ext4: implement error handling of ext4_mb_new_preallocation()
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
64769240 141
ac27a0ec
DK
142/*
143 * Test whether an inode is a fast symlink.
144 */
617ba13b 145static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 146{
617ba13b 147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
907f4554 223 if (!is_bad_inode(inode))
871a2931 224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
228 truncate_inode_pages(&inode->i_data, 0);
229
5dc23bdd 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
231 if (is_bad_inode(inode))
232 goto no_delete;
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
9924a92a
TT
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 241 if (IS_ERR(handle)) {
bc965ab3 242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
617ba13b 248 ext4_orphan_del(NULL, inode);
8e8ad8a5 249 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
0390131b 254 ext4_handle_sync(handle);
ac27a0ec 255 inode->i_size = 0;
bc965ab3
TT
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
12062ddd 258 ext4_warning(inode->i_sb,
bc965ab3
TT
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
ac27a0ec 262 if (inode->i_blocks)
617ba13b 263 ext4_truncate(inode);
bc965ab3
TT
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
0390131b 271 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
12062ddd 276 ext4_warning(inode->i_sb,
bc965ab3
TT
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
45388219 280 ext4_orphan_del(NULL, inode);
8e8ad8a5 281 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
282 goto no_delete;
283 }
284 }
285
ac27a0ec 286 /*
617ba13b 287 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 288 * AKPM: I think this can be inside the above `if'.
617ba13b 289 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 290 * deletion of a non-existent orphan - this is because we don't
617ba13b 291 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
292 * (Well, we could do this if we need to, but heck - it works)
293 */
617ba13b
MC
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
617ba13b 304 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 305 /* If that failed, just do the required in-core inode clear. */
0930fcc1 306 ext4_clear_inode(inode);
ac27a0ec 307 else
617ba13b
MC
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
8e8ad8a5 310 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
311 return;
312no_delete:
0930fcc1 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
314}
315
a9e7f447
DM
316#ifdef CONFIG_QUOTA
317qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 318{
a9e7f447 319 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 320}
a9e7f447 321#endif
9d0be502 322
12219aea
AK
323/*
324 * Calculate the number of metadata blocks need to reserve
9d0be502 325 * to allocate a block located at @lblock
12219aea 326 */
01f49d0b 327static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 328{
12e9b892 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 330 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 331
8bb2b247 332 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
333}
334
0637c6f4
TT
335/*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
5f634d06
AK
339void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
12219aea
AK
341{
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 343 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
344
345 spin_lock(&ei->i_block_reservation_lock);
d8990240 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 347 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 349 "with only %d reserved data blocks",
0637c6f4
TT
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
12219aea 355
97795d2a 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
97795d2a
BF
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
0637c6f4
TT
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
0637c6f4 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 371 used + ei->i_allocated_meta_blocks);
0637c6f4 372 ei->i_allocated_meta_blocks = 0;
6bc6e63f 373
0637c6f4
TT
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
57042651 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 381 ei->i_reserved_meta_blocks);
ee5f4d9c 382 ei->i_reserved_meta_blocks = 0;
9d0be502 383 ei->i_da_metadata_calc_len = 0;
6bc6e63f 384 }
12219aea 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 386
72b8ab9d
ES
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
7b415bf6 389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 390 else {
5f634d06
AK
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
72b8ab9d 394 * not re-claim the quota for fallocated blocks.
5f634d06 395 */
7b415bf6 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 397 }
d6014301
AK
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
0637c6f4
TT
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
d6014301 406 ext4_discard_preallocations(inode);
12219aea
AK
407}
408
e29136f8 409static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
410 unsigned int line,
411 struct ext4_map_blocks *map)
6fd058f7 412{
24676da4
TT
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
c398eda0
TT
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
6fd058f7
TT
419 return -EIO;
420 }
421 return 0;
422}
423
e29136f8 424#define check_block_validity(inode, map) \
c398eda0 425 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 426
921f266b
DM
427#ifdef ES_AGGRESSIVE_TEST
428static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433{
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertation failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476}
477#endif /* ES_AGGRESSIVE_TEST */
478
f5ab0d1f 479/*
e35fd660 480 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 481 * and returns if the blocks are already mapped.
f5ab0d1f 482 *
f5ab0d1f
MC
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
e35fd660
TT
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 497 * that case, buffer head is unmapped
f5ab0d1f
MC
498 *
499 * It returns the error in case of allocation failure.
500 */
e35fd660
TT
501int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
0e855ac8 503{
d100eef2 504 struct extent_status es;
0e855ac8 505 int retval;
921f266b
DM
506#ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510#endif
f5ab0d1f 511
e35fd660
TT
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
d100eef2
ZL
516
517 /* Lookup extent status tree firstly */
518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
520 map->m_pblk = ext4_es_pblock(&es) +
521 map->m_lblk - es.es_lblk;
522 map->m_flags |= ext4_es_is_written(&es) ?
523 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
524 retval = es.es_len - (map->m_lblk - es.es_lblk);
525 if (retval > map->m_len)
526 retval = map->m_len;
527 map->m_len = retval;
528 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
529 retval = 0;
530 } else {
531 BUG_ON(1);
532 }
921f266b
DM
533#ifdef ES_AGGRESSIVE_TEST
534 ext4_map_blocks_es_recheck(handle, inode, map,
535 &orig_map, flags);
536#endif
d100eef2
ZL
537 goto found;
538 }
539
4df3d265 540 /*
b920c755
TT
541 * Try to see if we can get the block without requesting a new
542 * file system block.
4df3d265 543 */
729f52c6
ZL
544 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 546 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
547 retval = ext4_ext_map_blocks(handle, inode, map, flags &
548 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 549 } else {
a4e5d88b
DM
550 retval = ext4_ind_map_blocks(handle, inode, map, flags &
551 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 552 }
f7fec032
ZL
553 if (retval > 0) {
554 int ret;
555 unsigned long long status;
556
921f266b
DM
557#ifdef ES_AGGRESSIVE_TEST
558 if (retval != map->m_len) {
559 printk("ES len assertation failed for inode: %lu "
560 "retval %d != map->m_len %d "
561 "in %s (lookup)\n", inode->i_ino, retval,
562 map->m_len, __func__);
563 }
564#endif
565
f7fec032
ZL
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
729f52c6
ZL
577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 579
d100eef2 580found:
e35fd660 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 582 int ret = check_block_validity(inode, map);
6fd058f7
TT
583 if (ret != 0)
584 return ret;
585 }
586
f5ab0d1f 587 /* If it is only a block(s) look up */
c2177057 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
589 return retval;
590
591 /*
592 * Returns if the blocks have already allocated
593 *
594 * Note that if blocks have been preallocated
df3ab170 595 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
596 * with buffer head unmapped.
597 */
e35fd660 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
599 return retval;
600
2a8964d6 601 /*
a25a4e1a
ZL
602 * Here we clear m_flags because after allocating an new extent,
603 * it will be set again.
2a8964d6 604 */
a25a4e1a 605 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 606
4df3d265 607 /*
f5ab0d1f
MC
608 * New blocks allocate and/or writing to uninitialized extent
609 * will possibly result in updating i_data, so we take
610 * the write lock of i_data_sem, and call get_blocks()
611 * with create == 1 flag.
4df3d265
AK
612 */
613 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
614
615 /*
616 * if the caller is from delayed allocation writeout path
617 * we have already reserved fs blocks for allocation
618 * let the underlying get_block() function know to
619 * avoid double accounting
620 */
c2177057 621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
623 /*
624 * We need to check for EXT4 here because migrate
625 * could have changed the inode type in between
626 */
12e9b892 627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 628 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 629 } else {
e35fd660 630 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 631
e35fd660 632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
633 /*
634 * We allocated new blocks which will result in
635 * i_data's format changing. Force the migrate
636 * to fail by clearing migrate flags
637 */
19f5fb7a 638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 639 }
d2a17637 640
5f634d06
AK
641 /*
642 * Update reserved blocks/metadata blocks after successful
643 * block allocation which had been deferred till now. We don't
644 * support fallocate for non extent files. So we can update
645 * reserve space here.
646 */
647 if ((retval > 0) &&
1296cc85 648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
649 ext4_da_update_reserve_space(inode, retval, 1);
650 }
f7fec032 651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 653
f7fec032
ZL
654 if (retval > 0) {
655 int ret;
656 unsigned long long status;
657
921f266b
DM
658#ifdef ES_AGGRESSIVE_TEST
659 if (retval != map->m_len) {
660 printk("ES len assertation failed for inode: %lu "
661 "retval %d != map->m_len %d "
662 "in %s (allocation)\n", inode->i_ino, retval,
663 map->m_len, __func__);
664 }
665#endif
666
adb23551
ZL
667 /*
668 * If the extent has been zeroed out, we don't need to update
669 * extent status tree.
670 */
671 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
672 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
673 if (ext4_es_is_written(&es))
674 goto has_zeroout;
675 }
f7fec032
ZL
676 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
677 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
678 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
679 ext4_find_delalloc_range(inode, map->m_lblk,
680 map->m_lblk + map->m_len - 1))
681 status |= EXTENT_STATUS_DELAYED;
682 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
683 map->m_pblk, status);
684 if (ret < 0)
685 retval = ret;
5356f261
AK
686 }
687
adb23551 688has_zeroout:
4df3d265 689 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 690 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 691 int ret = check_block_validity(inode, map);
6fd058f7
TT
692 if (ret != 0)
693 return ret;
694 }
0e855ac8
AK
695 return retval;
696}
697
f3bd1f3f
MC
698/* Maximum number of blocks we map for direct IO at once. */
699#define DIO_MAX_BLOCKS 4096
700
2ed88685
TT
701static int _ext4_get_block(struct inode *inode, sector_t iblock,
702 struct buffer_head *bh, int flags)
ac27a0ec 703{
3e4fdaf8 704 handle_t *handle = ext4_journal_current_handle();
2ed88685 705 struct ext4_map_blocks map;
7fb5409d 706 int ret = 0, started = 0;
f3bd1f3f 707 int dio_credits;
ac27a0ec 708
46c7f254
TM
709 if (ext4_has_inline_data(inode))
710 return -ERANGE;
711
2ed88685
TT
712 map.m_lblk = iblock;
713 map.m_len = bh->b_size >> inode->i_blkbits;
714
8b0f165f 715 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 716 /* Direct IO write... */
2ed88685
TT
717 if (map.m_len > DIO_MAX_BLOCKS)
718 map.m_len = DIO_MAX_BLOCKS;
719 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
720 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
721 dio_credits);
7fb5409d 722 if (IS_ERR(handle)) {
ac27a0ec 723 ret = PTR_ERR(handle);
2ed88685 724 return ret;
ac27a0ec 725 }
7fb5409d 726 started = 1;
ac27a0ec
DK
727 }
728
2ed88685 729 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 730 if (ret > 0) {
2ed88685
TT
731 map_bh(bh, inode->i_sb, map.m_pblk);
732 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
733 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 734 ret = 0;
ac27a0ec 735 }
7fb5409d
JK
736 if (started)
737 ext4_journal_stop(handle);
ac27a0ec
DK
738 return ret;
739}
740
2ed88685
TT
741int ext4_get_block(struct inode *inode, sector_t iblock,
742 struct buffer_head *bh, int create)
743{
744 return _ext4_get_block(inode, iblock, bh,
745 create ? EXT4_GET_BLOCKS_CREATE : 0);
746}
747
ac27a0ec
DK
748/*
749 * `handle' can be NULL if create is zero
750 */
617ba13b 751struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 752 ext4_lblk_t block, int create, int *errp)
ac27a0ec 753{
2ed88685
TT
754 struct ext4_map_blocks map;
755 struct buffer_head *bh;
ac27a0ec
DK
756 int fatal = 0, err;
757
758 J_ASSERT(handle != NULL || create == 0);
759
2ed88685
TT
760 map.m_lblk = block;
761 map.m_len = 1;
762 err = ext4_map_blocks(handle, inode, &map,
763 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 764
90b0a973
CM
765 /* ensure we send some value back into *errp */
766 *errp = 0;
767
0f70b406
TT
768 if (create && err == 0)
769 err = -ENOSPC; /* should never happen */
2ed88685
TT
770 if (err < 0)
771 *errp = err;
772 if (err <= 0)
773 return NULL;
2ed88685
TT
774
775 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 776 if (unlikely(!bh)) {
860d21e2 777 *errp = -ENOMEM;
2ed88685 778 return NULL;
ac27a0ec 779 }
2ed88685
TT
780 if (map.m_flags & EXT4_MAP_NEW) {
781 J_ASSERT(create != 0);
782 J_ASSERT(handle != NULL);
ac27a0ec 783
2ed88685
TT
784 /*
785 * Now that we do not always journal data, we should
786 * keep in mind whether this should always journal the
787 * new buffer as metadata. For now, regular file
788 * writes use ext4_get_block instead, so it's not a
789 * problem.
790 */
791 lock_buffer(bh);
792 BUFFER_TRACE(bh, "call get_create_access");
793 fatal = ext4_journal_get_create_access(handle, bh);
794 if (!fatal && !buffer_uptodate(bh)) {
795 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
796 set_buffer_uptodate(bh);
ac27a0ec 797 }
2ed88685
TT
798 unlock_buffer(bh);
799 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
800 err = ext4_handle_dirty_metadata(handle, inode, bh);
801 if (!fatal)
802 fatal = err;
803 } else {
804 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 805 }
2ed88685
TT
806 if (fatal) {
807 *errp = fatal;
808 brelse(bh);
809 bh = NULL;
810 }
811 return bh;
ac27a0ec
DK
812}
813
617ba13b 814struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 815 ext4_lblk_t block, int create, int *err)
ac27a0ec 816{
af5bc92d 817 struct buffer_head *bh;
ac27a0ec 818
617ba13b 819 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
820 if (!bh)
821 return bh;
822 if (buffer_uptodate(bh))
823 return bh;
65299a3b 824 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
825 wait_on_buffer(bh);
826 if (buffer_uptodate(bh))
827 return bh;
828 put_bh(bh);
829 *err = -EIO;
830 return NULL;
831}
832
f19d5870
TM
833int ext4_walk_page_buffers(handle_t *handle,
834 struct buffer_head *head,
835 unsigned from,
836 unsigned to,
837 int *partial,
838 int (*fn)(handle_t *handle,
839 struct buffer_head *bh))
ac27a0ec
DK
840{
841 struct buffer_head *bh;
842 unsigned block_start, block_end;
843 unsigned blocksize = head->b_size;
844 int err, ret = 0;
845 struct buffer_head *next;
846
af5bc92d
TT
847 for (bh = head, block_start = 0;
848 ret == 0 && (bh != head || !block_start);
de9a55b8 849 block_start = block_end, bh = next) {
ac27a0ec
DK
850 next = bh->b_this_page;
851 block_end = block_start + blocksize;
852 if (block_end <= from || block_start >= to) {
853 if (partial && !buffer_uptodate(bh))
854 *partial = 1;
855 continue;
856 }
857 err = (*fn)(handle, bh);
858 if (!ret)
859 ret = err;
860 }
861 return ret;
862}
863
864/*
865 * To preserve ordering, it is essential that the hole instantiation and
866 * the data write be encapsulated in a single transaction. We cannot
617ba13b 867 * close off a transaction and start a new one between the ext4_get_block()
dab291af 868 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
869 * prepare_write() is the right place.
870 *
36ade451
JK
871 * Also, this function can nest inside ext4_writepage(). In that case, we
872 * *know* that ext4_writepage() has generated enough buffer credits to do the
873 * whole page. So we won't block on the journal in that case, which is good,
874 * because the caller may be PF_MEMALLOC.
ac27a0ec 875 *
617ba13b 876 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
877 * quota file writes. If we were to commit the transaction while thus
878 * reentered, there can be a deadlock - we would be holding a quota
879 * lock, and the commit would never complete if another thread had a
880 * transaction open and was blocking on the quota lock - a ranking
881 * violation.
882 *
dab291af 883 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
884 * will _not_ run commit under these circumstances because handle->h_ref
885 * is elevated. We'll still have enough credits for the tiny quotafile
886 * write.
887 */
f19d5870
TM
888int do_journal_get_write_access(handle_t *handle,
889 struct buffer_head *bh)
ac27a0ec 890{
56d35a4c
JK
891 int dirty = buffer_dirty(bh);
892 int ret;
893
ac27a0ec
DK
894 if (!buffer_mapped(bh) || buffer_freed(bh))
895 return 0;
56d35a4c 896 /*
ebdec241 897 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
898 * the dirty bit as jbd2_journal_get_write_access() could complain
899 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 900 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
901 * the bit before releasing a page lock and thus writeback cannot
902 * ever write the buffer.
903 */
904 if (dirty)
905 clear_buffer_dirty(bh);
906 ret = ext4_journal_get_write_access(handle, bh);
907 if (!ret && dirty)
908 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
909 return ret;
ac27a0ec
DK
910}
911
8b0f165f
AP
912static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
913 struct buffer_head *bh_result, int create);
bfc1af65 914static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
915 loff_t pos, unsigned len, unsigned flags,
916 struct page **pagep, void **fsdata)
ac27a0ec 917{
af5bc92d 918 struct inode *inode = mapping->host;
1938a150 919 int ret, needed_blocks;
ac27a0ec
DK
920 handle_t *handle;
921 int retries = 0;
af5bc92d 922 struct page *page;
de9a55b8 923 pgoff_t index;
af5bc92d 924 unsigned from, to;
bfc1af65 925
9bffad1e 926 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
927 /*
928 * Reserve one block more for addition to orphan list in case
929 * we allocate blocks but write fails for some reason
930 */
931 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 932 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
933 from = pos & (PAGE_CACHE_SIZE - 1);
934 to = from + len;
ac27a0ec 935
f19d5870
TM
936 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
937 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
938 flags, pagep);
939 if (ret < 0)
47564bfb
TT
940 return ret;
941 if (ret == 1)
942 return 0;
f19d5870
TM
943 }
944
47564bfb
TT
945 /*
946 * grab_cache_page_write_begin() can take a long time if the
947 * system is thrashing due to memory pressure, or if the page
948 * is being written back. So grab it first before we start
949 * the transaction handle. This also allows us to allocate
950 * the page (if needed) without using GFP_NOFS.
951 */
952retry_grab:
953 page = grab_cache_page_write_begin(mapping, index, flags);
954 if (!page)
955 return -ENOMEM;
956 unlock_page(page);
957
958retry_journal:
9924a92a 959 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 960 if (IS_ERR(handle)) {
47564bfb
TT
961 page_cache_release(page);
962 return PTR_ERR(handle);
7479d2b9 963 }
ac27a0ec 964
47564bfb
TT
965 lock_page(page);
966 if (page->mapping != mapping) {
967 /* The page got truncated from under us */
968 unlock_page(page);
969 page_cache_release(page);
cf108bca 970 ext4_journal_stop(handle);
47564bfb 971 goto retry_grab;
cf108bca 972 }
47564bfb 973 wait_on_page_writeback(page);
cf108bca 974
744692dc 975 if (ext4_should_dioread_nolock(inode))
6e1db88d 976 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 977 else
6e1db88d 978 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
979
980 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
981 ret = ext4_walk_page_buffers(handle, page_buffers(page),
982 from, to, NULL,
983 do_journal_get_write_access);
ac27a0ec 984 }
bfc1af65
NP
985
986 if (ret) {
af5bc92d 987 unlock_page(page);
ae4d5372 988 /*
6e1db88d 989 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
990 * outside i_size. Trim these off again. Don't need
991 * i_size_read because we hold i_mutex.
1938a150
AK
992 *
993 * Add inode to orphan list in case we crash before
994 * truncate finishes
ae4d5372 995 */
ffacfa7a 996 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
997 ext4_orphan_add(handle, inode);
998
999 ext4_journal_stop(handle);
1000 if (pos + len > inode->i_size) {
b9a4207d 1001 ext4_truncate_failed_write(inode);
de9a55b8 1002 /*
ffacfa7a 1003 * If truncate failed early the inode might
1938a150
AK
1004 * still be on the orphan list; we need to
1005 * make sure the inode is removed from the
1006 * orphan list in that case.
1007 */
1008 if (inode->i_nlink)
1009 ext4_orphan_del(NULL, inode);
1010 }
bfc1af65 1011
47564bfb
TT
1012 if (ret == -ENOSPC &&
1013 ext4_should_retry_alloc(inode->i_sb, &retries))
1014 goto retry_journal;
1015 page_cache_release(page);
1016 return ret;
1017 }
1018 *pagep = page;
ac27a0ec
DK
1019 return ret;
1020}
1021
bfc1af65
NP
1022/* For write_end() in data=journal mode */
1023static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1024{
13fca323 1025 int ret;
ac27a0ec
DK
1026 if (!buffer_mapped(bh) || buffer_freed(bh))
1027 return 0;
1028 set_buffer_uptodate(bh);
13fca323
TT
1029 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1030 clear_buffer_meta(bh);
1031 clear_buffer_prio(bh);
1032 return ret;
ac27a0ec
DK
1033}
1034
eed4333f
ZL
1035/*
1036 * We need to pick up the new inode size which generic_commit_write gave us
1037 * `file' can be NULL - eg, when called from page_symlink().
1038 *
1039 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1040 * buffers are managed internally.
1041 */
1042static int ext4_write_end(struct file *file,
1043 struct address_space *mapping,
1044 loff_t pos, unsigned len, unsigned copied,
1045 struct page *page, void *fsdata)
f8514083 1046{
f8514083 1047 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1048 struct inode *inode = mapping->host;
1049 int ret = 0, ret2;
1050 int i_size_changed = 0;
1051
1052 trace_ext4_write_end(inode, pos, len, copied);
1053 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1054 ret = ext4_jbd2_file_inode(handle, inode);
1055 if (ret) {
1056 unlock_page(page);
1057 page_cache_release(page);
1058 goto errout;
1059 }
1060 }
f8514083 1061
f19d5870
TM
1062 if (ext4_has_inline_data(inode))
1063 copied = ext4_write_inline_data_end(inode, pos, len,
1064 copied, page);
1065 else
1066 copied = block_write_end(file, mapping, pos,
1067 len, copied, page, fsdata);
f8514083
AK
1068
1069 /*
1070 * No need to use i_size_read() here, the i_size
eed4333f 1071 * cannot change under us because we hole i_mutex.
f8514083
AK
1072 *
1073 * But it's important to update i_size while still holding page lock:
1074 * page writeout could otherwise come in and zero beyond i_size.
1075 */
1076 if (pos + copied > inode->i_size) {
1077 i_size_write(inode, pos + copied);
1078 i_size_changed = 1;
1079 }
1080
eed4333f 1081 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1082 /* We need to mark inode dirty even if
1083 * new_i_size is less that inode->i_size
eed4333f 1084 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1085 */
1086 ext4_update_i_disksize(inode, (pos + copied));
1087 i_size_changed = 1;
1088 }
1089 unlock_page(page);
1090 page_cache_release(page);
1091
1092 /*
1093 * Don't mark the inode dirty under page lock. First, it unnecessarily
1094 * makes the holding time of page lock longer. Second, it forces lock
1095 * ordering of page lock and transaction start for journaling
1096 * filesystems.
1097 */
1098 if (i_size_changed)
1099 ext4_mark_inode_dirty(handle, inode);
1100
74d553aa
TT
1101 if (copied < 0)
1102 ret = copied;
ffacfa7a 1103 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1104 /* if we have allocated more blocks and copied
1105 * less. We will have blocks allocated outside
1106 * inode->i_size. So truncate them
1107 */
1108 ext4_orphan_add(handle, inode);
74d553aa 1109errout:
617ba13b 1110 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1111 if (!ret)
1112 ret = ret2;
bfc1af65 1113
f8514083 1114 if (pos + len > inode->i_size) {
b9a4207d 1115 ext4_truncate_failed_write(inode);
de9a55b8 1116 /*
ffacfa7a 1117 * If truncate failed early the inode might still be
f8514083
AK
1118 * on the orphan list; we need to make sure the inode
1119 * is removed from the orphan list in that case.
1120 */
1121 if (inode->i_nlink)
1122 ext4_orphan_del(NULL, inode);
1123 }
1124
bfc1af65 1125 return ret ? ret : copied;
ac27a0ec
DK
1126}
1127
bfc1af65 1128static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1129 struct address_space *mapping,
1130 loff_t pos, unsigned len, unsigned copied,
1131 struct page *page, void *fsdata)
ac27a0ec 1132{
617ba13b 1133 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1134 struct inode *inode = mapping->host;
ac27a0ec
DK
1135 int ret = 0, ret2;
1136 int partial = 0;
bfc1af65 1137 unsigned from, to;
cf17fea6 1138 loff_t new_i_size;
ac27a0ec 1139
9bffad1e 1140 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1141 from = pos & (PAGE_CACHE_SIZE - 1);
1142 to = from + len;
1143
441c8508
CW
1144 BUG_ON(!ext4_handle_valid(handle));
1145
3fdcfb66
TM
1146 if (ext4_has_inline_data(inode))
1147 copied = ext4_write_inline_data_end(inode, pos, len,
1148 copied, page);
1149 else {
1150 if (copied < len) {
1151 if (!PageUptodate(page))
1152 copied = 0;
1153 page_zero_new_buffers(page, from+copied, to);
1154 }
ac27a0ec 1155
3fdcfb66
TM
1156 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1157 to, &partial, write_end_fn);
1158 if (!partial)
1159 SetPageUptodate(page);
1160 }
cf17fea6
AK
1161 new_i_size = pos + copied;
1162 if (new_i_size > inode->i_size)
bfc1af65 1163 i_size_write(inode, pos+copied);
19f5fb7a 1164 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1165 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1166 if (new_i_size > EXT4_I(inode)->i_disksize) {
1167 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1168 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1169 if (!ret)
1170 ret = ret2;
1171 }
bfc1af65 1172
cf108bca 1173 unlock_page(page);
f8514083 1174 page_cache_release(page);
ffacfa7a 1175 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1176 /* if we have allocated more blocks and copied
1177 * less. We will have blocks allocated outside
1178 * inode->i_size. So truncate them
1179 */
1180 ext4_orphan_add(handle, inode);
1181
617ba13b 1182 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1183 if (!ret)
1184 ret = ret2;
f8514083 1185 if (pos + len > inode->i_size) {
b9a4207d 1186 ext4_truncate_failed_write(inode);
de9a55b8 1187 /*
ffacfa7a 1188 * If truncate failed early the inode might still be
f8514083
AK
1189 * on the orphan list; we need to make sure the inode
1190 * is removed from the orphan list in that case.
1191 */
1192 if (inode->i_nlink)
1193 ext4_orphan_del(NULL, inode);
1194 }
bfc1af65
NP
1195
1196 return ret ? ret : copied;
ac27a0ec 1197}
d2a17637 1198
386ad67c
LC
1199/*
1200 * Reserve a metadata for a single block located at lblock
1201 */
1202static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1203{
1204 int retries = 0;
1205 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1206 struct ext4_inode_info *ei = EXT4_I(inode);
1207 unsigned int md_needed;
1208 ext4_lblk_t save_last_lblock;
1209 int save_len;
1210
1211 /*
1212 * recalculate the amount of metadata blocks to reserve
1213 * in order to allocate nrblocks
1214 * worse case is one extent per block
1215 */
1216repeat:
1217 spin_lock(&ei->i_block_reservation_lock);
1218 /*
1219 * ext4_calc_metadata_amount() has side effects, which we have
1220 * to be prepared undo if we fail to claim space.
1221 */
1222 save_len = ei->i_da_metadata_calc_len;
1223 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1224 md_needed = EXT4_NUM_B2C(sbi,
1225 ext4_calc_metadata_amount(inode, lblock));
1226 trace_ext4_da_reserve_space(inode, md_needed);
1227
1228 /*
1229 * We do still charge estimated metadata to the sb though;
1230 * we cannot afford to run out of free blocks.
1231 */
1232 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1233 ei->i_da_metadata_calc_len = save_len;
1234 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1235 spin_unlock(&ei->i_block_reservation_lock);
1236 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1237 cond_resched();
1238 goto repeat;
1239 }
1240 return -ENOSPC;
1241 }
1242 ei->i_reserved_meta_blocks += md_needed;
1243 spin_unlock(&ei->i_block_reservation_lock);
1244
1245 return 0; /* success */
1246}
1247
9d0be502 1248/*
7b415bf6 1249 * Reserve a single cluster located at lblock
9d0be502 1250 */
01f49d0b 1251static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1252{
030ba6bc 1253 int retries = 0;
60e58e0f 1254 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1255 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1256 unsigned int md_needed;
5dd4056d 1257 int ret;
03179fe9
TT
1258 ext4_lblk_t save_last_lblock;
1259 int save_len;
1260
1261 /*
1262 * We will charge metadata quota at writeout time; this saves
1263 * us from metadata over-estimation, though we may go over by
1264 * a small amount in the end. Here we just reserve for data.
1265 */
1266 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1267 if (ret)
1268 return ret;
d2a17637
MC
1269
1270 /*
1271 * recalculate the amount of metadata blocks to reserve
1272 * in order to allocate nrblocks
1273 * worse case is one extent per block
1274 */
030ba6bc 1275repeat:
0637c6f4 1276 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1277 /*
1278 * ext4_calc_metadata_amount() has side effects, which we have
1279 * to be prepared undo if we fail to claim space.
1280 */
1281 save_len = ei->i_da_metadata_calc_len;
1282 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1283 md_needed = EXT4_NUM_B2C(sbi,
1284 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1285 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1286
72b8ab9d
ES
1287 /*
1288 * We do still charge estimated metadata to the sb though;
1289 * we cannot afford to run out of free blocks.
1290 */
e7d5f315 1291 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1292 ei->i_da_metadata_calc_len = save_len;
1293 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1295 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1296 cond_resched();
030ba6bc
AK
1297 goto repeat;
1298 }
03179fe9 1299 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1300 return -ENOSPC;
1301 }
9d0be502 1302 ei->i_reserved_data_blocks++;
0637c6f4
TT
1303 ei->i_reserved_meta_blocks += md_needed;
1304 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1305
d2a17637
MC
1306 return 0; /* success */
1307}
1308
12219aea 1309static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1310{
1311 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1312 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1313
cd213226
MC
1314 if (!to_free)
1315 return; /* Nothing to release, exit */
1316
d2a17637 1317 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1318
5a58ec87 1319 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1320 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1321 /*
0637c6f4
TT
1322 * if there aren't enough reserved blocks, then the
1323 * counter is messed up somewhere. Since this
1324 * function is called from invalidate page, it's
1325 * harmless to return without any action.
cd213226 1326 */
8de5c325 1327 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1328 "ino %lu, to_free %d with only %d reserved "
1084f252 1329 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1330 ei->i_reserved_data_blocks);
1331 WARN_ON(1);
1332 to_free = ei->i_reserved_data_blocks;
cd213226 1333 }
0637c6f4 1334 ei->i_reserved_data_blocks -= to_free;
cd213226 1335
0637c6f4
TT
1336 if (ei->i_reserved_data_blocks == 0) {
1337 /*
1338 * We can release all of the reserved metadata blocks
1339 * only when we have written all of the delayed
1340 * allocation blocks.
7b415bf6
AK
1341 * Note that in case of bigalloc, i_reserved_meta_blocks,
1342 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1343 */
57042651 1344 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1345 ei->i_reserved_meta_blocks);
ee5f4d9c 1346 ei->i_reserved_meta_blocks = 0;
9d0be502 1347 ei->i_da_metadata_calc_len = 0;
0637c6f4 1348 }
d2a17637 1349
72b8ab9d 1350 /* update fs dirty data blocks counter */
57042651 1351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1352
d2a17637 1353 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1354
7b415bf6 1355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1356}
1357
1358static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1359 unsigned int offset,
1360 unsigned int length)
d2a17637
MC
1361{
1362 int to_release = 0;
1363 struct buffer_head *head, *bh;
1364 unsigned int curr_off = 0;
7b415bf6
AK
1365 struct inode *inode = page->mapping->host;
1366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1367 unsigned int stop = offset + length;
7b415bf6 1368 int num_clusters;
51865fda 1369 ext4_fsblk_t lblk;
d2a17637 1370
ca99fdd2
LC
1371 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1372
d2a17637
MC
1373 head = page_buffers(page);
1374 bh = head;
1375 do {
1376 unsigned int next_off = curr_off + bh->b_size;
1377
ca99fdd2
LC
1378 if (next_off > stop)
1379 break;
1380
d2a17637
MC
1381 if ((offset <= curr_off) && (buffer_delay(bh))) {
1382 to_release++;
1383 clear_buffer_delay(bh);
1384 }
1385 curr_off = next_off;
1386 } while ((bh = bh->b_this_page) != head);
7b415bf6 1387
51865fda
ZL
1388 if (to_release) {
1389 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1390 ext4_es_remove_extent(inode, lblk, to_release);
1391 }
1392
7b415bf6
AK
1393 /* If we have released all the blocks belonging to a cluster, then we
1394 * need to release the reserved space for that cluster. */
1395 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1396 while (num_clusters > 0) {
7b415bf6
AK
1397 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1398 ((num_clusters - 1) << sbi->s_cluster_bits);
1399 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1400 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1401 ext4_da_release_space(inode, 1);
1402
1403 num_clusters--;
1404 }
d2a17637 1405}
ac27a0ec 1406
64769240
AT
1407/*
1408 * Delayed allocation stuff
1409 */
1410
4e7ea81d
JK
1411struct mpage_da_data {
1412 struct inode *inode;
1413 struct writeback_control *wbc;
6b523df4 1414
4e7ea81d
JK
1415 pgoff_t first_page; /* The first page to write */
1416 pgoff_t next_page; /* Current page to examine */
1417 pgoff_t last_page; /* Last page to examine */
791b7f08 1418 /*
4e7ea81d
JK
1419 * Extent to map - this can be after first_page because that can be
1420 * fully mapped. We somewhat abuse m_flags to store whether the extent
1421 * is delalloc or unwritten.
791b7f08 1422 */
4e7ea81d
JK
1423 struct ext4_map_blocks map;
1424 struct ext4_io_submit io_submit; /* IO submission data */
1425};
64769240 1426
4e7ea81d
JK
1427static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1428 bool invalidate)
c4a0c46e
AK
1429{
1430 int nr_pages, i;
1431 pgoff_t index, end;
1432 struct pagevec pvec;
1433 struct inode *inode = mpd->inode;
1434 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1435
1436 /* This is necessary when next_page == 0. */
1437 if (mpd->first_page >= mpd->next_page)
1438 return;
c4a0c46e 1439
c7f5938a
CW
1440 index = mpd->first_page;
1441 end = mpd->next_page - 1;
4e7ea81d
JK
1442 if (invalidate) {
1443 ext4_lblk_t start, last;
1444 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1446 ext4_es_remove_extent(inode, start, last - start + 1);
1447 }
51865fda 1448
66bea92c 1449 pagevec_init(&pvec, 0);
c4a0c46e
AK
1450 while (index <= end) {
1451 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1452 if (nr_pages == 0)
1453 break;
1454 for (i = 0; i < nr_pages; i++) {
1455 struct page *page = pvec.pages[i];
9b1d0998 1456 if (page->index > end)
c4a0c46e 1457 break;
c4a0c46e
AK
1458 BUG_ON(!PageLocked(page));
1459 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1460 if (invalidate) {
1461 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1462 ClearPageUptodate(page);
1463 }
c4a0c46e
AK
1464 unlock_page(page);
1465 }
9b1d0998
JK
1466 index = pvec.pages[nr_pages - 1]->index + 1;
1467 pagevec_release(&pvec);
c4a0c46e 1468 }
c4a0c46e
AK
1469}
1470
df22291f
AK
1471static void ext4_print_free_blocks(struct inode *inode)
1472{
1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1474 struct super_block *sb = inode->i_sb;
f78ee70d 1475 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1476
1477 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1478 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1479 ext4_count_free_clusters(sb)));
92b97816
TT
1480 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1481 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1482 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1483 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1484 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1485 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1486 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1487 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1488 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1489 ei->i_reserved_data_blocks);
92b97816 1490 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1491 ei->i_reserved_meta_blocks);
1492 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1493 ei->i_allocated_meta_blocks);
df22291f
AK
1494 return;
1495}
1496
c364b22c 1497static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1498{
c364b22c 1499 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1500}
1501
5356f261
AK
1502/*
1503 * This function is grabs code from the very beginning of
1504 * ext4_map_blocks, but assumes that the caller is from delayed write
1505 * time. This function looks up the requested blocks and sets the
1506 * buffer delay bit under the protection of i_data_sem.
1507 */
1508static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1509 struct ext4_map_blocks *map,
1510 struct buffer_head *bh)
1511{
d100eef2 1512 struct extent_status es;
5356f261
AK
1513 int retval;
1514 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1515#ifdef ES_AGGRESSIVE_TEST
1516 struct ext4_map_blocks orig_map;
1517
1518 memcpy(&orig_map, map, sizeof(*map));
1519#endif
5356f261
AK
1520
1521 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1522 invalid_block = ~0;
1523
1524 map->m_flags = 0;
1525 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1526 "logical block %lu\n", inode->i_ino, map->m_len,
1527 (unsigned long) map->m_lblk);
d100eef2
ZL
1528
1529 /* Lookup extent status tree firstly */
1530 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1531
1532 if (ext4_es_is_hole(&es)) {
1533 retval = 0;
1534 down_read((&EXT4_I(inode)->i_data_sem));
1535 goto add_delayed;
1536 }
1537
1538 /*
1539 * Delayed extent could be allocated by fallocate.
1540 * So we need to check it.
1541 */
1542 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1543 map_bh(bh, inode->i_sb, invalid_block);
1544 set_buffer_new(bh);
1545 set_buffer_delay(bh);
1546 return 0;
1547 }
1548
1549 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1550 retval = es.es_len - (iblock - es.es_lblk);
1551 if (retval > map->m_len)
1552 retval = map->m_len;
1553 map->m_len = retval;
1554 if (ext4_es_is_written(&es))
1555 map->m_flags |= EXT4_MAP_MAPPED;
1556 else if (ext4_es_is_unwritten(&es))
1557 map->m_flags |= EXT4_MAP_UNWRITTEN;
1558 else
1559 BUG_ON(1);
1560
921f266b
DM
1561#ifdef ES_AGGRESSIVE_TEST
1562 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1563#endif
d100eef2
ZL
1564 return retval;
1565 }
1566
5356f261
AK
1567 /*
1568 * Try to see if we can get the block without requesting a new
1569 * file system block.
1570 */
1571 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1572 if (ext4_has_inline_data(inode)) {
1573 /*
1574 * We will soon create blocks for this page, and let
1575 * us pretend as if the blocks aren't allocated yet.
1576 * In case of clusters, we have to handle the work
1577 * of mapping from cluster so that the reserved space
1578 * is calculated properly.
1579 */
1580 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1581 ext4_find_delalloc_cluster(inode, map->m_lblk))
1582 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1583 retval = 0;
1584 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1585 retval = ext4_ext_map_blocks(NULL, inode, map,
1586 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1587 else
d100eef2
ZL
1588 retval = ext4_ind_map_blocks(NULL, inode, map,
1589 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1590
d100eef2 1591add_delayed:
5356f261 1592 if (retval == 0) {
f7fec032 1593 int ret;
5356f261
AK
1594 /*
1595 * XXX: __block_prepare_write() unmaps passed block,
1596 * is it OK?
1597 */
386ad67c
LC
1598 /*
1599 * If the block was allocated from previously allocated cluster,
1600 * then we don't need to reserve it again. However we still need
1601 * to reserve metadata for every block we're going to write.
1602 */
5356f261 1603 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1604 ret = ext4_da_reserve_space(inode, iblock);
1605 if (ret) {
5356f261 1606 /* not enough space to reserve */
f7fec032 1607 retval = ret;
5356f261 1608 goto out_unlock;
f7fec032 1609 }
386ad67c
LC
1610 } else {
1611 ret = ext4_da_reserve_metadata(inode, iblock);
1612 if (ret) {
1613 /* not enough space to reserve */
1614 retval = ret;
1615 goto out_unlock;
1616 }
5356f261
AK
1617 }
1618
f7fec032
ZL
1619 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1620 ~0, EXTENT_STATUS_DELAYED);
1621 if (ret) {
1622 retval = ret;
51865fda 1623 goto out_unlock;
f7fec032 1624 }
51865fda 1625
5356f261
AK
1626 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1627 * and it should not appear on the bh->b_state.
1628 */
1629 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1630
1631 map_bh(bh, inode->i_sb, invalid_block);
1632 set_buffer_new(bh);
1633 set_buffer_delay(bh);
f7fec032
ZL
1634 } else if (retval > 0) {
1635 int ret;
1636 unsigned long long status;
1637
921f266b
DM
1638#ifdef ES_AGGRESSIVE_TEST
1639 if (retval != map->m_len) {
1640 printk("ES len assertation failed for inode: %lu "
1641 "retval %d != map->m_len %d "
1642 "in %s (lookup)\n", inode->i_ino, retval,
1643 map->m_len, __func__);
1644 }
1645#endif
1646
f7fec032
ZL
1647 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1648 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1649 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1650 map->m_pblk, status);
1651 if (ret != 0)
1652 retval = ret;
5356f261
AK
1653 }
1654
1655out_unlock:
1656 up_read((&EXT4_I(inode)->i_data_sem));
1657
1658 return retval;
1659}
1660
64769240 1661/*
b920c755
TT
1662 * This is a special get_blocks_t callback which is used by
1663 * ext4_da_write_begin(). It will either return mapped block or
1664 * reserve space for a single block.
29fa89d0
AK
1665 *
1666 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1667 * We also have b_blocknr = -1 and b_bdev initialized properly
1668 *
1669 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1670 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1671 * initialized properly.
64769240 1672 */
9c3569b5
TM
1673int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1674 struct buffer_head *bh, int create)
64769240 1675{
2ed88685 1676 struct ext4_map_blocks map;
64769240
AT
1677 int ret = 0;
1678
1679 BUG_ON(create == 0);
2ed88685
TT
1680 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1681
1682 map.m_lblk = iblock;
1683 map.m_len = 1;
64769240
AT
1684
1685 /*
1686 * first, we need to know whether the block is allocated already
1687 * preallocated blocks are unmapped but should treated
1688 * the same as allocated blocks.
1689 */
5356f261
AK
1690 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1691 if (ret <= 0)
2ed88685 1692 return ret;
64769240 1693
2ed88685
TT
1694 map_bh(bh, inode->i_sb, map.m_pblk);
1695 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1696
1697 if (buffer_unwritten(bh)) {
1698 /* A delayed write to unwritten bh should be marked
1699 * new and mapped. Mapped ensures that we don't do
1700 * get_block multiple times when we write to the same
1701 * offset and new ensures that we do proper zero out
1702 * for partial write.
1703 */
1704 set_buffer_new(bh);
c8205636 1705 set_buffer_mapped(bh);
2ed88685
TT
1706 }
1707 return 0;
64769240 1708}
61628a3f 1709
62e086be
AK
1710static int bget_one(handle_t *handle, struct buffer_head *bh)
1711{
1712 get_bh(bh);
1713 return 0;
1714}
1715
1716static int bput_one(handle_t *handle, struct buffer_head *bh)
1717{
1718 put_bh(bh);
1719 return 0;
1720}
1721
1722static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1723 unsigned int len)
1724{
1725 struct address_space *mapping = page->mapping;
1726 struct inode *inode = mapping->host;
3fdcfb66 1727 struct buffer_head *page_bufs = NULL;
62e086be 1728 handle_t *handle = NULL;
3fdcfb66
TM
1729 int ret = 0, err = 0;
1730 int inline_data = ext4_has_inline_data(inode);
1731 struct buffer_head *inode_bh = NULL;
62e086be 1732
cb20d518 1733 ClearPageChecked(page);
3fdcfb66
TM
1734
1735 if (inline_data) {
1736 BUG_ON(page->index != 0);
1737 BUG_ON(len > ext4_get_max_inline_size(inode));
1738 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1739 if (inode_bh == NULL)
1740 goto out;
1741 } else {
1742 page_bufs = page_buffers(page);
1743 if (!page_bufs) {
1744 BUG();
1745 goto out;
1746 }
1747 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1748 NULL, bget_one);
1749 }
62e086be
AK
1750 /* As soon as we unlock the page, it can go away, but we have
1751 * references to buffers so we are safe */
1752 unlock_page(page);
1753
9924a92a
TT
1754 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1755 ext4_writepage_trans_blocks(inode));
62e086be
AK
1756 if (IS_ERR(handle)) {
1757 ret = PTR_ERR(handle);
1758 goto out;
1759 }
1760
441c8508
CW
1761 BUG_ON(!ext4_handle_valid(handle));
1762
3fdcfb66
TM
1763 if (inline_data) {
1764 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1765
3fdcfb66
TM
1766 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1767
1768 } else {
1769 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1770 do_journal_get_write_access);
1771
1772 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1773 write_end_fn);
1774 }
62e086be
AK
1775 if (ret == 0)
1776 ret = err;
2d859db3 1777 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1778 err = ext4_journal_stop(handle);
1779 if (!ret)
1780 ret = err;
1781
3fdcfb66
TM
1782 if (!ext4_has_inline_data(inode))
1783 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1784 NULL, bput_one);
19f5fb7a 1785 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1786out:
3fdcfb66 1787 brelse(inode_bh);
62e086be
AK
1788 return ret;
1789}
1790
61628a3f 1791/*
43ce1d23
AK
1792 * Note that we don't need to start a transaction unless we're journaling data
1793 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1794 * need to file the inode to the transaction's list in ordered mode because if
1795 * we are writing back data added by write(), the inode is already there and if
25985edc 1796 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1797 * transaction the data will hit the disk. In case we are journaling data, we
1798 * cannot start transaction directly because transaction start ranks above page
1799 * lock so we have to do some magic.
1800 *
b920c755 1801 * This function can get called via...
20970ba6 1802 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1803 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1804 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1805 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1806 *
1807 * We don't do any block allocation in this function. If we have page with
1808 * multiple blocks we need to write those buffer_heads that are mapped. This
1809 * is important for mmaped based write. So if we do with blocksize 1K
1810 * truncate(f, 1024);
1811 * a = mmap(f, 0, 4096);
1812 * a[0] = 'a';
1813 * truncate(f, 4096);
1814 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1815 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1816 * do_wp_page). So writepage should write the first block. If we modify
1817 * the mmap area beyond 1024 we will again get a page_fault and the
1818 * page_mkwrite callback will do the block allocation and mark the
1819 * buffer_heads mapped.
1820 *
1821 * We redirty the page if we have any buffer_heads that is either delay or
1822 * unwritten in the page.
1823 *
1824 * We can get recursively called as show below.
1825 *
1826 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1827 * ext4_writepage()
1828 *
1829 * But since we don't do any block allocation we should not deadlock.
1830 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1831 */
43ce1d23 1832static int ext4_writepage(struct page *page,
62e086be 1833 struct writeback_control *wbc)
64769240 1834{
f8bec370 1835 int ret = 0;
61628a3f 1836 loff_t size;
498e5f24 1837 unsigned int len;
744692dc 1838 struct buffer_head *page_bufs = NULL;
61628a3f 1839 struct inode *inode = page->mapping->host;
36ade451 1840 struct ext4_io_submit io_submit;
61628a3f 1841
a9c667f8 1842 trace_ext4_writepage(page);
f0e6c985
AK
1843 size = i_size_read(inode);
1844 if (page->index == size >> PAGE_CACHE_SHIFT)
1845 len = size & ~PAGE_CACHE_MASK;
1846 else
1847 len = PAGE_CACHE_SIZE;
64769240 1848
a42afc5f 1849 page_bufs = page_buffers(page);
a42afc5f 1850 /*
fe386132
JK
1851 * We cannot do block allocation or other extent handling in this
1852 * function. If there are buffers needing that, we have to redirty
1853 * the page. But we may reach here when we do a journal commit via
1854 * journal_submit_inode_data_buffers() and in that case we must write
1855 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1856 */
f19d5870
TM
1857 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1858 ext4_bh_delay_or_unwritten)) {
f8bec370 1859 redirty_page_for_writepage(wbc, page);
fe386132
JK
1860 if (current->flags & PF_MEMALLOC) {
1861 /*
1862 * For memory cleaning there's no point in writing only
1863 * some buffers. So just bail out. Warn if we came here
1864 * from direct reclaim.
1865 */
1866 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1867 == PF_MEMALLOC);
f0e6c985
AK
1868 unlock_page(page);
1869 return 0;
1870 }
a42afc5f 1871 }
64769240 1872
cb20d518 1873 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1874 /*
1875 * It's mmapped pagecache. Add buffers and journal it. There
1876 * doesn't seem much point in redirtying the page here.
1877 */
3f0ca309 1878 return __ext4_journalled_writepage(page, len);
43ce1d23 1879
97a851ed
JK
1880 ext4_io_submit_init(&io_submit, wbc);
1881 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1882 if (!io_submit.io_end) {
1883 redirty_page_for_writepage(wbc, page);
1884 unlock_page(page);
1885 return -ENOMEM;
1886 }
36ade451
JK
1887 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1888 ext4_io_submit(&io_submit);
97a851ed
JK
1889 /* Drop io_end reference we got from init */
1890 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1891 return ret;
1892}
1893
4e7ea81d
JK
1894#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1895
61628a3f 1896/*
fffb2739
JK
1897 * mballoc gives us at most this number of blocks...
1898 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1899 * The rest of mballoc seems to handle chunks upto full group size.
61628a3f 1900 */
fffb2739 1901#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1902
4e7ea81d
JK
1903/*
1904 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1905 *
1906 * @mpd - extent of blocks
1907 * @lblk - logical number of the block in the file
1908 * @b_state - b_state of the buffer head added
1909 *
1910 * the function is used to collect contig. blocks in same state
1911 */
1912static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1913 unsigned long b_state)
1914{
1915 struct ext4_map_blocks *map = &mpd->map;
1916
1917 /* Don't go larger than mballoc is willing to allocate */
1918 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1919 return 0;
1920
1921 /* First block in the extent? */
1922 if (map->m_len == 0) {
1923 map->m_lblk = lblk;
1924 map->m_len = 1;
1925 map->m_flags = b_state & BH_FLAGS;
1926 return 1;
1927 }
1928
1929 /* Can we merge the block to our big extent? */
1930 if (lblk == map->m_lblk + map->m_len &&
1931 (b_state & BH_FLAGS) == map->m_flags) {
1932 map->m_len++;
1933 return 1;
1934 }
1935 return 0;
1936}
1937
1938static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1939 struct buffer_head *head,
1940 struct buffer_head *bh,
1941 ext4_lblk_t lblk)
1942{
1943 struct inode *inode = mpd->inode;
1944 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1945 >> inode->i_blkbits;
1946
1947 do {
1948 BUG_ON(buffer_locked(bh));
1949
1950 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1951 (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1952 lblk >= blocks) {
1953 /* Found extent to map? */
1954 if (mpd->map.m_len)
1955 return false;
1956 if (lblk >= blocks)
1957 return true;
1958 continue;
1959 }
1960 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1961 return false;
1962 } while (lblk++, (bh = bh->b_this_page) != head);
1963 return true;
1964}
1965
1966static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1967{
1968 int len;
1969 loff_t size = i_size_read(mpd->inode);
1970 int err;
1971
1972 BUG_ON(page->index != mpd->first_page);
1973 if (page->index == size >> PAGE_CACHE_SHIFT)
1974 len = size & ~PAGE_CACHE_MASK;
1975 else
1976 len = PAGE_CACHE_SIZE;
1977 clear_page_dirty_for_io(page);
1978 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1979 if (!err)
1980 mpd->wbc->nr_to_write--;
1981 mpd->first_page++;
1982
1983 return err;
1984}
1985
1986/*
1987 * mpage_map_buffers - update buffers corresponding to changed extent and
1988 * submit fully mapped pages for IO
1989 *
1990 * @mpd - description of extent to map, on return next extent to map
1991 *
1992 * Scan buffers corresponding to changed extent (we expect corresponding pages
1993 * to be already locked) and update buffer state according to new extent state.
1994 * We map delalloc buffers to their physical location, clear unwritten bits,
1995 * and mark buffers as uninit when we perform writes to uninitialized extents
1996 * and do extent conversion after IO is finished. If the last page is not fully
1997 * mapped, we update @map to the next extent in the last page that needs
1998 * mapping. Otherwise we submit the page for IO.
1999 */
2000static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2001{
2002 struct pagevec pvec;
2003 int nr_pages, i;
2004 struct inode *inode = mpd->inode;
2005 struct buffer_head *head, *bh;
2006 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2007 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2008 >> inode->i_blkbits;
2009 pgoff_t start, end;
2010 ext4_lblk_t lblk;
2011 sector_t pblock;
2012 int err;
2013
2014 start = mpd->map.m_lblk >> bpp_bits;
2015 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2016 lblk = start << bpp_bits;
2017 pblock = mpd->map.m_pblk;
2018
2019 pagevec_init(&pvec, 0);
2020 while (start <= end) {
2021 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2022 PAGEVEC_SIZE);
2023 if (nr_pages == 0)
2024 break;
2025 for (i = 0; i < nr_pages; i++) {
2026 struct page *page = pvec.pages[i];
2027
2028 if (page->index > end)
2029 break;
2030 /* Upto 'end' pages must be contiguous */
2031 BUG_ON(page->index != start);
2032 bh = head = page_buffers(page);
2033 do {
2034 if (lblk < mpd->map.m_lblk)
2035 continue;
2036 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2037 /*
2038 * Buffer after end of mapped extent.
2039 * Find next buffer in the page to map.
2040 */
2041 mpd->map.m_len = 0;
2042 mpd->map.m_flags = 0;
2043 add_page_bufs_to_extent(mpd, head, bh,
2044 lblk);
2045 pagevec_release(&pvec);
2046 return 0;
2047 }
2048 if (buffer_delay(bh)) {
2049 clear_buffer_delay(bh);
2050 bh->b_blocknr = pblock++;
2051 }
4e7ea81d
JK
2052 clear_buffer_unwritten(bh);
2053 } while (++lblk < blocks &&
2054 (bh = bh->b_this_page) != head);
2055
2056 /*
2057 * FIXME: This is going to break if dioread_nolock
2058 * supports blocksize < pagesize as we will try to
2059 * convert potentially unmapped parts of inode.
2060 */
2061 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2062 /* Page fully mapped - let IO run! */
2063 err = mpage_submit_page(mpd, page);
2064 if (err < 0) {
2065 pagevec_release(&pvec);
2066 return err;
2067 }
2068 start++;
2069 }
2070 pagevec_release(&pvec);
2071 }
2072 /* Extent fully mapped and matches with page boundary. We are done. */
2073 mpd->map.m_len = 0;
2074 mpd->map.m_flags = 0;
2075 return 0;
2076}
2077
2078static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2079{
2080 struct inode *inode = mpd->inode;
2081 struct ext4_map_blocks *map = &mpd->map;
2082 int get_blocks_flags;
2083 int err;
2084
2085 trace_ext4_da_write_pages_extent(inode, map);
2086 /*
2087 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2088 * to convert an uninitialized extent to be initialized (in the case
2089 * where we have written into one or more preallocated blocks). It is
2090 * possible that we're going to need more metadata blocks than
2091 * previously reserved. However we must not fail because we're in
2092 * writeback and there is nothing we can do about it so it might result
2093 * in data loss. So use reserved blocks to allocate metadata if
2094 * possible.
2095 *
2096 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2097 * in question are delalloc blocks. This affects functions in many
2098 * different parts of the allocation call path. This flag exists
2099 * primarily because we don't want to change *many* call functions, so
2100 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2101 * once the inode's allocation semaphore is taken.
2102 */
2103 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2104 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2105 if (ext4_should_dioread_nolock(inode))
2106 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2107 if (map->m_flags & (1 << BH_Delay))
2108 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2109
2110 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2111 if (err < 0)
2112 return err;
6b523df4
JK
2113 if (map->m_flags & EXT4_MAP_UNINIT) {
2114 if (!mpd->io_submit.io_end->handle &&
2115 ext4_handle_valid(handle)) {
2116 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2117 handle->h_rsv_handle = NULL;
2118 }
3613d228 2119 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2120 }
4e7ea81d
JK
2121
2122 BUG_ON(map->m_len == 0);
2123 if (map->m_flags & EXT4_MAP_NEW) {
2124 struct block_device *bdev = inode->i_sb->s_bdev;
2125 int i;
2126
2127 for (i = 0; i < map->m_len; i++)
2128 unmap_underlying_metadata(bdev, map->m_pblk + i);
2129 }
2130 return 0;
2131}
2132
2133/*
2134 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2135 * mpd->len and submit pages underlying it for IO
2136 *
2137 * @handle - handle for journal operations
2138 * @mpd - extent to map
2139 *
2140 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2141 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2142 * them to initialized or split the described range from larger unwritten
2143 * extent. Note that we need not map all the described range since allocation
2144 * can return less blocks or the range is covered by more unwritten extents. We
2145 * cannot map more because we are limited by reserved transaction credits. On
2146 * the other hand we always make sure that the last touched page is fully
2147 * mapped so that it can be written out (and thus forward progress is
2148 * guaranteed). After mapping we submit all mapped pages for IO.
2149 */
2150static int mpage_map_and_submit_extent(handle_t *handle,
2151 struct mpage_da_data *mpd)
2152{
2153 struct inode *inode = mpd->inode;
2154 struct ext4_map_blocks *map = &mpd->map;
2155 int err;
2156 loff_t disksize;
2157
2158 mpd->io_submit.io_end->offset =
2159 ((loff_t)map->m_lblk) << inode->i_blkbits;
2160 while (map->m_len) {
2161 err = mpage_map_one_extent(handle, mpd);
2162 if (err < 0) {
2163 struct super_block *sb = inode->i_sb;
2164
2165 /*
2166 * Need to commit transaction to free blocks. Let upper
2167 * layers sort it out.
2168 */
2169 if (err == -ENOSPC && ext4_count_free_clusters(sb))
2170 return -ENOSPC;
2171
2172 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2173 ext4_msg(sb, KERN_CRIT,
2174 "Delayed block allocation failed for "
2175 "inode %lu at logical offset %llu with"
2176 " max blocks %u with error %d",
2177 inode->i_ino,
2178 (unsigned long long)map->m_lblk,
2179 (unsigned)map->m_len, err);
2180 ext4_msg(sb, KERN_CRIT,
2181 "This should not happen!! Data will "
2182 "be lost\n");
2183 if (err == -ENOSPC)
2184 ext4_print_free_blocks(inode);
2185 }
2186 /* invalidate all the pages */
2187 mpage_release_unused_pages(mpd, true);
2188 return err;
2189 }
2190 /*
2191 * Update buffer state, submit mapped pages, and get us new
2192 * extent to map
2193 */
2194 err = mpage_map_and_submit_buffers(mpd);
2195 if (err < 0)
2196 return err;
2197 }
2198
2199 /* Update on-disk size after IO is submitted */
2200 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2201 if (disksize > i_size_read(inode))
2202 disksize = i_size_read(inode);
2203 if (disksize > EXT4_I(inode)->i_disksize) {
2204 int err2;
2205
2206 ext4_update_i_disksize(inode, disksize);
2207 err2 = ext4_mark_inode_dirty(handle, inode);
2208 if (err2)
2209 ext4_error(inode->i_sb,
2210 "Failed to mark inode %lu dirty",
2211 inode->i_ino);
2212 if (!err)
2213 err = err2;
2214 }
2215 return err;
2216}
2217
fffb2739
JK
2218/*
2219 * Calculate the total number of credits to reserve for one writepages
20970ba6 2220 * iteration. This is called from ext4_writepages(). We map an extent of
fffb2739
JK
2221 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2222 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2223 * bpp - 1 blocks in bpp different extents.
2224 */
525f4ed8
MC
2225static int ext4_da_writepages_trans_blocks(struct inode *inode)
2226{
fffb2739 2227 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2228
fffb2739
JK
2229 return ext4_meta_trans_blocks(inode,
2230 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2231}
61628a3f 2232
8e48dcfb 2233/*
4e7ea81d
JK
2234 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2235 * and underlying extent to map
2236 *
2237 * @mpd - where to look for pages
2238 *
2239 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2240 * IO immediately. When we find a page which isn't mapped we start accumulating
2241 * extent of buffers underlying these pages that needs mapping (formed by
2242 * either delayed or unwritten buffers). We also lock the pages containing
2243 * these buffers. The extent found is returned in @mpd structure (starting at
2244 * mpd->lblk with length mpd->len blocks).
2245 *
2246 * Note that this function can attach bios to one io_end structure which are
2247 * neither logically nor physically contiguous. Although it may seem as an
2248 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2249 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2250 */
4e7ea81d 2251static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2252{
4e7ea81d
JK
2253 struct address_space *mapping = mpd->inode->i_mapping;
2254 struct pagevec pvec;
2255 unsigned int nr_pages;
2256 pgoff_t index = mpd->first_page;
2257 pgoff_t end = mpd->last_page;
2258 int tag;
2259 int i, err = 0;
2260 int blkbits = mpd->inode->i_blkbits;
2261 ext4_lblk_t lblk;
2262 struct buffer_head *head;
8e48dcfb 2263
4e7ea81d 2264 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2265 tag = PAGECACHE_TAG_TOWRITE;
2266 else
2267 tag = PAGECACHE_TAG_DIRTY;
2268
4e7ea81d
JK
2269 pagevec_init(&pvec, 0);
2270 mpd->map.m_len = 0;
2271 mpd->next_page = index;
4f01b02c 2272 while (index <= end) {
5b41d924 2273 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2274 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2275 if (nr_pages == 0)
4e7ea81d 2276 goto out;
8e48dcfb
TT
2277
2278 for (i = 0; i < nr_pages; i++) {
2279 struct page *page = pvec.pages[i];
2280
2281 /*
2282 * At this point, the page may be truncated or
2283 * invalidated (changing page->mapping to NULL), or
2284 * even swizzled back from swapper_space to tmpfs file
2285 * mapping. However, page->index will not change
2286 * because we have a reference on the page.
2287 */
4f01b02c
TT
2288 if (page->index > end)
2289 goto out;
8e48dcfb 2290
4e7ea81d
JK
2291 /* If we can't merge this page, we are done. */
2292 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2293 goto out;
78aaced3 2294
8e48dcfb 2295 lock_page(page);
8e48dcfb 2296 /*
4e7ea81d
JK
2297 * If the page is no longer dirty, or its mapping no
2298 * longer corresponds to inode we are writing (which
2299 * means it has been truncated or invalidated), or the
2300 * page is already under writeback and we are not doing
2301 * a data integrity writeback, skip the page
8e48dcfb 2302 */
4f01b02c
TT
2303 if (!PageDirty(page) ||
2304 (PageWriteback(page) &&
4e7ea81d 2305 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2306 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2307 unlock_page(page);
2308 continue;
2309 }
2310
7cb1a535 2311 wait_on_page_writeback(page);
8e48dcfb 2312 BUG_ON(PageWriteback(page));
8e48dcfb 2313
4e7ea81d 2314 if (mpd->map.m_len == 0)
8eb9e5ce 2315 mpd->first_page = page->index;
8eb9e5ce 2316 mpd->next_page = page->index + 1;
f8bec370 2317 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2318 lblk = ((ext4_lblk_t)page->index) <<
2319 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2320 head = page_buffers(page);
4e7ea81d
JK
2321 if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2322 goto out;
2323 /* So far everything mapped? Submit the page for IO. */
2324 if (mpd->map.m_len == 0) {
2325 err = mpage_submit_page(mpd, page);
2326 if (err < 0)
4f01b02c 2327 goto out;
8e48dcfb 2328 }
4e7ea81d
JK
2329
2330 /*
2331 * Accumulated enough dirty pages? This doesn't apply
2332 * to WB_SYNC_ALL mode. For integrity sync we have to
2333 * keep going because someone may be concurrently
2334 * dirtying pages, and we might have synced a lot of
2335 * newly appeared dirty pages, but have not synced all
2336 * of the old dirty pages.
2337 */
2338 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2339 mpd->next_page - mpd->first_page >=
2340 mpd->wbc->nr_to_write)
2341 goto out;
8e48dcfb
TT
2342 }
2343 pagevec_release(&pvec);
2344 cond_resched();
2345 }
4f01b02c 2346 return 0;
8eb9e5ce
TT
2347out:
2348 pagevec_release(&pvec);
4e7ea81d 2349 return err;
8e48dcfb
TT
2350}
2351
20970ba6
TT
2352static int __writepage(struct page *page, struct writeback_control *wbc,
2353 void *data)
2354{
2355 struct address_space *mapping = data;
2356 int ret = ext4_writepage(page, wbc);
2357 mapping_set_error(mapping, ret);
2358 return ret;
2359}
2360
2361static int ext4_writepages(struct address_space *mapping,
2362 struct writeback_control *wbc)
64769240 2363{
4e7ea81d
JK
2364 pgoff_t writeback_index = 0;
2365 long nr_to_write = wbc->nr_to_write;
22208ded 2366 int range_whole = 0;
4e7ea81d 2367 int cycled = 1;
61628a3f 2368 handle_t *handle = NULL;
df22291f 2369 struct mpage_da_data mpd;
5e745b04 2370 struct inode *inode = mapping->host;
6b523df4 2371 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2372 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2373 bool done;
1bce63d1 2374 struct blk_plug plug;
61628a3f 2375
20970ba6 2376 trace_ext4_writepages(inode, wbc);
ba80b101 2377
61628a3f
MC
2378 /*
2379 * No pages to write? This is mainly a kludge to avoid starting
2380 * a transaction for special inodes like journal inode on last iput()
2381 * because that could violate lock ordering on umount
2382 */
a1d6cc56 2383 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2384 return 0;
2a21e37e 2385
20970ba6
TT
2386 if (ext4_should_journal_data(inode)) {
2387 struct blk_plug plug;
2388 int ret;
2389
2390 blk_start_plug(&plug);
2391 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2392 blk_finish_plug(&plug);
2393 return ret;
2394 }
2395
2a21e37e
TT
2396 /*
2397 * If the filesystem has aborted, it is read-only, so return
2398 * right away instead of dumping stack traces later on that
2399 * will obscure the real source of the problem. We test
4ab2f15b 2400 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2401 * the latter could be true if the filesystem is mounted
20970ba6 2402 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2403 * *never* be called, so if that ever happens, we would want
2404 * the stack trace.
2405 */
4ab2f15b 2406 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2407 return -EROFS;
2408
6b523df4
JK
2409 if (ext4_should_dioread_nolock(inode)) {
2410 /*
2411 * We may need to convert upto one extent per block in
2412 * the page and we may dirty the inode.
2413 */
2414 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2415 }
2416
4e7ea81d
JK
2417 /*
2418 * If we have inline data and arrive here, it means that
2419 * we will soon create the block for the 1st page, so
2420 * we'd better clear the inline data here.
2421 */
2422 if (ext4_has_inline_data(inode)) {
2423 /* Just inode will be modified... */
2424 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2425 if (IS_ERR(handle)) {
2426 ret = PTR_ERR(handle);
2427 goto out_writepages;
2428 }
2429 BUG_ON(ext4_test_inode_state(inode,
2430 EXT4_STATE_MAY_INLINE_DATA));
2431 ext4_destroy_inline_data(handle, inode);
2432 ext4_journal_stop(handle);
2433 }
2434
22208ded
AK
2435 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2436 range_whole = 1;
61628a3f 2437
2acf2c26 2438 if (wbc->range_cyclic) {
4e7ea81d
JK
2439 writeback_index = mapping->writeback_index;
2440 if (writeback_index)
2acf2c26 2441 cycled = 0;
4e7ea81d
JK
2442 mpd.first_page = writeback_index;
2443 mpd.last_page = -1;
5b41d924 2444 } else {
4e7ea81d
JK
2445 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2446 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2447 }
a1d6cc56 2448
4e7ea81d
JK
2449 mpd.inode = inode;
2450 mpd.wbc = wbc;
2451 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2452retry:
6e6938b6 2453 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2454 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2455 done = false;
1bce63d1 2456 blk_start_plug(&plug);
4e7ea81d
JK
2457 while (!done && mpd.first_page <= mpd.last_page) {
2458 /* For each extent of pages we use new io_end */
2459 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2460 if (!mpd.io_submit.io_end) {
2461 ret = -ENOMEM;
2462 break;
2463 }
a1d6cc56
AK
2464
2465 /*
4e7ea81d
JK
2466 * We have two constraints: We find one extent to map and we
2467 * must always write out whole page (makes a difference when
2468 * blocksize < pagesize) so that we don't block on IO when we
2469 * try to write out the rest of the page. Journalled mode is
2470 * not supported by delalloc.
a1d6cc56
AK
2471 */
2472 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2473 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2474
4e7ea81d 2475 /* start a new transaction */
6b523df4
JK
2476 handle = ext4_journal_start_with_reserve(inode,
2477 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2478 if (IS_ERR(handle)) {
2479 ret = PTR_ERR(handle);
1693918e 2480 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2481 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2482 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2483 /* Release allocated io_end */
2484 ext4_put_io_end(mpd.io_submit.io_end);
2485 break;
61628a3f 2486 }
f63e6005 2487
4e7ea81d
JK
2488 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2489 ret = mpage_prepare_extent_to_map(&mpd);
2490 if (!ret) {
2491 if (mpd.map.m_len)
2492 ret = mpage_map_and_submit_extent(handle, &mpd);
2493 else {
2494 /*
2495 * We scanned the whole range (or exhausted
2496 * nr_to_write), submitted what was mapped and
2497 * didn't find anything needing mapping. We are
2498 * done.
2499 */
2500 done = true;
2501 }
f63e6005 2502 }
61628a3f 2503 ext4_journal_stop(handle);
4e7ea81d
JK
2504 /* Submit prepared bio */
2505 ext4_io_submit(&mpd.io_submit);
2506 /* Unlock pages we didn't use */
2507 mpage_release_unused_pages(&mpd, false);
2508 /* Drop our io_end reference we got from init */
2509 ext4_put_io_end(mpd.io_submit.io_end);
2510
2511 if (ret == -ENOSPC && sbi->s_journal) {
2512 /*
2513 * Commit the transaction which would
22208ded
AK
2514 * free blocks released in the transaction
2515 * and try again
2516 */
df22291f 2517 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2518 ret = 0;
4e7ea81d
JK
2519 continue;
2520 }
2521 /* Fatal error - ENOMEM, EIO... */
2522 if (ret)
61628a3f 2523 break;
a1d6cc56 2524 }
1bce63d1 2525 blk_finish_plug(&plug);
4e7ea81d 2526 if (!ret && !cycled) {
2acf2c26 2527 cycled = 1;
4e7ea81d
JK
2528 mpd.last_page = writeback_index - 1;
2529 mpd.first_page = 0;
2acf2c26
AK
2530 goto retry;
2531 }
22208ded
AK
2532
2533 /* Update index */
22208ded
AK
2534 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2535 /*
4e7ea81d 2536 * Set the writeback_index so that range_cyclic
22208ded
AK
2537 * mode will write it back later
2538 */
4e7ea81d 2539 mapping->writeback_index = mpd.first_page;
a1d6cc56 2540
61628a3f 2541out_writepages:
20970ba6
TT
2542 trace_ext4_writepages_result(inode, wbc, ret,
2543 nr_to_write - wbc->nr_to_write);
61628a3f 2544 return ret;
64769240
AT
2545}
2546
79f0be8d
AK
2547static int ext4_nonda_switch(struct super_block *sb)
2548{
5c1ff336 2549 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2550 struct ext4_sb_info *sbi = EXT4_SB(sb);
2551
2552 /*
2553 * switch to non delalloc mode if we are running low
2554 * on free block. The free block accounting via percpu
179f7ebf 2555 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2556 * accumulated on each CPU without updating global counters
2557 * Delalloc need an accurate free block accounting. So switch
2558 * to non delalloc when we are near to error range.
2559 */
5c1ff336
EW
2560 free_clusters =
2561 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2562 dirty_clusters =
2563 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2564 /*
2565 * Start pushing delalloc when 1/2 of free blocks are dirty.
2566 */
5c1ff336 2567 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2568 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2569
5c1ff336
EW
2570 if (2 * free_clusters < 3 * dirty_clusters ||
2571 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2572 /*
c8afb446
ES
2573 * free block count is less than 150% of dirty blocks
2574 * or free blocks is less than watermark
79f0be8d
AK
2575 */
2576 return 1;
2577 }
2578 return 0;
2579}
2580
64769240 2581static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2582 loff_t pos, unsigned len, unsigned flags,
2583 struct page **pagep, void **fsdata)
64769240 2584{
72b8ab9d 2585 int ret, retries = 0;
64769240
AT
2586 struct page *page;
2587 pgoff_t index;
64769240
AT
2588 struct inode *inode = mapping->host;
2589 handle_t *handle;
2590
2591 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2592
2593 if (ext4_nonda_switch(inode->i_sb)) {
2594 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2595 return ext4_write_begin(file, mapping, pos,
2596 len, flags, pagep, fsdata);
2597 }
2598 *fsdata = (void *)0;
9bffad1e 2599 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2600
2601 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2602 ret = ext4_da_write_inline_data_begin(mapping, inode,
2603 pos, len, flags,
2604 pagep, fsdata);
2605 if (ret < 0)
47564bfb
TT
2606 return ret;
2607 if (ret == 1)
2608 return 0;
9c3569b5
TM
2609 }
2610
47564bfb
TT
2611 /*
2612 * grab_cache_page_write_begin() can take a long time if the
2613 * system is thrashing due to memory pressure, or if the page
2614 * is being written back. So grab it first before we start
2615 * the transaction handle. This also allows us to allocate
2616 * the page (if needed) without using GFP_NOFS.
2617 */
2618retry_grab:
2619 page = grab_cache_page_write_begin(mapping, index, flags);
2620 if (!page)
2621 return -ENOMEM;
2622 unlock_page(page);
2623
64769240
AT
2624 /*
2625 * With delayed allocation, we don't log the i_disksize update
2626 * if there is delayed block allocation. But we still need
2627 * to journalling the i_disksize update if writes to the end
2628 * of file which has an already mapped buffer.
2629 */
47564bfb 2630retry_journal:
9924a92a 2631 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2632 if (IS_ERR(handle)) {
47564bfb
TT
2633 page_cache_release(page);
2634 return PTR_ERR(handle);
64769240
AT
2635 }
2636
47564bfb
TT
2637 lock_page(page);
2638 if (page->mapping != mapping) {
2639 /* The page got truncated from under us */
2640 unlock_page(page);
2641 page_cache_release(page);
d5a0d4f7 2642 ext4_journal_stop(handle);
47564bfb 2643 goto retry_grab;
d5a0d4f7 2644 }
47564bfb
TT
2645 /* In case writeback began while the page was unlocked */
2646 wait_on_page_writeback(page);
64769240 2647
6e1db88d 2648 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2649 if (ret < 0) {
2650 unlock_page(page);
2651 ext4_journal_stop(handle);
ae4d5372
AK
2652 /*
2653 * block_write_begin may have instantiated a few blocks
2654 * outside i_size. Trim these off again. Don't need
2655 * i_size_read because we hold i_mutex.
2656 */
2657 if (pos + len > inode->i_size)
b9a4207d 2658 ext4_truncate_failed_write(inode);
47564bfb
TT
2659
2660 if (ret == -ENOSPC &&
2661 ext4_should_retry_alloc(inode->i_sb, &retries))
2662 goto retry_journal;
2663
2664 page_cache_release(page);
2665 return ret;
64769240
AT
2666 }
2667
47564bfb 2668 *pagep = page;
64769240
AT
2669 return ret;
2670}
2671
632eaeab
MC
2672/*
2673 * Check if we should update i_disksize
2674 * when write to the end of file but not require block allocation
2675 */
2676static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2677 unsigned long offset)
632eaeab
MC
2678{
2679 struct buffer_head *bh;
2680 struct inode *inode = page->mapping->host;
2681 unsigned int idx;
2682 int i;
2683
2684 bh = page_buffers(page);
2685 idx = offset >> inode->i_blkbits;
2686
af5bc92d 2687 for (i = 0; i < idx; i++)
632eaeab
MC
2688 bh = bh->b_this_page;
2689
29fa89d0 2690 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2691 return 0;
2692 return 1;
2693}
2694
64769240 2695static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2696 struct address_space *mapping,
2697 loff_t pos, unsigned len, unsigned copied,
2698 struct page *page, void *fsdata)
64769240
AT
2699{
2700 struct inode *inode = mapping->host;
2701 int ret = 0, ret2;
2702 handle_t *handle = ext4_journal_current_handle();
2703 loff_t new_i_size;
632eaeab 2704 unsigned long start, end;
79f0be8d
AK
2705 int write_mode = (int)(unsigned long)fsdata;
2706
74d553aa
TT
2707 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2708 return ext4_write_end(file, mapping, pos,
2709 len, copied, page, fsdata);
632eaeab 2710
9bffad1e 2711 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2712 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2713 end = start + copied - 1;
64769240
AT
2714
2715 /*
2716 * generic_write_end() will run mark_inode_dirty() if i_size
2717 * changes. So let's piggyback the i_disksize mark_inode_dirty
2718 * into that.
2719 */
64769240 2720 new_i_size = pos + copied;
ea51d132 2721 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2722 if (ext4_has_inline_data(inode) ||
2723 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2724 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2725 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2726 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2727 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2728 /* We need to mark inode dirty even if
2729 * new_i_size is less that inode->i_size
2730 * bu greater than i_disksize.(hint delalloc)
2731 */
2732 ext4_mark_inode_dirty(handle, inode);
64769240 2733 }
632eaeab 2734 }
9c3569b5
TM
2735
2736 if (write_mode != CONVERT_INLINE_DATA &&
2737 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2738 ext4_has_inline_data(inode))
2739 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2740 page);
2741 else
2742 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2743 page, fsdata);
9c3569b5 2744
64769240
AT
2745 copied = ret2;
2746 if (ret2 < 0)
2747 ret = ret2;
2748 ret2 = ext4_journal_stop(handle);
2749 if (!ret)
2750 ret = ret2;
2751
2752 return ret ? ret : copied;
2753}
2754
d47992f8
LC
2755static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2756 unsigned int length)
64769240 2757{
64769240
AT
2758 /*
2759 * Drop reserved blocks
2760 */
2761 BUG_ON(!PageLocked(page));
2762 if (!page_has_buffers(page))
2763 goto out;
2764
ca99fdd2 2765 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2766
2767out:
d47992f8 2768 ext4_invalidatepage(page, offset, length);
64769240
AT
2769
2770 return;
2771}
2772
ccd2506b
TT
2773/*
2774 * Force all delayed allocation blocks to be allocated for a given inode.
2775 */
2776int ext4_alloc_da_blocks(struct inode *inode)
2777{
fb40ba0d
TT
2778 trace_ext4_alloc_da_blocks(inode);
2779
ccd2506b
TT
2780 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2781 !EXT4_I(inode)->i_reserved_meta_blocks)
2782 return 0;
2783
2784 /*
2785 * We do something simple for now. The filemap_flush() will
2786 * also start triggering a write of the data blocks, which is
2787 * not strictly speaking necessary (and for users of
2788 * laptop_mode, not even desirable). However, to do otherwise
2789 * would require replicating code paths in:
de9a55b8 2790 *
20970ba6 2791 * ext4_writepages() ->
ccd2506b
TT
2792 * write_cache_pages() ---> (via passed in callback function)
2793 * __mpage_da_writepage() -->
2794 * mpage_add_bh_to_extent()
2795 * mpage_da_map_blocks()
2796 *
2797 * The problem is that write_cache_pages(), located in
2798 * mm/page-writeback.c, marks pages clean in preparation for
2799 * doing I/O, which is not desirable if we're not planning on
2800 * doing I/O at all.
2801 *
2802 * We could call write_cache_pages(), and then redirty all of
380cf090 2803 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2804 * would be ugly in the extreme. So instead we would need to
2805 * replicate parts of the code in the above functions,
25985edc 2806 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2807 * write out the pages, but rather only collect contiguous
2808 * logical block extents, call the multi-block allocator, and
2809 * then update the buffer heads with the block allocations.
de9a55b8 2810 *
ccd2506b
TT
2811 * For now, though, we'll cheat by calling filemap_flush(),
2812 * which will map the blocks, and start the I/O, but not
2813 * actually wait for the I/O to complete.
2814 */
2815 return filemap_flush(inode->i_mapping);
2816}
64769240 2817
ac27a0ec
DK
2818/*
2819 * bmap() is special. It gets used by applications such as lilo and by
2820 * the swapper to find the on-disk block of a specific piece of data.
2821 *
2822 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2823 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2824 * filesystem and enables swap, then they may get a nasty shock when the
2825 * data getting swapped to that swapfile suddenly gets overwritten by
2826 * the original zero's written out previously to the journal and
2827 * awaiting writeback in the kernel's buffer cache.
2828 *
2829 * So, if we see any bmap calls here on a modified, data-journaled file,
2830 * take extra steps to flush any blocks which might be in the cache.
2831 */
617ba13b 2832static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2833{
2834 struct inode *inode = mapping->host;
2835 journal_t *journal;
2836 int err;
2837
46c7f254
TM
2838 /*
2839 * We can get here for an inline file via the FIBMAP ioctl
2840 */
2841 if (ext4_has_inline_data(inode))
2842 return 0;
2843
64769240
AT
2844 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2845 test_opt(inode->i_sb, DELALLOC)) {
2846 /*
2847 * With delalloc we want to sync the file
2848 * so that we can make sure we allocate
2849 * blocks for file
2850 */
2851 filemap_write_and_wait(mapping);
2852 }
2853
19f5fb7a
TT
2854 if (EXT4_JOURNAL(inode) &&
2855 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2856 /*
2857 * This is a REALLY heavyweight approach, but the use of
2858 * bmap on dirty files is expected to be extremely rare:
2859 * only if we run lilo or swapon on a freshly made file
2860 * do we expect this to happen.
2861 *
2862 * (bmap requires CAP_SYS_RAWIO so this does not
2863 * represent an unprivileged user DOS attack --- we'd be
2864 * in trouble if mortal users could trigger this path at
2865 * will.)
2866 *
617ba13b 2867 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2868 * regular files. If somebody wants to bmap a directory
2869 * or symlink and gets confused because the buffer
2870 * hasn't yet been flushed to disk, they deserve
2871 * everything they get.
2872 */
2873
19f5fb7a 2874 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2875 journal = EXT4_JOURNAL(inode);
dab291af
MC
2876 jbd2_journal_lock_updates(journal);
2877 err = jbd2_journal_flush(journal);
2878 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2879
2880 if (err)
2881 return 0;
2882 }
2883
af5bc92d 2884 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2885}
2886
617ba13b 2887static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2888{
46c7f254
TM
2889 int ret = -EAGAIN;
2890 struct inode *inode = page->mapping->host;
2891
0562e0ba 2892 trace_ext4_readpage(page);
46c7f254
TM
2893
2894 if (ext4_has_inline_data(inode))
2895 ret = ext4_readpage_inline(inode, page);
2896
2897 if (ret == -EAGAIN)
2898 return mpage_readpage(page, ext4_get_block);
2899
2900 return ret;
ac27a0ec
DK
2901}
2902
2903static int
617ba13b 2904ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2905 struct list_head *pages, unsigned nr_pages)
2906{
46c7f254
TM
2907 struct inode *inode = mapping->host;
2908
2909 /* If the file has inline data, no need to do readpages. */
2910 if (ext4_has_inline_data(inode))
2911 return 0;
2912
617ba13b 2913 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2914}
2915
d47992f8
LC
2916static void ext4_invalidatepage(struct page *page, unsigned int offset,
2917 unsigned int length)
ac27a0ec 2918{
ca99fdd2 2919 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2920
4520fb3c
JK
2921 /* No journalling happens on data buffers when this function is used */
2922 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2923
ca99fdd2 2924 block_invalidatepage(page, offset, length);
4520fb3c
JK
2925}
2926
53e87268 2927static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2928 unsigned int offset,
2929 unsigned int length)
4520fb3c
JK
2930{
2931 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2932
ca99fdd2 2933 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2934
ac27a0ec
DK
2935 /*
2936 * If it's a full truncate we just forget about the pending dirtying
2937 */
ca99fdd2 2938 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2939 ClearPageChecked(page);
2940
ca99fdd2 2941 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2942}
2943
2944/* Wrapper for aops... */
2945static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2946 unsigned int offset,
2947 unsigned int length)
53e87268 2948{
ca99fdd2 2949 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2950}
2951
617ba13b 2952static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2953{
617ba13b 2954 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2955
0562e0ba
JZ
2956 trace_ext4_releasepage(page);
2957
e1c36595
JK
2958 /* Page has dirty journalled data -> cannot release */
2959 if (PageChecked(page))
ac27a0ec 2960 return 0;
0390131b
FM
2961 if (journal)
2962 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2963 else
2964 return try_to_free_buffers(page);
ac27a0ec
DK
2965}
2966
2ed88685
TT
2967/*
2968 * ext4_get_block used when preparing for a DIO write or buffer write.
2969 * We allocate an uinitialized extent if blocks haven't been allocated.
2970 * The extent will be converted to initialized after the IO is complete.
2971 */
f19d5870 2972int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2973 struct buffer_head *bh_result, int create)
2974{
c7064ef1 2975 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2976 inode->i_ino, create);
2ed88685
TT
2977 return _ext4_get_block(inode, iblock, bh_result,
2978 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2979}
2980
729f52c6 2981static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2982 struct buffer_head *bh_result, int create)
729f52c6 2983{
8b0f165f
AP
2984 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2985 inode->i_ino, create);
2986 return _ext4_get_block(inode, iblock, bh_result,
2987 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2988}
2989
4c0425ff 2990static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2991 ssize_t size, void *private, int ret,
2992 bool is_async)
4c0425ff 2993{
496ad9aa 2994 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 2995 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2996
97a851ed
JK
2997 /* if not async direct IO just return */
2998 if (!io_end) {
2999 inode_dio_done(inode);
3000 if (is_async)
3001 aio_complete(iocb, ret, 0);
3002 return;
3003 }
4b70df18 3004
88635ca2 3005 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3006 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3007 iocb->private, io_end->inode->i_ino, iocb, offset,
3008 size);
8d5d02e6 3009
b5a7e970 3010 iocb->private = NULL;
4c0425ff
MC
3011 io_end->offset = offset;
3012 io_end->size = size;
5b3ff237
JZ
3013 if (is_async) {
3014 io_end->iocb = iocb;
3015 io_end->result = ret;
3016 }
97a851ed 3017 ext4_put_io_end_defer(io_end);
4c0425ff 3018}
c7064ef1 3019
4c0425ff
MC
3020/*
3021 * For ext4 extent files, ext4 will do direct-io write to holes,
3022 * preallocated extents, and those write extend the file, no need to
3023 * fall back to buffered IO.
3024 *
b595076a 3025 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3026 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3027 * still keep the range to write as uninitialized.
4c0425ff 3028 *
69c499d1 3029 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3030 * For async direct IO, since the IO may still pending when return, we
25985edc 3031 * set up an end_io call back function, which will do the conversion
8d5d02e6 3032 * when async direct IO completed.
4c0425ff
MC
3033 *
3034 * If the O_DIRECT write will extend the file then add this inode to the
3035 * orphan list. So recovery will truncate it back to the original size
3036 * if the machine crashes during the write.
3037 *
3038 */
3039static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3040 const struct iovec *iov, loff_t offset,
3041 unsigned long nr_segs)
3042{
3043 struct file *file = iocb->ki_filp;
3044 struct inode *inode = file->f_mapping->host;
3045 ssize_t ret;
3046 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3047 int overwrite = 0;
3048 get_block_t *get_block_func = NULL;
3049 int dio_flags = 0;
4c0425ff 3050 loff_t final_size = offset + count;
97a851ed 3051 ext4_io_end_t *io_end = NULL;
729f52c6 3052
69c499d1
TT
3053 /* Use the old path for reads and writes beyond i_size. */
3054 if (rw != WRITE || final_size > inode->i_size)
3055 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3056
69c499d1 3057 BUG_ON(iocb->private == NULL);
4bd809db 3058
e8340395
JK
3059 /*
3060 * Make all waiters for direct IO properly wait also for extent
3061 * conversion. This also disallows race between truncate() and
3062 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3063 */
3064 if (rw == WRITE)
3065 atomic_inc(&inode->i_dio_count);
3066
69c499d1
TT
3067 /* If we do a overwrite dio, i_mutex locking can be released */
3068 overwrite = *((int *)iocb->private);
4bd809db 3069
69c499d1 3070 if (overwrite) {
69c499d1
TT
3071 down_read(&EXT4_I(inode)->i_data_sem);
3072 mutex_unlock(&inode->i_mutex);
3073 }
8d5d02e6 3074
69c499d1
TT
3075 /*
3076 * We could direct write to holes and fallocate.
3077 *
3078 * Allocated blocks to fill the hole are marked as
3079 * uninitialized to prevent parallel buffered read to expose
3080 * the stale data before DIO complete the data IO.
3081 *
3082 * As to previously fallocated extents, ext4 get_block will
3083 * just simply mark the buffer mapped but still keep the
3084 * extents uninitialized.
3085 *
3086 * For non AIO case, we will convert those unwritten extents
3087 * to written after return back from blockdev_direct_IO.
3088 *
3089 * For async DIO, the conversion needs to be deferred when the
3090 * IO is completed. The ext4 end_io callback function will be
3091 * called to take care of the conversion work. Here for async
3092 * case, we allocate an io_end structure to hook to the iocb.
3093 */
3094 iocb->private = NULL;
3095 ext4_inode_aio_set(inode, NULL);
3096 if (!is_sync_kiocb(iocb)) {
97a851ed 3097 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3098 if (!io_end) {
3099 ret = -ENOMEM;
3100 goto retake_lock;
8b0f165f 3101 }
69c499d1 3102 io_end->flag |= EXT4_IO_END_DIRECT;
97a851ed
JK
3103 /*
3104 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3105 */
3106 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3107 /*
69c499d1
TT
3108 * we save the io structure for current async direct
3109 * IO, so that later ext4_map_blocks() could flag the
3110 * io structure whether there is a unwritten extents
3111 * needs to be converted when IO is completed.
8d5d02e6 3112 */
69c499d1
TT
3113 ext4_inode_aio_set(inode, io_end);
3114 }
4bd809db 3115
69c499d1
TT
3116 if (overwrite) {
3117 get_block_func = ext4_get_block_write_nolock;
3118 } else {
3119 get_block_func = ext4_get_block_write;
3120 dio_flags = DIO_LOCKING;
3121 }
3122 ret = __blockdev_direct_IO(rw, iocb, inode,
3123 inode->i_sb->s_bdev, iov,
3124 offset, nr_segs,
3125 get_block_func,
3126 ext4_end_io_dio,
3127 NULL,
3128 dio_flags);
3129
69c499d1 3130 /*
97a851ed
JK
3131 * Put our reference to io_end. This can free the io_end structure e.g.
3132 * in sync IO case or in case of error. It can even perform extent
3133 * conversion if all bios we submitted finished before we got here.
3134 * Note that in that case iocb->private can be already set to NULL
3135 * here.
69c499d1 3136 */
97a851ed
JK
3137 if (io_end) {
3138 ext4_inode_aio_set(inode, NULL);
3139 ext4_put_io_end(io_end);
3140 /*
3141 * When no IO was submitted ext4_end_io_dio() was not
3142 * called so we have to put iocb's reference.
3143 */
3144 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3145 WARN_ON(iocb->private != io_end);
3146 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3147 WARN_ON(io_end->iocb);
3148 /*
3149 * Generic code already did inode_dio_done() so we
3150 * have to clear EXT4_IO_END_DIRECT to not do it for
3151 * the second time.
3152 */
3153 io_end->flag = 0;
3154 ext4_put_io_end(io_end);
3155 iocb->private = NULL;
3156 }
3157 }
3158 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3159 EXT4_STATE_DIO_UNWRITTEN)) {
3160 int err;
3161 /*
3162 * for non AIO case, since the IO is already
3163 * completed, we could do the conversion right here
3164 */
6b523df4 3165 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3166 offset, ret);
3167 if (err < 0)
3168 ret = err;
3169 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3170 }
4bd809db 3171
69c499d1 3172retake_lock:
e8340395
JK
3173 if (rw == WRITE)
3174 inode_dio_done(inode);
69c499d1
TT
3175 /* take i_mutex locking again if we do a ovewrite dio */
3176 if (overwrite) {
69c499d1
TT
3177 up_read(&EXT4_I(inode)->i_data_sem);
3178 mutex_lock(&inode->i_mutex);
4c0425ff 3179 }
8d5d02e6 3180
69c499d1 3181 return ret;
4c0425ff
MC
3182}
3183
3184static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3185 const struct iovec *iov, loff_t offset,
3186 unsigned long nr_segs)
3187{
3188 struct file *file = iocb->ki_filp;
3189 struct inode *inode = file->f_mapping->host;
0562e0ba 3190 ssize_t ret;
4c0425ff 3191
84ebd795
TT
3192 /*
3193 * If we are doing data journalling we don't support O_DIRECT
3194 */
3195 if (ext4_should_journal_data(inode))
3196 return 0;
3197
46c7f254
TM
3198 /* Let buffer I/O handle the inline data case. */
3199 if (ext4_has_inline_data(inode))
3200 return 0;
3201
0562e0ba 3202 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3203 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3204 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3205 else
3206 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3207 trace_ext4_direct_IO_exit(inode, offset,
3208 iov_length(iov, nr_segs), rw, ret);
3209 return ret;
4c0425ff
MC
3210}
3211
ac27a0ec 3212/*
617ba13b 3213 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3214 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3215 * much here because ->set_page_dirty is called under VFS locks. The page is
3216 * not necessarily locked.
3217 *
3218 * We cannot just dirty the page and leave attached buffers clean, because the
3219 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3220 * or jbddirty because all the journalling code will explode.
3221 *
3222 * So what we do is to mark the page "pending dirty" and next time writepage
3223 * is called, propagate that into the buffers appropriately.
3224 */
617ba13b 3225static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3226{
3227 SetPageChecked(page);
3228 return __set_page_dirty_nobuffers(page);
3229}
3230
74d553aa 3231static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3232 .readpage = ext4_readpage,
3233 .readpages = ext4_readpages,
43ce1d23 3234 .writepage = ext4_writepage,
20970ba6 3235 .writepages = ext4_writepages,
8ab22b9a 3236 .write_begin = ext4_write_begin,
74d553aa 3237 .write_end = ext4_write_end,
8ab22b9a
HH
3238 .bmap = ext4_bmap,
3239 .invalidatepage = ext4_invalidatepage,
3240 .releasepage = ext4_releasepage,
3241 .direct_IO = ext4_direct_IO,
3242 .migratepage = buffer_migrate_page,
3243 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3244 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3245};
3246
617ba13b 3247static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3248 .readpage = ext4_readpage,
3249 .readpages = ext4_readpages,
43ce1d23 3250 .writepage = ext4_writepage,
20970ba6 3251 .writepages = ext4_writepages,
8ab22b9a
HH
3252 .write_begin = ext4_write_begin,
3253 .write_end = ext4_journalled_write_end,
3254 .set_page_dirty = ext4_journalled_set_page_dirty,
3255 .bmap = ext4_bmap,
4520fb3c 3256 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3257 .releasepage = ext4_releasepage,
84ebd795 3258 .direct_IO = ext4_direct_IO,
8ab22b9a 3259 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3260 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3261};
3262
64769240 3263static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3264 .readpage = ext4_readpage,
3265 .readpages = ext4_readpages,
43ce1d23 3266 .writepage = ext4_writepage,
20970ba6 3267 .writepages = ext4_writepages,
8ab22b9a
HH
3268 .write_begin = ext4_da_write_begin,
3269 .write_end = ext4_da_write_end,
3270 .bmap = ext4_bmap,
3271 .invalidatepage = ext4_da_invalidatepage,
3272 .releasepage = ext4_releasepage,
3273 .direct_IO = ext4_direct_IO,
3274 .migratepage = buffer_migrate_page,
3275 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3276 .error_remove_page = generic_error_remove_page,
64769240
AT
3277};
3278
617ba13b 3279void ext4_set_aops(struct inode *inode)
ac27a0ec 3280{
3d2b1582
LC
3281 switch (ext4_inode_journal_mode(inode)) {
3282 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3283 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3284 break;
3285 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3286 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3287 break;
3288 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3289 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3290 return;
3d2b1582
LC
3291 default:
3292 BUG();
3293 }
74d553aa
TT
3294 if (test_opt(inode->i_sb, DELALLOC))
3295 inode->i_mapping->a_ops = &ext4_da_aops;
3296 else
3297 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3298}
3299
d863dc36
LC
3300/*
3301 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3302 * up to the end of the block which corresponds to `from'.
3303 * This required during truncate. We need to physically zero the tail end
3304 * of that block so it doesn't yield old data if the file is later grown.
3305 */
3306int ext4_block_truncate_page(handle_t *handle,
3307 struct address_space *mapping, loff_t from)
3308{
3309 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3310 unsigned length;
3311 unsigned blocksize;
3312 struct inode *inode = mapping->host;
3313
3314 blocksize = inode->i_sb->s_blocksize;
3315 length = blocksize - (offset & (blocksize - 1));
3316
3317 return ext4_block_zero_page_range(handle, mapping, from, length);
3318}
3319
3320/*
3321 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3322 * starting from file offset 'from'. The range to be zero'd must
3323 * be contained with in one block. If the specified range exceeds
3324 * the end of the block it will be shortened to end of the block
3325 * that cooresponds to 'from'
3326 */
3327int ext4_block_zero_page_range(handle_t *handle,
3328 struct address_space *mapping, loff_t from, loff_t length)
3329{
3330 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3331 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3332 unsigned blocksize, max, pos;
3333 ext4_lblk_t iblock;
3334 struct inode *inode = mapping->host;
3335 struct buffer_head *bh;
3336 struct page *page;
3337 int err = 0;
3338
3339 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3340 mapping_gfp_mask(mapping) & ~__GFP_FS);
3341 if (!page)
3342 return -ENOMEM;
3343
3344 blocksize = inode->i_sb->s_blocksize;
3345 max = blocksize - (offset & (blocksize - 1));
3346
3347 /*
3348 * correct length if it does not fall between
3349 * 'from' and the end of the block
3350 */
3351 if (length > max || length < 0)
3352 length = max;
3353
3354 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3355
3356 if (!page_has_buffers(page))
3357 create_empty_buffers(page, blocksize, 0);
3358
3359 /* Find the buffer that contains "offset" */
3360 bh = page_buffers(page);
3361 pos = blocksize;
3362 while (offset >= pos) {
3363 bh = bh->b_this_page;
3364 iblock++;
3365 pos += blocksize;
3366 }
3367
3368 err = 0;
3369 if (buffer_freed(bh)) {
3370 BUFFER_TRACE(bh, "freed: skip");
3371 goto unlock;
3372 }
3373
3374 if (!buffer_mapped(bh)) {
3375 BUFFER_TRACE(bh, "unmapped");
3376 ext4_get_block(inode, iblock, bh, 0);
3377 /* unmapped? It's a hole - nothing to do */
3378 if (!buffer_mapped(bh)) {
3379 BUFFER_TRACE(bh, "still unmapped");
3380 goto unlock;
3381 }
3382 }
3383
3384 /* Ok, it's mapped. Make sure it's up-to-date */
3385 if (PageUptodate(page))
3386 set_buffer_uptodate(bh);
3387
3388 if (!buffer_uptodate(bh)) {
3389 err = -EIO;
3390 ll_rw_block(READ, 1, &bh);
3391 wait_on_buffer(bh);
3392 /* Uhhuh. Read error. Complain and punt. */
3393 if (!buffer_uptodate(bh))
3394 goto unlock;
3395 }
3396
3397 if (ext4_should_journal_data(inode)) {
3398 BUFFER_TRACE(bh, "get write access");
3399 err = ext4_journal_get_write_access(handle, bh);
3400 if (err)
3401 goto unlock;
3402 }
3403
3404 zero_user(page, offset, length);
3405
3406 BUFFER_TRACE(bh, "zeroed end of block");
3407
3408 err = 0;
3409 if (ext4_should_journal_data(inode)) {
3410 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3411 } else {
d863dc36 3412 mark_buffer_dirty(bh);
0713ed0c
LC
3413 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3414 err = ext4_jbd2_file_inode(handle, inode);
3415 }
d863dc36
LC
3416
3417unlock:
3418 unlock_page(page);
3419 page_cache_release(page);
3420 return err;
3421}
3422
a87dd18c
LC
3423int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3424 loff_t lstart, loff_t length)
3425{
3426 struct super_block *sb = inode->i_sb;
3427 struct address_space *mapping = inode->i_mapping;
3428 unsigned partial = lstart & (sb->s_blocksize - 1);
3429 ext4_fsblk_t start, end;
3430 loff_t byte_end = (lstart + length - 1);
3431 int err = 0;
3432
3433 start = lstart >> sb->s_blocksize_bits;
3434 end = byte_end >> sb->s_blocksize_bits;
3435
3436 /* Handle partial zero within the single block */
3437 if (start == end) {
3438 err = ext4_block_zero_page_range(handle, mapping,
3439 lstart, length);
3440 return err;
3441 }
3442 /* Handle partial zero out on the start of the range */
3443 if (partial) {
3444 err = ext4_block_zero_page_range(handle, mapping,
3445 lstart, sb->s_blocksize);
3446 if (err)
3447 return err;
3448 }
3449 /* Handle partial zero out on the end of the range */
3450 partial = byte_end & (sb->s_blocksize - 1);
3451 if (partial != sb->s_blocksize - 1)
3452 err = ext4_block_zero_page_range(handle, mapping,
3453 byte_end - partial,
3454 partial + 1);
3455 return err;
3456}
3457
91ef4caf
DG
3458int ext4_can_truncate(struct inode *inode)
3459{
91ef4caf
DG
3460 if (S_ISREG(inode->i_mode))
3461 return 1;
3462 if (S_ISDIR(inode->i_mode))
3463 return 1;
3464 if (S_ISLNK(inode->i_mode))
3465 return !ext4_inode_is_fast_symlink(inode);
3466 return 0;
3467}
3468
a4bb6b64
AH
3469/*
3470 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3471 * associated with the given offset and length
3472 *
3473 * @inode: File inode
3474 * @offset: The offset where the hole will begin
3475 * @len: The length of the hole
3476 *
4907cb7b 3477 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3478 */
3479
3480int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3481{
496ad9aa 3482 struct inode *inode = file_inode(file);
26a4c0c6
TT
3483 struct super_block *sb = inode->i_sb;
3484 ext4_lblk_t first_block, stop_block;
3485 struct address_space *mapping = inode->i_mapping;
a87dd18c 3486 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3487 handle_t *handle;
3488 unsigned int credits;
3489 int ret = 0;
3490
a4bb6b64 3491 if (!S_ISREG(inode->i_mode))
73355192 3492 return -EOPNOTSUPP;
a4bb6b64 3493
26a4c0c6 3494 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3495 /* TODO: Add support for bigalloc file systems */
73355192 3496 return -EOPNOTSUPP;
bab08ab9
TT
3497 }
3498
aaddea81
ZL
3499 trace_ext4_punch_hole(inode, offset, length);
3500
26a4c0c6
TT
3501 /*
3502 * Write out all dirty pages to avoid race conditions
3503 * Then release them.
3504 */
3505 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3506 ret = filemap_write_and_wait_range(mapping, offset,
3507 offset + length - 1);
3508 if (ret)
3509 return ret;
3510 }
3511
3512 mutex_lock(&inode->i_mutex);
3513 /* It's not possible punch hole on append only file */
3514 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3515 ret = -EPERM;
3516 goto out_mutex;
3517 }
3518 if (IS_SWAPFILE(inode)) {
3519 ret = -ETXTBSY;
3520 goto out_mutex;
3521 }
3522
3523 /* No need to punch hole beyond i_size */
3524 if (offset >= inode->i_size)
3525 goto out_mutex;
3526
3527 /*
3528 * If the hole extends beyond i_size, set the hole
3529 * to end after the page that contains i_size
3530 */
3531 if (offset + length > inode->i_size) {
3532 length = inode->i_size +
3533 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3534 offset;
3535 }
3536
a87dd18c
LC
3537 first_block_offset = round_up(offset, sb->s_blocksize);
3538 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3539
a87dd18c
LC
3540 /* Now release the pages and zero block aligned part of pages*/
3541 if (last_block_offset > first_block_offset)
3542 truncate_pagecache_range(inode, first_block_offset,
3543 last_block_offset);
26a4c0c6
TT
3544
3545 /* Wait all existing dio workers, newcomers will block on i_mutex */
3546 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3547 inode_dio_wait(inode);
3548
3549 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3550 credits = ext4_writepage_trans_blocks(inode);
3551 else
3552 credits = ext4_blocks_for_truncate(inode);
3553 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3554 if (IS_ERR(handle)) {
3555 ret = PTR_ERR(handle);
3556 ext4_std_error(sb, ret);
3557 goto out_dio;
3558 }
3559
a87dd18c
LC
3560 ret = ext4_zero_partial_blocks(handle, inode, offset,
3561 length);
3562 if (ret)
3563 goto out_stop;
26a4c0c6
TT
3564
3565 first_block = (offset + sb->s_blocksize - 1) >>
3566 EXT4_BLOCK_SIZE_BITS(sb);
3567 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3568
3569 /* If there are no blocks to remove, return now */
3570 if (first_block >= stop_block)
3571 goto out_stop;
3572
3573 down_write(&EXT4_I(inode)->i_data_sem);
3574 ext4_discard_preallocations(inode);
3575
3576 ret = ext4_es_remove_extent(inode, first_block,
3577 stop_block - first_block);
3578 if (ret) {
3579 up_write(&EXT4_I(inode)->i_data_sem);
3580 goto out_stop;
3581 }
3582
3583 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3584 ret = ext4_ext_remove_space(inode, first_block,
3585 stop_block - 1);
3586 else
3587 ret = ext4_free_hole_blocks(handle, inode, first_block,
3588 stop_block);
3589
3590 ext4_discard_preallocations(inode);
819c4920 3591 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3592 if (IS_SYNC(inode))
3593 ext4_handle_sync(handle);
26a4c0c6
TT
3594 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3595 ext4_mark_inode_dirty(handle, inode);
3596out_stop:
3597 ext4_journal_stop(handle);
3598out_dio:
3599 ext4_inode_resume_unlocked_dio(inode);
3600out_mutex:
3601 mutex_unlock(&inode->i_mutex);
3602 return ret;
a4bb6b64
AH
3603}
3604
ac27a0ec 3605/*
617ba13b 3606 * ext4_truncate()
ac27a0ec 3607 *
617ba13b
MC
3608 * We block out ext4_get_block() block instantiations across the entire
3609 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3610 * simultaneously on behalf of the same inode.
3611 *
42b2aa86 3612 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3613 * is one core, guiding principle: the file's tree must always be consistent on
3614 * disk. We must be able to restart the truncate after a crash.
3615 *
3616 * The file's tree may be transiently inconsistent in memory (although it
3617 * probably isn't), but whenever we close off and commit a journal transaction,
3618 * the contents of (the filesystem + the journal) must be consistent and
3619 * restartable. It's pretty simple, really: bottom up, right to left (although
3620 * left-to-right works OK too).
3621 *
3622 * Note that at recovery time, journal replay occurs *before* the restart of
3623 * truncate against the orphan inode list.
3624 *
3625 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3626 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3627 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3628 * ext4_truncate() to have another go. So there will be instantiated blocks
3629 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3630 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3631 * ext4_truncate() run will find them and release them.
ac27a0ec 3632 */
617ba13b 3633void ext4_truncate(struct inode *inode)
ac27a0ec 3634{
819c4920
TT
3635 struct ext4_inode_info *ei = EXT4_I(inode);
3636 unsigned int credits;
3637 handle_t *handle;
3638 struct address_space *mapping = inode->i_mapping;
819c4920 3639
19b5ef61
TT
3640 /*
3641 * There is a possibility that we're either freeing the inode
3642 * or it completely new indode. In those cases we might not
3643 * have i_mutex locked because it's not necessary.
3644 */
3645 if (!(inode->i_state & (I_NEW|I_FREEING)))
3646 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3647 trace_ext4_truncate_enter(inode);
3648
91ef4caf 3649 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3650 return;
3651
12e9b892 3652 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3653
5534fb5b 3654 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3655 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3656
aef1c851
TM
3657 if (ext4_has_inline_data(inode)) {
3658 int has_inline = 1;
3659
3660 ext4_inline_data_truncate(inode, &has_inline);
3661 if (has_inline)
3662 return;
3663 }
3664
819c4920
TT
3665 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3666 credits = ext4_writepage_trans_blocks(inode);
3667 else
3668 credits = ext4_blocks_for_truncate(inode);
3669
3670 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3671 if (IS_ERR(handle)) {
3672 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3673 return;
3674 }
3675
eb3544c6
LC
3676 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3677 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3678
3679 /*
3680 * We add the inode to the orphan list, so that if this
3681 * truncate spans multiple transactions, and we crash, we will
3682 * resume the truncate when the filesystem recovers. It also
3683 * marks the inode dirty, to catch the new size.
3684 *
3685 * Implication: the file must always be in a sane, consistent
3686 * truncatable state while each transaction commits.
3687 */
3688 if (ext4_orphan_add(handle, inode))
3689 goto out_stop;
3690
3691 down_write(&EXT4_I(inode)->i_data_sem);
3692
3693 ext4_discard_preallocations(inode);
3694
ff9893dc 3695 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3696 ext4_ext_truncate(handle, inode);
ff9893dc 3697 else
819c4920
TT
3698 ext4_ind_truncate(handle, inode);
3699
3700 up_write(&ei->i_data_sem);
3701
3702 if (IS_SYNC(inode))
3703 ext4_handle_sync(handle);
3704
3705out_stop:
3706 /*
3707 * If this was a simple ftruncate() and the file will remain alive,
3708 * then we need to clear up the orphan record which we created above.
3709 * However, if this was a real unlink then we were called by
3710 * ext4_delete_inode(), and we allow that function to clean up the
3711 * orphan info for us.
3712 */
3713 if (inode->i_nlink)
3714 ext4_orphan_del(handle, inode);
3715
3716 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3717 ext4_mark_inode_dirty(handle, inode);
3718 ext4_journal_stop(handle);
ac27a0ec 3719
0562e0ba 3720 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3721}
3722
ac27a0ec 3723/*
617ba13b 3724 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3725 * underlying buffer_head on success. If 'in_mem' is true, we have all
3726 * data in memory that is needed to recreate the on-disk version of this
3727 * inode.
3728 */
617ba13b
MC
3729static int __ext4_get_inode_loc(struct inode *inode,
3730 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3731{
240799cd
TT
3732 struct ext4_group_desc *gdp;
3733 struct buffer_head *bh;
3734 struct super_block *sb = inode->i_sb;
3735 ext4_fsblk_t block;
3736 int inodes_per_block, inode_offset;
3737
3a06d778 3738 iloc->bh = NULL;
240799cd
TT
3739 if (!ext4_valid_inum(sb, inode->i_ino))
3740 return -EIO;
ac27a0ec 3741
240799cd
TT
3742 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3743 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3744 if (!gdp)
ac27a0ec
DK
3745 return -EIO;
3746
240799cd
TT
3747 /*
3748 * Figure out the offset within the block group inode table
3749 */
00d09882 3750 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3751 inode_offset = ((inode->i_ino - 1) %
3752 EXT4_INODES_PER_GROUP(sb));
3753 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3754 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3755
3756 bh = sb_getblk(sb, block);
aebf0243 3757 if (unlikely(!bh))
860d21e2 3758 return -ENOMEM;
ac27a0ec
DK
3759 if (!buffer_uptodate(bh)) {
3760 lock_buffer(bh);
9c83a923
HK
3761
3762 /*
3763 * If the buffer has the write error flag, we have failed
3764 * to write out another inode in the same block. In this
3765 * case, we don't have to read the block because we may
3766 * read the old inode data successfully.
3767 */
3768 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3769 set_buffer_uptodate(bh);
3770
ac27a0ec
DK
3771 if (buffer_uptodate(bh)) {
3772 /* someone brought it uptodate while we waited */
3773 unlock_buffer(bh);
3774 goto has_buffer;
3775 }
3776
3777 /*
3778 * If we have all information of the inode in memory and this
3779 * is the only valid inode in the block, we need not read the
3780 * block.
3781 */
3782 if (in_mem) {
3783 struct buffer_head *bitmap_bh;
240799cd 3784 int i, start;
ac27a0ec 3785
240799cd 3786 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3787
240799cd
TT
3788 /* Is the inode bitmap in cache? */
3789 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3790 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3791 goto make_io;
3792
3793 /*
3794 * If the inode bitmap isn't in cache then the
3795 * optimisation may end up performing two reads instead
3796 * of one, so skip it.
3797 */
3798 if (!buffer_uptodate(bitmap_bh)) {
3799 brelse(bitmap_bh);
3800 goto make_io;
3801 }
240799cd 3802 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3803 if (i == inode_offset)
3804 continue;
617ba13b 3805 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3806 break;
3807 }
3808 brelse(bitmap_bh);
240799cd 3809 if (i == start + inodes_per_block) {
ac27a0ec
DK
3810 /* all other inodes are free, so skip I/O */
3811 memset(bh->b_data, 0, bh->b_size);
3812 set_buffer_uptodate(bh);
3813 unlock_buffer(bh);
3814 goto has_buffer;
3815 }
3816 }
3817
3818make_io:
240799cd
TT
3819 /*
3820 * If we need to do any I/O, try to pre-readahead extra
3821 * blocks from the inode table.
3822 */
3823 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3824 ext4_fsblk_t b, end, table;
3825 unsigned num;
0d606e2c 3826 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3827
3828 table = ext4_inode_table(sb, gdp);
b713a5ec 3829 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3830 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3831 if (table > b)
3832 b = table;
0d606e2c 3833 end = b + ra_blks;
240799cd 3834 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3835 if (ext4_has_group_desc_csum(sb))
560671a0 3836 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3837 table += num / inodes_per_block;
3838 if (end > table)
3839 end = table;
3840 while (b <= end)
3841 sb_breadahead(sb, b++);
3842 }
3843
ac27a0ec
DK
3844 /*
3845 * There are other valid inodes in the buffer, this inode
3846 * has in-inode xattrs, or we don't have this inode in memory.
3847 * Read the block from disk.
3848 */
0562e0ba 3849 trace_ext4_load_inode(inode);
ac27a0ec
DK
3850 get_bh(bh);
3851 bh->b_end_io = end_buffer_read_sync;
65299a3b 3852 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3853 wait_on_buffer(bh);
3854 if (!buffer_uptodate(bh)) {
c398eda0
TT
3855 EXT4_ERROR_INODE_BLOCK(inode, block,
3856 "unable to read itable block");
ac27a0ec
DK
3857 brelse(bh);
3858 return -EIO;
3859 }
3860 }
3861has_buffer:
3862 iloc->bh = bh;
3863 return 0;
3864}
3865
617ba13b 3866int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3867{
3868 /* We have all inode data except xattrs in memory here. */
617ba13b 3869 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3870 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3871}
3872
617ba13b 3873void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3874{
617ba13b 3875 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3876
3877 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3878 if (flags & EXT4_SYNC_FL)
ac27a0ec 3879 inode->i_flags |= S_SYNC;
617ba13b 3880 if (flags & EXT4_APPEND_FL)
ac27a0ec 3881 inode->i_flags |= S_APPEND;
617ba13b 3882 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3883 inode->i_flags |= S_IMMUTABLE;
617ba13b 3884 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3885 inode->i_flags |= S_NOATIME;
617ba13b 3886 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3887 inode->i_flags |= S_DIRSYNC;
3888}
3889
ff9ddf7e
JK
3890/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3891void ext4_get_inode_flags(struct ext4_inode_info *ei)
3892{
84a8dce2
DM
3893 unsigned int vfs_fl;
3894 unsigned long old_fl, new_fl;
3895
3896 do {
3897 vfs_fl = ei->vfs_inode.i_flags;
3898 old_fl = ei->i_flags;
3899 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3900 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3901 EXT4_DIRSYNC_FL);
3902 if (vfs_fl & S_SYNC)
3903 new_fl |= EXT4_SYNC_FL;
3904 if (vfs_fl & S_APPEND)
3905 new_fl |= EXT4_APPEND_FL;
3906 if (vfs_fl & S_IMMUTABLE)
3907 new_fl |= EXT4_IMMUTABLE_FL;
3908 if (vfs_fl & S_NOATIME)
3909 new_fl |= EXT4_NOATIME_FL;
3910 if (vfs_fl & S_DIRSYNC)
3911 new_fl |= EXT4_DIRSYNC_FL;
3912 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3913}
de9a55b8 3914
0fc1b451 3915static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3916 struct ext4_inode_info *ei)
0fc1b451
AK
3917{
3918 blkcnt_t i_blocks ;
8180a562
AK
3919 struct inode *inode = &(ei->vfs_inode);
3920 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3921
3922 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3923 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3924 /* we are using combined 48 bit field */
3925 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3926 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3927 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3928 /* i_blocks represent file system block size */
3929 return i_blocks << (inode->i_blkbits - 9);
3930 } else {
3931 return i_blocks;
3932 }
0fc1b451
AK
3933 } else {
3934 return le32_to_cpu(raw_inode->i_blocks_lo);
3935 }
3936}
ff9ddf7e 3937
152a7b0a
TM
3938static inline void ext4_iget_extra_inode(struct inode *inode,
3939 struct ext4_inode *raw_inode,
3940 struct ext4_inode_info *ei)
3941{
3942 __le32 *magic = (void *)raw_inode +
3943 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3944 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3945 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3946 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3947 } else
3948 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3949}
3950
1d1fe1ee 3951struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3952{
617ba13b
MC
3953 struct ext4_iloc iloc;
3954 struct ext4_inode *raw_inode;
1d1fe1ee 3955 struct ext4_inode_info *ei;
1d1fe1ee 3956 struct inode *inode;
b436b9be 3957 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3958 long ret;
ac27a0ec 3959 int block;
08cefc7a
EB
3960 uid_t i_uid;
3961 gid_t i_gid;
ac27a0ec 3962
1d1fe1ee
DH
3963 inode = iget_locked(sb, ino);
3964 if (!inode)
3965 return ERR_PTR(-ENOMEM);
3966 if (!(inode->i_state & I_NEW))
3967 return inode;
3968
3969 ei = EXT4_I(inode);
7dc57615 3970 iloc.bh = NULL;
ac27a0ec 3971
1d1fe1ee
DH
3972 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3973 if (ret < 0)
ac27a0ec 3974 goto bad_inode;
617ba13b 3975 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3976
3977 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3978 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3979 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3980 EXT4_INODE_SIZE(inode->i_sb)) {
3981 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3982 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3983 EXT4_INODE_SIZE(inode->i_sb));
3984 ret = -EIO;
3985 goto bad_inode;
3986 }
3987 } else
3988 ei->i_extra_isize = 0;
3989
3990 /* Precompute checksum seed for inode metadata */
3991 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3992 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3993 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3994 __u32 csum;
3995 __le32 inum = cpu_to_le32(inode->i_ino);
3996 __le32 gen = raw_inode->i_generation;
3997 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3998 sizeof(inum));
3999 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4000 sizeof(gen));
4001 }
4002
4003 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4004 EXT4_ERROR_INODE(inode, "checksum invalid");
4005 ret = -EIO;
4006 goto bad_inode;
4007 }
4008
ac27a0ec 4009 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4010 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4011 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4012 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4013 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4014 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4015 }
08cefc7a
EB
4016 i_uid_write(inode, i_uid);
4017 i_gid_write(inode, i_gid);
bfe86848 4018 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4019
353eb83c 4020 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4021 ei->i_inline_off = 0;
ac27a0ec
DK
4022 ei->i_dir_start_lookup = 0;
4023 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4024 /* We now have enough fields to check if the inode was active or not.
4025 * This is needed because nfsd might try to access dead inodes
4026 * the test is that same one that e2fsck uses
4027 * NeilBrown 1999oct15
4028 */
4029 if (inode->i_nlink == 0) {
393d1d1d
DTB
4030 if ((inode->i_mode == 0 ||
4031 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4032 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4033 /* this inode is deleted */
1d1fe1ee 4034 ret = -ESTALE;
ac27a0ec
DK
4035 goto bad_inode;
4036 }
4037 /* The only unlinked inodes we let through here have
4038 * valid i_mode and are being read by the orphan
4039 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4040 * the process of deleting those.
4041 * OR it is the EXT4_BOOT_LOADER_INO which is
4042 * not initialized on a new filesystem. */
ac27a0ec 4043 }
ac27a0ec 4044 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4045 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4046 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4047 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4048 ei->i_file_acl |=
4049 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4050 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4051 ei->i_disksize = inode->i_size;
a9e7f447
DM
4052#ifdef CONFIG_QUOTA
4053 ei->i_reserved_quota = 0;
4054#endif
ac27a0ec
DK
4055 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4056 ei->i_block_group = iloc.block_group;
a4912123 4057 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4058 /*
4059 * NOTE! The in-memory inode i_data array is in little-endian order
4060 * even on big-endian machines: we do NOT byteswap the block numbers!
4061 */
617ba13b 4062 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4063 ei->i_data[block] = raw_inode->i_block[block];
4064 INIT_LIST_HEAD(&ei->i_orphan);
4065
b436b9be
JK
4066 /*
4067 * Set transaction id's of transactions that have to be committed
4068 * to finish f[data]sync. We set them to currently running transaction
4069 * as we cannot be sure that the inode or some of its metadata isn't
4070 * part of the transaction - the inode could have been reclaimed and
4071 * now it is reread from disk.
4072 */
4073 if (journal) {
4074 transaction_t *transaction;
4075 tid_t tid;
4076
a931da6a 4077 read_lock(&journal->j_state_lock);
b436b9be
JK
4078 if (journal->j_running_transaction)
4079 transaction = journal->j_running_transaction;
4080 else
4081 transaction = journal->j_committing_transaction;
4082 if (transaction)
4083 tid = transaction->t_tid;
4084 else
4085 tid = journal->j_commit_sequence;
a931da6a 4086 read_unlock(&journal->j_state_lock);
b436b9be
JK
4087 ei->i_sync_tid = tid;
4088 ei->i_datasync_tid = tid;
4089 }
4090
0040d987 4091 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4092 if (ei->i_extra_isize == 0) {
4093 /* The extra space is currently unused. Use it. */
617ba13b
MC
4094 ei->i_extra_isize = sizeof(struct ext4_inode) -
4095 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4096 } else {
152a7b0a 4097 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4098 }
814525f4 4099 }
ac27a0ec 4100
ef7f3835
KS
4101 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4102 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4103 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4104 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4105
25ec56b5
JNC
4106 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4107 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4108 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4109 inode->i_version |=
4110 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4111 }
4112
c4b5a614 4113 ret = 0;
485c26ec 4114 if (ei->i_file_acl &&
1032988c 4115 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4116 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4117 ei->i_file_acl);
485c26ec
TT
4118 ret = -EIO;
4119 goto bad_inode;
f19d5870
TM
4120 } else if (!ext4_has_inline_data(inode)) {
4121 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4122 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4123 (S_ISLNK(inode->i_mode) &&
4124 !ext4_inode_is_fast_symlink(inode))))
4125 /* Validate extent which is part of inode */
4126 ret = ext4_ext_check_inode(inode);
4127 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4128 (S_ISLNK(inode->i_mode) &&
4129 !ext4_inode_is_fast_symlink(inode))) {
4130 /* Validate block references which are part of inode */
4131 ret = ext4_ind_check_inode(inode);
4132 }
fe2c8191 4133 }
567f3e9a 4134 if (ret)
de9a55b8 4135 goto bad_inode;
7a262f7c 4136
ac27a0ec 4137 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4138 inode->i_op = &ext4_file_inode_operations;
4139 inode->i_fop = &ext4_file_operations;
4140 ext4_set_aops(inode);
ac27a0ec 4141 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4142 inode->i_op = &ext4_dir_inode_operations;
4143 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4144 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4145 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4146 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4147 nd_terminate_link(ei->i_data, inode->i_size,
4148 sizeof(ei->i_data) - 1);
4149 } else {
617ba13b
MC
4150 inode->i_op = &ext4_symlink_inode_operations;
4151 ext4_set_aops(inode);
ac27a0ec 4152 }
563bdd61
TT
4153 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4154 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4155 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4156 if (raw_inode->i_block[0])
4157 init_special_inode(inode, inode->i_mode,
4158 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4159 else
4160 init_special_inode(inode, inode->i_mode,
4161 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4162 } else if (ino == EXT4_BOOT_LOADER_INO) {
4163 make_bad_inode(inode);
563bdd61 4164 } else {
563bdd61 4165 ret = -EIO;
24676da4 4166 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4167 goto bad_inode;
ac27a0ec 4168 }
af5bc92d 4169 brelse(iloc.bh);
617ba13b 4170 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4171 unlock_new_inode(inode);
4172 return inode;
ac27a0ec
DK
4173
4174bad_inode:
567f3e9a 4175 brelse(iloc.bh);
1d1fe1ee
DH
4176 iget_failed(inode);
4177 return ERR_PTR(ret);
ac27a0ec
DK
4178}
4179
0fc1b451
AK
4180static int ext4_inode_blocks_set(handle_t *handle,
4181 struct ext4_inode *raw_inode,
4182 struct ext4_inode_info *ei)
4183{
4184 struct inode *inode = &(ei->vfs_inode);
4185 u64 i_blocks = inode->i_blocks;
4186 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4187
4188 if (i_blocks <= ~0U) {
4189 /*
4907cb7b 4190 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4191 * as multiple of 512 bytes
4192 */
8180a562 4193 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4194 raw_inode->i_blocks_high = 0;
84a8dce2 4195 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4196 return 0;
4197 }
4198 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4199 return -EFBIG;
4200
4201 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4202 /*
4203 * i_blocks can be represented in a 48 bit variable
4204 * as multiple of 512 bytes
4205 */
8180a562 4206 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4207 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4208 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4209 } else {
84a8dce2 4210 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4211 /* i_block is stored in file system block size */
4212 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4213 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4214 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4215 }
f287a1a5 4216 return 0;
0fc1b451
AK
4217}
4218
ac27a0ec
DK
4219/*
4220 * Post the struct inode info into an on-disk inode location in the
4221 * buffer-cache. This gobbles the caller's reference to the
4222 * buffer_head in the inode location struct.
4223 *
4224 * The caller must have write access to iloc->bh.
4225 */
617ba13b 4226static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4227 struct inode *inode,
830156c7 4228 struct ext4_iloc *iloc)
ac27a0ec 4229{
617ba13b
MC
4230 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4231 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4232 struct buffer_head *bh = iloc->bh;
4233 int err = 0, rc, block;
b71fc079 4234 int need_datasync = 0;
08cefc7a
EB
4235 uid_t i_uid;
4236 gid_t i_gid;
ac27a0ec
DK
4237
4238 /* For fields not not tracking in the in-memory inode,
4239 * initialise them to zero for new inodes. */
19f5fb7a 4240 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4241 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4242
ff9ddf7e 4243 ext4_get_inode_flags(ei);
ac27a0ec 4244 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4245 i_uid = i_uid_read(inode);
4246 i_gid = i_gid_read(inode);
af5bc92d 4247 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4248 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4249 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4250/*
4251 * Fix up interoperability with old kernels. Otherwise, old inodes get
4252 * re-used with the upper 16 bits of the uid/gid intact
4253 */
af5bc92d 4254 if (!ei->i_dtime) {
ac27a0ec 4255 raw_inode->i_uid_high =
08cefc7a 4256 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4257 raw_inode->i_gid_high =
08cefc7a 4258 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4259 } else {
4260 raw_inode->i_uid_high = 0;
4261 raw_inode->i_gid_high = 0;
4262 }
4263 } else {
08cefc7a
EB
4264 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4265 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4266 raw_inode->i_uid_high = 0;
4267 raw_inode->i_gid_high = 0;
4268 }
4269 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4270
4271 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4272 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4273 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4274 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4275
0fc1b451
AK
4276 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4277 goto out_brelse;
ac27a0ec 4278 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4279 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4280 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4281 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4282 raw_inode->i_file_acl_high =
4283 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4284 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4285 if (ei->i_disksize != ext4_isize(raw_inode)) {
4286 ext4_isize_set(raw_inode, ei->i_disksize);
4287 need_datasync = 1;
4288 }
a48380f7
AK
4289 if (ei->i_disksize > 0x7fffffffULL) {
4290 struct super_block *sb = inode->i_sb;
4291 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4292 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4293 EXT4_SB(sb)->s_es->s_rev_level ==
4294 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4295 /* If this is the first large file
4296 * created, add a flag to the superblock.
4297 */
4298 err = ext4_journal_get_write_access(handle,
4299 EXT4_SB(sb)->s_sbh);
4300 if (err)
4301 goto out_brelse;
4302 ext4_update_dynamic_rev(sb);
4303 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4304 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4305 ext4_handle_sync(handle);
b50924c2 4306 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4307 }
4308 }
4309 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4310 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4311 if (old_valid_dev(inode->i_rdev)) {
4312 raw_inode->i_block[0] =
4313 cpu_to_le32(old_encode_dev(inode->i_rdev));
4314 raw_inode->i_block[1] = 0;
4315 } else {
4316 raw_inode->i_block[0] = 0;
4317 raw_inode->i_block[1] =
4318 cpu_to_le32(new_encode_dev(inode->i_rdev));
4319 raw_inode->i_block[2] = 0;
4320 }
f19d5870 4321 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4322 for (block = 0; block < EXT4_N_BLOCKS; block++)
4323 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4324 }
ac27a0ec 4325
25ec56b5
JNC
4326 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4327 if (ei->i_extra_isize) {
4328 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4329 raw_inode->i_version_hi =
4330 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4331 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4332 }
4333
814525f4
DW
4334 ext4_inode_csum_set(inode, raw_inode, ei);
4335
830156c7 4336 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4337 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4338 if (!err)
4339 err = rc;
19f5fb7a 4340 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4341
b71fc079 4342 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4343out_brelse:
af5bc92d 4344 brelse(bh);
617ba13b 4345 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4346 return err;
4347}
4348
4349/*
617ba13b 4350 * ext4_write_inode()
ac27a0ec
DK
4351 *
4352 * We are called from a few places:
4353 *
4354 * - Within generic_file_write() for O_SYNC files.
4355 * Here, there will be no transaction running. We wait for any running
4907cb7b 4356 * transaction to commit.
ac27a0ec
DK
4357 *
4358 * - Within sys_sync(), kupdate and such.
4359 * We wait on commit, if tol to.
4360 *
4361 * - Within prune_icache() (PF_MEMALLOC == true)
4362 * Here we simply return. We can't afford to block kswapd on the
4363 * journal commit.
4364 *
4365 * In all cases it is actually safe for us to return without doing anything,
4366 * because the inode has been copied into a raw inode buffer in
617ba13b 4367 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4368 * knfsd.
4369 *
4370 * Note that we are absolutely dependent upon all inode dirtiers doing the
4371 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4372 * which we are interested.
4373 *
4374 * It would be a bug for them to not do this. The code:
4375 *
4376 * mark_inode_dirty(inode)
4377 * stuff();
4378 * inode->i_size = expr;
4379 *
4380 * is in error because a kswapd-driven write_inode() could occur while
4381 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4382 * will no longer be on the superblock's dirty inode list.
4383 */
a9185b41 4384int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4385{
91ac6f43
FM
4386 int err;
4387
ac27a0ec
DK
4388 if (current->flags & PF_MEMALLOC)
4389 return 0;
4390
91ac6f43
FM
4391 if (EXT4_SB(inode->i_sb)->s_journal) {
4392 if (ext4_journal_current_handle()) {
4393 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4394 dump_stack();
4395 return -EIO;
4396 }
ac27a0ec 4397
a9185b41 4398 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4399 return 0;
4400
4401 err = ext4_force_commit(inode->i_sb);
4402 } else {
4403 struct ext4_iloc iloc;
ac27a0ec 4404
8b472d73 4405 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4406 if (err)
4407 return err;
a9185b41 4408 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4409 sync_dirty_buffer(iloc.bh);
4410 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4411 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4412 "IO error syncing inode");
830156c7
FM
4413 err = -EIO;
4414 }
fd2dd9fb 4415 brelse(iloc.bh);
91ac6f43
FM
4416 }
4417 return err;
ac27a0ec
DK
4418}
4419
53e87268
JK
4420/*
4421 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4422 * buffers that are attached to a page stradding i_size and are undergoing
4423 * commit. In that case we have to wait for commit to finish and try again.
4424 */
4425static void ext4_wait_for_tail_page_commit(struct inode *inode)
4426{
4427 struct page *page;
4428 unsigned offset;
4429 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4430 tid_t commit_tid = 0;
4431 int ret;
4432
4433 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4434 /*
4435 * All buffers in the last page remain valid? Then there's nothing to
4436 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4437 * blocksize case
4438 */
4439 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4440 return;
4441 while (1) {
4442 page = find_lock_page(inode->i_mapping,
4443 inode->i_size >> PAGE_CACHE_SHIFT);
4444 if (!page)
4445 return;
ca99fdd2
LC
4446 ret = __ext4_journalled_invalidatepage(page, offset,
4447 PAGE_CACHE_SIZE - offset);
53e87268
JK
4448 unlock_page(page);
4449 page_cache_release(page);
4450 if (ret != -EBUSY)
4451 return;
4452 commit_tid = 0;
4453 read_lock(&journal->j_state_lock);
4454 if (journal->j_committing_transaction)
4455 commit_tid = journal->j_committing_transaction->t_tid;
4456 read_unlock(&journal->j_state_lock);
4457 if (commit_tid)
4458 jbd2_log_wait_commit(journal, commit_tid);
4459 }
4460}
4461
ac27a0ec 4462/*
617ba13b 4463 * ext4_setattr()
ac27a0ec
DK
4464 *
4465 * Called from notify_change.
4466 *
4467 * We want to trap VFS attempts to truncate the file as soon as
4468 * possible. In particular, we want to make sure that when the VFS
4469 * shrinks i_size, we put the inode on the orphan list and modify
4470 * i_disksize immediately, so that during the subsequent flushing of
4471 * dirty pages and freeing of disk blocks, we can guarantee that any
4472 * commit will leave the blocks being flushed in an unused state on
4473 * disk. (On recovery, the inode will get truncated and the blocks will
4474 * be freed, so we have a strong guarantee that no future commit will
4475 * leave these blocks visible to the user.)
4476 *
678aaf48
JK
4477 * Another thing we have to assure is that if we are in ordered mode
4478 * and inode is still attached to the committing transaction, we must
4479 * we start writeout of all the dirty pages which are being truncated.
4480 * This way we are sure that all the data written in the previous
4481 * transaction are already on disk (truncate waits for pages under
4482 * writeback).
4483 *
4484 * Called with inode->i_mutex down.
ac27a0ec 4485 */
617ba13b 4486int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4487{
4488 struct inode *inode = dentry->d_inode;
4489 int error, rc = 0;
3d287de3 4490 int orphan = 0;
ac27a0ec
DK
4491 const unsigned int ia_valid = attr->ia_valid;
4492
4493 error = inode_change_ok(inode, attr);
4494 if (error)
4495 return error;
4496
12755627 4497 if (is_quota_modification(inode, attr))
871a2931 4498 dquot_initialize(inode);
08cefc7a
EB
4499 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4500 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4501 handle_t *handle;
4502
4503 /* (user+group)*(old+new) structure, inode write (sb,
4504 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4505 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4506 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4507 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4508 if (IS_ERR(handle)) {
4509 error = PTR_ERR(handle);
4510 goto err_out;
4511 }
b43fa828 4512 error = dquot_transfer(inode, attr);
ac27a0ec 4513 if (error) {
617ba13b 4514 ext4_journal_stop(handle);
ac27a0ec
DK
4515 return error;
4516 }
4517 /* Update corresponding info in inode so that everything is in
4518 * one transaction */
4519 if (attr->ia_valid & ATTR_UID)
4520 inode->i_uid = attr->ia_uid;
4521 if (attr->ia_valid & ATTR_GID)
4522 inode->i_gid = attr->ia_gid;
617ba13b
MC
4523 error = ext4_mark_inode_dirty(handle, inode);
4524 ext4_journal_stop(handle);
ac27a0ec
DK
4525 }
4526
e2b46574 4527 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4528
12e9b892 4529 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4530 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4531
0c095c7f
TT
4532 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4533 return -EFBIG;
e2b46574
ES
4534 }
4535 }
4536
ac27a0ec 4537 if (S_ISREG(inode->i_mode) &&
c8d46e41 4538 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4539 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4540 handle_t *handle;
4541
9924a92a 4542 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4543 if (IS_ERR(handle)) {
4544 error = PTR_ERR(handle);
4545 goto err_out;
4546 }
3d287de3
DM
4547 if (ext4_handle_valid(handle)) {
4548 error = ext4_orphan_add(handle, inode);
4549 orphan = 1;
4550 }
617ba13b
MC
4551 EXT4_I(inode)->i_disksize = attr->ia_size;
4552 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4553 if (!error)
4554 error = rc;
617ba13b 4555 ext4_journal_stop(handle);
678aaf48
JK
4556
4557 if (ext4_should_order_data(inode)) {
4558 error = ext4_begin_ordered_truncate(inode,
4559 attr->ia_size);
4560 if (error) {
4561 /* Do as much error cleanup as possible */
9924a92a
TT
4562 handle = ext4_journal_start(inode,
4563 EXT4_HT_INODE, 3);
678aaf48
JK
4564 if (IS_ERR(handle)) {
4565 ext4_orphan_del(NULL, inode);
4566 goto err_out;
4567 }
4568 ext4_orphan_del(handle, inode);
3d287de3 4569 orphan = 0;
678aaf48
JK
4570 ext4_journal_stop(handle);
4571 goto err_out;
4572 }
4573 }
ac27a0ec
DK
4574 }
4575
072bd7ea 4576 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4577 if (attr->ia_size != inode->i_size) {
4578 loff_t oldsize = inode->i_size;
4579
4580 i_size_write(inode, attr->ia_size);
4581 /*
4582 * Blocks are going to be removed from the inode. Wait
4583 * for dio in flight. Temporarily disable
4584 * dioread_nolock to prevent livelock.
4585 */
1b65007e 4586 if (orphan) {
53e87268
JK
4587 if (!ext4_should_journal_data(inode)) {
4588 ext4_inode_block_unlocked_dio(inode);
4589 inode_dio_wait(inode);
4590 ext4_inode_resume_unlocked_dio(inode);
4591 } else
4592 ext4_wait_for_tail_page_commit(inode);
1b65007e 4593 }
53e87268
JK
4594 /*
4595 * Truncate pagecache after we've waited for commit
4596 * in data=journal mode to make pages freeable.
4597 */
4598 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4599 }
afcff5d8 4600 ext4_truncate(inode);
072bd7ea 4601 }
ac27a0ec 4602
1025774c
CH
4603 if (!rc) {
4604 setattr_copy(inode, attr);
4605 mark_inode_dirty(inode);
4606 }
4607
4608 /*
4609 * If the call to ext4_truncate failed to get a transaction handle at
4610 * all, we need to clean up the in-core orphan list manually.
4611 */
3d287de3 4612 if (orphan && inode->i_nlink)
617ba13b 4613 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4614
4615 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4616 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4617
4618err_out:
617ba13b 4619 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4620 if (!error)
4621 error = rc;
4622 return error;
4623}
4624
3e3398a0
MC
4625int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4626 struct kstat *stat)
4627{
4628 struct inode *inode;
8af8eecc 4629 unsigned long long delalloc_blocks;
3e3398a0
MC
4630
4631 inode = dentry->d_inode;
4632 generic_fillattr(inode, stat);
4633
4634 /*
4635 * We can't update i_blocks if the block allocation is delayed
4636 * otherwise in the case of system crash before the real block
4637 * allocation is done, we will have i_blocks inconsistent with
4638 * on-disk file blocks.
4639 * We always keep i_blocks updated together with real
4640 * allocation. But to not confuse with user, stat
4641 * will return the blocks that include the delayed allocation
4642 * blocks for this file.
4643 */
96607551
TM
4644 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4645 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0 4646
8af8eecc 4647 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
3e3398a0
MC
4648 return 0;
4649}
ac27a0ec 4650
fffb2739
JK
4651static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4652 int pextents)
a02908f1 4653{
12e9b892 4654 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4655 return ext4_ind_trans_blocks(inode, lblocks);
4656 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4657}
ac51d837 4658
ac27a0ec 4659/*
a02908f1
MC
4660 * Account for index blocks, block groups bitmaps and block group
4661 * descriptor blocks if modify datablocks and index blocks
4662 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4663 *
a02908f1 4664 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4665 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4666 * they could still across block group boundary.
ac27a0ec 4667 *
a02908f1
MC
4668 * Also account for superblock, inode, quota and xattr blocks
4669 */
fffb2739
JK
4670static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4671 int pextents)
a02908f1 4672{
8df9675f
TT
4673 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4674 int gdpblocks;
a02908f1
MC
4675 int idxblocks;
4676 int ret = 0;
4677
4678 /*
fffb2739
JK
4679 * How many index blocks need to touch to map @lblocks logical blocks
4680 * to @pextents physical extents?
a02908f1 4681 */
fffb2739 4682 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4683
4684 ret = idxblocks;
4685
4686 /*
4687 * Now let's see how many group bitmaps and group descriptors need
4688 * to account
4689 */
fffb2739 4690 groups = idxblocks + pextents;
a02908f1 4691 gdpblocks = groups;
8df9675f
TT
4692 if (groups > ngroups)
4693 groups = ngroups;
a02908f1
MC
4694 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4695 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4696
4697 /* bitmaps and block group descriptor blocks */
4698 ret += groups + gdpblocks;
4699
4700 /* Blocks for super block, inode, quota and xattr blocks */
4701 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4702
4703 return ret;
4704}
4705
4706/*
25985edc 4707 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4708 * the modification of a single pages into a single transaction,
4709 * which may include multiple chunks of block allocations.
ac27a0ec 4710 *
525f4ed8 4711 * This could be called via ext4_write_begin()
ac27a0ec 4712 *
525f4ed8 4713 * We need to consider the worse case, when
a02908f1 4714 * one new block per extent.
ac27a0ec 4715 */
a86c6181 4716int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4717{
617ba13b 4718 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4719 int ret;
4720
fffb2739 4721 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4722
a02908f1 4723 /* Account for data blocks for journalled mode */
617ba13b 4724 if (ext4_should_journal_data(inode))
a02908f1 4725 ret += bpp;
ac27a0ec
DK
4726 return ret;
4727}
f3bd1f3f
MC
4728
4729/*
4730 * Calculate the journal credits for a chunk of data modification.
4731 *
4732 * This is called from DIO, fallocate or whoever calling
79e83036 4733 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4734 *
4735 * journal buffers for data blocks are not included here, as DIO
4736 * and fallocate do no need to journal data buffers.
4737 */
4738int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4739{
4740 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4741}
4742
ac27a0ec 4743/*
617ba13b 4744 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4745 * Give this, we know that the caller already has write access to iloc->bh.
4746 */
617ba13b 4747int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4748 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4749{
4750 int err = 0;
4751
c64db50e 4752 if (IS_I_VERSION(inode))
25ec56b5
JNC
4753 inode_inc_iversion(inode);
4754
ac27a0ec
DK
4755 /* the do_update_inode consumes one bh->b_count */
4756 get_bh(iloc->bh);
4757
dab291af 4758 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4759 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4760 put_bh(iloc->bh);
4761 return err;
4762}
4763
4764/*
4765 * On success, We end up with an outstanding reference count against
4766 * iloc->bh. This _must_ be cleaned up later.
4767 */
4768
4769int
617ba13b
MC
4770ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4771 struct ext4_iloc *iloc)
ac27a0ec 4772{
0390131b
FM
4773 int err;
4774
4775 err = ext4_get_inode_loc(inode, iloc);
4776 if (!err) {
4777 BUFFER_TRACE(iloc->bh, "get_write_access");
4778 err = ext4_journal_get_write_access(handle, iloc->bh);
4779 if (err) {
4780 brelse(iloc->bh);
4781 iloc->bh = NULL;
ac27a0ec
DK
4782 }
4783 }
617ba13b 4784 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4785 return err;
4786}
4787
6dd4ee7c
KS
4788/*
4789 * Expand an inode by new_extra_isize bytes.
4790 * Returns 0 on success or negative error number on failure.
4791 */
1d03ec98
AK
4792static int ext4_expand_extra_isize(struct inode *inode,
4793 unsigned int new_extra_isize,
4794 struct ext4_iloc iloc,
4795 handle_t *handle)
6dd4ee7c
KS
4796{
4797 struct ext4_inode *raw_inode;
4798 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4799
4800 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4801 return 0;
4802
4803 raw_inode = ext4_raw_inode(&iloc);
4804
4805 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4806
4807 /* No extended attributes present */
19f5fb7a
TT
4808 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4809 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4810 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4811 new_extra_isize);
4812 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4813 return 0;
4814 }
4815
4816 /* try to expand with EAs present */
4817 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4818 raw_inode, handle);
4819}
4820
ac27a0ec
DK
4821/*
4822 * What we do here is to mark the in-core inode as clean with respect to inode
4823 * dirtiness (it may still be data-dirty).
4824 * This means that the in-core inode may be reaped by prune_icache
4825 * without having to perform any I/O. This is a very good thing,
4826 * because *any* task may call prune_icache - even ones which
4827 * have a transaction open against a different journal.
4828 *
4829 * Is this cheating? Not really. Sure, we haven't written the
4830 * inode out, but prune_icache isn't a user-visible syncing function.
4831 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4832 * we start and wait on commits.
ac27a0ec 4833 */
617ba13b 4834int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4835{
617ba13b 4836 struct ext4_iloc iloc;
6dd4ee7c
KS
4837 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4838 static unsigned int mnt_count;
4839 int err, ret;
ac27a0ec
DK
4840
4841 might_sleep();
7ff9c073 4842 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4843 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4844 if (ext4_handle_valid(handle) &&
4845 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4846 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4847 /*
4848 * We need extra buffer credits since we may write into EA block
4849 * with this same handle. If journal_extend fails, then it will
4850 * only result in a minor loss of functionality for that inode.
4851 * If this is felt to be critical, then e2fsck should be run to
4852 * force a large enough s_min_extra_isize.
4853 */
4854 if ((jbd2_journal_extend(handle,
4855 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4856 ret = ext4_expand_extra_isize(inode,
4857 sbi->s_want_extra_isize,
4858 iloc, handle);
4859 if (ret) {
19f5fb7a
TT
4860 ext4_set_inode_state(inode,
4861 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4862 if (mnt_count !=
4863 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4864 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4865 "Unable to expand inode %lu. Delete"
4866 " some EAs or run e2fsck.",
4867 inode->i_ino);
c1bddad9
AK
4868 mnt_count =
4869 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4870 }
4871 }
4872 }
4873 }
ac27a0ec 4874 if (!err)
617ba13b 4875 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4876 return err;
4877}
4878
4879/*
617ba13b 4880 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4881 *
4882 * We're really interested in the case where a file is being extended.
4883 * i_size has been changed by generic_commit_write() and we thus need
4884 * to include the updated inode in the current transaction.
4885 *
5dd4056d 4886 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4887 * are allocated to the file.
4888 *
4889 * If the inode is marked synchronous, we don't honour that here - doing
4890 * so would cause a commit on atime updates, which we don't bother doing.
4891 * We handle synchronous inodes at the highest possible level.
4892 */
aa385729 4893void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4894{
ac27a0ec
DK
4895 handle_t *handle;
4896
9924a92a 4897 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4898 if (IS_ERR(handle))
4899 goto out;
f3dc272f 4900
f3dc272f
CW
4901 ext4_mark_inode_dirty(handle, inode);
4902
617ba13b 4903 ext4_journal_stop(handle);
ac27a0ec
DK
4904out:
4905 return;
4906}
4907
4908#if 0
4909/*
4910 * Bind an inode's backing buffer_head into this transaction, to prevent
4911 * it from being flushed to disk early. Unlike
617ba13b 4912 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4913 * returns no iloc structure, so the caller needs to repeat the iloc
4914 * lookup to mark the inode dirty later.
4915 */
617ba13b 4916static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4917{
617ba13b 4918 struct ext4_iloc iloc;
ac27a0ec
DK
4919
4920 int err = 0;
4921 if (handle) {
617ba13b 4922 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4923 if (!err) {
4924 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4925 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4926 if (!err)
0390131b 4927 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4928 NULL,
0390131b 4929 iloc.bh);
ac27a0ec
DK
4930 brelse(iloc.bh);
4931 }
4932 }
617ba13b 4933 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4934 return err;
4935}
4936#endif
4937
617ba13b 4938int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4939{
4940 journal_t *journal;
4941 handle_t *handle;
4942 int err;
4943
4944 /*
4945 * We have to be very careful here: changing a data block's
4946 * journaling status dynamically is dangerous. If we write a
4947 * data block to the journal, change the status and then delete
4948 * that block, we risk forgetting to revoke the old log record
4949 * from the journal and so a subsequent replay can corrupt data.
4950 * So, first we make sure that the journal is empty and that
4951 * nobody is changing anything.
4952 */
4953
617ba13b 4954 journal = EXT4_JOURNAL(inode);
0390131b
FM
4955 if (!journal)
4956 return 0;
d699594d 4957 if (is_journal_aborted(journal))
ac27a0ec 4958 return -EROFS;
2aff57b0
YY
4959 /* We have to allocate physical blocks for delalloc blocks
4960 * before flushing journal. otherwise delalloc blocks can not
4961 * be allocated any more. even more truncate on delalloc blocks
4962 * could trigger BUG by flushing delalloc blocks in journal.
4963 * There is no delalloc block in non-journal data mode.
4964 */
4965 if (val && test_opt(inode->i_sb, DELALLOC)) {
4966 err = ext4_alloc_da_blocks(inode);
4967 if (err < 0)
4968 return err;
4969 }
ac27a0ec 4970
17335dcc
DM
4971 /* Wait for all existing dio workers */
4972 ext4_inode_block_unlocked_dio(inode);
4973 inode_dio_wait(inode);
4974
dab291af 4975 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4976
4977 /*
4978 * OK, there are no updates running now, and all cached data is
4979 * synced to disk. We are now in a completely consistent state
4980 * which doesn't have anything in the journal, and we know that
4981 * no filesystem updates are running, so it is safe to modify
4982 * the inode's in-core data-journaling state flag now.
4983 */
4984
4985 if (val)
12e9b892 4986 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4987 else {
4988 jbd2_journal_flush(journal);
12e9b892 4989 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4990 }
617ba13b 4991 ext4_set_aops(inode);
ac27a0ec 4992
dab291af 4993 jbd2_journal_unlock_updates(journal);
17335dcc 4994 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4995
4996 /* Finally we can mark the inode as dirty. */
4997
9924a92a 4998 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
4999 if (IS_ERR(handle))
5000 return PTR_ERR(handle);
5001
617ba13b 5002 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5003 ext4_handle_sync(handle);
617ba13b
MC
5004 ext4_journal_stop(handle);
5005 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5006
5007 return err;
5008}
2e9ee850
AK
5009
5010static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5011{
5012 return !buffer_mapped(bh);
5013}
5014
c2ec175c 5015int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5016{
c2ec175c 5017 struct page *page = vmf->page;
2e9ee850
AK
5018 loff_t size;
5019 unsigned long len;
9ea7df53 5020 int ret;
2e9ee850 5021 struct file *file = vma->vm_file;
496ad9aa 5022 struct inode *inode = file_inode(file);
2e9ee850 5023 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5024 handle_t *handle;
5025 get_block_t *get_block;
5026 int retries = 0;
2e9ee850 5027
8e8ad8a5 5028 sb_start_pagefault(inode->i_sb);
041bbb6d 5029 file_update_time(vma->vm_file);
9ea7df53
JK
5030 /* Delalloc case is easy... */
5031 if (test_opt(inode->i_sb, DELALLOC) &&
5032 !ext4_should_journal_data(inode) &&
5033 !ext4_nonda_switch(inode->i_sb)) {
5034 do {
5035 ret = __block_page_mkwrite(vma, vmf,
5036 ext4_da_get_block_prep);
5037 } while (ret == -ENOSPC &&
5038 ext4_should_retry_alloc(inode->i_sb, &retries));
5039 goto out_ret;
2e9ee850 5040 }
0e499890
DW
5041
5042 lock_page(page);
9ea7df53
JK
5043 size = i_size_read(inode);
5044 /* Page got truncated from under us? */
5045 if (page->mapping != mapping || page_offset(page) > size) {
5046 unlock_page(page);
5047 ret = VM_FAULT_NOPAGE;
5048 goto out;
0e499890 5049 }
2e9ee850
AK
5050
5051 if (page->index == size >> PAGE_CACHE_SHIFT)
5052 len = size & ~PAGE_CACHE_MASK;
5053 else
5054 len = PAGE_CACHE_SIZE;
a827eaff 5055 /*
9ea7df53
JK
5056 * Return if we have all the buffers mapped. This avoids the need to do
5057 * journal_start/journal_stop which can block and take a long time
a827eaff 5058 */
2e9ee850 5059 if (page_has_buffers(page)) {
f19d5870
TM
5060 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5061 0, len, NULL,
5062 ext4_bh_unmapped)) {
9ea7df53 5063 /* Wait so that we don't change page under IO */
1d1d1a76 5064 wait_for_stable_page(page);
9ea7df53
JK
5065 ret = VM_FAULT_LOCKED;
5066 goto out;
a827eaff 5067 }
2e9ee850 5068 }
a827eaff 5069 unlock_page(page);
9ea7df53
JK
5070 /* OK, we need to fill the hole... */
5071 if (ext4_should_dioread_nolock(inode))
5072 get_block = ext4_get_block_write;
5073 else
5074 get_block = ext4_get_block;
5075retry_alloc:
9924a92a
TT
5076 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5077 ext4_writepage_trans_blocks(inode));
9ea7df53 5078 if (IS_ERR(handle)) {
c2ec175c 5079 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5080 goto out;
5081 }
5082 ret = __block_page_mkwrite(vma, vmf, get_block);
5083 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5084 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5085 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5086 unlock_page(page);
5087 ret = VM_FAULT_SIGBUS;
fcbb5515 5088 ext4_journal_stop(handle);
9ea7df53
JK
5089 goto out;
5090 }
5091 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5092 }
5093 ext4_journal_stop(handle);
5094 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5095 goto retry_alloc;
5096out_ret:
5097 ret = block_page_mkwrite_return(ret);
5098out:
8e8ad8a5 5099 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5100 return ret;
5101}
This page took 0.985568 seconds and 5 git commands to generate.