thermal/intel_powerclamp: add id for broadwell server
[deliverable/linux.git] / drivers / thermal / intel_powerclamp.c
CommitLineData
d6d71ee4
JP
1/*
2 * intel_powerclamp.c - package c-state idle injection
3 *
4 * Copyright (c) 2012, Intel Corporation.
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 * Jacob Pan <jacob.jun.pan@linux.intel.com>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms and conditions of the GNU General Public License,
12 * version 2, as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
22 *
23 *
24 * TODO:
25 * 1. better handle wakeup from external interrupts, currently a fixed
26 * compensation is added to clamping duration when excessive amount
27 * of wakeups are observed during idle time. the reason is that in
28 * case of external interrupts without need for ack, clamping down
29 * cpu in non-irq context does not reduce irq. for majority of the
30 * cases, clamping down cpu does help reduce irq as well, we should
31 * be able to differenciate the two cases and give a quantitative
32 * solution for the irqs that we can control. perhaps based on
33 * get_cpu_iowait_time_us()
34 *
35 * 2. synchronization with other hw blocks
36 *
37 *
38 */
39
40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42#include <linux/module.h>
43#include <linux/kernel.h>
44#include <linux/delay.h>
45#include <linux/kthread.h>
46#include <linux/freezer.h>
47#include <linux/cpu.h>
48#include <linux/thermal.h>
49#include <linux/slab.h>
50#include <linux/tick.h>
51#include <linux/debugfs.h>
52#include <linux/seq_file.h>
19cc90f5 53#include <linux/sched/rt.h>
d6d71ee4
JP
54
55#include <asm/nmi.h>
56#include <asm/msr.h>
57#include <asm/mwait.h>
58#include <asm/cpu_device_id.h>
59#include <asm/idle.h>
60#include <asm/hardirq.h>
61
62#define MAX_TARGET_RATIO (50U)
63/* For each undisturbed clamping period (no extra wake ups during idle time),
64 * we increment the confidence counter for the given target ratio.
65 * CONFIDENCE_OK defines the level where runtime calibration results are
66 * valid.
67 */
68#define CONFIDENCE_OK (3)
69/* Default idle injection duration, driver adjust sleep time to meet target
70 * idle ratio. Similar to frequency modulation.
71 */
72#define DEFAULT_DURATION_JIFFIES (6)
73
74static unsigned int target_mwait;
75static struct dentry *debug_dir;
76
77/* user selected target */
78static unsigned int set_target_ratio;
79static unsigned int current_ratio;
80static bool should_skip;
81static bool reduce_irq;
82static atomic_t idle_wakeup_counter;
83static unsigned int control_cpu; /* The cpu assigned to collect stat and update
84 * control parameters. default to BSP but BSP
85 * can be offlined.
86 */
87static bool clamping;
88
89
90static struct task_struct * __percpu *powerclamp_thread;
91static struct thermal_cooling_device *cooling_dev;
92static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
93 * clamping thread
94 */
95
96static unsigned int duration;
97static unsigned int pkg_cstate_ratio_cur;
98static unsigned int window_size;
99
100static int duration_set(const char *arg, const struct kernel_param *kp)
101{
102 int ret = 0;
103 unsigned long new_duration;
104
105 ret = kstrtoul(arg, 10, &new_duration);
106 if (ret)
107 goto exit;
108 if (new_duration > 25 || new_duration < 6) {
109 pr_err("Out of recommended range %lu, between 6-25ms\n",
110 new_duration);
111 ret = -EINVAL;
112 }
113
114 duration = clamp(new_duration, 6ul, 25ul);
115 smp_mb();
116
117exit:
118
119 return ret;
120}
121
122static struct kernel_param_ops duration_ops = {
123 .set = duration_set,
124 .get = param_get_int,
125};
126
127
128module_param_cb(duration, &duration_ops, &duration, 0644);
129MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
130
131struct powerclamp_calibration_data {
132 unsigned long confidence; /* used for calibration, basically a counter
133 * gets incremented each time a clamping
134 * period is completed without extra wakeups
135 * once that counter is reached given level,
136 * compensation is deemed usable.
137 */
138 unsigned long steady_comp; /* steady state compensation used when
139 * no extra wakeups occurred.
140 */
141 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
142 * mostly from external interrupts.
143 */
144};
145
146static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
147
148static int window_size_set(const char *arg, const struct kernel_param *kp)
149{
150 int ret = 0;
151 unsigned long new_window_size;
152
153 ret = kstrtoul(arg, 10, &new_window_size);
154 if (ret)
155 goto exit_win;
156 if (new_window_size > 10 || new_window_size < 2) {
157 pr_err("Out of recommended window size %lu, between 2-10\n",
158 new_window_size);
159 ret = -EINVAL;
160 }
161
162 window_size = clamp(new_window_size, 2ul, 10ul);
163 smp_mb();
164
165exit_win:
166
167 return ret;
168}
169
170static struct kernel_param_ops window_size_ops = {
171 .set = window_size_set,
172 .get = param_get_int,
173};
174
175module_param_cb(window_size, &window_size_ops, &window_size, 0644);
176MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
177 "\tpowerclamp controls idle ratio within this window. larger\n"
178 "\twindow size results in slower response time but more smooth\n"
179 "\tclamping results. default to 2.");
180
181static void find_target_mwait(void)
182{
183 unsigned int eax, ebx, ecx, edx;
184 unsigned int highest_cstate = 0;
185 unsigned int highest_subcstate = 0;
186 int i;
187
188 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
189 return;
190
191 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
192
193 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
194 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
195 return;
196
197 edx >>= MWAIT_SUBSTATE_SIZE;
198 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
199 if (edx & MWAIT_SUBSTATE_MASK) {
200 highest_cstate = i;
201 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
202 }
203 }
204 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
205 (highest_subcstate - 1);
206
207}
208
7734e3ac
YS
209static bool has_pkg_state_counter(void)
210{
211 u64 tmp;
212 return !rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &tmp) ||
213 !rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &tmp) ||
214 !rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &tmp) ||
215 !rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &tmp);
216}
217
d6d71ee4
JP
218static u64 pkg_state_counter(void)
219{
220 u64 val;
221 u64 count = 0;
222
223 static bool skip_c2;
224 static bool skip_c3;
225 static bool skip_c6;
226 static bool skip_c7;
227
228 if (!skip_c2) {
229 if (!rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &val))
230 count += val;
231 else
232 skip_c2 = true;
233 }
234
235 if (!skip_c3) {
236 if (!rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &val))
237 count += val;
238 else
239 skip_c3 = true;
240 }
241
242 if (!skip_c6) {
243 if (!rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &val))
244 count += val;
245 else
246 skip_c6 = true;
247 }
248
249 if (!skip_c7) {
250 if (!rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &val))
251 count += val;
252 else
253 skip_c7 = true;
254 }
255
256 return count;
257}
258
259static void noop_timer(unsigned long foo)
260{
261 /* empty... just the fact that we get the interrupt wakes us up */
262}
263
264static unsigned int get_compensation(int ratio)
265{
266 unsigned int comp = 0;
267
268 /* we only use compensation if all adjacent ones are good */
269 if (ratio == 1 &&
270 cal_data[ratio].confidence >= CONFIDENCE_OK &&
271 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
272 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
273 comp = (cal_data[ratio].steady_comp +
274 cal_data[ratio + 1].steady_comp +
275 cal_data[ratio + 2].steady_comp) / 3;
276 } else if (ratio == MAX_TARGET_RATIO - 1 &&
277 cal_data[ratio].confidence >= CONFIDENCE_OK &&
278 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
279 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
280 comp = (cal_data[ratio].steady_comp +
281 cal_data[ratio - 1].steady_comp +
282 cal_data[ratio - 2].steady_comp) / 3;
283 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
284 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
285 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
286 comp = (cal_data[ratio].steady_comp +
287 cal_data[ratio - 1].steady_comp +
288 cal_data[ratio + 1].steady_comp) / 3;
289 }
290
291 /* REVISIT: simple penalty of double idle injection */
292 if (reduce_irq)
293 comp = ratio;
294 /* do not exceed limit */
295 if (comp + ratio >= MAX_TARGET_RATIO)
296 comp = MAX_TARGET_RATIO - ratio - 1;
297
298 return comp;
299}
300
301static void adjust_compensation(int target_ratio, unsigned int win)
302{
303 int delta;
304 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
305
306 /*
307 * adjust compensations if confidence level has not been reached or
308 * there are too many wakeups during the last idle injection period, we
309 * cannot trust the data for compensation.
310 */
311 if (d->confidence >= CONFIDENCE_OK ||
312 atomic_read(&idle_wakeup_counter) >
313 win * num_online_cpus())
314 return;
315
316 delta = set_target_ratio - current_ratio;
317 /* filter out bad data */
318 if (delta >= 0 && delta <= (1+target_ratio/10)) {
319 if (d->steady_comp)
320 d->steady_comp =
321 roundup(delta+d->steady_comp, 2)/2;
322 else
323 d->steady_comp = delta;
324 d->confidence++;
325 }
326}
327
328static bool powerclamp_adjust_controls(unsigned int target_ratio,
329 unsigned int guard, unsigned int win)
330{
331 static u64 msr_last, tsc_last;
332 u64 msr_now, tsc_now;
333 u64 val64;
334
335 /* check result for the last window */
336 msr_now = pkg_state_counter();
337 rdtscll(tsc_now);
338
339 /* calculate pkg cstate vs tsc ratio */
340 if (!msr_last || !tsc_last)
341 current_ratio = 1;
342 else if (tsc_now-tsc_last) {
343 val64 = 100*(msr_now-msr_last);
344 do_div(val64, (tsc_now-tsc_last));
345 current_ratio = val64;
346 }
347
348 /* update record */
349 msr_last = msr_now;
350 tsc_last = tsc_now;
351
352 adjust_compensation(target_ratio, win);
353 /*
354 * too many external interrupts, set flag such
355 * that we can take measure later.
356 */
357 reduce_irq = atomic_read(&idle_wakeup_counter) >=
358 2 * win * num_online_cpus();
359
360 atomic_set(&idle_wakeup_counter, 0);
361 /* if we are above target+guard, skip */
362 return set_target_ratio + guard <= current_ratio;
363}
364
365static int clamp_thread(void *arg)
366{
367 int cpunr = (unsigned long)arg;
368 DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
369 static const struct sched_param param = {
370 .sched_priority = MAX_USER_RT_PRIO/2,
371 };
372 unsigned int count = 0;
373 unsigned int target_ratio;
374
375 set_bit(cpunr, cpu_clamping_mask);
376 set_freezable();
377 init_timer_on_stack(&wakeup_timer);
378 sched_setscheduler(current, SCHED_FIFO, &param);
379
380 while (true == clamping && !kthread_should_stop() &&
381 cpu_online(cpunr)) {
382 int sleeptime;
383 unsigned long target_jiffies;
384 unsigned int guard;
385 unsigned int compensation = 0;
386 int interval; /* jiffies to sleep for each attempt */
387 unsigned int duration_jiffies = msecs_to_jiffies(duration);
388 unsigned int window_size_now;
389
390 try_to_freeze();
391 /*
392 * make sure user selected ratio does not take effect until
393 * the next round. adjust target_ratio if user has changed
394 * target such that we can converge quickly.
395 */
396 target_ratio = set_target_ratio;
397 guard = 1 + target_ratio/20;
398 window_size_now = window_size;
399 count++;
400
401 /*
402 * systems may have different ability to enter package level
403 * c-states, thus we need to compensate the injected idle ratio
404 * to achieve the actual target reported by the HW.
405 */
406 compensation = get_compensation(target_ratio);
407 interval = duration_jiffies*100/(target_ratio+compensation);
408
409 /* align idle time */
410 target_jiffies = roundup(jiffies, interval);
411 sleeptime = target_jiffies - jiffies;
412 if (sleeptime <= 0)
413 sleeptime = 1;
414 schedule_timeout_interruptible(sleeptime);
415 /*
416 * only elected controlling cpu can collect stats and update
417 * control parameters.
418 */
419 if (cpunr == control_cpu && !(count%window_size_now)) {
420 should_skip =
421 powerclamp_adjust_controls(target_ratio,
422 guard, window_size_now);
423 smp_mb();
424 }
425
426 if (should_skip)
427 continue;
428
429 target_jiffies = jiffies + duration_jiffies;
430 mod_timer(&wakeup_timer, target_jiffies);
431 if (unlikely(local_softirq_pending()))
432 continue;
433 /*
434 * stop tick sched during idle time, interrupts are still
435 * allowed. thus jiffies are updated properly.
436 */
437 preempt_disable();
d6d71ee4
JP
438 /* mwait until target jiffies is reached */
439 while (time_before(jiffies, target_jiffies)) {
440 unsigned long ecx = 1;
441 unsigned long eax = target_mwait;
442
443 /*
444 * REVISIT: may call enter_idle() to notify drivers who
445 * can save power during cpu idle. same for exit_idle()
446 */
447 local_touch_nmi();
448 stop_critical_timings();
16824255 449 mwait_idle_with_hints(eax, ecx);
d6d71ee4
JP
450 start_critical_timings();
451 atomic_inc(&idle_wakeup_counter);
452 }
130816ce 453 preempt_enable();
d6d71ee4
JP
454 }
455 del_timer_sync(&wakeup_timer);
456 clear_bit(cpunr, cpu_clamping_mask);
457
458 return 0;
459}
460
461/*
462 * 1 HZ polling while clamping is active, useful for userspace
463 * to monitor actual idle ratio.
464 */
465static void poll_pkg_cstate(struct work_struct *dummy);
466static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
467static void poll_pkg_cstate(struct work_struct *dummy)
468{
469 static u64 msr_last;
470 static u64 tsc_last;
471 static unsigned long jiffies_last;
472
473 u64 msr_now;
474 unsigned long jiffies_now;
475 u64 tsc_now;
476 u64 val64;
477
478 msr_now = pkg_state_counter();
479 rdtscll(tsc_now);
480 jiffies_now = jiffies;
481
482 /* calculate pkg cstate vs tsc ratio */
483 if (!msr_last || !tsc_last)
484 pkg_cstate_ratio_cur = 1;
485 else {
486 if (tsc_now - tsc_last) {
487 val64 = 100 * (msr_now - msr_last);
488 do_div(val64, (tsc_now - tsc_last));
489 pkg_cstate_ratio_cur = val64;
490 }
491 }
492
493 /* update record */
494 msr_last = msr_now;
495 jiffies_last = jiffies_now;
496 tsc_last = tsc_now;
497
498 if (true == clamping)
499 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
500}
501
502static int start_power_clamp(void)
503{
504 unsigned long cpu;
505 struct task_struct *thread;
506
507 /* check if pkg cstate counter is completely 0, abort in this case */
7734e3ac 508 if (!has_pkg_state_counter()) {
d6d71ee4
JP
509 pr_err("pkg cstate counter not functional, abort\n");
510 return -EINVAL;
511 }
512
c8165dc0 513 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
d6d71ee4
JP
514 /* prevent cpu hotplug */
515 get_online_cpus();
516
517 /* prefer BSP */
518 control_cpu = 0;
519 if (!cpu_online(control_cpu))
520 control_cpu = smp_processor_id();
521
522 clamping = true;
523 schedule_delayed_work(&poll_pkg_cstate_work, 0);
524
525 /* start one thread per online cpu */
526 for_each_online_cpu(cpu) {
527 struct task_struct **p =
528 per_cpu_ptr(powerclamp_thread, cpu);
529
530 thread = kthread_create_on_node(clamp_thread,
531 (void *) cpu,
532 cpu_to_node(cpu),
533 "kidle_inject/%ld", cpu);
534 /* bind to cpu here */
535 if (likely(!IS_ERR(thread))) {
536 kthread_bind(thread, cpu);
537 wake_up_process(thread);
538 *p = thread;
539 }
540
541 }
542 put_online_cpus();
543
544 return 0;
545}
546
547static void end_power_clamp(void)
548{
549 int i;
550 struct task_struct *thread;
551
552 clamping = false;
553 /*
554 * make clamping visible to other cpus and give per cpu clamping threads
555 * sometime to exit, or gets killed later.
556 */
557 smp_mb();
558 msleep(20);
559 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
560 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
561 pr_debug("clamping thread for cpu %d alive, kill\n", i);
562 thread = *per_cpu_ptr(powerclamp_thread, i);
563 kthread_stop(thread);
564 }
565 }
566}
567
568static int powerclamp_cpu_callback(struct notifier_block *nfb,
569 unsigned long action, void *hcpu)
570{
571 unsigned long cpu = (unsigned long)hcpu;
572 struct task_struct *thread;
573 struct task_struct **percpu_thread =
574 per_cpu_ptr(powerclamp_thread, cpu);
575
576 if (false == clamping)
577 goto exit_ok;
578
579 switch (action) {
580 case CPU_ONLINE:
581 thread = kthread_create_on_node(clamp_thread,
582 (void *) cpu,
583 cpu_to_node(cpu),
584 "kidle_inject/%lu", cpu);
585 if (likely(!IS_ERR(thread))) {
586 kthread_bind(thread, cpu);
587 wake_up_process(thread);
588 *percpu_thread = thread;
589 }
590 /* prefer BSP as controlling CPU */
591 if (cpu == 0) {
592 control_cpu = 0;
593 smp_mb();
594 }
595 break;
596 case CPU_DEAD:
597 if (test_bit(cpu, cpu_clamping_mask)) {
598 pr_err("cpu %lu dead but powerclamping thread is not\n",
599 cpu);
600 kthread_stop(*percpu_thread);
601 }
602 if (cpu == control_cpu) {
603 control_cpu = smp_processor_id();
604 smp_mb();
605 }
606 }
607
608exit_ok:
609 return NOTIFY_OK;
610}
611
612static struct notifier_block powerclamp_cpu_notifier = {
613 .notifier_call = powerclamp_cpu_callback,
614};
615
616static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
617 unsigned long *state)
618{
619 *state = MAX_TARGET_RATIO;
620
621 return 0;
622}
623
624static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
625 unsigned long *state)
626{
627 if (true == clamping)
628 *state = pkg_cstate_ratio_cur;
629 else
630 /* to save power, do not poll idle ratio while not clamping */
631 *state = -1; /* indicates invalid state */
632
633 return 0;
634}
635
636static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
637 unsigned long new_target_ratio)
638{
639 int ret = 0;
640
641 new_target_ratio = clamp(new_target_ratio, 0UL,
642 (unsigned long) (MAX_TARGET_RATIO-1));
643 if (set_target_ratio == 0 && new_target_ratio > 0) {
644 pr_info("Start idle injection to reduce power\n");
645 set_target_ratio = new_target_ratio;
646 ret = start_power_clamp();
647 goto exit_set;
648 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
649 pr_info("Stop forced idle injection\n");
650 set_target_ratio = 0;
651 end_power_clamp();
652 } else /* adjust currently running */ {
653 set_target_ratio = new_target_ratio;
654 /* make new set_target_ratio visible to other cpus */
655 smp_mb();
656 }
657
658exit_set:
659 return ret;
660}
661
662/* bind to generic thermal layer as cooling device*/
663static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
664 .get_max_state = powerclamp_get_max_state,
665 .get_cur_state = powerclamp_get_cur_state,
666 .set_cur_state = powerclamp_set_cur_state,
667};
668
669/* runs on Nehalem and later */
4d2b6e4a 670static const struct x86_cpu_id intel_powerclamp_ids[] __initconst = {
d6d71ee4
JP
671 { X86_VENDOR_INTEL, 6, 0x1a},
672 { X86_VENDOR_INTEL, 6, 0x1c},
673 { X86_VENDOR_INTEL, 6, 0x1e},
674 { X86_VENDOR_INTEL, 6, 0x1f},
675 { X86_VENDOR_INTEL, 6, 0x25},
676 { X86_VENDOR_INTEL, 6, 0x26},
677 { X86_VENDOR_INTEL, 6, 0x2a},
678 { X86_VENDOR_INTEL, 6, 0x2c},
679 { X86_VENDOR_INTEL, 6, 0x2d},
680 { X86_VENDOR_INTEL, 6, 0x2e},
681 { X86_VENDOR_INTEL, 6, 0x2f},
9a17f56c 682 { X86_VENDOR_INTEL, 6, 0x37},
d6d71ee4 683 { X86_VENDOR_INTEL, 6, 0x3a},
90fc9cd2 684 { X86_VENDOR_INTEL, 6, 0x3c},
9a17f56c 685 { X86_VENDOR_INTEL, 6, 0x3d},
90fc9cd2
JP
686 { X86_VENDOR_INTEL, 6, 0x3e},
687 { X86_VENDOR_INTEL, 6, 0x3f},
688 { X86_VENDOR_INTEL, 6, 0x45},
689 { X86_VENDOR_INTEL, 6, 0x46},
5a530ff0 690 { X86_VENDOR_INTEL, 6, 0x4c},
3a4562a0 691 { X86_VENDOR_INTEL, 6, 0x4d},
f09bfdb6 692 { X86_VENDOR_INTEL, 6, 0x4f},
59c56eb6 693 { X86_VENDOR_INTEL, 6, 0x56},
d6d71ee4
JP
694 {}
695};
696MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
697
4d2b6e4a 698static int __init powerclamp_probe(void)
d6d71ee4
JP
699{
700 if (!x86_match_cpu(intel_powerclamp_ids)) {
701 pr_err("Intel powerclamp does not run on family %d model %d\n",
702 boot_cpu_data.x86, boot_cpu_data.x86_model);
703 return -ENODEV;
704 }
705 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
706 !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) ||
707 !boot_cpu_has(X86_FEATURE_MWAIT) ||
708 !boot_cpu_has(X86_FEATURE_ARAT))
709 return -ENODEV;
710
711 /* find the deepest mwait value */
712 find_target_mwait();
713
714 return 0;
715}
716
717static int powerclamp_debug_show(struct seq_file *m, void *unused)
718{
719 int i = 0;
720
721 seq_printf(m, "controlling cpu: %d\n", control_cpu);
722 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
723 for (i = 0; i < MAX_TARGET_RATIO; i++) {
724 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
725 i,
726 cal_data[i].confidence,
727 cal_data[i].steady_comp,
728 cal_data[i].dynamic_comp);
729 }
730
731 return 0;
732}
733
734static int powerclamp_debug_open(struct inode *inode,
735 struct file *file)
736{
737 return single_open(file, powerclamp_debug_show, inode->i_private);
738}
739
740static const struct file_operations powerclamp_debug_fops = {
741 .open = powerclamp_debug_open,
742 .read = seq_read,
743 .llseek = seq_lseek,
744 .release = single_release,
745 .owner = THIS_MODULE,
746};
747
748static inline void powerclamp_create_debug_files(void)
749{
750 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
751 if (!debug_dir)
752 return;
753
754 if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
755 cal_data, &powerclamp_debug_fops))
756 goto file_error;
757
758 return;
759
760file_error:
761 debugfs_remove_recursive(debug_dir);
762}
763
4d2b6e4a 764static int __init powerclamp_init(void)
d6d71ee4
JP
765{
766 int retval;
767 int bitmap_size;
768
769 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
770 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
771 if (!cpu_clamping_mask)
772 return -ENOMEM;
773
774 /* probe cpu features and ids here */
775 retval = powerclamp_probe();
776 if (retval)
c32a5087 777 goto exit_free;
778
d6d71ee4
JP
779 /* set default limit, maybe adjusted during runtime based on feedback */
780 window_size = 2;
781 register_hotcpu_notifier(&powerclamp_cpu_notifier);
c32a5087 782
d6d71ee4 783 powerclamp_thread = alloc_percpu(struct task_struct *);
c32a5087 784 if (!powerclamp_thread) {
785 retval = -ENOMEM;
786 goto exit_unregister;
787 }
788
d6d71ee4
JP
789 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
790 &powerclamp_cooling_ops);
c32a5087 791 if (IS_ERR(cooling_dev)) {
792 retval = -ENODEV;
793 goto exit_free_thread;
794 }
d6d71ee4
JP
795
796 if (!duration)
797 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
c32a5087 798
d6d71ee4
JP
799 powerclamp_create_debug_files();
800
801 return 0;
c32a5087 802
803exit_free_thread:
804 free_percpu(powerclamp_thread);
805exit_unregister:
806 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
807exit_free:
808 kfree(cpu_clamping_mask);
809 return retval;
d6d71ee4
JP
810}
811module_init(powerclamp_init);
812
4d2b6e4a 813static void __exit powerclamp_exit(void)
d6d71ee4
JP
814{
815 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
816 end_power_clamp();
817 free_percpu(powerclamp_thread);
818 thermal_cooling_device_unregister(cooling_dev);
819 kfree(cpu_clamping_mask);
820
821 cancel_delayed_work_sync(&poll_pkg_cstate_work);
822 debugfs_remove_recursive(debug_dir);
823}
824module_exit(powerclamp_exit);
825
826MODULE_LICENSE("GPL");
827MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
828MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
829MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");
This page took 0.259738 seconds and 5 git commands to generate.