ext4: improve free space calculation for inline_data
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
64769240 141
ac27a0ec
DK
142/*
143 * Test whether an inode is a fast symlink.
144 */
617ba13b 145static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 146{
617ba13b 147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
907f4554 223 if (!is_bad_inode(inode))
871a2931 224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
228 truncate_inode_pages(&inode->i_data, 0);
229
5dc23bdd 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
231 if (is_bad_inode(inode))
232 goto no_delete;
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
9924a92a
TT
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 241 if (IS_ERR(handle)) {
bc965ab3 242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
617ba13b 248 ext4_orphan_del(NULL, inode);
8e8ad8a5 249 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
0390131b 254 ext4_handle_sync(handle);
ac27a0ec 255 inode->i_size = 0;
bc965ab3
TT
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
12062ddd 258 ext4_warning(inode->i_sb,
bc965ab3
TT
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
ac27a0ec 262 if (inode->i_blocks)
617ba13b 263 ext4_truncate(inode);
bc965ab3
TT
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
0390131b 271 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
12062ddd 276 ext4_warning(inode->i_sb,
bc965ab3
TT
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
45388219 280 ext4_orphan_del(NULL, inode);
8e8ad8a5 281 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
282 goto no_delete;
283 }
284 }
285
ac27a0ec 286 /*
617ba13b 287 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 288 * AKPM: I think this can be inside the above `if'.
617ba13b 289 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 290 * deletion of a non-existent orphan - this is because we don't
617ba13b 291 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
292 * (Well, we could do this if we need to, but heck - it works)
293 */
617ba13b
MC
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
617ba13b 304 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 305 /* If that failed, just do the required in-core inode clear. */
0930fcc1 306 ext4_clear_inode(inode);
ac27a0ec 307 else
617ba13b
MC
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
8e8ad8a5 310 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
311 return;
312no_delete:
0930fcc1 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
314}
315
a9e7f447
DM
316#ifdef CONFIG_QUOTA
317qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 318{
a9e7f447 319 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 320}
a9e7f447 321#endif
9d0be502 322
12219aea
AK
323/*
324 * Calculate the number of metadata blocks need to reserve
9d0be502 325 * to allocate a block located at @lblock
12219aea 326 */
01f49d0b 327static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 328{
12e9b892 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 330 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 331
8bb2b247 332 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
333}
334
0637c6f4
TT
335/*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
5f634d06
AK
339void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
12219aea
AK
341{
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 343 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
344
345 spin_lock(&ei->i_block_reservation_lock);
d8990240 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 347 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 349 "with only %d reserved data blocks",
0637c6f4
TT
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
12219aea 355
97795d2a 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
97795d2a
BF
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
0637c6f4
TT
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
0637c6f4 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 371 used + ei->i_allocated_meta_blocks);
0637c6f4 372 ei->i_allocated_meta_blocks = 0;
6bc6e63f 373
0637c6f4
TT
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
57042651 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 381 ei->i_reserved_meta_blocks);
ee5f4d9c 382 ei->i_reserved_meta_blocks = 0;
9d0be502 383 ei->i_da_metadata_calc_len = 0;
6bc6e63f 384 }
12219aea 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 386
72b8ab9d
ES
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
7b415bf6 389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 390 else {
5f634d06
AK
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
72b8ab9d 394 * not re-claim the quota for fallocated blocks.
5f634d06 395 */
7b415bf6 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 397 }
d6014301
AK
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
0637c6f4
TT
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
d6014301 406 ext4_discard_preallocations(inode);
12219aea
AK
407}
408
e29136f8 409static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
410 unsigned int line,
411 struct ext4_map_blocks *map)
6fd058f7 412{
24676da4
TT
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
c398eda0
TT
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
6fd058f7
TT
419 return -EIO;
420 }
421 return 0;
422}
423
e29136f8 424#define check_block_validity(inode, map) \
c398eda0 425 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 426
921f266b
DM
427#ifdef ES_AGGRESSIVE_TEST
428static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433{
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertation failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476}
477#endif /* ES_AGGRESSIVE_TEST */
478
f5ab0d1f 479/*
e35fd660 480 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 481 * and returns if the blocks are already mapped.
f5ab0d1f 482 *
f5ab0d1f
MC
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
e35fd660
TT
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 497 * that case, buffer head is unmapped
f5ab0d1f
MC
498 *
499 * It returns the error in case of allocation failure.
500 */
e35fd660
TT
501int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
0e855ac8 503{
d100eef2 504 struct extent_status es;
0e855ac8 505 int retval;
921f266b
DM
506#ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510#endif
f5ab0d1f 511
e35fd660
TT
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
d100eef2 516
d3922a77
ZL
517 ext4_es_lru_add(inode);
518
d100eef2
ZL
519 /* Lookup extent status tree firstly */
520 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
521 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
522 map->m_pblk = ext4_es_pblock(&es) +
523 map->m_lblk - es.es_lblk;
524 map->m_flags |= ext4_es_is_written(&es) ?
525 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
526 retval = es.es_len - (map->m_lblk - es.es_lblk);
527 if (retval > map->m_len)
528 retval = map->m_len;
529 map->m_len = retval;
530 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
531 retval = 0;
532 } else {
533 BUG_ON(1);
534 }
921f266b
DM
535#ifdef ES_AGGRESSIVE_TEST
536 ext4_map_blocks_es_recheck(handle, inode, map,
537 &orig_map, flags);
538#endif
d100eef2
ZL
539 goto found;
540 }
541
4df3d265 542 /*
b920c755
TT
543 * Try to see if we can get the block without requesting a new
544 * file system block.
4df3d265 545 */
729f52c6
ZL
546 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
547 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
549 retval = ext4_ext_map_blocks(handle, inode, map, flags &
550 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 551 } else {
a4e5d88b
DM
552 retval = ext4_ind_map_blocks(handle, inode, map, flags &
553 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 554 }
f7fec032
ZL
555 if (retval > 0) {
556 int ret;
557 unsigned long long status;
558
921f266b
DM
559#ifdef ES_AGGRESSIVE_TEST
560 if (retval != map->m_len) {
561 printk("ES len assertation failed for inode: %lu "
562 "retval %d != map->m_len %d "
563 "in %s (lookup)\n", inode->i_ino, retval,
564 map->m_len, __func__);
565 }
566#endif
567
f7fec032
ZL
568 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
569 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
570 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
571 ext4_find_delalloc_range(inode, map->m_lblk,
572 map->m_lblk + map->m_len - 1))
573 status |= EXTENT_STATUS_DELAYED;
574 ret = ext4_es_insert_extent(inode, map->m_lblk,
575 map->m_len, map->m_pblk, status);
576 if (ret < 0)
577 retval = ret;
578 }
729f52c6
ZL
579 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
580 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 581
d100eef2 582found:
e35fd660 583 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 584 int ret = check_block_validity(inode, map);
6fd058f7
TT
585 if (ret != 0)
586 return ret;
587 }
588
f5ab0d1f 589 /* If it is only a block(s) look up */
c2177057 590 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
591 return retval;
592
593 /*
594 * Returns if the blocks have already allocated
595 *
596 * Note that if blocks have been preallocated
df3ab170 597 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
598 * with buffer head unmapped.
599 */
e35fd660 600 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
601 return retval;
602
2a8964d6 603 /*
a25a4e1a
ZL
604 * Here we clear m_flags because after allocating an new extent,
605 * it will be set again.
2a8964d6 606 */
a25a4e1a 607 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 608
4df3d265 609 /*
f5ab0d1f
MC
610 * New blocks allocate and/or writing to uninitialized extent
611 * will possibly result in updating i_data, so we take
612 * the write lock of i_data_sem, and call get_blocks()
613 * with create == 1 flag.
4df3d265
AK
614 */
615 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
616
617 /*
618 * if the caller is from delayed allocation writeout path
619 * we have already reserved fs blocks for allocation
620 * let the underlying get_block() function know to
621 * avoid double accounting
622 */
c2177057 623 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 624 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
625 /*
626 * We need to check for EXT4 here because migrate
627 * could have changed the inode type in between
628 */
12e9b892 629 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 630 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 631 } else {
e35fd660 632 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 633
e35fd660 634 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
635 /*
636 * We allocated new blocks which will result in
637 * i_data's format changing. Force the migrate
638 * to fail by clearing migrate flags
639 */
19f5fb7a 640 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 641 }
d2a17637 642
5f634d06
AK
643 /*
644 * Update reserved blocks/metadata blocks after successful
645 * block allocation which had been deferred till now. We don't
646 * support fallocate for non extent files. So we can update
647 * reserve space here.
648 */
649 if ((retval > 0) &&
1296cc85 650 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
651 ext4_da_update_reserve_space(inode, retval, 1);
652 }
f7fec032 653 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 654 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 655
f7fec032
ZL
656 if (retval > 0) {
657 int ret;
658 unsigned long long status;
659
921f266b
DM
660#ifdef ES_AGGRESSIVE_TEST
661 if (retval != map->m_len) {
662 printk("ES len assertation failed for inode: %lu "
663 "retval %d != map->m_len %d "
664 "in %s (allocation)\n", inode->i_ino, retval,
665 map->m_len, __func__);
666 }
667#endif
668
adb23551
ZL
669 /*
670 * If the extent has been zeroed out, we don't need to update
671 * extent status tree.
672 */
673 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
674 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
675 if (ext4_es_is_written(&es))
676 goto has_zeroout;
677 }
f7fec032
ZL
678 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
679 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
680 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
681 ext4_find_delalloc_range(inode, map->m_lblk,
682 map->m_lblk + map->m_len - 1))
683 status |= EXTENT_STATUS_DELAYED;
684 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
685 map->m_pblk, status);
686 if (ret < 0)
687 retval = ret;
5356f261
AK
688 }
689
adb23551 690has_zeroout:
4df3d265 691 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 692 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 693 int ret = check_block_validity(inode, map);
6fd058f7
TT
694 if (ret != 0)
695 return ret;
696 }
0e855ac8
AK
697 return retval;
698}
699
f3bd1f3f
MC
700/* Maximum number of blocks we map for direct IO at once. */
701#define DIO_MAX_BLOCKS 4096
702
2ed88685
TT
703static int _ext4_get_block(struct inode *inode, sector_t iblock,
704 struct buffer_head *bh, int flags)
ac27a0ec 705{
3e4fdaf8 706 handle_t *handle = ext4_journal_current_handle();
2ed88685 707 struct ext4_map_blocks map;
7fb5409d 708 int ret = 0, started = 0;
f3bd1f3f 709 int dio_credits;
ac27a0ec 710
46c7f254
TM
711 if (ext4_has_inline_data(inode))
712 return -ERANGE;
713
2ed88685
TT
714 map.m_lblk = iblock;
715 map.m_len = bh->b_size >> inode->i_blkbits;
716
8b0f165f 717 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 718 /* Direct IO write... */
2ed88685
TT
719 if (map.m_len > DIO_MAX_BLOCKS)
720 map.m_len = DIO_MAX_BLOCKS;
721 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
722 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
723 dio_credits);
7fb5409d 724 if (IS_ERR(handle)) {
ac27a0ec 725 ret = PTR_ERR(handle);
2ed88685 726 return ret;
ac27a0ec 727 }
7fb5409d 728 started = 1;
ac27a0ec
DK
729 }
730
2ed88685 731 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 732 if (ret > 0) {
2ed88685
TT
733 map_bh(bh, inode->i_sb, map.m_pblk);
734 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
735 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 736 ret = 0;
ac27a0ec 737 }
7fb5409d
JK
738 if (started)
739 ext4_journal_stop(handle);
ac27a0ec
DK
740 return ret;
741}
742
2ed88685
TT
743int ext4_get_block(struct inode *inode, sector_t iblock,
744 struct buffer_head *bh, int create)
745{
746 return _ext4_get_block(inode, iblock, bh,
747 create ? EXT4_GET_BLOCKS_CREATE : 0);
748}
749
ac27a0ec
DK
750/*
751 * `handle' can be NULL if create is zero
752 */
617ba13b 753struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 754 ext4_lblk_t block, int create, int *errp)
ac27a0ec 755{
2ed88685
TT
756 struct ext4_map_blocks map;
757 struct buffer_head *bh;
ac27a0ec
DK
758 int fatal = 0, err;
759
760 J_ASSERT(handle != NULL || create == 0);
761
2ed88685
TT
762 map.m_lblk = block;
763 map.m_len = 1;
764 err = ext4_map_blocks(handle, inode, &map,
765 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 766
90b0a973
CM
767 /* ensure we send some value back into *errp */
768 *errp = 0;
769
0f70b406
TT
770 if (create && err == 0)
771 err = -ENOSPC; /* should never happen */
2ed88685
TT
772 if (err < 0)
773 *errp = err;
774 if (err <= 0)
775 return NULL;
2ed88685
TT
776
777 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 778 if (unlikely(!bh)) {
860d21e2 779 *errp = -ENOMEM;
2ed88685 780 return NULL;
ac27a0ec 781 }
2ed88685
TT
782 if (map.m_flags & EXT4_MAP_NEW) {
783 J_ASSERT(create != 0);
784 J_ASSERT(handle != NULL);
ac27a0ec 785
2ed88685
TT
786 /*
787 * Now that we do not always journal data, we should
788 * keep in mind whether this should always journal the
789 * new buffer as metadata. For now, regular file
790 * writes use ext4_get_block instead, so it's not a
791 * problem.
792 */
793 lock_buffer(bh);
794 BUFFER_TRACE(bh, "call get_create_access");
795 fatal = ext4_journal_get_create_access(handle, bh);
796 if (!fatal && !buffer_uptodate(bh)) {
797 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
798 set_buffer_uptodate(bh);
ac27a0ec 799 }
2ed88685
TT
800 unlock_buffer(bh);
801 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
802 err = ext4_handle_dirty_metadata(handle, inode, bh);
803 if (!fatal)
804 fatal = err;
805 } else {
806 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 807 }
2ed88685
TT
808 if (fatal) {
809 *errp = fatal;
810 brelse(bh);
811 bh = NULL;
812 }
813 return bh;
ac27a0ec
DK
814}
815
617ba13b 816struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 817 ext4_lblk_t block, int create, int *err)
ac27a0ec 818{
af5bc92d 819 struct buffer_head *bh;
ac27a0ec 820
617ba13b 821 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
822 if (!bh)
823 return bh;
824 if (buffer_uptodate(bh))
825 return bh;
65299a3b 826 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
827 wait_on_buffer(bh);
828 if (buffer_uptodate(bh))
829 return bh;
830 put_bh(bh);
831 *err = -EIO;
832 return NULL;
833}
834
f19d5870
TM
835int ext4_walk_page_buffers(handle_t *handle,
836 struct buffer_head *head,
837 unsigned from,
838 unsigned to,
839 int *partial,
840 int (*fn)(handle_t *handle,
841 struct buffer_head *bh))
ac27a0ec
DK
842{
843 struct buffer_head *bh;
844 unsigned block_start, block_end;
845 unsigned blocksize = head->b_size;
846 int err, ret = 0;
847 struct buffer_head *next;
848
af5bc92d
TT
849 for (bh = head, block_start = 0;
850 ret == 0 && (bh != head || !block_start);
de9a55b8 851 block_start = block_end, bh = next) {
ac27a0ec
DK
852 next = bh->b_this_page;
853 block_end = block_start + blocksize;
854 if (block_end <= from || block_start >= to) {
855 if (partial && !buffer_uptodate(bh))
856 *partial = 1;
857 continue;
858 }
859 err = (*fn)(handle, bh);
860 if (!ret)
861 ret = err;
862 }
863 return ret;
864}
865
866/*
867 * To preserve ordering, it is essential that the hole instantiation and
868 * the data write be encapsulated in a single transaction. We cannot
617ba13b 869 * close off a transaction and start a new one between the ext4_get_block()
dab291af 870 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
871 * prepare_write() is the right place.
872 *
36ade451
JK
873 * Also, this function can nest inside ext4_writepage(). In that case, we
874 * *know* that ext4_writepage() has generated enough buffer credits to do the
875 * whole page. So we won't block on the journal in that case, which is good,
876 * because the caller may be PF_MEMALLOC.
ac27a0ec 877 *
617ba13b 878 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
879 * quota file writes. If we were to commit the transaction while thus
880 * reentered, there can be a deadlock - we would be holding a quota
881 * lock, and the commit would never complete if another thread had a
882 * transaction open and was blocking on the quota lock - a ranking
883 * violation.
884 *
dab291af 885 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
886 * will _not_ run commit under these circumstances because handle->h_ref
887 * is elevated. We'll still have enough credits for the tiny quotafile
888 * write.
889 */
f19d5870
TM
890int do_journal_get_write_access(handle_t *handle,
891 struct buffer_head *bh)
ac27a0ec 892{
56d35a4c
JK
893 int dirty = buffer_dirty(bh);
894 int ret;
895
ac27a0ec
DK
896 if (!buffer_mapped(bh) || buffer_freed(bh))
897 return 0;
56d35a4c 898 /*
ebdec241 899 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
900 * the dirty bit as jbd2_journal_get_write_access() could complain
901 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 902 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
903 * the bit before releasing a page lock and thus writeback cannot
904 * ever write the buffer.
905 */
906 if (dirty)
907 clear_buffer_dirty(bh);
908 ret = ext4_journal_get_write_access(handle, bh);
909 if (!ret && dirty)
910 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
911 return ret;
ac27a0ec
DK
912}
913
8b0f165f
AP
914static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
915 struct buffer_head *bh_result, int create);
bfc1af65 916static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
917 loff_t pos, unsigned len, unsigned flags,
918 struct page **pagep, void **fsdata)
ac27a0ec 919{
af5bc92d 920 struct inode *inode = mapping->host;
1938a150 921 int ret, needed_blocks;
ac27a0ec
DK
922 handle_t *handle;
923 int retries = 0;
af5bc92d 924 struct page *page;
de9a55b8 925 pgoff_t index;
af5bc92d 926 unsigned from, to;
bfc1af65 927
9bffad1e 928 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
929 /*
930 * Reserve one block more for addition to orphan list in case
931 * we allocate blocks but write fails for some reason
932 */
933 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 934 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
935 from = pos & (PAGE_CACHE_SIZE - 1);
936 to = from + len;
ac27a0ec 937
f19d5870
TM
938 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
939 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
940 flags, pagep);
941 if (ret < 0)
47564bfb
TT
942 return ret;
943 if (ret == 1)
944 return 0;
f19d5870
TM
945 }
946
47564bfb
TT
947 /*
948 * grab_cache_page_write_begin() can take a long time if the
949 * system is thrashing due to memory pressure, or if the page
950 * is being written back. So grab it first before we start
951 * the transaction handle. This also allows us to allocate
952 * the page (if needed) without using GFP_NOFS.
953 */
954retry_grab:
955 page = grab_cache_page_write_begin(mapping, index, flags);
956 if (!page)
957 return -ENOMEM;
958 unlock_page(page);
959
960retry_journal:
9924a92a 961 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 962 if (IS_ERR(handle)) {
47564bfb
TT
963 page_cache_release(page);
964 return PTR_ERR(handle);
7479d2b9 965 }
ac27a0ec 966
47564bfb
TT
967 lock_page(page);
968 if (page->mapping != mapping) {
969 /* The page got truncated from under us */
970 unlock_page(page);
971 page_cache_release(page);
cf108bca 972 ext4_journal_stop(handle);
47564bfb 973 goto retry_grab;
cf108bca 974 }
47564bfb 975 wait_on_page_writeback(page);
cf108bca 976
744692dc 977 if (ext4_should_dioread_nolock(inode))
6e1db88d 978 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 979 else
6e1db88d 980 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
981
982 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
983 ret = ext4_walk_page_buffers(handle, page_buffers(page),
984 from, to, NULL,
985 do_journal_get_write_access);
ac27a0ec 986 }
bfc1af65
NP
987
988 if (ret) {
af5bc92d 989 unlock_page(page);
ae4d5372 990 /*
6e1db88d 991 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
992 * outside i_size. Trim these off again. Don't need
993 * i_size_read because we hold i_mutex.
1938a150
AK
994 *
995 * Add inode to orphan list in case we crash before
996 * truncate finishes
ae4d5372 997 */
ffacfa7a 998 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
999 ext4_orphan_add(handle, inode);
1000
1001 ext4_journal_stop(handle);
1002 if (pos + len > inode->i_size) {
b9a4207d 1003 ext4_truncate_failed_write(inode);
de9a55b8 1004 /*
ffacfa7a 1005 * If truncate failed early the inode might
1938a150
AK
1006 * still be on the orphan list; we need to
1007 * make sure the inode is removed from the
1008 * orphan list in that case.
1009 */
1010 if (inode->i_nlink)
1011 ext4_orphan_del(NULL, inode);
1012 }
bfc1af65 1013
47564bfb
TT
1014 if (ret == -ENOSPC &&
1015 ext4_should_retry_alloc(inode->i_sb, &retries))
1016 goto retry_journal;
1017 page_cache_release(page);
1018 return ret;
1019 }
1020 *pagep = page;
ac27a0ec
DK
1021 return ret;
1022}
1023
bfc1af65
NP
1024/* For write_end() in data=journal mode */
1025static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1026{
13fca323 1027 int ret;
ac27a0ec
DK
1028 if (!buffer_mapped(bh) || buffer_freed(bh))
1029 return 0;
1030 set_buffer_uptodate(bh);
13fca323
TT
1031 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1032 clear_buffer_meta(bh);
1033 clear_buffer_prio(bh);
1034 return ret;
ac27a0ec
DK
1035}
1036
eed4333f
ZL
1037/*
1038 * We need to pick up the new inode size which generic_commit_write gave us
1039 * `file' can be NULL - eg, when called from page_symlink().
1040 *
1041 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1042 * buffers are managed internally.
1043 */
1044static int ext4_write_end(struct file *file,
1045 struct address_space *mapping,
1046 loff_t pos, unsigned len, unsigned copied,
1047 struct page *page, void *fsdata)
f8514083 1048{
f8514083 1049 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1050 struct inode *inode = mapping->host;
1051 int ret = 0, ret2;
1052 int i_size_changed = 0;
1053
1054 trace_ext4_write_end(inode, pos, len, copied);
1055 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1056 ret = ext4_jbd2_file_inode(handle, inode);
1057 if (ret) {
1058 unlock_page(page);
1059 page_cache_release(page);
1060 goto errout;
1061 }
1062 }
f8514083 1063
f19d5870
TM
1064 if (ext4_has_inline_data(inode))
1065 copied = ext4_write_inline_data_end(inode, pos, len,
1066 copied, page);
1067 else
1068 copied = block_write_end(file, mapping, pos,
1069 len, copied, page, fsdata);
f8514083
AK
1070
1071 /*
1072 * No need to use i_size_read() here, the i_size
eed4333f 1073 * cannot change under us because we hole i_mutex.
f8514083
AK
1074 *
1075 * But it's important to update i_size while still holding page lock:
1076 * page writeout could otherwise come in and zero beyond i_size.
1077 */
1078 if (pos + copied > inode->i_size) {
1079 i_size_write(inode, pos + copied);
1080 i_size_changed = 1;
1081 }
1082
eed4333f 1083 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1084 /* We need to mark inode dirty even if
1085 * new_i_size is less that inode->i_size
eed4333f 1086 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1087 */
1088 ext4_update_i_disksize(inode, (pos + copied));
1089 i_size_changed = 1;
1090 }
1091 unlock_page(page);
1092 page_cache_release(page);
1093
1094 /*
1095 * Don't mark the inode dirty under page lock. First, it unnecessarily
1096 * makes the holding time of page lock longer. Second, it forces lock
1097 * ordering of page lock and transaction start for journaling
1098 * filesystems.
1099 */
1100 if (i_size_changed)
1101 ext4_mark_inode_dirty(handle, inode);
1102
74d553aa
TT
1103 if (copied < 0)
1104 ret = copied;
ffacfa7a 1105 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1106 /* if we have allocated more blocks and copied
1107 * less. We will have blocks allocated outside
1108 * inode->i_size. So truncate them
1109 */
1110 ext4_orphan_add(handle, inode);
74d553aa 1111errout:
617ba13b 1112 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1113 if (!ret)
1114 ret = ret2;
bfc1af65 1115
f8514083 1116 if (pos + len > inode->i_size) {
b9a4207d 1117 ext4_truncate_failed_write(inode);
de9a55b8 1118 /*
ffacfa7a 1119 * If truncate failed early the inode might still be
f8514083
AK
1120 * on the orphan list; we need to make sure the inode
1121 * is removed from the orphan list in that case.
1122 */
1123 if (inode->i_nlink)
1124 ext4_orphan_del(NULL, inode);
1125 }
1126
bfc1af65 1127 return ret ? ret : copied;
ac27a0ec
DK
1128}
1129
bfc1af65 1130static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1131 struct address_space *mapping,
1132 loff_t pos, unsigned len, unsigned copied,
1133 struct page *page, void *fsdata)
ac27a0ec 1134{
617ba13b 1135 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1136 struct inode *inode = mapping->host;
ac27a0ec
DK
1137 int ret = 0, ret2;
1138 int partial = 0;
bfc1af65 1139 unsigned from, to;
cf17fea6 1140 loff_t new_i_size;
ac27a0ec 1141
9bffad1e 1142 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1143 from = pos & (PAGE_CACHE_SIZE - 1);
1144 to = from + len;
1145
441c8508
CW
1146 BUG_ON(!ext4_handle_valid(handle));
1147
3fdcfb66
TM
1148 if (ext4_has_inline_data(inode))
1149 copied = ext4_write_inline_data_end(inode, pos, len,
1150 copied, page);
1151 else {
1152 if (copied < len) {
1153 if (!PageUptodate(page))
1154 copied = 0;
1155 page_zero_new_buffers(page, from+copied, to);
1156 }
ac27a0ec 1157
3fdcfb66
TM
1158 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1159 to, &partial, write_end_fn);
1160 if (!partial)
1161 SetPageUptodate(page);
1162 }
cf17fea6
AK
1163 new_i_size = pos + copied;
1164 if (new_i_size > inode->i_size)
bfc1af65 1165 i_size_write(inode, pos+copied);
19f5fb7a 1166 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1167 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1168 if (new_i_size > EXT4_I(inode)->i_disksize) {
1169 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1170 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1171 if (!ret)
1172 ret = ret2;
1173 }
bfc1af65 1174
cf108bca 1175 unlock_page(page);
f8514083 1176 page_cache_release(page);
ffacfa7a 1177 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1178 /* if we have allocated more blocks and copied
1179 * less. We will have blocks allocated outside
1180 * inode->i_size. So truncate them
1181 */
1182 ext4_orphan_add(handle, inode);
1183
617ba13b 1184 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1185 if (!ret)
1186 ret = ret2;
f8514083 1187 if (pos + len > inode->i_size) {
b9a4207d 1188 ext4_truncate_failed_write(inode);
de9a55b8 1189 /*
ffacfa7a 1190 * If truncate failed early the inode might still be
f8514083
AK
1191 * on the orphan list; we need to make sure the inode
1192 * is removed from the orphan list in that case.
1193 */
1194 if (inode->i_nlink)
1195 ext4_orphan_del(NULL, inode);
1196 }
bfc1af65
NP
1197
1198 return ret ? ret : copied;
ac27a0ec 1199}
d2a17637 1200
386ad67c
LC
1201/*
1202 * Reserve a metadata for a single block located at lblock
1203 */
1204static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1205{
1206 int retries = 0;
1207 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1208 struct ext4_inode_info *ei = EXT4_I(inode);
1209 unsigned int md_needed;
1210 ext4_lblk_t save_last_lblock;
1211 int save_len;
1212
1213 /*
1214 * recalculate the amount of metadata blocks to reserve
1215 * in order to allocate nrblocks
1216 * worse case is one extent per block
1217 */
1218repeat:
1219 spin_lock(&ei->i_block_reservation_lock);
1220 /*
1221 * ext4_calc_metadata_amount() has side effects, which we have
1222 * to be prepared undo if we fail to claim space.
1223 */
1224 save_len = ei->i_da_metadata_calc_len;
1225 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1226 md_needed = EXT4_NUM_B2C(sbi,
1227 ext4_calc_metadata_amount(inode, lblock));
1228 trace_ext4_da_reserve_space(inode, md_needed);
1229
1230 /*
1231 * We do still charge estimated metadata to the sb though;
1232 * we cannot afford to run out of free blocks.
1233 */
1234 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1235 ei->i_da_metadata_calc_len = save_len;
1236 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1237 spin_unlock(&ei->i_block_reservation_lock);
1238 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1239 cond_resched();
1240 goto repeat;
1241 }
1242 return -ENOSPC;
1243 }
1244 ei->i_reserved_meta_blocks += md_needed;
1245 spin_unlock(&ei->i_block_reservation_lock);
1246
1247 return 0; /* success */
1248}
1249
9d0be502 1250/*
7b415bf6 1251 * Reserve a single cluster located at lblock
9d0be502 1252 */
01f49d0b 1253static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1254{
030ba6bc 1255 int retries = 0;
60e58e0f 1256 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1257 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1258 unsigned int md_needed;
5dd4056d 1259 int ret;
03179fe9
TT
1260 ext4_lblk_t save_last_lblock;
1261 int save_len;
1262
1263 /*
1264 * We will charge metadata quota at writeout time; this saves
1265 * us from metadata over-estimation, though we may go over by
1266 * a small amount in the end. Here we just reserve for data.
1267 */
1268 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1269 if (ret)
1270 return ret;
d2a17637
MC
1271
1272 /*
1273 * recalculate the amount of metadata blocks to reserve
1274 * in order to allocate nrblocks
1275 * worse case is one extent per block
1276 */
030ba6bc 1277repeat:
0637c6f4 1278 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1279 /*
1280 * ext4_calc_metadata_amount() has side effects, which we have
1281 * to be prepared undo if we fail to claim space.
1282 */
1283 save_len = ei->i_da_metadata_calc_len;
1284 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1285 md_needed = EXT4_NUM_B2C(sbi,
1286 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1287 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1288
72b8ab9d
ES
1289 /*
1290 * We do still charge estimated metadata to the sb though;
1291 * we cannot afford to run out of free blocks.
1292 */
e7d5f315 1293 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1294 ei->i_da_metadata_calc_len = save_len;
1295 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1296 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1297 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1298 cond_resched();
030ba6bc
AK
1299 goto repeat;
1300 }
03179fe9 1301 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1302 return -ENOSPC;
1303 }
9d0be502 1304 ei->i_reserved_data_blocks++;
0637c6f4
TT
1305 ei->i_reserved_meta_blocks += md_needed;
1306 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1307
d2a17637
MC
1308 return 0; /* success */
1309}
1310
12219aea 1311static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1312{
1313 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1314 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1315
cd213226
MC
1316 if (!to_free)
1317 return; /* Nothing to release, exit */
1318
d2a17637 1319 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1320
5a58ec87 1321 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1322 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1323 /*
0637c6f4
TT
1324 * if there aren't enough reserved blocks, then the
1325 * counter is messed up somewhere. Since this
1326 * function is called from invalidate page, it's
1327 * harmless to return without any action.
cd213226 1328 */
8de5c325 1329 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1330 "ino %lu, to_free %d with only %d reserved "
1084f252 1331 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1332 ei->i_reserved_data_blocks);
1333 WARN_ON(1);
1334 to_free = ei->i_reserved_data_blocks;
cd213226 1335 }
0637c6f4 1336 ei->i_reserved_data_blocks -= to_free;
cd213226 1337
0637c6f4
TT
1338 if (ei->i_reserved_data_blocks == 0) {
1339 /*
1340 * We can release all of the reserved metadata blocks
1341 * only when we have written all of the delayed
1342 * allocation blocks.
7b415bf6
AK
1343 * Note that in case of bigalloc, i_reserved_meta_blocks,
1344 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1345 */
57042651 1346 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1347 ei->i_reserved_meta_blocks);
ee5f4d9c 1348 ei->i_reserved_meta_blocks = 0;
9d0be502 1349 ei->i_da_metadata_calc_len = 0;
0637c6f4 1350 }
d2a17637 1351
72b8ab9d 1352 /* update fs dirty data blocks counter */
57042651 1353 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1354
d2a17637 1355 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1356
7b415bf6 1357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1358}
1359
1360static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1361 unsigned int offset,
1362 unsigned int length)
d2a17637
MC
1363{
1364 int to_release = 0;
1365 struct buffer_head *head, *bh;
1366 unsigned int curr_off = 0;
7b415bf6
AK
1367 struct inode *inode = page->mapping->host;
1368 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1369 unsigned int stop = offset + length;
7b415bf6 1370 int num_clusters;
51865fda 1371 ext4_fsblk_t lblk;
d2a17637 1372
ca99fdd2
LC
1373 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1374
d2a17637
MC
1375 head = page_buffers(page);
1376 bh = head;
1377 do {
1378 unsigned int next_off = curr_off + bh->b_size;
1379
ca99fdd2
LC
1380 if (next_off > stop)
1381 break;
1382
d2a17637
MC
1383 if ((offset <= curr_off) && (buffer_delay(bh))) {
1384 to_release++;
1385 clear_buffer_delay(bh);
1386 }
1387 curr_off = next_off;
1388 } while ((bh = bh->b_this_page) != head);
7b415bf6 1389
51865fda
ZL
1390 if (to_release) {
1391 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1392 ext4_es_remove_extent(inode, lblk, to_release);
1393 }
1394
7b415bf6
AK
1395 /* If we have released all the blocks belonging to a cluster, then we
1396 * need to release the reserved space for that cluster. */
1397 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1398 while (num_clusters > 0) {
7b415bf6
AK
1399 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1400 ((num_clusters - 1) << sbi->s_cluster_bits);
1401 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1402 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1403 ext4_da_release_space(inode, 1);
1404
1405 num_clusters--;
1406 }
d2a17637 1407}
ac27a0ec 1408
64769240
AT
1409/*
1410 * Delayed allocation stuff
1411 */
1412
4e7ea81d
JK
1413struct mpage_da_data {
1414 struct inode *inode;
1415 struct writeback_control *wbc;
6b523df4 1416
4e7ea81d
JK
1417 pgoff_t first_page; /* The first page to write */
1418 pgoff_t next_page; /* Current page to examine */
1419 pgoff_t last_page; /* Last page to examine */
791b7f08 1420 /*
4e7ea81d
JK
1421 * Extent to map - this can be after first_page because that can be
1422 * fully mapped. We somewhat abuse m_flags to store whether the extent
1423 * is delalloc or unwritten.
791b7f08 1424 */
4e7ea81d
JK
1425 struct ext4_map_blocks map;
1426 struct ext4_io_submit io_submit; /* IO submission data */
1427};
64769240 1428
4e7ea81d
JK
1429static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1430 bool invalidate)
c4a0c46e
AK
1431{
1432 int nr_pages, i;
1433 pgoff_t index, end;
1434 struct pagevec pvec;
1435 struct inode *inode = mpd->inode;
1436 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1437
1438 /* This is necessary when next_page == 0. */
1439 if (mpd->first_page >= mpd->next_page)
1440 return;
c4a0c46e 1441
c7f5938a
CW
1442 index = mpd->first_page;
1443 end = mpd->next_page - 1;
4e7ea81d
JK
1444 if (invalidate) {
1445 ext4_lblk_t start, last;
1446 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1447 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1448 ext4_es_remove_extent(inode, start, last - start + 1);
1449 }
51865fda 1450
66bea92c 1451 pagevec_init(&pvec, 0);
c4a0c46e
AK
1452 while (index <= end) {
1453 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1454 if (nr_pages == 0)
1455 break;
1456 for (i = 0; i < nr_pages; i++) {
1457 struct page *page = pvec.pages[i];
9b1d0998 1458 if (page->index > end)
c4a0c46e 1459 break;
c4a0c46e
AK
1460 BUG_ON(!PageLocked(page));
1461 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1462 if (invalidate) {
1463 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1464 ClearPageUptodate(page);
1465 }
c4a0c46e
AK
1466 unlock_page(page);
1467 }
9b1d0998
JK
1468 index = pvec.pages[nr_pages - 1]->index + 1;
1469 pagevec_release(&pvec);
c4a0c46e 1470 }
c4a0c46e
AK
1471}
1472
df22291f
AK
1473static void ext4_print_free_blocks(struct inode *inode)
1474{
1475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1476 struct super_block *sb = inode->i_sb;
f78ee70d 1477 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1478
1479 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1480 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1481 ext4_count_free_clusters(sb)));
92b97816
TT
1482 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1483 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1484 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1485 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1486 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1487 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1488 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1489 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1490 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1491 ei->i_reserved_data_blocks);
92b97816 1492 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1493 ei->i_reserved_meta_blocks);
1494 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1495 ei->i_allocated_meta_blocks);
df22291f
AK
1496 return;
1497}
1498
c364b22c 1499static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1500{
c364b22c 1501 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1502}
1503
5356f261
AK
1504/*
1505 * This function is grabs code from the very beginning of
1506 * ext4_map_blocks, but assumes that the caller is from delayed write
1507 * time. This function looks up the requested blocks and sets the
1508 * buffer delay bit under the protection of i_data_sem.
1509 */
1510static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1511 struct ext4_map_blocks *map,
1512 struct buffer_head *bh)
1513{
d100eef2 1514 struct extent_status es;
5356f261
AK
1515 int retval;
1516 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1517#ifdef ES_AGGRESSIVE_TEST
1518 struct ext4_map_blocks orig_map;
1519
1520 memcpy(&orig_map, map, sizeof(*map));
1521#endif
5356f261
AK
1522
1523 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1524 invalid_block = ~0;
1525
1526 map->m_flags = 0;
1527 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1528 "logical block %lu\n", inode->i_ino, map->m_len,
1529 (unsigned long) map->m_lblk);
d100eef2 1530
d3922a77
ZL
1531 ext4_es_lru_add(inode);
1532
d100eef2
ZL
1533 /* Lookup extent status tree firstly */
1534 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1535
1536 if (ext4_es_is_hole(&es)) {
1537 retval = 0;
1538 down_read((&EXT4_I(inode)->i_data_sem));
1539 goto add_delayed;
1540 }
1541
1542 /*
1543 * Delayed extent could be allocated by fallocate.
1544 * So we need to check it.
1545 */
1546 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1547 map_bh(bh, inode->i_sb, invalid_block);
1548 set_buffer_new(bh);
1549 set_buffer_delay(bh);
1550 return 0;
1551 }
1552
1553 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1554 retval = es.es_len - (iblock - es.es_lblk);
1555 if (retval > map->m_len)
1556 retval = map->m_len;
1557 map->m_len = retval;
1558 if (ext4_es_is_written(&es))
1559 map->m_flags |= EXT4_MAP_MAPPED;
1560 else if (ext4_es_is_unwritten(&es))
1561 map->m_flags |= EXT4_MAP_UNWRITTEN;
1562 else
1563 BUG_ON(1);
1564
921f266b
DM
1565#ifdef ES_AGGRESSIVE_TEST
1566 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1567#endif
d100eef2
ZL
1568 return retval;
1569 }
1570
5356f261
AK
1571 /*
1572 * Try to see if we can get the block without requesting a new
1573 * file system block.
1574 */
1575 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1576 if (ext4_has_inline_data(inode)) {
1577 /*
1578 * We will soon create blocks for this page, and let
1579 * us pretend as if the blocks aren't allocated yet.
1580 * In case of clusters, we have to handle the work
1581 * of mapping from cluster so that the reserved space
1582 * is calculated properly.
1583 */
1584 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1585 ext4_find_delalloc_cluster(inode, map->m_lblk))
1586 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1587 retval = 0;
1588 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1589 retval = ext4_ext_map_blocks(NULL, inode, map,
1590 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1591 else
d100eef2
ZL
1592 retval = ext4_ind_map_blocks(NULL, inode, map,
1593 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1594
d100eef2 1595add_delayed:
5356f261 1596 if (retval == 0) {
f7fec032 1597 int ret;
5356f261
AK
1598 /*
1599 * XXX: __block_prepare_write() unmaps passed block,
1600 * is it OK?
1601 */
386ad67c
LC
1602 /*
1603 * If the block was allocated from previously allocated cluster,
1604 * then we don't need to reserve it again. However we still need
1605 * to reserve metadata for every block we're going to write.
1606 */
5356f261 1607 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1608 ret = ext4_da_reserve_space(inode, iblock);
1609 if (ret) {
5356f261 1610 /* not enough space to reserve */
f7fec032 1611 retval = ret;
5356f261 1612 goto out_unlock;
f7fec032 1613 }
386ad67c
LC
1614 } else {
1615 ret = ext4_da_reserve_metadata(inode, iblock);
1616 if (ret) {
1617 /* not enough space to reserve */
1618 retval = ret;
1619 goto out_unlock;
1620 }
5356f261
AK
1621 }
1622
f7fec032
ZL
1623 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1624 ~0, EXTENT_STATUS_DELAYED);
1625 if (ret) {
1626 retval = ret;
51865fda 1627 goto out_unlock;
f7fec032 1628 }
51865fda 1629
5356f261
AK
1630 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1631 * and it should not appear on the bh->b_state.
1632 */
1633 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1634
1635 map_bh(bh, inode->i_sb, invalid_block);
1636 set_buffer_new(bh);
1637 set_buffer_delay(bh);
f7fec032
ZL
1638 } else if (retval > 0) {
1639 int ret;
1640 unsigned long long status;
1641
921f266b
DM
1642#ifdef ES_AGGRESSIVE_TEST
1643 if (retval != map->m_len) {
1644 printk("ES len assertation failed for inode: %lu "
1645 "retval %d != map->m_len %d "
1646 "in %s (lookup)\n", inode->i_ino, retval,
1647 map->m_len, __func__);
1648 }
1649#endif
1650
f7fec032
ZL
1651 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1652 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1653 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1654 map->m_pblk, status);
1655 if (ret != 0)
1656 retval = ret;
5356f261
AK
1657 }
1658
1659out_unlock:
1660 up_read((&EXT4_I(inode)->i_data_sem));
1661
1662 return retval;
1663}
1664
64769240 1665/*
b920c755
TT
1666 * This is a special get_blocks_t callback which is used by
1667 * ext4_da_write_begin(). It will either return mapped block or
1668 * reserve space for a single block.
29fa89d0
AK
1669 *
1670 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1671 * We also have b_blocknr = -1 and b_bdev initialized properly
1672 *
1673 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1674 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1675 * initialized properly.
64769240 1676 */
9c3569b5
TM
1677int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1678 struct buffer_head *bh, int create)
64769240 1679{
2ed88685 1680 struct ext4_map_blocks map;
64769240
AT
1681 int ret = 0;
1682
1683 BUG_ON(create == 0);
2ed88685
TT
1684 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1685
1686 map.m_lblk = iblock;
1687 map.m_len = 1;
64769240
AT
1688
1689 /*
1690 * first, we need to know whether the block is allocated already
1691 * preallocated blocks are unmapped but should treated
1692 * the same as allocated blocks.
1693 */
5356f261
AK
1694 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1695 if (ret <= 0)
2ed88685 1696 return ret;
64769240 1697
2ed88685
TT
1698 map_bh(bh, inode->i_sb, map.m_pblk);
1699 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1700
1701 if (buffer_unwritten(bh)) {
1702 /* A delayed write to unwritten bh should be marked
1703 * new and mapped. Mapped ensures that we don't do
1704 * get_block multiple times when we write to the same
1705 * offset and new ensures that we do proper zero out
1706 * for partial write.
1707 */
1708 set_buffer_new(bh);
c8205636 1709 set_buffer_mapped(bh);
2ed88685
TT
1710 }
1711 return 0;
64769240 1712}
61628a3f 1713
62e086be
AK
1714static int bget_one(handle_t *handle, struct buffer_head *bh)
1715{
1716 get_bh(bh);
1717 return 0;
1718}
1719
1720static int bput_one(handle_t *handle, struct buffer_head *bh)
1721{
1722 put_bh(bh);
1723 return 0;
1724}
1725
1726static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1727 unsigned int len)
1728{
1729 struct address_space *mapping = page->mapping;
1730 struct inode *inode = mapping->host;
3fdcfb66 1731 struct buffer_head *page_bufs = NULL;
62e086be 1732 handle_t *handle = NULL;
3fdcfb66
TM
1733 int ret = 0, err = 0;
1734 int inline_data = ext4_has_inline_data(inode);
1735 struct buffer_head *inode_bh = NULL;
62e086be 1736
cb20d518 1737 ClearPageChecked(page);
3fdcfb66
TM
1738
1739 if (inline_data) {
1740 BUG_ON(page->index != 0);
1741 BUG_ON(len > ext4_get_max_inline_size(inode));
1742 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1743 if (inode_bh == NULL)
1744 goto out;
1745 } else {
1746 page_bufs = page_buffers(page);
1747 if (!page_bufs) {
1748 BUG();
1749 goto out;
1750 }
1751 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1752 NULL, bget_one);
1753 }
62e086be
AK
1754 /* As soon as we unlock the page, it can go away, but we have
1755 * references to buffers so we are safe */
1756 unlock_page(page);
1757
9924a92a
TT
1758 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1759 ext4_writepage_trans_blocks(inode));
62e086be
AK
1760 if (IS_ERR(handle)) {
1761 ret = PTR_ERR(handle);
1762 goto out;
1763 }
1764
441c8508
CW
1765 BUG_ON(!ext4_handle_valid(handle));
1766
3fdcfb66
TM
1767 if (inline_data) {
1768 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1769
3fdcfb66
TM
1770 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1771
1772 } else {
1773 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1774 do_journal_get_write_access);
1775
1776 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1777 write_end_fn);
1778 }
62e086be
AK
1779 if (ret == 0)
1780 ret = err;
2d859db3 1781 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1782 err = ext4_journal_stop(handle);
1783 if (!ret)
1784 ret = err;
1785
3fdcfb66
TM
1786 if (!ext4_has_inline_data(inode))
1787 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1788 NULL, bput_one);
19f5fb7a 1789 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1790out:
3fdcfb66 1791 brelse(inode_bh);
62e086be
AK
1792 return ret;
1793}
1794
61628a3f 1795/*
43ce1d23
AK
1796 * Note that we don't need to start a transaction unless we're journaling data
1797 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1798 * need to file the inode to the transaction's list in ordered mode because if
1799 * we are writing back data added by write(), the inode is already there and if
25985edc 1800 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1801 * transaction the data will hit the disk. In case we are journaling data, we
1802 * cannot start transaction directly because transaction start ranks above page
1803 * lock so we have to do some magic.
1804 *
b920c755 1805 * This function can get called via...
20970ba6 1806 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1807 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1808 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1809 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1810 *
1811 * We don't do any block allocation in this function. If we have page with
1812 * multiple blocks we need to write those buffer_heads that are mapped. This
1813 * is important for mmaped based write. So if we do with blocksize 1K
1814 * truncate(f, 1024);
1815 * a = mmap(f, 0, 4096);
1816 * a[0] = 'a';
1817 * truncate(f, 4096);
1818 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1819 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1820 * do_wp_page). So writepage should write the first block. If we modify
1821 * the mmap area beyond 1024 we will again get a page_fault and the
1822 * page_mkwrite callback will do the block allocation and mark the
1823 * buffer_heads mapped.
1824 *
1825 * We redirty the page if we have any buffer_heads that is either delay or
1826 * unwritten in the page.
1827 *
1828 * We can get recursively called as show below.
1829 *
1830 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1831 * ext4_writepage()
1832 *
1833 * But since we don't do any block allocation we should not deadlock.
1834 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1835 */
43ce1d23 1836static int ext4_writepage(struct page *page,
62e086be 1837 struct writeback_control *wbc)
64769240 1838{
f8bec370 1839 int ret = 0;
61628a3f 1840 loff_t size;
498e5f24 1841 unsigned int len;
744692dc 1842 struct buffer_head *page_bufs = NULL;
61628a3f 1843 struct inode *inode = page->mapping->host;
36ade451 1844 struct ext4_io_submit io_submit;
61628a3f 1845
a9c667f8 1846 trace_ext4_writepage(page);
f0e6c985
AK
1847 size = i_size_read(inode);
1848 if (page->index == size >> PAGE_CACHE_SHIFT)
1849 len = size & ~PAGE_CACHE_MASK;
1850 else
1851 len = PAGE_CACHE_SIZE;
64769240 1852
a42afc5f 1853 page_bufs = page_buffers(page);
a42afc5f 1854 /*
fe386132
JK
1855 * We cannot do block allocation or other extent handling in this
1856 * function. If there are buffers needing that, we have to redirty
1857 * the page. But we may reach here when we do a journal commit via
1858 * journal_submit_inode_data_buffers() and in that case we must write
1859 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1860 */
f19d5870
TM
1861 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1862 ext4_bh_delay_or_unwritten)) {
f8bec370 1863 redirty_page_for_writepage(wbc, page);
fe386132
JK
1864 if (current->flags & PF_MEMALLOC) {
1865 /*
1866 * For memory cleaning there's no point in writing only
1867 * some buffers. So just bail out. Warn if we came here
1868 * from direct reclaim.
1869 */
1870 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1871 == PF_MEMALLOC);
f0e6c985
AK
1872 unlock_page(page);
1873 return 0;
1874 }
a42afc5f 1875 }
64769240 1876
cb20d518 1877 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1878 /*
1879 * It's mmapped pagecache. Add buffers and journal it. There
1880 * doesn't seem much point in redirtying the page here.
1881 */
3f0ca309 1882 return __ext4_journalled_writepage(page, len);
43ce1d23 1883
97a851ed
JK
1884 ext4_io_submit_init(&io_submit, wbc);
1885 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1886 if (!io_submit.io_end) {
1887 redirty_page_for_writepage(wbc, page);
1888 unlock_page(page);
1889 return -ENOMEM;
1890 }
36ade451
JK
1891 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1892 ext4_io_submit(&io_submit);
97a851ed
JK
1893 /* Drop io_end reference we got from init */
1894 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1895 return ret;
1896}
1897
4e7ea81d
JK
1898#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1899
61628a3f 1900/*
fffb2739
JK
1901 * mballoc gives us at most this number of blocks...
1902 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1903 * The rest of mballoc seems to handle chunks upto full group size.
61628a3f 1904 */
fffb2739 1905#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1906
4e7ea81d
JK
1907/*
1908 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1909 *
1910 * @mpd - extent of blocks
1911 * @lblk - logical number of the block in the file
1912 * @b_state - b_state of the buffer head added
1913 *
1914 * the function is used to collect contig. blocks in same state
1915 */
1916static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1917 unsigned long b_state)
1918{
1919 struct ext4_map_blocks *map = &mpd->map;
1920
1921 /* Don't go larger than mballoc is willing to allocate */
1922 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1923 return 0;
1924
1925 /* First block in the extent? */
1926 if (map->m_len == 0) {
1927 map->m_lblk = lblk;
1928 map->m_len = 1;
1929 map->m_flags = b_state & BH_FLAGS;
1930 return 1;
1931 }
1932
1933 /* Can we merge the block to our big extent? */
1934 if (lblk == map->m_lblk + map->m_len &&
1935 (b_state & BH_FLAGS) == map->m_flags) {
1936 map->m_len++;
1937 return 1;
1938 }
1939 return 0;
1940}
1941
1942static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1943 struct buffer_head *head,
1944 struct buffer_head *bh,
1945 ext4_lblk_t lblk)
1946{
1947 struct inode *inode = mpd->inode;
1948 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1949 >> inode->i_blkbits;
1950
1951 do {
1952 BUG_ON(buffer_locked(bh));
1953
1954 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1955 (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1956 lblk >= blocks) {
1957 /* Found extent to map? */
1958 if (mpd->map.m_len)
1959 return false;
1960 if (lblk >= blocks)
1961 return true;
1962 continue;
1963 }
1964 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1965 return false;
1966 } while (lblk++, (bh = bh->b_this_page) != head);
1967 return true;
1968}
1969
1970static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1971{
1972 int len;
1973 loff_t size = i_size_read(mpd->inode);
1974 int err;
1975
1976 BUG_ON(page->index != mpd->first_page);
1977 if (page->index == size >> PAGE_CACHE_SHIFT)
1978 len = size & ~PAGE_CACHE_MASK;
1979 else
1980 len = PAGE_CACHE_SIZE;
1981 clear_page_dirty_for_io(page);
1982 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1983 if (!err)
1984 mpd->wbc->nr_to_write--;
1985 mpd->first_page++;
1986
1987 return err;
1988}
1989
1990/*
1991 * mpage_map_buffers - update buffers corresponding to changed extent and
1992 * submit fully mapped pages for IO
1993 *
1994 * @mpd - description of extent to map, on return next extent to map
1995 *
1996 * Scan buffers corresponding to changed extent (we expect corresponding pages
1997 * to be already locked) and update buffer state according to new extent state.
1998 * We map delalloc buffers to their physical location, clear unwritten bits,
1999 * and mark buffers as uninit when we perform writes to uninitialized extents
2000 * and do extent conversion after IO is finished. If the last page is not fully
2001 * mapped, we update @map to the next extent in the last page that needs
2002 * mapping. Otherwise we submit the page for IO.
2003 */
2004static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2005{
2006 struct pagevec pvec;
2007 int nr_pages, i;
2008 struct inode *inode = mpd->inode;
2009 struct buffer_head *head, *bh;
2010 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2011 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2012 >> inode->i_blkbits;
2013 pgoff_t start, end;
2014 ext4_lblk_t lblk;
2015 sector_t pblock;
2016 int err;
2017
2018 start = mpd->map.m_lblk >> bpp_bits;
2019 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2020 lblk = start << bpp_bits;
2021 pblock = mpd->map.m_pblk;
2022
2023 pagevec_init(&pvec, 0);
2024 while (start <= end) {
2025 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2026 PAGEVEC_SIZE);
2027 if (nr_pages == 0)
2028 break;
2029 for (i = 0; i < nr_pages; i++) {
2030 struct page *page = pvec.pages[i];
2031
2032 if (page->index > end)
2033 break;
2034 /* Upto 'end' pages must be contiguous */
2035 BUG_ON(page->index != start);
2036 bh = head = page_buffers(page);
2037 do {
2038 if (lblk < mpd->map.m_lblk)
2039 continue;
2040 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2041 /*
2042 * Buffer after end of mapped extent.
2043 * Find next buffer in the page to map.
2044 */
2045 mpd->map.m_len = 0;
2046 mpd->map.m_flags = 0;
2047 add_page_bufs_to_extent(mpd, head, bh,
2048 lblk);
2049 pagevec_release(&pvec);
2050 return 0;
2051 }
2052 if (buffer_delay(bh)) {
2053 clear_buffer_delay(bh);
2054 bh->b_blocknr = pblock++;
2055 }
4e7ea81d
JK
2056 clear_buffer_unwritten(bh);
2057 } while (++lblk < blocks &&
2058 (bh = bh->b_this_page) != head);
2059
2060 /*
2061 * FIXME: This is going to break if dioread_nolock
2062 * supports blocksize < pagesize as we will try to
2063 * convert potentially unmapped parts of inode.
2064 */
2065 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2066 /* Page fully mapped - let IO run! */
2067 err = mpage_submit_page(mpd, page);
2068 if (err < 0) {
2069 pagevec_release(&pvec);
2070 return err;
2071 }
2072 start++;
2073 }
2074 pagevec_release(&pvec);
2075 }
2076 /* Extent fully mapped and matches with page boundary. We are done. */
2077 mpd->map.m_len = 0;
2078 mpd->map.m_flags = 0;
2079 return 0;
2080}
2081
2082static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2083{
2084 struct inode *inode = mpd->inode;
2085 struct ext4_map_blocks *map = &mpd->map;
2086 int get_blocks_flags;
2087 int err;
2088
2089 trace_ext4_da_write_pages_extent(inode, map);
2090 /*
2091 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2092 * to convert an uninitialized extent to be initialized (in the case
2093 * where we have written into one or more preallocated blocks). It is
2094 * possible that we're going to need more metadata blocks than
2095 * previously reserved. However we must not fail because we're in
2096 * writeback and there is nothing we can do about it so it might result
2097 * in data loss. So use reserved blocks to allocate metadata if
2098 * possible.
2099 *
2100 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2101 * in question are delalloc blocks. This affects functions in many
2102 * different parts of the allocation call path. This flag exists
2103 * primarily because we don't want to change *many* call functions, so
2104 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2105 * once the inode's allocation semaphore is taken.
2106 */
2107 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2108 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2109 if (ext4_should_dioread_nolock(inode))
2110 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2111 if (map->m_flags & (1 << BH_Delay))
2112 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2113
2114 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2115 if (err < 0)
2116 return err;
6b523df4
JK
2117 if (map->m_flags & EXT4_MAP_UNINIT) {
2118 if (!mpd->io_submit.io_end->handle &&
2119 ext4_handle_valid(handle)) {
2120 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2121 handle->h_rsv_handle = NULL;
2122 }
3613d228 2123 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2124 }
4e7ea81d
JK
2125
2126 BUG_ON(map->m_len == 0);
2127 if (map->m_flags & EXT4_MAP_NEW) {
2128 struct block_device *bdev = inode->i_sb->s_bdev;
2129 int i;
2130
2131 for (i = 0; i < map->m_len; i++)
2132 unmap_underlying_metadata(bdev, map->m_pblk + i);
2133 }
2134 return 0;
2135}
2136
2137/*
2138 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2139 * mpd->len and submit pages underlying it for IO
2140 *
2141 * @handle - handle for journal operations
2142 * @mpd - extent to map
2143 *
2144 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2145 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2146 * them to initialized or split the described range from larger unwritten
2147 * extent. Note that we need not map all the described range since allocation
2148 * can return less blocks or the range is covered by more unwritten extents. We
2149 * cannot map more because we are limited by reserved transaction credits. On
2150 * the other hand we always make sure that the last touched page is fully
2151 * mapped so that it can be written out (and thus forward progress is
2152 * guaranteed). After mapping we submit all mapped pages for IO.
2153 */
2154static int mpage_map_and_submit_extent(handle_t *handle,
2155 struct mpage_da_data *mpd)
2156{
2157 struct inode *inode = mpd->inode;
2158 struct ext4_map_blocks *map = &mpd->map;
2159 int err;
2160 loff_t disksize;
2161
2162 mpd->io_submit.io_end->offset =
2163 ((loff_t)map->m_lblk) << inode->i_blkbits;
2164 while (map->m_len) {
2165 err = mpage_map_one_extent(handle, mpd);
2166 if (err < 0) {
2167 struct super_block *sb = inode->i_sb;
2168
2169 /*
2170 * Need to commit transaction to free blocks. Let upper
2171 * layers sort it out.
2172 */
2173 if (err == -ENOSPC && ext4_count_free_clusters(sb))
2174 return -ENOSPC;
2175
2176 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2177 ext4_msg(sb, KERN_CRIT,
2178 "Delayed block allocation failed for "
2179 "inode %lu at logical offset %llu with"
2180 " max blocks %u with error %d",
2181 inode->i_ino,
2182 (unsigned long long)map->m_lblk,
2183 (unsigned)map->m_len, err);
2184 ext4_msg(sb, KERN_CRIT,
2185 "This should not happen!! Data will "
2186 "be lost\n");
2187 if (err == -ENOSPC)
2188 ext4_print_free_blocks(inode);
2189 }
2190 /* invalidate all the pages */
2191 mpage_release_unused_pages(mpd, true);
2192 return err;
2193 }
2194 /*
2195 * Update buffer state, submit mapped pages, and get us new
2196 * extent to map
2197 */
2198 err = mpage_map_and_submit_buffers(mpd);
2199 if (err < 0)
2200 return err;
2201 }
2202
2203 /* Update on-disk size after IO is submitted */
2204 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2205 if (disksize > i_size_read(inode))
2206 disksize = i_size_read(inode);
2207 if (disksize > EXT4_I(inode)->i_disksize) {
2208 int err2;
2209
2210 ext4_update_i_disksize(inode, disksize);
2211 err2 = ext4_mark_inode_dirty(handle, inode);
2212 if (err2)
2213 ext4_error(inode->i_sb,
2214 "Failed to mark inode %lu dirty",
2215 inode->i_ino);
2216 if (!err)
2217 err = err2;
2218 }
2219 return err;
2220}
2221
fffb2739
JK
2222/*
2223 * Calculate the total number of credits to reserve for one writepages
20970ba6 2224 * iteration. This is called from ext4_writepages(). We map an extent of
fffb2739
JK
2225 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2226 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2227 * bpp - 1 blocks in bpp different extents.
2228 */
525f4ed8
MC
2229static int ext4_da_writepages_trans_blocks(struct inode *inode)
2230{
fffb2739 2231 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2232
fffb2739
JK
2233 return ext4_meta_trans_blocks(inode,
2234 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2235}
61628a3f 2236
8e48dcfb 2237/*
4e7ea81d
JK
2238 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2239 * and underlying extent to map
2240 *
2241 * @mpd - where to look for pages
2242 *
2243 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2244 * IO immediately. When we find a page which isn't mapped we start accumulating
2245 * extent of buffers underlying these pages that needs mapping (formed by
2246 * either delayed or unwritten buffers). We also lock the pages containing
2247 * these buffers. The extent found is returned in @mpd structure (starting at
2248 * mpd->lblk with length mpd->len blocks).
2249 *
2250 * Note that this function can attach bios to one io_end structure which are
2251 * neither logically nor physically contiguous. Although it may seem as an
2252 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2253 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2254 */
4e7ea81d 2255static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2256{
4e7ea81d
JK
2257 struct address_space *mapping = mpd->inode->i_mapping;
2258 struct pagevec pvec;
2259 unsigned int nr_pages;
2260 pgoff_t index = mpd->first_page;
2261 pgoff_t end = mpd->last_page;
2262 int tag;
2263 int i, err = 0;
2264 int blkbits = mpd->inode->i_blkbits;
2265 ext4_lblk_t lblk;
2266 struct buffer_head *head;
8e48dcfb 2267
4e7ea81d 2268 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2269 tag = PAGECACHE_TAG_TOWRITE;
2270 else
2271 tag = PAGECACHE_TAG_DIRTY;
2272
4e7ea81d
JK
2273 pagevec_init(&pvec, 0);
2274 mpd->map.m_len = 0;
2275 mpd->next_page = index;
4f01b02c 2276 while (index <= end) {
5b41d924 2277 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2278 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2279 if (nr_pages == 0)
4e7ea81d 2280 goto out;
8e48dcfb
TT
2281
2282 for (i = 0; i < nr_pages; i++) {
2283 struct page *page = pvec.pages[i];
2284
2285 /*
2286 * At this point, the page may be truncated or
2287 * invalidated (changing page->mapping to NULL), or
2288 * even swizzled back from swapper_space to tmpfs file
2289 * mapping. However, page->index will not change
2290 * because we have a reference on the page.
2291 */
4f01b02c
TT
2292 if (page->index > end)
2293 goto out;
8e48dcfb 2294
4e7ea81d
JK
2295 /* If we can't merge this page, we are done. */
2296 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2297 goto out;
78aaced3 2298
8e48dcfb 2299 lock_page(page);
8e48dcfb 2300 /*
4e7ea81d
JK
2301 * If the page is no longer dirty, or its mapping no
2302 * longer corresponds to inode we are writing (which
2303 * means it has been truncated or invalidated), or the
2304 * page is already under writeback and we are not doing
2305 * a data integrity writeback, skip the page
8e48dcfb 2306 */
4f01b02c
TT
2307 if (!PageDirty(page) ||
2308 (PageWriteback(page) &&
4e7ea81d 2309 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2310 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2311 unlock_page(page);
2312 continue;
2313 }
2314
7cb1a535 2315 wait_on_page_writeback(page);
8e48dcfb 2316 BUG_ON(PageWriteback(page));
8e48dcfb 2317
4e7ea81d 2318 if (mpd->map.m_len == 0)
8eb9e5ce 2319 mpd->first_page = page->index;
8eb9e5ce 2320 mpd->next_page = page->index + 1;
f8bec370 2321 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2322 lblk = ((ext4_lblk_t)page->index) <<
2323 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2324 head = page_buffers(page);
4e7ea81d
JK
2325 if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2326 goto out;
2327 /* So far everything mapped? Submit the page for IO. */
2328 if (mpd->map.m_len == 0) {
2329 err = mpage_submit_page(mpd, page);
2330 if (err < 0)
4f01b02c 2331 goto out;
8e48dcfb 2332 }
4e7ea81d
JK
2333
2334 /*
2335 * Accumulated enough dirty pages? This doesn't apply
2336 * to WB_SYNC_ALL mode. For integrity sync we have to
2337 * keep going because someone may be concurrently
2338 * dirtying pages, and we might have synced a lot of
2339 * newly appeared dirty pages, but have not synced all
2340 * of the old dirty pages.
2341 */
2342 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2343 mpd->next_page - mpd->first_page >=
2344 mpd->wbc->nr_to_write)
2345 goto out;
8e48dcfb
TT
2346 }
2347 pagevec_release(&pvec);
2348 cond_resched();
2349 }
4f01b02c 2350 return 0;
8eb9e5ce
TT
2351out:
2352 pagevec_release(&pvec);
4e7ea81d 2353 return err;
8e48dcfb
TT
2354}
2355
20970ba6
TT
2356static int __writepage(struct page *page, struct writeback_control *wbc,
2357 void *data)
2358{
2359 struct address_space *mapping = data;
2360 int ret = ext4_writepage(page, wbc);
2361 mapping_set_error(mapping, ret);
2362 return ret;
2363}
2364
2365static int ext4_writepages(struct address_space *mapping,
2366 struct writeback_control *wbc)
64769240 2367{
4e7ea81d
JK
2368 pgoff_t writeback_index = 0;
2369 long nr_to_write = wbc->nr_to_write;
22208ded 2370 int range_whole = 0;
4e7ea81d 2371 int cycled = 1;
61628a3f 2372 handle_t *handle = NULL;
df22291f 2373 struct mpage_da_data mpd;
5e745b04 2374 struct inode *inode = mapping->host;
6b523df4 2375 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2376 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2377 bool done;
1bce63d1 2378 struct blk_plug plug;
61628a3f 2379
20970ba6 2380 trace_ext4_writepages(inode, wbc);
ba80b101 2381
61628a3f
MC
2382 /*
2383 * No pages to write? This is mainly a kludge to avoid starting
2384 * a transaction for special inodes like journal inode on last iput()
2385 * because that could violate lock ordering on umount
2386 */
a1d6cc56 2387 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2388 return 0;
2a21e37e 2389
20970ba6
TT
2390 if (ext4_should_journal_data(inode)) {
2391 struct blk_plug plug;
2392 int ret;
2393
2394 blk_start_plug(&plug);
2395 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2396 blk_finish_plug(&plug);
2397 return ret;
2398 }
2399
2a21e37e
TT
2400 /*
2401 * If the filesystem has aborted, it is read-only, so return
2402 * right away instead of dumping stack traces later on that
2403 * will obscure the real source of the problem. We test
4ab2f15b 2404 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2405 * the latter could be true if the filesystem is mounted
20970ba6 2406 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2407 * *never* be called, so if that ever happens, we would want
2408 * the stack trace.
2409 */
4ab2f15b 2410 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2411 return -EROFS;
2412
6b523df4
JK
2413 if (ext4_should_dioread_nolock(inode)) {
2414 /*
2415 * We may need to convert upto one extent per block in
2416 * the page and we may dirty the inode.
2417 */
2418 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2419 }
2420
4e7ea81d
JK
2421 /*
2422 * If we have inline data and arrive here, it means that
2423 * we will soon create the block for the 1st page, so
2424 * we'd better clear the inline data here.
2425 */
2426 if (ext4_has_inline_data(inode)) {
2427 /* Just inode will be modified... */
2428 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2429 if (IS_ERR(handle)) {
2430 ret = PTR_ERR(handle);
2431 goto out_writepages;
2432 }
2433 BUG_ON(ext4_test_inode_state(inode,
2434 EXT4_STATE_MAY_INLINE_DATA));
2435 ext4_destroy_inline_data(handle, inode);
2436 ext4_journal_stop(handle);
2437 }
2438
22208ded
AK
2439 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2440 range_whole = 1;
61628a3f 2441
2acf2c26 2442 if (wbc->range_cyclic) {
4e7ea81d
JK
2443 writeback_index = mapping->writeback_index;
2444 if (writeback_index)
2acf2c26 2445 cycled = 0;
4e7ea81d
JK
2446 mpd.first_page = writeback_index;
2447 mpd.last_page = -1;
5b41d924 2448 } else {
4e7ea81d
JK
2449 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2450 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2451 }
a1d6cc56 2452
4e7ea81d
JK
2453 mpd.inode = inode;
2454 mpd.wbc = wbc;
2455 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2456retry:
6e6938b6 2457 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2458 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2459 done = false;
1bce63d1 2460 blk_start_plug(&plug);
4e7ea81d
JK
2461 while (!done && mpd.first_page <= mpd.last_page) {
2462 /* For each extent of pages we use new io_end */
2463 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2464 if (!mpd.io_submit.io_end) {
2465 ret = -ENOMEM;
2466 break;
2467 }
a1d6cc56
AK
2468
2469 /*
4e7ea81d
JK
2470 * We have two constraints: We find one extent to map and we
2471 * must always write out whole page (makes a difference when
2472 * blocksize < pagesize) so that we don't block on IO when we
2473 * try to write out the rest of the page. Journalled mode is
2474 * not supported by delalloc.
a1d6cc56
AK
2475 */
2476 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2477 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2478
4e7ea81d 2479 /* start a new transaction */
6b523df4
JK
2480 handle = ext4_journal_start_with_reserve(inode,
2481 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2482 if (IS_ERR(handle)) {
2483 ret = PTR_ERR(handle);
1693918e 2484 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2485 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2486 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2487 /* Release allocated io_end */
2488 ext4_put_io_end(mpd.io_submit.io_end);
2489 break;
61628a3f 2490 }
f63e6005 2491
4e7ea81d
JK
2492 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2493 ret = mpage_prepare_extent_to_map(&mpd);
2494 if (!ret) {
2495 if (mpd.map.m_len)
2496 ret = mpage_map_and_submit_extent(handle, &mpd);
2497 else {
2498 /*
2499 * We scanned the whole range (or exhausted
2500 * nr_to_write), submitted what was mapped and
2501 * didn't find anything needing mapping. We are
2502 * done.
2503 */
2504 done = true;
2505 }
f63e6005 2506 }
61628a3f 2507 ext4_journal_stop(handle);
4e7ea81d
JK
2508 /* Submit prepared bio */
2509 ext4_io_submit(&mpd.io_submit);
2510 /* Unlock pages we didn't use */
2511 mpage_release_unused_pages(&mpd, false);
2512 /* Drop our io_end reference we got from init */
2513 ext4_put_io_end(mpd.io_submit.io_end);
2514
2515 if (ret == -ENOSPC && sbi->s_journal) {
2516 /*
2517 * Commit the transaction which would
22208ded
AK
2518 * free blocks released in the transaction
2519 * and try again
2520 */
df22291f 2521 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2522 ret = 0;
4e7ea81d
JK
2523 continue;
2524 }
2525 /* Fatal error - ENOMEM, EIO... */
2526 if (ret)
61628a3f 2527 break;
a1d6cc56 2528 }
1bce63d1 2529 blk_finish_plug(&plug);
4e7ea81d 2530 if (!ret && !cycled) {
2acf2c26 2531 cycled = 1;
4e7ea81d
JK
2532 mpd.last_page = writeback_index - 1;
2533 mpd.first_page = 0;
2acf2c26
AK
2534 goto retry;
2535 }
22208ded
AK
2536
2537 /* Update index */
22208ded
AK
2538 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2539 /*
4e7ea81d 2540 * Set the writeback_index so that range_cyclic
22208ded
AK
2541 * mode will write it back later
2542 */
4e7ea81d 2543 mapping->writeback_index = mpd.first_page;
a1d6cc56 2544
61628a3f 2545out_writepages:
20970ba6
TT
2546 trace_ext4_writepages_result(inode, wbc, ret,
2547 nr_to_write - wbc->nr_to_write);
61628a3f 2548 return ret;
64769240
AT
2549}
2550
79f0be8d
AK
2551static int ext4_nonda_switch(struct super_block *sb)
2552{
5c1ff336 2553 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2554 struct ext4_sb_info *sbi = EXT4_SB(sb);
2555
2556 /*
2557 * switch to non delalloc mode if we are running low
2558 * on free block. The free block accounting via percpu
179f7ebf 2559 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2560 * accumulated on each CPU without updating global counters
2561 * Delalloc need an accurate free block accounting. So switch
2562 * to non delalloc when we are near to error range.
2563 */
5c1ff336
EW
2564 free_clusters =
2565 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2566 dirty_clusters =
2567 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2568 /*
2569 * Start pushing delalloc when 1/2 of free blocks are dirty.
2570 */
5c1ff336 2571 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2572 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2573
5c1ff336
EW
2574 if (2 * free_clusters < 3 * dirty_clusters ||
2575 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2576 /*
c8afb446
ES
2577 * free block count is less than 150% of dirty blocks
2578 * or free blocks is less than watermark
79f0be8d
AK
2579 */
2580 return 1;
2581 }
2582 return 0;
2583}
2584
64769240 2585static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2586 loff_t pos, unsigned len, unsigned flags,
2587 struct page **pagep, void **fsdata)
64769240 2588{
72b8ab9d 2589 int ret, retries = 0;
64769240
AT
2590 struct page *page;
2591 pgoff_t index;
64769240
AT
2592 struct inode *inode = mapping->host;
2593 handle_t *handle;
2594
2595 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2596
2597 if (ext4_nonda_switch(inode->i_sb)) {
2598 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2599 return ext4_write_begin(file, mapping, pos,
2600 len, flags, pagep, fsdata);
2601 }
2602 *fsdata = (void *)0;
9bffad1e 2603 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2604
2605 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2606 ret = ext4_da_write_inline_data_begin(mapping, inode,
2607 pos, len, flags,
2608 pagep, fsdata);
2609 if (ret < 0)
47564bfb
TT
2610 return ret;
2611 if (ret == 1)
2612 return 0;
9c3569b5
TM
2613 }
2614
47564bfb
TT
2615 /*
2616 * grab_cache_page_write_begin() can take a long time if the
2617 * system is thrashing due to memory pressure, or if the page
2618 * is being written back. So grab it first before we start
2619 * the transaction handle. This also allows us to allocate
2620 * the page (if needed) without using GFP_NOFS.
2621 */
2622retry_grab:
2623 page = grab_cache_page_write_begin(mapping, index, flags);
2624 if (!page)
2625 return -ENOMEM;
2626 unlock_page(page);
2627
64769240
AT
2628 /*
2629 * With delayed allocation, we don't log the i_disksize update
2630 * if there is delayed block allocation. But we still need
2631 * to journalling the i_disksize update if writes to the end
2632 * of file which has an already mapped buffer.
2633 */
47564bfb 2634retry_journal:
9924a92a 2635 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2636 if (IS_ERR(handle)) {
47564bfb
TT
2637 page_cache_release(page);
2638 return PTR_ERR(handle);
64769240
AT
2639 }
2640
47564bfb
TT
2641 lock_page(page);
2642 if (page->mapping != mapping) {
2643 /* The page got truncated from under us */
2644 unlock_page(page);
2645 page_cache_release(page);
d5a0d4f7 2646 ext4_journal_stop(handle);
47564bfb 2647 goto retry_grab;
d5a0d4f7 2648 }
47564bfb
TT
2649 /* In case writeback began while the page was unlocked */
2650 wait_on_page_writeback(page);
64769240 2651
6e1db88d 2652 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2653 if (ret < 0) {
2654 unlock_page(page);
2655 ext4_journal_stop(handle);
ae4d5372
AK
2656 /*
2657 * block_write_begin may have instantiated a few blocks
2658 * outside i_size. Trim these off again. Don't need
2659 * i_size_read because we hold i_mutex.
2660 */
2661 if (pos + len > inode->i_size)
b9a4207d 2662 ext4_truncate_failed_write(inode);
47564bfb
TT
2663
2664 if (ret == -ENOSPC &&
2665 ext4_should_retry_alloc(inode->i_sb, &retries))
2666 goto retry_journal;
2667
2668 page_cache_release(page);
2669 return ret;
64769240
AT
2670 }
2671
47564bfb 2672 *pagep = page;
64769240
AT
2673 return ret;
2674}
2675
632eaeab
MC
2676/*
2677 * Check if we should update i_disksize
2678 * when write to the end of file but not require block allocation
2679 */
2680static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2681 unsigned long offset)
632eaeab
MC
2682{
2683 struct buffer_head *bh;
2684 struct inode *inode = page->mapping->host;
2685 unsigned int idx;
2686 int i;
2687
2688 bh = page_buffers(page);
2689 idx = offset >> inode->i_blkbits;
2690
af5bc92d 2691 for (i = 0; i < idx; i++)
632eaeab
MC
2692 bh = bh->b_this_page;
2693
29fa89d0 2694 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2695 return 0;
2696 return 1;
2697}
2698
64769240 2699static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2700 struct address_space *mapping,
2701 loff_t pos, unsigned len, unsigned copied,
2702 struct page *page, void *fsdata)
64769240
AT
2703{
2704 struct inode *inode = mapping->host;
2705 int ret = 0, ret2;
2706 handle_t *handle = ext4_journal_current_handle();
2707 loff_t new_i_size;
632eaeab 2708 unsigned long start, end;
79f0be8d
AK
2709 int write_mode = (int)(unsigned long)fsdata;
2710
74d553aa
TT
2711 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2712 return ext4_write_end(file, mapping, pos,
2713 len, copied, page, fsdata);
632eaeab 2714
9bffad1e 2715 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2716 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2717 end = start + copied - 1;
64769240
AT
2718
2719 /*
2720 * generic_write_end() will run mark_inode_dirty() if i_size
2721 * changes. So let's piggyback the i_disksize mark_inode_dirty
2722 * into that.
2723 */
64769240 2724 new_i_size = pos + copied;
ea51d132 2725 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2726 if (ext4_has_inline_data(inode) ||
2727 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2728 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2729 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2730 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2731 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2732 /* We need to mark inode dirty even if
2733 * new_i_size is less that inode->i_size
2734 * bu greater than i_disksize.(hint delalloc)
2735 */
2736 ext4_mark_inode_dirty(handle, inode);
64769240 2737 }
632eaeab 2738 }
9c3569b5
TM
2739
2740 if (write_mode != CONVERT_INLINE_DATA &&
2741 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2742 ext4_has_inline_data(inode))
2743 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2744 page);
2745 else
2746 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2747 page, fsdata);
9c3569b5 2748
64769240
AT
2749 copied = ret2;
2750 if (ret2 < 0)
2751 ret = ret2;
2752 ret2 = ext4_journal_stop(handle);
2753 if (!ret)
2754 ret = ret2;
2755
2756 return ret ? ret : copied;
2757}
2758
d47992f8
LC
2759static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2760 unsigned int length)
64769240 2761{
64769240
AT
2762 /*
2763 * Drop reserved blocks
2764 */
2765 BUG_ON(!PageLocked(page));
2766 if (!page_has_buffers(page))
2767 goto out;
2768
ca99fdd2 2769 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2770
2771out:
d47992f8 2772 ext4_invalidatepage(page, offset, length);
64769240
AT
2773
2774 return;
2775}
2776
ccd2506b
TT
2777/*
2778 * Force all delayed allocation blocks to be allocated for a given inode.
2779 */
2780int ext4_alloc_da_blocks(struct inode *inode)
2781{
fb40ba0d
TT
2782 trace_ext4_alloc_da_blocks(inode);
2783
ccd2506b
TT
2784 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2785 !EXT4_I(inode)->i_reserved_meta_blocks)
2786 return 0;
2787
2788 /*
2789 * We do something simple for now. The filemap_flush() will
2790 * also start triggering a write of the data blocks, which is
2791 * not strictly speaking necessary (and for users of
2792 * laptop_mode, not even desirable). However, to do otherwise
2793 * would require replicating code paths in:
de9a55b8 2794 *
20970ba6 2795 * ext4_writepages() ->
ccd2506b
TT
2796 * write_cache_pages() ---> (via passed in callback function)
2797 * __mpage_da_writepage() -->
2798 * mpage_add_bh_to_extent()
2799 * mpage_da_map_blocks()
2800 *
2801 * The problem is that write_cache_pages(), located in
2802 * mm/page-writeback.c, marks pages clean in preparation for
2803 * doing I/O, which is not desirable if we're not planning on
2804 * doing I/O at all.
2805 *
2806 * We could call write_cache_pages(), and then redirty all of
380cf090 2807 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2808 * would be ugly in the extreme. So instead we would need to
2809 * replicate parts of the code in the above functions,
25985edc 2810 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2811 * write out the pages, but rather only collect contiguous
2812 * logical block extents, call the multi-block allocator, and
2813 * then update the buffer heads with the block allocations.
de9a55b8 2814 *
ccd2506b
TT
2815 * For now, though, we'll cheat by calling filemap_flush(),
2816 * which will map the blocks, and start the I/O, but not
2817 * actually wait for the I/O to complete.
2818 */
2819 return filemap_flush(inode->i_mapping);
2820}
64769240 2821
ac27a0ec
DK
2822/*
2823 * bmap() is special. It gets used by applications such as lilo and by
2824 * the swapper to find the on-disk block of a specific piece of data.
2825 *
2826 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2827 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2828 * filesystem and enables swap, then they may get a nasty shock when the
2829 * data getting swapped to that swapfile suddenly gets overwritten by
2830 * the original zero's written out previously to the journal and
2831 * awaiting writeback in the kernel's buffer cache.
2832 *
2833 * So, if we see any bmap calls here on a modified, data-journaled file,
2834 * take extra steps to flush any blocks which might be in the cache.
2835 */
617ba13b 2836static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2837{
2838 struct inode *inode = mapping->host;
2839 journal_t *journal;
2840 int err;
2841
46c7f254
TM
2842 /*
2843 * We can get here for an inline file via the FIBMAP ioctl
2844 */
2845 if (ext4_has_inline_data(inode))
2846 return 0;
2847
64769240
AT
2848 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2849 test_opt(inode->i_sb, DELALLOC)) {
2850 /*
2851 * With delalloc we want to sync the file
2852 * so that we can make sure we allocate
2853 * blocks for file
2854 */
2855 filemap_write_and_wait(mapping);
2856 }
2857
19f5fb7a
TT
2858 if (EXT4_JOURNAL(inode) &&
2859 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2860 /*
2861 * This is a REALLY heavyweight approach, but the use of
2862 * bmap on dirty files is expected to be extremely rare:
2863 * only if we run lilo or swapon on a freshly made file
2864 * do we expect this to happen.
2865 *
2866 * (bmap requires CAP_SYS_RAWIO so this does not
2867 * represent an unprivileged user DOS attack --- we'd be
2868 * in trouble if mortal users could trigger this path at
2869 * will.)
2870 *
617ba13b 2871 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2872 * regular files. If somebody wants to bmap a directory
2873 * or symlink and gets confused because the buffer
2874 * hasn't yet been flushed to disk, they deserve
2875 * everything they get.
2876 */
2877
19f5fb7a 2878 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2879 journal = EXT4_JOURNAL(inode);
dab291af
MC
2880 jbd2_journal_lock_updates(journal);
2881 err = jbd2_journal_flush(journal);
2882 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2883
2884 if (err)
2885 return 0;
2886 }
2887
af5bc92d 2888 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2889}
2890
617ba13b 2891static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2892{
46c7f254
TM
2893 int ret = -EAGAIN;
2894 struct inode *inode = page->mapping->host;
2895
0562e0ba 2896 trace_ext4_readpage(page);
46c7f254
TM
2897
2898 if (ext4_has_inline_data(inode))
2899 ret = ext4_readpage_inline(inode, page);
2900
2901 if (ret == -EAGAIN)
2902 return mpage_readpage(page, ext4_get_block);
2903
2904 return ret;
ac27a0ec
DK
2905}
2906
2907static int
617ba13b 2908ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2909 struct list_head *pages, unsigned nr_pages)
2910{
46c7f254
TM
2911 struct inode *inode = mapping->host;
2912
2913 /* If the file has inline data, no need to do readpages. */
2914 if (ext4_has_inline_data(inode))
2915 return 0;
2916
617ba13b 2917 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2918}
2919
d47992f8
LC
2920static void ext4_invalidatepage(struct page *page, unsigned int offset,
2921 unsigned int length)
ac27a0ec 2922{
ca99fdd2 2923 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2924
4520fb3c
JK
2925 /* No journalling happens on data buffers when this function is used */
2926 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2927
ca99fdd2 2928 block_invalidatepage(page, offset, length);
4520fb3c
JK
2929}
2930
53e87268 2931static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2932 unsigned int offset,
2933 unsigned int length)
4520fb3c
JK
2934{
2935 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2936
ca99fdd2 2937 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2938
ac27a0ec
DK
2939 /*
2940 * If it's a full truncate we just forget about the pending dirtying
2941 */
ca99fdd2 2942 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2943 ClearPageChecked(page);
2944
ca99fdd2 2945 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2946}
2947
2948/* Wrapper for aops... */
2949static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2950 unsigned int offset,
2951 unsigned int length)
53e87268 2952{
ca99fdd2 2953 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2954}
2955
617ba13b 2956static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2957{
617ba13b 2958 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2959
0562e0ba
JZ
2960 trace_ext4_releasepage(page);
2961
e1c36595
JK
2962 /* Page has dirty journalled data -> cannot release */
2963 if (PageChecked(page))
ac27a0ec 2964 return 0;
0390131b
FM
2965 if (journal)
2966 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2967 else
2968 return try_to_free_buffers(page);
ac27a0ec
DK
2969}
2970
2ed88685
TT
2971/*
2972 * ext4_get_block used when preparing for a DIO write or buffer write.
2973 * We allocate an uinitialized extent if blocks haven't been allocated.
2974 * The extent will be converted to initialized after the IO is complete.
2975 */
f19d5870 2976int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2977 struct buffer_head *bh_result, int create)
2978{
c7064ef1 2979 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2980 inode->i_ino, create);
2ed88685
TT
2981 return _ext4_get_block(inode, iblock, bh_result,
2982 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2983}
2984
729f52c6 2985static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2986 struct buffer_head *bh_result, int create)
729f52c6 2987{
8b0f165f
AP
2988 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2989 inode->i_ino, create);
2990 return _ext4_get_block(inode, iblock, bh_result,
2991 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2992}
2993
4c0425ff 2994static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2995 ssize_t size, void *private, int ret,
2996 bool is_async)
4c0425ff 2997{
496ad9aa 2998 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 2999 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3000
97a851ed
JK
3001 /* if not async direct IO just return */
3002 if (!io_end) {
3003 inode_dio_done(inode);
3004 if (is_async)
3005 aio_complete(iocb, ret, 0);
3006 return;
3007 }
4b70df18 3008
88635ca2 3009 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3010 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3011 iocb->private, io_end->inode->i_ino, iocb, offset,
3012 size);
8d5d02e6 3013
b5a7e970 3014 iocb->private = NULL;
4c0425ff
MC
3015 io_end->offset = offset;
3016 io_end->size = size;
5b3ff237
JZ
3017 if (is_async) {
3018 io_end->iocb = iocb;
3019 io_end->result = ret;
3020 }
97a851ed 3021 ext4_put_io_end_defer(io_end);
4c0425ff 3022}
c7064ef1 3023
4c0425ff
MC
3024/*
3025 * For ext4 extent files, ext4 will do direct-io write to holes,
3026 * preallocated extents, and those write extend the file, no need to
3027 * fall back to buffered IO.
3028 *
b595076a 3029 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3030 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3031 * still keep the range to write as uninitialized.
4c0425ff 3032 *
69c499d1 3033 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3034 * For async direct IO, since the IO may still pending when return, we
25985edc 3035 * set up an end_io call back function, which will do the conversion
8d5d02e6 3036 * when async direct IO completed.
4c0425ff
MC
3037 *
3038 * If the O_DIRECT write will extend the file then add this inode to the
3039 * orphan list. So recovery will truncate it back to the original size
3040 * if the machine crashes during the write.
3041 *
3042 */
3043static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3044 const struct iovec *iov, loff_t offset,
3045 unsigned long nr_segs)
3046{
3047 struct file *file = iocb->ki_filp;
3048 struct inode *inode = file->f_mapping->host;
3049 ssize_t ret;
3050 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3051 int overwrite = 0;
3052 get_block_t *get_block_func = NULL;
3053 int dio_flags = 0;
4c0425ff 3054 loff_t final_size = offset + count;
97a851ed 3055 ext4_io_end_t *io_end = NULL;
729f52c6 3056
69c499d1
TT
3057 /* Use the old path for reads and writes beyond i_size. */
3058 if (rw != WRITE || final_size > inode->i_size)
3059 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3060
69c499d1 3061 BUG_ON(iocb->private == NULL);
4bd809db 3062
e8340395
JK
3063 /*
3064 * Make all waiters for direct IO properly wait also for extent
3065 * conversion. This also disallows race between truncate() and
3066 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3067 */
3068 if (rw == WRITE)
3069 atomic_inc(&inode->i_dio_count);
3070
69c499d1
TT
3071 /* If we do a overwrite dio, i_mutex locking can be released */
3072 overwrite = *((int *)iocb->private);
4bd809db 3073
69c499d1 3074 if (overwrite) {
69c499d1
TT
3075 down_read(&EXT4_I(inode)->i_data_sem);
3076 mutex_unlock(&inode->i_mutex);
3077 }
8d5d02e6 3078
69c499d1
TT
3079 /*
3080 * We could direct write to holes and fallocate.
3081 *
3082 * Allocated blocks to fill the hole are marked as
3083 * uninitialized to prevent parallel buffered read to expose
3084 * the stale data before DIO complete the data IO.
3085 *
3086 * As to previously fallocated extents, ext4 get_block will
3087 * just simply mark the buffer mapped but still keep the
3088 * extents uninitialized.
3089 *
3090 * For non AIO case, we will convert those unwritten extents
3091 * to written after return back from blockdev_direct_IO.
3092 *
3093 * For async DIO, the conversion needs to be deferred when the
3094 * IO is completed. The ext4 end_io callback function will be
3095 * called to take care of the conversion work. Here for async
3096 * case, we allocate an io_end structure to hook to the iocb.
3097 */
3098 iocb->private = NULL;
3099 ext4_inode_aio_set(inode, NULL);
3100 if (!is_sync_kiocb(iocb)) {
97a851ed 3101 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3102 if (!io_end) {
3103 ret = -ENOMEM;
3104 goto retake_lock;
8b0f165f 3105 }
69c499d1 3106 io_end->flag |= EXT4_IO_END_DIRECT;
97a851ed
JK
3107 /*
3108 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3109 */
3110 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3111 /*
69c499d1
TT
3112 * we save the io structure for current async direct
3113 * IO, so that later ext4_map_blocks() could flag the
3114 * io structure whether there is a unwritten extents
3115 * needs to be converted when IO is completed.
8d5d02e6 3116 */
69c499d1
TT
3117 ext4_inode_aio_set(inode, io_end);
3118 }
4bd809db 3119
69c499d1
TT
3120 if (overwrite) {
3121 get_block_func = ext4_get_block_write_nolock;
3122 } else {
3123 get_block_func = ext4_get_block_write;
3124 dio_flags = DIO_LOCKING;
3125 }
3126 ret = __blockdev_direct_IO(rw, iocb, inode,
3127 inode->i_sb->s_bdev, iov,
3128 offset, nr_segs,
3129 get_block_func,
3130 ext4_end_io_dio,
3131 NULL,
3132 dio_flags);
3133
69c499d1 3134 /*
97a851ed
JK
3135 * Put our reference to io_end. This can free the io_end structure e.g.
3136 * in sync IO case or in case of error. It can even perform extent
3137 * conversion if all bios we submitted finished before we got here.
3138 * Note that in that case iocb->private can be already set to NULL
3139 * here.
69c499d1 3140 */
97a851ed
JK
3141 if (io_end) {
3142 ext4_inode_aio_set(inode, NULL);
3143 ext4_put_io_end(io_end);
3144 /*
3145 * When no IO was submitted ext4_end_io_dio() was not
3146 * called so we have to put iocb's reference.
3147 */
3148 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3149 WARN_ON(iocb->private != io_end);
3150 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3151 WARN_ON(io_end->iocb);
3152 /*
3153 * Generic code already did inode_dio_done() so we
3154 * have to clear EXT4_IO_END_DIRECT to not do it for
3155 * the second time.
3156 */
3157 io_end->flag = 0;
3158 ext4_put_io_end(io_end);
3159 iocb->private = NULL;
3160 }
3161 }
3162 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3163 EXT4_STATE_DIO_UNWRITTEN)) {
3164 int err;
3165 /*
3166 * for non AIO case, since the IO is already
3167 * completed, we could do the conversion right here
3168 */
6b523df4 3169 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3170 offset, ret);
3171 if (err < 0)
3172 ret = err;
3173 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3174 }
4bd809db 3175
69c499d1 3176retake_lock:
e8340395
JK
3177 if (rw == WRITE)
3178 inode_dio_done(inode);
69c499d1
TT
3179 /* take i_mutex locking again if we do a ovewrite dio */
3180 if (overwrite) {
69c499d1
TT
3181 up_read(&EXT4_I(inode)->i_data_sem);
3182 mutex_lock(&inode->i_mutex);
4c0425ff 3183 }
8d5d02e6 3184
69c499d1 3185 return ret;
4c0425ff
MC
3186}
3187
3188static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3189 const struct iovec *iov, loff_t offset,
3190 unsigned long nr_segs)
3191{
3192 struct file *file = iocb->ki_filp;
3193 struct inode *inode = file->f_mapping->host;
0562e0ba 3194 ssize_t ret;
4c0425ff 3195
84ebd795
TT
3196 /*
3197 * If we are doing data journalling we don't support O_DIRECT
3198 */
3199 if (ext4_should_journal_data(inode))
3200 return 0;
3201
46c7f254
TM
3202 /* Let buffer I/O handle the inline data case. */
3203 if (ext4_has_inline_data(inode))
3204 return 0;
3205
0562e0ba 3206 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3207 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3208 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3209 else
3210 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3211 trace_ext4_direct_IO_exit(inode, offset,
3212 iov_length(iov, nr_segs), rw, ret);
3213 return ret;
4c0425ff
MC
3214}
3215
ac27a0ec 3216/*
617ba13b 3217 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3218 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3219 * much here because ->set_page_dirty is called under VFS locks. The page is
3220 * not necessarily locked.
3221 *
3222 * We cannot just dirty the page and leave attached buffers clean, because the
3223 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3224 * or jbddirty because all the journalling code will explode.
3225 *
3226 * So what we do is to mark the page "pending dirty" and next time writepage
3227 * is called, propagate that into the buffers appropriately.
3228 */
617ba13b 3229static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3230{
3231 SetPageChecked(page);
3232 return __set_page_dirty_nobuffers(page);
3233}
3234
74d553aa 3235static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3236 .readpage = ext4_readpage,
3237 .readpages = ext4_readpages,
43ce1d23 3238 .writepage = ext4_writepage,
20970ba6 3239 .writepages = ext4_writepages,
8ab22b9a 3240 .write_begin = ext4_write_begin,
74d553aa 3241 .write_end = ext4_write_end,
8ab22b9a
HH
3242 .bmap = ext4_bmap,
3243 .invalidatepage = ext4_invalidatepage,
3244 .releasepage = ext4_releasepage,
3245 .direct_IO = ext4_direct_IO,
3246 .migratepage = buffer_migrate_page,
3247 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3248 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3249};
3250
617ba13b 3251static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3252 .readpage = ext4_readpage,
3253 .readpages = ext4_readpages,
43ce1d23 3254 .writepage = ext4_writepage,
20970ba6 3255 .writepages = ext4_writepages,
8ab22b9a
HH
3256 .write_begin = ext4_write_begin,
3257 .write_end = ext4_journalled_write_end,
3258 .set_page_dirty = ext4_journalled_set_page_dirty,
3259 .bmap = ext4_bmap,
4520fb3c 3260 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3261 .releasepage = ext4_releasepage,
84ebd795 3262 .direct_IO = ext4_direct_IO,
8ab22b9a 3263 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3264 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3265};
3266
64769240 3267static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3268 .readpage = ext4_readpage,
3269 .readpages = ext4_readpages,
43ce1d23 3270 .writepage = ext4_writepage,
20970ba6 3271 .writepages = ext4_writepages,
8ab22b9a
HH
3272 .write_begin = ext4_da_write_begin,
3273 .write_end = ext4_da_write_end,
3274 .bmap = ext4_bmap,
3275 .invalidatepage = ext4_da_invalidatepage,
3276 .releasepage = ext4_releasepage,
3277 .direct_IO = ext4_direct_IO,
3278 .migratepage = buffer_migrate_page,
3279 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3280 .error_remove_page = generic_error_remove_page,
64769240
AT
3281};
3282
617ba13b 3283void ext4_set_aops(struct inode *inode)
ac27a0ec 3284{
3d2b1582
LC
3285 switch (ext4_inode_journal_mode(inode)) {
3286 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3287 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3288 break;
3289 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3290 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3291 break;
3292 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3293 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3294 return;
3d2b1582
LC
3295 default:
3296 BUG();
3297 }
74d553aa
TT
3298 if (test_opt(inode->i_sb, DELALLOC))
3299 inode->i_mapping->a_ops = &ext4_da_aops;
3300 else
3301 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3302}
3303
d863dc36
LC
3304/*
3305 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3306 * up to the end of the block which corresponds to `from'.
3307 * This required during truncate. We need to physically zero the tail end
3308 * of that block so it doesn't yield old data if the file is later grown.
3309 */
3310int ext4_block_truncate_page(handle_t *handle,
3311 struct address_space *mapping, loff_t from)
3312{
3313 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3314 unsigned length;
3315 unsigned blocksize;
3316 struct inode *inode = mapping->host;
3317
3318 blocksize = inode->i_sb->s_blocksize;
3319 length = blocksize - (offset & (blocksize - 1));
3320
3321 return ext4_block_zero_page_range(handle, mapping, from, length);
3322}
3323
3324/*
3325 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3326 * starting from file offset 'from'. The range to be zero'd must
3327 * be contained with in one block. If the specified range exceeds
3328 * the end of the block it will be shortened to end of the block
3329 * that cooresponds to 'from'
3330 */
3331int ext4_block_zero_page_range(handle_t *handle,
3332 struct address_space *mapping, loff_t from, loff_t length)
3333{
3334 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3335 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3336 unsigned blocksize, max, pos;
3337 ext4_lblk_t iblock;
3338 struct inode *inode = mapping->host;
3339 struct buffer_head *bh;
3340 struct page *page;
3341 int err = 0;
3342
3343 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3344 mapping_gfp_mask(mapping) & ~__GFP_FS);
3345 if (!page)
3346 return -ENOMEM;
3347
3348 blocksize = inode->i_sb->s_blocksize;
3349 max = blocksize - (offset & (blocksize - 1));
3350
3351 /*
3352 * correct length if it does not fall between
3353 * 'from' and the end of the block
3354 */
3355 if (length > max || length < 0)
3356 length = max;
3357
3358 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3359
3360 if (!page_has_buffers(page))
3361 create_empty_buffers(page, blocksize, 0);
3362
3363 /* Find the buffer that contains "offset" */
3364 bh = page_buffers(page);
3365 pos = blocksize;
3366 while (offset >= pos) {
3367 bh = bh->b_this_page;
3368 iblock++;
3369 pos += blocksize;
3370 }
3371
3372 err = 0;
3373 if (buffer_freed(bh)) {
3374 BUFFER_TRACE(bh, "freed: skip");
3375 goto unlock;
3376 }
3377
3378 if (!buffer_mapped(bh)) {
3379 BUFFER_TRACE(bh, "unmapped");
3380 ext4_get_block(inode, iblock, bh, 0);
3381 /* unmapped? It's a hole - nothing to do */
3382 if (!buffer_mapped(bh)) {
3383 BUFFER_TRACE(bh, "still unmapped");
3384 goto unlock;
3385 }
3386 }
3387
3388 /* Ok, it's mapped. Make sure it's up-to-date */
3389 if (PageUptodate(page))
3390 set_buffer_uptodate(bh);
3391
3392 if (!buffer_uptodate(bh)) {
3393 err = -EIO;
3394 ll_rw_block(READ, 1, &bh);
3395 wait_on_buffer(bh);
3396 /* Uhhuh. Read error. Complain and punt. */
3397 if (!buffer_uptodate(bh))
3398 goto unlock;
3399 }
3400
3401 if (ext4_should_journal_data(inode)) {
3402 BUFFER_TRACE(bh, "get write access");
3403 err = ext4_journal_get_write_access(handle, bh);
3404 if (err)
3405 goto unlock;
3406 }
3407
3408 zero_user(page, offset, length);
3409
3410 BUFFER_TRACE(bh, "zeroed end of block");
3411
3412 err = 0;
3413 if (ext4_should_journal_data(inode)) {
3414 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3415 } else {
d863dc36 3416 mark_buffer_dirty(bh);
0713ed0c
LC
3417 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3418 err = ext4_jbd2_file_inode(handle, inode);
3419 }
d863dc36
LC
3420
3421unlock:
3422 unlock_page(page);
3423 page_cache_release(page);
3424 return err;
3425}
3426
a87dd18c
LC
3427int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3428 loff_t lstart, loff_t length)
3429{
3430 struct super_block *sb = inode->i_sb;
3431 struct address_space *mapping = inode->i_mapping;
3432 unsigned partial = lstart & (sb->s_blocksize - 1);
3433 ext4_fsblk_t start, end;
3434 loff_t byte_end = (lstart + length - 1);
3435 int err = 0;
3436
3437 start = lstart >> sb->s_blocksize_bits;
3438 end = byte_end >> sb->s_blocksize_bits;
3439
3440 /* Handle partial zero within the single block */
3441 if (start == end) {
3442 err = ext4_block_zero_page_range(handle, mapping,
3443 lstart, length);
3444 return err;
3445 }
3446 /* Handle partial zero out on the start of the range */
3447 if (partial) {
3448 err = ext4_block_zero_page_range(handle, mapping,
3449 lstart, sb->s_blocksize);
3450 if (err)
3451 return err;
3452 }
3453 /* Handle partial zero out on the end of the range */
3454 partial = byte_end & (sb->s_blocksize - 1);
3455 if (partial != sb->s_blocksize - 1)
3456 err = ext4_block_zero_page_range(handle, mapping,
3457 byte_end - partial,
3458 partial + 1);
3459 return err;
3460}
3461
91ef4caf
DG
3462int ext4_can_truncate(struct inode *inode)
3463{
91ef4caf
DG
3464 if (S_ISREG(inode->i_mode))
3465 return 1;
3466 if (S_ISDIR(inode->i_mode))
3467 return 1;
3468 if (S_ISLNK(inode->i_mode))
3469 return !ext4_inode_is_fast_symlink(inode);
3470 return 0;
3471}
3472
a4bb6b64
AH
3473/*
3474 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3475 * associated with the given offset and length
3476 *
3477 * @inode: File inode
3478 * @offset: The offset where the hole will begin
3479 * @len: The length of the hole
3480 *
4907cb7b 3481 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3482 */
3483
3484int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3485{
496ad9aa 3486 struct inode *inode = file_inode(file);
26a4c0c6
TT
3487 struct super_block *sb = inode->i_sb;
3488 ext4_lblk_t first_block, stop_block;
3489 struct address_space *mapping = inode->i_mapping;
a87dd18c 3490 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3491 handle_t *handle;
3492 unsigned int credits;
3493 int ret = 0;
3494
a4bb6b64 3495 if (!S_ISREG(inode->i_mode))
73355192 3496 return -EOPNOTSUPP;
a4bb6b64 3497
26a4c0c6 3498 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3499 /* TODO: Add support for bigalloc file systems */
73355192 3500 return -EOPNOTSUPP;
bab08ab9
TT
3501 }
3502
aaddea81
ZL
3503 trace_ext4_punch_hole(inode, offset, length);
3504
26a4c0c6
TT
3505 /*
3506 * Write out all dirty pages to avoid race conditions
3507 * Then release them.
3508 */
3509 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3510 ret = filemap_write_and_wait_range(mapping, offset,
3511 offset + length - 1);
3512 if (ret)
3513 return ret;
3514 }
3515
3516 mutex_lock(&inode->i_mutex);
3517 /* It's not possible punch hole on append only file */
3518 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3519 ret = -EPERM;
3520 goto out_mutex;
3521 }
3522 if (IS_SWAPFILE(inode)) {
3523 ret = -ETXTBSY;
3524 goto out_mutex;
3525 }
3526
3527 /* No need to punch hole beyond i_size */
3528 if (offset >= inode->i_size)
3529 goto out_mutex;
3530
3531 /*
3532 * If the hole extends beyond i_size, set the hole
3533 * to end after the page that contains i_size
3534 */
3535 if (offset + length > inode->i_size) {
3536 length = inode->i_size +
3537 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3538 offset;
3539 }
3540
a87dd18c
LC
3541 first_block_offset = round_up(offset, sb->s_blocksize);
3542 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3543
a87dd18c
LC
3544 /* Now release the pages and zero block aligned part of pages*/
3545 if (last_block_offset > first_block_offset)
3546 truncate_pagecache_range(inode, first_block_offset,
3547 last_block_offset);
26a4c0c6
TT
3548
3549 /* Wait all existing dio workers, newcomers will block on i_mutex */
3550 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3551 inode_dio_wait(inode);
3552
3553 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3554 credits = ext4_writepage_trans_blocks(inode);
3555 else
3556 credits = ext4_blocks_for_truncate(inode);
3557 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3558 if (IS_ERR(handle)) {
3559 ret = PTR_ERR(handle);
3560 ext4_std_error(sb, ret);
3561 goto out_dio;
3562 }
3563
a87dd18c
LC
3564 ret = ext4_zero_partial_blocks(handle, inode, offset,
3565 length);
3566 if (ret)
3567 goto out_stop;
26a4c0c6
TT
3568
3569 first_block = (offset + sb->s_blocksize - 1) >>
3570 EXT4_BLOCK_SIZE_BITS(sb);
3571 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3572
3573 /* If there are no blocks to remove, return now */
3574 if (first_block >= stop_block)
3575 goto out_stop;
3576
3577 down_write(&EXT4_I(inode)->i_data_sem);
3578 ext4_discard_preallocations(inode);
3579
3580 ret = ext4_es_remove_extent(inode, first_block,
3581 stop_block - first_block);
3582 if (ret) {
3583 up_write(&EXT4_I(inode)->i_data_sem);
3584 goto out_stop;
3585 }
3586
3587 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3588 ret = ext4_ext_remove_space(inode, first_block,
3589 stop_block - 1);
3590 else
3591 ret = ext4_free_hole_blocks(handle, inode, first_block,
3592 stop_block);
3593
3594 ext4_discard_preallocations(inode);
819c4920 3595 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3596 if (IS_SYNC(inode))
3597 ext4_handle_sync(handle);
26a4c0c6
TT
3598 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3599 ext4_mark_inode_dirty(handle, inode);
3600out_stop:
3601 ext4_journal_stop(handle);
3602out_dio:
3603 ext4_inode_resume_unlocked_dio(inode);
3604out_mutex:
3605 mutex_unlock(&inode->i_mutex);
3606 return ret;
a4bb6b64
AH
3607}
3608
ac27a0ec 3609/*
617ba13b 3610 * ext4_truncate()
ac27a0ec 3611 *
617ba13b
MC
3612 * We block out ext4_get_block() block instantiations across the entire
3613 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3614 * simultaneously on behalf of the same inode.
3615 *
42b2aa86 3616 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3617 * is one core, guiding principle: the file's tree must always be consistent on
3618 * disk. We must be able to restart the truncate after a crash.
3619 *
3620 * The file's tree may be transiently inconsistent in memory (although it
3621 * probably isn't), but whenever we close off and commit a journal transaction,
3622 * the contents of (the filesystem + the journal) must be consistent and
3623 * restartable. It's pretty simple, really: bottom up, right to left (although
3624 * left-to-right works OK too).
3625 *
3626 * Note that at recovery time, journal replay occurs *before* the restart of
3627 * truncate against the orphan inode list.
3628 *
3629 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3630 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3631 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3632 * ext4_truncate() to have another go. So there will be instantiated blocks
3633 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3634 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3635 * ext4_truncate() run will find them and release them.
ac27a0ec 3636 */
617ba13b 3637void ext4_truncate(struct inode *inode)
ac27a0ec 3638{
819c4920
TT
3639 struct ext4_inode_info *ei = EXT4_I(inode);
3640 unsigned int credits;
3641 handle_t *handle;
3642 struct address_space *mapping = inode->i_mapping;
819c4920 3643
19b5ef61
TT
3644 /*
3645 * There is a possibility that we're either freeing the inode
3646 * or it completely new indode. In those cases we might not
3647 * have i_mutex locked because it's not necessary.
3648 */
3649 if (!(inode->i_state & (I_NEW|I_FREEING)))
3650 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3651 trace_ext4_truncate_enter(inode);
3652
91ef4caf 3653 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3654 return;
3655
12e9b892 3656 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3657
5534fb5b 3658 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3659 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3660
aef1c851
TM
3661 if (ext4_has_inline_data(inode)) {
3662 int has_inline = 1;
3663
3664 ext4_inline_data_truncate(inode, &has_inline);
3665 if (has_inline)
3666 return;
3667 }
3668
819c4920
TT
3669 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3670 credits = ext4_writepage_trans_blocks(inode);
3671 else
3672 credits = ext4_blocks_for_truncate(inode);
3673
3674 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3675 if (IS_ERR(handle)) {
3676 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3677 return;
3678 }
3679
eb3544c6
LC
3680 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3681 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3682
3683 /*
3684 * We add the inode to the orphan list, so that if this
3685 * truncate spans multiple transactions, and we crash, we will
3686 * resume the truncate when the filesystem recovers. It also
3687 * marks the inode dirty, to catch the new size.
3688 *
3689 * Implication: the file must always be in a sane, consistent
3690 * truncatable state while each transaction commits.
3691 */
3692 if (ext4_orphan_add(handle, inode))
3693 goto out_stop;
3694
3695 down_write(&EXT4_I(inode)->i_data_sem);
3696
3697 ext4_discard_preallocations(inode);
3698
ff9893dc 3699 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3700 ext4_ext_truncate(handle, inode);
ff9893dc 3701 else
819c4920
TT
3702 ext4_ind_truncate(handle, inode);
3703
3704 up_write(&ei->i_data_sem);
3705
3706 if (IS_SYNC(inode))
3707 ext4_handle_sync(handle);
3708
3709out_stop:
3710 /*
3711 * If this was a simple ftruncate() and the file will remain alive,
3712 * then we need to clear up the orphan record which we created above.
3713 * However, if this was a real unlink then we were called by
3714 * ext4_delete_inode(), and we allow that function to clean up the
3715 * orphan info for us.
3716 */
3717 if (inode->i_nlink)
3718 ext4_orphan_del(handle, inode);
3719
3720 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3721 ext4_mark_inode_dirty(handle, inode);
3722 ext4_journal_stop(handle);
ac27a0ec 3723
0562e0ba 3724 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3725}
3726
ac27a0ec 3727/*
617ba13b 3728 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3729 * underlying buffer_head on success. If 'in_mem' is true, we have all
3730 * data in memory that is needed to recreate the on-disk version of this
3731 * inode.
3732 */
617ba13b
MC
3733static int __ext4_get_inode_loc(struct inode *inode,
3734 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3735{
240799cd
TT
3736 struct ext4_group_desc *gdp;
3737 struct buffer_head *bh;
3738 struct super_block *sb = inode->i_sb;
3739 ext4_fsblk_t block;
3740 int inodes_per_block, inode_offset;
3741
3a06d778 3742 iloc->bh = NULL;
240799cd
TT
3743 if (!ext4_valid_inum(sb, inode->i_ino))
3744 return -EIO;
ac27a0ec 3745
240799cd
TT
3746 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3747 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3748 if (!gdp)
ac27a0ec
DK
3749 return -EIO;
3750
240799cd
TT
3751 /*
3752 * Figure out the offset within the block group inode table
3753 */
00d09882 3754 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3755 inode_offset = ((inode->i_ino - 1) %
3756 EXT4_INODES_PER_GROUP(sb));
3757 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3758 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3759
3760 bh = sb_getblk(sb, block);
aebf0243 3761 if (unlikely(!bh))
860d21e2 3762 return -ENOMEM;
ac27a0ec
DK
3763 if (!buffer_uptodate(bh)) {
3764 lock_buffer(bh);
9c83a923
HK
3765
3766 /*
3767 * If the buffer has the write error flag, we have failed
3768 * to write out another inode in the same block. In this
3769 * case, we don't have to read the block because we may
3770 * read the old inode data successfully.
3771 */
3772 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3773 set_buffer_uptodate(bh);
3774
ac27a0ec
DK
3775 if (buffer_uptodate(bh)) {
3776 /* someone brought it uptodate while we waited */
3777 unlock_buffer(bh);
3778 goto has_buffer;
3779 }
3780
3781 /*
3782 * If we have all information of the inode in memory and this
3783 * is the only valid inode in the block, we need not read the
3784 * block.
3785 */
3786 if (in_mem) {
3787 struct buffer_head *bitmap_bh;
240799cd 3788 int i, start;
ac27a0ec 3789
240799cd 3790 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3791
240799cd
TT
3792 /* Is the inode bitmap in cache? */
3793 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3794 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3795 goto make_io;
3796
3797 /*
3798 * If the inode bitmap isn't in cache then the
3799 * optimisation may end up performing two reads instead
3800 * of one, so skip it.
3801 */
3802 if (!buffer_uptodate(bitmap_bh)) {
3803 brelse(bitmap_bh);
3804 goto make_io;
3805 }
240799cd 3806 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3807 if (i == inode_offset)
3808 continue;
617ba13b 3809 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3810 break;
3811 }
3812 brelse(bitmap_bh);
240799cd 3813 if (i == start + inodes_per_block) {
ac27a0ec
DK
3814 /* all other inodes are free, so skip I/O */
3815 memset(bh->b_data, 0, bh->b_size);
3816 set_buffer_uptodate(bh);
3817 unlock_buffer(bh);
3818 goto has_buffer;
3819 }
3820 }
3821
3822make_io:
240799cd
TT
3823 /*
3824 * If we need to do any I/O, try to pre-readahead extra
3825 * blocks from the inode table.
3826 */
3827 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3828 ext4_fsblk_t b, end, table;
3829 unsigned num;
0d606e2c 3830 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3831
3832 table = ext4_inode_table(sb, gdp);
b713a5ec 3833 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3834 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3835 if (table > b)
3836 b = table;
0d606e2c 3837 end = b + ra_blks;
240799cd 3838 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3839 if (ext4_has_group_desc_csum(sb))
560671a0 3840 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3841 table += num / inodes_per_block;
3842 if (end > table)
3843 end = table;
3844 while (b <= end)
3845 sb_breadahead(sb, b++);
3846 }
3847
ac27a0ec
DK
3848 /*
3849 * There are other valid inodes in the buffer, this inode
3850 * has in-inode xattrs, or we don't have this inode in memory.
3851 * Read the block from disk.
3852 */
0562e0ba 3853 trace_ext4_load_inode(inode);
ac27a0ec
DK
3854 get_bh(bh);
3855 bh->b_end_io = end_buffer_read_sync;
65299a3b 3856 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3857 wait_on_buffer(bh);
3858 if (!buffer_uptodate(bh)) {
c398eda0
TT
3859 EXT4_ERROR_INODE_BLOCK(inode, block,
3860 "unable to read itable block");
ac27a0ec
DK
3861 brelse(bh);
3862 return -EIO;
3863 }
3864 }
3865has_buffer:
3866 iloc->bh = bh;
3867 return 0;
3868}
3869
617ba13b 3870int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3871{
3872 /* We have all inode data except xattrs in memory here. */
617ba13b 3873 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3874 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3875}
3876
617ba13b 3877void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3878{
617ba13b 3879 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3880
3881 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3882 if (flags & EXT4_SYNC_FL)
ac27a0ec 3883 inode->i_flags |= S_SYNC;
617ba13b 3884 if (flags & EXT4_APPEND_FL)
ac27a0ec 3885 inode->i_flags |= S_APPEND;
617ba13b 3886 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3887 inode->i_flags |= S_IMMUTABLE;
617ba13b 3888 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3889 inode->i_flags |= S_NOATIME;
617ba13b 3890 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3891 inode->i_flags |= S_DIRSYNC;
3892}
3893
ff9ddf7e
JK
3894/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3895void ext4_get_inode_flags(struct ext4_inode_info *ei)
3896{
84a8dce2
DM
3897 unsigned int vfs_fl;
3898 unsigned long old_fl, new_fl;
3899
3900 do {
3901 vfs_fl = ei->vfs_inode.i_flags;
3902 old_fl = ei->i_flags;
3903 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3904 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3905 EXT4_DIRSYNC_FL);
3906 if (vfs_fl & S_SYNC)
3907 new_fl |= EXT4_SYNC_FL;
3908 if (vfs_fl & S_APPEND)
3909 new_fl |= EXT4_APPEND_FL;
3910 if (vfs_fl & S_IMMUTABLE)
3911 new_fl |= EXT4_IMMUTABLE_FL;
3912 if (vfs_fl & S_NOATIME)
3913 new_fl |= EXT4_NOATIME_FL;
3914 if (vfs_fl & S_DIRSYNC)
3915 new_fl |= EXT4_DIRSYNC_FL;
3916 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3917}
de9a55b8 3918
0fc1b451 3919static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3920 struct ext4_inode_info *ei)
0fc1b451
AK
3921{
3922 blkcnt_t i_blocks ;
8180a562
AK
3923 struct inode *inode = &(ei->vfs_inode);
3924 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3925
3926 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3927 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3928 /* we are using combined 48 bit field */
3929 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3930 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3931 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3932 /* i_blocks represent file system block size */
3933 return i_blocks << (inode->i_blkbits - 9);
3934 } else {
3935 return i_blocks;
3936 }
0fc1b451
AK
3937 } else {
3938 return le32_to_cpu(raw_inode->i_blocks_lo);
3939 }
3940}
ff9ddf7e 3941
152a7b0a
TM
3942static inline void ext4_iget_extra_inode(struct inode *inode,
3943 struct ext4_inode *raw_inode,
3944 struct ext4_inode_info *ei)
3945{
3946 __le32 *magic = (void *)raw_inode +
3947 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3948 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3949 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3950 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3951 } else
3952 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3953}
3954
1d1fe1ee 3955struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3956{
617ba13b
MC
3957 struct ext4_iloc iloc;
3958 struct ext4_inode *raw_inode;
1d1fe1ee 3959 struct ext4_inode_info *ei;
1d1fe1ee 3960 struct inode *inode;
b436b9be 3961 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3962 long ret;
ac27a0ec 3963 int block;
08cefc7a
EB
3964 uid_t i_uid;
3965 gid_t i_gid;
ac27a0ec 3966
1d1fe1ee
DH
3967 inode = iget_locked(sb, ino);
3968 if (!inode)
3969 return ERR_PTR(-ENOMEM);
3970 if (!(inode->i_state & I_NEW))
3971 return inode;
3972
3973 ei = EXT4_I(inode);
7dc57615 3974 iloc.bh = NULL;
ac27a0ec 3975
1d1fe1ee
DH
3976 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3977 if (ret < 0)
ac27a0ec 3978 goto bad_inode;
617ba13b 3979 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3980
3981 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3982 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3983 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3984 EXT4_INODE_SIZE(inode->i_sb)) {
3985 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3986 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3987 EXT4_INODE_SIZE(inode->i_sb));
3988 ret = -EIO;
3989 goto bad_inode;
3990 }
3991 } else
3992 ei->i_extra_isize = 0;
3993
3994 /* Precompute checksum seed for inode metadata */
3995 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3996 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3997 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3998 __u32 csum;
3999 __le32 inum = cpu_to_le32(inode->i_ino);
4000 __le32 gen = raw_inode->i_generation;
4001 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4002 sizeof(inum));
4003 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4004 sizeof(gen));
4005 }
4006
4007 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4008 EXT4_ERROR_INODE(inode, "checksum invalid");
4009 ret = -EIO;
4010 goto bad_inode;
4011 }
4012
ac27a0ec 4013 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4014 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4015 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4016 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4017 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4018 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4019 }
08cefc7a
EB
4020 i_uid_write(inode, i_uid);
4021 i_gid_write(inode, i_gid);
bfe86848 4022 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4023
353eb83c 4024 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4025 ei->i_inline_off = 0;
ac27a0ec
DK
4026 ei->i_dir_start_lookup = 0;
4027 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4028 /* We now have enough fields to check if the inode was active or not.
4029 * This is needed because nfsd might try to access dead inodes
4030 * the test is that same one that e2fsck uses
4031 * NeilBrown 1999oct15
4032 */
4033 if (inode->i_nlink == 0) {
393d1d1d
DTB
4034 if ((inode->i_mode == 0 ||
4035 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4036 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4037 /* this inode is deleted */
1d1fe1ee 4038 ret = -ESTALE;
ac27a0ec
DK
4039 goto bad_inode;
4040 }
4041 /* The only unlinked inodes we let through here have
4042 * valid i_mode and are being read by the orphan
4043 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4044 * the process of deleting those.
4045 * OR it is the EXT4_BOOT_LOADER_INO which is
4046 * not initialized on a new filesystem. */
ac27a0ec 4047 }
ac27a0ec 4048 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4049 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4050 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4051 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4052 ei->i_file_acl |=
4053 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4054 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4055 ei->i_disksize = inode->i_size;
a9e7f447
DM
4056#ifdef CONFIG_QUOTA
4057 ei->i_reserved_quota = 0;
4058#endif
ac27a0ec
DK
4059 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4060 ei->i_block_group = iloc.block_group;
a4912123 4061 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4062 /*
4063 * NOTE! The in-memory inode i_data array is in little-endian order
4064 * even on big-endian machines: we do NOT byteswap the block numbers!
4065 */
617ba13b 4066 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4067 ei->i_data[block] = raw_inode->i_block[block];
4068 INIT_LIST_HEAD(&ei->i_orphan);
4069
b436b9be
JK
4070 /*
4071 * Set transaction id's of transactions that have to be committed
4072 * to finish f[data]sync. We set them to currently running transaction
4073 * as we cannot be sure that the inode or some of its metadata isn't
4074 * part of the transaction - the inode could have been reclaimed and
4075 * now it is reread from disk.
4076 */
4077 if (journal) {
4078 transaction_t *transaction;
4079 tid_t tid;
4080
a931da6a 4081 read_lock(&journal->j_state_lock);
b436b9be
JK
4082 if (journal->j_running_transaction)
4083 transaction = journal->j_running_transaction;
4084 else
4085 transaction = journal->j_committing_transaction;
4086 if (transaction)
4087 tid = transaction->t_tid;
4088 else
4089 tid = journal->j_commit_sequence;
a931da6a 4090 read_unlock(&journal->j_state_lock);
b436b9be
JK
4091 ei->i_sync_tid = tid;
4092 ei->i_datasync_tid = tid;
4093 }
4094
0040d987 4095 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4096 if (ei->i_extra_isize == 0) {
4097 /* The extra space is currently unused. Use it. */
617ba13b
MC
4098 ei->i_extra_isize = sizeof(struct ext4_inode) -
4099 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4100 } else {
152a7b0a 4101 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4102 }
814525f4 4103 }
ac27a0ec 4104
ef7f3835
KS
4105 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4106 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4107 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4108 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4109
25ec56b5
JNC
4110 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4111 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4112 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4113 inode->i_version |=
4114 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4115 }
4116
c4b5a614 4117 ret = 0;
485c26ec 4118 if (ei->i_file_acl &&
1032988c 4119 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4120 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4121 ei->i_file_acl);
485c26ec
TT
4122 ret = -EIO;
4123 goto bad_inode;
f19d5870
TM
4124 } else if (!ext4_has_inline_data(inode)) {
4125 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4126 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4127 (S_ISLNK(inode->i_mode) &&
4128 !ext4_inode_is_fast_symlink(inode))))
4129 /* Validate extent which is part of inode */
4130 ret = ext4_ext_check_inode(inode);
4131 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4132 (S_ISLNK(inode->i_mode) &&
4133 !ext4_inode_is_fast_symlink(inode))) {
4134 /* Validate block references which are part of inode */
4135 ret = ext4_ind_check_inode(inode);
4136 }
fe2c8191 4137 }
567f3e9a 4138 if (ret)
de9a55b8 4139 goto bad_inode;
7a262f7c 4140
ac27a0ec 4141 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4142 inode->i_op = &ext4_file_inode_operations;
4143 inode->i_fop = &ext4_file_operations;
4144 ext4_set_aops(inode);
ac27a0ec 4145 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4146 inode->i_op = &ext4_dir_inode_operations;
4147 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4148 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4149 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4150 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4151 nd_terminate_link(ei->i_data, inode->i_size,
4152 sizeof(ei->i_data) - 1);
4153 } else {
617ba13b
MC
4154 inode->i_op = &ext4_symlink_inode_operations;
4155 ext4_set_aops(inode);
ac27a0ec 4156 }
563bdd61
TT
4157 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4158 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4159 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4160 if (raw_inode->i_block[0])
4161 init_special_inode(inode, inode->i_mode,
4162 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4163 else
4164 init_special_inode(inode, inode->i_mode,
4165 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4166 } else if (ino == EXT4_BOOT_LOADER_INO) {
4167 make_bad_inode(inode);
563bdd61 4168 } else {
563bdd61 4169 ret = -EIO;
24676da4 4170 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4171 goto bad_inode;
ac27a0ec 4172 }
af5bc92d 4173 brelse(iloc.bh);
617ba13b 4174 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4175 unlock_new_inode(inode);
4176 return inode;
ac27a0ec
DK
4177
4178bad_inode:
567f3e9a 4179 brelse(iloc.bh);
1d1fe1ee
DH
4180 iget_failed(inode);
4181 return ERR_PTR(ret);
ac27a0ec
DK
4182}
4183
0fc1b451
AK
4184static int ext4_inode_blocks_set(handle_t *handle,
4185 struct ext4_inode *raw_inode,
4186 struct ext4_inode_info *ei)
4187{
4188 struct inode *inode = &(ei->vfs_inode);
4189 u64 i_blocks = inode->i_blocks;
4190 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4191
4192 if (i_blocks <= ~0U) {
4193 /*
4907cb7b 4194 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4195 * as multiple of 512 bytes
4196 */
8180a562 4197 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4198 raw_inode->i_blocks_high = 0;
84a8dce2 4199 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4200 return 0;
4201 }
4202 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4203 return -EFBIG;
4204
4205 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4206 /*
4207 * i_blocks can be represented in a 48 bit variable
4208 * as multiple of 512 bytes
4209 */
8180a562 4210 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4211 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4212 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4213 } else {
84a8dce2 4214 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4215 /* i_block is stored in file system block size */
4216 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4217 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4218 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4219 }
f287a1a5 4220 return 0;
0fc1b451
AK
4221}
4222
ac27a0ec
DK
4223/*
4224 * Post the struct inode info into an on-disk inode location in the
4225 * buffer-cache. This gobbles the caller's reference to the
4226 * buffer_head in the inode location struct.
4227 *
4228 * The caller must have write access to iloc->bh.
4229 */
617ba13b 4230static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4231 struct inode *inode,
830156c7 4232 struct ext4_iloc *iloc)
ac27a0ec 4233{
617ba13b
MC
4234 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4235 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4236 struct buffer_head *bh = iloc->bh;
4237 int err = 0, rc, block;
b71fc079 4238 int need_datasync = 0;
08cefc7a
EB
4239 uid_t i_uid;
4240 gid_t i_gid;
ac27a0ec
DK
4241
4242 /* For fields not not tracking in the in-memory inode,
4243 * initialise them to zero for new inodes. */
19f5fb7a 4244 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4245 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4246
ff9ddf7e 4247 ext4_get_inode_flags(ei);
ac27a0ec 4248 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4249 i_uid = i_uid_read(inode);
4250 i_gid = i_gid_read(inode);
af5bc92d 4251 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4252 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4253 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4254/*
4255 * Fix up interoperability with old kernels. Otherwise, old inodes get
4256 * re-used with the upper 16 bits of the uid/gid intact
4257 */
af5bc92d 4258 if (!ei->i_dtime) {
ac27a0ec 4259 raw_inode->i_uid_high =
08cefc7a 4260 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4261 raw_inode->i_gid_high =
08cefc7a 4262 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4263 } else {
4264 raw_inode->i_uid_high = 0;
4265 raw_inode->i_gid_high = 0;
4266 }
4267 } else {
08cefc7a
EB
4268 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4269 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4270 raw_inode->i_uid_high = 0;
4271 raw_inode->i_gid_high = 0;
4272 }
4273 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4274
4275 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4276 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4277 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4278 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4279
0fc1b451
AK
4280 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4281 goto out_brelse;
ac27a0ec 4282 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4283 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4284 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4285 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4286 raw_inode->i_file_acl_high =
4287 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4288 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4289 if (ei->i_disksize != ext4_isize(raw_inode)) {
4290 ext4_isize_set(raw_inode, ei->i_disksize);
4291 need_datasync = 1;
4292 }
a48380f7
AK
4293 if (ei->i_disksize > 0x7fffffffULL) {
4294 struct super_block *sb = inode->i_sb;
4295 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4296 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4297 EXT4_SB(sb)->s_es->s_rev_level ==
4298 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4299 /* If this is the first large file
4300 * created, add a flag to the superblock.
4301 */
4302 err = ext4_journal_get_write_access(handle,
4303 EXT4_SB(sb)->s_sbh);
4304 if (err)
4305 goto out_brelse;
4306 ext4_update_dynamic_rev(sb);
4307 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4308 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4309 ext4_handle_sync(handle);
b50924c2 4310 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4311 }
4312 }
4313 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4314 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4315 if (old_valid_dev(inode->i_rdev)) {
4316 raw_inode->i_block[0] =
4317 cpu_to_le32(old_encode_dev(inode->i_rdev));
4318 raw_inode->i_block[1] = 0;
4319 } else {
4320 raw_inode->i_block[0] = 0;
4321 raw_inode->i_block[1] =
4322 cpu_to_le32(new_encode_dev(inode->i_rdev));
4323 raw_inode->i_block[2] = 0;
4324 }
f19d5870 4325 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4326 for (block = 0; block < EXT4_N_BLOCKS; block++)
4327 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4328 }
ac27a0ec 4329
25ec56b5
JNC
4330 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4331 if (ei->i_extra_isize) {
4332 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4333 raw_inode->i_version_hi =
4334 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4335 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4336 }
4337
814525f4
DW
4338 ext4_inode_csum_set(inode, raw_inode, ei);
4339
830156c7 4340 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4341 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4342 if (!err)
4343 err = rc;
19f5fb7a 4344 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4345
b71fc079 4346 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4347out_brelse:
af5bc92d 4348 brelse(bh);
617ba13b 4349 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4350 return err;
4351}
4352
4353/*
617ba13b 4354 * ext4_write_inode()
ac27a0ec
DK
4355 *
4356 * We are called from a few places:
4357 *
4358 * - Within generic_file_write() for O_SYNC files.
4359 * Here, there will be no transaction running. We wait for any running
4907cb7b 4360 * transaction to commit.
ac27a0ec
DK
4361 *
4362 * - Within sys_sync(), kupdate and such.
4363 * We wait on commit, if tol to.
4364 *
4365 * - Within prune_icache() (PF_MEMALLOC == true)
4366 * Here we simply return. We can't afford to block kswapd on the
4367 * journal commit.
4368 *
4369 * In all cases it is actually safe for us to return without doing anything,
4370 * because the inode has been copied into a raw inode buffer in
617ba13b 4371 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4372 * knfsd.
4373 *
4374 * Note that we are absolutely dependent upon all inode dirtiers doing the
4375 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4376 * which we are interested.
4377 *
4378 * It would be a bug for them to not do this. The code:
4379 *
4380 * mark_inode_dirty(inode)
4381 * stuff();
4382 * inode->i_size = expr;
4383 *
4384 * is in error because a kswapd-driven write_inode() could occur while
4385 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4386 * will no longer be on the superblock's dirty inode list.
4387 */
a9185b41 4388int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4389{
91ac6f43
FM
4390 int err;
4391
ac27a0ec
DK
4392 if (current->flags & PF_MEMALLOC)
4393 return 0;
4394
91ac6f43
FM
4395 if (EXT4_SB(inode->i_sb)->s_journal) {
4396 if (ext4_journal_current_handle()) {
4397 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4398 dump_stack();
4399 return -EIO;
4400 }
ac27a0ec 4401
a9185b41 4402 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4403 return 0;
4404
4405 err = ext4_force_commit(inode->i_sb);
4406 } else {
4407 struct ext4_iloc iloc;
ac27a0ec 4408
8b472d73 4409 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4410 if (err)
4411 return err;
a9185b41 4412 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4413 sync_dirty_buffer(iloc.bh);
4414 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4415 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4416 "IO error syncing inode");
830156c7
FM
4417 err = -EIO;
4418 }
fd2dd9fb 4419 brelse(iloc.bh);
91ac6f43
FM
4420 }
4421 return err;
ac27a0ec
DK
4422}
4423
53e87268
JK
4424/*
4425 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4426 * buffers that are attached to a page stradding i_size and are undergoing
4427 * commit. In that case we have to wait for commit to finish and try again.
4428 */
4429static void ext4_wait_for_tail_page_commit(struct inode *inode)
4430{
4431 struct page *page;
4432 unsigned offset;
4433 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4434 tid_t commit_tid = 0;
4435 int ret;
4436
4437 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4438 /*
4439 * All buffers in the last page remain valid? Then there's nothing to
4440 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4441 * blocksize case
4442 */
4443 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4444 return;
4445 while (1) {
4446 page = find_lock_page(inode->i_mapping,
4447 inode->i_size >> PAGE_CACHE_SHIFT);
4448 if (!page)
4449 return;
ca99fdd2
LC
4450 ret = __ext4_journalled_invalidatepage(page, offset,
4451 PAGE_CACHE_SIZE - offset);
53e87268
JK
4452 unlock_page(page);
4453 page_cache_release(page);
4454 if (ret != -EBUSY)
4455 return;
4456 commit_tid = 0;
4457 read_lock(&journal->j_state_lock);
4458 if (journal->j_committing_transaction)
4459 commit_tid = journal->j_committing_transaction->t_tid;
4460 read_unlock(&journal->j_state_lock);
4461 if (commit_tid)
4462 jbd2_log_wait_commit(journal, commit_tid);
4463 }
4464}
4465
ac27a0ec 4466/*
617ba13b 4467 * ext4_setattr()
ac27a0ec
DK
4468 *
4469 * Called from notify_change.
4470 *
4471 * We want to trap VFS attempts to truncate the file as soon as
4472 * possible. In particular, we want to make sure that when the VFS
4473 * shrinks i_size, we put the inode on the orphan list and modify
4474 * i_disksize immediately, so that during the subsequent flushing of
4475 * dirty pages and freeing of disk blocks, we can guarantee that any
4476 * commit will leave the blocks being flushed in an unused state on
4477 * disk. (On recovery, the inode will get truncated and the blocks will
4478 * be freed, so we have a strong guarantee that no future commit will
4479 * leave these blocks visible to the user.)
4480 *
678aaf48
JK
4481 * Another thing we have to assure is that if we are in ordered mode
4482 * and inode is still attached to the committing transaction, we must
4483 * we start writeout of all the dirty pages which are being truncated.
4484 * This way we are sure that all the data written in the previous
4485 * transaction are already on disk (truncate waits for pages under
4486 * writeback).
4487 *
4488 * Called with inode->i_mutex down.
ac27a0ec 4489 */
617ba13b 4490int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4491{
4492 struct inode *inode = dentry->d_inode;
4493 int error, rc = 0;
3d287de3 4494 int orphan = 0;
ac27a0ec
DK
4495 const unsigned int ia_valid = attr->ia_valid;
4496
4497 error = inode_change_ok(inode, attr);
4498 if (error)
4499 return error;
4500
12755627 4501 if (is_quota_modification(inode, attr))
871a2931 4502 dquot_initialize(inode);
08cefc7a
EB
4503 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4504 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4505 handle_t *handle;
4506
4507 /* (user+group)*(old+new) structure, inode write (sb,
4508 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4509 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4510 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4511 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4512 if (IS_ERR(handle)) {
4513 error = PTR_ERR(handle);
4514 goto err_out;
4515 }
b43fa828 4516 error = dquot_transfer(inode, attr);
ac27a0ec 4517 if (error) {
617ba13b 4518 ext4_journal_stop(handle);
ac27a0ec
DK
4519 return error;
4520 }
4521 /* Update corresponding info in inode so that everything is in
4522 * one transaction */
4523 if (attr->ia_valid & ATTR_UID)
4524 inode->i_uid = attr->ia_uid;
4525 if (attr->ia_valid & ATTR_GID)
4526 inode->i_gid = attr->ia_gid;
617ba13b
MC
4527 error = ext4_mark_inode_dirty(handle, inode);
4528 ext4_journal_stop(handle);
ac27a0ec
DK
4529 }
4530
e2b46574 4531 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4532
12e9b892 4533 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4534 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4535
0c095c7f
TT
4536 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4537 return -EFBIG;
e2b46574
ES
4538 }
4539 }
4540
ac27a0ec 4541 if (S_ISREG(inode->i_mode) &&
c8d46e41 4542 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4543 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4544 handle_t *handle;
4545
9924a92a 4546 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4547 if (IS_ERR(handle)) {
4548 error = PTR_ERR(handle);
4549 goto err_out;
4550 }
3d287de3
DM
4551 if (ext4_handle_valid(handle)) {
4552 error = ext4_orphan_add(handle, inode);
4553 orphan = 1;
4554 }
617ba13b
MC
4555 EXT4_I(inode)->i_disksize = attr->ia_size;
4556 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4557 if (!error)
4558 error = rc;
617ba13b 4559 ext4_journal_stop(handle);
678aaf48
JK
4560
4561 if (ext4_should_order_data(inode)) {
4562 error = ext4_begin_ordered_truncate(inode,
4563 attr->ia_size);
4564 if (error) {
4565 /* Do as much error cleanup as possible */
9924a92a
TT
4566 handle = ext4_journal_start(inode,
4567 EXT4_HT_INODE, 3);
678aaf48
JK
4568 if (IS_ERR(handle)) {
4569 ext4_orphan_del(NULL, inode);
4570 goto err_out;
4571 }
4572 ext4_orphan_del(handle, inode);
3d287de3 4573 orphan = 0;
678aaf48
JK
4574 ext4_journal_stop(handle);
4575 goto err_out;
4576 }
4577 }
ac27a0ec
DK
4578 }
4579
072bd7ea 4580 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4581 if (attr->ia_size != inode->i_size) {
4582 loff_t oldsize = inode->i_size;
4583
4584 i_size_write(inode, attr->ia_size);
4585 /*
4586 * Blocks are going to be removed from the inode. Wait
4587 * for dio in flight. Temporarily disable
4588 * dioread_nolock to prevent livelock.
4589 */
1b65007e 4590 if (orphan) {
53e87268
JK
4591 if (!ext4_should_journal_data(inode)) {
4592 ext4_inode_block_unlocked_dio(inode);
4593 inode_dio_wait(inode);
4594 ext4_inode_resume_unlocked_dio(inode);
4595 } else
4596 ext4_wait_for_tail_page_commit(inode);
1b65007e 4597 }
53e87268
JK
4598 /*
4599 * Truncate pagecache after we've waited for commit
4600 * in data=journal mode to make pages freeable.
4601 */
4602 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4603 }
afcff5d8 4604 ext4_truncate(inode);
072bd7ea 4605 }
ac27a0ec 4606
1025774c
CH
4607 if (!rc) {
4608 setattr_copy(inode, attr);
4609 mark_inode_dirty(inode);
4610 }
4611
4612 /*
4613 * If the call to ext4_truncate failed to get a transaction handle at
4614 * all, we need to clean up the in-core orphan list manually.
4615 */
3d287de3 4616 if (orphan && inode->i_nlink)
617ba13b 4617 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4618
4619 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4620 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4621
4622err_out:
617ba13b 4623 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4624 if (!error)
4625 error = rc;
4626 return error;
4627}
4628
3e3398a0
MC
4629int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4630 struct kstat *stat)
4631{
4632 struct inode *inode;
8af8eecc 4633 unsigned long long delalloc_blocks;
3e3398a0
MC
4634
4635 inode = dentry->d_inode;
4636 generic_fillattr(inode, stat);
4637
4638 /*
4639 * We can't update i_blocks if the block allocation is delayed
4640 * otherwise in the case of system crash before the real block
4641 * allocation is done, we will have i_blocks inconsistent with
4642 * on-disk file blocks.
4643 * We always keep i_blocks updated together with real
4644 * allocation. But to not confuse with user, stat
4645 * will return the blocks that include the delayed allocation
4646 * blocks for this file.
4647 */
96607551
TM
4648 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4649 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0 4650
8af8eecc 4651 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
3e3398a0
MC
4652 return 0;
4653}
ac27a0ec 4654
fffb2739
JK
4655static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4656 int pextents)
a02908f1 4657{
12e9b892 4658 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4659 return ext4_ind_trans_blocks(inode, lblocks);
4660 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4661}
ac51d837 4662
ac27a0ec 4663/*
a02908f1
MC
4664 * Account for index blocks, block groups bitmaps and block group
4665 * descriptor blocks if modify datablocks and index blocks
4666 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4667 *
a02908f1 4668 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4669 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4670 * they could still across block group boundary.
ac27a0ec 4671 *
a02908f1
MC
4672 * Also account for superblock, inode, quota and xattr blocks
4673 */
fffb2739
JK
4674static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4675 int pextents)
a02908f1 4676{
8df9675f
TT
4677 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4678 int gdpblocks;
a02908f1
MC
4679 int idxblocks;
4680 int ret = 0;
4681
4682 /*
fffb2739
JK
4683 * How many index blocks need to touch to map @lblocks logical blocks
4684 * to @pextents physical extents?
a02908f1 4685 */
fffb2739 4686 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4687
4688 ret = idxblocks;
4689
4690 /*
4691 * Now let's see how many group bitmaps and group descriptors need
4692 * to account
4693 */
fffb2739 4694 groups = idxblocks + pextents;
a02908f1 4695 gdpblocks = groups;
8df9675f
TT
4696 if (groups > ngroups)
4697 groups = ngroups;
a02908f1
MC
4698 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4699 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4700
4701 /* bitmaps and block group descriptor blocks */
4702 ret += groups + gdpblocks;
4703
4704 /* Blocks for super block, inode, quota and xattr blocks */
4705 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4706
4707 return ret;
4708}
4709
4710/*
25985edc 4711 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4712 * the modification of a single pages into a single transaction,
4713 * which may include multiple chunks of block allocations.
ac27a0ec 4714 *
525f4ed8 4715 * This could be called via ext4_write_begin()
ac27a0ec 4716 *
525f4ed8 4717 * We need to consider the worse case, when
a02908f1 4718 * one new block per extent.
ac27a0ec 4719 */
a86c6181 4720int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4721{
617ba13b 4722 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4723 int ret;
4724
fffb2739 4725 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4726
a02908f1 4727 /* Account for data blocks for journalled mode */
617ba13b 4728 if (ext4_should_journal_data(inode))
a02908f1 4729 ret += bpp;
ac27a0ec
DK
4730 return ret;
4731}
f3bd1f3f
MC
4732
4733/*
4734 * Calculate the journal credits for a chunk of data modification.
4735 *
4736 * This is called from DIO, fallocate or whoever calling
79e83036 4737 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4738 *
4739 * journal buffers for data blocks are not included here, as DIO
4740 * and fallocate do no need to journal data buffers.
4741 */
4742int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4743{
4744 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4745}
4746
ac27a0ec 4747/*
617ba13b 4748 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4749 * Give this, we know that the caller already has write access to iloc->bh.
4750 */
617ba13b 4751int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4752 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4753{
4754 int err = 0;
4755
c64db50e 4756 if (IS_I_VERSION(inode))
25ec56b5
JNC
4757 inode_inc_iversion(inode);
4758
ac27a0ec
DK
4759 /* the do_update_inode consumes one bh->b_count */
4760 get_bh(iloc->bh);
4761
dab291af 4762 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4763 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4764 put_bh(iloc->bh);
4765 return err;
4766}
4767
4768/*
4769 * On success, We end up with an outstanding reference count against
4770 * iloc->bh. This _must_ be cleaned up later.
4771 */
4772
4773int
617ba13b
MC
4774ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4775 struct ext4_iloc *iloc)
ac27a0ec 4776{
0390131b
FM
4777 int err;
4778
4779 err = ext4_get_inode_loc(inode, iloc);
4780 if (!err) {
4781 BUFFER_TRACE(iloc->bh, "get_write_access");
4782 err = ext4_journal_get_write_access(handle, iloc->bh);
4783 if (err) {
4784 brelse(iloc->bh);
4785 iloc->bh = NULL;
ac27a0ec
DK
4786 }
4787 }
617ba13b 4788 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4789 return err;
4790}
4791
6dd4ee7c
KS
4792/*
4793 * Expand an inode by new_extra_isize bytes.
4794 * Returns 0 on success or negative error number on failure.
4795 */
1d03ec98
AK
4796static int ext4_expand_extra_isize(struct inode *inode,
4797 unsigned int new_extra_isize,
4798 struct ext4_iloc iloc,
4799 handle_t *handle)
6dd4ee7c
KS
4800{
4801 struct ext4_inode *raw_inode;
4802 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4803
4804 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4805 return 0;
4806
4807 raw_inode = ext4_raw_inode(&iloc);
4808
4809 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4810
4811 /* No extended attributes present */
19f5fb7a
TT
4812 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4813 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4814 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4815 new_extra_isize);
4816 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4817 return 0;
4818 }
4819
4820 /* try to expand with EAs present */
4821 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4822 raw_inode, handle);
4823}
4824
ac27a0ec
DK
4825/*
4826 * What we do here is to mark the in-core inode as clean with respect to inode
4827 * dirtiness (it may still be data-dirty).
4828 * This means that the in-core inode may be reaped by prune_icache
4829 * without having to perform any I/O. This is a very good thing,
4830 * because *any* task may call prune_icache - even ones which
4831 * have a transaction open against a different journal.
4832 *
4833 * Is this cheating? Not really. Sure, we haven't written the
4834 * inode out, but prune_icache isn't a user-visible syncing function.
4835 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4836 * we start and wait on commits.
ac27a0ec 4837 */
617ba13b 4838int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4839{
617ba13b 4840 struct ext4_iloc iloc;
6dd4ee7c
KS
4841 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4842 static unsigned int mnt_count;
4843 int err, ret;
ac27a0ec
DK
4844
4845 might_sleep();
7ff9c073 4846 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4847 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4848 if (ext4_handle_valid(handle) &&
4849 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4850 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4851 /*
4852 * We need extra buffer credits since we may write into EA block
4853 * with this same handle. If journal_extend fails, then it will
4854 * only result in a minor loss of functionality for that inode.
4855 * If this is felt to be critical, then e2fsck should be run to
4856 * force a large enough s_min_extra_isize.
4857 */
4858 if ((jbd2_journal_extend(handle,
4859 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4860 ret = ext4_expand_extra_isize(inode,
4861 sbi->s_want_extra_isize,
4862 iloc, handle);
4863 if (ret) {
19f5fb7a
TT
4864 ext4_set_inode_state(inode,
4865 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4866 if (mnt_count !=
4867 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4868 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4869 "Unable to expand inode %lu. Delete"
4870 " some EAs or run e2fsck.",
4871 inode->i_ino);
c1bddad9
AK
4872 mnt_count =
4873 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4874 }
4875 }
4876 }
4877 }
ac27a0ec 4878 if (!err)
617ba13b 4879 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4880 return err;
4881}
4882
4883/*
617ba13b 4884 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4885 *
4886 * We're really interested in the case where a file is being extended.
4887 * i_size has been changed by generic_commit_write() and we thus need
4888 * to include the updated inode in the current transaction.
4889 *
5dd4056d 4890 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4891 * are allocated to the file.
4892 *
4893 * If the inode is marked synchronous, we don't honour that here - doing
4894 * so would cause a commit on atime updates, which we don't bother doing.
4895 * We handle synchronous inodes at the highest possible level.
4896 */
aa385729 4897void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4898{
ac27a0ec
DK
4899 handle_t *handle;
4900
9924a92a 4901 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4902 if (IS_ERR(handle))
4903 goto out;
f3dc272f 4904
f3dc272f
CW
4905 ext4_mark_inode_dirty(handle, inode);
4906
617ba13b 4907 ext4_journal_stop(handle);
ac27a0ec
DK
4908out:
4909 return;
4910}
4911
4912#if 0
4913/*
4914 * Bind an inode's backing buffer_head into this transaction, to prevent
4915 * it from being flushed to disk early. Unlike
617ba13b 4916 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4917 * returns no iloc structure, so the caller needs to repeat the iloc
4918 * lookup to mark the inode dirty later.
4919 */
617ba13b 4920static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4921{
617ba13b 4922 struct ext4_iloc iloc;
ac27a0ec
DK
4923
4924 int err = 0;
4925 if (handle) {
617ba13b 4926 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4927 if (!err) {
4928 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4929 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4930 if (!err)
0390131b 4931 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4932 NULL,
0390131b 4933 iloc.bh);
ac27a0ec
DK
4934 brelse(iloc.bh);
4935 }
4936 }
617ba13b 4937 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4938 return err;
4939}
4940#endif
4941
617ba13b 4942int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4943{
4944 journal_t *journal;
4945 handle_t *handle;
4946 int err;
4947
4948 /*
4949 * We have to be very careful here: changing a data block's
4950 * journaling status dynamically is dangerous. If we write a
4951 * data block to the journal, change the status and then delete
4952 * that block, we risk forgetting to revoke the old log record
4953 * from the journal and so a subsequent replay can corrupt data.
4954 * So, first we make sure that the journal is empty and that
4955 * nobody is changing anything.
4956 */
4957
617ba13b 4958 journal = EXT4_JOURNAL(inode);
0390131b
FM
4959 if (!journal)
4960 return 0;
d699594d 4961 if (is_journal_aborted(journal))
ac27a0ec 4962 return -EROFS;
2aff57b0
YY
4963 /* We have to allocate physical blocks for delalloc blocks
4964 * before flushing journal. otherwise delalloc blocks can not
4965 * be allocated any more. even more truncate on delalloc blocks
4966 * could trigger BUG by flushing delalloc blocks in journal.
4967 * There is no delalloc block in non-journal data mode.
4968 */
4969 if (val && test_opt(inode->i_sb, DELALLOC)) {
4970 err = ext4_alloc_da_blocks(inode);
4971 if (err < 0)
4972 return err;
4973 }
ac27a0ec 4974
17335dcc
DM
4975 /* Wait for all existing dio workers */
4976 ext4_inode_block_unlocked_dio(inode);
4977 inode_dio_wait(inode);
4978
dab291af 4979 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4980
4981 /*
4982 * OK, there are no updates running now, and all cached data is
4983 * synced to disk. We are now in a completely consistent state
4984 * which doesn't have anything in the journal, and we know that
4985 * no filesystem updates are running, so it is safe to modify
4986 * the inode's in-core data-journaling state flag now.
4987 */
4988
4989 if (val)
12e9b892 4990 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4991 else {
4992 jbd2_journal_flush(journal);
12e9b892 4993 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4994 }
617ba13b 4995 ext4_set_aops(inode);
ac27a0ec 4996
dab291af 4997 jbd2_journal_unlock_updates(journal);
17335dcc 4998 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4999
5000 /* Finally we can mark the inode as dirty. */
5001
9924a92a 5002 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5003 if (IS_ERR(handle))
5004 return PTR_ERR(handle);
5005
617ba13b 5006 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5007 ext4_handle_sync(handle);
617ba13b
MC
5008 ext4_journal_stop(handle);
5009 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5010
5011 return err;
5012}
2e9ee850
AK
5013
5014static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5015{
5016 return !buffer_mapped(bh);
5017}
5018
c2ec175c 5019int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5020{
c2ec175c 5021 struct page *page = vmf->page;
2e9ee850
AK
5022 loff_t size;
5023 unsigned long len;
9ea7df53 5024 int ret;
2e9ee850 5025 struct file *file = vma->vm_file;
496ad9aa 5026 struct inode *inode = file_inode(file);
2e9ee850 5027 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5028 handle_t *handle;
5029 get_block_t *get_block;
5030 int retries = 0;
2e9ee850 5031
8e8ad8a5 5032 sb_start_pagefault(inode->i_sb);
041bbb6d 5033 file_update_time(vma->vm_file);
9ea7df53
JK
5034 /* Delalloc case is easy... */
5035 if (test_opt(inode->i_sb, DELALLOC) &&
5036 !ext4_should_journal_data(inode) &&
5037 !ext4_nonda_switch(inode->i_sb)) {
5038 do {
5039 ret = __block_page_mkwrite(vma, vmf,
5040 ext4_da_get_block_prep);
5041 } while (ret == -ENOSPC &&
5042 ext4_should_retry_alloc(inode->i_sb, &retries));
5043 goto out_ret;
2e9ee850 5044 }
0e499890
DW
5045
5046 lock_page(page);
9ea7df53
JK
5047 size = i_size_read(inode);
5048 /* Page got truncated from under us? */
5049 if (page->mapping != mapping || page_offset(page) > size) {
5050 unlock_page(page);
5051 ret = VM_FAULT_NOPAGE;
5052 goto out;
0e499890 5053 }
2e9ee850
AK
5054
5055 if (page->index == size >> PAGE_CACHE_SHIFT)
5056 len = size & ~PAGE_CACHE_MASK;
5057 else
5058 len = PAGE_CACHE_SIZE;
a827eaff 5059 /*
9ea7df53
JK
5060 * Return if we have all the buffers mapped. This avoids the need to do
5061 * journal_start/journal_stop which can block and take a long time
a827eaff 5062 */
2e9ee850 5063 if (page_has_buffers(page)) {
f19d5870
TM
5064 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5065 0, len, NULL,
5066 ext4_bh_unmapped)) {
9ea7df53 5067 /* Wait so that we don't change page under IO */
1d1d1a76 5068 wait_for_stable_page(page);
9ea7df53
JK
5069 ret = VM_FAULT_LOCKED;
5070 goto out;
a827eaff 5071 }
2e9ee850 5072 }
a827eaff 5073 unlock_page(page);
9ea7df53
JK
5074 /* OK, we need to fill the hole... */
5075 if (ext4_should_dioread_nolock(inode))
5076 get_block = ext4_get_block_write;
5077 else
5078 get_block = ext4_get_block;
5079retry_alloc:
9924a92a
TT
5080 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5081 ext4_writepage_trans_blocks(inode));
9ea7df53 5082 if (IS_ERR(handle)) {
c2ec175c 5083 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5084 goto out;
5085 }
5086 ret = __block_page_mkwrite(vma, vmf, get_block);
5087 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5088 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5089 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5090 unlock_page(page);
5091 ret = VM_FAULT_SIGBUS;
fcbb5515 5092 ext4_journal_stop(handle);
9ea7df53
JK
5093 goto out;
5094 }
5095 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5096 }
5097 ext4_journal_stop(handle);
5098 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5099 goto retry_alloc;
5100out_ret:
5101 ret = block_page_mkwrite_return(ret);
5102out:
8e8ad8a5 5103 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5104 return ret;
5105}
This page took 1.018323 seconds and 5 git commands to generate.