ext4: Create helper function for EXT4_IO_END_UNWRITTEN and i_aiodio_unwritten
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
21#include <linux/module.h>
22#include <linux/fs.h>
23#include <linux/time.h>
dab291af 24#include <linux/jbd2.h>
ac27a0ec
DK
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
64769240 31#include <linux/pagevec.h>
ac27a0ec 32#include <linux/mpage.h>
e83c1397 33#include <linux/namei.h>
ac27a0ec
DK
34#include <linux/uio.h>
35#include <linux/bio.h>
4c0425ff 36#include <linux/workqueue.h>
744692dc 37#include <linux/kernel.h>
6db26ffc 38#include <linux/printk.h>
5a0e3ad6 39#include <linux/slab.h>
a8901d34 40#include <linux/ratelimit.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
678aaf48
JK
51static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53{
7ff9c073 54 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
55 /*
56 * If jinode is zero, then we never opened the file for
57 * writing, so there's no need to call
58 * jbd2_journal_begin_ordered_truncate() since there's no
59 * outstanding writes we need to flush.
60 */
61 if (!EXT4_I(inode)->jinode)
62 return 0;
63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64 EXT4_I(inode)->jinode,
65 new_size);
678aaf48
JK
66}
67
64769240 68static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
69static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70 struct buffer_head *bh_result, int create);
71static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
64769240 75
ac27a0ec
DK
76/*
77 * Test whether an inode is a fast symlink.
78 */
617ba13b 79static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 80{
617ba13b 81 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
82 (inode->i_sb->s_blocksize >> 9) : 0;
83
84 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
85}
86
ac27a0ec
DK
87/*
88 * Restart the transaction associated with *handle. This does a commit,
89 * so before we call here everything must be consistently dirtied against
90 * this transaction.
91 */
fa5d1113 92int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 93 int nblocks)
ac27a0ec 94{
487caeef
JK
95 int ret;
96
97 /*
e35fd660 98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
99 * moment, get_block can be called only for blocks inside i_size since
100 * page cache has been already dropped and writes are blocked by
101 * i_mutex. So we can safely drop the i_data_sem here.
102 */
0390131b 103 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 104 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 105 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 106 ret = ext4_journal_restart(handle, nblocks);
487caeef 107 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 108 ext4_discard_preallocations(inode);
487caeef
JK
109
110 return ret;
ac27a0ec
DK
111}
112
113/*
114 * Called at the last iput() if i_nlink is zero.
115 */
0930fcc1 116void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
117{
118 handle_t *handle;
bc965ab3 119 int err;
ac27a0ec 120
7ff9c073 121 trace_ext4_evict_inode(inode);
2581fdc8 122
2581fdc8
JZ
123 ext4_ioend_wait(inode);
124
0930fcc1 125 if (inode->i_nlink) {
2d859db3
JK
126 /*
127 * When journalling data dirty buffers are tracked only in the
128 * journal. So although mm thinks everything is clean and
129 * ready for reaping the inode might still have some pages to
130 * write in the running transaction or waiting to be
131 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 * (via truncate_inode_pages()) to discard these buffers can
133 * cause data loss. Also even if we did not discard these
134 * buffers, we would have no way to find them after the inode
135 * is reaped and thus user could see stale data if he tries to
136 * read them before the transaction is checkpointed. So be
137 * careful and force everything to disk here... We use
138 * ei->i_datasync_tid to store the newest transaction
139 * containing inode's data.
140 *
141 * Note that directories do not have this problem because they
142 * don't use page cache.
143 */
144 if (ext4_should_journal_data(inode) &&
145 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
148
149 jbd2_log_start_commit(journal, commit_tid);
150 jbd2_log_wait_commit(journal, commit_tid);
151 filemap_write_and_wait(&inode->i_data);
152 }
0930fcc1
AV
153 truncate_inode_pages(&inode->i_data, 0);
154 goto no_delete;
155 }
156
907f4554 157 if (!is_bad_inode(inode))
871a2931 158 dquot_initialize(inode);
907f4554 159
678aaf48
JK
160 if (ext4_should_order_data(inode))
161 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
162 truncate_inode_pages(&inode->i_data, 0);
163
164 if (is_bad_inode(inode))
165 goto no_delete;
166
9f125d64 167 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 168 if (IS_ERR(handle)) {
bc965ab3 169 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
170 /*
171 * If we're going to skip the normal cleanup, we still need to
172 * make sure that the in-core orphan linked list is properly
173 * cleaned up.
174 */
617ba13b 175 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
176 goto no_delete;
177 }
178
179 if (IS_SYNC(inode))
0390131b 180 ext4_handle_sync(handle);
ac27a0ec 181 inode->i_size = 0;
bc965ab3
TT
182 err = ext4_mark_inode_dirty(handle, inode);
183 if (err) {
12062ddd 184 ext4_warning(inode->i_sb,
bc965ab3
TT
185 "couldn't mark inode dirty (err %d)", err);
186 goto stop_handle;
187 }
ac27a0ec 188 if (inode->i_blocks)
617ba13b 189 ext4_truncate(inode);
bc965ab3
TT
190
191 /*
192 * ext4_ext_truncate() doesn't reserve any slop when it
193 * restarts journal transactions; therefore there may not be
194 * enough credits left in the handle to remove the inode from
195 * the orphan list and set the dtime field.
196 */
0390131b 197 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
198 err = ext4_journal_extend(handle, 3);
199 if (err > 0)
200 err = ext4_journal_restart(handle, 3);
201 if (err != 0) {
12062ddd 202 ext4_warning(inode->i_sb,
bc965ab3
TT
203 "couldn't extend journal (err %d)", err);
204 stop_handle:
205 ext4_journal_stop(handle);
45388219 206 ext4_orphan_del(NULL, inode);
bc965ab3
TT
207 goto no_delete;
208 }
209 }
210
ac27a0ec 211 /*
617ba13b 212 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 213 * AKPM: I think this can be inside the above `if'.
617ba13b 214 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 215 * deletion of a non-existent orphan - this is because we don't
617ba13b 216 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
217 * (Well, we could do this if we need to, but heck - it works)
218 */
617ba13b
MC
219 ext4_orphan_del(handle, inode);
220 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
221
222 /*
223 * One subtle ordering requirement: if anything has gone wrong
224 * (transaction abort, IO errors, whatever), then we can still
225 * do these next steps (the fs will already have been marked as
226 * having errors), but we can't free the inode if the mark_dirty
227 * fails.
228 */
617ba13b 229 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 230 /* If that failed, just do the required in-core inode clear. */
0930fcc1 231 ext4_clear_inode(inode);
ac27a0ec 232 else
617ba13b
MC
233 ext4_free_inode(handle, inode);
234 ext4_journal_stop(handle);
ac27a0ec
DK
235 return;
236no_delete:
0930fcc1 237 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
238}
239
a9e7f447
DM
240#ifdef CONFIG_QUOTA
241qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 242{
a9e7f447 243 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 244}
a9e7f447 245#endif
9d0be502 246
12219aea
AK
247/*
248 * Calculate the number of metadata blocks need to reserve
9d0be502 249 * to allocate a block located at @lblock
12219aea 250 */
01f49d0b 251static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 252{
12e9b892 253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 254 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 255
8bb2b247 256 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
257}
258
0637c6f4
TT
259/*
260 * Called with i_data_sem down, which is important since we can call
261 * ext4_discard_preallocations() from here.
262 */
5f634d06
AK
263void ext4_da_update_reserve_space(struct inode *inode,
264 int used, int quota_claim)
12219aea
AK
265{
266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 267 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
268
269 spin_lock(&ei->i_block_reservation_lock);
d8990240 270 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
271 if (unlikely(used > ei->i_reserved_data_blocks)) {
272 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273 "with only %d reserved data blocks\n",
274 __func__, inode->i_ino, used,
275 ei->i_reserved_data_blocks);
276 WARN_ON(1);
277 used = ei->i_reserved_data_blocks;
278 }
12219aea 279
0637c6f4
TT
280 /* Update per-inode reservations */
281 ei->i_reserved_data_blocks -= used;
0637c6f4 282 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 283 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 284 used + ei->i_allocated_meta_blocks);
0637c6f4 285 ei->i_allocated_meta_blocks = 0;
6bc6e63f 286
0637c6f4
TT
287 if (ei->i_reserved_data_blocks == 0) {
288 /*
289 * We can release all of the reserved metadata blocks
290 * only when we have written all of the delayed
291 * allocation blocks.
292 */
57042651 293 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 294 ei->i_reserved_meta_blocks);
ee5f4d9c 295 ei->i_reserved_meta_blocks = 0;
9d0be502 296 ei->i_da_metadata_calc_len = 0;
6bc6e63f 297 }
12219aea 298 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 299
72b8ab9d
ES
300 /* Update quota subsystem for data blocks */
301 if (quota_claim)
7b415bf6 302 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 303 else {
5f634d06
AK
304 /*
305 * We did fallocate with an offset that is already delayed
306 * allocated. So on delayed allocated writeback we should
72b8ab9d 307 * not re-claim the quota for fallocated blocks.
5f634d06 308 */
7b415bf6 309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 310 }
d6014301
AK
311
312 /*
313 * If we have done all the pending block allocations and if
314 * there aren't any writers on the inode, we can discard the
315 * inode's preallocations.
316 */
0637c6f4
TT
317 if ((ei->i_reserved_data_blocks == 0) &&
318 (atomic_read(&inode->i_writecount) == 0))
d6014301 319 ext4_discard_preallocations(inode);
12219aea
AK
320}
321
e29136f8 322static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
323 unsigned int line,
324 struct ext4_map_blocks *map)
6fd058f7 325{
24676da4
TT
326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327 map->m_len)) {
c398eda0
TT
328 ext4_error_inode(inode, func, line, map->m_pblk,
329 "lblock %lu mapped to illegal pblock "
330 "(length %d)", (unsigned long) map->m_lblk,
331 map->m_len);
6fd058f7
TT
332 return -EIO;
333 }
334 return 0;
335}
336
e29136f8 337#define check_block_validity(inode, map) \
c398eda0 338 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 339
55138e0b 340/*
1f94533d
TT
341 * Return the number of contiguous dirty pages in a given inode
342 * starting at page frame idx.
55138e0b
TT
343 */
344static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345 unsigned int max_pages)
346{
347 struct address_space *mapping = inode->i_mapping;
348 pgoff_t index;
349 struct pagevec pvec;
350 pgoff_t num = 0;
351 int i, nr_pages, done = 0;
352
353 if (max_pages == 0)
354 return 0;
355 pagevec_init(&pvec, 0);
356 while (!done) {
357 index = idx;
358 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 PAGECACHE_TAG_DIRTY,
360 (pgoff_t)PAGEVEC_SIZE);
361 if (nr_pages == 0)
362 break;
363 for (i = 0; i < nr_pages; i++) {
364 struct page *page = pvec.pages[i];
365 struct buffer_head *bh, *head;
366
367 lock_page(page);
368 if (unlikely(page->mapping != mapping) ||
369 !PageDirty(page) ||
370 PageWriteback(page) ||
371 page->index != idx) {
372 done = 1;
373 unlock_page(page);
374 break;
375 }
1f94533d
TT
376 if (page_has_buffers(page)) {
377 bh = head = page_buffers(page);
378 do {
379 if (!buffer_delay(bh) &&
380 !buffer_unwritten(bh))
381 done = 1;
382 bh = bh->b_this_page;
383 } while (!done && (bh != head));
384 }
55138e0b
TT
385 unlock_page(page);
386 if (done)
387 break;
388 idx++;
389 num++;
659c6009
ES
390 if (num >= max_pages) {
391 done = 1;
55138e0b 392 break;
659c6009 393 }
55138e0b
TT
394 }
395 pagevec_release(&pvec);
396 }
397 return num;
398}
399
5356f261
AK
400/*
401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
402 */
403static void set_buffers_da_mapped(struct inode *inode,
404 struct ext4_map_blocks *map)
405{
406 struct address_space *mapping = inode->i_mapping;
407 struct pagevec pvec;
408 int i, nr_pages;
409 pgoff_t index, end;
410
411 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412 end = (map->m_lblk + map->m_len - 1) >>
413 (PAGE_CACHE_SHIFT - inode->i_blkbits);
414
415 pagevec_init(&pvec, 0);
416 while (index <= end) {
417 nr_pages = pagevec_lookup(&pvec, mapping, index,
418 min(end - index + 1,
419 (pgoff_t)PAGEVEC_SIZE));
420 if (nr_pages == 0)
421 break;
422 for (i = 0; i < nr_pages; i++) {
423 struct page *page = pvec.pages[i];
424 struct buffer_head *bh, *head;
425
426 if (unlikely(page->mapping != mapping) ||
427 !PageDirty(page))
428 break;
429
430 if (page_has_buffers(page)) {
431 bh = head = page_buffers(page);
432 do {
433 set_buffer_da_mapped(bh);
434 bh = bh->b_this_page;
435 } while (bh != head);
436 }
437 index++;
438 }
439 pagevec_release(&pvec);
440 }
441}
442
f5ab0d1f 443/*
e35fd660 444 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 445 * and returns if the blocks are already mapped.
f5ab0d1f 446 *
f5ab0d1f
MC
447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448 * and store the allocated blocks in the result buffer head and mark it
449 * mapped.
450 *
e35fd660
TT
451 * If file type is extents based, it will call ext4_ext_map_blocks(),
452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
453 * based files
454 *
455 * On success, it returns the number of blocks being mapped or allocate.
456 * if create==0 and the blocks are pre-allocated and uninitialized block,
457 * the result buffer head is unmapped. If the create ==1, it will make sure
458 * the buffer head is mapped.
459 *
460 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 461 * that case, buffer head is unmapped
f5ab0d1f
MC
462 *
463 * It returns the error in case of allocation failure.
464 */
e35fd660
TT
465int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
467{
468 int retval;
f5ab0d1f 469
e35fd660
TT
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
4df3d265 474 /*
b920c755
TT
475 * Try to see if we can get the block without requesting a new
476 * file system block.
4df3d265
AK
477 */
478 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
480 retval = ext4_ext_map_blocks(handle, inode, map, flags &
481 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 482 } else {
a4e5d88b
DM
483 retval = ext4_ind_map_blocks(handle, inode, map, flags &
484 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 485 }
4df3d265 486 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 487
e35fd660 488 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 489 int ret = check_block_validity(inode, map);
6fd058f7
TT
490 if (ret != 0)
491 return ret;
492 }
493
f5ab0d1f 494 /* If it is only a block(s) look up */
c2177057 495 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
496 return retval;
497
498 /*
499 * Returns if the blocks have already allocated
500 *
501 * Note that if blocks have been preallocated
df3ab170 502 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
503 * with buffer head unmapped.
504 */
e35fd660 505 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
506 return retval;
507
2a8964d6
AK
508 /*
509 * When we call get_blocks without the create flag, the
510 * BH_Unwritten flag could have gotten set if the blocks
511 * requested were part of a uninitialized extent. We need to
512 * clear this flag now that we are committed to convert all or
513 * part of the uninitialized extent to be an initialized
514 * extent. This is because we need to avoid the combination
515 * of BH_Unwritten and BH_Mapped flags being simultaneously
516 * set on the buffer_head.
517 */
e35fd660 518 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 519
4df3d265 520 /*
f5ab0d1f
MC
521 * New blocks allocate and/or writing to uninitialized extent
522 * will possibly result in updating i_data, so we take
523 * the write lock of i_data_sem, and call get_blocks()
524 * with create == 1 flag.
4df3d265
AK
525 */
526 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
527
528 /*
529 * if the caller is from delayed allocation writeout path
530 * we have already reserved fs blocks for allocation
531 * let the underlying get_block() function know to
532 * avoid double accounting
533 */
c2177057 534 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 535 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
536 /*
537 * We need to check for EXT4 here because migrate
538 * could have changed the inode type in between
539 */
12e9b892 540 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 541 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 542 } else {
e35fd660 543 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 544
e35fd660 545 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
546 /*
547 * We allocated new blocks which will result in
548 * i_data's format changing. Force the migrate
549 * to fail by clearing migrate flags
550 */
19f5fb7a 551 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 552 }
d2a17637 553
5f634d06
AK
554 /*
555 * Update reserved blocks/metadata blocks after successful
556 * block allocation which had been deferred till now. We don't
557 * support fallocate for non extent files. So we can update
558 * reserve space here.
559 */
560 if ((retval > 0) &&
1296cc85 561 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
562 ext4_da_update_reserve_space(inode, retval, 1);
563 }
5356f261 564 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 565 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 566
5356f261
AK
567 /* If we have successfully mapped the delayed allocated blocks,
568 * set the BH_Da_Mapped bit on them. Its important to do this
569 * under the protection of i_data_sem.
570 */
571 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
572 set_buffers_da_mapped(inode, map);
573 }
574
4df3d265 575 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 577 int ret = check_block_validity(inode, map);
6fd058f7
TT
578 if (ret != 0)
579 return ret;
580 }
0e855ac8
AK
581 return retval;
582}
583
f3bd1f3f
MC
584/* Maximum number of blocks we map for direct IO at once. */
585#define DIO_MAX_BLOCKS 4096
586
2ed88685
TT
587static int _ext4_get_block(struct inode *inode, sector_t iblock,
588 struct buffer_head *bh, int flags)
ac27a0ec 589{
3e4fdaf8 590 handle_t *handle = ext4_journal_current_handle();
2ed88685 591 struct ext4_map_blocks map;
7fb5409d 592 int ret = 0, started = 0;
f3bd1f3f 593 int dio_credits;
ac27a0ec 594
2ed88685
TT
595 map.m_lblk = iblock;
596 map.m_len = bh->b_size >> inode->i_blkbits;
597
598 if (flags && !handle) {
7fb5409d 599 /* Direct IO write... */
2ed88685
TT
600 if (map.m_len > DIO_MAX_BLOCKS)
601 map.m_len = DIO_MAX_BLOCKS;
602 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 603 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 604 if (IS_ERR(handle)) {
ac27a0ec 605 ret = PTR_ERR(handle);
2ed88685 606 return ret;
ac27a0ec 607 }
7fb5409d 608 started = 1;
ac27a0ec
DK
609 }
610
2ed88685 611 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 612 if (ret > 0) {
2ed88685
TT
613 map_bh(bh, inode->i_sb, map.m_pblk);
614 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
615 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 616 ret = 0;
ac27a0ec 617 }
7fb5409d
JK
618 if (started)
619 ext4_journal_stop(handle);
ac27a0ec
DK
620 return ret;
621}
622
2ed88685
TT
623int ext4_get_block(struct inode *inode, sector_t iblock,
624 struct buffer_head *bh, int create)
625{
626 return _ext4_get_block(inode, iblock, bh,
627 create ? EXT4_GET_BLOCKS_CREATE : 0);
628}
629
ac27a0ec
DK
630/*
631 * `handle' can be NULL if create is zero
632 */
617ba13b 633struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 634 ext4_lblk_t block, int create, int *errp)
ac27a0ec 635{
2ed88685
TT
636 struct ext4_map_blocks map;
637 struct buffer_head *bh;
ac27a0ec
DK
638 int fatal = 0, err;
639
640 J_ASSERT(handle != NULL || create == 0);
641
2ed88685
TT
642 map.m_lblk = block;
643 map.m_len = 1;
644 err = ext4_map_blocks(handle, inode, &map,
645 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 646
2ed88685
TT
647 if (err < 0)
648 *errp = err;
649 if (err <= 0)
650 return NULL;
651 *errp = 0;
652
653 bh = sb_getblk(inode->i_sb, map.m_pblk);
654 if (!bh) {
655 *errp = -EIO;
656 return NULL;
ac27a0ec 657 }
2ed88685
TT
658 if (map.m_flags & EXT4_MAP_NEW) {
659 J_ASSERT(create != 0);
660 J_ASSERT(handle != NULL);
ac27a0ec 661
2ed88685
TT
662 /*
663 * Now that we do not always journal data, we should
664 * keep in mind whether this should always journal the
665 * new buffer as metadata. For now, regular file
666 * writes use ext4_get_block instead, so it's not a
667 * problem.
668 */
669 lock_buffer(bh);
670 BUFFER_TRACE(bh, "call get_create_access");
671 fatal = ext4_journal_get_create_access(handle, bh);
672 if (!fatal && !buffer_uptodate(bh)) {
673 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
674 set_buffer_uptodate(bh);
ac27a0ec 675 }
2ed88685
TT
676 unlock_buffer(bh);
677 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
678 err = ext4_handle_dirty_metadata(handle, inode, bh);
679 if (!fatal)
680 fatal = err;
681 } else {
682 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 683 }
2ed88685
TT
684 if (fatal) {
685 *errp = fatal;
686 brelse(bh);
687 bh = NULL;
688 }
689 return bh;
ac27a0ec
DK
690}
691
617ba13b 692struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 693 ext4_lblk_t block, int create, int *err)
ac27a0ec 694{
af5bc92d 695 struct buffer_head *bh;
ac27a0ec 696
617ba13b 697 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
698 if (!bh)
699 return bh;
700 if (buffer_uptodate(bh))
701 return bh;
702 ll_rw_block(READ_META, 1, &bh);
703 wait_on_buffer(bh);
704 if (buffer_uptodate(bh))
705 return bh;
706 put_bh(bh);
707 *err = -EIO;
708 return NULL;
709}
710
af5bc92d
TT
711static int walk_page_buffers(handle_t *handle,
712 struct buffer_head *head,
713 unsigned from,
714 unsigned to,
715 int *partial,
716 int (*fn)(handle_t *handle,
717 struct buffer_head *bh))
ac27a0ec
DK
718{
719 struct buffer_head *bh;
720 unsigned block_start, block_end;
721 unsigned blocksize = head->b_size;
722 int err, ret = 0;
723 struct buffer_head *next;
724
af5bc92d
TT
725 for (bh = head, block_start = 0;
726 ret == 0 && (bh != head || !block_start);
de9a55b8 727 block_start = block_end, bh = next) {
ac27a0ec
DK
728 next = bh->b_this_page;
729 block_end = block_start + blocksize;
730 if (block_end <= from || block_start >= to) {
731 if (partial && !buffer_uptodate(bh))
732 *partial = 1;
733 continue;
734 }
735 err = (*fn)(handle, bh);
736 if (!ret)
737 ret = err;
738 }
739 return ret;
740}
741
742/*
743 * To preserve ordering, it is essential that the hole instantiation and
744 * the data write be encapsulated in a single transaction. We cannot
617ba13b 745 * close off a transaction and start a new one between the ext4_get_block()
dab291af 746 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
747 * prepare_write() is the right place.
748 *
617ba13b
MC
749 * Also, this function can nest inside ext4_writepage() ->
750 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
751 * has generated enough buffer credits to do the whole page. So we won't
752 * block on the journal in that case, which is good, because the caller may
753 * be PF_MEMALLOC.
754 *
617ba13b 755 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
756 * quota file writes. If we were to commit the transaction while thus
757 * reentered, there can be a deadlock - we would be holding a quota
758 * lock, and the commit would never complete if another thread had a
759 * transaction open and was blocking on the quota lock - a ranking
760 * violation.
761 *
dab291af 762 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
763 * will _not_ run commit under these circumstances because handle->h_ref
764 * is elevated. We'll still have enough credits for the tiny quotafile
765 * write.
766 */
767static int do_journal_get_write_access(handle_t *handle,
de9a55b8 768 struct buffer_head *bh)
ac27a0ec 769{
56d35a4c
JK
770 int dirty = buffer_dirty(bh);
771 int ret;
772
ac27a0ec
DK
773 if (!buffer_mapped(bh) || buffer_freed(bh))
774 return 0;
56d35a4c 775 /*
ebdec241 776 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
777 * the dirty bit as jbd2_journal_get_write_access() could complain
778 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 779 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
780 * the bit before releasing a page lock and thus writeback cannot
781 * ever write the buffer.
782 */
783 if (dirty)
784 clear_buffer_dirty(bh);
785 ret = ext4_journal_get_write_access(handle, bh);
786 if (!ret && dirty)
787 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
788 return ret;
ac27a0ec
DK
789}
790
744692dc
JZ
791static int ext4_get_block_write(struct inode *inode, sector_t iblock,
792 struct buffer_head *bh_result, int create);
bfc1af65 793static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
794 loff_t pos, unsigned len, unsigned flags,
795 struct page **pagep, void **fsdata)
ac27a0ec 796{
af5bc92d 797 struct inode *inode = mapping->host;
1938a150 798 int ret, needed_blocks;
ac27a0ec
DK
799 handle_t *handle;
800 int retries = 0;
af5bc92d 801 struct page *page;
de9a55b8 802 pgoff_t index;
af5bc92d 803 unsigned from, to;
bfc1af65 804
9bffad1e 805 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
806 /*
807 * Reserve one block more for addition to orphan list in case
808 * we allocate blocks but write fails for some reason
809 */
810 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 811 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
812 from = pos & (PAGE_CACHE_SIZE - 1);
813 to = from + len;
ac27a0ec
DK
814
815retry:
af5bc92d
TT
816 handle = ext4_journal_start(inode, needed_blocks);
817 if (IS_ERR(handle)) {
818 ret = PTR_ERR(handle);
819 goto out;
7479d2b9 820 }
ac27a0ec 821
ebd3610b
JK
822 /* We cannot recurse into the filesystem as the transaction is already
823 * started */
824 flags |= AOP_FLAG_NOFS;
825
54566b2c 826 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
827 if (!page) {
828 ext4_journal_stop(handle);
829 ret = -ENOMEM;
830 goto out;
831 }
832 *pagep = page;
833
744692dc 834 if (ext4_should_dioread_nolock(inode))
6e1db88d 835 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 836 else
6e1db88d 837 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
838
839 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
840 ret = walk_page_buffers(handle, page_buffers(page),
841 from, to, NULL, do_journal_get_write_access);
842 }
bfc1af65
NP
843
844 if (ret) {
af5bc92d 845 unlock_page(page);
af5bc92d 846 page_cache_release(page);
ae4d5372 847 /*
6e1db88d 848 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
849 * outside i_size. Trim these off again. Don't need
850 * i_size_read because we hold i_mutex.
1938a150
AK
851 *
852 * Add inode to orphan list in case we crash before
853 * truncate finishes
ae4d5372 854 */
ffacfa7a 855 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
856 ext4_orphan_add(handle, inode);
857
858 ext4_journal_stop(handle);
859 if (pos + len > inode->i_size) {
b9a4207d 860 ext4_truncate_failed_write(inode);
de9a55b8 861 /*
ffacfa7a 862 * If truncate failed early the inode might
1938a150
AK
863 * still be on the orphan list; we need to
864 * make sure the inode is removed from the
865 * orphan list in that case.
866 */
867 if (inode->i_nlink)
868 ext4_orphan_del(NULL, inode);
869 }
bfc1af65
NP
870 }
871
617ba13b 872 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 873 goto retry;
7479d2b9 874out:
ac27a0ec
DK
875 return ret;
876}
877
bfc1af65
NP
878/* For write_end() in data=journal mode */
879static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
880{
881 if (!buffer_mapped(bh) || buffer_freed(bh))
882 return 0;
883 set_buffer_uptodate(bh);
0390131b 884 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
885}
886
f8514083 887static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
888 struct address_space *mapping,
889 loff_t pos, unsigned len, unsigned copied,
890 struct page *page, void *fsdata)
f8514083
AK
891{
892 int i_size_changed = 0;
893 struct inode *inode = mapping->host;
894 handle_t *handle = ext4_journal_current_handle();
895
896 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
897
898 /*
899 * No need to use i_size_read() here, the i_size
900 * cannot change under us because we hold i_mutex.
901 *
902 * But it's important to update i_size while still holding page lock:
903 * page writeout could otherwise come in and zero beyond i_size.
904 */
905 if (pos + copied > inode->i_size) {
906 i_size_write(inode, pos + copied);
907 i_size_changed = 1;
908 }
909
910 if (pos + copied > EXT4_I(inode)->i_disksize) {
911 /* We need to mark inode dirty even if
912 * new_i_size is less that inode->i_size
913 * bu greater than i_disksize.(hint delalloc)
914 */
915 ext4_update_i_disksize(inode, (pos + copied));
916 i_size_changed = 1;
917 }
918 unlock_page(page);
919 page_cache_release(page);
920
921 /*
922 * Don't mark the inode dirty under page lock. First, it unnecessarily
923 * makes the holding time of page lock longer. Second, it forces lock
924 * ordering of page lock and transaction start for journaling
925 * filesystems.
926 */
927 if (i_size_changed)
928 ext4_mark_inode_dirty(handle, inode);
929
930 return copied;
931}
932
ac27a0ec
DK
933/*
934 * We need to pick up the new inode size which generic_commit_write gave us
935 * `file' can be NULL - eg, when called from page_symlink().
936 *
617ba13b 937 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
938 * buffers are managed internally.
939 */
bfc1af65 940static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
941 struct address_space *mapping,
942 loff_t pos, unsigned len, unsigned copied,
943 struct page *page, void *fsdata)
ac27a0ec 944{
617ba13b 945 handle_t *handle = ext4_journal_current_handle();
cf108bca 946 struct inode *inode = mapping->host;
ac27a0ec
DK
947 int ret = 0, ret2;
948
9bffad1e 949 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 950 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
951
952 if (ret == 0) {
f8514083 953 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 954 page, fsdata);
f8a87d89 955 copied = ret2;
ffacfa7a 956 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
957 /* if we have allocated more blocks and copied
958 * less. We will have blocks allocated outside
959 * inode->i_size. So truncate them
960 */
961 ext4_orphan_add(handle, inode);
f8a87d89
RK
962 if (ret2 < 0)
963 ret = ret2;
09e0834f
AF
964 } else {
965 unlock_page(page);
966 page_cache_release(page);
ac27a0ec 967 }
09e0834f 968
617ba13b 969 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
970 if (!ret)
971 ret = ret2;
bfc1af65 972
f8514083 973 if (pos + len > inode->i_size) {
b9a4207d 974 ext4_truncate_failed_write(inode);
de9a55b8 975 /*
ffacfa7a 976 * If truncate failed early the inode might still be
f8514083
AK
977 * on the orphan list; we need to make sure the inode
978 * is removed from the orphan list in that case.
979 */
980 if (inode->i_nlink)
981 ext4_orphan_del(NULL, inode);
982 }
983
984
bfc1af65 985 return ret ? ret : copied;
ac27a0ec
DK
986}
987
bfc1af65 988static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
989 struct address_space *mapping,
990 loff_t pos, unsigned len, unsigned copied,
991 struct page *page, void *fsdata)
ac27a0ec 992{
617ba13b 993 handle_t *handle = ext4_journal_current_handle();
cf108bca 994 struct inode *inode = mapping->host;
ac27a0ec 995 int ret = 0, ret2;
ac27a0ec 996
9bffad1e 997 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 998 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 999 page, fsdata);
f8a87d89 1000 copied = ret2;
ffacfa7a 1001 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1002 /* if we have allocated more blocks and copied
1003 * less. We will have blocks allocated outside
1004 * inode->i_size. So truncate them
1005 */
1006 ext4_orphan_add(handle, inode);
1007
f8a87d89
RK
1008 if (ret2 < 0)
1009 ret = ret2;
ac27a0ec 1010
617ba13b 1011 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1012 if (!ret)
1013 ret = ret2;
bfc1af65 1014
f8514083 1015 if (pos + len > inode->i_size) {
b9a4207d 1016 ext4_truncate_failed_write(inode);
de9a55b8 1017 /*
ffacfa7a 1018 * If truncate failed early the inode might still be
f8514083
AK
1019 * on the orphan list; we need to make sure the inode
1020 * is removed from the orphan list in that case.
1021 */
1022 if (inode->i_nlink)
1023 ext4_orphan_del(NULL, inode);
1024 }
1025
bfc1af65 1026 return ret ? ret : copied;
ac27a0ec
DK
1027}
1028
bfc1af65 1029static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1030 struct address_space *mapping,
1031 loff_t pos, unsigned len, unsigned copied,
1032 struct page *page, void *fsdata)
ac27a0ec 1033{
617ba13b 1034 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1035 struct inode *inode = mapping->host;
ac27a0ec
DK
1036 int ret = 0, ret2;
1037 int partial = 0;
bfc1af65 1038 unsigned from, to;
cf17fea6 1039 loff_t new_i_size;
ac27a0ec 1040
9bffad1e 1041 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1042 from = pos & (PAGE_CACHE_SIZE - 1);
1043 to = from + len;
1044
441c8508
CW
1045 BUG_ON(!ext4_handle_valid(handle));
1046
bfc1af65
NP
1047 if (copied < len) {
1048 if (!PageUptodate(page))
1049 copied = 0;
1050 page_zero_new_buffers(page, from+copied, to);
1051 }
ac27a0ec
DK
1052
1053 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1054 to, &partial, write_end_fn);
ac27a0ec
DK
1055 if (!partial)
1056 SetPageUptodate(page);
cf17fea6
AK
1057 new_i_size = pos + copied;
1058 if (new_i_size > inode->i_size)
bfc1af65 1059 i_size_write(inode, pos+copied);
19f5fb7a 1060 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1061 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1062 if (new_i_size > EXT4_I(inode)->i_disksize) {
1063 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1064 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1065 if (!ret)
1066 ret = ret2;
1067 }
bfc1af65 1068
cf108bca 1069 unlock_page(page);
f8514083 1070 page_cache_release(page);
ffacfa7a 1071 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1072 /* if we have allocated more blocks and copied
1073 * less. We will have blocks allocated outside
1074 * inode->i_size. So truncate them
1075 */
1076 ext4_orphan_add(handle, inode);
1077
617ba13b 1078 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1079 if (!ret)
1080 ret = ret2;
f8514083 1081 if (pos + len > inode->i_size) {
b9a4207d 1082 ext4_truncate_failed_write(inode);
de9a55b8 1083 /*
ffacfa7a 1084 * If truncate failed early the inode might still be
f8514083
AK
1085 * on the orphan list; we need to make sure the inode
1086 * is removed from the orphan list in that case.
1087 */
1088 if (inode->i_nlink)
1089 ext4_orphan_del(NULL, inode);
1090 }
bfc1af65
NP
1091
1092 return ret ? ret : copied;
ac27a0ec 1093}
d2a17637 1094
9d0be502 1095/*
7b415bf6 1096 * Reserve a single cluster located at lblock
9d0be502 1097 */
5356f261 1098static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1099{
030ba6bc 1100 int retries = 0;
60e58e0f 1101 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1102 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1103 unsigned int md_needed;
5dd4056d 1104 int ret;
d2a17637
MC
1105
1106 /*
1107 * recalculate the amount of metadata blocks to reserve
1108 * in order to allocate nrblocks
1109 * worse case is one extent per block
1110 */
030ba6bc 1111repeat:
0637c6f4 1112 spin_lock(&ei->i_block_reservation_lock);
7b415bf6
AK
1113 md_needed = EXT4_NUM_B2C(sbi,
1114 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1115 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1116 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1117
60e58e0f 1118 /*
72b8ab9d
ES
1119 * We will charge metadata quota at writeout time; this saves
1120 * us from metadata over-estimation, though we may go over by
1121 * a small amount in the end. Here we just reserve for data.
60e58e0f 1122 */
7b415bf6 1123 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
5dd4056d
CH
1124 if (ret)
1125 return ret;
72b8ab9d
ES
1126 /*
1127 * We do still charge estimated metadata to the sb though;
1128 * we cannot afford to run out of free blocks.
1129 */
e7d5f315 1130 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
7b415bf6 1131 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
030ba6bc
AK
1132 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1133 yield();
1134 goto repeat;
1135 }
d2a17637
MC
1136 return -ENOSPC;
1137 }
0637c6f4 1138 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1139 ei->i_reserved_data_blocks++;
0637c6f4
TT
1140 ei->i_reserved_meta_blocks += md_needed;
1141 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1142
d2a17637
MC
1143 return 0; /* success */
1144}
1145
12219aea 1146static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1147{
1148 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1149 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1150
cd213226
MC
1151 if (!to_free)
1152 return; /* Nothing to release, exit */
1153
d2a17637 1154 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1155
5a58ec87 1156 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1157 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1158 /*
0637c6f4
TT
1159 * if there aren't enough reserved blocks, then the
1160 * counter is messed up somewhere. Since this
1161 * function is called from invalidate page, it's
1162 * harmless to return without any action.
cd213226 1163 */
0637c6f4
TT
1164 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1165 "ino %lu, to_free %d with only %d reserved "
1166 "data blocks\n", inode->i_ino, to_free,
1167 ei->i_reserved_data_blocks);
1168 WARN_ON(1);
1169 to_free = ei->i_reserved_data_blocks;
cd213226 1170 }
0637c6f4 1171 ei->i_reserved_data_blocks -= to_free;
cd213226 1172
0637c6f4
TT
1173 if (ei->i_reserved_data_blocks == 0) {
1174 /*
1175 * We can release all of the reserved metadata blocks
1176 * only when we have written all of the delayed
1177 * allocation blocks.
7b415bf6
AK
1178 * Note that in case of bigalloc, i_reserved_meta_blocks,
1179 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1180 */
57042651 1181 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1182 ei->i_reserved_meta_blocks);
ee5f4d9c 1183 ei->i_reserved_meta_blocks = 0;
9d0be502 1184 ei->i_da_metadata_calc_len = 0;
0637c6f4 1185 }
d2a17637 1186
72b8ab9d 1187 /* update fs dirty data blocks counter */
57042651 1188 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1189
d2a17637 1190 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1191
7b415bf6 1192 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1193}
1194
1195static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1196 unsigned long offset)
d2a17637
MC
1197{
1198 int to_release = 0;
1199 struct buffer_head *head, *bh;
1200 unsigned int curr_off = 0;
7b415bf6
AK
1201 struct inode *inode = page->mapping->host;
1202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1203 int num_clusters;
d2a17637
MC
1204
1205 head = page_buffers(page);
1206 bh = head;
1207 do {
1208 unsigned int next_off = curr_off + bh->b_size;
1209
1210 if ((offset <= curr_off) && (buffer_delay(bh))) {
1211 to_release++;
1212 clear_buffer_delay(bh);
5356f261 1213 clear_buffer_da_mapped(bh);
d2a17637
MC
1214 }
1215 curr_off = next_off;
1216 } while ((bh = bh->b_this_page) != head);
7b415bf6
AK
1217
1218 /* If we have released all the blocks belonging to a cluster, then we
1219 * need to release the reserved space for that cluster. */
1220 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1221 while (num_clusters > 0) {
1222 ext4_fsblk_t lblk;
1223 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1224 ((num_clusters - 1) << sbi->s_cluster_bits);
1225 if (sbi->s_cluster_ratio == 1 ||
1226 !ext4_find_delalloc_cluster(inode, lblk, 1))
1227 ext4_da_release_space(inode, 1);
1228
1229 num_clusters--;
1230 }
d2a17637 1231}
ac27a0ec 1232
64769240
AT
1233/*
1234 * Delayed allocation stuff
1235 */
1236
64769240
AT
1237/*
1238 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1239 * them with writepage() call back
64769240
AT
1240 *
1241 * @mpd->inode: inode
1242 * @mpd->first_page: first page of the extent
1243 * @mpd->next_page: page after the last page of the extent
64769240
AT
1244 *
1245 * By the time mpage_da_submit_io() is called we expect all blocks
1246 * to be allocated. this may be wrong if allocation failed.
1247 *
1248 * As pages are already locked by write_cache_pages(), we can't use it
1249 */
1de3e3df
TT
1250static int mpage_da_submit_io(struct mpage_da_data *mpd,
1251 struct ext4_map_blocks *map)
64769240 1252{
791b7f08
AK
1253 struct pagevec pvec;
1254 unsigned long index, end;
1255 int ret = 0, err, nr_pages, i;
1256 struct inode *inode = mpd->inode;
1257 struct address_space *mapping = inode->i_mapping;
cb20d518 1258 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1259 unsigned int len, block_start;
1260 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1261 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1262 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1263 struct ext4_io_submit io_submit;
64769240
AT
1264
1265 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1266 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1267 /*
1268 * We need to start from the first_page to the next_page - 1
1269 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1270 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1271 * at the currently mapped buffer_heads.
1272 */
64769240
AT
1273 index = mpd->first_page;
1274 end = mpd->next_page - 1;
1275
791b7f08 1276 pagevec_init(&pvec, 0);
64769240 1277 while (index <= end) {
791b7f08 1278 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1279 if (nr_pages == 0)
1280 break;
1281 for (i = 0; i < nr_pages; i++) {
97498956 1282 int commit_write = 0, skip_page = 0;
64769240
AT
1283 struct page *page = pvec.pages[i];
1284
791b7f08
AK
1285 index = page->index;
1286 if (index > end)
1287 break;
cb20d518
TT
1288
1289 if (index == size >> PAGE_CACHE_SHIFT)
1290 len = size & ~PAGE_CACHE_MASK;
1291 else
1292 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1293 if (map) {
1294 cur_logical = index << (PAGE_CACHE_SHIFT -
1295 inode->i_blkbits);
1296 pblock = map->m_pblk + (cur_logical -
1297 map->m_lblk);
1298 }
791b7f08
AK
1299 index++;
1300
1301 BUG_ON(!PageLocked(page));
1302 BUG_ON(PageWriteback(page));
1303
64769240 1304 /*
cb20d518
TT
1305 * If the page does not have buffers (for
1306 * whatever reason), try to create them using
a107e5a3 1307 * __block_write_begin. If this fails,
97498956 1308 * skip the page and move on.
64769240 1309 */
cb20d518 1310 if (!page_has_buffers(page)) {
a107e5a3 1311 if (__block_write_begin(page, 0, len,
cb20d518 1312 noalloc_get_block_write)) {
97498956 1313 skip_page:
cb20d518
TT
1314 unlock_page(page);
1315 continue;
1316 }
1317 commit_write = 1;
1318 }
64769240 1319
3ecdb3a1
TT
1320 bh = page_bufs = page_buffers(page);
1321 block_start = 0;
64769240 1322 do {
1de3e3df 1323 if (!bh)
97498956 1324 goto skip_page;
1de3e3df
TT
1325 if (map && (cur_logical >= map->m_lblk) &&
1326 (cur_logical <= (map->m_lblk +
1327 (map->m_len - 1)))) {
29fa89d0
AK
1328 if (buffer_delay(bh)) {
1329 clear_buffer_delay(bh);
1330 bh->b_blocknr = pblock;
29fa89d0 1331 }
5356f261
AK
1332 if (buffer_da_mapped(bh))
1333 clear_buffer_da_mapped(bh);
1de3e3df
TT
1334 if (buffer_unwritten(bh) ||
1335 buffer_mapped(bh))
1336 BUG_ON(bh->b_blocknr != pblock);
1337 if (map->m_flags & EXT4_MAP_UNINIT)
1338 set_buffer_uninit(bh);
1339 clear_buffer_unwritten(bh);
1340 }
29fa89d0 1341
97498956 1342 /* skip page if block allocation undone */
1de3e3df 1343 if (buffer_delay(bh) || buffer_unwritten(bh))
97498956 1344 skip_page = 1;
3ecdb3a1
TT
1345 bh = bh->b_this_page;
1346 block_start += bh->b_size;
64769240
AT
1347 cur_logical++;
1348 pblock++;
1de3e3df
TT
1349 } while (bh != page_bufs);
1350
97498956
TT
1351 if (skip_page)
1352 goto skip_page;
cb20d518
TT
1353
1354 if (commit_write)
1355 /* mark the buffer_heads as dirty & uptodate */
1356 block_commit_write(page, 0, len);
1357
97498956 1358 clear_page_dirty_for_io(page);
bd2d0210
TT
1359 /*
1360 * Delalloc doesn't support data journalling,
1361 * but eventually maybe we'll lift this
1362 * restriction.
1363 */
1364 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1365 err = __ext4_journalled_writepage(page, len);
1449032b 1366 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1367 err = ext4_bio_write_page(&io_submit, page,
1368 len, mpd->wbc);
9dd75f1f
TT
1369 else if (buffer_uninit(page_bufs)) {
1370 ext4_set_bh_endio(page_bufs, inode);
1371 err = block_write_full_page_endio(page,
1372 noalloc_get_block_write,
1373 mpd->wbc, ext4_end_io_buffer_write);
1374 } else
1449032b
TT
1375 err = block_write_full_page(page,
1376 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1377
1378 if (!err)
a1d6cc56 1379 mpd->pages_written++;
64769240
AT
1380 /*
1381 * In error case, we have to continue because
1382 * remaining pages are still locked
64769240
AT
1383 */
1384 if (ret == 0)
1385 ret = err;
64769240
AT
1386 }
1387 pagevec_release(&pvec);
1388 }
bd2d0210 1389 ext4_io_submit(&io_submit);
64769240 1390 return ret;
64769240
AT
1391}
1392
c7f5938a 1393static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1394{
1395 int nr_pages, i;
1396 pgoff_t index, end;
1397 struct pagevec pvec;
1398 struct inode *inode = mpd->inode;
1399 struct address_space *mapping = inode->i_mapping;
1400
c7f5938a
CW
1401 index = mpd->first_page;
1402 end = mpd->next_page - 1;
c4a0c46e
AK
1403 while (index <= end) {
1404 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1405 if (nr_pages == 0)
1406 break;
1407 for (i = 0; i < nr_pages; i++) {
1408 struct page *page = pvec.pages[i];
9b1d0998 1409 if (page->index > end)
c4a0c46e 1410 break;
c4a0c46e
AK
1411 BUG_ON(!PageLocked(page));
1412 BUG_ON(PageWriteback(page));
1413 block_invalidatepage(page, 0);
1414 ClearPageUptodate(page);
1415 unlock_page(page);
1416 }
9b1d0998
JK
1417 index = pvec.pages[nr_pages - 1]->index + 1;
1418 pagevec_release(&pvec);
c4a0c46e
AK
1419 }
1420 return;
1421}
1422
df22291f
AK
1423static void ext4_print_free_blocks(struct inode *inode)
1424{
1425 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e 1426 printk(KERN_CRIT "Total free blocks count %lld\n",
5dee5437
TT
1427 EXT4_C2B(EXT4_SB(inode->i_sb),
1428 ext4_count_free_clusters(inode->i_sb)));
1693918e
TT
1429 printk(KERN_CRIT "Free/Dirty block details\n");
1430 printk(KERN_CRIT "free_blocks=%lld\n",
57042651
TT
1431 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1432 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1693918e 1433 printk(KERN_CRIT "dirty_blocks=%lld\n",
7b415bf6
AK
1434 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1435 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1693918e
TT
1436 printk(KERN_CRIT "Block reservation details\n");
1437 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1438 EXT4_I(inode)->i_reserved_data_blocks);
1439 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1440 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1441 return;
1442}
1443
64769240 1444/*
5a87b7a5
TT
1445 * mpage_da_map_and_submit - go through given space, map them
1446 * if necessary, and then submit them for I/O
64769240 1447 *
8dc207c0 1448 * @mpd - bh describing space
64769240
AT
1449 *
1450 * The function skips space we know is already mapped to disk blocks.
1451 *
64769240 1452 */
5a87b7a5 1453static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1454{
2ac3b6e0 1455 int err, blks, get_blocks_flags;
1de3e3df 1456 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1457 sector_t next = mpd->b_blocknr;
1458 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1459 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1460 handle_t *handle = NULL;
64769240
AT
1461
1462 /*
5a87b7a5
TT
1463 * If the blocks are mapped already, or we couldn't accumulate
1464 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1465 */
5a87b7a5
TT
1466 if ((mpd->b_size == 0) ||
1467 ((mpd->b_state & (1 << BH_Mapped)) &&
1468 !(mpd->b_state & (1 << BH_Delay)) &&
1469 !(mpd->b_state & (1 << BH_Unwritten))))
1470 goto submit_io;
2fa3cdfb
TT
1471
1472 handle = ext4_journal_current_handle();
1473 BUG_ON(!handle);
1474
79ffab34 1475 /*
79e83036 1476 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1477 * blocks, or to convert an uninitialized extent to be
1478 * initialized (in the case where we have written into
1479 * one or more preallocated blocks).
1480 *
1481 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1482 * indicate that we are on the delayed allocation path. This
1483 * affects functions in many different parts of the allocation
1484 * call path. This flag exists primarily because we don't
79e83036 1485 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1486 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1487 * inode's allocation semaphore is taken.
1488 *
1489 * If the blocks in questions were delalloc blocks, set
1490 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1491 * variables are updated after the blocks have been allocated.
79ffab34 1492 */
2ed88685
TT
1493 map.m_lblk = next;
1494 map.m_len = max_blocks;
1296cc85 1495 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1496 if (ext4_should_dioread_nolock(mpd->inode))
1497 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1498 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1499 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1500
2ed88685 1501 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1502 if (blks < 0) {
e3570639
ES
1503 struct super_block *sb = mpd->inode->i_sb;
1504
2fa3cdfb 1505 err = blks;
ed5bde0b 1506 /*
5a87b7a5 1507 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1508 * appears to be free blocks we will just let
1509 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1510 */
1511 if (err == -EAGAIN)
5a87b7a5 1512 goto submit_io;
df22291f 1513
5dee5437 1514 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1515 mpd->retval = err;
5a87b7a5 1516 goto submit_io;
df22291f
AK
1517 }
1518
c4a0c46e 1519 /*
ed5bde0b
TT
1520 * get block failure will cause us to loop in
1521 * writepages, because a_ops->writepage won't be able
1522 * to make progress. The page will be redirtied by
1523 * writepage and writepages will again try to write
1524 * the same.
c4a0c46e 1525 */
e3570639
ES
1526 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1527 ext4_msg(sb, KERN_CRIT,
1528 "delayed block allocation failed for inode %lu "
1529 "at logical offset %llu with max blocks %zd "
1530 "with error %d", mpd->inode->i_ino,
1531 (unsigned long long) next,
1532 mpd->b_size >> mpd->inode->i_blkbits, err);
1533 ext4_msg(sb, KERN_CRIT,
1534 "This should not happen!! Data will be lost\n");
1535 if (err == -ENOSPC)
1536 ext4_print_free_blocks(mpd->inode);
030ba6bc 1537 }
2fa3cdfb 1538 /* invalidate all the pages */
c7f5938a 1539 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1540
1541 /* Mark this page range as having been completed */
1542 mpd->io_done = 1;
5a87b7a5 1543 return;
c4a0c46e 1544 }
2fa3cdfb
TT
1545 BUG_ON(blks == 0);
1546
1de3e3df 1547 mapp = &map;
2ed88685
TT
1548 if (map.m_flags & EXT4_MAP_NEW) {
1549 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1550 int i;
64769240 1551
2ed88685
TT
1552 for (i = 0; i < map.m_len; i++)
1553 unmap_underlying_metadata(bdev, map.m_pblk + i);
64769240 1554
decbd919
TT
1555 if (ext4_should_order_data(mpd->inode)) {
1556 err = ext4_jbd2_file_inode(handle, mpd->inode);
8de49e67 1557 if (err) {
decbd919 1558 /* Only if the journal is aborted */
8de49e67
KM
1559 mpd->retval = err;
1560 goto submit_io;
1561 }
decbd919 1562 }
2fa3cdfb
TT
1563 }
1564
1565 /*
03f5d8bc 1566 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1567 */
1568 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1569 if (disksize > i_size_read(mpd->inode))
1570 disksize = i_size_read(mpd->inode);
1571 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1572 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1573 err = ext4_mark_inode_dirty(handle, mpd->inode);
1574 if (err)
1575 ext4_error(mpd->inode->i_sb,
1576 "Failed to mark inode %lu dirty",
1577 mpd->inode->i_ino);
2fa3cdfb
TT
1578 }
1579
5a87b7a5 1580submit_io:
1de3e3df 1581 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1582 mpd->io_done = 1;
64769240
AT
1583}
1584
bf068ee2
AK
1585#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1586 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1587
1588/*
1589 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1590 *
1591 * @mpd->lbh - extent of blocks
1592 * @logical - logical number of the block in the file
1593 * @bh - bh of the block (used to access block's state)
1594 *
1595 * the function is used to collect contig. blocks in same state
1596 */
1597static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1598 sector_t logical, size_t b_size,
1599 unsigned long b_state)
64769240 1600{
64769240 1601 sector_t next;
8dc207c0 1602 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1603
c445e3e0
ES
1604 /*
1605 * XXX Don't go larger than mballoc is willing to allocate
1606 * This is a stopgap solution. We eventually need to fold
1607 * mpage_da_submit_io() into this function and then call
79e83036 1608 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1609 */
1610 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1611 goto flush_it;
1612
525f4ed8 1613 /* check if thereserved journal credits might overflow */
12e9b892 1614 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1615 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1616 /*
1617 * With non-extent format we are limited by the journal
1618 * credit available. Total credit needed to insert
1619 * nrblocks contiguous blocks is dependent on the
1620 * nrblocks. So limit nrblocks.
1621 */
1622 goto flush_it;
1623 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1624 EXT4_MAX_TRANS_DATA) {
1625 /*
1626 * Adding the new buffer_head would make it cross the
1627 * allowed limit for which we have journal credit
1628 * reserved. So limit the new bh->b_size
1629 */
1630 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1631 mpd->inode->i_blkbits;
1632 /* we will do mpage_da_submit_io in the next loop */
1633 }
1634 }
64769240
AT
1635 /*
1636 * First block in the extent
1637 */
8dc207c0
TT
1638 if (mpd->b_size == 0) {
1639 mpd->b_blocknr = logical;
1640 mpd->b_size = b_size;
1641 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1642 return;
1643 }
1644
8dc207c0 1645 next = mpd->b_blocknr + nrblocks;
64769240
AT
1646 /*
1647 * Can we merge the block to our big extent?
1648 */
8dc207c0
TT
1649 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1650 mpd->b_size += b_size;
64769240
AT
1651 return;
1652 }
1653
525f4ed8 1654flush_it:
64769240
AT
1655 /*
1656 * We couldn't merge the block to our extent, so we
1657 * need to flush current extent and start new one
1658 */
5a87b7a5 1659 mpage_da_map_and_submit(mpd);
a1d6cc56 1660 return;
64769240
AT
1661}
1662
c364b22c 1663static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1664{
c364b22c 1665 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1666}
1667
5356f261
AK
1668/*
1669 * This function is grabs code from the very beginning of
1670 * ext4_map_blocks, but assumes that the caller is from delayed write
1671 * time. This function looks up the requested blocks and sets the
1672 * buffer delay bit under the protection of i_data_sem.
1673 */
1674static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1675 struct ext4_map_blocks *map,
1676 struct buffer_head *bh)
1677{
1678 int retval;
1679 sector_t invalid_block = ~((sector_t) 0xffff);
1680
1681 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1682 invalid_block = ~0;
1683
1684 map->m_flags = 0;
1685 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1686 "logical block %lu\n", inode->i_ino, map->m_len,
1687 (unsigned long) map->m_lblk);
1688 /*
1689 * Try to see if we can get the block without requesting a new
1690 * file system block.
1691 */
1692 down_read((&EXT4_I(inode)->i_data_sem));
1693 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1694 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1695 else
1696 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1697
1698 if (retval == 0) {
1699 /*
1700 * XXX: __block_prepare_write() unmaps passed block,
1701 * is it OK?
1702 */
1703 /* If the block was allocated from previously allocated cluster,
1704 * then we dont need to reserve it again. */
1705 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1706 retval = ext4_da_reserve_space(inode, iblock);
1707 if (retval)
1708 /* not enough space to reserve */
1709 goto out_unlock;
1710 }
1711
1712 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1713 * and it should not appear on the bh->b_state.
1714 */
1715 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1716
1717 map_bh(bh, inode->i_sb, invalid_block);
1718 set_buffer_new(bh);
1719 set_buffer_delay(bh);
1720 }
1721
1722out_unlock:
1723 up_read((&EXT4_I(inode)->i_data_sem));
1724
1725 return retval;
1726}
1727
64769240 1728/*
b920c755
TT
1729 * This is a special get_blocks_t callback which is used by
1730 * ext4_da_write_begin(). It will either return mapped block or
1731 * reserve space for a single block.
29fa89d0
AK
1732 *
1733 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1734 * We also have b_blocknr = -1 and b_bdev initialized properly
1735 *
1736 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1737 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1738 * initialized properly.
64769240
AT
1739 */
1740static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1741 struct buffer_head *bh, int create)
64769240 1742{
2ed88685 1743 struct ext4_map_blocks map;
64769240
AT
1744 int ret = 0;
1745
1746 BUG_ON(create == 0);
2ed88685
TT
1747 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1748
1749 map.m_lblk = iblock;
1750 map.m_len = 1;
64769240
AT
1751
1752 /*
1753 * first, we need to know whether the block is allocated already
1754 * preallocated blocks are unmapped but should treated
1755 * the same as allocated blocks.
1756 */
5356f261
AK
1757 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1758 if (ret <= 0)
2ed88685 1759 return ret;
64769240 1760
2ed88685
TT
1761 map_bh(bh, inode->i_sb, map.m_pblk);
1762 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1763
1764 if (buffer_unwritten(bh)) {
1765 /* A delayed write to unwritten bh should be marked
1766 * new and mapped. Mapped ensures that we don't do
1767 * get_block multiple times when we write to the same
1768 * offset and new ensures that we do proper zero out
1769 * for partial write.
1770 */
1771 set_buffer_new(bh);
c8205636 1772 set_buffer_mapped(bh);
2ed88685
TT
1773 }
1774 return 0;
64769240 1775}
61628a3f 1776
b920c755
TT
1777/*
1778 * This function is used as a standard get_block_t calback function
1779 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1780 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1781 * These functions should only try to map a single block at a time.
b920c755
TT
1782 *
1783 * Since this function doesn't do block allocations even if the caller
1784 * requests it by passing in create=1, it is critically important that
1785 * any caller checks to make sure that any buffer heads are returned
1786 * by this function are either all already mapped or marked for
206f7ab4
CH
1787 * delayed allocation before calling block_write_full_page(). Otherwise,
1788 * b_blocknr could be left unitialized, and the page write functions will
1789 * be taken by surprise.
b920c755
TT
1790 */
1791static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1792 struct buffer_head *bh_result, int create)
1793{
a2dc52b5 1794 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1795 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1796}
1797
62e086be
AK
1798static int bget_one(handle_t *handle, struct buffer_head *bh)
1799{
1800 get_bh(bh);
1801 return 0;
1802}
1803
1804static int bput_one(handle_t *handle, struct buffer_head *bh)
1805{
1806 put_bh(bh);
1807 return 0;
1808}
1809
1810static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1811 unsigned int len)
1812{
1813 struct address_space *mapping = page->mapping;
1814 struct inode *inode = mapping->host;
1815 struct buffer_head *page_bufs;
1816 handle_t *handle = NULL;
1817 int ret = 0;
1818 int err;
1819
cb20d518 1820 ClearPageChecked(page);
62e086be
AK
1821 page_bufs = page_buffers(page);
1822 BUG_ON(!page_bufs);
1823 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1824 /* As soon as we unlock the page, it can go away, but we have
1825 * references to buffers so we are safe */
1826 unlock_page(page);
1827
1828 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1829 if (IS_ERR(handle)) {
1830 ret = PTR_ERR(handle);
1831 goto out;
1832 }
1833
441c8508
CW
1834 BUG_ON(!ext4_handle_valid(handle));
1835
62e086be
AK
1836 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1837 do_journal_get_write_access);
1838
1839 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1840 write_end_fn);
1841 if (ret == 0)
1842 ret = err;
2d859db3 1843 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1844 err = ext4_journal_stop(handle);
1845 if (!ret)
1846 ret = err;
1847
1848 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 1849 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
1850out:
1851 return ret;
1852}
1853
744692dc
JZ
1854static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1855static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1856
61628a3f 1857/*
43ce1d23
AK
1858 * Note that we don't need to start a transaction unless we're journaling data
1859 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1860 * need to file the inode to the transaction's list in ordered mode because if
1861 * we are writing back data added by write(), the inode is already there and if
25985edc 1862 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1863 * transaction the data will hit the disk. In case we are journaling data, we
1864 * cannot start transaction directly because transaction start ranks above page
1865 * lock so we have to do some magic.
1866 *
b920c755
TT
1867 * This function can get called via...
1868 * - ext4_da_writepages after taking page lock (have journal handle)
1869 * - journal_submit_inode_data_buffers (no journal handle)
1870 * - shrink_page_list via pdflush (no journal handle)
1871 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1872 *
1873 * We don't do any block allocation in this function. If we have page with
1874 * multiple blocks we need to write those buffer_heads that are mapped. This
1875 * is important for mmaped based write. So if we do with blocksize 1K
1876 * truncate(f, 1024);
1877 * a = mmap(f, 0, 4096);
1878 * a[0] = 'a';
1879 * truncate(f, 4096);
1880 * we have in the page first buffer_head mapped via page_mkwrite call back
1881 * but other bufer_heads would be unmapped but dirty(dirty done via the
1882 * do_wp_page). So writepage should write the first block. If we modify
1883 * the mmap area beyond 1024 we will again get a page_fault and the
1884 * page_mkwrite callback will do the block allocation and mark the
1885 * buffer_heads mapped.
1886 *
1887 * We redirty the page if we have any buffer_heads that is either delay or
1888 * unwritten in the page.
1889 *
1890 * We can get recursively called as show below.
1891 *
1892 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1893 * ext4_writepage()
1894 *
1895 * But since we don't do any block allocation we should not deadlock.
1896 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1897 */
43ce1d23 1898static int ext4_writepage(struct page *page,
62e086be 1899 struct writeback_control *wbc)
64769240 1900{
a42afc5f 1901 int ret = 0, commit_write = 0;
61628a3f 1902 loff_t size;
498e5f24 1903 unsigned int len;
744692dc 1904 struct buffer_head *page_bufs = NULL;
61628a3f
MC
1905 struct inode *inode = page->mapping->host;
1906
a9c667f8 1907 trace_ext4_writepage(page);
f0e6c985
AK
1908 size = i_size_read(inode);
1909 if (page->index == size >> PAGE_CACHE_SHIFT)
1910 len = size & ~PAGE_CACHE_MASK;
1911 else
1912 len = PAGE_CACHE_SIZE;
64769240 1913
a42afc5f
TT
1914 /*
1915 * If the page does not have buffers (for whatever reason),
a107e5a3 1916 * try to create them using __block_write_begin. If this
a42afc5f
TT
1917 * fails, redirty the page and move on.
1918 */
b1142e8f 1919 if (!page_has_buffers(page)) {
a107e5a3 1920 if (__block_write_begin(page, 0, len,
a42afc5f
TT
1921 noalloc_get_block_write)) {
1922 redirty_page:
f0e6c985
AK
1923 redirty_page_for_writepage(wbc, page);
1924 unlock_page(page);
1925 return 0;
1926 }
a42afc5f
TT
1927 commit_write = 1;
1928 }
1929 page_bufs = page_buffers(page);
1930 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1931 ext4_bh_delay_or_unwritten)) {
f0e6c985 1932 /*
b1142e8f
TT
1933 * We don't want to do block allocation, so redirty
1934 * the page and return. We may reach here when we do
1935 * a journal commit via journal_submit_inode_data_buffers.
1936 * We can also reach here via shrink_page_list
f0e6c985 1937 */
a42afc5f
TT
1938 goto redirty_page;
1939 }
1940 if (commit_write)
ed9b3e33 1941 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 1942 block_commit_write(page, 0, len);
64769240 1943
cb20d518 1944 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1945 /*
1946 * It's mmapped pagecache. Add buffers and journal it. There
1947 * doesn't seem much point in redirtying the page here.
1948 */
3f0ca309 1949 return __ext4_journalled_writepage(page, len);
43ce1d23 1950
a42afc5f 1951 if (buffer_uninit(page_bufs)) {
744692dc
JZ
1952 ext4_set_bh_endio(page_bufs, inode);
1953 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1954 wbc, ext4_end_io_buffer_write);
1955 } else
b920c755
TT
1956 ret = block_write_full_page(page, noalloc_get_block_write,
1957 wbc);
64769240 1958
64769240
AT
1959 return ret;
1960}
1961
61628a3f 1962/*
525f4ed8 1963 * This is called via ext4_da_writepages() to
25985edc 1964 * calculate the total number of credits to reserve to fit
525f4ed8
MC
1965 * a single extent allocation into a single transaction,
1966 * ext4_da_writpeages() will loop calling this before
1967 * the block allocation.
61628a3f 1968 */
525f4ed8
MC
1969
1970static int ext4_da_writepages_trans_blocks(struct inode *inode)
1971{
1972 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1973
1974 /*
1975 * With non-extent format the journal credit needed to
1976 * insert nrblocks contiguous block is dependent on
1977 * number of contiguous block. So we will limit
1978 * number of contiguous block to a sane value
1979 */
12e9b892 1980 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
1981 (max_blocks > EXT4_MAX_TRANS_DATA))
1982 max_blocks = EXT4_MAX_TRANS_DATA;
1983
1984 return ext4_chunk_trans_blocks(inode, max_blocks);
1985}
61628a3f 1986
8e48dcfb
TT
1987/*
1988 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 1989 * address space and accumulate pages that need writing, and call
168fc022
TT
1990 * mpage_da_map_and_submit to map a single contiguous memory region
1991 * and then write them.
8e48dcfb
TT
1992 */
1993static int write_cache_pages_da(struct address_space *mapping,
1994 struct writeback_control *wbc,
72f84e65
ES
1995 struct mpage_da_data *mpd,
1996 pgoff_t *done_index)
8e48dcfb 1997{
4f01b02c 1998 struct buffer_head *bh, *head;
168fc022 1999 struct inode *inode = mapping->host;
4f01b02c
TT
2000 struct pagevec pvec;
2001 unsigned int nr_pages;
2002 sector_t logical;
2003 pgoff_t index, end;
2004 long nr_to_write = wbc->nr_to_write;
2005 int i, tag, ret = 0;
8e48dcfb 2006
168fc022
TT
2007 memset(mpd, 0, sizeof(struct mpage_da_data));
2008 mpd->wbc = wbc;
2009 mpd->inode = inode;
8e48dcfb
TT
2010 pagevec_init(&pvec, 0);
2011 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2012 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2013
6e6938b6 2014 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2015 tag = PAGECACHE_TAG_TOWRITE;
2016 else
2017 tag = PAGECACHE_TAG_DIRTY;
2018
72f84e65 2019 *done_index = index;
4f01b02c 2020 while (index <= end) {
5b41d924 2021 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2022 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2023 if (nr_pages == 0)
4f01b02c 2024 return 0;
8e48dcfb
TT
2025
2026 for (i = 0; i < nr_pages; i++) {
2027 struct page *page = pvec.pages[i];
2028
2029 /*
2030 * At this point, the page may be truncated or
2031 * invalidated (changing page->mapping to NULL), or
2032 * even swizzled back from swapper_space to tmpfs file
2033 * mapping. However, page->index will not change
2034 * because we have a reference on the page.
2035 */
4f01b02c
TT
2036 if (page->index > end)
2037 goto out;
8e48dcfb 2038
72f84e65
ES
2039 *done_index = page->index + 1;
2040
78aaced3
TT
2041 /*
2042 * If we can't merge this page, and we have
2043 * accumulated an contiguous region, write it
2044 */
2045 if ((mpd->next_page != page->index) &&
2046 (mpd->next_page != mpd->first_page)) {
2047 mpage_da_map_and_submit(mpd);
2048 goto ret_extent_tail;
2049 }
2050
8e48dcfb
TT
2051 lock_page(page);
2052
2053 /*
4f01b02c
TT
2054 * If the page is no longer dirty, or its
2055 * mapping no longer corresponds to inode we
2056 * are writing (which means it has been
2057 * truncated or invalidated), or the page is
2058 * already under writeback and we are not
2059 * doing a data integrity writeback, skip the page
8e48dcfb 2060 */
4f01b02c
TT
2061 if (!PageDirty(page) ||
2062 (PageWriteback(page) &&
2063 (wbc->sync_mode == WB_SYNC_NONE)) ||
2064 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2065 unlock_page(page);
2066 continue;
2067 }
2068
7cb1a535 2069 wait_on_page_writeback(page);
8e48dcfb 2070 BUG_ON(PageWriteback(page));
8e48dcfb 2071
168fc022 2072 if (mpd->next_page != page->index)
8eb9e5ce 2073 mpd->first_page = page->index;
8eb9e5ce
TT
2074 mpd->next_page = page->index + 1;
2075 logical = (sector_t) page->index <<
2076 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2077
2078 if (!page_has_buffers(page)) {
4f01b02c
TT
2079 mpage_add_bh_to_extent(mpd, logical,
2080 PAGE_CACHE_SIZE,
8eb9e5ce 2081 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2082 if (mpd->io_done)
2083 goto ret_extent_tail;
8eb9e5ce
TT
2084 } else {
2085 /*
4f01b02c
TT
2086 * Page with regular buffer heads,
2087 * just add all dirty ones
8eb9e5ce
TT
2088 */
2089 head = page_buffers(page);
2090 bh = head;
2091 do {
2092 BUG_ON(buffer_locked(bh));
2093 /*
2094 * We need to try to allocate
2095 * unmapped blocks in the same page.
2096 * Otherwise we won't make progress
2097 * with the page in ext4_writepage
2098 */
2099 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2100 mpage_add_bh_to_extent(mpd, logical,
2101 bh->b_size,
2102 bh->b_state);
4f01b02c
TT
2103 if (mpd->io_done)
2104 goto ret_extent_tail;
8eb9e5ce
TT
2105 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2106 /*
4f01b02c
TT
2107 * mapped dirty buffer. We need
2108 * to update the b_state
2109 * because we look at b_state
2110 * in mpage_da_map_blocks. We
2111 * don't update b_size because
2112 * if we find an unmapped
2113 * buffer_head later we need to
2114 * use the b_state flag of that
2115 * buffer_head.
8eb9e5ce
TT
2116 */
2117 if (mpd->b_size == 0)
2118 mpd->b_state = bh->b_state & BH_FLAGS;
2119 }
2120 logical++;
2121 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2122 }
2123
2124 if (nr_to_write > 0) {
2125 nr_to_write--;
2126 if (nr_to_write == 0 &&
4f01b02c 2127 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2128 /*
2129 * We stop writing back only if we are
2130 * not doing integrity sync. In case of
2131 * integrity sync we have to keep going
2132 * because someone may be concurrently
2133 * dirtying pages, and we might have
2134 * synced a lot of newly appeared dirty
2135 * pages, but have not synced all of the
2136 * old dirty pages.
2137 */
4f01b02c 2138 goto out;
8e48dcfb
TT
2139 }
2140 }
2141 pagevec_release(&pvec);
2142 cond_resched();
2143 }
4f01b02c
TT
2144 return 0;
2145ret_extent_tail:
2146 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2147out:
2148 pagevec_release(&pvec);
2149 cond_resched();
8e48dcfb
TT
2150 return ret;
2151}
2152
2153
64769240 2154static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2155 struct writeback_control *wbc)
64769240 2156{
22208ded
AK
2157 pgoff_t index;
2158 int range_whole = 0;
61628a3f 2159 handle_t *handle = NULL;
df22291f 2160 struct mpage_da_data mpd;
5e745b04 2161 struct inode *inode = mapping->host;
498e5f24 2162 int pages_written = 0;
55138e0b 2163 unsigned int max_pages;
2acf2c26 2164 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2165 int needed_blocks, ret = 0;
2166 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2167 loff_t range_start = wbc->range_start;
5e745b04 2168 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2169 pgoff_t done_index = 0;
5b41d924 2170 pgoff_t end;
1bce63d1 2171 struct blk_plug plug;
61628a3f 2172
9bffad1e 2173 trace_ext4_da_writepages(inode, wbc);
ba80b101 2174
61628a3f
MC
2175 /*
2176 * No pages to write? This is mainly a kludge to avoid starting
2177 * a transaction for special inodes like journal inode on last iput()
2178 * because that could violate lock ordering on umount
2179 */
a1d6cc56 2180 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2181 return 0;
2a21e37e
TT
2182
2183 /*
2184 * If the filesystem has aborted, it is read-only, so return
2185 * right away instead of dumping stack traces later on that
2186 * will obscure the real source of the problem. We test
4ab2f15b 2187 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2188 * the latter could be true if the filesystem is mounted
2189 * read-only, and in that case, ext4_da_writepages should
2190 * *never* be called, so if that ever happens, we would want
2191 * the stack trace.
2192 */
4ab2f15b 2193 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2194 return -EROFS;
2195
22208ded
AK
2196 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2197 range_whole = 1;
61628a3f 2198
2acf2c26
AK
2199 range_cyclic = wbc->range_cyclic;
2200 if (wbc->range_cyclic) {
22208ded 2201 index = mapping->writeback_index;
2acf2c26
AK
2202 if (index)
2203 cycled = 0;
2204 wbc->range_start = index << PAGE_CACHE_SHIFT;
2205 wbc->range_end = LLONG_MAX;
2206 wbc->range_cyclic = 0;
5b41d924
ES
2207 end = -1;
2208 } else {
22208ded 2209 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2210 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2211 }
a1d6cc56 2212
55138e0b
TT
2213 /*
2214 * This works around two forms of stupidity. The first is in
2215 * the writeback code, which caps the maximum number of pages
2216 * written to be 1024 pages. This is wrong on multiple
2217 * levels; different architectues have a different page size,
2218 * which changes the maximum amount of data which gets
2219 * written. Secondly, 4 megabytes is way too small. XFS
2220 * forces this value to be 16 megabytes by multiplying
2221 * nr_to_write parameter by four, and then relies on its
2222 * allocator to allocate larger extents to make them
2223 * contiguous. Unfortunately this brings us to the second
2224 * stupidity, which is that ext4's mballoc code only allocates
2225 * at most 2048 blocks. So we force contiguous writes up to
2226 * the number of dirty blocks in the inode, or
2227 * sbi->max_writeback_mb_bump whichever is smaller.
2228 */
2229 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2230 if (!range_cyclic && range_whole) {
2231 if (wbc->nr_to_write == LONG_MAX)
2232 desired_nr_to_write = wbc->nr_to_write;
2233 else
2234 desired_nr_to_write = wbc->nr_to_write * 8;
2235 } else
55138e0b
TT
2236 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2237 max_pages);
2238 if (desired_nr_to_write > max_pages)
2239 desired_nr_to_write = max_pages;
2240
2241 if (wbc->nr_to_write < desired_nr_to_write) {
2242 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2243 wbc->nr_to_write = desired_nr_to_write;
2244 }
2245
2acf2c26 2246retry:
6e6938b6 2247 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2248 tag_pages_for_writeback(mapping, index, end);
2249
1bce63d1 2250 blk_start_plug(&plug);
22208ded 2251 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2252
2253 /*
2254 * we insert one extent at a time. So we need
2255 * credit needed for single extent allocation.
2256 * journalled mode is currently not supported
2257 * by delalloc
2258 */
2259 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2260 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2261
61628a3f
MC
2262 /* start a new transaction*/
2263 handle = ext4_journal_start(inode, needed_blocks);
2264 if (IS_ERR(handle)) {
2265 ret = PTR_ERR(handle);
1693918e 2266 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2267 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2268 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2269 goto out_writepages;
2270 }
f63e6005
TT
2271
2272 /*
8eb9e5ce 2273 * Now call write_cache_pages_da() to find the next
f63e6005 2274 * contiguous region of logical blocks that need
8eb9e5ce 2275 * blocks to be allocated by ext4 and submit them.
f63e6005 2276 */
72f84e65 2277 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2278 /*
af901ca1 2279 * If we have a contiguous extent of pages and we
f63e6005
TT
2280 * haven't done the I/O yet, map the blocks and submit
2281 * them for I/O.
2282 */
2283 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2284 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2285 ret = MPAGE_DA_EXTENT_TAIL;
2286 }
b3a3ca8c 2287 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2288 wbc->nr_to_write -= mpd.pages_written;
df22291f 2289
61628a3f 2290 ext4_journal_stop(handle);
df22291f 2291
8f64b32e 2292 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2293 /* commit the transaction which would
2294 * free blocks released in the transaction
2295 * and try again
2296 */
df22291f 2297 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2298 ret = 0;
2299 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2300 /*
8de49e67
KM
2301 * Got one extent now try with rest of the pages.
2302 * If mpd.retval is set -EIO, journal is aborted.
2303 * So we don't need to write any more.
a1d6cc56 2304 */
22208ded 2305 pages_written += mpd.pages_written;
8de49e67 2306 ret = mpd.retval;
2acf2c26 2307 io_done = 1;
22208ded 2308 } else if (wbc->nr_to_write)
61628a3f
MC
2309 /*
2310 * There is no more writeout needed
2311 * or we requested for a noblocking writeout
2312 * and we found the device congested
2313 */
61628a3f 2314 break;
a1d6cc56 2315 }
1bce63d1 2316 blk_finish_plug(&plug);
2acf2c26
AK
2317 if (!io_done && !cycled) {
2318 cycled = 1;
2319 index = 0;
2320 wbc->range_start = index << PAGE_CACHE_SHIFT;
2321 wbc->range_end = mapping->writeback_index - 1;
2322 goto retry;
2323 }
22208ded
AK
2324
2325 /* Update index */
2acf2c26 2326 wbc->range_cyclic = range_cyclic;
22208ded
AK
2327 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2328 /*
2329 * set the writeback_index so that range_cyclic
2330 * mode will write it back later
2331 */
72f84e65 2332 mapping->writeback_index = done_index;
a1d6cc56 2333
61628a3f 2334out_writepages:
2faf2e19 2335 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2336 wbc->range_start = range_start;
9bffad1e 2337 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2338 return ret;
64769240
AT
2339}
2340
79f0be8d
AK
2341#define FALL_BACK_TO_NONDELALLOC 1
2342static int ext4_nonda_switch(struct super_block *sb)
2343{
2344 s64 free_blocks, dirty_blocks;
2345 struct ext4_sb_info *sbi = EXT4_SB(sb);
2346
2347 /*
2348 * switch to non delalloc mode if we are running low
2349 * on free block. The free block accounting via percpu
179f7ebf 2350 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2351 * accumulated on each CPU without updating global counters
2352 * Delalloc need an accurate free block accounting. So switch
2353 * to non delalloc when we are near to error range.
2354 */
57042651
TT
2355 free_blocks = EXT4_C2B(sbi,
2356 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2357 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
79f0be8d 2358 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2359 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2360 /*
c8afb446
ES
2361 * free block count is less than 150% of dirty blocks
2362 * or free blocks is less than watermark
79f0be8d
AK
2363 */
2364 return 1;
2365 }
c8afb446
ES
2366 /*
2367 * Even if we don't switch but are nearing capacity,
2368 * start pushing delalloc when 1/2 of free blocks are dirty.
2369 */
2370 if (free_blocks < 2 * dirty_blocks)
2371 writeback_inodes_sb_if_idle(sb);
2372
79f0be8d
AK
2373 return 0;
2374}
2375
64769240 2376static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2377 loff_t pos, unsigned len, unsigned flags,
2378 struct page **pagep, void **fsdata)
64769240 2379{
72b8ab9d 2380 int ret, retries = 0;
64769240
AT
2381 struct page *page;
2382 pgoff_t index;
64769240
AT
2383 struct inode *inode = mapping->host;
2384 handle_t *handle;
02fac129 2385 loff_t page_len;
64769240
AT
2386
2387 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2388
2389 if (ext4_nonda_switch(inode->i_sb)) {
2390 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2391 return ext4_write_begin(file, mapping, pos,
2392 len, flags, pagep, fsdata);
2393 }
2394 *fsdata = (void *)0;
9bffad1e 2395 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2396retry:
64769240
AT
2397 /*
2398 * With delayed allocation, we don't log the i_disksize update
2399 * if there is delayed block allocation. But we still need
2400 * to journalling the i_disksize update if writes to the end
2401 * of file which has an already mapped buffer.
2402 */
2403 handle = ext4_journal_start(inode, 1);
2404 if (IS_ERR(handle)) {
2405 ret = PTR_ERR(handle);
2406 goto out;
2407 }
ebd3610b
JK
2408 /* We cannot recurse into the filesystem as the transaction is already
2409 * started */
2410 flags |= AOP_FLAG_NOFS;
64769240 2411
54566b2c 2412 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2413 if (!page) {
2414 ext4_journal_stop(handle);
2415 ret = -ENOMEM;
2416 goto out;
2417 }
64769240
AT
2418 *pagep = page;
2419
6e1db88d 2420 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2421 if (ret < 0) {
2422 unlock_page(page);
2423 ext4_journal_stop(handle);
2424 page_cache_release(page);
ae4d5372
AK
2425 /*
2426 * block_write_begin may have instantiated a few blocks
2427 * outside i_size. Trim these off again. Don't need
2428 * i_size_read because we hold i_mutex.
2429 */
2430 if (pos + len > inode->i_size)
b9a4207d 2431 ext4_truncate_failed_write(inode);
02fac129
AH
2432 } else {
2433 page_len = pos & (PAGE_CACHE_SIZE - 1);
2434 if (page_len > 0) {
2435 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2436 inode, page, pos - page_len, page_len,
2437 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2438 }
64769240
AT
2439 }
2440
d2a17637
MC
2441 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2442 goto retry;
64769240
AT
2443out:
2444 return ret;
2445}
2446
632eaeab
MC
2447/*
2448 * Check if we should update i_disksize
2449 * when write to the end of file but not require block allocation
2450 */
2451static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2452 unsigned long offset)
632eaeab
MC
2453{
2454 struct buffer_head *bh;
2455 struct inode *inode = page->mapping->host;
2456 unsigned int idx;
2457 int i;
2458
2459 bh = page_buffers(page);
2460 idx = offset >> inode->i_blkbits;
2461
af5bc92d 2462 for (i = 0; i < idx; i++)
632eaeab
MC
2463 bh = bh->b_this_page;
2464
29fa89d0 2465 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2466 return 0;
2467 return 1;
2468}
2469
64769240 2470static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2471 struct address_space *mapping,
2472 loff_t pos, unsigned len, unsigned copied,
2473 struct page *page, void *fsdata)
64769240
AT
2474{
2475 struct inode *inode = mapping->host;
2476 int ret = 0, ret2;
2477 handle_t *handle = ext4_journal_current_handle();
2478 loff_t new_i_size;
632eaeab 2479 unsigned long start, end;
79f0be8d 2480 int write_mode = (int)(unsigned long)fsdata;
02fac129 2481 loff_t page_len;
79f0be8d
AK
2482
2483 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2484 if (ext4_should_order_data(inode)) {
2485 return ext4_ordered_write_end(file, mapping, pos,
2486 len, copied, page, fsdata);
2487 } else if (ext4_should_writeback_data(inode)) {
2488 return ext4_writeback_write_end(file, mapping, pos,
2489 len, copied, page, fsdata);
2490 } else {
2491 BUG();
2492 }
2493 }
632eaeab 2494
9bffad1e 2495 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2496 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2497 end = start + copied - 1;
64769240
AT
2498
2499 /*
2500 * generic_write_end() will run mark_inode_dirty() if i_size
2501 * changes. So let's piggyback the i_disksize mark_inode_dirty
2502 * into that.
2503 */
2504
2505 new_i_size = pos + copied;
632eaeab
MC
2506 if (new_i_size > EXT4_I(inode)->i_disksize) {
2507 if (ext4_da_should_update_i_disksize(page, end)) {
2508 down_write(&EXT4_I(inode)->i_data_sem);
2509 if (new_i_size > EXT4_I(inode)->i_disksize) {
2510 /*
2511 * Updating i_disksize when extending file
2512 * without needing block allocation
2513 */
2514 if (ext4_should_order_data(inode))
2515 ret = ext4_jbd2_file_inode(handle,
2516 inode);
64769240 2517
632eaeab
MC
2518 EXT4_I(inode)->i_disksize = new_i_size;
2519 }
2520 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2521 /* We need to mark inode dirty even if
2522 * new_i_size is less that inode->i_size
2523 * bu greater than i_disksize.(hint delalloc)
2524 */
2525 ext4_mark_inode_dirty(handle, inode);
64769240 2526 }
632eaeab 2527 }
64769240
AT
2528 ret2 = generic_write_end(file, mapping, pos, len, copied,
2529 page, fsdata);
02fac129
AH
2530
2531 page_len = PAGE_CACHE_SIZE -
2532 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2533
2534 if (page_len > 0) {
2535 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2536 inode, page, pos + copied - 1, page_len,
2537 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2538 }
2539
64769240
AT
2540 copied = ret2;
2541 if (ret2 < 0)
2542 ret = ret2;
2543 ret2 = ext4_journal_stop(handle);
2544 if (!ret)
2545 ret = ret2;
2546
2547 return ret ? ret : copied;
2548}
2549
2550static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2551{
64769240
AT
2552 /*
2553 * Drop reserved blocks
2554 */
2555 BUG_ON(!PageLocked(page));
2556 if (!page_has_buffers(page))
2557 goto out;
2558
d2a17637 2559 ext4_da_page_release_reservation(page, offset);
64769240
AT
2560
2561out:
2562 ext4_invalidatepage(page, offset);
2563
2564 return;
2565}
2566
ccd2506b
TT
2567/*
2568 * Force all delayed allocation blocks to be allocated for a given inode.
2569 */
2570int ext4_alloc_da_blocks(struct inode *inode)
2571{
fb40ba0d
TT
2572 trace_ext4_alloc_da_blocks(inode);
2573
ccd2506b
TT
2574 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2575 !EXT4_I(inode)->i_reserved_meta_blocks)
2576 return 0;
2577
2578 /*
2579 * We do something simple for now. The filemap_flush() will
2580 * also start triggering a write of the data blocks, which is
2581 * not strictly speaking necessary (and for users of
2582 * laptop_mode, not even desirable). However, to do otherwise
2583 * would require replicating code paths in:
de9a55b8 2584 *
ccd2506b
TT
2585 * ext4_da_writepages() ->
2586 * write_cache_pages() ---> (via passed in callback function)
2587 * __mpage_da_writepage() -->
2588 * mpage_add_bh_to_extent()
2589 * mpage_da_map_blocks()
2590 *
2591 * The problem is that write_cache_pages(), located in
2592 * mm/page-writeback.c, marks pages clean in preparation for
2593 * doing I/O, which is not desirable if we're not planning on
2594 * doing I/O at all.
2595 *
2596 * We could call write_cache_pages(), and then redirty all of
380cf090 2597 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2598 * would be ugly in the extreme. So instead we would need to
2599 * replicate parts of the code in the above functions,
25985edc 2600 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2601 * write out the pages, but rather only collect contiguous
2602 * logical block extents, call the multi-block allocator, and
2603 * then update the buffer heads with the block allocations.
de9a55b8 2604 *
ccd2506b
TT
2605 * For now, though, we'll cheat by calling filemap_flush(),
2606 * which will map the blocks, and start the I/O, but not
2607 * actually wait for the I/O to complete.
2608 */
2609 return filemap_flush(inode->i_mapping);
2610}
64769240 2611
ac27a0ec
DK
2612/*
2613 * bmap() is special. It gets used by applications such as lilo and by
2614 * the swapper to find the on-disk block of a specific piece of data.
2615 *
2616 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2617 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2618 * filesystem and enables swap, then they may get a nasty shock when the
2619 * data getting swapped to that swapfile suddenly gets overwritten by
2620 * the original zero's written out previously to the journal and
2621 * awaiting writeback in the kernel's buffer cache.
2622 *
2623 * So, if we see any bmap calls here on a modified, data-journaled file,
2624 * take extra steps to flush any blocks which might be in the cache.
2625 */
617ba13b 2626static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2627{
2628 struct inode *inode = mapping->host;
2629 journal_t *journal;
2630 int err;
2631
64769240
AT
2632 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2633 test_opt(inode->i_sb, DELALLOC)) {
2634 /*
2635 * With delalloc we want to sync the file
2636 * so that we can make sure we allocate
2637 * blocks for file
2638 */
2639 filemap_write_and_wait(mapping);
2640 }
2641
19f5fb7a
TT
2642 if (EXT4_JOURNAL(inode) &&
2643 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2644 /*
2645 * This is a REALLY heavyweight approach, but the use of
2646 * bmap on dirty files is expected to be extremely rare:
2647 * only if we run lilo or swapon on a freshly made file
2648 * do we expect this to happen.
2649 *
2650 * (bmap requires CAP_SYS_RAWIO so this does not
2651 * represent an unprivileged user DOS attack --- we'd be
2652 * in trouble if mortal users could trigger this path at
2653 * will.)
2654 *
617ba13b 2655 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2656 * regular files. If somebody wants to bmap a directory
2657 * or symlink and gets confused because the buffer
2658 * hasn't yet been flushed to disk, they deserve
2659 * everything they get.
2660 */
2661
19f5fb7a 2662 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2663 journal = EXT4_JOURNAL(inode);
dab291af
MC
2664 jbd2_journal_lock_updates(journal);
2665 err = jbd2_journal_flush(journal);
2666 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2667
2668 if (err)
2669 return 0;
2670 }
2671
af5bc92d 2672 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2673}
2674
617ba13b 2675static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2676{
0562e0ba 2677 trace_ext4_readpage(page);
617ba13b 2678 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2679}
2680
2681static int
617ba13b 2682ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2683 struct list_head *pages, unsigned nr_pages)
2684{
617ba13b 2685 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2686}
2687
744692dc
JZ
2688static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2689{
2690 struct buffer_head *head, *bh;
2691 unsigned int curr_off = 0;
2692
2693 if (!page_has_buffers(page))
2694 return;
2695 head = bh = page_buffers(page);
2696 do {
2697 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2698 && bh->b_private) {
2699 ext4_free_io_end(bh->b_private);
2700 bh->b_private = NULL;
2701 bh->b_end_io = NULL;
2702 }
2703 curr_off = curr_off + bh->b_size;
2704 bh = bh->b_this_page;
2705 } while (bh != head);
2706}
2707
617ba13b 2708static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2709{
617ba13b 2710 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2711
0562e0ba
JZ
2712 trace_ext4_invalidatepage(page, offset);
2713
744692dc
JZ
2714 /*
2715 * free any io_end structure allocated for buffers to be discarded
2716 */
2717 if (ext4_should_dioread_nolock(page->mapping->host))
2718 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2719 /*
2720 * If it's a full truncate we just forget about the pending dirtying
2721 */
2722 if (offset == 0)
2723 ClearPageChecked(page);
2724
0390131b
FM
2725 if (journal)
2726 jbd2_journal_invalidatepage(journal, page, offset);
2727 else
2728 block_invalidatepage(page, offset);
ac27a0ec
DK
2729}
2730
617ba13b 2731static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2732{
617ba13b 2733 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2734
0562e0ba
JZ
2735 trace_ext4_releasepage(page);
2736
ac27a0ec
DK
2737 WARN_ON(PageChecked(page));
2738 if (!page_has_buffers(page))
2739 return 0;
0390131b
FM
2740 if (journal)
2741 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2742 else
2743 return try_to_free_buffers(page);
ac27a0ec
DK
2744}
2745
2ed88685
TT
2746/*
2747 * ext4_get_block used when preparing for a DIO write or buffer write.
2748 * We allocate an uinitialized extent if blocks haven't been allocated.
2749 * The extent will be converted to initialized after the IO is complete.
2750 */
c7064ef1 2751static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2752 struct buffer_head *bh_result, int create)
2753{
c7064ef1 2754 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2755 inode->i_ino, create);
2ed88685
TT
2756 return _ext4_get_block(inode, iblock, bh_result,
2757 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2758}
2759
4c0425ff 2760static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2761 ssize_t size, void *private, int ret,
2762 bool is_async)
4c0425ff 2763{
72c5052d 2764 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff
MC
2765 ext4_io_end_t *io_end = iocb->private;
2766 struct workqueue_struct *wq;
744692dc
JZ
2767 unsigned long flags;
2768 struct ext4_inode_info *ei;
4c0425ff 2769
4b70df18
M
2770 /* if not async direct IO or dio with 0 bytes write, just return */
2771 if (!io_end || !size)
552ef802 2772 goto out;
4b70df18 2773
8d5d02e6
MC
2774 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2775 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2776 iocb->private, io_end->inode->i_ino, iocb, offset,
2777 size);
8d5d02e6
MC
2778
2779 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2780 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6
MC
2781 ext4_free_io_end(io_end);
2782 iocb->private = NULL;
5b3ff237
JZ
2783out:
2784 if (is_async)
2785 aio_complete(iocb, ret, 0);
72c5052d 2786 inode_dio_done(inode);
5b3ff237 2787 return;
8d5d02e6
MC
2788 }
2789
4c0425ff
MC
2790 io_end->offset = offset;
2791 io_end->size = size;
5b3ff237
JZ
2792 if (is_async) {
2793 io_end->iocb = iocb;
2794 io_end->result = ret;
2795 }
4c0425ff
MC
2796 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2797
8d5d02e6 2798 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
2799 ei = EXT4_I(io_end->inode);
2800 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2801 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2802 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
2803
2804 /* queue the work to convert unwritten extents to written */
2805 queue_work(wq, &io_end->work);
4c0425ff 2806 iocb->private = NULL;
72c5052d
CH
2807
2808 /* XXX: probably should move into the real I/O completion handler */
2809 inode_dio_done(inode);
4c0425ff 2810}
c7064ef1 2811
744692dc
JZ
2812static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2813{
2814 ext4_io_end_t *io_end = bh->b_private;
2815 struct workqueue_struct *wq;
2816 struct inode *inode;
2817 unsigned long flags;
2818
2819 if (!test_clear_buffer_uninit(bh) || !io_end)
2820 goto out;
2821
2822 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2823 printk("sb umounted, discard end_io request for inode %lu\n",
2824 io_end->inode->i_ino);
2825 ext4_free_io_end(io_end);
2826 goto out;
2827 }
2828
32c80b32
TM
2829 /*
2830 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2831 * but being more careful is always safe for the future change.
2832 */
744692dc 2833 inode = io_end->inode;
0edeb71d 2834 ext4_set_io_unwritten_flag(inode, io_end);
744692dc
JZ
2835
2836 /* Add the io_end to per-inode completed io list*/
2837 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2838 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2839 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2840
2841 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2842 /* queue the work to convert unwritten extents to written */
2843 queue_work(wq, &io_end->work);
2844out:
2845 bh->b_private = NULL;
2846 bh->b_end_io = NULL;
2847 clear_buffer_uninit(bh);
2848 end_buffer_async_write(bh, uptodate);
2849}
2850
2851static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2852{
2853 ext4_io_end_t *io_end;
2854 struct page *page = bh->b_page;
2855 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2856 size_t size = bh->b_size;
2857
2858retry:
2859 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2860 if (!io_end) {
6db26ffc 2861 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2862 schedule();
2863 goto retry;
2864 }
2865 io_end->offset = offset;
2866 io_end->size = size;
2867 /*
2868 * We need to hold a reference to the page to make sure it
2869 * doesn't get evicted before ext4_end_io_work() has a chance
2870 * to convert the extent from written to unwritten.
2871 */
2872 io_end->page = page;
2873 get_page(io_end->page);
2874
2875 bh->b_private = io_end;
2876 bh->b_end_io = ext4_end_io_buffer_write;
2877 return 0;
2878}
2879
4c0425ff
MC
2880/*
2881 * For ext4 extent files, ext4 will do direct-io write to holes,
2882 * preallocated extents, and those write extend the file, no need to
2883 * fall back to buffered IO.
2884 *
b595076a 2885 * For holes, we fallocate those blocks, mark them as uninitialized
4c0425ff 2886 * If those blocks were preallocated, we mark sure they are splited, but
b595076a 2887 * still keep the range to write as uninitialized.
4c0425ff 2888 *
8d5d02e6
MC
2889 * The unwrritten extents will be converted to written when DIO is completed.
2890 * For async direct IO, since the IO may still pending when return, we
25985edc 2891 * set up an end_io call back function, which will do the conversion
8d5d02e6 2892 * when async direct IO completed.
4c0425ff
MC
2893 *
2894 * If the O_DIRECT write will extend the file then add this inode to the
2895 * orphan list. So recovery will truncate it back to the original size
2896 * if the machine crashes during the write.
2897 *
2898 */
2899static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2900 const struct iovec *iov, loff_t offset,
2901 unsigned long nr_segs)
2902{
2903 struct file *file = iocb->ki_filp;
2904 struct inode *inode = file->f_mapping->host;
2905 ssize_t ret;
2906 size_t count = iov_length(iov, nr_segs);
2907
2908 loff_t final_size = offset + count;
2909 if (rw == WRITE && final_size <= inode->i_size) {
2910 /*
8d5d02e6
MC
2911 * We could direct write to holes and fallocate.
2912 *
2913 * Allocated blocks to fill the hole are marked as uninitialized
25985edc 2914 * to prevent parallel buffered read to expose the stale data
4c0425ff 2915 * before DIO complete the data IO.
8d5d02e6
MC
2916 *
2917 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
2918 * will just simply mark the buffer mapped but still
2919 * keep the extents uninitialized.
2920 *
8d5d02e6
MC
2921 * for non AIO case, we will convert those unwritten extents
2922 * to written after return back from blockdev_direct_IO.
2923 *
2924 * for async DIO, the conversion needs to be defered when
2925 * the IO is completed. The ext4 end_io callback function
2926 * will be called to take care of the conversion work.
2927 * Here for async case, we allocate an io_end structure to
2928 * hook to the iocb.
4c0425ff 2929 */
8d5d02e6
MC
2930 iocb->private = NULL;
2931 EXT4_I(inode)->cur_aio_dio = NULL;
2932 if (!is_sync_kiocb(iocb)) {
744692dc 2933 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
2934 if (!iocb->private)
2935 return -ENOMEM;
2936 /*
2937 * we save the io structure for current async
79e83036 2938 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
2939 * could flag the io structure whether there
2940 * is a unwritten extents needs to be converted
2941 * when IO is completed.
2942 */
2943 EXT4_I(inode)->cur_aio_dio = iocb->private;
2944 }
2945
aacfc19c 2946 ret = __blockdev_direct_IO(rw, iocb, inode,
4c0425ff
MC
2947 inode->i_sb->s_bdev, iov,
2948 offset, nr_segs,
c7064ef1 2949 ext4_get_block_write,
aacfc19c
CH
2950 ext4_end_io_dio,
2951 NULL,
2952 DIO_LOCKING | DIO_SKIP_HOLES);
8d5d02e6
MC
2953 if (iocb->private)
2954 EXT4_I(inode)->cur_aio_dio = NULL;
2955 /*
2956 * The io_end structure takes a reference to the inode,
2957 * that structure needs to be destroyed and the
2958 * reference to the inode need to be dropped, when IO is
2959 * complete, even with 0 byte write, or failed.
2960 *
2961 * In the successful AIO DIO case, the io_end structure will be
2962 * desctroyed and the reference to the inode will be dropped
2963 * after the end_io call back function is called.
2964 *
2965 * In the case there is 0 byte write, or error case, since
2966 * VFS direct IO won't invoke the end_io call back function,
2967 * we need to free the end_io structure here.
2968 */
2969 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2970 ext4_free_io_end(iocb->private);
2971 iocb->private = NULL;
19f5fb7a
TT
2972 } else if (ret > 0 && ext4_test_inode_state(inode,
2973 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 2974 int err;
8d5d02e6
MC
2975 /*
2976 * for non AIO case, since the IO is already
25985edc 2977 * completed, we could do the conversion right here
8d5d02e6 2978 */
109f5565
M
2979 err = ext4_convert_unwritten_extents(inode,
2980 offset, ret);
2981 if (err < 0)
2982 ret = err;
19f5fb7a 2983 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 2984 }
4c0425ff
MC
2985 return ret;
2986 }
8d5d02e6
MC
2987
2988 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
2989 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2990}
2991
2992static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2993 const struct iovec *iov, loff_t offset,
2994 unsigned long nr_segs)
2995{
2996 struct file *file = iocb->ki_filp;
2997 struct inode *inode = file->f_mapping->host;
0562e0ba 2998 ssize_t ret;
4c0425ff 2999
84ebd795
TT
3000 /*
3001 * If we are doing data journalling we don't support O_DIRECT
3002 */
3003 if (ext4_should_journal_data(inode))
3004 return 0;
3005
0562e0ba 3006 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3007 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3008 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3009 else
3010 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3011 trace_ext4_direct_IO_exit(inode, offset,
3012 iov_length(iov, nr_segs), rw, ret);
3013 return ret;
4c0425ff
MC
3014}
3015
ac27a0ec 3016/*
617ba13b 3017 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3018 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3019 * much here because ->set_page_dirty is called under VFS locks. The page is
3020 * not necessarily locked.
3021 *
3022 * We cannot just dirty the page and leave attached buffers clean, because the
3023 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3024 * or jbddirty because all the journalling code will explode.
3025 *
3026 * So what we do is to mark the page "pending dirty" and next time writepage
3027 * is called, propagate that into the buffers appropriately.
3028 */
617ba13b 3029static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3030{
3031 SetPageChecked(page);
3032 return __set_page_dirty_nobuffers(page);
3033}
3034
617ba13b 3035static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3036 .readpage = ext4_readpage,
3037 .readpages = ext4_readpages,
43ce1d23 3038 .writepage = ext4_writepage,
8ab22b9a
HH
3039 .write_begin = ext4_write_begin,
3040 .write_end = ext4_ordered_write_end,
3041 .bmap = ext4_bmap,
3042 .invalidatepage = ext4_invalidatepage,
3043 .releasepage = ext4_releasepage,
3044 .direct_IO = ext4_direct_IO,
3045 .migratepage = buffer_migrate_page,
3046 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3047 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3048};
3049
617ba13b 3050static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3051 .readpage = ext4_readpage,
3052 .readpages = ext4_readpages,
43ce1d23 3053 .writepage = ext4_writepage,
8ab22b9a
HH
3054 .write_begin = ext4_write_begin,
3055 .write_end = ext4_writeback_write_end,
3056 .bmap = ext4_bmap,
3057 .invalidatepage = ext4_invalidatepage,
3058 .releasepage = ext4_releasepage,
3059 .direct_IO = ext4_direct_IO,
3060 .migratepage = buffer_migrate_page,
3061 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3062 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3063};
3064
617ba13b 3065static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3066 .readpage = ext4_readpage,
3067 .readpages = ext4_readpages,
43ce1d23 3068 .writepage = ext4_writepage,
8ab22b9a
HH
3069 .write_begin = ext4_write_begin,
3070 .write_end = ext4_journalled_write_end,
3071 .set_page_dirty = ext4_journalled_set_page_dirty,
3072 .bmap = ext4_bmap,
3073 .invalidatepage = ext4_invalidatepage,
3074 .releasepage = ext4_releasepage,
84ebd795 3075 .direct_IO = ext4_direct_IO,
8ab22b9a 3076 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3077 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3078};
3079
64769240 3080static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3081 .readpage = ext4_readpage,
3082 .readpages = ext4_readpages,
43ce1d23 3083 .writepage = ext4_writepage,
8ab22b9a 3084 .writepages = ext4_da_writepages,
8ab22b9a
HH
3085 .write_begin = ext4_da_write_begin,
3086 .write_end = ext4_da_write_end,
3087 .bmap = ext4_bmap,
3088 .invalidatepage = ext4_da_invalidatepage,
3089 .releasepage = ext4_releasepage,
3090 .direct_IO = ext4_direct_IO,
3091 .migratepage = buffer_migrate_page,
3092 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3093 .error_remove_page = generic_error_remove_page,
64769240
AT
3094};
3095
617ba13b 3096void ext4_set_aops(struct inode *inode)
ac27a0ec 3097{
cd1aac32
AK
3098 if (ext4_should_order_data(inode) &&
3099 test_opt(inode->i_sb, DELALLOC))
3100 inode->i_mapping->a_ops = &ext4_da_aops;
3101 else if (ext4_should_order_data(inode))
617ba13b 3102 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3103 else if (ext4_should_writeback_data(inode) &&
3104 test_opt(inode->i_sb, DELALLOC))
3105 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3106 else if (ext4_should_writeback_data(inode))
3107 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3108 else
617ba13b 3109 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3110}
3111
4e96b2db
AH
3112
3113/*
3114 * ext4_discard_partial_page_buffers()
3115 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3116 * This function finds and locks the page containing the offset
3117 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3118 * Calling functions that already have the page locked should call
3119 * ext4_discard_partial_page_buffers_no_lock directly.
3120 */
3121int ext4_discard_partial_page_buffers(handle_t *handle,
3122 struct address_space *mapping, loff_t from,
3123 loff_t length, int flags)
3124{
3125 struct inode *inode = mapping->host;
3126 struct page *page;
3127 int err = 0;
3128
3129 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3130 mapping_gfp_mask(mapping) & ~__GFP_FS);
3131 if (!page)
3132 return -EINVAL;
3133
3134 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3135 from, length, flags);
3136
3137 unlock_page(page);
3138 page_cache_release(page);
3139 return err;
3140}
3141
3142/*
3143 * ext4_discard_partial_page_buffers_no_lock()
3144 * Zeros a page range of length 'length' starting from offset 'from'.
3145 * Buffer heads that correspond to the block aligned regions of the
3146 * zeroed range will be unmapped. Unblock aligned regions
3147 * will have the corresponding buffer head mapped if needed so that
3148 * that region of the page can be updated with the partial zero out.
3149 *
3150 * This function assumes that the page has already been locked. The
3151 * The range to be discarded must be contained with in the given page.
3152 * If the specified range exceeds the end of the page it will be shortened
3153 * to the end of the page that corresponds to 'from'. This function is
3154 * appropriate for updating a page and it buffer heads to be unmapped and
3155 * zeroed for blocks that have been either released, or are going to be
3156 * released.
3157 *
3158 * handle: The journal handle
3159 * inode: The files inode
3160 * page: A locked page that contains the offset "from"
3161 * from: The starting byte offset (from the begining of the file)
3162 * to begin discarding
3163 * len: The length of bytes to discard
3164 * flags: Optional flags that may be used:
3165 *
3166 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3167 * Only zero the regions of the page whose buffer heads
3168 * have already been unmapped. This flag is appropriate
3169 * for updateing the contents of a page whose blocks may
3170 * have already been released, and we only want to zero
3171 * out the regions that correspond to those released blocks.
3172 *
3173 * Returns zero on sucess or negative on failure.
3174 */
3175int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3176 struct inode *inode, struct page *page, loff_t from,
3177 loff_t length, int flags)
3178{
3179 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3180 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3181 unsigned int blocksize, max, pos;
3182 unsigned int end_of_block, range_to_discard;
3183 ext4_lblk_t iblock;
3184 struct buffer_head *bh;
3185 int err = 0;
3186
3187 blocksize = inode->i_sb->s_blocksize;
3188 max = PAGE_CACHE_SIZE - offset;
3189
3190 if (index != page->index)
3191 return -EINVAL;
3192
3193 /*
3194 * correct length if it does not fall between
3195 * 'from' and the end of the page
3196 */
3197 if (length > max || length < 0)
3198 length = max;
3199
3200 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3201
3202 if (!page_has_buffers(page)) {
3203 /*
3204 * If the range to be discarded covers a partial block
3205 * we need to get the page buffers. This is because
3206 * partial blocks cannot be released and the page needs
3207 * to be updated with the contents of the block before
3208 * we write the zeros on top of it.
3209 */
3210 if (!(from & (blocksize - 1)) ||
3211 !((from + length) & (blocksize - 1))) {
3212 create_empty_buffers(page, blocksize, 0);
3213 } else {
3214 /*
3215 * If there are no partial blocks,
3216 * there is nothing to update,
3217 * so we can return now
3218 */
3219 return 0;
3220 }
3221 }
3222
3223 /* Find the buffer that contains "offset" */
3224 bh = page_buffers(page);
3225 pos = blocksize;
3226 while (offset >= pos) {
3227 bh = bh->b_this_page;
3228 iblock++;
3229 pos += blocksize;
3230 }
3231
3232 pos = offset;
3233 while (pos < offset + length) {
3234 err = 0;
3235
3236 /* The length of space left to zero and unmap */
3237 range_to_discard = offset + length - pos;
3238
3239 /* The length of space until the end of the block */
3240 end_of_block = blocksize - (pos & (blocksize-1));
3241
3242 /*
3243 * Do not unmap or zero past end of block
3244 * for this buffer head
3245 */
3246 if (range_to_discard > end_of_block)
3247 range_to_discard = end_of_block;
3248
3249
3250 /*
3251 * Skip this buffer head if we are only zeroing unampped
3252 * regions of the page
3253 */
3254 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3255 buffer_mapped(bh))
3256 goto next;
3257
3258 /* If the range is block aligned, unmap */
3259 if (range_to_discard == blocksize) {
3260 clear_buffer_dirty(bh);
3261 bh->b_bdev = NULL;
3262 clear_buffer_mapped(bh);
3263 clear_buffer_req(bh);
3264 clear_buffer_new(bh);
3265 clear_buffer_delay(bh);
3266 clear_buffer_unwritten(bh);
3267 clear_buffer_uptodate(bh);
3268 zero_user(page, pos, range_to_discard);
3269 BUFFER_TRACE(bh, "Buffer discarded");
3270 goto next;
3271 }
3272
3273 /*
3274 * If this block is not completely contained in the range
3275 * to be discarded, then it is not going to be released. Because
3276 * we need to keep this block, we need to make sure this part
3277 * of the page is uptodate before we modify it by writeing
3278 * partial zeros on it.
3279 */
3280 if (!buffer_mapped(bh)) {
3281 /*
3282 * Buffer head must be mapped before we can read
3283 * from the block
3284 */
3285 BUFFER_TRACE(bh, "unmapped");
3286 ext4_get_block(inode, iblock, bh, 0);
3287 /* unmapped? It's a hole - nothing to do */
3288 if (!buffer_mapped(bh)) {
3289 BUFFER_TRACE(bh, "still unmapped");
3290 goto next;
3291 }
3292 }
3293
3294 /* Ok, it's mapped. Make sure it's up-to-date */
3295 if (PageUptodate(page))
3296 set_buffer_uptodate(bh);
3297
3298 if (!buffer_uptodate(bh)) {
3299 err = -EIO;
3300 ll_rw_block(READ, 1, &bh);
3301 wait_on_buffer(bh);
3302 /* Uhhuh. Read error. Complain and punt.*/
3303 if (!buffer_uptodate(bh))
3304 goto next;
3305 }
3306
3307 if (ext4_should_journal_data(inode)) {
3308 BUFFER_TRACE(bh, "get write access");
3309 err = ext4_journal_get_write_access(handle, bh);
3310 if (err)
3311 goto next;
3312 }
3313
3314 zero_user(page, pos, range_to_discard);
3315
3316 err = 0;
3317 if (ext4_should_journal_data(inode)) {
3318 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3319 } else
4e96b2db 3320 mark_buffer_dirty(bh);
4e96b2db
AH
3321
3322 BUFFER_TRACE(bh, "Partial buffer zeroed");
3323next:
3324 bh = bh->b_this_page;
3325 iblock++;
3326 pos += range_to_discard;
3327 }
3328
3329 return err;
3330}
3331
ac27a0ec 3332/*
617ba13b 3333 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3334 * up to the end of the block which corresponds to `from'.
3335 * This required during truncate. We need to physically zero the tail end
3336 * of that block so it doesn't yield old data if the file is later grown.
3337 */
cf108bca 3338int ext4_block_truncate_page(handle_t *handle,
ac27a0ec 3339 struct address_space *mapping, loff_t from)
30848851
AH
3340{
3341 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3342 unsigned length;
3343 unsigned blocksize;
3344 struct inode *inode = mapping->host;
3345
3346 blocksize = inode->i_sb->s_blocksize;
3347 length = blocksize - (offset & (blocksize - 1));
3348
3349 return ext4_block_zero_page_range(handle, mapping, from, length);
3350}
3351
3352/*
3353 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3354 * starting from file offset 'from'. The range to be zero'd must
3355 * be contained with in one block. If the specified range exceeds
3356 * the end of the block it will be shortened to end of the block
3357 * that cooresponds to 'from'
3358 */
3359int ext4_block_zero_page_range(handle_t *handle,
3360 struct address_space *mapping, loff_t from, loff_t length)
ac27a0ec 3361{
617ba13b 3362 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3363 unsigned offset = from & (PAGE_CACHE_SIZE-1);
30848851 3364 unsigned blocksize, max, pos;
725d26d3 3365 ext4_lblk_t iblock;
ac27a0ec
DK
3366 struct inode *inode = mapping->host;
3367 struct buffer_head *bh;
cf108bca 3368 struct page *page;
ac27a0ec 3369 int err = 0;
ac27a0ec 3370
f4a01017
TT
3371 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3372 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3373 if (!page)
3374 return -EINVAL;
3375
ac27a0ec 3376 blocksize = inode->i_sb->s_blocksize;
30848851
AH
3377 max = blocksize - (offset & (blocksize - 1));
3378
3379 /*
3380 * correct length if it does not fall between
3381 * 'from' and the end of the block
3382 */
3383 if (length > max || length < 0)
3384 length = max;
3385
ac27a0ec
DK
3386 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3387
ac27a0ec
DK
3388 if (!page_has_buffers(page))
3389 create_empty_buffers(page, blocksize, 0);
3390
3391 /* Find the buffer that contains "offset" */
3392 bh = page_buffers(page);
3393 pos = blocksize;
3394 while (offset >= pos) {
3395 bh = bh->b_this_page;
3396 iblock++;
3397 pos += blocksize;
3398 }
3399
3400 err = 0;
3401 if (buffer_freed(bh)) {
3402 BUFFER_TRACE(bh, "freed: skip");
3403 goto unlock;
3404 }
3405
3406 if (!buffer_mapped(bh)) {
3407 BUFFER_TRACE(bh, "unmapped");
617ba13b 3408 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3409 /* unmapped? It's a hole - nothing to do */
3410 if (!buffer_mapped(bh)) {
3411 BUFFER_TRACE(bh, "still unmapped");
3412 goto unlock;
3413 }
3414 }
3415
3416 /* Ok, it's mapped. Make sure it's up-to-date */
3417 if (PageUptodate(page))
3418 set_buffer_uptodate(bh);
3419
3420 if (!buffer_uptodate(bh)) {
3421 err = -EIO;
3422 ll_rw_block(READ, 1, &bh);
3423 wait_on_buffer(bh);
3424 /* Uhhuh. Read error. Complain and punt. */
3425 if (!buffer_uptodate(bh))
3426 goto unlock;
3427 }
3428
617ba13b 3429 if (ext4_should_journal_data(inode)) {
ac27a0ec 3430 BUFFER_TRACE(bh, "get write access");
617ba13b 3431 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3432 if (err)
3433 goto unlock;
3434 }
3435
eebd2aa3 3436 zero_user(page, offset, length);
ac27a0ec
DK
3437
3438 BUFFER_TRACE(bh, "zeroed end of block");
3439
3440 err = 0;
617ba13b 3441 if (ext4_should_journal_data(inode)) {
0390131b 3442 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3443 } else
ac27a0ec 3444 mark_buffer_dirty(bh);
ac27a0ec
DK
3445
3446unlock:
3447 unlock_page(page);
3448 page_cache_release(page);
3449 return err;
3450}
3451
91ef4caf
DG
3452int ext4_can_truncate(struct inode *inode)
3453{
91ef4caf
DG
3454 if (S_ISREG(inode->i_mode))
3455 return 1;
3456 if (S_ISDIR(inode->i_mode))
3457 return 1;
3458 if (S_ISLNK(inode->i_mode))
3459 return !ext4_inode_is_fast_symlink(inode);
3460 return 0;
3461}
3462
a4bb6b64
AH
3463/*
3464 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3465 * associated with the given offset and length
3466 *
3467 * @inode: File inode
3468 * @offset: The offset where the hole will begin
3469 * @len: The length of the hole
3470 *
3471 * Returns: 0 on sucess or negative on failure
3472 */
3473
3474int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3475{
3476 struct inode *inode = file->f_path.dentry->d_inode;
3477 if (!S_ISREG(inode->i_mode))
3478 return -ENOTSUPP;
3479
3480 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3481 /* TODO: Add support for non extent hole punching */
3482 return -ENOTSUPP;
3483 }
3484
bab08ab9
TT
3485 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3486 /* TODO: Add support for bigalloc file systems */
3487 return -ENOTSUPP;
3488 }
3489
a4bb6b64
AH
3490 return ext4_ext_punch_hole(file, offset, length);
3491}
3492
ac27a0ec 3493/*
617ba13b 3494 * ext4_truncate()
ac27a0ec 3495 *
617ba13b
MC
3496 * We block out ext4_get_block() block instantiations across the entire
3497 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3498 * simultaneously on behalf of the same inode.
3499 *
3500 * As we work through the truncate and commmit bits of it to the journal there
3501 * is one core, guiding principle: the file's tree must always be consistent on
3502 * disk. We must be able to restart the truncate after a crash.
3503 *
3504 * The file's tree may be transiently inconsistent in memory (although it
3505 * probably isn't), but whenever we close off and commit a journal transaction,
3506 * the contents of (the filesystem + the journal) must be consistent and
3507 * restartable. It's pretty simple, really: bottom up, right to left (although
3508 * left-to-right works OK too).
3509 *
3510 * Note that at recovery time, journal replay occurs *before* the restart of
3511 * truncate against the orphan inode list.
3512 *
3513 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3514 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3515 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3516 * ext4_truncate() to have another go. So there will be instantiated blocks
3517 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3518 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3519 * ext4_truncate() run will find them and release them.
ac27a0ec 3520 */
617ba13b 3521void ext4_truncate(struct inode *inode)
ac27a0ec 3522{
0562e0ba
JZ
3523 trace_ext4_truncate_enter(inode);
3524
91ef4caf 3525 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3526 return;
3527
12e9b892 3528 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3529
5534fb5b 3530 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3531 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3532
ff9893dc 3533 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3534 ext4_ext_truncate(inode);
ff9893dc
AG
3535 else
3536 ext4_ind_truncate(inode);
ac27a0ec 3537
0562e0ba 3538 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3539}
3540
ac27a0ec 3541/*
617ba13b 3542 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3543 * underlying buffer_head on success. If 'in_mem' is true, we have all
3544 * data in memory that is needed to recreate the on-disk version of this
3545 * inode.
3546 */
617ba13b
MC
3547static int __ext4_get_inode_loc(struct inode *inode,
3548 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3549{
240799cd
TT
3550 struct ext4_group_desc *gdp;
3551 struct buffer_head *bh;
3552 struct super_block *sb = inode->i_sb;
3553 ext4_fsblk_t block;
3554 int inodes_per_block, inode_offset;
3555
3a06d778 3556 iloc->bh = NULL;
240799cd
TT
3557 if (!ext4_valid_inum(sb, inode->i_ino))
3558 return -EIO;
ac27a0ec 3559
240799cd
TT
3560 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3561 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3562 if (!gdp)
ac27a0ec
DK
3563 return -EIO;
3564
240799cd
TT
3565 /*
3566 * Figure out the offset within the block group inode table
3567 */
00d09882 3568 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3569 inode_offset = ((inode->i_ino - 1) %
3570 EXT4_INODES_PER_GROUP(sb));
3571 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3572 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3573
3574 bh = sb_getblk(sb, block);
ac27a0ec 3575 if (!bh) {
c398eda0
TT
3576 EXT4_ERROR_INODE_BLOCK(inode, block,
3577 "unable to read itable block");
ac27a0ec
DK
3578 return -EIO;
3579 }
3580 if (!buffer_uptodate(bh)) {
3581 lock_buffer(bh);
9c83a923
HK
3582
3583 /*
3584 * If the buffer has the write error flag, we have failed
3585 * to write out another inode in the same block. In this
3586 * case, we don't have to read the block because we may
3587 * read the old inode data successfully.
3588 */
3589 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3590 set_buffer_uptodate(bh);
3591
ac27a0ec
DK
3592 if (buffer_uptodate(bh)) {
3593 /* someone brought it uptodate while we waited */
3594 unlock_buffer(bh);
3595 goto has_buffer;
3596 }
3597
3598 /*
3599 * If we have all information of the inode in memory and this
3600 * is the only valid inode in the block, we need not read the
3601 * block.
3602 */
3603 if (in_mem) {
3604 struct buffer_head *bitmap_bh;
240799cd 3605 int i, start;
ac27a0ec 3606
240799cd 3607 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3608
240799cd
TT
3609 /* Is the inode bitmap in cache? */
3610 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3611 if (!bitmap_bh)
3612 goto make_io;
3613
3614 /*
3615 * If the inode bitmap isn't in cache then the
3616 * optimisation may end up performing two reads instead
3617 * of one, so skip it.
3618 */
3619 if (!buffer_uptodate(bitmap_bh)) {
3620 brelse(bitmap_bh);
3621 goto make_io;
3622 }
240799cd 3623 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3624 if (i == inode_offset)
3625 continue;
617ba13b 3626 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3627 break;
3628 }
3629 brelse(bitmap_bh);
240799cd 3630 if (i == start + inodes_per_block) {
ac27a0ec
DK
3631 /* all other inodes are free, so skip I/O */
3632 memset(bh->b_data, 0, bh->b_size);
3633 set_buffer_uptodate(bh);
3634 unlock_buffer(bh);
3635 goto has_buffer;
3636 }
3637 }
3638
3639make_io:
240799cd
TT
3640 /*
3641 * If we need to do any I/O, try to pre-readahead extra
3642 * blocks from the inode table.
3643 */
3644 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3645 ext4_fsblk_t b, end, table;
3646 unsigned num;
3647
3648 table = ext4_inode_table(sb, gdp);
b713a5ec 3649 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3650 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3651 if (table > b)
3652 b = table;
3653 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3654 num = EXT4_INODES_PER_GROUP(sb);
3655 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3656 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 3657 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3658 table += num / inodes_per_block;
3659 if (end > table)
3660 end = table;
3661 while (b <= end)
3662 sb_breadahead(sb, b++);
3663 }
3664
ac27a0ec
DK
3665 /*
3666 * There are other valid inodes in the buffer, this inode
3667 * has in-inode xattrs, or we don't have this inode in memory.
3668 * Read the block from disk.
3669 */
0562e0ba 3670 trace_ext4_load_inode(inode);
ac27a0ec
DK
3671 get_bh(bh);
3672 bh->b_end_io = end_buffer_read_sync;
3673 submit_bh(READ_META, bh);
3674 wait_on_buffer(bh);
3675 if (!buffer_uptodate(bh)) {
c398eda0
TT
3676 EXT4_ERROR_INODE_BLOCK(inode, block,
3677 "unable to read itable block");
ac27a0ec
DK
3678 brelse(bh);
3679 return -EIO;
3680 }
3681 }
3682has_buffer:
3683 iloc->bh = bh;
3684 return 0;
3685}
3686
617ba13b 3687int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3688{
3689 /* We have all inode data except xattrs in memory here. */
617ba13b 3690 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3691 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3692}
3693
617ba13b 3694void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3695{
617ba13b 3696 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3697
3698 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3699 if (flags & EXT4_SYNC_FL)
ac27a0ec 3700 inode->i_flags |= S_SYNC;
617ba13b 3701 if (flags & EXT4_APPEND_FL)
ac27a0ec 3702 inode->i_flags |= S_APPEND;
617ba13b 3703 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3704 inode->i_flags |= S_IMMUTABLE;
617ba13b 3705 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3706 inode->i_flags |= S_NOATIME;
617ba13b 3707 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3708 inode->i_flags |= S_DIRSYNC;
3709}
3710
ff9ddf7e
JK
3711/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3712void ext4_get_inode_flags(struct ext4_inode_info *ei)
3713{
84a8dce2
DM
3714 unsigned int vfs_fl;
3715 unsigned long old_fl, new_fl;
3716
3717 do {
3718 vfs_fl = ei->vfs_inode.i_flags;
3719 old_fl = ei->i_flags;
3720 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3721 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3722 EXT4_DIRSYNC_FL);
3723 if (vfs_fl & S_SYNC)
3724 new_fl |= EXT4_SYNC_FL;
3725 if (vfs_fl & S_APPEND)
3726 new_fl |= EXT4_APPEND_FL;
3727 if (vfs_fl & S_IMMUTABLE)
3728 new_fl |= EXT4_IMMUTABLE_FL;
3729 if (vfs_fl & S_NOATIME)
3730 new_fl |= EXT4_NOATIME_FL;
3731 if (vfs_fl & S_DIRSYNC)
3732 new_fl |= EXT4_DIRSYNC_FL;
3733 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3734}
de9a55b8 3735
0fc1b451 3736static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3737 struct ext4_inode_info *ei)
0fc1b451
AK
3738{
3739 blkcnt_t i_blocks ;
8180a562
AK
3740 struct inode *inode = &(ei->vfs_inode);
3741 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3742
3743 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3744 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3745 /* we are using combined 48 bit field */
3746 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3747 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3748 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3749 /* i_blocks represent file system block size */
3750 return i_blocks << (inode->i_blkbits - 9);
3751 } else {
3752 return i_blocks;
3753 }
0fc1b451
AK
3754 } else {
3755 return le32_to_cpu(raw_inode->i_blocks_lo);
3756 }
3757}
ff9ddf7e 3758
1d1fe1ee 3759struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3760{
617ba13b
MC
3761 struct ext4_iloc iloc;
3762 struct ext4_inode *raw_inode;
1d1fe1ee 3763 struct ext4_inode_info *ei;
1d1fe1ee 3764 struct inode *inode;
b436b9be 3765 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3766 long ret;
ac27a0ec
DK
3767 int block;
3768
1d1fe1ee
DH
3769 inode = iget_locked(sb, ino);
3770 if (!inode)
3771 return ERR_PTR(-ENOMEM);
3772 if (!(inode->i_state & I_NEW))
3773 return inode;
3774
3775 ei = EXT4_I(inode);
7dc57615 3776 iloc.bh = NULL;
ac27a0ec 3777
1d1fe1ee
DH
3778 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3779 if (ret < 0)
ac27a0ec 3780 goto bad_inode;
617ba13b 3781 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
3782 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3783 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3784 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3785 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
3786 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3787 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3788 }
3789 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 3790
353eb83c 3791 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ac27a0ec
DK
3792 ei->i_dir_start_lookup = 0;
3793 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3794 /* We now have enough fields to check if the inode was active or not.
3795 * This is needed because nfsd might try to access dead inodes
3796 * the test is that same one that e2fsck uses
3797 * NeilBrown 1999oct15
3798 */
3799 if (inode->i_nlink == 0) {
3800 if (inode->i_mode == 0 ||
617ba13b 3801 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3802 /* this inode is deleted */
1d1fe1ee 3803 ret = -ESTALE;
ac27a0ec
DK
3804 goto bad_inode;
3805 }
3806 /* The only unlinked inodes we let through here have
3807 * valid i_mode and are being read by the orphan
3808 * recovery code: that's fine, we're about to complete
3809 * the process of deleting those. */
3810 }
ac27a0ec 3811 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3812 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3813 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3814 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3815 ei->i_file_acl |=
3816 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3817 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3818 ei->i_disksize = inode->i_size;
a9e7f447
DM
3819#ifdef CONFIG_QUOTA
3820 ei->i_reserved_quota = 0;
3821#endif
ac27a0ec
DK
3822 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3823 ei->i_block_group = iloc.block_group;
a4912123 3824 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3825 /*
3826 * NOTE! The in-memory inode i_data array is in little-endian order
3827 * even on big-endian machines: we do NOT byteswap the block numbers!
3828 */
617ba13b 3829 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3830 ei->i_data[block] = raw_inode->i_block[block];
3831 INIT_LIST_HEAD(&ei->i_orphan);
3832
b436b9be
JK
3833 /*
3834 * Set transaction id's of transactions that have to be committed
3835 * to finish f[data]sync. We set them to currently running transaction
3836 * as we cannot be sure that the inode or some of its metadata isn't
3837 * part of the transaction - the inode could have been reclaimed and
3838 * now it is reread from disk.
3839 */
3840 if (journal) {
3841 transaction_t *transaction;
3842 tid_t tid;
3843
a931da6a 3844 read_lock(&journal->j_state_lock);
b436b9be
JK
3845 if (journal->j_running_transaction)
3846 transaction = journal->j_running_transaction;
3847 else
3848 transaction = journal->j_committing_transaction;
3849 if (transaction)
3850 tid = transaction->t_tid;
3851 else
3852 tid = journal->j_commit_sequence;
a931da6a 3853 read_unlock(&journal->j_state_lock);
b436b9be
JK
3854 ei->i_sync_tid = tid;
3855 ei->i_datasync_tid = tid;
3856 }
3857
0040d987 3858 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 3859 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 3860 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 3861 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 3862 ret = -EIO;
ac27a0ec 3863 goto bad_inode;
e5d2861f 3864 }
ac27a0ec
DK
3865 if (ei->i_extra_isize == 0) {
3866 /* The extra space is currently unused. Use it. */
617ba13b
MC
3867 ei->i_extra_isize = sizeof(struct ext4_inode) -
3868 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3869 } else {
3870 __le32 *magic = (void *)raw_inode +
617ba13b 3871 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3872 ei->i_extra_isize;
617ba13b 3873 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 3874 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
3875 }
3876 } else
3877 ei->i_extra_isize = 0;
3878
ef7f3835
KS
3879 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3880 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3881 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3882 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3883
25ec56b5
JNC
3884 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3885 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3886 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3887 inode->i_version |=
3888 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3889 }
3890
c4b5a614 3891 ret = 0;
485c26ec 3892 if (ei->i_file_acl &&
1032988c 3893 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3894 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3895 ei->i_file_acl);
485c26ec
TT
3896 ret = -EIO;
3897 goto bad_inode;
07a03824 3898 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
3899 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3900 (S_ISLNK(inode->i_mode) &&
3901 !ext4_inode_is_fast_symlink(inode)))
3902 /* Validate extent which is part of inode */
3903 ret = ext4_ext_check_inode(inode);
de9a55b8 3904 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
3905 (S_ISLNK(inode->i_mode) &&
3906 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 3907 /* Validate block references which are part of inode */
1f7d1e77 3908 ret = ext4_ind_check_inode(inode);
fe2c8191 3909 }
567f3e9a 3910 if (ret)
de9a55b8 3911 goto bad_inode;
7a262f7c 3912
ac27a0ec 3913 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3914 inode->i_op = &ext4_file_inode_operations;
3915 inode->i_fop = &ext4_file_operations;
3916 ext4_set_aops(inode);
ac27a0ec 3917 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3918 inode->i_op = &ext4_dir_inode_operations;
3919 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3920 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3921 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3922 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3923 nd_terminate_link(ei->i_data, inode->i_size,
3924 sizeof(ei->i_data) - 1);
3925 } else {
617ba13b
MC
3926 inode->i_op = &ext4_symlink_inode_operations;
3927 ext4_set_aops(inode);
ac27a0ec 3928 }
563bdd61
TT
3929 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3930 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3931 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3932 if (raw_inode->i_block[0])
3933 init_special_inode(inode, inode->i_mode,
3934 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3935 else
3936 init_special_inode(inode, inode->i_mode,
3937 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3938 } else {
563bdd61 3939 ret = -EIO;
24676da4 3940 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3941 goto bad_inode;
ac27a0ec 3942 }
af5bc92d 3943 brelse(iloc.bh);
617ba13b 3944 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3945 unlock_new_inode(inode);
3946 return inode;
ac27a0ec
DK
3947
3948bad_inode:
567f3e9a 3949 brelse(iloc.bh);
1d1fe1ee
DH
3950 iget_failed(inode);
3951 return ERR_PTR(ret);
ac27a0ec
DK
3952}
3953
0fc1b451
AK
3954static int ext4_inode_blocks_set(handle_t *handle,
3955 struct ext4_inode *raw_inode,
3956 struct ext4_inode_info *ei)
3957{
3958 struct inode *inode = &(ei->vfs_inode);
3959 u64 i_blocks = inode->i_blocks;
3960 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3961
3962 if (i_blocks <= ~0U) {
3963 /*
3964 * i_blocks can be represnted in a 32 bit variable
3965 * as multiple of 512 bytes
3966 */
8180a562 3967 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3968 raw_inode->i_blocks_high = 0;
84a8dce2 3969 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
3970 return 0;
3971 }
3972 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3973 return -EFBIG;
3974
3975 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
3976 /*
3977 * i_blocks can be represented in a 48 bit variable
3978 * as multiple of 512 bytes
3979 */
8180a562 3980 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3981 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 3982 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 3983 } else {
84a8dce2 3984 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
3985 /* i_block is stored in file system block size */
3986 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3987 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3988 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 3989 }
f287a1a5 3990 return 0;
0fc1b451
AK
3991}
3992
ac27a0ec
DK
3993/*
3994 * Post the struct inode info into an on-disk inode location in the
3995 * buffer-cache. This gobbles the caller's reference to the
3996 * buffer_head in the inode location struct.
3997 *
3998 * The caller must have write access to iloc->bh.
3999 */
617ba13b 4000static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4001 struct inode *inode,
830156c7 4002 struct ext4_iloc *iloc)
ac27a0ec 4003{
617ba13b
MC
4004 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4005 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4006 struct buffer_head *bh = iloc->bh;
4007 int err = 0, rc, block;
4008
4009 /* For fields not not tracking in the in-memory inode,
4010 * initialise them to zero for new inodes. */
19f5fb7a 4011 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4012 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4013
ff9ddf7e 4014 ext4_get_inode_flags(ei);
ac27a0ec 4015 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4016 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4017 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4018 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4019/*
4020 * Fix up interoperability with old kernels. Otherwise, old inodes get
4021 * re-used with the upper 16 bits of the uid/gid intact
4022 */
af5bc92d 4023 if (!ei->i_dtime) {
ac27a0ec
DK
4024 raw_inode->i_uid_high =
4025 cpu_to_le16(high_16_bits(inode->i_uid));
4026 raw_inode->i_gid_high =
4027 cpu_to_le16(high_16_bits(inode->i_gid));
4028 } else {
4029 raw_inode->i_uid_high = 0;
4030 raw_inode->i_gid_high = 0;
4031 }
4032 } else {
4033 raw_inode->i_uid_low =
4034 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4035 raw_inode->i_gid_low =
4036 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4037 raw_inode->i_uid_high = 0;
4038 raw_inode->i_gid_high = 0;
4039 }
4040 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4041
4042 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4043 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4044 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4045 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4046
0fc1b451
AK
4047 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4048 goto out_brelse;
ac27a0ec 4049 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4050 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4051 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4052 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4053 raw_inode->i_file_acl_high =
4054 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4055 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4056 ext4_isize_set(raw_inode, ei->i_disksize);
4057 if (ei->i_disksize > 0x7fffffffULL) {
4058 struct super_block *sb = inode->i_sb;
4059 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4060 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4061 EXT4_SB(sb)->s_es->s_rev_level ==
4062 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4063 /* If this is the first large file
4064 * created, add a flag to the superblock.
4065 */
4066 err = ext4_journal_get_write_access(handle,
4067 EXT4_SB(sb)->s_sbh);
4068 if (err)
4069 goto out_brelse;
4070 ext4_update_dynamic_rev(sb);
4071 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4072 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4073 sb->s_dirt = 1;
0390131b 4074 ext4_handle_sync(handle);
73b50c1c 4075 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 4076 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4077 }
4078 }
4079 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4080 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4081 if (old_valid_dev(inode->i_rdev)) {
4082 raw_inode->i_block[0] =
4083 cpu_to_le32(old_encode_dev(inode->i_rdev));
4084 raw_inode->i_block[1] = 0;
4085 } else {
4086 raw_inode->i_block[0] = 0;
4087 raw_inode->i_block[1] =
4088 cpu_to_le32(new_encode_dev(inode->i_rdev));
4089 raw_inode->i_block[2] = 0;
4090 }
de9a55b8
TT
4091 } else
4092 for (block = 0; block < EXT4_N_BLOCKS; block++)
4093 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 4094
25ec56b5
JNC
4095 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4096 if (ei->i_extra_isize) {
4097 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4098 raw_inode->i_version_hi =
4099 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4100 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4101 }
4102
830156c7 4103 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4104 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4105 if (!err)
4106 err = rc;
19f5fb7a 4107 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4108
b436b9be 4109 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 4110out_brelse:
af5bc92d 4111 brelse(bh);
617ba13b 4112 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4113 return err;
4114}
4115
4116/*
617ba13b 4117 * ext4_write_inode()
ac27a0ec
DK
4118 *
4119 * We are called from a few places:
4120 *
4121 * - Within generic_file_write() for O_SYNC files.
4122 * Here, there will be no transaction running. We wait for any running
4123 * trasnaction to commit.
4124 *
4125 * - Within sys_sync(), kupdate and such.
4126 * We wait on commit, if tol to.
4127 *
4128 * - Within prune_icache() (PF_MEMALLOC == true)
4129 * Here we simply return. We can't afford to block kswapd on the
4130 * journal commit.
4131 *
4132 * In all cases it is actually safe for us to return without doing anything,
4133 * because the inode has been copied into a raw inode buffer in
617ba13b 4134 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4135 * knfsd.
4136 *
4137 * Note that we are absolutely dependent upon all inode dirtiers doing the
4138 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4139 * which we are interested.
4140 *
4141 * It would be a bug for them to not do this. The code:
4142 *
4143 * mark_inode_dirty(inode)
4144 * stuff();
4145 * inode->i_size = expr;
4146 *
4147 * is in error because a kswapd-driven write_inode() could occur while
4148 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4149 * will no longer be on the superblock's dirty inode list.
4150 */
a9185b41 4151int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4152{
91ac6f43
FM
4153 int err;
4154
ac27a0ec
DK
4155 if (current->flags & PF_MEMALLOC)
4156 return 0;
4157
91ac6f43
FM
4158 if (EXT4_SB(inode->i_sb)->s_journal) {
4159 if (ext4_journal_current_handle()) {
4160 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4161 dump_stack();
4162 return -EIO;
4163 }
ac27a0ec 4164
a9185b41 4165 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4166 return 0;
4167
4168 err = ext4_force_commit(inode->i_sb);
4169 } else {
4170 struct ext4_iloc iloc;
ac27a0ec 4171
8b472d73 4172 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4173 if (err)
4174 return err;
a9185b41 4175 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4176 sync_dirty_buffer(iloc.bh);
4177 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4178 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4179 "IO error syncing inode");
830156c7
FM
4180 err = -EIO;
4181 }
fd2dd9fb 4182 brelse(iloc.bh);
91ac6f43
FM
4183 }
4184 return err;
ac27a0ec
DK
4185}
4186
4187/*
617ba13b 4188 * ext4_setattr()
ac27a0ec
DK
4189 *
4190 * Called from notify_change.
4191 *
4192 * We want to trap VFS attempts to truncate the file as soon as
4193 * possible. In particular, we want to make sure that when the VFS
4194 * shrinks i_size, we put the inode on the orphan list and modify
4195 * i_disksize immediately, so that during the subsequent flushing of
4196 * dirty pages and freeing of disk blocks, we can guarantee that any
4197 * commit will leave the blocks being flushed in an unused state on
4198 * disk. (On recovery, the inode will get truncated and the blocks will
4199 * be freed, so we have a strong guarantee that no future commit will
4200 * leave these blocks visible to the user.)
4201 *
678aaf48
JK
4202 * Another thing we have to assure is that if we are in ordered mode
4203 * and inode is still attached to the committing transaction, we must
4204 * we start writeout of all the dirty pages which are being truncated.
4205 * This way we are sure that all the data written in the previous
4206 * transaction are already on disk (truncate waits for pages under
4207 * writeback).
4208 *
4209 * Called with inode->i_mutex down.
ac27a0ec 4210 */
617ba13b 4211int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4212{
4213 struct inode *inode = dentry->d_inode;
4214 int error, rc = 0;
3d287de3 4215 int orphan = 0;
ac27a0ec
DK
4216 const unsigned int ia_valid = attr->ia_valid;
4217
4218 error = inode_change_ok(inode, attr);
4219 if (error)
4220 return error;
4221
12755627 4222 if (is_quota_modification(inode, attr))
871a2931 4223 dquot_initialize(inode);
ac27a0ec
DK
4224 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4225 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4226 handle_t *handle;
4227
4228 /* (user+group)*(old+new) structure, inode write (sb,
4229 * inode block, ? - but truncate inode update has it) */
5aca07eb 4230 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4231 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4232 if (IS_ERR(handle)) {
4233 error = PTR_ERR(handle);
4234 goto err_out;
4235 }
b43fa828 4236 error = dquot_transfer(inode, attr);
ac27a0ec 4237 if (error) {
617ba13b 4238 ext4_journal_stop(handle);
ac27a0ec
DK
4239 return error;
4240 }
4241 /* Update corresponding info in inode so that everything is in
4242 * one transaction */
4243 if (attr->ia_valid & ATTR_UID)
4244 inode->i_uid = attr->ia_uid;
4245 if (attr->ia_valid & ATTR_GID)
4246 inode->i_gid = attr->ia_gid;
617ba13b
MC
4247 error = ext4_mark_inode_dirty(handle, inode);
4248 ext4_journal_stop(handle);
ac27a0ec
DK
4249 }
4250
e2b46574 4251 if (attr->ia_valid & ATTR_SIZE) {
562c72aa
CH
4252 inode_dio_wait(inode);
4253
12e9b892 4254 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4255 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4256
0c095c7f
TT
4257 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4258 return -EFBIG;
e2b46574
ES
4259 }
4260 }
4261
ac27a0ec 4262 if (S_ISREG(inode->i_mode) &&
c8d46e41 4263 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4264 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4265 handle_t *handle;
4266
617ba13b 4267 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4268 if (IS_ERR(handle)) {
4269 error = PTR_ERR(handle);
4270 goto err_out;
4271 }
3d287de3
DM
4272 if (ext4_handle_valid(handle)) {
4273 error = ext4_orphan_add(handle, inode);
4274 orphan = 1;
4275 }
617ba13b
MC
4276 EXT4_I(inode)->i_disksize = attr->ia_size;
4277 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4278 if (!error)
4279 error = rc;
617ba13b 4280 ext4_journal_stop(handle);
678aaf48
JK
4281
4282 if (ext4_should_order_data(inode)) {
4283 error = ext4_begin_ordered_truncate(inode,
4284 attr->ia_size);
4285 if (error) {
4286 /* Do as much error cleanup as possible */
4287 handle = ext4_journal_start(inode, 3);
4288 if (IS_ERR(handle)) {
4289 ext4_orphan_del(NULL, inode);
4290 goto err_out;
4291 }
4292 ext4_orphan_del(handle, inode);
3d287de3 4293 orphan = 0;
678aaf48
JK
4294 ext4_journal_stop(handle);
4295 goto err_out;
4296 }
4297 }
ac27a0ec
DK
4298 }
4299
072bd7ea
TT
4300 if (attr->ia_valid & ATTR_SIZE) {
4301 if (attr->ia_size != i_size_read(inode)) {
4302 truncate_setsize(inode, attr->ia_size);
4303 ext4_truncate(inode);
4304 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4305 ext4_truncate(inode);
4306 }
ac27a0ec 4307
1025774c
CH
4308 if (!rc) {
4309 setattr_copy(inode, attr);
4310 mark_inode_dirty(inode);
4311 }
4312
4313 /*
4314 * If the call to ext4_truncate failed to get a transaction handle at
4315 * all, we need to clean up the in-core orphan list manually.
4316 */
3d287de3 4317 if (orphan && inode->i_nlink)
617ba13b 4318 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4319
4320 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4321 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4322
4323err_out:
617ba13b 4324 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4325 if (!error)
4326 error = rc;
4327 return error;
4328}
4329
3e3398a0
MC
4330int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4331 struct kstat *stat)
4332{
4333 struct inode *inode;
4334 unsigned long delalloc_blocks;
4335
4336 inode = dentry->d_inode;
4337 generic_fillattr(inode, stat);
4338
4339 /*
4340 * We can't update i_blocks if the block allocation is delayed
4341 * otherwise in the case of system crash before the real block
4342 * allocation is done, we will have i_blocks inconsistent with
4343 * on-disk file blocks.
4344 * We always keep i_blocks updated together with real
4345 * allocation. But to not confuse with user, stat
4346 * will return the blocks that include the delayed allocation
4347 * blocks for this file.
4348 */
3e3398a0 4349 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3e3398a0
MC
4350
4351 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4352 return 0;
4353}
ac27a0ec 4354
a02908f1
MC
4355static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4356{
12e9b892 4357 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4358 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4359 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4360}
ac51d837 4361
ac27a0ec 4362/*
a02908f1
MC
4363 * Account for index blocks, block groups bitmaps and block group
4364 * descriptor blocks if modify datablocks and index blocks
4365 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4366 *
a02908f1 4367 * If datablocks are discontiguous, they are possible to spread over
af901ca1 4368 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 4369 * they could still across block group boundary.
ac27a0ec 4370 *
a02908f1
MC
4371 * Also account for superblock, inode, quota and xattr blocks
4372 */
1f109d5a 4373static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4374{
8df9675f
TT
4375 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4376 int gdpblocks;
a02908f1
MC
4377 int idxblocks;
4378 int ret = 0;
4379
4380 /*
4381 * How many index blocks need to touch to modify nrblocks?
4382 * The "Chunk" flag indicating whether the nrblocks is
4383 * physically contiguous on disk
4384 *
4385 * For Direct IO and fallocate, they calls get_block to allocate
4386 * one single extent at a time, so they could set the "Chunk" flag
4387 */
4388 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4389
4390 ret = idxblocks;
4391
4392 /*
4393 * Now let's see how many group bitmaps and group descriptors need
4394 * to account
4395 */
4396 groups = idxblocks;
4397 if (chunk)
4398 groups += 1;
4399 else
4400 groups += nrblocks;
4401
4402 gdpblocks = groups;
8df9675f
TT
4403 if (groups > ngroups)
4404 groups = ngroups;
a02908f1
MC
4405 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4406 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4407
4408 /* bitmaps and block group descriptor blocks */
4409 ret += groups + gdpblocks;
4410
4411 /* Blocks for super block, inode, quota and xattr blocks */
4412 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4413
4414 return ret;
4415}
4416
4417/*
25985edc 4418 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4419 * the modification of a single pages into a single transaction,
4420 * which may include multiple chunks of block allocations.
ac27a0ec 4421 *
525f4ed8 4422 * This could be called via ext4_write_begin()
ac27a0ec 4423 *
525f4ed8 4424 * We need to consider the worse case, when
a02908f1 4425 * one new block per extent.
ac27a0ec 4426 */
a86c6181 4427int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4428{
617ba13b 4429 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4430 int ret;
4431
a02908f1 4432 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4433
a02908f1 4434 /* Account for data blocks for journalled mode */
617ba13b 4435 if (ext4_should_journal_data(inode))
a02908f1 4436 ret += bpp;
ac27a0ec
DK
4437 return ret;
4438}
f3bd1f3f
MC
4439
4440/*
4441 * Calculate the journal credits for a chunk of data modification.
4442 *
4443 * This is called from DIO, fallocate or whoever calling
79e83036 4444 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4445 *
4446 * journal buffers for data blocks are not included here, as DIO
4447 * and fallocate do no need to journal data buffers.
4448 */
4449int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4450{
4451 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4452}
4453
ac27a0ec 4454/*
617ba13b 4455 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4456 * Give this, we know that the caller already has write access to iloc->bh.
4457 */
617ba13b 4458int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4459 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4460{
4461 int err = 0;
4462
25ec56b5
JNC
4463 if (test_opt(inode->i_sb, I_VERSION))
4464 inode_inc_iversion(inode);
4465
ac27a0ec
DK
4466 /* the do_update_inode consumes one bh->b_count */
4467 get_bh(iloc->bh);
4468
dab291af 4469 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4470 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4471 put_bh(iloc->bh);
4472 return err;
4473}
4474
4475/*
4476 * On success, We end up with an outstanding reference count against
4477 * iloc->bh. This _must_ be cleaned up later.
4478 */
4479
4480int
617ba13b
MC
4481ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4482 struct ext4_iloc *iloc)
ac27a0ec 4483{
0390131b
FM
4484 int err;
4485
4486 err = ext4_get_inode_loc(inode, iloc);
4487 if (!err) {
4488 BUFFER_TRACE(iloc->bh, "get_write_access");
4489 err = ext4_journal_get_write_access(handle, iloc->bh);
4490 if (err) {
4491 brelse(iloc->bh);
4492 iloc->bh = NULL;
ac27a0ec
DK
4493 }
4494 }
617ba13b 4495 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4496 return err;
4497}
4498
6dd4ee7c
KS
4499/*
4500 * Expand an inode by new_extra_isize bytes.
4501 * Returns 0 on success or negative error number on failure.
4502 */
1d03ec98
AK
4503static int ext4_expand_extra_isize(struct inode *inode,
4504 unsigned int new_extra_isize,
4505 struct ext4_iloc iloc,
4506 handle_t *handle)
6dd4ee7c
KS
4507{
4508 struct ext4_inode *raw_inode;
4509 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4510
4511 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4512 return 0;
4513
4514 raw_inode = ext4_raw_inode(&iloc);
4515
4516 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4517
4518 /* No extended attributes present */
19f5fb7a
TT
4519 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4520 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4521 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4522 new_extra_isize);
4523 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4524 return 0;
4525 }
4526
4527 /* try to expand with EAs present */
4528 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4529 raw_inode, handle);
4530}
4531
ac27a0ec
DK
4532/*
4533 * What we do here is to mark the in-core inode as clean with respect to inode
4534 * dirtiness (it may still be data-dirty).
4535 * This means that the in-core inode may be reaped by prune_icache
4536 * without having to perform any I/O. This is a very good thing,
4537 * because *any* task may call prune_icache - even ones which
4538 * have a transaction open against a different journal.
4539 *
4540 * Is this cheating? Not really. Sure, we haven't written the
4541 * inode out, but prune_icache isn't a user-visible syncing function.
4542 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4543 * we start and wait on commits.
4544 *
4545 * Is this efficient/effective? Well, we're being nice to the system
4546 * by cleaning up our inodes proactively so they can be reaped
4547 * without I/O. But we are potentially leaving up to five seconds'
4548 * worth of inodes floating about which prune_icache wants us to
4549 * write out. One way to fix that would be to get prune_icache()
4550 * to do a write_super() to free up some memory. It has the desired
4551 * effect.
4552 */
617ba13b 4553int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4554{
617ba13b 4555 struct ext4_iloc iloc;
6dd4ee7c
KS
4556 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4557 static unsigned int mnt_count;
4558 int err, ret;
ac27a0ec
DK
4559
4560 might_sleep();
7ff9c073 4561 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4562 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4563 if (ext4_handle_valid(handle) &&
4564 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4565 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4566 /*
4567 * We need extra buffer credits since we may write into EA block
4568 * with this same handle. If journal_extend fails, then it will
4569 * only result in a minor loss of functionality for that inode.
4570 * If this is felt to be critical, then e2fsck should be run to
4571 * force a large enough s_min_extra_isize.
4572 */
4573 if ((jbd2_journal_extend(handle,
4574 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4575 ret = ext4_expand_extra_isize(inode,
4576 sbi->s_want_extra_isize,
4577 iloc, handle);
4578 if (ret) {
19f5fb7a
TT
4579 ext4_set_inode_state(inode,
4580 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4581 if (mnt_count !=
4582 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4583 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4584 "Unable to expand inode %lu. Delete"
4585 " some EAs or run e2fsck.",
4586 inode->i_ino);
c1bddad9
AK
4587 mnt_count =
4588 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4589 }
4590 }
4591 }
4592 }
ac27a0ec 4593 if (!err)
617ba13b 4594 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4595 return err;
4596}
4597
4598/*
617ba13b 4599 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4600 *
4601 * We're really interested in the case where a file is being extended.
4602 * i_size has been changed by generic_commit_write() and we thus need
4603 * to include the updated inode in the current transaction.
4604 *
5dd4056d 4605 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4606 * are allocated to the file.
4607 *
4608 * If the inode is marked synchronous, we don't honour that here - doing
4609 * so would cause a commit on atime updates, which we don't bother doing.
4610 * We handle synchronous inodes at the highest possible level.
4611 */
aa385729 4612void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4613{
ac27a0ec
DK
4614 handle_t *handle;
4615
617ba13b 4616 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4617 if (IS_ERR(handle))
4618 goto out;
f3dc272f 4619
f3dc272f
CW
4620 ext4_mark_inode_dirty(handle, inode);
4621
617ba13b 4622 ext4_journal_stop(handle);
ac27a0ec
DK
4623out:
4624 return;
4625}
4626
4627#if 0
4628/*
4629 * Bind an inode's backing buffer_head into this transaction, to prevent
4630 * it from being flushed to disk early. Unlike
617ba13b 4631 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4632 * returns no iloc structure, so the caller needs to repeat the iloc
4633 * lookup to mark the inode dirty later.
4634 */
617ba13b 4635static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4636{
617ba13b 4637 struct ext4_iloc iloc;
ac27a0ec
DK
4638
4639 int err = 0;
4640 if (handle) {
617ba13b 4641 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4642 if (!err) {
4643 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4644 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4645 if (!err)
0390131b 4646 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4647 NULL,
0390131b 4648 iloc.bh);
ac27a0ec
DK
4649 brelse(iloc.bh);
4650 }
4651 }
617ba13b 4652 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4653 return err;
4654}
4655#endif
4656
617ba13b 4657int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4658{
4659 journal_t *journal;
4660 handle_t *handle;
4661 int err;
4662
4663 /*
4664 * We have to be very careful here: changing a data block's
4665 * journaling status dynamically is dangerous. If we write a
4666 * data block to the journal, change the status and then delete
4667 * that block, we risk forgetting to revoke the old log record
4668 * from the journal and so a subsequent replay can corrupt data.
4669 * So, first we make sure that the journal is empty and that
4670 * nobody is changing anything.
4671 */
4672
617ba13b 4673 journal = EXT4_JOURNAL(inode);
0390131b
FM
4674 if (!journal)
4675 return 0;
d699594d 4676 if (is_journal_aborted(journal))
ac27a0ec
DK
4677 return -EROFS;
4678
dab291af
MC
4679 jbd2_journal_lock_updates(journal);
4680 jbd2_journal_flush(journal);
ac27a0ec
DK
4681
4682 /*
4683 * OK, there are no updates running now, and all cached data is
4684 * synced to disk. We are now in a completely consistent state
4685 * which doesn't have anything in the journal, and we know that
4686 * no filesystem updates are running, so it is safe to modify
4687 * the inode's in-core data-journaling state flag now.
4688 */
4689
4690 if (val)
12e9b892 4691 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 4692 else
12e9b892 4693 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 4694 ext4_set_aops(inode);
ac27a0ec 4695
dab291af 4696 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4697
4698 /* Finally we can mark the inode as dirty. */
4699
617ba13b 4700 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4701 if (IS_ERR(handle))
4702 return PTR_ERR(handle);
4703
617ba13b 4704 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4705 ext4_handle_sync(handle);
617ba13b
MC
4706 ext4_journal_stop(handle);
4707 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4708
4709 return err;
4710}
2e9ee850
AK
4711
4712static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4713{
4714 return !buffer_mapped(bh);
4715}
4716
c2ec175c 4717int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4718{
c2ec175c 4719 struct page *page = vmf->page;
2e9ee850
AK
4720 loff_t size;
4721 unsigned long len;
9ea7df53 4722 int ret;
2e9ee850
AK
4723 struct file *file = vma->vm_file;
4724 struct inode *inode = file->f_path.dentry->d_inode;
4725 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4726 handle_t *handle;
4727 get_block_t *get_block;
4728 int retries = 0;
2e9ee850
AK
4729
4730 /*
9ea7df53
JK
4731 * This check is racy but catches the common case. We rely on
4732 * __block_page_mkwrite() to do a reliable check.
2e9ee850 4733 */
9ea7df53
JK
4734 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4735 /* Delalloc case is easy... */
4736 if (test_opt(inode->i_sb, DELALLOC) &&
4737 !ext4_should_journal_data(inode) &&
4738 !ext4_nonda_switch(inode->i_sb)) {
4739 do {
4740 ret = __block_page_mkwrite(vma, vmf,
4741 ext4_da_get_block_prep);
4742 } while (ret == -ENOSPC &&
4743 ext4_should_retry_alloc(inode->i_sb, &retries));
4744 goto out_ret;
2e9ee850 4745 }
0e499890
DW
4746
4747 lock_page(page);
9ea7df53
JK
4748 size = i_size_read(inode);
4749 /* Page got truncated from under us? */
4750 if (page->mapping != mapping || page_offset(page) > size) {
4751 unlock_page(page);
4752 ret = VM_FAULT_NOPAGE;
4753 goto out;
0e499890 4754 }
2e9ee850
AK
4755
4756 if (page->index == size >> PAGE_CACHE_SHIFT)
4757 len = size & ~PAGE_CACHE_MASK;
4758 else
4759 len = PAGE_CACHE_SIZE;
a827eaff 4760 /*
9ea7df53
JK
4761 * Return if we have all the buffers mapped. This avoids the need to do
4762 * journal_start/journal_stop which can block and take a long time
a827eaff 4763 */
2e9ee850 4764 if (page_has_buffers(page)) {
2e9ee850 4765 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff 4766 ext4_bh_unmapped)) {
9ea7df53
JK
4767 /* Wait so that we don't change page under IO */
4768 wait_on_page_writeback(page);
4769 ret = VM_FAULT_LOCKED;
4770 goto out;
a827eaff 4771 }
2e9ee850 4772 }
a827eaff 4773 unlock_page(page);
9ea7df53
JK
4774 /* OK, we need to fill the hole... */
4775 if (ext4_should_dioread_nolock(inode))
4776 get_block = ext4_get_block_write;
4777 else
4778 get_block = ext4_get_block;
4779retry_alloc:
4780 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4781 if (IS_ERR(handle)) {
c2ec175c 4782 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4783 goto out;
4784 }
4785 ret = __block_page_mkwrite(vma, vmf, get_block);
4786 if (!ret && ext4_should_journal_data(inode)) {
4787 if (walk_page_buffers(handle, page_buffers(page), 0,
4788 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4789 unlock_page(page);
4790 ret = VM_FAULT_SIGBUS;
fcbb5515 4791 ext4_journal_stop(handle);
9ea7df53
JK
4792 goto out;
4793 }
4794 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4795 }
4796 ext4_journal_stop(handle);
4797 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4798 goto retry_alloc;
4799out_ret:
4800 ret = block_page_mkwrite_return(ret);
4801out:
2e9ee850
AK
4802 return ret;
4803}
This page took 1.079781 seconds and 5 git commands to generate.