* FIXME: doesn't this conflict with timeout handling? */
3408 if (qc->dev->class == ATA_DEV_ATAPI && qc->scsicmd) {
3409 struct scsi_cmnd *cmd = qc->scsicmd;
3410
3111b0d1 3411 if (!(cmd->eh_eflags & SCSI_EH_CANCEL_CMD)) {
1da177e4
LT
3412
3413 /* finish completing original command */
b8f6153e 3414 spin_lock_irqsave(&host_set->lock, flags);
1da177e4 3415 __ata_qc_complete(qc);
b8f6153e 3416 spin_unlock_irqrestore(&host_set->lock, flags);
1da177e4
LT
3417
3418 atapi_request_sense(ap, dev, cmd);
3419
3420 cmd->result = (CHECK_CONDITION << 1) | (DID_OK << 16);
3421 scsi_finish_command(cmd);
3422
3423 goto out;
3424 }
3425 }
3426
b8f6153e
JG
3427 spin_lock_irqsave(&host_set->lock, flags);
3428
1da177e4
LT
3429 /* hack alert! We cannot use the supplied completion
3430 * function from inside the ->eh_strategy_handler() thread.
3431 * libata is the only user of ->eh_strategy_handler() in
3432 * any kernel, so the default scsi_done() assumes it is
3433 * not being called from the SCSI EH.
3434 */
3435 qc->scsidone = scsi_finish_command;
3436
3437 switch (qc->tf.protocol) {
3438
3439 case ATA_PROT_DMA:
3440 case ATA_PROT_ATAPI_DMA:
3441 host_stat = ap->ops->bmdma_status(ap);
3442
3443 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3444 ap->ops->bmdma_stop(qc);
1da177e4
LT
3445
3446 /* fall through */
3447
3448 default:
3449 ata_altstatus(ap);
3450 drv_stat = ata_chk_status(ap);
3451
3452 /* ack bmdma irq events */
3453 ap->ops->irq_clear(ap);
3454
3455 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3456 ap->id, qc->tf.command, drv_stat, host_stat);
3457
312f7da2
AL
3458 ap->hsm_task_state = HSM_ST_IDLE;
3459
1da177e4 3460 /* complete taskfile transaction */
a7dac447 3461 ata_qc_complete(qc, ac_err_mask(drv_stat));
1da177e4
LT
3462 break;
3463 }
b8f6153e
JG
3464
3465 spin_unlock_irqrestore(&host_set->lock, flags);
3466
1da177e4
LT
3467out:
3468 DPRINTK("EXIT\n");
3469}
3470
3471/**
3472 * ata_eng_timeout - Handle timeout of queued command
3473 * @ap: Port on which timed-out command is active
3474 *
3475 * Some part of the kernel (currently, only the SCSI layer)
3476 * has noticed that the active command on port @ap has not
3477 * completed after a specified length of time. Handle this
3478 * condition by disabling DMA (if necessary) and completing
3479 * transactions, with error if necessary.
3480 *
3481 * This also handles the case of the "lost interrupt", where
3482 * for some reason (possibly hardware bug, possibly driver bug)
3483 * an interrupt was not delivered to the driver, even though the
3484 * transaction completed successfully.
3485 *
3486 * LOCKING:
3487 * Inherited from SCSI layer (none, can sleep)
3488 */
3489
3490void ata_eng_timeout(struct ata_port *ap)
3491{
3492 struct ata_queued_cmd *qc;
3493
3494 DPRINTK("ENTER\n");
3495
3496 qc = ata_qc_from_tag(ap, ap->active_tag);
e12669e7
JG
3497 if (qc)
3498 ata_qc_timeout(qc);
3499 else {
1da177e4
LT
3500 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3501 ap->id);
3502 goto out;
3503 }
3504
1da177e4
LT
3505out:
3506 DPRINTK("EXIT\n");
3507}
3508
3509/**
3510 * ata_qc_new - Request an available ATA command, for queueing
3511 * @ap: Port associated with device @dev
3512 * @dev: Device from whom we request an available command structure
3513 *
3514 * LOCKING:
0cba632b 3515 * None.
1da177e4
LT
3516 */
3517
3518static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3519{
3520 struct ata_queued_cmd *qc = NULL;
3521 unsigned int i;
3522
3523 for (i = 0; i < ATA_MAX_QUEUE; i++)
3524 if (!test_and_set_bit(i, &ap->qactive)) {
3525 qc = ata_qc_from_tag(ap, i);
3526 break;
3527 }
3528
3529 if (qc)
3530 qc->tag = i;
3531
3532 return qc;
3533}
3534
3535/**
3536 * ata_qc_new_init - Request an available ATA command, and initialize it
3537 * @ap: Port associated with device @dev
3538 * @dev: Device from whom we request an available command structure
3539 *
3540 * LOCKING:
0cba632b 3541 * None.
1da177e4
LT
3542 */
3543
3544struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3545 struct ata_device *dev)
3546{
3547 struct ata_queued_cmd *qc;
3548
3549 qc = ata_qc_new(ap);
3550 if (qc) {
cedc9a47 3551 qc->__sg = NULL;
1da177e4
LT
3552 qc->flags = 0;
3553 qc->scsicmd = NULL;
3554 qc->ap = ap;
3555 qc->dev = dev;
3556 qc->cursect = qc->cursg = qc->cursg_ofs = 0;
3557 qc->nsect = 0;
3558 qc->nbytes = qc->curbytes = 0;
3559
3560 ata_tf_init(ap, &qc->tf, dev->devno);
1da177e4
LT
3561 }
3562
3563 return qc;
3564}
3565
a7dac447 3566int ata_qc_complete_noop(struct ata_queued_cmd *qc, unsigned int err_mask)
1da177e4
LT
3567{
3568 return 0;
3569}
3570
3571static void __ata_qc_complete(struct ata_queued_cmd *qc)
3572{
3573 struct ata_port *ap = qc->ap;
3574 unsigned int tag, do_clear = 0;
3575
3576 qc->flags = 0;
3577 tag = qc->tag;
3578 if (likely(ata_tag_valid(tag))) {
3579 if (tag == ap->active_tag)
3580 ap->active_tag = ATA_TAG_POISON;
3581 qc->tag = ATA_TAG_POISON;
3582 do_clear = 1;
3583 }
3584
3585 if (qc->waiting) {
3586 struct completion *waiting = qc->waiting;
3587 qc->waiting = NULL;
3588 complete(waiting);
3589 }
3590
3591 if (likely(do_clear))
3592 clear_bit(tag, &ap->qactive);
3593}
3594
3595/**
3596 * ata_qc_free - free unused ata_queued_cmd
3597 * @qc: Command to complete
3598 *
3599 * Designed to free unused ata_queued_cmd object
3600 * in case something prevents using it.
3601 *
3602 * LOCKING:
0cba632b 3603 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3604 */
3605void ata_qc_free(struct ata_queued_cmd *qc)
3606{
3607 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3608 assert(qc->waiting == NULL); /* nothing should be waiting */
3609
3610 __ata_qc_complete(qc);
3611}
3612
3613/**
3614 * ata_qc_complete - Complete an active ATA command
3615 * @qc: Command to complete
8e8b77dd 3616 * @err_mask: ATA Status register contents
0cba632b
JG
3617 *
3618 * Indicate to the mid and upper layers that an ATA
3619 * command has completed, with either an ok or not-ok status.
1da177e4
LT
3620 *
3621 * LOCKING:
0cba632b 3622 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3623 */
3624
a7dac447 3625void ata_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask)
1da177e4
LT
3626{
3627 int rc;
3628
3629 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3630 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3631
3632 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3633 ata_sg_clean(qc);
3634
3f3791d3
AL
3635 /* atapi: mark qc as inactive to prevent the interrupt handler
3636 * from completing the command twice later, before the error handler
3637 * is called. (when rc != 0 and atapi request sense is needed)
3638 */
3639 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3640
1da177e4 3641 /* call completion callback */
a7dac447 3642 rc = qc->complete_fn(qc, err_mask);
1da177e4
LT
3643
3644 /* if callback indicates not to complete command (non-zero),
3645 * return immediately
3646 */
3647 if (rc != 0)
3648 return;
3649
3650 __ata_qc_complete(qc);
3651
3652 VPRINTK("EXIT\n");
3653}
3654
3655static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3656{
3657 struct ata_port *ap = qc->ap;
3658
3659 switch (qc->tf.protocol) {
3660 case ATA_PROT_DMA:
3661 case ATA_PROT_ATAPI_DMA:
3662 return 1;
3663
3664 case ATA_PROT_ATAPI:
3665 case ATA_PROT_PIO:
3666 case ATA_PROT_PIO_MULT:
3667 if (ap->flags & ATA_FLAG_PIO_DMA)
3668 return 1;
3669
3670 /* fall through */
3671
3672 default:
3673 return 0;
3674 }
3675
3676 /* never reached */
3677}
3678
3679/**
3680 * ata_qc_issue - issue taskfile to device
3681 * @qc: command to issue to device
3682 *
3683 * Prepare an ATA command to submission to device.
3684 * This includes mapping the data into a DMA-able
3685 * area, filling in the S/G table, and finally
3686 * writing the taskfile to hardware, starting the command.
3687 *
3688 * LOCKING:
3689 * spin_lock_irqsave(host_set lock)
3690 *
3691 * RETURNS:
3692 * Zero on success, negative on error.
3693 */
3694
3695int ata_qc_issue(struct ata_queued_cmd *qc)
3696{
3697 struct ata_port *ap = qc->ap;
3698
3699 if (ata_should_dma_map(qc)) {
3700 if (qc->flags & ATA_QCFLAG_SG) {
3701 if (ata_sg_setup(qc))
3702 goto err_out;
3703 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3704 if (ata_sg_setup_one(qc))
3705 goto err_out;
3706 }
3707 } else {
3708 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3709 }
3710
3711 ap->ops->qc_prep(qc);
3712
3713 qc->ap->active_tag = qc->tag;
3714 qc->flags |= ATA_QCFLAG_ACTIVE;
3715
3716 return ap->ops->qc_issue(qc);
3717
3718err_out:
3719 return -1;
3720}
3721
0baab86b 3722
1da177e4
LT
3723/**
3724 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3725 * @qc: command to issue to device
3726 *
3727 * Using various libata functions and hooks, this function
3728 * starts an ATA command. ATA commands are grouped into
3729 * classes called "protocols", and issuing each type of protocol
3730 * is slightly different.
3731 *
0baab86b
EF
3732 * May be used as the qc_issue() entry in ata_port_operations.
3733 *
1da177e4
LT
3734 * LOCKING:
3735 * spin_lock_irqsave(host_set lock)
3736 *
3737 * RETURNS:
3738 * Zero on success, negative on error.
3739 */
3740
3741int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3742{
3743 struct ata_port *ap = qc->ap;
3744
e50362ec
AL
3745 /* Use polling pio if the LLD doesn't handle
3746 * interrupt driven pio and atapi CDB interrupt.
3747 */
3748 if (ap->flags & ATA_FLAG_PIO_POLLING) {
3749 switch (qc->tf.protocol) {
3750 case ATA_PROT_PIO:
3751 case ATA_PROT_ATAPI:
3752 case ATA_PROT_ATAPI_NODATA:
3753 qc->tf.flags |= ATA_TFLAG_POLLING;
3754 break;
3755 case ATA_PROT_ATAPI_DMA:
3756 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3757 BUG();
3758 break;
3759 default:
3760 break;
3761 }
3762 }
3763
312f7da2 3764 /* select the device */
1da177e4
LT
3765 ata_dev_select(ap, qc->dev->devno, 1, 0);
3766
312f7da2 3767 /* start the command */
1da177e4
LT
3768 switch (qc->tf.protocol) {
3769 case ATA_PROT_NODATA:
312f7da2
AL
3770 if (qc->tf.flags & ATA_TFLAG_POLLING)
3771 ata_qc_set_polling(qc);
3772
e5338254 3773 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
3774 ap->hsm_task_state = HSM_ST_LAST;
3775
3776 if (qc->tf.flags & ATA_TFLAG_POLLING)
3777 queue_work(ata_wq, &ap->pio_task);
3778
1da177e4
LT
3779 break;
3780
3781 case ATA_PROT_DMA:
312f7da2
AL
3782 assert(!(qc->tf.flags & ATA_TFLAG_POLLING));
3783
1da177e4
LT
3784 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3785 ap->ops->bmdma_setup(qc); /* set up bmdma */
3786 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 3787 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3788 break;
3789
312f7da2
AL
3790 case ATA_PROT_PIO:
3791 if (qc->tf.flags & ATA_TFLAG_POLLING)
3792 ata_qc_set_polling(qc);
3793
e5338254 3794 ata_tf_to_host(ap, &qc->tf);
312f7da2 3795
54f00389
AL
3796 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3797 /* PIO data out protocol */
3798 ap->hsm_task_state = HSM_ST_FIRST;
3799 queue_work(ata_wq, &ap->dataout_task);
3800
3801 /* always send first data block using
3802 * the ata_dataout_task() codepath.
3803 */
312f7da2 3804 } else {
54f00389
AL
3805 /* PIO data in protocol */
3806 ap->hsm_task_state = HSM_ST;
3807
3808 if (qc->tf.flags & ATA_TFLAG_POLLING)
3809 queue_work(ata_wq, &ap->pio_task);
3810
3811 /* if polling, ata_pio_task() handles the rest.
3812 * otherwise, interrupt handler takes over from here.
3813 */
312f7da2
AL
3814 }
3815
1da177e4
LT
3816 break;
3817
3818 case ATA_PROT_ATAPI:
1da177e4 3819 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
3820 if (qc->tf.flags & ATA_TFLAG_POLLING)
3821 ata_qc_set_polling(qc);
3822
e5338254 3823 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
3824 ap->hsm_task_state = HSM_ST_FIRST;
3825
3826 /* send cdb by polling if no cdb interrupt */
3827 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
3828 (qc->tf.flags & ATA_TFLAG_POLLING))
f9997be9 3829 queue_work(ata_wq, &ap->dataout_task);
1da177e4
LT
3830 break;
3831
3832 case ATA_PROT_ATAPI_DMA:
312f7da2
AL
3833 assert(!(qc->tf.flags & ATA_TFLAG_POLLING));
3834
1da177e4
LT
3835 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3836 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
3837 ap->hsm_task_state = HSM_ST_FIRST;
3838
3839 /* send cdb by polling if no cdb interrupt */
3840 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
f9997be9 3841 queue_work(ata_wq, &ap->dataout_task);
1da177e4
LT
3842 break;
3843
3844 default:
3845 WARN_ON(1);
3846 return -1;
3847 }
3848
3849 return 0;
3850}
3851
3852/**
0baab86b 3853 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
1da177e4
LT
3854 * @qc: Info associated with this ATA transaction.
3855 *
3856 * LOCKING:
3857 * spin_lock_irqsave(host_set lock)
3858 */
3859
3860static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3861{
3862 struct ata_port *ap = qc->ap;
3863 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3864 u8 dmactl;
3865 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3866
3867 /* load PRD table addr. */
3868 mb(); /* make sure PRD table writes are visible to controller */
3869 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3870
3871 /* specify data direction, triple-check start bit is clear */
3872 dmactl = readb(mmio + ATA_DMA_CMD);
3873 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3874 if (!rw)
3875 dmactl |= ATA_DMA_WR;
3876 writeb(dmactl, mmio + ATA_DMA_CMD);
3877
3878 /* issue r/w command */
3879 ap->ops->exec_command(ap, &qc->tf);
3880}
3881
3882/**
b73fc89f 3883 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
1da177e4
LT
3884 * @qc: Info associated with this ATA transaction.
3885 *
3886 * LOCKING:
3887 * spin_lock_irqsave(host_set lock)
3888 */
3889
3890static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3891{
3892 struct ata_port *ap = qc->ap;
3893 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3894 u8 dmactl;
3895
3896 /* start host DMA transaction */
3897 dmactl = readb(mmio + ATA_DMA_CMD);
3898 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3899
3900 /* Strictly, one may wish to issue a readb() here, to
3901 * flush the mmio write. However, control also passes
3902 * to the hardware at this point, and it will interrupt
3903 * us when we are to resume control. So, in effect,
3904 * we don't care when the mmio write flushes.
3905 * Further, a read of the DMA status register _immediately_
3906 * following the write may not be what certain flaky hardware
3907 * is expected, so I think it is best to not add a readb()
3908 * without first all the MMIO ATA cards/mobos.
3909 * Or maybe I'm just being paranoid.
3910 */
3911}
3912
3913/**
3914 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3915 * @qc: Info associated with this ATA transaction.
3916 *
3917 * LOCKING:
3918 * spin_lock_irqsave(host_set lock)
3919 */
3920
3921static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3922{
3923 struct ata_port *ap = qc->ap;
3924 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3925 u8 dmactl;
3926
3927 /* load PRD table addr. */
3928 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3929
3930 /* specify data direction, triple-check start bit is clear */
3931 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3932 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3933 if (!rw)
3934 dmactl |= ATA_DMA_WR;
3935 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3936
3937 /* issue r/w command */
3938 ap->ops->exec_command(ap, &qc->tf);
3939}
3940
3941/**
3942 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3943 * @qc: Info associated with this ATA transaction.
3944 *
3945 * LOCKING:
3946 * spin_lock_irqsave(host_set lock)
3947 */
3948
3949static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3950{
3951 struct ata_port *ap = qc->ap;
3952 u8 dmactl;
3953
3954 /* start host DMA transaction */
3955 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3956 outb(dmactl | ATA_DMA_START,
3957 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3958}
3959
0baab86b
EF
3960
3961/**
3962 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3963 * @qc: Info associated with this ATA transaction.
3964 *
3965 * Writes the ATA_DMA_START flag to the DMA command register.
3966 *
3967 * May be used as the bmdma_start() entry in ata_port_operations.
3968 *
3969 * LOCKING:
3970 * spin_lock_irqsave(host_set lock)
3971 */
1da177e4
LT
3972void ata_bmdma_start(struct ata_queued_cmd *qc)
3973{
3974 if (qc->ap->flags & ATA_FLAG_MMIO)
3975 ata_bmdma_start_mmio(qc);
3976 else
3977 ata_bmdma_start_pio(qc);
3978}
3979
0baab86b
EF
3980
3981/**
3982 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3983 * @qc: Info associated with this ATA transaction.
3984 *
3985 * Writes address of PRD table to device's PRD Table Address
3986 * register, sets the DMA control register, and calls
3987 * ops->exec_command() to start the transfer.
3988 *
3989 * May be used as the bmdma_setup() entry in ata_port_operations.
3990 *
3991 * LOCKING:
3992 * spin_lock_irqsave(host_set lock)
3993 */
1da177e4
LT
3994void ata_bmdma_setup(struct ata_queued_cmd *qc)
3995{
3996 if (qc->ap->flags & ATA_FLAG_MMIO)
3997 ata_bmdma_setup_mmio(qc);
3998 else
3999 ata_bmdma_setup_pio(qc);
4000}
4001
0baab86b
EF
4002
4003/**
4004 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
decc6d0b 4005 * @ap: Port associated with this ATA transaction.
0baab86b
EF
4006 *
4007 * Clear interrupt and error flags in DMA status register.
4008 *
4009 * May be used as the irq_clear() entry in ata_port_operations.
4010 *
4011 * LOCKING:
4012 * spin_lock_irqsave(host_set lock)
4013 */
4014
1da177e4
LT
4015void ata_bmdma_irq_clear(struct ata_port *ap)
4016{
4017 if (ap->flags & ATA_FLAG_MMIO) {
4018 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
4019 writeb(readb(mmio), mmio);
4020 } else {
4021 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
4022 outb(inb(addr), addr);
4023 }
4024
4025}
4026
0baab86b
EF
4027
4028/**
4029 * ata_bmdma_status - Read PCI IDE BMDMA status
decc6d0b 4030 * @ap: Port associated with this ATA transaction.
0baab86b
EF
4031 *
4032 * Read and return BMDMA status register.
4033 *
4034 * May be used as the bmdma_status() entry in ata_port_operations.
4035 *
4036 * LOCKING:
4037 * spin_lock_irqsave(host_set lock)
4038 */
4039
1da177e4
LT
4040u8 ata_bmdma_status(struct ata_port *ap)
4041{
4042 u8 host_stat;
4043 if (ap->flags & ATA_FLAG_MMIO) {
4044 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4045 host_stat = readb(mmio + ATA_DMA_STATUS);
4046 } else
ee500aab 4047 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
1da177e4
LT
4048 return host_stat;
4049}
4050
0baab86b
EF
4051
4052/**
4053 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
b73fc89f 4054 * @qc: Command we are ending DMA for
0baab86b
EF
4055 *
4056 * Clears the ATA_DMA_START flag in the dma control register
4057 *
4058 * May be used as the bmdma_stop() entry in ata_port_operations.
4059 *
4060 * LOCKING:
4061 * spin_lock_irqsave(host_set lock)
4062 */
4063
b73fc89f 4064void ata_bmdma_stop(struct ata_queued_cmd *qc)
1da177e4 4065{
b73fc89f 4066 struct ata_port *ap = qc->ap;
1da177e4
LT
4067 if (ap->flags & ATA_FLAG_MMIO) {
4068 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4069
4070 /* clear start/stop bit */
4071 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4072 mmio + ATA_DMA_CMD);
4073 } else {
4074 /* clear start/stop bit */
4075 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4076 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4077 }
4078
4079 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4080 ata_altstatus(ap); /* dummy read */
4081}
4082
4083/**
4084 * ata_host_intr - Handle host interrupt for given (port, task)
4085 * @ap: Port on which interrupt arrived (possibly...)
4086 * @qc: Taskfile currently active in engine
4087 *
4088 * Handle host interrupt for given queued command. Currently,
4089 * only DMA interrupts are handled. All other commands are
4090 * handled via polling with interrupts disabled (nIEN bit).
4091 *
4092 * LOCKING:
4093 * spin_lock_irqsave(host_set lock)
4094 *
4095 * RETURNS:
4096 * One if interrupt was handled, zero if not (shared irq).
4097 */
4098
4099inline unsigned int ata_host_intr (struct ata_port *ap,
4100 struct ata_queued_cmd *qc)
4101{
312f7da2 4102 u8 status, host_stat = 0;
1da177e4 4103
312f7da2
AL
4104 VPRINTK("ata%u: protocol %d task_state %d\n",
4105 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4106
312f7da2
AL
4107 /* Check whether we are expecting interrupt in this state */
4108 switch (ap->hsm_task_state) {
4109 case HSM_ST_FIRST:
4110 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4111 * The flag was turned on only for atapi devices.
4112 * No need to check is_atapi_taskfile(&qc->tf) again.
4113 */
4114 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4115 goto idle_irq;
312f7da2
AL
4116 break;
4117 case HSM_ST_LAST:
4118 if (qc->tf.protocol == ATA_PROT_DMA ||
4119 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4120 /* check status of DMA engine */
4121 host_stat = ap->ops->bmdma_status(ap);
4122 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4123
4124 /* if it's not our irq... */
4125 if (!(host_stat & ATA_DMA_INTR))
4126 goto idle_irq;
4127
4128 /* before we do anything else, clear DMA-Start bit */
4129 ap->ops->bmdma_stop(qc);
4130 }
4131 break;
4132 case HSM_ST:
4133 break;
4134 default:
4135 goto idle_irq;
4136 }
1da177e4 4137
312f7da2
AL
4138 /* check altstatus */
4139 status = ata_altstatus(ap);
4140 if (status & ATA_BUSY)
4141 goto idle_irq;
1da177e4 4142
312f7da2
AL
4143 /* check main status, clearing INTRQ */
4144 status = ata_chk_status(ap);
4145 if (unlikely(status & ATA_BUSY))
4146 goto idle_irq;
1da177e4 4147
312f7da2
AL
4148 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4149 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
1da177e4 4150
312f7da2
AL
4151 /* ack bmdma irq events */
4152 ap->ops->irq_clear(ap);
1da177e4 4153
312f7da2
AL
4154 /* check error */
4155 if (unlikely((status & ATA_ERR) || (host_stat & ATA_DMA_ERR)))
4156 ap->hsm_task_state = HSM_ST_ERR;
4157
4158fsm_start:
4159 switch (ap->hsm_task_state) {
4160 case HSM_ST_FIRST:
4161 /* Some pre-ATAPI-4 devices assert INTRQ
4162 * at this state when ready to receive CDB.
4163 */
4164
4165 /* check device status */
4166 if (unlikely((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)) {
4167 /* Wrong status. Let EH handle this */
4168 ap->hsm_task_state = HSM_ST_ERR;
4169 goto fsm_start;
4170 }
4171
4172 atapi_send_cdb(ap, qc);
4173
4174 break;
4175
4176 case HSM_ST:
4177 /* complete command or read/write the data register */
4178 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4179 /* ATAPI PIO protocol */
4180 if ((status & ATA_DRQ) == 0) {
4181 /* no more data to transfer */
4182 ap->hsm_task_state = HSM_ST_LAST;
4183 goto fsm_start;
4184 }
4185
4186 atapi_pio_bytes(qc);
4187
4188 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4189 /* bad ireason reported by device */
4190 goto fsm_start;
4191
4192 } else {
4193 /* ATA PIO protocol */
4194 if (unlikely((status & ATA_DRQ) == 0)) {
4195 /* handle BSY=0, DRQ=0 as error */
4196 ap->hsm_task_state = HSM_ST_ERR;
4197 goto fsm_start;
4198 }
4199
4200 ata_pio_sector(qc);
4201
4202 if (ap->hsm_task_state == HSM_ST_LAST &&
4203 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4204 /* all data read */
4205 ata_altstatus(ap);
4206 status = ata_chk_status(ap);
4207 goto fsm_start;
4208 }
4209 }
4210
4211 ata_altstatus(ap); /* flush */
4212 break;
4213
4214 case HSM_ST_LAST:
4215 if (unlikely(status & ATA_DRQ)) {
4216 /* handle DRQ=1 as error */
4217 ap->hsm_task_state = HSM_ST_ERR;
4218 goto fsm_start;
4219 }
4220
4221 /* no more data to transfer */
4222 DPRINTK("ata%u: command complete, drv_stat 0x%x\n",
4223 ap->id, status);
4224
4225 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4
LT
4226
4227 /* complete taskfile transaction */
a7dac447 4228 ata_qc_complete(qc, ac_err_mask(status));
1da177e4
LT
4229 break;
4230
312f7da2
AL
4231 case HSM_ST_ERR:
4232 printk(KERN_ERR "ata%u: command error, drv_stat 0x%x host_stat 0x%x\n",
4233 ap->id, status, host_stat);
4234
4235 ap->hsm_task_state = HSM_ST_IDLE;
4236 ata_qc_complete(qc, status | ATA_ERR);
4237 break;
1da177e4
LT
4238 default:
4239 goto idle_irq;
4240 }
4241
4242 return 1; /* irq handled */
4243
4244idle_irq:
4245 ap->stats.idle_irq++;
4246
4247#ifdef ATA_IRQ_TRAP
4248 if ((ap->stats.idle_irq % 1000) == 0) {
4249 handled = 1;
4250 ata_irq_ack(ap, 0); /* debug trap */
4251 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4252 }
4253#endif
4254 return 0; /* irq not handled */
4255}
4256
4257/**
4258 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4259 * @irq: irq line (unused)
4260 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4261 * @regs: unused
4262 *
0cba632b
JG
4263 * Default interrupt handler for PCI IDE devices. Calls
4264 * ata_host_intr() for each port that is not disabled.
4265 *
1da177e4 4266 * LOCKING:
0cba632b 4267 * Obtains host_set lock during operation.
1da177e4
LT
4268 *
4269 * RETURNS:
0cba632b 4270 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4271 */
4272
4273irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4274{
4275 struct ata_host_set *host_set = dev_instance;
4276 unsigned int i;
4277 unsigned int handled = 0;
4278 unsigned long flags;
4279
4280 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4281 spin_lock_irqsave(&host_set->lock, flags);
4282
4283 for (i = 0; i < host_set->n_ports; i++) {
4284 struct ata_port *ap;
4285
4286 ap = host_set->ports[i];
c1389503 4287 if (ap &&
312f7da2 4288 !(ap->flags & ATA_FLAG_PORT_DISABLED)) {
1da177e4
LT
4289 struct ata_queued_cmd *qc;
4290
4291 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4292 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4293 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4294 handled |= ata_host_intr(ap, qc);
4295 }
4296 }
4297
4298 spin_unlock_irqrestore(&host_set->lock, flags);
4299
4300 return IRQ_RETVAL(handled);
4301}
4302
0baab86b
EF
4303/**
4304 * ata_port_start - Set port up for dma.
4305 * @ap: Port to initialize
4306 *
4307 * Called just after data structures for each port are
4308 * initialized. Allocates space for PRD table.
4309 *
4310 * May be used as the port_start() entry in ata_port_operations.
4311 *
4312 * LOCKING:
6f0ef4fa 4313 * Inherited from caller.
0baab86b
EF
4314 */
4315
1da177e4
LT
4316int ata_port_start (struct ata_port *ap)
4317{
4318 struct device *dev = ap->host_set->dev;
6037d6bb 4319 int rc;
1da177e4
LT
4320
4321 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4322 if (!ap->prd)
4323 return -ENOMEM;
4324
6037d6bb
JG
4325 rc = ata_pad_alloc(ap, dev);
4326 if (rc) {
cedc9a47 4327 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4328 return rc;
cedc9a47
JG
4329 }
4330
1da177e4
LT
4331 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4332
4333 return 0;
4334}
4335
0baab86b
EF
4336
4337/**
4338 * ata_port_stop - Undo ata_port_start()
4339 * @ap: Port to shut down
4340 *
4341 * Frees the PRD table.
4342 *
4343 * May be used as the port_stop() entry in ata_port_operations.
4344 *
4345 * LOCKING:
6f0ef4fa 4346 * Inherited from caller.
0baab86b
EF
4347 */
4348
1da177e4
LT
4349void ata_port_stop (struct ata_port *ap)
4350{
4351 struct device *dev = ap->host_set->dev;
4352
4353 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4354 ata_pad_free(ap, dev);
1da177e4
LT
4355}
4356
aa8f0dc6
JG
4357void ata_host_stop (struct ata_host_set *host_set)
4358{
4359 if (host_set->mmio_base)
4360 iounmap(host_set->mmio_base);
4361}
4362
4363
1da177e4
LT
4364/**
4365 * ata_host_remove - Unregister SCSI host structure with upper layers
4366 * @ap: Port to unregister
4367 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4368 *
4369 * LOCKING:
6f0ef4fa 4370 * Inherited from caller.
1da177e4
LT
4371 */
4372
4373static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4374{
4375 struct Scsi_Host *sh = ap->host;
4376
4377 DPRINTK("ENTER\n");
4378
4379 if (do_unregister)
4380 scsi_remove_host(sh);
4381
4382 ap->ops->port_stop(ap);
4383}
4384
4385/**
4386 * ata_host_init - Initialize an ata_port structure
4387 * @ap: Structure to initialize
4388 * @host: associated SCSI mid-layer structure
4389 * @host_set: Collection of hosts to which @ap belongs
4390 * @ent: Probe information provided by low-level driver
4391 * @port_no: Port number associated with this ata_port
4392 *
0cba632b
JG
4393 * Initialize a new ata_port structure, and its associated
4394 * scsi_host.
4395 *
1da177e4 4396 * LOCKING:
0cba632b 4397 * Inherited from caller.
1da177e4
LT
4398 */
4399
4400static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4401 struct ata_host_set *host_set,
057ace5e 4402 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4403{
4404 unsigned int i;
4405
4406 host->max_id = 16;
4407 host->max_lun = 1;
4408 host->max_channel = 1;
4409 host->unique_id = ata_unique_id++;
4410 host->max_cmd_len = 12;
12413197 4411
1da177e4
LT
4412 ap->flags = ATA_FLAG_PORT_DISABLED;
4413 ap->id = host->unique_id;
4414 ap->host = host;
4415 ap->ctl = ATA_DEVCTL_OBS;
4416 ap->host_set = host_set;
4417 ap->port_no = port_no;
4418 ap->hard_port_no =
4419 ent->legacy_mode ? ent->hard_port_no : port_no;
4420 ap->pio_mask = ent->pio_mask;
4421 ap->mwdma_mask = ent->mwdma_mask;
4422 ap->udma_mask = ent->udma_mask;
4423 ap->flags |= ent->host_flags;
4424 ap->ops = ent->port_ops;
4425 ap->cbl = ATA_CBL_NONE;
4426 ap->active_tag = ATA_TAG_POISON;
4427 ap->last_ctl = 0xFF;
4428
f9997be9 4429 INIT_WORK(&ap->dataout_task, ata_dataout_task, ap);
1da177e4
LT
4430 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4431
4432 for (i = 0; i < ATA_MAX_DEVICES; i++)
4433 ap->device[i].devno = i;
4434
4435#ifdef ATA_IRQ_TRAP
4436 ap->stats.unhandled_irq = 1;
4437 ap->stats.idle_irq = 1;
4438#endif
4439
4440 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4441}
4442
4443/**
4444 * ata_host_add - Attach low-level ATA driver to system
4445 * @ent: Information provided by low-level driver
4446 * @host_set: Collections of ports to which we add
4447 * @port_no: Port number associated with this host
4448 *
0cba632b
JG
4449 * Attach low-level ATA driver to system.
4450 *
1da177e4 4451 * LOCKING:
0cba632b 4452 * PCI/etc. bus probe sem.
1da177e4
LT
4453 *
4454 * RETURNS:
0cba632b 4455 * New ata_port on success, for NULL on error.
1da177e4
LT
4456 */
4457
057ace5e 4458static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4459 struct ata_host_set *host_set,
4460 unsigned int port_no)
4461{
4462 struct Scsi_Host *host;
4463 struct ata_port *ap;
4464 int rc;
4465
4466 DPRINTK("ENTER\n");
4467 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4468 if (!host)
4469 return NULL;
4470
4471 ap = (struct ata_port *) &host->hostdata[0];
4472
4473 ata_host_init(ap, host, host_set, ent, port_no);
4474
4475 rc = ap->ops->port_start(ap);
4476 if (rc)
4477 goto err_out;
4478
4479 return ap;
4480
4481err_out:
4482 scsi_host_put(host);
4483 return NULL;
4484}
4485
4486/**
0cba632b
JG
4487 * ata_device_add - Register hardware device with ATA and SCSI layers
4488 * @ent: Probe information describing hardware device to be registered
4489 *
4490 * This function processes the information provided in the probe
4491 * information struct @ent, allocates the necessary ATA and SCSI
4492 * host information structures, initializes them, and registers
4493 * everything with requisite kernel subsystems.
4494 *
4495 * This function requests irqs, probes the ATA bus, and probes
4496 * the SCSI bus.
1da177e4
LT
4497 *
4498 * LOCKING:
0cba632b 4499 * PCI/etc. bus probe sem.
1da177e4
LT
4500 *
4501 * RETURNS:
0cba632b 4502 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4503 */
4504
057ace5e 4505int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4506{
4507 unsigned int count = 0, i;
4508 struct device *dev = ent->dev;
4509 struct ata_host_set *host_set;
4510
4511 DPRINTK("ENTER\n");
4512 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4513 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4514 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4515 if (!host_set)
4516 return 0;
1da177e4
LT
4517 spin_lock_init(&host_set->lock);
4518
4519 host_set->dev = dev;
4520 host_set->n_ports = ent->n_ports;
4521 host_set->irq = ent->irq;
4522 host_set->mmio_base = ent->mmio_base;
4523 host_set->private_data = ent->private_data;
4524 host_set->ops = ent->port_ops;
4525
4526 /* register each port bound to this device */
4527 for (i = 0; i < ent->n_ports; i++) {
4528 struct ata_port *ap;
4529 unsigned long xfer_mode_mask;
4530
4531 ap = ata_host_add(ent, host_set, i);
4532 if (!ap)
4533 goto err_out;
4534
4535 host_set->ports[i] = ap;
4536 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4537 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4538 (ap->pio_mask << ATA_SHIFT_PIO);
4539
4540 /* print per-port info to dmesg */
4541 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4542 "bmdma 0x%lX irq %lu\n",
4543 ap->id,
4544 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4545 ata_mode_string(xfer_mode_mask),
4546 ap->ioaddr.cmd_addr,
4547 ap->ioaddr.ctl_addr,
4548 ap->ioaddr.bmdma_addr,
4549 ent->irq);
4550
4551 ata_chk_status(ap);
4552 host_set->ops->irq_clear(ap);
4553 count++;
4554 }
4555
57f3bda8
RD
4556 if (!count)
4557 goto err_free_ret;
1da177e4
LT
4558
4559 /* obtain irq, that is shared between channels */
4560 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4561 DRV_NAME, host_set))
4562 goto err_out;
4563
4564 /* perform each probe synchronously */
4565 DPRINTK("probe begin\n");
4566 for (i = 0; i < count; i++) {
4567 struct ata_port *ap;
4568 int rc;
4569
4570 ap = host_set->ports[i];
4571
4572 DPRINTK("ata%u: probe begin\n", ap->id);
4573 rc = ata_bus_probe(ap);
4574 DPRINTK("ata%u: probe end\n", ap->id);
4575
4576 if (rc) {
4577 /* FIXME: do something useful here?
4578 * Current libata behavior will
4579 * tear down everything when
4580 * the module is removed
4581 * or the h/w is unplugged.
4582 */
4583 }
4584
4585 rc = scsi_add_host(ap->host, dev);
4586 if (rc) {
4587 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4588 ap->id);
4589 /* FIXME: do something useful here */
4590 /* FIXME: handle unconditional calls to
4591 * scsi_scan_host and ata_host_remove, below,
4592 * at the very least
4593 */
4594 }
4595 }
4596
4597 /* probes are done, now scan each port's disk(s) */
4598 DPRINTK("probe begin\n");
4599 for (i = 0; i < count; i++) {
4600 struct ata_port *ap = host_set->ports[i];
4601
644dd0cc 4602 ata_scsi_scan_host(ap);
1da177e4
LT
4603 }
4604
4605 dev_set_drvdata(dev, host_set);
4606
4607 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4608 return ent->n_ports; /* success */
4609
4610err_out:
4611 for (i = 0; i < count; i++) {
4612 ata_host_remove(host_set->ports[i], 1);
4613 scsi_host_put(host_set->ports[i]->host);
4614 }
57f3bda8 4615err_free_ret:
1da177e4
LT
4616 kfree(host_set);
4617 VPRINTK("EXIT, returning 0\n");
4618 return 0;
4619}
4620
17b14451
AC
4621/**
4622 * ata_host_set_remove - PCI layer callback for device removal
4623 * @host_set: ATA host set that was removed
4624 *
4625 * Unregister all objects associated with this host set. Free those
4626 * objects.
4627 *
4628 * LOCKING:
4629 * Inherited from calling layer (may sleep).
4630 */
4631
17b14451
AC
4632void ata_host_set_remove(struct ata_host_set *host_set)
4633{
4634 struct ata_port *ap;
4635 unsigned int i;
4636
4637 for (i = 0; i < host_set->n_ports; i++) {
4638 ap = host_set->ports[i];
4639 scsi_remove_host(ap->host);
4640 }
4641
4642 free_irq(host_set->irq, host_set);
4643
4644 for (i = 0; i < host_set->n_ports; i++) {
4645 ap = host_set->ports[i];
4646
4647 ata_scsi_release(ap->host);
4648
4649 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4650 struct ata_ioports *ioaddr = &ap->ioaddr;
4651
4652 if (ioaddr->cmd_addr == 0x1f0)
4653 release_region(0x1f0, 8);
4654 else if (ioaddr->cmd_addr == 0x170)
4655 release_region(0x170, 8);
4656 }
4657
4658 scsi_host_put(ap->host);
4659 }
4660
4661 if (host_set->ops->host_stop)
4662 host_set->ops->host_stop(host_set);
4663
4664 kfree(host_set);
4665}
4666
1da177e4
LT
4667/**
4668 * ata_scsi_release - SCSI layer callback hook for host unload
4669 * @host: libata host to be unloaded
4670 *
4671 * Performs all duties necessary to shut down a libata port...
4672 * Kill port kthread, disable port, and release resources.
4673 *
4674 * LOCKING:
4675 * Inherited from SCSI layer.
4676 *
4677 * RETURNS:
4678 * One.
4679 */
4680
4681int ata_scsi_release(struct Scsi_Host *host)
4682{
4683 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4684
4685 DPRINTK("ENTER\n");
4686
4687 ap->ops->port_disable(ap);
4688 ata_host_remove(ap, 0);
4689
4690 DPRINTK("EXIT\n");
4691 return 1;
4692}
4693
4694/**
4695 * ata_std_ports - initialize ioaddr with standard port offsets.
4696 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4697 *
4698 * Utility function which initializes data_addr, error_addr,
4699 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4700 * device_addr, status_addr, and command_addr to standard offsets
4701 * relative to cmd_addr.
4702 *
4703 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4704 */
0baab86b 4705
1da177e4
LT
4706void ata_std_ports(struct ata_ioports *ioaddr)
4707{
4708 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4709 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4710 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4711 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4712 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4713 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4714 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4715 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4716 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4717 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4718}
4719
4720static struct ata_probe_ent *
057ace5e 4721ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
1da177e4
LT
4722{
4723 struct ata_probe_ent *probe_ent;
4724
57f3bda8 4725 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
1da177e4
LT
4726 if (!probe_ent) {
4727 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4728 kobject_name(&(dev->kobj)));
4729 return NULL;
4730 }
4731
1da177e4
LT
4732 INIT_LIST_HEAD(&probe_ent->node);
4733 probe_ent->dev = dev;
4734
4735 probe_ent->sht = port->sht;
4736 probe_ent->host_flags = port->host_flags;
4737 probe_ent->pio_mask = port->pio_mask;
4738 probe_ent->mwdma_mask = port->mwdma_mask;
4739 probe_ent->udma_mask = port->udma_mask;
4740 probe_ent->port_ops = port->port_ops;
4741
4742 return probe_ent;
4743}
4744
0baab86b
EF
4745
4746
374b1873
JG
4747#ifdef CONFIG_PCI
4748
4749void ata_pci_host_stop (struct ata_host_set *host_set)
4750{
4751 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4752
4753 pci_iounmap(pdev, host_set->mmio_base);
4754}
4755
0baab86b
EF
4756/**
4757 * ata_pci_init_native_mode - Initialize native-mode driver
4758 * @pdev: pci device to be initialized
4759 * @port: array[2] of pointers to port info structures.
47a86593 4760 * @ports: bitmap of ports present
0baab86b
EF
4761 *
4762 * Utility function which allocates and initializes an
4763 * ata_probe_ent structure for a standard dual-port
4764 * PIO-based IDE controller. The returned ata_probe_ent
4765 * structure can be passed to ata_device_add(). The returned
4766 * ata_probe_ent structure should then be freed with kfree().
47a86593
AC
4767 *
4768 * The caller need only pass the address of the primary port, the
4769 * secondary will be deduced automatically. If the device has non
4770 * standard secondary port mappings this function can be called twice,
4771 * once for each interface.
0baab86b
EF
4772 */
4773
1da177e4 4774struct ata_probe_ent *
47a86593 4775ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
1da177e4
LT
4776{
4777 struct ata_probe_ent *probe_ent =
4778 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
47a86593
AC
4779 int p = 0;
4780
1da177e4
LT
4781 if (!probe_ent)
4782 return NULL;
4783
1da177e4
LT
4784 probe_ent->irq = pdev->irq;
4785 probe_ent->irq_flags = SA_SHIRQ;
4786
47a86593
AC
4787 if (ports & ATA_PORT_PRIMARY) {
4788 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4789 probe_ent->port[p].altstatus_addr =
4790 probe_ent->port[p].ctl_addr =
4791 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4792 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4793 ata_std_ports(&probe_ent->port[p]);
4794 p++;
4795 }
1da177e4 4796
47a86593
AC
4797 if (ports & ATA_PORT_SECONDARY) {
4798 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4799 probe_ent->port[p].altstatus_addr =
4800 probe_ent->port[p].ctl_addr =
4801 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4802 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4803 ata_std_ports(&probe_ent->port[p]);
4804 p++;
4805 }
1da177e4 4806
47a86593 4807 probe_ent->n_ports = p;
1da177e4
LT
4808 return probe_ent;
4809}
4810
0f0d5192 4811static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
1da177e4 4812{
47a86593 4813 struct ata_probe_ent *probe_ent;
1da177e4 4814
0f0d5192 4815 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
1da177e4
LT
4816 if (!probe_ent)
4817 return NULL;
1da177e4 4818
1da177e4 4819 probe_ent->legacy_mode = 1;
47a86593
AC
4820 probe_ent->n_ports = 1;
4821 probe_ent->hard_port_no = port_num;
4822
4823 switch(port_num)
4824 {
4825 case 0:
4826 probe_ent->irq = 14;
4827 probe_ent->port[0].cmd_addr = 0x1f0;
4828 probe_ent->port[0].altstatus_addr =
4829 probe_ent->port[0].ctl_addr = 0x3f6;
4830 break;
4831 case 1:
4832 probe_ent->irq = 15;
4833 probe_ent->port[0].cmd_addr = 0x170;
4834 probe_ent->port[0].altstatus_addr =
4835 probe_ent->port[0].ctl_addr = 0x376;
4836 break;
4837 }
4838 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
1da177e4 4839 ata_std_ports(&probe_ent->port[0]);
1da177e4
LT
4840 return probe_ent;
4841}
4842
4843/**
4844 * ata_pci_init_one - Initialize/register PCI IDE host controller
4845 * @pdev: Controller to be initialized
4846 * @port_info: Information from low-level host driver
4847 * @n_ports: Number of ports attached to host controller
4848 *
0baab86b
EF
4849 * This is a helper function which can be called from a driver's
4850 * xxx_init_one() probe function if the hardware uses traditional
4851 * IDE taskfile registers.
4852 *
4853 * This function calls pci_enable_device(), reserves its register
4854 * regions, sets the dma mask, enables bus master mode, and calls
4855 * ata_device_add()
4856 *
1da177e4
LT
4857 * LOCKING:
4858 * Inherited from PCI layer (may sleep).
4859 *
4860 * RETURNS:
0cba632b 4861 * Zero on success, negative on errno-based value on error.
1da177e4
LT
4862 */
4863
4864int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4865 unsigned int n_ports)
4866{
47a86593 4867 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
1da177e4
LT
4868 struct ata_port_info *port[2];
4869 u8 tmp8, mask;
4870 unsigned int legacy_mode = 0;
4871 int disable_dev_on_err = 1;
4872 int rc;
4873
4874 DPRINTK("ENTER\n");
4875
4876 port[0] = port_info[0];
4877 if (n_ports > 1)
4878 port[1] = port_info[1];
4879 else
4880 port[1] = port[0];
4881
4882 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4883 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
47a86593 4884 /* TODO: What if one channel is in native mode ... */
1da177e4
LT
4885 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4886 mask = (1 << 2) | (1 << 0);
4887 if ((tmp8 & mask) != mask)
4888 legacy_mode = (1 << 3);
4889 }
4890
4891 /* FIXME... */
47a86593
AC
4892 if ((!legacy_mode) && (n_ports > 2)) {
4893 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4894 n_ports = 2;
4895 /* For now */
1da177e4
LT
4896 }
4897
47a86593
AC
4898 /* FIXME: Really for ATA it isn't safe because the device may be
4899 multi-purpose and we want to leave it alone if it was already
4900 enabled. Secondly for shared use as Arjan says we want refcounting
4901
4902 Checking dev->is_enabled is insufficient as this is not set at
4903 boot for the primary video which is BIOS enabled
4904 */
4905
1da177e4
LT
4906 rc = pci_enable_device(pdev);
4907 if (rc)
4908 return rc;
4909
4910 rc = pci_request_regions(pdev, DRV_NAME);
4911 if (rc) {
4912 disable_dev_on_err = 0;
4913 goto err_out;
4914 }
4915
47a86593 4916 /* FIXME: Should use platform specific mappers for legacy port ranges */
1da177e4
LT
4917 if (legacy_mode) {
4918 if (!request_region(0x1f0, 8, "libata")) {
4919 struct resource *conflict, res;
4920 res.start = 0x1f0;
4921 res.end = 0x1f0 + 8 - 1;
4922 conflict = ____request_resource(&ioport_resource, &res);
4923 if (!strcmp(conflict->name, "libata"))
4924 legacy_mode |= (1 << 0);
4925 else {
4926 disable_dev_on_err = 0;
4927 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4928 }
4929 } else
4930 legacy_mode |= (1 << 0);
4931
4932 if (!request_region(0x170, 8, "libata")) {
4933 struct resource *conflict, res;
4934 res.start = 0x170;
4935 res.end = 0x170 + 8 - 1;
4936 conflict = ____request_resource(&ioport_resource, &res);
4937 if (!strcmp(conflict->name, "libata"))
4938 legacy_mode |= (1 << 1);
4939 else {
4940 disable_dev_on_err = 0;
4941 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4942 }
4943 } else
4944 legacy_mode |= (1 << 1);
4945 }
4946
4947 /* we have legacy mode, but all ports are unavailable */
4948 if (legacy_mode == (1 << 3)) {
4949 rc = -EBUSY;
4950 goto err_out_regions;
4951 }
4952
4953 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4954 if (rc)
4955 goto err_out_regions;
4956 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4957 if (rc)
4958 goto err_out_regions;
4959
4960 if (legacy_mode) {
47a86593 4961 if (legacy_mode & (1 << 0))
0f0d5192 4962 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
47a86593 4963 if (legacy_mode & (1 << 1))
0f0d5192 4964 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
47a86593
AC
4965 } else {
4966 if (n_ports == 2)
4967 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4968 else
4969 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4970 }
4971 if (!probe_ent && !probe_ent2) {
1da177e4
LT
4972 rc = -ENOMEM;
4973 goto err_out_regions;
4974 }
4975
4976 pci_set_master(pdev);
4977
4978 /* FIXME: check ata_device_add return */
4979 if (legacy_mode) {
4980 if (legacy_mode & (1 << 0))
4981 ata_device_add(probe_ent);
4982 if (legacy_mode & (1 << 1))
4983 ata_device_add(probe_ent2);
4984 } else
4985 ata_device_add(probe_ent);
4986
4987 kfree(probe_ent);
4988 kfree(probe_ent2);
4989
4990 return 0;
4991
4992err_out_regions:
4993 if (legacy_mode & (1 << 0))
4994 release_region(0x1f0, 8);
4995 if (legacy_mode & (1 << 1))
4996 release_region(0x170, 8);
4997 pci_release_regions(pdev);
4998err_out:
4999 if (disable_dev_on_err)
5000 pci_disable_device(pdev);
5001 return rc;
5002}
5003
5004/**
5005 * ata_pci_remove_one - PCI layer callback for device removal
5006 * @pdev: PCI device that was removed
5007 *
5008 * PCI layer indicates to libata via this hook that
6f0ef4fa 5009 * hot-unplug or module unload event has occurred.
1da177e4
LT
5010 * Handle this by unregistering all objects associated
5011 * with this PCI device. Free those objects. Then finally
5012 * release PCI resources and disable device.
5013 *
5014 * LOCKING:
5015 * Inherited from PCI layer (may sleep).
5016 */
5017
5018void ata_pci_remove_one (struct pci_dev *pdev)
5019{
5020 struct device *dev = pci_dev_to_dev(pdev);
5021 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5022
17b14451 5023 ata_host_set_remove(host_set);
1da177e4
LT
5024 pci_release_regions(pdev);
5025 pci_disable_device(pdev);
5026 dev_set_drvdata(dev, NULL);
5027}
5028
5029/* move to PCI subsystem */
057ace5e 5030int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5031{
5032 unsigned long tmp = 0;
5033
5034 switch (bits->width) {
5035 case 1: {
5036 u8 tmp8 = 0;
5037 pci_read_config_byte(pdev, bits->reg, &tmp8);
5038 tmp = tmp8;
5039 break;
5040 }
5041 case 2: {
5042 u16 tmp16 = 0;
5043 pci_read_config_word(pdev, bits->reg, &tmp16);
5044 tmp = tmp16;
5045 break;
5046 }
5047 case 4: {
5048 u32 tmp32 = 0;
5049 pci_read_config_dword(pdev, bits->reg, &tmp32);
5050 tmp = tmp32;
5051 break;
5052 }
5053
5054 default:
5055 return -EINVAL;
5056 }
5057
5058 tmp &= bits->mask;
5059
5060 return (tmp == bits->val) ? 1 : 0;
5061}
5062#endif /* CONFIG_PCI */
5063
5064
1da177e4
LT
5065static int __init ata_init(void)
5066{
5067 ata_wq = create_workqueue("ata");
5068 if (!ata_wq)
5069 return -ENOMEM;
5070
5071 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5072 return 0;
5073}
5074
5075static void __exit ata_exit(void)
5076{
5077 destroy_workqueue(ata_wq);
5078}
5079
5080module_init(ata_init);
5081module_exit(ata_exit);
5082
67846b30
JG
5083static unsigned long ratelimit_time;
5084static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5085
5086int ata_ratelimit(void)
5087{
5088 int rc;
5089 unsigned long flags;
5090
5091 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5092
5093 if (time_after(jiffies, ratelimit_time)) {
5094 rc = 1;
5095 ratelimit_time = jiffies + (HZ/5);
5096 } else
5097 rc = 0;
5098
5099 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5100
5101 return rc;
5102}
5103
1da177e4
LT
5104/*
5105 * libata is essentially a library of internal helper functions for
5106 * low-level ATA host controller drivers. As such, the API/ABI is
5107 * likely to change as new drivers are added and updated.
5108 * Do not depend on ABI/API stability.
5109 */
5110
5111EXPORT_SYMBOL_GPL(ata_std_bios_param);
5112EXPORT_SYMBOL_GPL(ata_std_ports);
5113EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5114EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5115EXPORT_SYMBOL_GPL(ata_sg_init);
5116EXPORT_SYMBOL_GPL(ata_sg_init_one);
5117EXPORT_SYMBOL_GPL(ata_qc_complete);
5118EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5119EXPORT_SYMBOL_GPL(ata_eng_timeout);
5120EXPORT_SYMBOL_GPL(ata_tf_load);
5121EXPORT_SYMBOL_GPL(ata_tf_read);
5122EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5123EXPORT_SYMBOL_GPL(ata_std_dev_select);
5124EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5125EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5126EXPORT_SYMBOL_GPL(ata_check_status);
5127EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5128EXPORT_SYMBOL_GPL(ata_exec_command);
5129EXPORT_SYMBOL_GPL(ata_port_start);
5130EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5131EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5132EXPORT_SYMBOL_GPL(ata_interrupt);
5133EXPORT_SYMBOL_GPL(ata_qc_prep);
5134EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5135EXPORT_SYMBOL_GPL(ata_bmdma_start);
5136EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5137EXPORT_SYMBOL_GPL(ata_bmdma_status);
5138EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5139EXPORT_SYMBOL_GPL(ata_port_probe);
5140EXPORT_SYMBOL_GPL(sata_phy_reset);
5141EXPORT_SYMBOL_GPL(__sata_phy_reset);
5142EXPORT_SYMBOL_GPL(ata_bus_reset);
5143EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5144EXPORT_SYMBOL_GPL(ata_ratelimit);
1da177e4
LT
5145EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5146EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5147EXPORT_SYMBOL_GPL(ata_scsi_error);
5148EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5149EXPORT_SYMBOL_GPL(ata_scsi_release);
5150EXPORT_SYMBOL_GPL(ata_host_intr);
5151EXPORT_SYMBOL_GPL(ata_dev_classify);
5152EXPORT_SYMBOL_GPL(ata_dev_id_string);
6f2f3812 5153EXPORT_SYMBOL_GPL(ata_dev_config);
1da177e4
LT
5154EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5155
452503f9
AC
5156EXPORT_SYMBOL_GPL(ata_timing_compute);
5157EXPORT_SYMBOL_GPL(ata_timing_merge);
5158
1da177e4
LT
5159#ifdef CONFIG_PCI
5160EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5161EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5162EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5163EXPORT_SYMBOL_GPL(ata_pci_init_one);
5164EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5165#endif /* CONFIG_PCI */
This page took 0.348964 seconds and 5 git commands to generate.