ext4: use i_mutex to serialize unaligned AIO DIO
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
171a7f21 58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
171a7f21 69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 84 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96}
97
98static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100{
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 105 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113}
114
678aaf48
JK
115static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117{
7ff9c073 118 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
678aaf48
JK
130}
131
d47992f8
LC
132static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
cb20d518
TT
134static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
136static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
64769240 138
ac27a0ec
DK
139/*
140 * Test whether an inode is a fast symlink.
141 */
f348c252 142int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 143{
65eddb56
YY
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 146
bd9db175
ZL
147 if (ext4_has_inline_data(inode))
148 return 0;
149
ac27a0ec
DK
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
91b0abe3 217 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
e2bfb088
TT
223 if (is_bad_inode(inode))
224 goto no_delete;
225 dquot_initialize(inode);
907f4554 226
678aaf48
JK
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 229 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 230
5dc23bdd 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec 232
8e8ad8a5
JK
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
9924a92a
TT
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 240 if (IS_ERR(handle)) {
bc965ab3 241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
617ba13b 247 ext4_orphan_del(NULL, inode);
8e8ad8a5 248 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
0390131b 253 ext4_handle_sync(handle);
ac27a0ec 254 inode->i_size = 0;
bc965ab3
TT
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
12062ddd 257 ext4_warning(inode->i_sb,
bc965ab3
TT
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
ac27a0ec 261 if (inode->i_blocks)
617ba13b 262 ext4_truncate(inode);
bc965ab3
TT
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
0390131b 270 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
12062ddd 275 ext4_warning(inode->i_sb,
bc965ab3
TT
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
45388219 279 ext4_orphan_del(NULL, inode);
8e8ad8a5 280 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
281 goto no_delete;
282 }
283 }
284
ac27a0ec 285 /*
617ba13b 286 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 287 * AKPM: I think this can be inside the above `if'.
617ba13b 288 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 289 * deletion of a non-existent orphan - this is because we don't
617ba13b 290 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
291 * (Well, we could do this if we need to, but heck - it works)
292 */
617ba13b
MC
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
617ba13b 303 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 304 /* If that failed, just do the required in-core inode clear. */
0930fcc1 305 ext4_clear_inode(inode);
ac27a0ec 306 else
617ba13b
MC
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
8e8ad8a5 309 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
310 return;
311no_delete:
0930fcc1 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
313}
314
a9e7f447
DM
315#ifdef CONFIG_QUOTA
316qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 317{
a9e7f447 318 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 319}
a9e7f447 320#endif
9d0be502 321
0637c6f4
TT
322/*
323 * Called with i_data_sem down, which is important since we can call
324 * ext4_discard_preallocations() from here.
325 */
5f634d06
AK
326void ext4_da_update_reserve_space(struct inode *inode,
327 int used, int quota_claim)
12219aea
AK
328{
329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 330 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
331
332 spin_lock(&ei->i_block_reservation_lock);
d8990240 333 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 334 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 336 "with only %d reserved data blocks",
0637c6f4
TT
337 __func__, inode->i_ino, used,
338 ei->i_reserved_data_blocks);
339 WARN_ON(1);
340 used = ei->i_reserved_data_blocks;
341 }
12219aea 342
0637c6f4
TT
343 /* Update per-inode reservations */
344 ei->i_reserved_data_blocks -= used;
71d4f7d0 345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 346
12219aea 347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 348
72b8ab9d
ES
349 /* Update quota subsystem for data blocks */
350 if (quota_claim)
7b415bf6 351 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 352 else {
5f634d06
AK
353 /*
354 * We did fallocate with an offset that is already delayed
355 * allocated. So on delayed allocated writeback we should
72b8ab9d 356 * not re-claim the quota for fallocated blocks.
5f634d06 357 */
7b415bf6 358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 359 }
d6014301
AK
360
361 /*
362 * If we have done all the pending block allocations and if
363 * there aren't any writers on the inode, we can discard the
364 * inode's preallocations.
365 */
0637c6f4
TT
366 if ((ei->i_reserved_data_blocks == 0) &&
367 (atomic_read(&inode->i_writecount) == 0))
d6014301 368 ext4_discard_preallocations(inode);
12219aea
AK
369}
370
e29136f8 371static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
372 unsigned int line,
373 struct ext4_map_blocks *map)
6fd058f7 374{
24676da4
TT
375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 map->m_len)) {
c398eda0
TT
377 ext4_error_inode(inode, func, line, map->m_pblk,
378 "lblock %lu mapped to illegal pblock "
379 "(length %d)", (unsigned long) map->m_lblk,
380 map->m_len);
6a797d27 381 return -EFSCORRUPTED;
6fd058f7
TT
382 }
383 return 0;
384}
385
53085fac
JK
386int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
387 ext4_lblk_t len)
388{
389 int ret;
390
391 if (ext4_encrypted_inode(inode))
392 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
393
394 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
395 if (ret > 0)
396 ret = 0;
397
398 return ret;
399}
400
e29136f8 401#define check_block_validity(inode, map) \
c398eda0 402 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 403
921f266b
DM
404#ifdef ES_AGGRESSIVE_TEST
405static void ext4_map_blocks_es_recheck(handle_t *handle,
406 struct inode *inode,
407 struct ext4_map_blocks *es_map,
408 struct ext4_map_blocks *map,
409 int flags)
410{
411 int retval;
412
413 map->m_flags = 0;
414 /*
415 * There is a race window that the result is not the same.
416 * e.g. xfstests #223 when dioread_nolock enables. The reason
417 * is that we lookup a block mapping in extent status tree with
418 * out taking i_data_sem. So at the time the unwritten extent
419 * could be converted.
420 */
2dcba478 421 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
422 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
423 retval = ext4_ext_map_blocks(handle, inode, map, flags &
424 EXT4_GET_BLOCKS_KEEP_SIZE);
425 } else {
426 retval = ext4_ind_map_blocks(handle, inode, map, flags &
427 EXT4_GET_BLOCKS_KEEP_SIZE);
428 }
2dcba478 429 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
430
431 /*
432 * We don't check m_len because extent will be collpased in status
433 * tree. So the m_len might not equal.
434 */
435 if (es_map->m_lblk != map->m_lblk ||
436 es_map->m_flags != map->m_flags ||
437 es_map->m_pblk != map->m_pblk) {
bdafe42a 438 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
439 "es_cached ex [%d/%d/%llu/%x] != "
440 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
441 inode->i_ino, es_map->m_lblk, es_map->m_len,
442 es_map->m_pblk, es_map->m_flags, map->m_lblk,
443 map->m_len, map->m_pblk, map->m_flags,
444 retval, flags);
445 }
446}
447#endif /* ES_AGGRESSIVE_TEST */
448
f5ab0d1f 449/*
e35fd660 450 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 451 * and returns if the blocks are already mapped.
f5ab0d1f 452 *
f5ab0d1f
MC
453 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
454 * and store the allocated blocks in the result buffer head and mark it
455 * mapped.
456 *
e35fd660
TT
457 * If file type is extents based, it will call ext4_ext_map_blocks(),
458 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
459 * based files
460 *
556615dc
LC
461 * On success, it returns the number of blocks being mapped or allocated.
462 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
463 * the result buffer head is unmapped. If the create ==1, it will make sure
464 * the buffer head is mapped.
465 *
466 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 467 * that case, buffer head is unmapped
f5ab0d1f
MC
468 *
469 * It returns the error in case of allocation failure.
470 */
e35fd660
TT
471int ext4_map_blocks(handle_t *handle, struct inode *inode,
472 struct ext4_map_blocks *map, int flags)
0e855ac8 473{
d100eef2 474 struct extent_status es;
0e855ac8 475 int retval;
b8a86845 476 int ret = 0;
921f266b
DM
477#ifdef ES_AGGRESSIVE_TEST
478 struct ext4_map_blocks orig_map;
479
480 memcpy(&orig_map, map, sizeof(*map));
481#endif
f5ab0d1f 482
e35fd660
TT
483 map->m_flags = 0;
484 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
485 "logical block %lu\n", inode->i_ino, flags, map->m_len,
486 (unsigned long) map->m_lblk);
d100eef2 487
e861b5e9
TT
488 /*
489 * ext4_map_blocks returns an int, and m_len is an unsigned int
490 */
491 if (unlikely(map->m_len > INT_MAX))
492 map->m_len = INT_MAX;
493
4adb6ab3
KM
494 /* We can handle the block number less than EXT_MAX_BLOCKS */
495 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 496 return -EFSCORRUPTED;
4adb6ab3 497
d100eef2
ZL
498 /* Lookup extent status tree firstly */
499 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
500 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
501 map->m_pblk = ext4_es_pblock(&es) +
502 map->m_lblk - es.es_lblk;
503 map->m_flags |= ext4_es_is_written(&es) ?
504 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
505 retval = es.es_len - (map->m_lblk - es.es_lblk);
506 if (retval > map->m_len)
507 retval = map->m_len;
508 map->m_len = retval;
509 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
510 retval = 0;
511 } else {
512 BUG_ON(1);
513 }
921f266b
DM
514#ifdef ES_AGGRESSIVE_TEST
515 ext4_map_blocks_es_recheck(handle, inode, map,
516 &orig_map, flags);
517#endif
d100eef2
ZL
518 goto found;
519 }
520
4df3d265 521 /*
b920c755
TT
522 * Try to see if we can get the block without requesting a new
523 * file system block.
4df3d265 524 */
2dcba478 525 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 526 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
527 retval = ext4_ext_map_blocks(handle, inode, map, flags &
528 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 529 } else {
a4e5d88b
DM
530 retval = ext4_ind_map_blocks(handle, inode, map, flags &
531 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 532 }
f7fec032 533 if (retval > 0) {
3be78c73 534 unsigned int status;
f7fec032 535
44fb851d
ZL
536 if (unlikely(retval != map->m_len)) {
537 ext4_warning(inode->i_sb,
538 "ES len assertion failed for inode "
539 "%lu: retval %d != map->m_len %d",
540 inode->i_ino, retval, map->m_len);
541 WARN_ON(1);
921f266b 542 }
921f266b 543
f7fec032
ZL
544 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
545 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
546 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 547 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
548 ext4_find_delalloc_range(inode, map->m_lblk,
549 map->m_lblk + map->m_len - 1))
550 status |= EXTENT_STATUS_DELAYED;
551 ret = ext4_es_insert_extent(inode, map->m_lblk,
552 map->m_len, map->m_pblk, status);
553 if (ret < 0)
554 retval = ret;
555 }
2dcba478 556 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 557
d100eef2 558found:
e35fd660 559 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 560 ret = check_block_validity(inode, map);
6fd058f7
TT
561 if (ret != 0)
562 return ret;
563 }
564
f5ab0d1f 565 /* If it is only a block(s) look up */
c2177057 566 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
567 return retval;
568
569 /*
570 * Returns if the blocks have already allocated
571 *
572 * Note that if blocks have been preallocated
df3ab170 573 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
574 * with buffer head unmapped.
575 */
e35fd660 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
577 /*
578 * If we need to convert extent to unwritten
579 * we continue and do the actual work in
580 * ext4_ext_map_blocks()
581 */
582 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
583 return retval;
4df3d265 584
2a8964d6 585 /*
a25a4e1a
ZL
586 * Here we clear m_flags because after allocating an new extent,
587 * it will be set again.
2a8964d6 588 */
a25a4e1a 589 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 590
4df3d265 591 /*
556615dc 592 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 593 * will possibly result in updating i_data, so we take
d91bd2c1 594 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 595 * with create == 1 flag.
4df3d265 596 */
c8b459f4 597 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 598
4df3d265
AK
599 /*
600 * We need to check for EXT4 here because migrate
601 * could have changed the inode type in between
602 */
12e9b892 603 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 604 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 605 } else {
e35fd660 606 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 607
e35fd660 608 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
609 /*
610 * We allocated new blocks which will result in
611 * i_data's format changing. Force the migrate
612 * to fail by clearing migrate flags
613 */
19f5fb7a 614 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 615 }
d2a17637 616
5f634d06
AK
617 /*
618 * Update reserved blocks/metadata blocks after successful
619 * block allocation which had been deferred till now. We don't
620 * support fallocate for non extent files. So we can update
621 * reserve space here.
622 */
623 if ((retval > 0) &&
1296cc85 624 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
625 ext4_da_update_reserve_space(inode, retval, 1);
626 }
2ac3b6e0 627
f7fec032 628 if (retval > 0) {
3be78c73 629 unsigned int status;
f7fec032 630
44fb851d
ZL
631 if (unlikely(retval != map->m_len)) {
632 ext4_warning(inode->i_sb,
633 "ES len assertion failed for inode "
634 "%lu: retval %d != map->m_len %d",
635 inode->i_ino, retval, map->m_len);
636 WARN_ON(1);
921f266b 637 }
921f266b 638
c86d8db3
JK
639 /*
640 * We have to zeroout blocks before inserting them into extent
641 * status tree. Otherwise someone could look them up there and
642 * use them before they are really zeroed.
643 */
644 if (flags & EXT4_GET_BLOCKS_ZERO &&
645 map->m_flags & EXT4_MAP_MAPPED &&
646 map->m_flags & EXT4_MAP_NEW) {
647 ret = ext4_issue_zeroout(inode, map->m_lblk,
648 map->m_pblk, map->m_len);
649 if (ret) {
650 retval = ret;
651 goto out_sem;
652 }
653 }
654
adb23551
ZL
655 /*
656 * If the extent has been zeroed out, we don't need to update
657 * extent status tree.
658 */
659 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
660 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
661 if (ext4_es_is_written(&es))
c86d8db3 662 goto out_sem;
adb23551 663 }
f7fec032
ZL
664 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
665 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
666 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 667 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
668 ext4_find_delalloc_range(inode, map->m_lblk,
669 map->m_lblk + map->m_len - 1))
670 status |= EXTENT_STATUS_DELAYED;
671 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
672 map->m_pblk, status);
c86d8db3 673 if (ret < 0) {
f7fec032 674 retval = ret;
c86d8db3
JK
675 goto out_sem;
676 }
5356f261
AK
677 }
678
c86d8db3 679out_sem:
4df3d265 680 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 681 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 682 ret = check_block_validity(inode, map);
6fd058f7
TT
683 if (ret != 0)
684 return ret;
685 }
0e855ac8
AK
686 return retval;
687}
688
ed8ad838
JK
689/*
690 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
691 * we have to be careful as someone else may be manipulating b_state as well.
692 */
693static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
694{
695 unsigned long old_state;
696 unsigned long new_state;
697
698 flags &= EXT4_MAP_FLAGS;
699
700 /* Dummy buffer_head? Set non-atomically. */
701 if (!bh->b_page) {
702 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
703 return;
704 }
705 /*
706 * Someone else may be modifying b_state. Be careful! This is ugly but
707 * once we get rid of using bh as a container for mapping information
708 * to pass to / from get_block functions, this can go away.
709 */
710 do {
711 old_state = READ_ONCE(bh->b_state);
712 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
713 } while (unlikely(
714 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
715}
716
f3bd1f3f
MC
717/* Maximum number of blocks we map for direct IO at once. */
718#define DIO_MAX_BLOCKS 4096
719
2ed88685
TT
720static int _ext4_get_block(struct inode *inode, sector_t iblock,
721 struct buffer_head *bh, int flags)
ac27a0ec 722{
3e4fdaf8 723 handle_t *handle = ext4_journal_current_handle();
2ed88685 724 struct ext4_map_blocks map;
7fb5409d 725 int ret = 0, started = 0;
f3bd1f3f 726 int dio_credits;
ac27a0ec 727
46c7f254
TM
728 if (ext4_has_inline_data(inode))
729 return -ERANGE;
730
2ed88685
TT
731 map.m_lblk = iblock;
732 map.m_len = bh->b_size >> inode->i_blkbits;
733
2dcba478 734 if (flags && !handle) {
7fb5409d 735 /* Direct IO write... */
2ed88685
TT
736 if (map.m_len > DIO_MAX_BLOCKS)
737 map.m_len = DIO_MAX_BLOCKS;
738 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
739 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
740 dio_credits);
7fb5409d 741 if (IS_ERR(handle)) {
ac27a0ec 742 ret = PTR_ERR(handle);
2ed88685 743 return ret;
ac27a0ec 744 }
7fb5409d 745 started = 1;
ac27a0ec
DK
746 }
747
2ed88685 748 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 749 if (ret > 0) {
7b7a8665
CH
750 ext4_io_end_t *io_end = ext4_inode_aio(inode);
751
2ed88685 752 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 753 ext4_update_bh_state(bh, map.m_flags);
7b7a8665
CH
754 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
755 set_buffer_defer_completion(bh);
2ed88685 756 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 757 ret = 0;
ac27a0ec 758 }
7fb5409d
JK
759 if (started)
760 ext4_journal_stop(handle);
ac27a0ec
DK
761 return ret;
762}
763
2ed88685
TT
764int ext4_get_block(struct inode *inode, sector_t iblock,
765 struct buffer_head *bh, int create)
766{
767 return _ext4_get_block(inode, iblock, bh,
768 create ? EXT4_GET_BLOCKS_CREATE : 0);
769}
770
ac27a0ec
DK
771/*
772 * `handle' can be NULL if create is zero
773 */
617ba13b 774struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 775 ext4_lblk_t block, int map_flags)
ac27a0ec 776{
2ed88685
TT
777 struct ext4_map_blocks map;
778 struct buffer_head *bh;
c5e298ae 779 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 780 int err;
ac27a0ec
DK
781
782 J_ASSERT(handle != NULL || create == 0);
783
2ed88685
TT
784 map.m_lblk = block;
785 map.m_len = 1;
c5e298ae 786 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 787
10560082
TT
788 if (err == 0)
789 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 790 if (err < 0)
10560082 791 return ERR_PTR(err);
2ed88685
TT
792
793 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
794 if (unlikely(!bh))
795 return ERR_PTR(-ENOMEM);
2ed88685
TT
796 if (map.m_flags & EXT4_MAP_NEW) {
797 J_ASSERT(create != 0);
798 J_ASSERT(handle != NULL);
ac27a0ec 799
2ed88685
TT
800 /*
801 * Now that we do not always journal data, we should
802 * keep in mind whether this should always journal the
803 * new buffer as metadata. For now, regular file
804 * writes use ext4_get_block instead, so it's not a
805 * problem.
806 */
807 lock_buffer(bh);
808 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
809 err = ext4_journal_get_create_access(handle, bh);
810 if (unlikely(err)) {
811 unlock_buffer(bh);
812 goto errout;
813 }
814 if (!buffer_uptodate(bh)) {
2ed88685
TT
815 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
816 set_buffer_uptodate(bh);
ac27a0ec 817 }
2ed88685
TT
818 unlock_buffer(bh);
819 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
820 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
821 if (unlikely(err))
822 goto errout;
823 } else
2ed88685 824 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 825 return bh;
10560082
TT
826errout:
827 brelse(bh);
828 return ERR_PTR(err);
ac27a0ec
DK
829}
830
617ba13b 831struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 832 ext4_lblk_t block, int map_flags)
ac27a0ec 833{
af5bc92d 834 struct buffer_head *bh;
ac27a0ec 835
c5e298ae 836 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 837 if (IS_ERR(bh))
ac27a0ec 838 return bh;
1c215028 839 if (!bh || buffer_uptodate(bh))
ac27a0ec 840 return bh;
65299a3b 841 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
842 wait_on_buffer(bh);
843 if (buffer_uptodate(bh))
844 return bh;
845 put_bh(bh);
1c215028 846 return ERR_PTR(-EIO);
ac27a0ec
DK
847}
848
f19d5870
TM
849int ext4_walk_page_buffers(handle_t *handle,
850 struct buffer_head *head,
851 unsigned from,
852 unsigned to,
853 int *partial,
854 int (*fn)(handle_t *handle,
855 struct buffer_head *bh))
ac27a0ec
DK
856{
857 struct buffer_head *bh;
858 unsigned block_start, block_end;
859 unsigned blocksize = head->b_size;
860 int err, ret = 0;
861 struct buffer_head *next;
862
af5bc92d
TT
863 for (bh = head, block_start = 0;
864 ret == 0 && (bh != head || !block_start);
de9a55b8 865 block_start = block_end, bh = next) {
ac27a0ec
DK
866 next = bh->b_this_page;
867 block_end = block_start + blocksize;
868 if (block_end <= from || block_start >= to) {
869 if (partial && !buffer_uptodate(bh))
870 *partial = 1;
871 continue;
872 }
873 err = (*fn)(handle, bh);
874 if (!ret)
875 ret = err;
876 }
877 return ret;
878}
879
880/*
881 * To preserve ordering, it is essential that the hole instantiation and
882 * the data write be encapsulated in a single transaction. We cannot
617ba13b 883 * close off a transaction and start a new one between the ext4_get_block()
dab291af 884 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
885 * prepare_write() is the right place.
886 *
36ade451
JK
887 * Also, this function can nest inside ext4_writepage(). In that case, we
888 * *know* that ext4_writepage() has generated enough buffer credits to do the
889 * whole page. So we won't block on the journal in that case, which is good,
890 * because the caller may be PF_MEMALLOC.
ac27a0ec 891 *
617ba13b 892 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
893 * quota file writes. If we were to commit the transaction while thus
894 * reentered, there can be a deadlock - we would be holding a quota
895 * lock, and the commit would never complete if another thread had a
896 * transaction open and was blocking on the quota lock - a ranking
897 * violation.
898 *
dab291af 899 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
900 * will _not_ run commit under these circumstances because handle->h_ref
901 * is elevated. We'll still have enough credits for the tiny quotafile
902 * write.
903 */
f19d5870
TM
904int do_journal_get_write_access(handle_t *handle,
905 struct buffer_head *bh)
ac27a0ec 906{
56d35a4c
JK
907 int dirty = buffer_dirty(bh);
908 int ret;
909
ac27a0ec
DK
910 if (!buffer_mapped(bh) || buffer_freed(bh))
911 return 0;
56d35a4c 912 /*
ebdec241 913 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
914 * the dirty bit as jbd2_journal_get_write_access() could complain
915 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 916 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
917 * the bit before releasing a page lock and thus writeback cannot
918 * ever write the buffer.
919 */
920 if (dirty)
921 clear_buffer_dirty(bh);
5d601255 922 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
923 ret = ext4_journal_get_write_access(handle, bh);
924 if (!ret && dirty)
925 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
926 return ret;
ac27a0ec
DK
927}
928
2058f83a
MH
929#ifdef CONFIG_EXT4_FS_ENCRYPTION
930static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
931 get_block_t *get_block)
932{
933 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
934 unsigned to = from + len;
935 struct inode *inode = page->mapping->host;
936 unsigned block_start, block_end;
937 sector_t block;
938 int err = 0;
939 unsigned blocksize = inode->i_sb->s_blocksize;
940 unsigned bbits;
941 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
942 bool decrypt = false;
943
944 BUG_ON(!PageLocked(page));
945 BUG_ON(from > PAGE_CACHE_SIZE);
946 BUG_ON(to > PAGE_CACHE_SIZE);
947 BUG_ON(from > to);
948
949 if (!page_has_buffers(page))
950 create_empty_buffers(page, blocksize, 0);
951 head = page_buffers(page);
952 bbits = ilog2(blocksize);
953 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
954
955 for (bh = head, block_start = 0; bh != head || !block_start;
956 block++, block_start = block_end, bh = bh->b_this_page) {
957 block_end = block_start + blocksize;
958 if (block_end <= from || block_start >= to) {
959 if (PageUptodate(page)) {
960 if (!buffer_uptodate(bh))
961 set_buffer_uptodate(bh);
962 }
963 continue;
964 }
965 if (buffer_new(bh))
966 clear_buffer_new(bh);
967 if (!buffer_mapped(bh)) {
968 WARN_ON(bh->b_size != blocksize);
969 err = get_block(inode, block, bh, 1);
970 if (err)
971 break;
972 if (buffer_new(bh)) {
973 unmap_underlying_metadata(bh->b_bdev,
974 bh->b_blocknr);
975 if (PageUptodate(page)) {
976 clear_buffer_new(bh);
977 set_buffer_uptodate(bh);
978 mark_buffer_dirty(bh);
979 continue;
980 }
981 if (block_end > to || block_start < from)
982 zero_user_segments(page, to, block_end,
983 block_start, from);
984 continue;
985 }
986 }
987 if (PageUptodate(page)) {
988 if (!buffer_uptodate(bh))
989 set_buffer_uptodate(bh);
990 continue;
991 }
992 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
993 !buffer_unwritten(bh) &&
994 (block_start < from || block_end > to)) {
995 ll_rw_block(READ, 1, &bh);
996 *wait_bh++ = bh;
997 decrypt = ext4_encrypted_inode(inode) &&
998 S_ISREG(inode->i_mode);
999 }
1000 }
1001 /*
1002 * If we issued read requests, let them complete.
1003 */
1004 while (wait_bh > wait) {
1005 wait_on_buffer(*--wait_bh);
1006 if (!buffer_uptodate(*wait_bh))
1007 err = -EIO;
1008 }
1009 if (unlikely(err))
1010 page_zero_new_buffers(page, from, to);
1011 else if (decrypt)
3684de8c 1012 err = ext4_decrypt(page);
2058f83a
MH
1013 return err;
1014}
1015#endif
1016
bfc1af65 1017static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1018 loff_t pos, unsigned len, unsigned flags,
1019 struct page **pagep, void **fsdata)
ac27a0ec 1020{
af5bc92d 1021 struct inode *inode = mapping->host;
1938a150 1022 int ret, needed_blocks;
ac27a0ec
DK
1023 handle_t *handle;
1024 int retries = 0;
af5bc92d 1025 struct page *page;
de9a55b8 1026 pgoff_t index;
af5bc92d 1027 unsigned from, to;
bfc1af65 1028
9bffad1e 1029 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1030 /*
1031 * Reserve one block more for addition to orphan list in case
1032 * we allocate blocks but write fails for some reason
1033 */
1034 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1035 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1036 from = pos & (PAGE_CACHE_SIZE - 1);
1037 to = from + len;
ac27a0ec 1038
f19d5870
TM
1039 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1040 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1041 flags, pagep);
1042 if (ret < 0)
47564bfb
TT
1043 return ret;
1044 if (ret == 1)
1045 return 0;
f19d5870
TM
1046 }
1047
47564bfb
TT
1048 /*
1049 * grab_cache_page_write_begin() can take a long time if the
1050 * system is thrashing due to memory pressure, or if the page
1051 * is being written back. So grab it first before we start
1052 * the transaction handle. This also allows us to allocate
1053 * the page (if needed) without using GFP_NOFS.
1054 */
1055retry_grab:
1056 page = grab_cache_page_write_begin(mapping, index, flags);
1057 if (!page)
1058 return -ENOMEM;
1059 unlock_page(page);
1060
1061retry_journal:
9924a92a 1062 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1063 if (IS_ERR(handle)) {
47564bfb
TT
1064 page_cache_release(page);
1065 return PTR_ERR(handle);
7479d2b9 1066 }
ac27a0ec 1067
47564bfb
TT
1068 lock_page(page);
1069 if (page->mapping != mapping) {
1070 /* The page got truncated from under us */
1071 unlock_page(page);
1072 page_cache_release(page);
cf108bca 1073 ext4_journal_stop(handle);
47564bfb 1074 goto retry_grab;
cf108bca 1075 }
7afe5aa5
DM
1076 /* In case writeback began while the page was unlocked */
1077 wait_for_stable_page(page);
cf108bca 1078
2058f83a
MH
1079#ifdef CONFIG_EXT4_FS_ENCRYPTION
1080 if (ext4_should_dioread_nolock(inode))
1081 ret = ext4_block_write_begin(page, pos, len,
1082 ext4_get_block_write);
1083 else
1084 ret = ext4_block_write_begin(page, pos, len,
1085 ext4_get_block);
1086#else
744692dc 1087 if (ext4_should_dioread_nolock(inode))
6e1db88d 1088 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1089 else
6e1db88d 1090 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1091#endif
bfc1af65 1092 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1093 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1094 from, to, NULL,
1095 do_journal_get_write_access);
ac27a0ec 1096 }
bfc1af65
NP
1097
1098 if (ret) {
af5bc92d 1099 unlock_page(page);
ae4d5372 1100 /*
6e1db88d 1101 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1102 * outside i_size. Trim these off again. Don't need
1103 * i_size_read because we hold i_mutex.
1938a150
AK
1104 *
1105 * Add inode to orphan list in case we crash before
1106 * truncate finishes
ae4d5372 1107 */
ffacfa7a 1108 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1109 ext4_orphan_add(handle, inode);
1110
1111 ext4_journal_stop(handle);
1112 if (pos + len > inode->i_size) {
b9a4207d 1113 ext4_truncate_failed_write(inode);
de9a55b8 1114 /*
ffacfa7a 1115 * If truncate failed early the inode might
1938a150
AK
1116 * still be on the orphan list; we need to
1117 * make sure the inode is removed from the
1118 * orphan list in that case.
1119 */
1120 if (inode->i_nlink)
1121 ext4_orphan_del(NULL, inode);
1122 }
bfc1af65 1123
47564bfb
TT
1124 if (ret == -ENOSPC &&
1125 ext4_should_retry_alloc(inode->i_sb, &retries))
1126 goto retry_journal;
1127 page_cache_release(page);
1128 return ret;
1129 }
1130 *pagep = page;
ac27a0ec
DK
1131 return ret;
1132}
1133
bfc1af65
NP
1134/* For write_end() in data=journal mode */
1135static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1136{
13fca323 1137 int ret;
ac27a0ec
DK
1138 if (!buffer_mapped(bh) || buffer_freed(bh))
1139 return 0;
1140 set_buffer_uptodate(bh);
13fca323
TT
1141 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1142 clear_buffer_meta(bh);
1143 clear_buffer_prio(bh);
1144 return ret;
ac27a0ec
DK
1145}
1146
eed4333f
ZL
1147/*
1148 * We need to pick up the new inode size which generic_commit_write gave us
1149 * `file' can be NULL - eg, when called from page_symlink().
1150 *
1151 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1152 * buffers are managed internally.
1153 */
1154static int ext4_write_end(struct file *file,
1155 struct address_space *mapping,
1156 loff_t pos, unsigned len, unsigned copied,
1157 struct page *page, void *fsdata)
f8514083 1158{
f8514083 1159 handle_t *handle = ext4_journal_current_handle();
eed4333f 1160 struct inode *inode = mapping->host;
0572639f 1161 loff_t old_size = inode->i_size;
eed4333f
ZL
1162 int ret = 0, ret2;
1163 int i_size_changed = 0;
1164
1165 trace_ext4_write_end(inode, pos, len, copied);
1166 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1167 ret = ext4_jbd2_file_inode(handle, inode);
1168 if (ret) {
1169 unlock_page(page);
1170 page_cache_release(page);
1171 goto errout;
1172 }
1173 }
f8514083 1174
42c832de
TT
1175 if (ext4_has_inline_data(inode)) {
1176 ret = ext4_write_inline_data_end(inode, pos, len,
1177 copied, page);
1178 if (ret < 0)
1179 goto errout;
1180 copied = ret;
1181 } else
f19d5870
TM
1182 copied = block_write_end(file, mapping, pos,
1183 len, copied, page, fsdata);
f8514083 1184 /*
4631dbf6 1185 * it's important to update i_size while still holding page lock:
f8514083
AK
1186 * page writeout could otherwise come in and zero beyond i_size.
1187 */
4631dbf6 1188 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1189 unlock_page(page);
1190 page_cache_release(page);
1191
0572639f
XW
1192 if (old_size < pos)
1193 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1194 /*
1195 * Don't mark the inode dirty under page lock. First, it unnecessarily
1196 * makes the holding time of page lock longer. Second, it forces lock
1197 * ordering of page lock and transaction start for journaling
1198 * filesystems.
1199 */
1200 if (i_size_changed)
1201 ext4_mark_inode_dirty(handle, inode);
1202
ffacfa7a 1203 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1204 /* if we have allocated more blocks and copied
1205 * less. We will have blocks allocated outside
1206 * inode->i_size. So truncate them
1207 */
1208 ext4_orphan_add(handle, inode);
74d553aa 1209errout:
617ba13b 1210 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1211 if (!ret)
1212 ret = ret2;
bfc1af65 1213
f8514083 1214 if (pos + len > inode->i_size) {
b9a4207d 1215 ext4_truncate_failed_write(inode);
de9a55b8 1216 /*
ffacfa7a 1217 * If truncate failed early the inode might still be
f8514083
AK
1218 * on the orphan list; we need to make sure the inode
1219 * is removed from the orphan list in that case.
1220 */
1221 if (inode->i_nlink)
1222 ext4_orphan_del(NULL, inode);
1223 }
1224
bfc1af65 1225 return ret ? ret : copied;
ac27a0ec
DK
1226}
1227
b90197b6
TT
1228/*
1229 * This is a private version of page_zero_new_buffers() which doesn't
1230 * set the buffer to be dirty, since in data=journalled mode we need
1231 * to call ext4_handle_dirty_metadata() instead.
1232 */
1233static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1234{
1235 unsigned int block_start = 0, block_end;
1236 struct buffer_head *head, *bh;
1237
1238 bh = head = page_buffers(page);
1239 do {
1240 block_end = block_start + bh->b_size;
1241 if (buffer_new(bh)) {
1242 if (block_end > from && block_start < to) {
1243 if (!PageUptodate(page)) {
1244 unsigned start, size;
1245
1246 start = max(from, block_start);
1247 size = min(to, block_end) - start;
1248
1249 zero_user(page, start, size);
1250 set_buffer_uptodate(bh);
1251 }
1252 clear_buffer_new(bh);
1253 }
1254 }
1255 block_start = block_end;
1256 bh = bh->b_this_page;
1257 } while (bh != head);
1258}
1259
bfc1af65 1260static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1261 struct address_space *mapping,
1262 loff_t pos, unsigned len, unsigned copied,
1263 struct page *page, void *fsdata)
ac27a0ec 1264{
617ba13b 1265 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1266 struct inode *inode = mapping->host;
0572639f 1267 loff_t old_size = inode->i_size;
ac27a0ec
DK
1268 int ret = 0, ret2;
1269 int partial = 0;
bfc1af65 1270 unsigned from, to;
4631dbf6 1271 int size_changed = 0;
ac27a0ec 1272
9bffad1e 1273 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1274 from = pos & (PAGE_CACHE_SIZE - 1);
1275 to = from + len;
1276
441c8508
CW
1277 BUG_ON(!ext4_handle_valid(handle));
1278
3fdcfb66
TM
1279 if (ext4_has_inline_data(inode))
1280 copied = ext4_write_inline_data_end(inode, pos, len,
1281 copied, page);
1282 else {
1283 if (copied < len) {
1284 if (!PageUptodate(page))
1285 copied = 0;
b90197b6 1286 zero_new_buffers(page, from+copied, to);
3fdcfb66 1287 }
ac27a0ec 1288
3fdcfb66
TM
1289 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1290 to, &partial, write_end_fn);
1291 if (!partial)
1292 SetPageUptodate(page);
1293 }
4631dbf6 1294 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1295 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1296 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1297 unlock_page(page);
1298 page_cache_release(page);
1299
0572639f
XW
1300 if (old_size < pos)
1301 pagecache_isize_extended(inode, old_size, pos);
1302
4631dbf6 1303 if (size_changed) {
617ba13b 1304 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1305 if (!ret)
1306 ret = ret2;
1307 }
bfc1af65 1308
ffacfa7a 1309 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1310 /* if we have allocated more blocks and copied
1311 * less. We will have blocks allocated outside
1312 * inode->i_size. So truncate them
1313 */
1314 ext4_orphan_add(handle, inode);
1315
617ba13b 1316 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1317 if (!ret)
1318 ret = ret2;
f8514083 1319 if (pos + len > inode->i_size) {
b9a4207d 1320 ext4_truncate_failed_write(inode);
de9a55b8 1321 /*
ffacfa7a 1322 * If truncate failed early the inode might still be
f8514083
AK
1323 * on the orphan list; we need to make sure the inode
1324 * is removed from the orphan list in that case.
1325 */
1326 if (inode->i_nlink)
1327 ext4_orphan_del(NULL, inode);
1328 }
bfc1af65
NP
1329
1330 return ret ? ret : copied;
ac27a0ec 1331}
d2a17637 1332
9d0be502 1333/*
c27e43a1 1334 * Reserve space for a single cluster
9d0be502 1335 */
c27e43a1 1336static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1337{
60e58e0f 1338 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1339 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1340 int ret;
03179fe9
TT
1341
1342 /*
1343 * We will charge metadata quota at writeout time; this saves
1344 * us from metadata over-estimation, though we may go over by
1345 * a small amount in the end. Here we just reserve for data.
1346 */
1347 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1348 if (ret)
1349 return ret;
d2a17637 1350
0637c6f4 1351 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1352 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1353 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1354 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1355 return -ENOSPC;
1356 }
9d0be502 1357 ei->i_reserved_data_blocks++;
c27e43a1 1358 trace_ext4_da_reserve_space(inode);
0637c6f4 1359 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1360
d2a17637
MC
1361 return 0; /* success */
1362}
1363
12219aea 1364static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1365{
1366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1367 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1368
cd213226
MC
1369 if (!to_free)
1370 return; /* Nothing to release, exit */
1371
d2a17637 1372 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1373
5a58ec87 1374 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1375 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1376 /*
0637c6f4
TT
1377 * if there aren't enough reserved blocks, then the
1378 * counter is messed up somewhere. Since this
1379 * function is called from invalidate page, it's
1380 * harmless to return without any action.
cd213226 1381 */
8de5c325 1382 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1383 "ino %lu, to_free %d with only %d reserved "
1084f252 1384 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1385 ei->i_reserved_data_blocks);
1386 WARN_ON(1);
1387 to_free = ei->i_reserved_data_blocks;
cd213226 1388 }
0637c6f4 1389 ei->i_reserved_data_blocks -= to_free;
cd213226 1390
72b8ab9d 1391 /* update fs dirty data blocks counter */
57042651 1392 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1393
d2a17637 1394 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1395
7b415bf6 1396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1397}
1398
1399static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1400 unsigned int offset,
1401 unsigned int length)
d2a17637 1402{
9705acd6 1403 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1404 struct buffer_head *head, *bh;
1405 unsigned int curr_off = 0;
7b415bf6
AK
1406 struct inode *inode = page->mapping->host;
1407 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1408 unsigned int stop = offset + length;
7b415bf6 1409 int num_clusters;
51865fda 1410 ext4_fsblk_t lblk;
d2a17637 1411
ca99fdd2
LC
1412 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1413
d2a17637
MC
1414 head = page_buffers(page);
1415 bh = head;
1416 do {
1417 unsigned int next_off = curr_off + bh->b_size;
1418
ca99fdd2
LC
1419 if (next_off > stop)
1420 break;
1421
d2a17637
MC
1422 if ((offset <= curr_off) && (buffer_delay(bh))) {
1423 to_release++;
9705acd6 1424 contiguous_blks++;
d2a17637 1425 clear_buffer_delay(bh);
9705acd6
LC
1426 } else if (contiguous_blks) {
1427 lblk = page->index <<
1428 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1429 lblk += (curr_off >> inode->i_blkbits) -
1430 contiguous_blks;
1431 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1432 contiguous_blks = 0;
d2a17637
MC
1433 }
1434 curr_off = next_off;
1435 } while ((bh = bh->b_this_page) != head);
7b415bf6 1436
9705acd6 1437 if (contiguous_blks) {
51865fda 1438 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
9705acd6
LC
1439 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1440 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1441 }
1442
7b415bf6
AK
1443 /* If we have released all the blocks belonging to a cluster, then we
1444 * need to release the reserved space for that cluster. */
1445 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1446 while (num_clusters > 0) {
7b415bf6
AK
1447 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1448 ((num_clusters - 1) << sbi->s_cluster_bits);
1449 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1450 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1451 ext4_da_release_space(inode, 1);
1452
1453 num_clusters--;
1454 }
d2a17637 1455}
ac27a0ec 1456
64769240
AT
1457/*
1458 * Delayed allocation stuff
1459 */
1460
4e7ea81d
JK
1461struct mpage_da_data {
1462 struct inode *inode;
1463 struct writeback_control *wbc;
6b523df4 1464
4e7ea81d
JK
1465 pgoff_t first_page; /* The first page to write */
1466 pgoff_t next_page; /* Current page to examine */
1467 pgoff_t last_page; /* Last page to examine */
791b7f08 1468 /*
4e7ea81d
JK
1469 * Extent to map - this can be after first_page because that can be
1470 * fully mapped. We somewhat abuse m_flags to store whether the extent
1471 * is delalloc or unwritten.
791b7f08 1472 */
4e7ea81d
JK
1473 struct ext4_map_blocks map;
1474 struct ext4_io_submit io_submit; /* IO submission data */
1475};
64769240 1476
4e7ea81d
JK
1477static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1478 bool invalidate)
c4a0c46e
AK
1479{
1480 int nr_pages, i;
1481 pgoff_t index, end;
1482 struct pagevec pvec;
1483 struct inode *inode = mpd->inode;
1484 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1485
1486 /* This is necessary when next_page == 0. */
1487 if (mpd->first_page >= mpd->next_page)
1488 return;
c4a0c46e 1489
c7f5938a
CW
1490 index = mpd->first_page;
1491 end = mpd->next_page - 1;
4e7ea81d
JK
1492 if (invalidate) {
1493 ext4_lblk_t start, last;
1494 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1495 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1496 ext4_es_remove_extent(inode, start, last - start + 1);
1497 }
51865fda 1498
66bea92c 1499 pagevec_init(&pvec, 0);
c4a0c46e
AK
1500 while (index <= end) {
1501 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1502 if (nr_pages == 0)
1503 break;
1504 for (i = 0; i < nr_pages; i++) {
1505 struct page *page = pvec.pages[i];
9b1d0998 1506 if (page->index > end)
c4a0c46e 1507 break;
c4a0c46e
AK
1508 BUG_ON(!PageLocked(page));
1509 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1510 if (invalidate) {
1511 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1512 ClearPageUptodate(page);
1513 }
c4a0c46e
AK
1514 unlock_page(page);
1515 }
9b1d0998
JK
1516 index = pvec.pages[nr_pages - 1]->index + 1;
1517 pagevec_release(&pvec);
c4a0c46e 1518 }
c4a0c46e
AK
1519}
1520
df22291f
AK
1521static void ext4_print_free_blocks(struct inode *inode)
1522{
1523 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1524 struct super_block *sb = inode->i_sb;
f78ee70d 1525 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1526
1527 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1528 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1529 ext4_count_free_clusters(sb)));
92b97816
TT
1530 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1531 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1532 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1533 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1534 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1535 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1536 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1537 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1538 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1539 ei->i_reserved_data_blocks);
df22291f
AK
1540 return;
1541}
1542
c364b22c 1543static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1544{
c364b22c 1545 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1546}
1547
5356f261
AK
1548/*
1549 * This function is grabs code from the very beginning of
1550 * ext4_map_blocks, but assumes that the caller is from delayed write
1551 * time. This function looks up the requested blocks and sets the
1552 * buffer delay bit under the protection of i_data_sem.
1553 */
1554static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1555 struct ext4_map_blocks *map,
1556 struct buffer_head *bh)
1557{
d100eef2 1558 struct extent_status es;
5356f261
AK
1559 int retval;
1560 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1561#ifdef ES_AGGRESSIVE_TEST
1562 struct ext4_map_blocks orig_map;
1563
1564 memcpy(&orig_map, map, sizeof(*map));
1565#endif
5356f261
AK
1566
1567 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1568 invalid_block = ~0;
1569
1570 map->m_flags = 0;
1571 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1572 "logical block %lu\n", inode->i_ino, map->m_len,
1573 (unsigned long) map->m_lblk);
d100eef2
ZL
1574
1575 /* Lookup extent status tree firstly */
1576 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1577 if (ext4_es_is_hole(&es)) {
1578 retval = 0;
c8b459f4 1579 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1580 goto add_delayed;
1581 }
1582
1583 /*
1584 * Delayed extent could be allocated by fallocate.
1585 * So we need to check it.
1586 */
1587 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1588 map_bh(bh, inode->i_sb, invalid_block);
1589 set_buffer_new(bh);
1590 set_buffer_delay(bh);
1591 return 0;
1592 }
1593
1594 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1595 retval = es.es_len - (iblock - es.es_lblk);
1596 if (retval > map->m_len)
1597 retval = map->m_len;
1598 map->m_len = retval;
1599 if (ext4_es_is_written(&es))
1600 map->m_flags |= EXT4_MAP_MAPPED;
1601 else if (ext4_es_is_unwritten(&es))
1602 map->m_flags |= EXT4_MAP_UNWRITTEN;
1603 else
1604 BUG_ON(1);
1605
921f266b
DM
1606#ifdef ES_AGGRESSIVE_TEST
1607 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1608#endif
d100eef2
ZL
1609 return retval;
1610 }
1611
5356f261
AK
1612 /*
1613 * Try to see if we can get the block without requesting a new
1614 * file system block.
1615 */
c8b459f4 1616 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1617 if (ext4_has_inline_data(inode))
9c3569b5 1618 retval = 0;
cbd7584e 1619 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1620 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1621 else
2f8e0a7c 1622 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1623
d100eef2 1624add_delayed:
5356f261 1625 if (retval == 0) {
f7fec032 1626 int ret;
5356f261
AK
1627 /*
1628 * XXX: __block_prepare_write() unmaps passed block,
1629 * is it OK?
1630 */
386ad67c
LC
1631 /*
1632 * If the block was allocated from previously allocated cluster,
1633 * then we don't need to reserve it again. However we still need
1634 * to reserve metadata for every block we're going to write.
1635 */
c27e43a1 1636 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1637 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1638 ret = ext4_da_reserve_space(inode);
f7fec032 1639 if (ret) {
5356f261 1640 /* not enough space to reserve */
f7fec032 1641 retval = ret;
5356f261 1642 goto out_unlock;
f7fec032 1643 }
5356f261
AK
1644 }
1645
f7fec032
ZL
1646 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1647 ~0, EXTENT_STATUS_DELAYED);
1648 if (ret) {
1649 retval = ret;
51865fda 1650 goto out_unlock;
f7fec032 1651 }
51865fda 1652
5356f261
AK
1653 map_bh(bh, inode->i_sb, invalid_block);
1654 set_buffer_new(bh);
1655 set_buffer_delay(bh);
f7fec032
ZL
1656 } else if (retval > 0) {
1657 int ret;
3be78c73 1658 unsigned int status;
f7fec032 1659
44fb851d
ZL
1660 if (unlikely(retval != map->m_len)) {
1661 ext4_warning(inode->i_sb,
1662 "ES len assertion failed for inode "
1663 "%lu: retval %d != map->m_len %d",
1664 inode->i_ino, retval, map->m_len);
1665 WARN_ON(1);
921f266b 1666 }
921f266b 1667
f7fec032
ZL
1668 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1669 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1670 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1671 map->m_pblk, status);
1672 if (ret != 0)
1673 retval = ret;
5356f261
AK
1674 }
1675
1676out_unlock:
1677 up_read((&EXT4_I(inode)->i_data_sem));
1678
1679 return retval;
1680}
1681
64769240 1682/*
d91bd2c1 1683 * This is a special get_block_t callback which is used by
b920c755
TT
1684 * ext4_da_write_begin(). It will either return mapped block or
1685 * reserve space for a single block.
29fa89d0
AK
1686 *
1687 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1688 * We also have b_blocknr = -1 and b_bdev initialized properly
1689 *
1690 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1691 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1692 * initialized properly.
64769240 1693 */
9c3569b5
TM
1694int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1695 struct buffer_head *bh, int create)
64769240 1696{
2ed88685 1697 struct ext4_map_blocks map;
64769240
AT
1698 int ret = 0;
1699
1700 BUG_ON(create == 0);
2ed88685
TT
1701 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1702
1703 map.m_lblk = iblock;
1704 map.m_len = 1;
64769240
AT
1705
1706 /*
1707 * first, we need to know whether the block is allocated already
1708 * preallocated blocks are unmapped but should treated
1709 * the same as allocated blocks.
1710 */
5356f261
AK
1711 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1712 if (ret <= 0)
2ed88685 1713 return ret;
64769240 1714
2ed88685 1715 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1716 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1717
1718 if (buffer_unwritten(bh)) {
1719 /* A delayed write to unwritten bh should be marked
1720 * new and mapped. Mapped ensures that we don't do
1721 * get_block multiple times when we write to the same
1722 * offset and new ensures that we do proper zero out
1723 * for partial write.
1724 */
1725 set_buffer_new(bh);
c8205636 1726 set_buffer_mapped(bh);
2ed88685
TT
1727 }
1728 return 0;
64769240 1729}
61628a3f 1730
62e086be
AK
1731static int bget_one(handle_t *handle, struct buffer_head *bh)
1732{
1733 get_bh(bh);
1734 return 0;
1735}
1736
1737static int bput_one(handle_t *handle, struct buffer_head *bh)
1738{
1739 put_bh(bh);
1740 return 0;
1741}
1742
1743static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1744 unsigned int len)
1745{
1746 struct address_space *mapping = page->mapping;
1747 struct inode *inode = mapping->host;
3fdcfb66 1748 struct buffer_head *page_bufs = NULL;
62e086be 1749 handle_t *handle = NULL;
3fdcfb66
TM
1750 int ret = 0, err = 0;
1751 int inline_data = ext4_has_inline_data(inode);
1752 struct buffer_head *inode_bh = NULL;
62e086be 1753
cb20d518 1754 ClearPageChecked(page);
3fdcfb66
TM
1755
1756 if (inline_data) {
1757 BUG_ON(page->index != 0);
1758 BUG_ON(len > ext4_get_max_inline_size(inode));
1759 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1760 if (inode_bh == NULL)
1761 goto out;
1762 } else {
1763 page_bufs = page_buffers(page);
1764 if (!page_bufs) {
1765 BUG();
1766 goto out;
1767 }
1768 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1769 NULL, bget_one);
1770 }
bdf96838
TT
1771 /*
1772 * We need to release the page lock before we start the
1773 * journal, so grab a reference so the page won't disappear
1774 * out from under us.
1775 */
1776 get_page(page);
62e086be
AK
1777 unlock_page(page);
1778
9924a92a
TT
1779 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1780 ext4_writepage_trans_blocks(inode));
62e086be
AK
1781 if (IS_ERR(handle)) {
1782 ret = PTR_ERR(handle);
bdf96838
TT
1783 put_page(page);
1784 goto out_no_pagelock;
62e086be 1785 }
441c8508
CW
1786 BUG_ON(!ext4_handle_valid(handle));
1787
bdf96838
TT
1788 lock_page(page);
1789 put_page(page);
1790 if (page->mapping != mapping) {
1791 /* The page got truncated from under us */
1792 ext4_journal_stop(handle);
1793 ret = 0;
1794 goto out;
1795 }
1796
3fdcfb66 1797 if (inline_data) {
5d601255 1798 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1799 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1800
3fdcfb66
TM
1801 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1802
1803 } else {
1804 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1805 do_journal_get_write_access);
1806
1807 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1808 write_end_fn);
1809 }
62e086be
AK
1810 if (ret == 0)
1811 ret = err;
2d859db3 1812 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1813 err = ext4_journal_stop(handle);
1814 if (!ret)
1815 ret = err;
1816
3fdcfb66 1817 if (!ext4_has_inline_data(inode))
8c9367fd 1818 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1819 NULL, bput_one);
19f5fb7a 1820 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1821out:
bdf96838
TT
1822 unlock_page(page);
1823out_no_pagelock:
3fdcfb66 1824 brelse(inode_bh);
62e086be
AK
1825 return ret;
1826}
1827
61628a3f 1828/*
43ce1d23
AK
1829 * Note that we don't need to start a transaction unless we're journaling data
1830 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1831 * need to file the inode to the transaction's list in ordered mode because if
1832 * we are writing back data added by write(), the inode is already there and if
25985edc 1833 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1834 * transaction the data will hit the disk. In case we are journaling data, we
1835 * cannot start transaction directly because transaction start ranks above page
1836 * lock so we have to do some magic.
1837 *
b920c755 1838 * This function can get called via...
20970ba6 1839 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1840 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1841 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1842 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1843 *
1844 * We don't do any block allocation in this function. If we have page with
1845 * multiple blocks we need to write those buffer_heads that are mapped. This
1846 * is important for mmaped based write. So if we do with blocksize 1K
1847 * truncate(f, 1024);
1848 * a = mmap(f, 0, 4096);
1849 * a[0] = 'a';
1850 * truncate(f, 4096);
1851 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1852 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1853 * do_wp_page). So writepage should write the first block. If we modify
1854 * the mmap area beyond 1024 we will again get a page_fault and the
1855 * page_mkwrite callback will do the block allocation and mark the
1856 * buffer_heads mapped.
1857 *
1858 * We redirty the page if we have any buffer_heads that is either delay or
1859 * unwritten in the page.
1860 *
1861 * We can get recursively called as show below.
1862 *
1863 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1864 * ext4_writepage()
1865 *
1866 * But since we don't do any block allocation we should not deadlock.
1867 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1868 */
43ce1d23 1869static int ext4_writepage(struct page *page,
62e086be 1870 struct writeback_control *wbc)
64769240 1871{
f8bec370 1872 int ret = 0;
61628a3f 1873 loff_t size;
498e5f24 1874 unsigned int len;
744692dc 1875 struct buffer_head *page_bufs = NULL;
61628a3f 1876 struct inode *inode = page->mapping->host;
36ade451 1877 struct ext4_io_submit io_submit;
1c8349a1 1878 bool keep_towrite = false;
61628a3f 1879
a9c667f8 1880 trace_ext4_writepage(page);
f0e6c985
AK
1881 size = i_size_read(inode);
1882 if (page->index == size >> PAGE_CACHE_SHIFT)
1883 len = size & ~PAGE_CACHE_MASK;
1884 else
1885 len = PAGE_CACHE_SIZE;
64769240 1886
a42afc5f 1887 page_bufs = page_buffers(page);
a42afc5f 1888 /*
fe386132
JK
1889 * We cannot do block allocation or other extent handling in this
1890 * function. If there are buffers needing that, we have to redirty
1891 * the page. But we may reach here when we do a journal commit via
1892 * journal_submit_inode_data_buffers() and in that case we must write
1893 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
1894 *
1895 * Also, if there is only one buffer per page (the fs block
1896 * size == the page size), if one buffer needs block
1897 * allocation or needs to modify the extent tree to clear the
1898 * unwritten flag, we know that the page can't be written at
1899 * all, so we might as well refuse the write immediately.
1900 * Unfortunately if the block size != page size, we can't as
1901 * easily detect this case using ext4_walk_page_buffers(), but
1902 * for the extremely common case, this is an optimization that
1903 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 1904 */
f19d5870
TM
1905 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1906 ext4_bh_delay_or_unwritten)) {
f8bec370 1907 redirty_page_for_writepage(wbc, page);
cccd147a
TT
1908 if ((current->flags & PF_MEMALLOC) ||
1909 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
fe386132
JK
1910 /*
1911 * For memory cleaning there's no point in writing only
1912 * some buffers. So just bail out. Warn if we came here
1913 * from direct reclaim.
1914 */
1915 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1916 == PF_MEMALLOC);
f0e6c985
AK
1917 unlock_page(page);
1918 return 0;
1919 }
1c8349a1 1920 keep_towrite = true;
a42afc5f 1921 }
64769240 1922
cb20d518 1923 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1924 /*
1925 * It's mmapped pagecache. Add buffers and journal it. There
1926 * doesn't seem much point in redirtying the page here.
1927 */
3f0ca309 1928 return __ext4_journalled_writepage(page, len);
43ce1d23 1929
97a851ed
JK
1930 ext4_io_submit_init(&io_submit, wbc);
1931 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1932 if (!io_submit.io_end) {
1933 redirty_page_for_writepage(wbc, page);
1934 unlock_page(page);
1935 return -ENOMEM;
1936 }
1c8349a1 1937 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1938 ext4_io_submit(&io_submit);
97a851ed
JK
1939 /* Drop io_end reference we got from init */
1940 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1941 return ret;
1942}
1943
5f1132b2
JK
1944static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1945{
1946 int len;
1947 loff_t size = i_size_read(mpd->inode);
1948 int err;
1949
1950 BUG_ON(page->index != mpd->first_page);
1951 if (page->index == size >> PAGE_CACHE_SHIFT)
1952 len = size & ~PAGE_CACHE_MASK;
1953 else
1954 len = PAGE_CACHE_SIZE;
1955 clear_page_dirty_for_io(page);
1c8349a1 1956 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1957 if (!err)
1958 mpd->wbc->nr_to_write--;
1959 mpd->first_page++;
1960
1961 return err;
1962}
1963
4e7ea81d
JK
1964#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1965
61628a3f 1966/*
fffb2739
JK
1967 * mballoc gives us at most this number of blocks...
1968 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1969 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1970 */
fffb2739 1971#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1972
4e7ea81d
JK
1973/*
1974 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1975 *
1976 * @mpd - extent of blocks
1977 * @lblk - logical number of the block in the file
09930042 1978 * @bh - buffer head we want to add to the extent
4e7ea81d 1979 *
09930042
JK
1980 * The function is used to collect contig. blocks in the same state. If the
1981 * buffer doesn't require mapping for writeback and we haven't started the
1982 * extent of buffers to map yet, the function returns 'true' immediately - the
1983 * caller can write the buffer right away. Otherwise the function returns true
1984 * if the block has been added to the extent, false if the block couldn't be
1985 * added.
4e7ea81d 1986 */
09930042
JK
1987static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1988 struct buffer_head *bh)
4e7ea81d
JK
1989{
1990 struct ext4_map_blocks *map = &mpd->map;
1991
09930042
JK
1992 /* Buffer that doesn't need mapping for writeback? */
1993 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1994 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1995 /* So far no extent to map => we write the buffer right away */
1996 if (map->m_len == 0)
1997 return true;
1998 return false;
1999 }
4e7ea81d
JK
2000
2001 /* First block in the extent? */
2002 if (map->m_len == 0) {
2003 map->m_lblk = lblk;
2004 map->m_len = 1;
09930042
JK
2005 map->m_flags = bh->b_state & BH_FLAGS;
2006 return true;
4e7ea81d
JK
2007 }
2008
09930042
JK
2009 /* Don't go larger than mballoc is willing to allocate */
2010 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2011 return false;
2012
4e7ea81d
JK
2013 /* Can we merge the block to our big extent? */
2014 if (lblk == map->m_lblk + map->m_len &&
09930042 2015 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2016 map->m_len++;
09930042 2017 return true;
4e7ea81d 2018 }
09930042 2019 return false;
4e7ea81d
JK
2020}
2021
5f1132b2
JK
2022/*
2023 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2024 *
2025 * @mpd - extent of blocks for mapping
2026 * @head - the first buffer in the page
2027 * @bh - buffer we should start processing from
2028 * @lblk - logical number of the block in the file corresponding to @bh
2029 *
2030 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2031 * the page for IO if all buffers in this page were mapped and there's no
2032 * accumulated extent of buffers to map or add buffers in the page to the
2033 * extent of buffers to map. The function returns 1 if the caller can continue
2034 * by processing the next page, 0 if it should stop adding buffers to the
2035 * extent to map because we cannot extend it anymore. It can also return value
2036 * < 0 in case of error during IO submission.
2037 */
2038static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2039 struct buffer_head *head,
2040 struct buffer_head *bh,
2041 ext4_lblk_t lblk)
4e7ea81d
JK
2042{
2043 struct inode *inode = mpd->inode;
5f1132b2 2044 int err;
4e7ea81d
JK
2045 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2046 >> inode->i_blkbits;
2047
2048 do {
2049 BUG_ON(buffer_locked(bh));
2050
09930042 2051 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2052 /* Found extent to map? */
2053 if (mpd->map.m_len)
5f1132b2 2054 return 0;
09930042 2055 /* Everything mapped so far and we hit EOF */
5f1132b2 2056 break;
4e7ea81d 2057 }
4e7ea81d 2058 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2059 /* So far everything mapped? Submit the page for IO. */
2060 if (mpd->map.m_len == 0) {
2061 err = mpage_submit_page(mpd, head->b_page);
2062 if (err < 0)
2063 return err;
2064 }
2065 return lblk < blocks;
4e7ea81d
JK
2066}
2067
2068/*
2069 * mpage_map_buffers - update buffers corresponding to changed extent and
2070 * submit fully mapped pages for IO
2071 *
2072 * @mpd - description of extent to map, on return next extent to map
2073 *
2074 * Scan buffers corresponding to changed extent (we expect corresponding pages
2075 * to be already locked) and update buffer state according to new extent state.
2076 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2077 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2078 * and do extent conversion after IO is finished. If the last page is not fully
2079 * mapped, we update @map to the next extent in the last page that needs
2080 * mapping. Otherwise we submit the page for IO.
2081 */
2082static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2083{
2084 struct pagevec pvec;
2085 int nr_pages, i;
2086 struct inode *inode = mpd->inode;
2087 struct buffer_head *head, *bh;
2088 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2089 pgoff_t start, end;
2090 ext4_lblk_t lblk;
2091 sector_t pblock;
2092 int err;
2093
2094 start = mpd->map.m_lblk >> bpp_bits;
2095 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2096 lblk = start << bpp_bits;
2097 pblock = mpd->map.m_pblk;
2098
2099 pagevec_init(&pvec, 0);
2100 while (start <= end) {
2101 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2102 PAGEVEC_SIZE);
2103 if (nr_pages == 0)
2104 break;
2105 for (i = 0; i < nr_pages; i++) {
2106 struct page *page = pvec.pages[i];
2107
2108 if (page->index > end)
2109 break;
70261f56 2110 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2111 BUG_ON(page->index != start);
2112 bh = head = page_buffers(page);
2113 do {
2114 if (lblk < mpd->map.m_lblk)
2115 continue;
2116 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2117 /*
2118 * Buffer after end of mapped extent.
2119 * Find next buffer in the page to map.
2120 */
2121 mpd->map.m_len = 0;
2122 mpd->map.m_flags = 0;
5f1132b2
JK
2123 /*
2124 * FIXME: If dioread_nolock supports
2125 * blocksize < pagesize, we need to make
2126 * sure we add size mapped so far to
2127 * io_end->size as the following call
2128 * can submit the page for IO.
2129 */
2130 err = mpage_process_page_bufs(mpd, head,
2131 bh, lblk);
4e7ea81d 2132 pagevec_release(&pvec);
5f1132b2
JK
2133 if (err > 0)
2134 err = 0;
2135 return err;
4e7ea81d
JK
2136 }
2137 if (buffer_delay(bh)) {
2138 clear_buffer_delay(bh);
2139 bh->b_blocknr = pblock++;
2140 }
4e7ea81d 2141 clear_buffer_unwritten(bh);
5f1132b2 2142 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2143
2144 /*
2145 * FIXME: This is going to break if dioread_nolock
2146 * supports blocksize < pagesize as we will try to
2147 * convert potentially unmapped parts of inode.
2148 */
2149 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2150 /* Page fully mapped - let IO run! */
2151 err = mpage_submit_page(mpd, page);
2152 if (err < 0) {
2153 pagevec_release(&pvec);
2154 return err;
2155 }
2156 start++;
2157 }
2158 pagevec_release(&pvec);
2159 }
2160 /* Extent fully mapped and matches with page boundary. We are done. */
2161 mpd->map.m_len = 0;
2162 mpd->map.m_flags = 0;
2163 return 0;
2164}
2165
2166static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2167{
2168 struct inode *inode = mpd->inode;
2169 struct ext4_map_blocks *map = &mpd->map;
2170 int get_blocks_flags;
090f32ee 2171 int err, dioread_nolock;
4e7ea81d
JK
2172
2173 trace_ext4_da_write_pages_extent(inode, map);
2174 /*
2175 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2176 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2177 * where we have written into one or more preallocated blocks). It is
2178 * possible that we're going to need more metadata blocks than
2179 * previously reserved. However we must not fail because we're in
2180 * writeback and there is nothing we can do about it so it might result
2181 * in data loss. So use reserved blocks to allocate metadata if
2182 * possible.
2183 *
754cfed6
TT
2184 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2185 * the blocks in question are delalloc blocks. This indicates
2186 * that the blocks and quotas has already been checked when
2187 * the data was copied into the page cache.
4e7ea81d
JK
2188 */
2189 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2190 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2191 dioread_nolock = ext4_should_dioread_nolock(inode);
2192 if (dioread_nolock)
4e7ea81d
JK
2193 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2194 if (map->m_flags & (1 << BH_Delay))
2195 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2196
2197 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2198 if (err < 0)
2199 return err;
090f32ee 2200 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2201 if (!mpd->io_submit.io_end->handle &&
2202 ext4_handle_valid(handle)) {
2203 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2204 handle->h_rsv_handle = NULL;
2205 }
3613d228 2206 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2207 }
4e7ea81d
JK
2208
2209 BUG_ON(map->m_len == 0);
2210 if (map->m_flags & EXT4_MAP_NEW) {
2211 struct block_device *bdev = inode->i_sb->s_bdev;
2212 int i;
2213
2214 for (i = 0; i < map->m_len; i++)
2215 unmap_underlying_metadata(bdev, map->m_pblk + i);
2216 }
2217 return 0;
2218}
2219
2220/*
2221 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2222 * mpd->len and submit pages underlying it for IO
2223 *
2224 * @handle - handle for journal operations
2225 * @mpd - extent to map
7534e854
JK
2226 * @give_up_on_write - we set this to true iff there is a fatal error and there
2227 * is no hope of writing the data. The caller should discard
2228 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2229 *
2230 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2231 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2232 * them to initialized or split the described range from larger unwritten
2233 * extent. Note that we need not map all the described range since allocation
2234 * can return less blocks or the range is covered by more unwritten extents. We
2235 * cannot map more because we are limited by reserved transaction credits. On
2236 * the other hand we always make sure that the last touched page is fully
2237 * mapped so that it can be written out (and thus forward progress is
2238 * guaranteed). After mapping we submit all mapped pages for IO.
2239 */
2240static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2241 struct mpage_da_data *mpd,
2242 bool *give_up_on_write)
4e7ea81d
JK
2243{
2244 struct inode *inode = mpd->inode;
2245 struct ext4_map_blocks *map = &mpd->map;
2246 int err;
2247 loff_t disksize;
6603120e 2248 int progress = 0;
4e7ea81d
JK
2249
2250 mpd->io_submit.io_end->offset =
2251 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2252 do {
4e7ea81d
JK
2253 err = mpage_map_one_extent(handle, mpd);
2254 if (err < 0) {
2255 struct super_block *sb = inode->i_sb;
2256
cb530541
TT
2257 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2258 goto invalidate_dirty_pages;
4e7ea81d 2259 /*
cb530541
TT
2260 * Let the uper layers retry transient errors.
2261 * In the case of ENOSPC, if ext4_count_free_blocks()
2262 * is non-zero, a commit should free up blocks.
4e7ea81d 2263 */
cb530541 2264 if ((err == -ENOMEM) ||
6603120e
DM
2265 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2266 if (progress)
2267 goto update_disksize;
cb530541 2268 return err;
6603120e 2269 }
cb530541
TT
2270 ext4_msg(sb, KERN_CRIT,
2271 "Delayed block allocation failed for "
2272 "inode %lu at logical offset %llu with"
2273 " max blocks %u with error %d",
2274 inode->i_ino,
2275 (unsigned long long)map->m_lblk,
2276 (unsigned)map->m_len, -err);
2277 ext4_msg(sb, KERN_CRIT,
2278 "This should not happen!! Data will "
2279 "be lost\n");
2280 if (err == -ENOSPC)
2281 ext4_print_free_blocks(inode);
2282 invalidate_dirty_pages:
2283 *give_up_on_write = true;
4e7ea81d
JK
2284 return err;
2285 }
6603120e 2286 progress = 1;
4e7ea81d
JK
2287 /*
2288 * Update buffer state, submit mapped pages, and get us new
2289 * extent to map
2290 */
2291 err = mpage_map_and_submit_buffers(mpd);
2292 if (err < 0)
6603120e 2293 goto update_disksize;
27d7c4ed 2294 } while (map->m_len);
4e7ea81d 2295
6603120e 2296update_disksize:
622cad13
TT
2297 /*
2298 * Update on-disk size after IO is submitted. Races with
2299 * truncate are avoided by checking i_size under i_data_sem.
2300 */
4e7ea81d 2301 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2302 if (disksize > EXT4_I(inode)->i_disksize) {
2303 int err2;
622cad13
TT
2304 loff_t i_size;
2305
2306 down_write(&EXT4_I(inode)->i_data_sem);
2307 i_size = i_size_read(inode);
2308 if (disksize > i_size)
2309 disksize = i_size;
2310 if (disksize > EXT4_I(inode)->i_disksize)
2311 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2312 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2313 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2314 if (err2)
2315 ext4_error(inode->i_sb,
2316 "Failed to mark inode %lu dirty",
2317 inode->i_ino);
2318 if (!err)
2319 err = err2;
2320 }
2321 return err;
2322}
2323
fffb2739
JK
2324/*
2325 * Calculate the total number of credits to reserve for one writepages
20970ba6 2326 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2327 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2328 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2329 * bpp - 1 blocks in bpp different extents.
2330 */
525f4ed8
MC
2331static int ext4_da_writepages_trans_blocks(struct inode *inode)
2332{
fffb2739 2333 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2334
fffb2739
JK
2335 return ext4_meta_trans_blocks(inode,
2336 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2337}
61628a3f 2338
8e48dcfb 2339/*
4e7ea81d
JK
2340 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2341 * and underlying extent to map
2342 *
2343 * @mpd - where to look for pages
2344 *
2345 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2346 * IO immediately. When we find a page which isn't mapped we start accumulating
2347 * extent of buffers underlying these pages that needs mapping (formed by
2348 * either delayed or unwritten buffers). We also lock the pages containing
2349 * these buffers. The extent found is returned in @mpd structure (starting at
2350 * mpd->lblk with length mpd->len blocks).
2351 *
2352 * Note that this function can attach bios to one io_end structure which are
2353 * neither logically nor physically contiguous. Although it may seem as an
2354 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2355 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2356 */
4e7ea81d 2357static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2358{
4e7ea81d
JK
2359 struct address_space *mapping = mpd->inode->i_mapping;
2360 struct pagevec pvec;
2361 unsigned int nr_pages;
aeac589a 2362 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2363 pgoff_t index = mpd->first_page;
2364 pgoff_t end = mpd->last_page;
2365 int tag;
2366 int i, err = 0;
2367 int blkbits = mpd->inode->i_blkbits;
2368 ext4_lblk_t lblk;
2369 struct buffer_head *head;
8e48dcfb 2370
4e7ea81d 2371 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2372 tag = PAGECACHE_TAG_TOWRITE;
2373 else
2374 tag = PAGECACHE_TAG_DIRTY;
2375
4e7ea81d
JK
2376 pagevec_init(&pvec, 0);
2377 mpd->map.m_len = 0;
2378 mpd->next_page = index;
4f01b02c 2379 while (index <= end) {
5b41d924 2380 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2381 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2382 if (nr_pages == 0)
4e7ea81d 2383 goto out;
8e48dcfb
TT
2384
2385 for (i = 0; i < nr_pages; i++) {
2386 struct page *page = pvec.pages[i];
2387
2388 /*
2389 * At this point, the page may be truncated or
2390 * invalidated (changing page->mapping to NULL), or
2391 * even swizzled back from swapper_space to tmpfs file
2392 * mapping. However, page->index will not change
2393 * because we have a reference on the page.
2394 */
4f01b02c
TT
2395 if (page->index > end)
2396 goto out;
8e48dcfb 2397
aeac589a
ML
2398 /*
2399 * Accumulated enough dirty pages? This doesn't apply
2400 * to WB_SYNC_ALL mode. For integrity sync we have to
2401 * keep going because someone may be concurrently
2402 * dirtying pages, and we might have synced a lot of
2403 * newly appeared dirty pages, but have not synced all
2404 * of the old dirty pages.
2405 */
2406 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2407 goto out;
2408
4e7ea81d
JK
2409 /* If we can't merge this page, we are done. */
2410 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2411 goto out;
78aaced3 2412
8e48dcfb 2413 lock_page(page);
8e48dcfb 2414 /*
4e7ea81d
JK
2415 * If the page is no longer dirty, or its mapping no
2416 * longer corresponds to inode we are writing (which
2417 * means it has been truncated or invalidated), or the
2418 * page is already under writeback and we are not doing
2419 * a data integrity writeback, skip the page
8e48dcfb 2420 */
4f01b02c
TT
2421 if (!PageDirty(page) ||
2422 (PageWriteback(page) &&
4e7ea81d 2423 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2424 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2425 unlock_page(page);
2426 continue;
2427 }
2428
7cb1a535 2429 wait_on_page_writeback(page);
8e48dcfb 2430 BUG_ON(PageWriteback(page));
8e48dcfb 2431
4e7ea81d 2432 if (mpd->map.m_len == 0)
8eb9e5ce 2433 mpd->first_page = page->index;
8eb9e5ce 2434 mpd->next_page = page->index + 1;
f8bec370 2435 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2436 lblk = ((ext4_lblk_t)page->index) <<
2437 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2438 head = page_buffers(page);
5f1132b2
JK
2439 err = mpage_process_page_bufs(mpd, head, head, lblk);
2440 if (err <= 0)
4e7ea81d 2441 goto out;
5f1132b2 2442 err = 0;
aeac589a 2443 left--;
8e48dcfb
TT
2444 }
2445 pagevec_release(&pvec);
2446 cond_resched();
2447 }
4f01b02c 2448 return 0;
8eb9e5ce
TT
2449out:
2450 pagevec_release(&pvec);
4e7ea81d 2451 return err;
8e48dcfb
TT
2452}
2453
20970ba6
TT
2454static int __writepage(struct page *page, struct writeback_control *wbc,
2455 void *data)
2456{
2457 struct address_space *mapping = data;
2458 int ret = ext4_writepage(page, wbc);
2459 mapping_set_error(mapping, ret);
2460 return ret;
2461}
2462
2463static int ext4_writepages(struct address_space *mapping,
2464 struct writeback_control *wbc)
64769240 2465{
4e7ea81d
JK
2466 pgoff_t writeback_index = 0;
2467 long nr_to_write = wbc->nr_to_write;
22208ded 2468 int range_whole = 0;
4e7ea81d 2469 int cycled = 1;
61628a3f 2470 handle_t *handle = NULL;
df22291f 2471 struct mpage_da_data mpd;
5e745b04 2472 struct inode *inode = mapping->host;
6b523df4 2473 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2474 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2475 bool done;
1bce63d1 2476 struct blk_plug plug;
cb530541 2477 bool give_up_on_write = false;
61628a3f 2478
20970ba6 2479 trace_ext4_writepages(inode, wbc);
ba80b101 2480
61628a3f
MC
2481 /*
2482 * No pages to write? This is mainly a kludge to avoid starting
2483 * a transaction for special inodes like journal inode on last iput()
2484 * because that could violate lock ordering on umount
2485 */
a1d6cc56 2486 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2487 goto out_writepages;
2a21e37e 2488
20970ba6
TT
2489 if (ext4_should_journal_data(inode)) {
2490 struct blk_plug plug;
20970ba6
TT
2491
2492 blk_start_plug(&plug);
2493 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2494 blk_finish_plug(&plug);
bbf023c7 2495 goto out_writepages;
20970ba6
TT
2496 }
2497
2a21e37e
TT
2498 /*
2499 * If the filesystem has aborted, it is read-only, so return
2500 * right away instead of dumping stack traces later on that
2501 * will obscure the real source of the problem. We test
4ab2f15b 2502 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2503 * the latter could be true if the filesystem is mounted
20970ba6 2504 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2505 * *never* be called, so if that ever happens, we would want
2506 * the stack trace.
2507 */
bbf023c7
ML
2508 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2509 ret = -EROFS;
2510 goto out_writepages;
2511 }
2a21e37e 2512
6b523df4
JK
2513 if (ext4_should_dioread_nolock(inode)) {
2514 /*
70261f56 2515 * We may need to convert up to one extent per block in
6b523df4
JK
2516 * the page and we may dirty the inode.
2517 */
2518 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2519 }
2520
4e7ea81d
JK
2521 /*
2522 * If we have inline data and arrive here, it means that
2523 * we will soon create the block for the 1st page, so
2524 * we'd better clear the inline data here.
2525 */
2526 if (ext4_has_inline_data(inode)) {
2527 /* Just inode will be modified... */
2528 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2529 if (IS_ERR(handle)) {
2530 ret = PTR_ERR(handle);
2531 goto out_writepages;
2532 }
2533 BUG_ON(ext4_test_inode_state(inode,
2534 EXT4_STATE_MAY_INLINE_DATA));
2535 ext4_destroy_inline_data(handle, inode);
2536 ext4_journal_stop(handle);
2537 }
2538
22208ded
AK
2539 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2540 range_whole = 1;
61628a3f 2541
2acf2c26 2542 if (wbc->range_cyclic) {
4e7ea81d
JK
2543 writeback_index = mapping->writeback_index;
2544 if (writeback_index)
2acf2c26 2545 cycled = 0;
4e7ea81d
JK
2546 mpd.first_page = writeback_index;
2547 mpd.last_page = -1;
5b41d924 2548 } else {
4e7ea81d
JK
2549 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2550 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2551 }
a1d6cc56 2552
4e7ea81d
JK
2553 mpd.inode = inode;
2554 mpd.wbc = wbc;
2555 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2556retry:
6e6938b6 2557 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2558 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2559 done = false;
1bce63d1 2560 blk_start_plug(&plug);
4e7ea81d
JK
2561 while (!done && mpd.first_page <= mpd.last_page) {
2562 /* For each extent of pages we use new io_end */
2563 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2564 if (!mpd.io_submit.io_end) {
2565 ret = -ENOMEM;
2566 break;
2567 }
a1d6cc56
AK
2568
2569 /*
4e7ea81d
JK
2570 * We have two constraints: We find one extent to map and we
2571 * must always write out whole page (makes a difference when
2572 * blocksize < pagesize) so that we don't block on IO when we
2573 * try to write out the rest of the page. Journalled mode is
2574 * not supported by delalloc.
a1d6cc56
AK
2575 */
2576 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2577 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2578
4e7ea81d 2579 /* start a new transaction */
6b523df4
JK
2580 handle = ext4_journal_start_with_reserve(inode,
2581 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2582 if (IS_ERR(handle)) {
2583 ret = PTR_ERR(handle);
1693918e 2584 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2585 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2586 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2587 /* Release allocated io_end */
2588 ext4_put_io_end(mpd.io_submit.io_end);
2589 break;
61628a3f 2590 }
f63e6005 2591
4e7ea81d
JK
2592 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2593 ret = mpage_prepare_extent_to_map(&mpd);
2594 if (!ret) {
2595 if (mpd.map.m_len)
cb530541
TT
2596 ret = mpage_map_and_submit_extent(handle, &mpd,
2597 &give_up_on_write);
4e7ea81d
JK
2598 else {
2599 /*
2600 * We scanned the whole range (or exhausted
2601 * nr_to_write), submitted what was mapped and
2602 * didn't find anything needing mapping. We are
2603 * done.
2604 */
2605 done = true;
2606 }
f63e6005 2607 }
61628a3f 2608 ext4_journal_stop(handle);
4e7ea81d
JK
2609 /* Submit prepared bio */
2610 ext4_io_submit(&mpd.io_submit);
2611 /* Unlock pages we didn't use */
cb530541 2612 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2613 /* Drop our io_end reference we got from init */
2614 ext4_put_io_end(mpd.io_submit.io_end);
2615
2616 if (ret == -ENOSPC && sbi->s_journal) {
2617 /*
2618 * Commit the transaction which would
22208ded
AK
2619 * free blocks released in the transaction
2620 * and try again
2621 */
df22291f 2622 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2623 ret = 0;
4e7ea81d
JK
2624 continue;
2625 }
2626 /* Fatal error - ENOMEM, EIO... */
2627 if (ret)
61628a3f 2628 break;
a1d6cc56 2629 }
1bce63d1 2630 blk_finish_plug(&plug);
9c12a831 2631 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2632 cycled = 1;
4e7ea81d
JK
2633 mpd.last_page = writeback_index - 1;
2634 mpd.first_page = 0;
2acf2c26
AK
2635 goto retry;
2636 }
22208ded
AK
2637
2638 /* Update index */
22208ded
AK
2639 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2640 /*
4e7ea81d 2641 * Set the writeback_index so that range_cyclic
22208ded
AK
2642 * mode will write it back later
2643 */
4e7ea81d 2644 mapping->writeback_index = mpd.first_page;
a1d6cc56 2645
61628a3f 2646out_writepages:
20970ba6
TT
2647 trace_ext4_writepages_result(inode, wbc, ret,
2648 nr_to_write - wbc->nr_to_write);
61628a3f 2649 return ret;
64769240
AT
2650}
2651
79f0be8d
AK
2652static int ext4_nonda_switch(struct super_block *sb)
2653{
5c1ff336 2654 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2655 struct ext4_sb_info *sbi = EXT4_SB(sb);
2656
2657 /*
2658 * switch to non delalloc mode if we are running low
2659 * on free block. The free block accounting via percpu
179f7ebf 2660 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2661 * accumulated on each CPU without updating global counters
2662 * Delalloc need an accurate free block accounting. So switch
2663 * to non delalloc when we are near to error range.
2664 */
5c1ff336
EW
2665 free_clusters =
2666 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2667 dirty_clusters =
2668 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2669 /*
2670 * Start pushing delalloc when 1/2 of free blocks are dirty.
2671 */
5c1ff336 2672 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2673 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2674
5c1ff336
EW
2675 if (2 * free_clusters < 3 * dirty_clusters ||
2676 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2677 /*
c8afb446
ES
2678 * free block count is less than 150% of dirty blocks
2679 * or free blocks is less than watermark
79f0be8d
AK
2680 */
2681 return 1;
2682 }
2683 return 0;
2684}
2685
0ff8947f
ES
2686/* We always reserve for an inode update; the superblock could be there too */
2687static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2688{
e2b911c5 2689 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2690 return 1;
2691
2692 if (pos + len <= 0x7fffffffULL)
2693 return 1;
2694
2695 /* We might need to update the superblock to set LARGE_FILE */
2696 return 2;
2697}
2698
64769240 2699static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2700 loff_t pos, unsigned len, unsigned flags,
2701 struct page **pagep, void **fsdata)
64769240 2702{
72b8ab9d 2703 int ret, retries = 0;
64769240
AT
2704 struct page *page;
2705 pgoff_t index;
64769240
AT
2706 struct inode *inode = mapping->host;
2707 handle_t *handle;
2708
2709 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2710
2711 if (ext4_nonda_switch(inode->i_sb)) {
2712 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2713 return ext4_write_begin(file, mapping, pos,
2714 len, flags, pagep, fsdata);
2715 }
2716 *fsdata = (void *)0;
9bffad1e 2717 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2718
2719 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2720 ret = ext4_da_write_inline_data_begin(mapping, inode,
2721 pos, len, flags,
2722 pagep, fsdata);
2723 if (ret < 0)
47564bfb
TT
2724 return ret;
2725 if (ret == 1)
2726 return 0;
9c3569b5
TM
2727 }
2728
47564bfb
TT
2729 /*
2730 * grab_cache_page_write_begin() can take a long time if the
2731 * system is thrashing due to memory pressure, or if the page
2732 * is being written back. So grab it first before we start
2733 * the transaction handle. This also allows us to allocate
2734 * the page (if needed) without using GFP_NOFS.
2735 */
2736retry_grab:
2737 page = grab_cache_page_write_begin(mapping, index, flags);
2738 if (!page)
2739 return -ENOMEM;
2740 unlock_page(page);
2741
64769240
AT
2742 /*
2743 * With delayed allocation, we don't log the i_disksize update
2744 * if there is delayed block allocation. But we still need
2745 * to journalling the i_disksize update if writes to the end
2746 * of file which has an already mapped buffer.
2747 */
47564bfb 2748retry_journal:
0ff8947f
ES
2749 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2750 ext4_da_write_credits(inode, pos, len));
64769240 2751 if (IS_ERR(handle)) {
47564bfb
TT
2752 page_cache_release(page);
2753 return PTR_ERR(handle);
64769240
AT
2754 }
2755
47564bfb
TT
2756 lock_page(page);
2757 if (page->mapping != mapping) {
2758 /* The page got truncated from under us */
2759 unlock_page(page);
2760 page_cache_release(page);
d5a0d4f7 2761 ext4_journal_stop(handle);
47564bfb 2762 goto retry_grab;
d5a0d4f7 2763 }
47564bfb 2764 /* In case writeback began while the page was unlocked */
7afe5aa5 2765 wait_for_stable_page(page);
64769240 2766
2058f83a
MH
2767#ifdef CONFIG_EXT4_FS_ENCRYPTION
2768 ret = ext4_block_write_begin(page, pos, len,
2769 ext4_da_get_block_prep);
2770#else
6e1db88d 2771 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2772#endif
64769240
AT
2773 if (ret < 0) {
2774 unlock_page(page);
2775 ext4_journal_stop(handle);
ae4d5372
AK
2776 /*
2777 * block_write_begin may have instantiated a few blocks
2778 * outside i_size. Trim these off again. Don't need
2779 * i_size_read because we hold i_mutex.
2780 */
2781 if (pos + len > inode->i_size)
b9a4207d 2782 ext4_truncate_failed_write(inode);
47564bfb
TT
2783
2784 if (ret == -ENOSPC &&
2785 ext4_should_retry_alloc(inode->i_sb, &retries))
2786 goto retry_journal;
2787
2788 page_cache_release(page);
2789 return ret;
64769240
AT
2790 }
2791
47564bfb 2792 *pagep = page;
64769240
AT
2793 return ret;
2794}
2795
632eaeab
MC
2796/*
2797 * Check if we should update i_disksize
2798 * when write to the end of file but not require block allocation
2799 */
2800static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2801 unsigned long offset)
632eaeab
MC
2802{
2803 struct buffer_head *bh;
2804 struct inode *inode = page->mapping->host;
2805 unsigned int idx;
2806 int i;
2807
2808 bh = page_buffers(page);
2809 idx = offset >> inode->i_blkbits;
2810
af5bc92d 2811 for (i = 0; i < idx; i++)
632eaeab
MC
2812 bh = bh->b_this_page;
2813
29fa89d0 2814 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2815 return 0;
2816 return 1;
2817}
2818
64769240 2819static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2820 struct address_space *mapping,
2821 loff_t pos, unsigned len, unsigned copied,
2822 struct page *page, void *fsdata)
64769240
AT
2823{
2824 struct inode *inode = mapping->host;
2825 int ret = 0, ret2;
2826 handle_t *handle = ext4_journal_current_handle();
2827 loff_t new_i_size;
632eaeab 2828 unsigned long start, end;
79f0be8d
AK
2829 int write_mode = (int)(unsigned long)fsdata;
2830
74d553aa
TT
2831 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2832 return ext4_write_end(file, mapping, pos,
2833 len, copied, page, fsdata);
632eaeab 2834
9bffad1e 2835 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2836 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2837 end = start + copied - 1;
64769240
AT
2838
2839 /*
2840 * generic_write_end() will run mark_inode_dirty() if i_size
2841 * changes. So let's piggyback the i_disksize mark_inode_dirty
2842 * into that.
2843 */
64769240 2844 new_i_size = pos + copied;
ea51d132 2845 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2846 if (ext4_has_inline_data(inode) ||
2847 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2848 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2849 /* We need to mark inode dirty even if
2850 * new_i_size is less that inode->i_size
2851 * bu greater than i_disksize.(hint delalloc)
2852 */
2853 ext4_mark_inode_dirty(handle, inode);
64769240 2854 }
632eaeab 2855 }
9c3569b5
TM
2856
2857 if (write_mode != CONVERT_INLINE_DATA &&
2858 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2859 ext4_has_inline_data(inode))
2860 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2861 page);
2862 else
2863 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2864 page, fsdata);
9c3569b5 2865
64769240
AT
2866 copied = ret2;
2867 if (ret2 < 0)
2868 ret = ret2;
2869 ret2 = ext4_journal_stop(handle);
2870 if (!ret)
2871 ret = ret2;
2872
2873 return ret ? ret : copied;
2874}
2875
d47992f8
LC
2876static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2877 unsigned int length)
64769240 2878{
64769240
AT
2879 /*
2880 * Drop reserved blocks
2881 */
2882 BUG_ON(!PageLocked(page));
2883 if (!page_has_buffers(page))
2884 goto out;
2885
ca99fdd2 2886 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2887
2888out:
d47992f8 2889 ext4_invalidatepage(page, offset, length);
64769240
AT
2890
2891 return;
2892}
2893
ccd2506b
TT
2894/*
2895 * Force all delayed allocation blocks to be allocated for a given inode.
2896 */
2897int ext4_alloc_da_blocks(struct inode *inode)
2898{
fb40ba0d
TT
2899 trace_ext4_alloc_da_blocks(inode);
2900
71d4f7d0 2901 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2902 return 0;
2903
2904 /*
2905 * We do something simple for now. The filemap_flush() will
2906 * also start triggering a write of the data blocks, which is
2907 * not strictly speaking necessary (and for users of
2908 * laptop_mode, not even desirable). However, to do otherwise
2909 * would require replicating code paths in:
de9a55b8 2910 *
20970ba6 2911 * ext4_writepages() ->
ccd2506b
TT
2912 * write_cache_pages() ---> (via passed in callback function)
2913 * __mpage_da_writepage() -->
2914 * mpage_add_bh_to_extent()
2915 * mpage_da_map_blocks()
2916 *
2917 * The problem is that write_cache_pages(), located in
2918 * mm/page-writeback.c, marks pages clean in preparation for
2919 * doing I/O, which is not desirable if we're not planning on
2920 * doing I/O at all.
2921 *
2922 * We could call write_cache_pages(), and then redirty all of
380cf090 2923 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2924 * would be ugly in the extreme. So instead we would need to
2925 * replicate parts of the code in the above functions,
25985edc 2926 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2927 * write out the pages, but rather only collect contiguous
2928 * logical block extents, call the multi-block allocator, and
2929 * then update the buffer heads with the block allocations.
de9a55b8 2930 *
ccd2506b
TT
2931 * For now, though, we'll cheat by calling filemap_flush(),
2932 * which will map the blocks, and start the I/O, but not
2933 * actually wait for the I/O to complete.
2934 */
2935 return filemap_flush(inode->i_mapping);
2936}
64769240 2937
ac27a0ec
DK
2938/*
2939 * bmap() is special. It gets used by applications such as lilo and by
2940 * the swapper to find the on-disk block of a specific piece of data.
2941 *
2942 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2943 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2944 * filesystem and enables swap, then they may get a nasty shock when the
2945 * data getting swapped to that swapfile suddenly gets overwritten by
2946 * the original zero's written out previously to the journal and
2947 * awaiting writeback in the kernel's buffer cache.
2948 *
2949 * So, if we see any bmap calls here on a modified, data-journaled file,
2950 * take extra steps to flush any blocks which might be in the cache.
2951 */
617ba13b 2952static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2953{
2954 struct inode *inode = mapping->host;
2955 journal_t *journal;
2956 int err;
2957
46c7f254
TM
2958 /*
2959 * We can get here for an inline file via the FIBMAP ioctl
2960 */
2961 if (ext4_has_inline_data(inode))
2962 return 0;
2963
64769240
AT
2964 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2965 test_opt(inode->i_sb, DELALLOC)) {
2966 /*
2967 * With delalloc we want to sync the file
2968 * so that we can make sure we allocate
2969 * blocks for file
2970 */
2971 filemap_write_and_wait(mapping);
2972 }
2973
19f5fb7a
TT
2974 if (EXT4_JOURNAL(inode) &&
2975 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2976 /*
2977 * This is a REALLY heavyweight approach, but the use of
2978 * bmap on dirty files is expected to be extremely rare:
2979 * only if we run lilo or swapon on a freshly made file
2980 * do we expect this to happen.
2981 *
2982 * (bmap requires CAP_SYS_RAWIO so this does not
2983 * represent an unprivileged user DOS attack --- we'd be
2984 * in trouble if mortal users could trigger this path at
2985 * will.)
2986 *
617ba13b 2987 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2988 * regular files. If somebody wants to bmap a directory
2989 * or symlink and gets confused because the buffer
2990 * hasn't yet been flushed to disk, they deserve
2991 * everything they get.
2992 */
2993
19f5fb7a 2994 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2995 journal = EXT4_JOURNAL(inode);
dab291af
MC
2996 jbd2_journal_lock_updates(journal);
2997 err = jbd2_journal_flush(journal);
2998 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2999
3000 if (err)
3001 return 0;
3002 }
3003
af5bc92d 3004 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3005}
3006
617ba13b 3007static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3008{
46c7f254
TM
3009 int ret = -EAGAIN;
3010 struct inode *inode = page->mapping->host;
3011
0562e0ba 3012 trace_ext4_readpage(page);
46c7f254
TM
3013
3014 if (ext4_has_inline_data(inode))
3015 ret = ext4_readpage_inline(inode, page);
3016
3017 if (ret == -EAGAIN)
f64e02fe 3018 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3019
3020 return ret;
ac27a0ec
DK
3021}
3022
3023static int
617ba13b 3024ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3025 struct list_head *pages, unsigned nr_pages)
3026{
46c7f254
TM
3027 struct inode *inode = mapping->host;
3028
3029 /* If the file has inline data, no need to do readpages. */
3030 if (ext4_has_inline_data(inode))
3031 return 0;
3032
f64e02fe 3033 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3034}
3035
d47992f8
LC
3036static void ext4_invalidatepage(struct page *page, unsigned int offset,
3037 unsigned int length)
ac27a0ec 3038{
ca99fdd2 3039 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3040
4520fb3c
JK
3041 /* No journalling happens on data buffers when this function is used */
3042 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3043
ca99fdd2 3044 block_invalidatepage(page, offset, length);
4520fb3c
JK
3045}
3046
53e87268 3047static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3048 unsigned int offset,
3049 unsigned int length)
4520fb3c
JK
3050{
3051 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3052
ca99fdd2 3053 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3054
ac27a0ec
DK
3055 /*
3056 * If it's a full truncate we just forget about the pending dirtying
3057 */
ca99fdd2 3058 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
3059 ClearPageChecked(page);
3060
ca99fdd2 3061 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3062}
3063
3064/* Wrapper for aops... */
3065static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3066 unsigned int offset,
3067 unsigned int length)
53e87268 3068{
ca99fdd2 3069 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3070}
3071
617ba13b 3072static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3073{
617ba13b 3074 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3075
0562e0ba
JZ
3076 trace_ext4_releasepage(page);
3077
e1c36595
JK
3078 /* Page has dirty journalled data -> cannot release */
3079 if (PageChecked(page))
ac27a0ec 3080 return 0;
0390131b
FM
3081 if (journal)
3082 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3083 else
3084 return try_to_free_buffers(page);
ac27a0ec
DK
3085}
3086
2ed88685
TT
3087/*
3088 * ext4_get_block used when preparing for a DIO write or buffer write.
3089 * We allocate an uinitialized extent if blocks haven't been allocated.
3090 * The extent will be converted to initialized after the IO is complete.
3091 */
f19d5870 3092int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3093 struct buffer_head *bh_result, int create)
3094{
c7064ef1 3095 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3096 inode->i_ino, create);
2ed88685
TT
3097 return _ext4_get_block(inode, iblock, bh_result,
3098 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3099}
3100
2dcba478 3101static int ext4_get_block_overwrite(struct inode *inode, sector_t iblock,
8b0f165f 3102 struct buffer_head *bh_result, int create)
729f52c6 3103{
2dcba478
JK
3104 int ret;
3105
3106 ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n",
8b0f165f 3107 inode->i_ino, create);
2dcba478
JK
3108 ret = _ext4_get_block(inode, iblock, bh_result, 0);
3109 /*
3110 * Blocks should have been preallocated! ext4_file_write_iter() checks
3111 * that.
3112 */
3113 WARN_ON_ONCE(!buffer_mapped(bh_result));
3114
3115 return ret;
729f52c6
ZL
3116}
3117
ba5843f5
JK
3118#ifdef CONFIG_FS_DAX
3119int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3120 struct buffer_head *bh_result, int create)
ed923b57 3121{
ba5843f5
JK
3122 int ret, err;
3123 int credits;
3124 struct ext4_map_blocks map;
3125 handle_t *handle = NULL;
3126 int flags = 0;
c86d8db3 3127
ba5843f5 3128 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
ed923b57 3129 inode->i_ino, create);
ba5843f5
JK
3130 map.m_lblk = iblock;
3131 map.m_len = bh_result->b_size >> inode->i_blkbits;
3132 credits = ext4_chunk_trans_blocks(inode, map.m_len);
3133 if (create) {
3134 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3135 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3136 if (IS_ERR(handle)) {
3137 ret = PTR_ERR(handle);
3138 return ret;
3139 }
3140 }
3141
3142 ret = ext4_map_blocks(handle, inode, &map, flags);
3143 if (create) {
3144 err = ext4_journal_stop(handle);
3145 if (ret >= 0 && err < 0)
3146 ret = err;
3147 }
3148 if (ret <= 0)
3149 goto out;
3150 if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3151 int err2;
3152
3153 /*
3154 * We are protected by i_mmap_sem so we know block cannot go
3155 * away from under us even though we dropped i_data_sem.
3156 * Convert extent to written and write zeros there.
3157 *
3158 * Note: We may get here even when create == 0.
3159 */
3160 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3161 if (IS_ERR(handle)) {
3162 ret = PTR_ERR(handle);
3163 goto out;
3164 }
3165
3166 err = ext4_map_blocks(handle, inode, &map,
3167 EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3168 if (err < 0)
3169 ret = err;
3170 err2 = ext4_journal_stop(handle);
3171 if (err2 < 0 && ret > 0)
3172 ret = err2;
3173 }
3174out:
3175 WARN_ON_ONCE(ret == 0 && create);
3176 if (ret > 0) {
3177 map_bh(bh_result, inode->i_sb, map.m_pblk);
3178 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
3179 map.m_flags;
3180 /*
3181 * At least for now we have to clear BH_New so that DAX code
3182 * doesn't attempt to zero blocks again in a racy way.
3183 */
3184 bh_result->b_state &= ~(1 << BH_New);
3185 bh_result->b_size = map.m_len << inode->i_blkbits;
3186 ret = 0;
3187 }
3188 return ret;
ed923b57 3189}
ba5843f5 3190#endif
ed923b57 3191
4c0425ff 3192static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3193 ssize_t size, void *private)
4c0425ff
MC
3194{
3195 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3196
97a851ed 3197 /* if not async direct IO just return */
7b7a8665 3198 if (!io_end)
97a851ed 3199 return;
4b70df18 3200
88635ca2 3201 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3202 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3203 iocb->private, io_end->inode->i_ino, iocb, offset,
3204 size);
8d5d02e6 3205
b5a7e970 3206 iocb->private = NULL;
4c0425ff
MC
3207 io_end->offset = offset;
3208 io_end->size = size;
7b7a8665 3209 ext4_put_io_end(io_end);
4c0425ff 3210}
c7064ef1 3211
4c0425ff
MC
3212/*
3213 * For ext4 extent files, ext4 will do direct-io write to holes,
3214 * preallocated extents, and those write extend the file, no need to
3215 * fall back to buffered IO.
3216 *
556615dc 3217 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3218 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3219 * still keep the range to write as unwritten.
4c0425ff 3220 *
69c499d1 3221 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3222 * For async direct IO, since the IO may still pending when return, we
25985edc 3223 * set up an end_io call back function, which will do the conversion
8d5d02e6 3224 * when async direct IO completed.
4c0425ff
MC
3225 *
3226 * If the O_DIRECT write will extend the file then add this inode to the
3227 * orphan list. So recovery will truncate it back to the original size
3228 * if the machine crashes during the write.
3229 *
3230 */
6f673763
OS
3231static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3232 loff_t offset)
4c0425ff
MC
3233{
3234 struct file *file = iocb->ki_filp;
3235 struct inode *inode = file->f_mapping->host;
3236 ssize_t ret;
a6cbcd4a 3237 size_t count = iov_iter_count(iter);
69c499d1
TT
3238 int overwrite = 0;
3239 get_block_t *get_block_func = NULL;
3240 int dio_flags = 0;
4c0425ff 3241 loff_t final_size = offset + count;
97a851ed 3242 ext4_io_end_t *io_end = NULL;
729f52c6 3243
69c499d1 3244 /* Use the old path for reads and writes beyond i_size. */
6f673763
OS
3245 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3246 return ext4_ind_direct_IO(iocb, iter, offset);
4bd809db 3247
69c499d1 3248 BUG_ON(iocb->private == NULL);
4bd809db 3249
e8340395
JK
3250 /*
3251 * Make all waiters for direct IO properly wait also for extent
3252 * conversion. This also disallows race between truncate() and
3253 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3254 */
6f673763 3255 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3256 inode_dio_begin(inode);
e8340395 3257
69c499d1
TT
3258 /* If we do a overwrite dio, i_mutex locking can be released */
3259 overwrite = *((int *)iocb->private);
4bd809db 3260
2dcba478 3261 if (overwrite)
5955102c 3262 inode_unlock(inode);
8d5d02e6 3263
69c499d1
TT
3264 /*
3265 * We could direct write to holes and fallocate.
3266 *
3267 * Allocated blocks to fill the hole are marked as
556615dc 3268 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
3269 * the stale data before DIO complete the data IO.
3270 *
3271 * As to previously fallocated extents, ext4 get_block will
3272 * just simply mark the buffer mapped but still keep the
556615dc 3273 * extents unwritten.
69c499d1
TT
3274 *
3275 * For non AIO case, we will convert those unwritten extents
3276 * to written after return back from blockdev_direct_IO.
3277 *
3278 * For async DIO, the conversion needs to be deferred when the
3279 * IO is completed. The ext4 end_io callback function will be
3280 * called to take care of the conversion work. Here for async
3281 * case, we allocate an io_end structure to hook to the iocb.
3282 */
3283 iocb->private = NULL;
69c499d1 3284 if (overwrite) {
2dcba478 3285 get_block_func = ext4_get_block_overwrite;
69c499d1 3286 } else {
74dae427
JK
3287 ext4_inode_aio_set(inode, NULL);
3288 if (!is_sync_kiocb(iocb)) {
3289 io_end = ext4_init_io_end(inode, GFP_NOFS);
3290 if (!io_end) {
3291 ret = -ENOMEM;
3292 goto retake_lock;
3293 }
3294 /*
3295 * Grab reference for DIO. Will be dropped in
3296 * ext4_end_io_dio()
3297 */
3298 iocb->private = ext4_get_io_end(io_end);
3299 /*
3300 * we save the io structure for current async direct
3301 * IO, so that later ext4_map_blocks() could flag the
3302 * io structure whether there is a unwritten extents
3303 * needs to be converted when IO is completed.
3304 */
3305 ext4_inode_aio_set(inode, io_end);
3306 }
69c499d1
TT
3307 get_block_func = ext4_get_block_write;
3308 dio_flags = DIO_LOCKING;
3309 }
2058f83a
MH
3310#ifdef CONFIG_EXT4_FS_ENCRYPTION
3311 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3312#endif
923ae0ff 3313 if (IS_DAX(inode))
a95cd631 3314 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
923ae0ff
RZ
3315 ext4_end_io_dio, dio_flags);
3316 else
17f8c842 3317 ret = __blockdev_direct_IO(iocb, inode,
923ae0ff
RZ
3318 inode->i_sb->s_bdev, iter, offset,
3319 get_block_func,
3320 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3321
69c499d1 3322 /*
97a851ed
JK
3323 * Put our reference to io_end. This can free the io_end structure e.g.
3324 * in sync IO case or in case of error. It can even perform extent
3325 * conversion if all bios we submitted finished before we got here.
3326 * Note that in that case iocb->private can be already set to NULL
3327 * here.
69c499d1 3328 */
97a851ed
JK
3329 if (io_end) {
3330 ext4_inode_aio_set(inode, NULL);
3331 ext4_put_io_end(io_end);
3332 /*
3333 * When no IO was submitted ext4_end_io_dio() was not
3334 * called so we have to put iocb's reference.
3335 */
3336 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3337 WARN_ON(iocb->private != io_end);
3338 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3339 ext4_put_io_end(io_end);
3340 iocb->private = NULL;
3341 }
3342 }
3343 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3344 EXT4_STATE_DIO_UNWRITTEN)) {
3345 int err;
3346 /*
3347 * for non AIO case, since the IO is already
3348 * completed, we could do the conversion right here
3349 */
6b523df4 3350 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3351 offset, ret);
3352 if (err < 0)
3353 ret = err;
3354 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3355 }
4bd809db 3356
69c499d1 3357retake_lock:
6f673763 3358 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3359 inode_dio_end(inode);
69c499d1 3360 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3361 if (overwrite)
5955102c 3362 inode_lock(inode);
8d5d02e6 3363
69c499d1 3364 return ret;
4c0425ff
MC
3365}
3366
22c6186e
OS
3367static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3368 loff_t offset)
4c0425ff
MC
3369{
3370 struct file *file = iocb->ki_filp;
3371 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3372 size_t count = iov_iter_count(iter);
0562e0ba 3373 ssize_t ret;
4c0425ff 3374
2058f83a
MH
3375#ifdef CONFIG_EXT4_FS_ENCRYPTION
3376 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3377 return 0;
3378#endif
3379
84ebd795
TT
3380 /*
3381 * If we are doing data journalling we don't support O_DIRECT
3382 */
3383 if (ext4_should_journal_data(inode))
3384 return 0;
3385
46c7f254
TM
3386 /* Let buffer I/O handle the inline data case. */
3387 if (ext4_has_inline_data(inode))
3388 return 0;
3389
6f673763 3390 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
12e9b892 3391 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
6f673763 3392 ret = ext4_ext_direct_IO(iocb, iter, offset);
0562e0ba 3393 else
6f673763
OS
3394 ret = ext4_ind_direct_IO(iocb, iter, offset);
3395 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3396 return ret;
4c0425ff
MC
3397}
3398
ac27a0ec 3399/*
617ba13b 3400 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3401 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3402 * much here because ->set_page_dirty is called under VFS locks. The page is
3403 * not necessarily locked.
3404 *
3405 * We cannot just dirty the page and leave attached buffers clean, because the
3406 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3407 * or jbddirty because all the journalling code will explode.
3408 *
3409 * So what we do is to mark the page "pending dirty" and next time writepage
3410 * is called, propagate that into the buffers appropriately.
3411 */
617ba13b 3412static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3413{
3414 SetPageChecked(page);
3415 return __set_page_dirty_nobuffers(page);
3416}
3417
74d553aa 3418static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3419 .readpage = ext4_readpage,
3420 .readpages = ext4_readpages,
43ce1d23 3421 .writepage = ext4_writepage,
20970ba6 3422 .writepages = ext4_writepages,
8ab22b9a 3423 .write_begin = ext4_write_begin,
74d553aa 3424 .write_end = ext4_write_end,
8ab22b9a
HH
3425 .bmap = ext4_bmap,
3426 .invalidatepage = ext4_invalidatepage,
3427 .releasepage = ext4_releasepage,
3428 .direct_IO = ext4_direct_IO,
3429 .migratepage = buffer_migrate_page,
3430 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3431 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3432};
3433
617ba13b 3434static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3435 .readpage = ext4_readpage,
3436 .readpages = ext4_readpages,
43ce1d23 3437 .writepage = ext4_writepage,
20970ba6 3438 .writepages = ext4_writepages,
8ab22b9a
HH
3439 .write_begin = ext4_write_begin,
3440 .write_end = ext4_journalled_write_end,
3441 .set_page_dirty = ext4_journalled_set_page_dirty,
3442 .bmap = ext4_bmap,
4520fb3c 3443 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3444 .releasepage = ext4_releasepage,
84ebd795 3445 .direct_IO = ext4_direct_IO,
8ab22b9a 3446 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3447 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3448};
3449
64769240 3450static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3451 .readpage = ext4_readpage,
3452 .readpages = ext4_readpages,
43ce1d23 3453 .writepage = ext4_writepage,
20970ba6 3454 .writepages = ext4_writepages,
8ab22b9a
HH
3455 .write_begin = ext4_da_write_begin,
3456 .write_end = ext4_da_write_end,
3457 .bmap = ext4_bmap,
3458 .invalidatepage = ext4_da_invalidatepage,
3459 .releasepage = ext4_releasepage,
3460 .direct_IO = ext4_direct_IO,
3461 .migratepage = buffer_migrate_page,
3462 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3463 .error_remove_page = generic_error_remove_page,
64769240
AT
3464};
3465
617ba13b 3466void ext4_set_aops(struct inode *inode)
ac27a0ec 3467{
3d2b1582
LC
3468 switch (ext4_inode_journal_mode(inode)) {
3469 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3470 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3471 break;
3472 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3473 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3474 break;
3475 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3476 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3477 return;
3d2b1582
LC
3478 default:
3479 BUG();
3480 }
74d553aa
TT
3481 if (test_opt(inode->i_sb, DELALLOC))
3482 inode->i_mapping->a_ops = &ext4_da_aops;
3483 else
3484 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3485}
3486
923ae0ff 3487static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3488 struct address_space *mapping, loff_t from, loff_t length)
3489{
3490 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3491 unsigned offset = from & (PAGE_CACHE_SIZE-1);
923ae0ff 3492 unsigned blocksize, pos;
d863dc36
LC
3493 ext4_lblk_t iblock;
3494 struct inode *inode = mapping->host;
3495 struct buffer_head *bh;
3496 struct page *page;
3497 int err = 0;
3498
3499 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
c62d2555 3500 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3501 if (!page)
3502 return -ENOMEM;
3503
3504 blocksize = inode->i_sb->s_blocksize;
d863dc36
LC
3505
3506 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3507
3508 if (!page_has_buffers(page))
3509 create_empty_buffers(page, blocksize, 0);
3510
3511 /* Find the buffer that contains "offset" */
3512 bh = page_buffers(page);
3513 pos = blocksize;
3514 while (offset >= pos) {
3515 bh = bh->b_this_page;
3516 iblock++;
3517 pos += blocksize;
3518 }
d863dc36
LC
3519 if (buffer_freed(bh)) {
3520 BUFFER_TRACE(bh, "freed: skip");
3521 goto unlock;
3522 }
d863dc36
LC
3523 if (!buffer_mapped(bh)) {
3524 BUFFER_TRACE(bh, "unmapped");
3525 ext4_get_block(inode, iblock, bh, 0);
3526 /* unmapped? It's a hole - nothing to do */
3527 if (!buffer_mapped(bh)) {
3528 BUFFER_TRACE(bh, "still unmapped");
3529 goto unlock;
3530 }
3531 }
3532
3533 /* Ok, it's mapped. Make sure it's up-to-date */
3534 if (PageUptodate(page))
3535 set_buffer_uptodate(bh);
3536
3537 if (!buffer_uptodate(bh)) {
3538 err = -EIO;
3539 ll_rw_block(READ, 1, &bh);
3540 wait_on_buffer(bh);
3541 /* Uhhuh. Read error. Complain and punt. */
3542 if (!buffer_uptodate(bh))
3543 goto unlock;
c9c7429c
MH
3544 if (S_ISREG(inode->i_mode) &&
3545 ext4_encrypted_inode(inode)) {
3546 /* We expect the key to be set. */
3547 BUG_ON(!ext4_has_encryption_key(inode));
3548 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3684de8c 3549 WARN_ON_ONCE(ext4_decrypt(page));
c9c7429c 3550 }
d863dc36 3551 }
d863dc36
LC
3552 if (ext4_should_journal_data(inode)) {
3553 BUFFER_TRACE(bh, "get write access");
3554 err = ext4_journal_get_write_access(handle, bh);
3555 if (err)
3556 goto unlock;
3557 }
d863dc36 3558 zero_user(page, offset, length);
d863dc36
LC
3559 BUFFER_TRACE(bh, "zeroed end of block");
3560
d863dc36
LC
3561 if (ext4_should_journal_data(inode)) {
3562 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3563 } else {
353eefd3 3564 err = 0;
d863dc36 3565 mark_buffer_dirty(bh);
0713ed0c
LC
3566 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3567 err = ext4_jbd2_file_inode(handle, inode);
3568 }
d863dc36
LC
3569
3570unlock:
3571 unlock_page(page);
3572 page_cache_release(page);
3573 return err;
3574}
3575
923ae0ff
RZ
3576/*
3577 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3578 * starting from file offset 'from'. The range to be zero'd must
3579 * be contained with in one block. If the specified range exceeds
3580 * the end of the block it will be shortened to end of the block
3581 * that cooresponds to 'from'
3582 */
3583static int ext4_block_zero_page_range(handle_t *handle,
3584 struct address_space *mapping, loff_t from, loff_t length)
3585{
3586 struct inode *inode = mapping->host;
3587 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3588 unsigned blocksize = inode->i_sb->s_blocksize;
3589 unsigned max = blocksize - (offset & (blocksize - 1));
3590
3591 /*
3592 * correct length if it does not fall between
3593 * 'from' and the end of the block
3594 */
3595 if (length > max || length < 0)
3596 length = max;
3597
3598 if (IS_DAX(inode))
3599 return dax_zero_page_range(inode, from, length, ext4_get_block);
3600 return __ext4_block_zero_page_range(handle, mapping, from, length);
3601}
3602
94350ab5
MW
3603/*
3604 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3605 * up to the end of the block which corresponds to `from'.
3606 * This required during truncate. We need to physically zero the tail end
3607 * of that block so it doesn't yield old data if the file is later grown.
3608 */
c197855e 3609static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3610 struct address_space *mapping, loff_t from)
3611{
3612 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3613 unsigned length;
3614 unsigned blocksize;
3615 struct inode *inode = mapping->host;
3616
3617 blocksize = inode->i_sb->s_blocksize;
3618 length = blocksize - (offset & (blocksize - 1));
3619
3620 return ext4_block_zero_page_range(handle, mapping, from, length);
3621}
3622
a87dd18c
LC
3623int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3624 loff_t lstart, loff_t length)
3625{
3626 struct super_block *sb = inode->i_sb;
3627 struct address_space *mapping = inode->i_mapping;
e1be3a92 3628 unsigned partial_start, partial_end;
a87dd18c
LC
3629 ext4_fsblk_t start, end;
3630 loff_t byte_end = (lstart + length - 1);
3631 int err = 0;
3632
e1be3a92
LC
3633 partial_start = lstart & (sb->s_blocksize - 1);
3634 partial_end = byte_end & (sb->s_blocksize - 1);
3635
a87dd18c
LC
3636 start = lstart >> sb->s_blocksize_bits;
3637 end = byte_end >> sb->s_blocksize_bits;
3638
3639 /* Handle partial zero within the single block */
e1be3a92
LC
3640 if (start == end &&
3641 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3642 err = ext4_block_zero_page_range(handle, mapping,
3643 lstart, length);
3644 return err;
3645 }
3646 /* Handle partial zero out on the start of the range */
e1be3a92 3647 if (partial_start) {
a87dd18c
LC
3648 err = ext4_block_zero_page_range(handle, mapping,
3649 lstart, sb->s_blocksize);
3650 if (err)
3651 return err;
3652 }
3653 /* Handle partial zero out on the end of the range */
e1be3a92 3654 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3655 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3656 byte_end - partial_end,
3657 partial_end + 1);
a87dd18c
LC
3658 return err;
3659}
3660
91ef4caf
DG
3661int ext4_can_truncate(struct inode *inode)
3662{
91ef4caf
DG
3663 if (S_ISREG(inode->i_mode))
3664 return 1;
3665 if (S_ISDIR(inode->i_mode))
3666 return 1;
3667 if (S_ISLNK(inode->i_mode))
3668 return !ext4_inode_is_fast_symlink(inode);
3669 return 0;
3670}
3671
01127848
JK
3672/*
3673 * We have to make sure i_disksize gets properly updated before we truncate
3674 * page cache due to hole punching or zero range. Otherwise i_disksize update
3675 * can get lost as it may have been postponed to submission of writeback but
3676 * that will never happen after we truncate page cache.
3677 */
3678int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3679 loff_t len)
3680{
3681 handle_t *handle;
3682 loff_t size = i_size_read(inode);
3683
5955102c 3684 WARN_ON(!inode_is_locked(inode));
01127848
JK
3685 if (offset > size || offset + len < size)
3686 return 0;
3687
3688 if (EXT4_I(inode)->i_disksize >= size)
3689 return 0;
3690
3691 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3692 if (IS_ERR(handle))
3693 return PTR_ERR(handle);
3694 ext4_update_i_disksize(inode, size);
3695 ext4_mark_inode_dirty(handle, inode);
3696 ext4_journal_stop(handle);
3697
3698 return 0;
3699}
3700
a4bb6b64
AH
3701/*
3702 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3703 * associated with the given offset and length
3704 *
3705 * @inode: File inode
3706 * @offset: The offset where the hole will begin
3707 * @len: The length of the hole
3708 *
4907cb7b 3709 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3710 */
3711
aeb2817a 3712int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3713{
26a4c0c6
TT
3714 struct super_block *sb = inode->i_sb;
3715 ext4_lblk_t first_block, stop_block;
3716 struct address_space *mapping = inode->i_mapping;
a87dd18c 3717 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3718 handle_t *handle;
3719 unsigned int credits;
3720 int ret = 0;
3721
a4bb6b64 3722 if (!S_ISREG(inode->i_mode))
73355192 3723 return -EOPNOTSUPP;
a4bb6b64 3724
b8a86845 3725 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3726
26a4c0c6
TT
3727 /*
3728 * Write out all dirty pages to avoid race conditions
3729 * Then release them.
3730 */
3731 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3732 ret = filemap_write_and_wait_range(mapping, offset,
3733 offset + length - 1);
3734 if (ret)
3735 return ret;
3736 }
3737
5955102c 3738 inode_lock(inode);
9ef06cec 3739
26a4c0c6
TT
3740 /* No need to punch hole beyond i_size */
3741 if (offset >= inode->i_size)
3742 goto out_mutex;
3743
3744 /*
3745 * If the hole extends beyond i_size, set the hole
3746 * to end after the page that contains i_size
3747 */
3748 if (offset + length > inode->i_size) {
3749 length = inode->i_size +
3750 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3751 offset;
3752 }
3753
a361293f
JK
3754 if (offset & (sb->s_blocksize - 1) ||
3755 (offset + length) & (sb->s_blocksize - 1)) {
3756 /*
3757 * Attach jinode to inode for jbd2 if we do any zeroing of
3758 * partial block
3759 */
3760 ret = ext4_inode_attach_jinode(inode);
3761 if (ret < 0)
3762 goto out_mutex;
3763
3764 }
3765
ea3d7209
JK
3766 /* Wait all existing dio workers, newcomers will block on i_mutex */
3767 ext4_inode_block_unlocked_dio(inode);
3768 inode_dio_wait(inode);
3769
3770 /*
3771 * Prevent page faults from reinstantiating pages we have released from
3772 * page cache.
3773 */
3774 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
3775 first_block_offset = round_up(offset, sb->s_blocksize);
3776 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3777
a87dd18c 3778 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
3779 if (last_block_offset > first_block_offset) {
3780 ret = ext4_update_disksize_before_punch(inode, offset, length);
3781 if (ret)
3782 goto out_dio;
a87dd18c
LC
3783 truncate_pagecache_range(inode, first_block_offset,
3784 last_block_offset);
01127848 3785 }
26a4c0c6
TT
3786
3787 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3788 credits = ext4_writepage_trans_blocks(inode);
3789 else
3790 credits = ext4_blocks_for_truncate(inode);
3791 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3792 if (IS_ERR(handle)) {
3793 ret = PTR_ERR(handle);
3794 ext4_std_error(sb, ret);
3795 goto out_dio;
3796 }
3797
a87dd18c
LC
3798 ret = ext4_zero_partial_blocks(handle, inode, offset,
3799 length);
3800 if (ret)
3801 goto out_stop;
26a4c0c6
TT
3802
3803 first_block = (offset + sb->s_blocksize - 1) >>
3804 EXT4_BLOCK_SIZE_BITS(sb);
3805 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3806
3807 /* If there are no blocks to remove, return now */
3808 if (first_block >= stop_block)
3809 goto out_stop;
3810
3811 down_write(&EXT4_I(inode)->i_data_sem);
3812 ext4_discard_preallocations(inode);
3813
3814 ret = ext4_es_remove_extent(inode, first_block,
3815 stop_block - first_block);
3816 if (ret) {
3817 up_write(&EXT4_I(inode)->i_data_sem);
3818 goto out_stop;
3819 }
3820
3821 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3822 ret = ext4_ext_remove_space(inode, first_block,
3823 stop_block - 1);
3824 else
4f579ae7 3825 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3826 stop_block);
3827
819c4920 3828 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3829 if (IS_SYNC(inode))
3830 ext4_handle_sync(handle);
e251f9bc 3831
26a4c0c6
TT
3832 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3833 ext4_mark_inode_dirty(handle, inode);
3834out_stop:
3835 ext4_journal_stop(handle);
3836out_dio:
ea3d7209 3837 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
3838 ext4_inode_resume_unlocked_dio(inode);
3839out_mutex:
5955102c 3840 inode_unlock(inode);
26a4c0c6 3841 return ret;
a4bb6b64
AH
3842}
3843
a361293f
JK
3844int ext4_inode_attach_jinode(struct inode *inode)
3845{
3846 struct ext4_inode_info *ei = EXT4_I(inode);
3847 struct jbd2_inode *jinode;
3848
3849 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3850 return 0;
3851
3852 jinode = jbd2_alloc_inode(GFP_KERNEL);
3853 spin_lock(&inode->i_lock);
3854 if (!ei->jinode) {
3855 if (!jinode) {
3856 spin_unlock(&inode->i_lock);
3857 return -ENOMEM;
3858 }
3859 ei->jinode = jinode;
3860 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3861 jinode = NULL;
3862 }
3863 spin_unlock(&inode->i_lock);
3864 if (unlikely(jinode != NULL))
3865 jbd2_free_inode(jinode);
3866 return 0;
3867}
3868
ac27a0ec 3869/*
617ba13b 3870 * ext4_truncate()
ac27a0ec 3871 *
617ba13b
MC
3872 * We block out ext4_get_block() block instantiations across the entire
3873 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3874 * simultaneously on behalf of the same inode.
3875 *
42b2aa86 3876 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3877 * is one core, guiding principle: the file's tree must always be consistent on
3878 * disk. We must be able to restart the truncate after a crash.
3879 *
3880 * The file's tree may be transiently inconsistent in memory (although it
3881 * probably isn't), but whenever we close off and commit a journal transaction,
3882 * the contents of (the filesystem + the journal) must be consistent and
3883 * restartable. It's pretty simple, really: bottom up, right to left (although
3884 * left-to-right works OK too).
3885 *
3886 * Note that at recovery time, journal replay occurs *before* the restart of
3887 * truncate against the orphan inode list.
3888 *
3889 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3890 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3891 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3892 * ext4_truncate() to have another go. So there will be instantiated blocks
3893 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3894 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3895 * ext4_truncate() run will find them and release them.
ac27a0ec 3896 */
617ba13b 3897void ext4_truncate(struct inode *inode)
ac27a0ec 3898{
819c4920
TT
3899 struct ext4_inode_info *ei = EXT4_I(inode);
3900 unsigned int credits;
3901 handle_t *handle;
3902 struct address_space *mapping = inode->i_mapping;
819c4920 3903
19b5ef61
TT
3904 /*
3905 * There is a possibility that we're either freeing the inode
e04027e8 3906 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3907 * have i_mutex locked because it's not necessary.
3908 */
3909 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 3910 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
3911 trace_ext4_truncate_enter(inode);
3912
91ef4caf 3913 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3914 return;
3915
12e9b892 3916 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3917
5534fb5b 3918 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3919 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3920
aef1c851
TM
3921 if (ext4_has_inline_data(inode)) {
3922 int has_inline = 1;
3923
3924 ext4_inline_data_truncate(inode, &has_inline);
3925 if (has_inline)
3926 return;
3927 }
3928
a361293f
JK
3929 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3930 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3931 if (ext4_inode_attach_jinode(inode) < 0)
3932 return;
3933 }
3934
819c4920
TT
3935 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3936 credits = ext4_writepage_trans_blocks(inode);
3937 else
3938 credits = ext4_blocks_for_truncate(inode);
3939
3940 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3941 if (IS_ERR(handle)) {
3942 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3943 return;
3944 }
3945
eb3544c6
LC
3946 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3947 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3948
3949 /*
3950 * We add the inode to the orphan list, so that if this
3951 * truncate spans multiple transactions, and we crash, we will
3952 * resume the truncate when the filesystem recovers. It also
3953 * marks the inode dirty, to catch the new size.
3954 *
3955 * Implication: the file must always be in a sane, consistent
3956 * truncatable state while each transaction commits.
3957 */
3958 if (ext4_orphan_add(handle, inode))
3959 goto out_stop;
3960
3961 down_write(&EXT4_I(inode)->i_data_sem);
3962
3963 ext4_discard_preallocations(inode);
3964
ff9893dc 3965 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3966 ext4_ext_truncate(handle, inode);
ff9893dc 3967 else
819c4920
TT
3968 ext4_ind_truncate(handle, inode);
3969
3970 up_write(&ei->i_data_sem);
3971
3972 if (IS_SYNC(inode))
3973 ext4_handle_sync(handle);
3974
3975out_stop:
3976 /*
3977 * If this was a simple ftruncate() and the file will remain alive,
3978 * then we need to clear up the orphan record which we created above.
3979 * However, if this was a real unlink then we were called by
58d86a50 3980 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
3981 * orphan info for us.
3982 */
3983 if (inode->i_nlink)
3984 ext4_orphan_del(handle, inode);
3985
3986 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3987 ext4_mark_inode_dirty(handle, inode);
3988 ext4_journal_stop(handle);
ac27a0ec 3989
0562e0ba 3990 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3991}
3992
ac27a0ec 3993/*
617ba13b 3994 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3995 * underlying buffer_head on success. If 'in_mem' is true, we have all
3996 * data in memory that is needed to recreate the on-disk version of this
3997 * inode.
3998 */
617ba13b
MC
3999static int __ext4_get_inode_loc(struct inode *inode,
4000 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4001{
240799cd
TT
4002 struct ext4_group_desc *gdp;
4003 struct buffer_head *bh;
4004 struct super_block *sb = inode->i_sb;
4005 ext4_fsblk_t block;
4006 int inodes_per_block, inode_offset;
4007
3a06d778 4008 iloc->bh = NULL;
240799cd 4009 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4010 return -EFSCORRUPTED;
ac27a0ec 4011
240799cd
TT
4012 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4013 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4014 if (!gdp)
ac27a0ec
DK
4015 return -EIO;
4016
240799cd
TT
4017 /*
4018 * Figure out the offset within the block group inode table
4019 */
00d09882 4020 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4021 inode_offset = ((inode->i_ino - 1) %
4022 EXT4_INODES_PER_GROUP(sb));
4023 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4024 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4025
4026 bh = sb_getblk(sb, block);
aebf0243 4027 if (unlikely(!bh))
860d21e2 4028 return -ENOMEM;
ac27a0ec
DK
4029 if (!buffer_uptodate(bh)) {
4030 lock_buffer(bh);
9c83a923
HK
4031
4032 /*
4033 * If the buffer has the write error flag, we have failed
4034 * to write out another inode in the same block. In this
4035 * case, we don't have to read the block because we may
4036 * read the old inode data successfully.
4037 */
4038 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4039 set_buffer_uptodate(bh);
4040
ac27a0ec
DK
4041 if (buffer_uptodate(bh)) {
4042 /* someone brought it uptodate while we waited */
4043 unlock_buffer(bh);
4044 goto has_buffer;
4045 }
4046
4047 /*
4048 * If we have all information of the inode in memory and this
4049 * is the only valid inode in the block, we need not read the
4050 * block.
4051 */
4052 if (in_mem) {
4053 struct buffer_head *bitmap_bh;
240799cd 4054 int i, start;
ac27a0ec 4055
240799cd 4056 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4057
240799cd
TT
4058 /* Is the inode bitmap in cache? */
4059 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4060 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4061 goto make_io;
4062
4063 /*
4064 * If the inode bitmap isn't in cache then the
4065 * optimisation may end up performing two reads instead
4066 * of one, so skip it.
4067 */
4068 if (!buffer_uptodate(bitmap_bh)) {
4069 brelse(bitmap_bh);
4070 goto make_io;
4071 }
240799cd 4072 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4073 if (i == inode_offset)
4074 continue;
617ba13b 4075 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4076 break;
4077 }
4078 brelse(bitmap_bh);
240799cd 4079 if (i == start + inodes_per_block) {
ac27a0ec
DK
4080 /* all other inodes are free, so skip I/O */
4081 memset(bh->b_data, 0, bh->b_size);
4082 set_buffer_uptodate(bh);
4083 unlock_buffer(bh);
4084 goto has_buffer;
4085 }
4086 }
4087
4088make_io:
240799cd
TT
4089 /*
4090 * If we need to do any I/O, try to pre-readahead extra
4091 * blocks from the inode table.
4092 */
4093 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4094 ext4_fsblk_t b, end, table;
4095 unsigned num;
0d606e2c 4096 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4097
4098 table = ext4_inode_table(sb, gdp);
b713a5ec 4099 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4100 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4101 if (table > b)
4102 b = table;
0d606e2c 4103 end = b + ra_blks;
240799cd 4104 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4105 if (ext4_has_group_desc_csum(sb))
560671a0 4106 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4107 table += num / inodes_per_block;
4108 if (end > table)
4109 end = table;
4110 while (b <= end)
4111 sb_breadahead(sb, b++);
4112 }
4113
ac27a0ec
DK
4114 /*
4115 * There are other valid inodes in the buffer, this inode
4116 * has in-inode xattrs, or we don't have this inode in memory.
4117 * Read the block from disk.
4118 */
0562e0ba 4119 trace_ext4_load_inode(inode);
ac27a0ec
DK
4120 get_bh(bh);
4121 bh->b_end_io = end_buffer_read_sync;
65299a3b 4122 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4123 wait_on_buffer(bh);
4124 if (!buffer_uptodate(bh)) {
c398eda0
TT
4125 EXT4_ERROR_INODE_BLOCK(inode, block,
4126 "unable to read itable block");
ac27a0ec
DK
4127 brelse(bh);
4128 return -EIO;
4129 }
4130 }
4131has_buffer:
4132 iloc->bh = bh;
4133 return 0;
4134}
4135
617ba13b 4136int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4137{
4138 /* We have all inode data except xattrs in memory here. */
617ba13b 4139 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4140 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4141}
4142
617ba13b 4143void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4144{
617ba13b 4145 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4146 unsigned int new_fl = 0;
ac27a0ec 4147
617ba13b 4148 if (flags & EXT4_SYNC_FL)
00a1a053 4149 new_fl |= S_SYNC;
617ba13b 4150 if (flags & EXT4_APPEND_FL)
00a1a053 4151 new_fl |= S_APPEND;
617ba13b 4152 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4153 new_fl |= S_IMMUTABLE;
617ba13b 4154 if (flags & EXT4_NOATIME_FL)
00a1a053 4155 new_fl |= S_NOATIME;
617ba13b 4156 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4157 new_fl |= S_DIRSYNC;
923ae0ff
RZ
4158 if (test_opt(inode->i_sb, DAX))
4159 new_fl |= S_DAX;
5f16f322 4160 inode_set_flags(inode, new_fl,
923ae0ff 4161 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4162}
4163
ff9ddf7e
JK
4164/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4165void ext4_get_inode_flags(struct ext4_inode_info *ei)
4166{
84a8dce2
DM
4167 unsigned int vfs_fl;
4168 unsigned long old_fl, new_fl;
4169
4170 do {
4171 vfs_fl = ei->vfs_inode.i_flags;
4172 old_fl = ei->i_flags;
4173 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4174 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4175 EXT4_DIRSYNC_FL);
4176 if (vfs_fl & S_SYNC)
4177 new_fl |= EXT4_SYNC_FL;
4178 if (vfs_fl & S_APPEND)
4179 new_fl |= EXT4_APPEND_FL;
4180 if (vfs_fl & S_IMMUTABLE)
4181 new_fl |= EXT4_IMMUTABLE_FL;
4182 if (vfs_fl & S_NOATIME)
4183 new_fl |= EXT4_NOATIME_FL;
4184 if (vfs_fl & S_DIRSYNC)
4185 new_fl |= EXT4_DIRSYNC_FL;
4186 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4187}
de9a55b8 4188
0fc1b451 4189static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4190 struct ext4_inode_info *ei)
0fc1b451
AK
4191{
4192 blkcnt_t i_blocks ;
8180a562
AK
4193 struct inode *inode = &(ei->vfs_inode);
4194 struct super_block *sb = inode->i_sb;
0fc1b451 4195
e2b911c5 4196 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4197 /* we are using combined 48 bit field */
4198 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4199 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4200 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4201 /* i_blocks represent file system block size */
4202 return i_blocks << (inode->i_blkbits - 9);
4203 } else {
4204 return i_blocks;
4205 }
0fc1b451
AK
4206 } else {
4207 return le32_to_cpu(raw_inode->i_blocks_lo);
4208 }
4209}
ff9ddf7e 4210
152a7b0a
TM
4211static inline void ext4_iget_extra_inode(struct inode *inode,
4212 struct ext4_inode *raw_inode,
4213 struct ext4_inode_info *ei)
4214{
4215 __le32 *magic = (void *)raw_inode +
4216 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4217 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4218 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4219 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4220 } else
4221 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4222}
4223
040cb378
LX
4224int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4225{
4226 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4227 return -EOPNOTSUPP;
4228 *projid = EXT4_I(inode)->i_projid;
4229 return 0;
4230}
4231
1d1fe1ee 4232struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4233{
617ba13b
MC
4234 struct ext4_iloc iloc;
4235 struct ext4_inode *raw_inode;
1d1fe1ee 4236 struct ext4_inode_info *ei;
1d1fe1ee 4237 struct inode *inode;
b436b9be 4238 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4239 long ret;
ac27a0ec 4240 int block;
08cefc7a
EB
4241 uid_t i_uid;
4242 gid_t i_gid;
040cb378 4243 projid_t i_projid;
ac27a0ec 4244
1d1fe1ee
DH
4245 inode = iget_locked(sb, ino);
4246 if (!inode)
4247 return ERR_PTR(-ENOMEM);
4248 if (!(inode->i_state & I_NEW))
4249 return inode;
4250
4251 ei = EXT4_I(inode);
7dc57615 4252 iloc.bh = NULL;
ac27a0ec 4253
1d1fe1ee
DH
4254 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4255 if (ret < 0)
ac27a0ec 4256 goto bad_inode;
617ba13b 4257 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4258
4259 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4260 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4261 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4262 EXT4_INODE_SIZE(inode->i_sb)) {
4263 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4264 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4265 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4266 ret = -EFSCORRUPTED;
814525f4
DW
4267 goto bad_inode;
4268 }
4269 } else
4270 ei->i_extra_isize = 0;
4271
4272 /* Precompute checksum seed for inode metadata */
9aa5d32b 4273 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4274 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4275 __u32 csum;
4276 __le32 inum = cpu_to_le32(inode->i_ino);
4277 __le32 gen = raw_inode->i_generation;
4278 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4279 sizeof(inum));
4280 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4281 sizeof(gen));
4282 }
4283
4284 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4285 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4286 ret = -EFSBADCRC;
814525f4
DW
4287 goto bad_inode;
4288 }
4289
ac27a0ec 4290 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4291 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4292 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
040cb378
LX
4293 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4294 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4295 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4296 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4297 else
4298 i_projid = EXT4_DEF_PROJID;
4299
af5bc92d 4300 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4301 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4302 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4303 }
08cefc7a
EB
4304 i_uid_write(inode, i_uid);
4305 i_gid_write(inode, i_gid);
040cb378 4306 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4307 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4308
353eb83c 4309 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4310 ei->i_inline_off = 0;
ac27a0ec
DK
4311 ei->i_dir_start_lookup = 0;
4312 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4313 /* We now have enough fields to check if the inode was active or not.
4314 * This is needed because nfsd might try to access dead inodes
4315 * the test is that same one that e2fsck uses
4316 * NeilBrown 1999oct15
4317 */
4318 if (inode->i_nlink == 0) {
393d1d1d
DTB
4319 if ((inode->i_mode == 0 ||
4320 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4321 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4322 /* this inode is deleted */
1d1fe1ee 4323 ret = -ESTALE;
ac27a0ec
DK
4324 goto bad_inode;
4325 }
4326 /* The only unlinked inodes we let through here have
4327 * valid i_mode and are being read by the orphan
4328 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4329 * the process of deleting those.
4330 * OR it is the EXT4_BOOT_LOADER_INO which is
4331 * not initialized on a new filesystem. */
ac27a0ec 4332 }
ac27a0ec 4333 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4334 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4335 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4336 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4337 ei->i_file_acl |=
4338 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4339 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4340 ei->i_disksize = inode->i_size;
a9e7f447
DM
4341#ifdef CONFIG_QUOTA
4342 ei->i_reserved_quota = 0;
4343#endif
ac27a0ec
DK
4344 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4345 ei->i_block_group = iloc.block_group;
a4912123 4346 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4347 /*
4348 * NOTE! The in-memory inode i_data array is in little-endian order
4349 * even on big-endian machines: we do NOT byteswap the block numbers!
4350 */
617ba13b 4351 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4352 ei->i_data[block] = raw_inode->i_block[block];
4353 INIT_LIST_HEAD(&ei->i_orphan);
4354
b436b9be
JK
4355 /*
4356 * Set transaction id's of transactions that have to be committed
4357 * to finish f[data]sync. We set them to currently running transaction
4358 * as we cannot be sure that the inode or some of its metadata isn't
4359 * part of the transaction - the inode could have been reclaimed and
4360 * now it is reread from disk.
4361 */
4362 if (journal) {
4363 transaction_t *transaction;
4364 tid_t tid;
4365
a931da6a 4366 read_lock(&journal->j_state_lock);
b436b9be
JK
4367 if (journal->j_running_transaction)
4368 transaction = journal->j_running_transaction;
4369 else
4370 transaction = journal->j_committing_transaction;
4371 if (transaction)
4372 tid = transaction->t_tid;
4373 else
4374 tid = journal->j_commit_sequence;
a931da6a 4375 read_unlock(&journal->j_state_lock);
b436b9be
JK
4376 ei->i_sync_tid = tid;
4377 ei->i_datasync_tid = tid;
4378 }
4379
0040d987 4380 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4381 if (ei->i_extra_isize == 0) {
4382 /* The extra space is currently unused. Use it. */
617ba13b
MC
4383 ei->i_extra_isize = sizeof(struct ext4_inode) -
4384 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4385 } else {
152a7b0a 4386 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4387 }
814525f4 4388 }
ac27a0ec 4389
ef7f3835
KS
4390 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4391 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4392 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4393 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4394
ed3654eb 4395 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4396 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4397 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4398 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4399 inode->i_version |=
4400 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4401 }
25ec56b5
JNC
4402 }
4403
c4b5a614 4404 ret = 0;
485c26ec 4405 if (ei->i_file_acl &&
1032988c 4406 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4407 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4408 ei->i_file_acl);
6a797d27 4409 ret = -EFSCORRUPTED;
485c26ec 4410 goto bad_inode;
f19d5870
TM
4411 } else if (!ext4_has_inline_data(inode)) {
4412 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4413 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4414 (S_ISLNK(inode->i_mode) &&
4415 !ext4_inode_is_fast_symlink(inode))))
4416 /* Validate extent which is part of inode */
4417 ret = ext4_ext_check_inode(inode);
4418 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4419 (S_ISLNK(inode->i_mode) &&
4420 !ext4_inode_is_fast_symlink(inode))) {
4421 /* Validate block references which are part of inode */
4422 ret = ext4_ind_check_inode(inode);
4423 }
fe2c8191 4424 }
567f3e9a 4425 if (ret)
de9a55b8 4426 goto bad_inode;
7a262f7c 4427
ac27a0ec 4428 if (S_ISREG(inode->i_mode)) {
617ba13b 4429 inode->i_op = &ext4_file_inode_operations;
be64f884 4430 inode->i_fop = &ext4_file_operations;
617ba13b 4431 ext4_set_aops(inode);
ac27a0ec 4432 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4433 inode->i_op = &ext4_dir_inode_operations;
4434 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4435 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4436 if (ext4_encrypted_inode(inode)) {
4437 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4438 ext4_set_aops(inode);
4439 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4440 inode->i_link = (char *)ei->i_data;
617ba13b 4441 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4442 nd_terminate_link(ei->i_data, inode->i_size,
4443 sizeof(ei->i_data) - 1);
4444 } else {
617ba13b
MC
4445 inode->i_op = &ext4_symlink_inode_operations;
4446 ext4_set_aops(inode);
ac27a0ec 4447 }
21fc61c7 4448 inode_nohighmem(inode);
563bdd61
TT
4449 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4450 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4451 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4452 if (raw_inode->i_block[0])
4453 init_special_inode(inode, inode->i_mode,
4454 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4455 else
4456 init_special_inode(inode, inode->i_mode,
4457 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4458 } else if (ino == EXT4_BOOT_LOADER_INO) {
4459 make_bad_inode(inode);
563bdd61 4460 } else {
6a797d27 4461 ret = -EFSCORRUPTED;
24676da4 4462 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4463 goto bad_inode;
ac27a0ec 4464 }
af5bc92d 4465 brelse(iloc.bh);
617ba13b 4466 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4467 unlock_new_inode(inode);
4468 return inode;
ac27a0ec
DK
4469
4470bad_inode:
567f3e9a 4471 brelse(iloc.bh);
1d1fe1ee
DH
4472 iget_failed(inode);
4473 return ERR_PTR(ret);
ac27a0ec
DK
4474}
4475
f4bb2981
TT
4476struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4477{
4478 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4479 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4480 return ext4_iget(sb, ino);
4481}
4482
0fc1b451
AK
4483static int ext4_inode_blocks_set(handle_t *handle,
4484 struct ext4_inode *raw_inode,
4485 struct ext4_inode_info *ei)
4486{
4487 struct inode *inode = &(ei->vfs_inode);
4488 u64 i_blocks = inode->i_blocks;
4489 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4490
4491 if (i_blocks <= ~0U) {
4492 /*
4907cb7b 4493 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4494 * as multiple of 512 bytes
4495 */
8180a562 4496 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4497 raw_inode->i_blocks_high = 0;
84a8dce2 4498 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4499 return 0;
4500 }
e2b911c5 4501 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4502 return -EFBIG;
4503
4504 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4505 /*
4506 * i_blocks can be represented in a 48 bit variable
4507 * as multiple of 512 bytes
4508 */
8180a562 4509 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4510 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4511 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4512 } else {
84a8dce2 4513 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4514 /* i_block is stored in file system block size */
4515 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4516 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4517 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4518 }
f287a1a5 4519 return 0;
0fc1b451
AK
4520}
4521
a26f4992
TT
4522struct other_inode {
4523 unsigned long orig_ino;
4524 struct ext4_inode *raw_inode;
4525};
4526
4527static int other_inode_match(struct inode * inode, unsigned long ino,
4528 void *data)
4529{
4530 struct other_inode *oi = (struct other_inode *) data;
4531
4532 if ((inode->i_ino != ino) ||
4533 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4534 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4535 ((inode->i_state & I_DIRTY_TIME) == 0))
4536 return 0;
4537 spin_lock(&inode->i_lock);
4538 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4539 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4540 (inode->i_state & I_DIRTY_TIME)) {
4541 struct ext4_inode_info *ei = EXT4_I(inode);
4542
4543 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4544 spin_unlock(&inode->i_lock);
4545
4546 spin_lock(&ei->i_raw_lock);
4547 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4548 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4549 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4550 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4551 spin_unlock(&ei->i_raw_lock);
4552 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4553 return -1;
4554 }
4555 spin_unlock(&inode->i_lock);
4556 return -1;
4557}
4558
4559/*
4560 * Opportunistically update the other time fields for other inodes in
4561 * the same inode table block.
4562 */
4563static void ext4_update_other_inodes_time(struct super_block *sb,
4564 unsigned long orig_ino, char *buf)
4565{
4566 struct other_inode oi;
4567 unsigned long ino;
4568 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4569 int inode_size = EXT4_INODE_SIZE(sb);
4570
4571 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4572 /*
4573 * Calculate the first inode in the inode table block. Inode
4574 * numbers are one-based. That is, the first inode in a block
4575 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4576 */
4577 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4578 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4579 if (ino == orig_ino)
4580 continue;
4581 oi.raw_inode = (struct ext4_inode *) buf;
4582 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4583 }
4584}
4585
ac27a0ec
DK
4586/*
4587 * Post the struct inode info into an on-disk inode location in the
4588 * buffer-cache. This gobbles the caller's reference to the
4589 * buffer_head in the inode location struct.
4590 *
4591 * The caller must have write access to iloc->bh.
4592 */
617ba13b 4593static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4594 struct inode *inode,
830156c7 4595 struct ext4_iloc *iloc)
ac27a0ec 4596{
617ba13b
MC
4597 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4598 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4599 struct buffer_head *bh = iloc->bh;
202ee5df 4600 struct super_block *sb = inode->i_sb;
ac27a0ec 4601 int err = 0, rc, block;
202ee5df 4602 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4603 uid_t i_uid;
4604 gid_t i_gid;
040cb378 4605 projid_t i_projid;
ac27a0ec 4606
202ee5df
TT
4607 spin_lock(&ei->i_raw_lock);
4608
4609 /* For fields not tracked in the in-memory inode,
ac27a0ec 4610 * initialise them to zero for new inodes. */
19f5fb7a 4611 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4612 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4613
ff9ddf7e 4614 ext4_get_inode_flags(ei);
ac27a0ec 4615 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4616 i_uid = i_uid_read(inode);
4617 i_gid = i_gid_read(inode);
040cb378 4618 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 4619 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4620 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4621 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4622/*
4623 * Fix up interoperability with old kernels. Otherwise, old inodes get
4624 * re-used with the upper 16 bits of the uid/gid intact
4625 */
af5bc92d 4626 if (!ei->i_dtime) {
ac27a0ec 4627 raw_inode->i_uid_high =
08cefc7a 4628 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4629 raw_inode->i_gid_high =
08cefc7a 4630 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4631 } else {
4632 raw_inode->i_uid_high = 0;
4633 raw_inode->i_gid_high = 0;
4634 }
4635 } else {
08cefc7a
EB
4636 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4637 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4638 raw_inode->i_uid_high = 0;
4639 raw_inode->i_gid_high = 0;
4640 }
4641 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4642
4643 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4644 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4645 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4646 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4647
bce92d56
LX
4648 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4649 if (err) {
202ee5df 4650 spin_unlock(&ei->i_raw_lock);
0fc1b451 4651 goto out_brelse;
202ee5df 4652 }
ac27a0ec 4653 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4654 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4655 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4656 raw_inode->i_file_acl_high =
4657 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4658 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4659 if (ei->i_disksize != ext4_isize(raw_inode)) {
4660 ext4_isize_set(raw_inode, ei->i_disksize);
4661 need_datasync = 1;
4662 }
a48380f7 4663 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 4664 if (!ext4_has_feature_large_file(sb) ||
a48380f7 4665 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4666 cpu_to_le32(EXT4_GOOD_OLD_REV))
4667 set_large_file = 1;
ac27a0ec
DK
4668 }
4669 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4670 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4671 if (old_valid_dev(inode->i_rdev)) {
4672 raw_inode->i_block[0] =
4673 cpu_to_le32(old_encode_dev(inode->i_rdev));
4674 raw_inode->i_block[1] = 0;
4675 } else {
4676 raw_inode->i_block[0] = 0;
4677 raw_inode->i_block[1] =
4678 cpu_to_le32(new_encode_dev(inode->i_rdev));
4679 raw_inode->i_block[2] = 0;
4680 }
f19d5870 4681 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4682 for (block = 0; block < EXT4_N_BLOCKS; block++)
4683 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4684 }
ac27a0ec 4685
ed3654eb 4686 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4687 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4688 if (ei->i_extra_isize) {
4689 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4690 raw_inode->i_version_hi =
4691 cpu_to_le32(inode->i_version >> 32);
4692 raw_inode->i_extra_isize =
4693 cpu_to_le16(ei->i_extra_isize);
4694 }
25ec56b5 4695 }
040cb378
LX
4696
4697 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4698 EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4699 i_projid != EXT4_DEF_PROJID);
4700
4701 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4702 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4703 raw_inode->i_projid = cpu_to_le32(i_projid);
4704
814525f4 4705 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4706 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4707 if (inode->i_sb->s_flags & MS_LAZYTIME)
4708 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4709 bh->b_data);
202ee5df 4710
830156c7 4711 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4712 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4713 if (!err)
4714 err = rc;
19f5fb7a 4715 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4716 if (set_large_file) {
5d601255 4717 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4718 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4719 if (err)
4720 goto out_brelse;
4721 ext4_update_dynamic_rev(sb);
e2b911c5 4722 ext4_set_feature_large_file(sb);
202ee5df
TT
4723 ext4_handle_sync(handle);
4724 err = ext4_handle_dirty_super(handle, sb);
4725 }
b71fc079 4726 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4727out_brelse:
af5bc92d 4728 brelse(bh);
617ba13b 4729 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4730 return err;
4731}
4732
4733/*
617ba13b 4734 * ext4_write_inode()
ac27a0ec
DK
4735 *
4736 * We are called from a few places:
4737 *
87f7e416 4738 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4739 * Here, there will be no transaction running. We wait for any running
4907cb7b 4740 * transaction to commit.
ac27a0ec 4741 *
87f7e416
TT
4742 * - Within flush work (sys_sync(), kupdate and such).
4743 * We wait on commit, if told to.
ac27a0ec 4744 *
87f7e416
TT
4745 * - Within iput_final() -> write_inode_now()
4746 * We wait on commit, if told to.
ac27a0ec
DK
4747 *
4748 * In all cases it is actually safe for us to return without doing anything,
4749 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4750 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4751 * writeback.
ac27a0ec
DK
4752 *
4753 * Note that we are absolutely dependent upon all inode dirtiers doing the
4754 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4755 * which we are interested.
4756 *
4757 * It would be a bug for them to not do this. The code:
4758 *
4759 * mark_inode_dirty(inode)
4760 * stuff();
4761 * inode->i_size = expr;
4762 *
87f7e416
TT
4763 * is in error because write_inode() could occur while `stuff()' is running,
4764 * and the new i_size will be lost. Plus the inode will no longer be on the
4765 * superblock's dirty inode list.
ac27a0ec 4766 */
a9185b41 4767int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4768{
91ac6f43
FM
4769 int err;
4770
87f7e416 4771 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4772 return 0;
4773
91ac6f43
FM
4774 if (EXT4_SB(inode->i_sb)->s_journal) {
4775 if (ext4_journal_current_handle()) {
4776 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4777 dump_stack();
4778 return -EIO;
4779 }
ac27a0ec 4780
10542c22
JK
4781 /*
4782 * No need to force transaction in WB_SYNC_NONE mode. Also
4783 * ext4_sync_fs() will force the commit after everything is
4784 * written.
4785 */
4786 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4787 return 0;
4788
4789 err = ext4_force_commit(inode->i_sb);
4790 } else {
4791 struct ext4_iloc iloc;
ac27a0ec 4792
8b472d73 4793 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4794 if (err)
4795 return err;
10542c22
JK
4796 /*
4797 * sync(2) will flush the whole buffer cache. No need to do
4798 * it here separately for each inode.
4799 */
4800 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4801 sync_dirty_buffer(iloc.bh);
4802 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4803 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4804 "IO error syncing inode");
830156c7
FM
4805 err = -EIO;
4806 }
fd2dd9fb 4807 brelse(iloc.bh);
91ac6f43
FM
4808 }
4809 return err;
ac27a0ec
DK
4810}
4811
53e87268
JK
4812/*
4813 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4814 * buffers that are attached to a page stradding i_size and are undergoing
4815 * commit. In that case we have to wait for commit to finish and try again.
4816 */
4817static void ext4_wait_for_tail_page_commit(struct inode *inode)
4818{
4819 struct page *page;
4820 unsigned offset;
4821 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4822 tid_t commit_tid = 0;
4823 int ret;
4824
4825 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4826 /*
4827 * All buffers in the last page remain valid? Then there's nothing to
4828 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4829 * blocksize case
4830 */
4831 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4832 return;
4833 while (1) {
4834 page = find_lock_page(inode->i_mapping,
4835 inode->i_size >> PAGE_CACHE_SHIFT);
4836 if (!page)
4837 return;
ca99fdd2
LC
4838 ret = __ext4_journalled_invalidatepage(page, offset,
4839 PAGE_CACHE_SIZE - offset);
53e87268
JK
4840 unlock_page(page);
4841 page_cache_release(page);
4842 if (ret != -EBUSY)
4843 return;
4844 commit_tid = 0;
4845 read_lock(&journal->j_state_lock);
4846 if (journal->j_committing_transaction)
4847 commit_tid = journal->j_committing_transaction->t_tid;
4848 read_unlock(&journal->j_state_lock);
4849 if (commit_tid)
4850 jbd2_log_wait_commit(journal, commit_tid);
4851 }
4852}
4853
ac27a0ec 4854/*
617ba13b 4855 * ext4_setattr()
ac27a0ec
DK
4856 *
4857 * Called from notify_change.
4858 *
4859 * We want to trap VFS attempts to truncate the file as soon as
4860 * possible. In particular, we want to make sure that when the VFS
4861 * shrinks i_size, we put the inode on the orphan list and modify
4862 * i_disksize immediately, so that during the subsequent flushing of
4863 * dirty pages and freeing of disk blocks, we can guarantee that any
4864 * commit will leave the blocks being flushed in an unused state on
4865 * disk. (On recovery, the inode will get truncated and the blocks will
4866 * be freed, so we have a strong guarantee that no future commit will
4867 * leave these blocks visible to the user.)
4868 *
678aaf48
JK
4869 * Another thing we have to assure is that if we are in ordered mode
4870 * and inode is still attached to the committing transaction, we must
4871 * we start writeout of all the dirty pages which are being truncated.
4872 * This way we are sure that all the data written in the previous
4873 * transaction are already on disk (truncate waits for pages under
4874 * writeback).
4875 *
4876 * Called with inode->i_mutex down.
ac27a0ec 4877 */
617ba13b 4878int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 4879{
2b0143b5 4880 struct inode *inode = d_inode(dentry);
ac27a0ec 4881 int error, rc = 0;
3d287de3 4882 int orphan = 0;
ac27a0ec
DK
4883 const unsigned int ia_valid = attr->ia_valid;
4884
4885 error = inode_change_ok(inode, attr);
4886 if (error)
4887 return error;
4888
a7cdadee
JK
4889 if (is_quota_modification(inode, attr)) {
4890 error = dquot_initialize(inode);
4891 if (error)
4892 return error;
4893 }
08cefc7a
EB
4894 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4895 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4896 handle_t *handle;
4897
4898 /* (user+group)*(old+new) structure, inode write (sb,
4899 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4900 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4901 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4902 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4903 if (IS_ERR(handle)) {
4904 error = PTR_ERR(handle);
4905 goto err_out;
4906 }
b43fa828 4907 error = dquot_transfer(inode, attr);
ac27a0ec 4908 if (error) {
617ba13b 4909 ext4_journal_stop(handle);
ac27a0ec
DK
4910 return error;
4911 }
4912 /* Update corresponding info in inode so that everything is in
4913 * one transaction */
4914 if (attr->ia_valid & ATTR_UID)
4915 inode->i_uid = attr->ia_uid;
4916 if (attr->ia_valid & ATTR_GID)
4917 inode->i_gid = attr->ia_gid;
617ba13b
MC
4918 error = ext4_mark_inode_dirty(handle, inode);
4919 ext4_journal_stop(handle);
ac27a0ec
DK
4920 }
4921
3da40c7b 4922 if (attr->ia_valid & ATTR_SIZE) {
5208386c 4923 handle_t *handle;
3da40c7b
JB
4924 loff_t oldsize = inode->i_size;
4925 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 4926
12e9b892 4927 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4928 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4929
0c095c7f
TT
4930 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4931 return -EFBIG;
e2b46574 4932 }
3da40c7b
JB
4933 if (!S_ISREG(inode->i_mode))
4934 return -EINVAL;
dff6efc3
CH
4935
4936 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4937 inode_inc_iversion(inode);
4938
3da40c7b 4939 if (ext4_should_order_data(inode) &&
5208386c 4940 (attr->ia_size < inode->i_size)) {
3da40c7b 4941 error = ext4_begin_ordered_truncate(inode,
678aaf48 4942 attr->ia_size);
3da40c7b
JB
4943 if (error)
4944 goto err_out;
4945 }
4946 if (attr->ia_size != inode->i_size) {
5208386c
JK
4947 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4948 if (IS_ERR(handle)) {
4949 error = PTR_ERR(handle);
4950 goto err_out;
4951 }
3da40c7b 4952 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
4953 error = ext4_orphan_add(handle, inode);
4954 orphan = 1;
4955 }
911af577
EG
4956 /*
4957 * Update c/mtime on truncate up, ext4_truncate() will
4958 * update c/mtime in shrink case below
4959 */
4960 if (!shrink) {
4961 inode->i_mtime = ext4_current_time(inode);
4962 inode->i_ctime = inode->i_mtime;
4963 }
90e775b7 4964 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4965 EXT4_I(inode)->i_disksize = attr->ia_size;
4966 rc = ext4_mark_inode_dirty(handle, inode);
4967 if (!error)
4968 error = rc;
90e775b7
JK
4969 /*
4970 * We have to update i_size under i_data_sem together
4971 * with i_disksize to avoid races with writeback code
4972 * running ext4_wb_update_i_disksize().
4973 */
4974 if (!error)
4975 i_size_write(inode, attr->ia_size);
4976 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4977 ext4_journal_stop(handle);
4978 if (error) {
3da40c7b
JB
4979 if (orphan)
4980 ext4_orphan_del(NULL, inode);
678aaf48
JK
4981 goto err_out;
4982 }
d6320cbf 4983 }
3da40c7b
JB
4984 if (!shrink)
4985 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 4986
5208386c
JK
4987 /*
4988 * Blocks are going to be removed from the inode. Wait
4989 * for dio in flight. Temporarily disable
4990 * dioread_nolock to prevent livelock.
4991 */
4992 if (orphan) {
4993 if (!ext4_should_journal_data(inode)) {
4994 ext4_inode_block_unlocked_dio(inode);
4995 inode_dio_wait(inode);
4996 ext4_inode_resume_unlocked_dio(inode);
4997 } else
4998 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4999 }
ea3d7209 5000 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5001 /*
5002 * Truncate pagecache after we've waited for commit
5003 * in data=journal mode to make pages freeable.
5004 */
923ae0ff 5005 truncate_pagecache(inode, inode->i_size);
3da40c7b
JB
5006 if (shrink)
5007 ext4_truncate(inode);
ea3d7209 5008 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5009 }
ac27a0ec 5010
1025774c
CH
5011 if (!rc) {
5012 setattr_copy(inode, attr);
5013 mark_inode_dirty(inode);
5014 }
5015
5016 /*
5017 * If the call to ext4_truncate failed to get a transaction handle at
5018 * all, we need to clean up the in-core orphan list manually.
5019 */
3d287de3 5020 if (orphan && inode->i_nlink)
617ba13b 5021 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5022
5023 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 5024 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5025
5026err_out:
617ba13b 5027 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5028 if (!error)
5029 error = rc;
5030 return error;
5031}
5032
3e3398a0
MC
5033int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5034 struct kstat *stat)
5035{
5036 struct inode *inode;
8af8eecc 5037 unsigned long long delalloc_blocks;
3e3398a0 5038
2b0143b5 5039 inode = d_inode(dentry);
3e3398a0
MC
5040 generic_fillattr(inode, stat);
5041
9206c561
AD
5042 /*
5043 * If there is inline data in the inode, the inode will normally not
5044 * have data blocks allocated (it may have an external xattr block).
5045 * Report at least one sector for such files, so tools like tar, rsync,
5046 * others doen't incorrectly think the file is completely sparse.
5047 */
5048 if (unlikely(ext4_has_inline_data(inode)))
5049 stat->blocks += (stat->size + 511) >> 9;
5050
3e3398a0
MC
5051 /*
5052 * We can't update i_blocks if the block allocation is delayed
5053 * otherwise in the case of system crash before the real block
5054 * allocation is done, we will have i_blocks inconsistent with
5055 * on-disk file blocks.
5056 * We always keep i_blocks updated together with real
5057 * allocation. But to not confuse with user, stat
5058 * will return the blocks that include the delayed allocation
5059 * blocks for this file.
5060 */
96607551 5061 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5062 EXT4_I(inode)->i_reserved_data_blocks);
5063 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5064 return 0;
5065}
ac27a0ec 5066
fffb2739
JK
5067static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5068 int pextents)
a02908f1 5069{
12e9b892 5070 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5071 return ext4_ind_trans_blocks(inode, lblocks);
5072 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5073}
ac51d837 5074
ac27a0ec 5075/*
a02908f1
MC
5076 * Account for index blocks, block groups bitmaps and block group
5077 * descriptor blocks if modify datablocks and index blocks
5078 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5079 *
a02908f1 5080 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5081 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5082 * they could still across block group boundary.
ac27a0ec 5083 *
a02908f1
MC
5084 * Also account for superblock, inode, quota and xattr blocks
5085 */
fffb2739
JK
5086static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5087 int pextents)
a02908f1 5088{
8df9675f
TT
5089 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5090 int gdpblocks;
a02908f1
MC
5091 int idxblocks;
5092 int ret = 0;
5093
5094 /*
fffb2739
JK
5095 * How many index blocks need to touch to map @lblocks logical blocks
5096 * to @pextents physical extents?
a02908f1 5097 */
fffb2739 5098 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5099
5100 ret = idxblocks;
5101
5102 /*
5103 * Now let's see how many group bitmaps and group descriptors need
5104 * to account
5105 */
fffb2739 5106 groups = idxblocks + pextents;
a02908f1 5107 gdpblocks = groups;
8df9675f
TT
5108 if (groups > ngroups)
5109 groups = ngroups;
a02908f1
MC
5110 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5111 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5112
5113 /* bitmaps and block group descriptor blocks */
5114 ret += groups + gdpblocks;
5115
5116 /* Blocks for super block, inode, quota and xattr blocks */
5117 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5118
5119 return ret;
5120}
5121
5122/*
25985edc 5123 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5124 * the modification of a single pages into a single transaction,
5125 * which may include multiple chunks of block allocations.
ac27a0ec 5126 *
525f4ed8 5127 * This could be called via ext4_write_begin()
ac27a0ec 5128 *
525f4ed8 5129 * We need to consider the worse case, when
a02908f1 5130 * one new block per extent.
ac27a0ec 5131 */
a86c6181 5132int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5133{
617ba13b 5134 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5135 int ret;
5136
fffb2739 5137 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5138
a02908f1 5139 /* Account for data blocks for journalled mode */
617ba13b 5140 if (ext4_should_journal_data(inode))
a02908f1 5141 ret += bpp;
ac27a0ec
DK
5142 return ret;
5143}
f3bd1f3f
MC
5144
5145/*
5146 * Calculate the journal credits for a chunk of data modification.
5147 *
5148 * This is called from DIO, fallocate or whoever calling
79e83036 5149 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5150 *
5151 * journal buffers for data blocks are not included here, as DIO
5152 * and fallocate do no need to journal data buffers.
5153 */
5154int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5155{
5156 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5157}
5158
ac27a0ec 5159/*
617ba13b 5160 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5161 * Give this, we know that the caller already has write access to iloc->bh.
5162 */
617ba13b 5163int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5164 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5165{
5166 int err = 0;
5167
c64db50e 5168 if (IS_I_VERSION(inode))
25ec56b5
JNC
5169 inode_inc_iversion(inode);
5170
ac27a0ec
DK
5171 /* the do_update_inode consumes one bh->b_count */
5172 get_bh(iloc->bh);
5173
dab291af 5174 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5175 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5176 put_bh(iloc->bh);
5177 return err;
5178}
5179
5180/*
5181 * On success, We end up with an outstanding reference count against
5182 * iloc->bh. This _must_ be cleaned up later.
5183 */
5184
5185int
617ba13b
MC
5186ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5187 struct ext4_iloc *iloc)
ac27a0ec 5188{
0390131b
FM
5189 int err;
5190
5191 err = ext4_get_inode_loc(inode, iloc);
5192 if (!err) {
5193 BUFFER_TRACE(iloc->bh, "get_write_access");
5194 err = ext4_journal_get_write_access(handle, iloc->bh);
5195 if (err) {
5196 brelse(iloc->bh);
5197 iloc->bh = NULL;
ac27a0ec
DK
5198 }
5199 }
617ba13b 5200 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5201 return err;
5202}
5203
6dd4ee7c
KS
5204/*
5205 * Expand an inode by new_extra_isize bytes.
5206 * Returns 0 on success or negative error number on failure.
5207 */
1d03ec98
AK
5208static int ext4_expand_extra_isize(struct inode *inode,
5209 unsigned int new_extra_isize,
5210 struct ext4_iloc iloc,
5211 handle_t *handle)
6dd4ee7c
KS
5212{
5213 struct ext4_inode *raw_inode;
5214 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5215
5216 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5217 return 0;
5218
5219 raw_inode = ext4_raw_inode(&iloc);
5220
5221 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5222
5223 /* No extended attributes present */
19f5fb7a
TT
5224 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5225 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5226 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5227 new_extra_isize);
5228 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5229 return 0;
5230 }
5231
5232 /* try to expand with EAs present */
5233 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5234 raw_inode, handle);
5235}
5236
ac27a0ec
DK
5237/*
5238 * What we do here is to mark the in-core inode as clean with respect to inode
5239 * dirtiness (it may still be data-dirty).
5240 * This means that the in-core inode may be reaped by prune_icache
5241 * without having to perform any I/O. This is a very good thing,
5242 * because *any* task may call prune_icache - even ones which
5243 * have a transaction open against a different journal.
5244 *
5245 * Is this cheating? Not really. Sure, we haven't written the
5246 * inode out, but prune_icache isn't a user-visible syncing function.
5247 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5248 * we start and wait on commits.
ac27a0ec 5249 */
617ba13b 5250int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5251{
617ba13b 5252 struct ext4_iloc iloc;
6dd4ee7c
KS
5253 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5254 static unsigned int mnt_count;
5255 int err, ret;
ac27a0ec
DK
5256
5257 might_sleep();
7ff9c073 5258 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5259 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5260 if (ext4_handle_valid(handle) &&
5261 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5262 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5263 /*
5264 * We need extra buffer credits since we may write into EA block
5265 * with this same handle. If journal_extend fails, then it will
5266 * only result in a minor loss of functionality for that inode.
5267 * If this is felt to be critical, then e2fsck should be run to
5268 * force a large enough s_min_extra_isize.
5269 */
5270 if ((jbd2_journal_extend(handle,
5271 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5272 ret = ext4_expand_extra_isize(inode,
5273 sbi->s_want_extra_isize,
5274 iloc, handle);
5275 if (ret) {
19f5fb7a
TT
5276 ext4_set_inode_state(inode,
5277 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5278 if (mnt_count !=
5279 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5280 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5281 "Unable to expand inode %lu. Delete"
5282 " some EAs or run e2fsck.",
5283 inode->i_ino);
c1bddad9
AK
5284 mnt_count =
5285 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5286 }
5287 }
5288 }
5289 }
ac27a0ec 5290 if (!err)
617ba13b 5291 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5292 return err;
5293}
5294
5295/*
617ba13b 5296 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5297 *
5298 * We're really interested in the case where a file is being extended.
5299 * i_size has been changed by generic_commit_write() and we thus need
5300 * to include the updated inode in the current transaction.
5301 *
5dd4056d 5302 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5303 * are allocated to the file.
5304 *
5305 * If the inode is marked synchronous, we don't honour that here - doing
5306 * so would cause a commit on atime updates, which we don't bother doing.
5307 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5308 *
5309 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5310 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5311 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5312 */
aa385729 5313void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5314{
ac27a0ec
DK
5315 handle_t *handle;
5316
0ae45f63
TT
5317 if (flags == I_DIRTY_TIME)
5318 return;
9924a92a 5319 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5320 if (IS_ERR(handle))
5321 goto out;
f3dc272f 5322
f3dc272f
CW
5323 ext4_mark_inode_dirty(handle, inode);
5324
617ba13b 5325 ext4_journal_stop(handle);
ac27a0ec
DK
5326out:
5327 return;
5328}
5329
5330#if 0
5331/*
5332 * Bind an inode's backing buffer_head into this transaction, to prevent
5333 * it from being flushed to disk early. Unlike
617ba13b 5334 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5335 * returns no iloc structure, so the caller needs to repeat the iloc
5336 * lookup to mark the inode dirty later.
5337 */
617ba13b 5338static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5339{
617ba13b 5340 struct ext4_iloc iloc;
ac27a0ec
DK
5341
5342 int err = 0;
5343 if (handle) {
617ba13b 5344 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5345 if (!err) {
5346 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5347 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5348 if (!err)
0390131b 5349 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5350 NULL,
0390131b 5351 iloc.bh);
ac27a0ec
DK
5352 brelse(iloc.bh);
5353 }
5354 }
617ba13b 5355 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5356 return err;
5357}
5358#endif
5359
617ba13b 5360int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5361{
5362 journal_t *journal;
5363 handle_t *handle;
5364 int err;
5365
5366 /*
5367 * We have to be very careful here: changing a data block's
5368 * journaling status dynamically is dangerous. If we write a
5369 * data block to the journal, change the status and then delete
5370 * that block, we risk forgetting to revoke the old log record
5371 * from the journal and so a subsequent replay can corrupt data.
5372 * So, first we make sure that the journal is empty and that
5373 * nobody is changing anything.
5374 */
5375
617ba13b 5376 journal = EXT4_JOURNAL(inode);
0390131b
FM
5377 if (!journal)
5378 return 0;
d699594d 5379 if (is_journal_aborted(journal))
ac27a0ec 5380 return -EROFS;
2aff57b0
YY
5381 /* We have to allocate physical blocks for delalloc blocks
5382 * before flushing journal. otherwise delalloc blocks can not
5383 * be allocated any more. even more truncate on delalloc blocks
5384 * could trigger BUG by flushing delalloc blocks in journal.
5385 * There is no delalloc block in non-journal data mode.
5386 */
5387 if (val && test_opt(inode->i_sb, DELALLOC)) {
5388 err = ext4_alloc_da_blocks(inode);
5389 if (err < 0)
5390 return err;
5391 }
ac27a0ec 5392
17335dcc
DM
5393 /* Wait for all existing dio workers */
5394 ext4_inode_block_unlocked_dio(inode);
5395 inode_dio_wait(inode);
5396
dab291af 5397 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5398
5399 /*
5400 * OK, there are no updates running now, and all cached data is
5401 * synced to disk. We are now in a completely consistent state
5402 * which doesn't have anything in the journal, and we know that
5403 * no filesystem updates are running, so it is safe to modify
5404 * the inode's in-core data-journaling state flag now.
5405 */
5406
5407 if (val)
12e9b892 5408 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5409 else {
4f879ca6
JK
5410 err = jbd2_journal_flush(journal);
5411 if (err < 0) {
5412 jbd2_journal_unlock_updates(journal);
5413 ext4_inode_resume_unlocked_dio(inode);
5414 return err;
5415 }
12e9b892 5416 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5417 }
617ba13b 5418 ext4_set_aops(inode);
ac27a0ec 5419
dab291af 5420 jbd2_journal_unlock_updates(journal);
17335dcc 5421 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5422
5423 /* Finally we can mark the inode as dirty. */
5424
9924a92a 5425 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5426 if (IS_ERR(handle))
5427 return PTR_ERR(handle);
5428
617ba13b 5429 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5430 ext4_handle_sync(handle);
617ba13b
MC
5431 ext4_journal_stop(handle);
5432 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5433
5434 return err;
5435}
2e9ee850
AK
5436
5437static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5438{
5439 return !buffer_mapped(bh);
5440}
5441
c2ec175c 5442int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5443{
c2ec175c 5444 struct page *page = vmf->page;
2e9ee850
AK
5445 loff_t size;
5446 unsigned long len;
9ea7df53 5447 int ret;
2e9ee850 5448 struct file *file = vma->vm_file;
496ad9aa 5449 struct inode *inode = file_inode(file);
2e9ee850 5450 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5451 handle_t *handle;
5452 get_block_t *get_block;
5453 int retries = 0;
2e9ee850 5454
8e8ad8a5 5455 sb_start_pagefault(inode->i_sb);
041bbb6d 5456 file_update_time(vma->vm_file);
ea3d7209
JK
5457
5458 down_read(&EXT4_I(inode)->i_mmap_sem);
9ea7df53
JK
5459 /* Delalloc case is easy... */
5460 if (test_opt(inode->i_sb, DELALLOC) &&
5461 !ext4_should_journal_data(inode) &&
5462 !ext4_nonda_switch(inode->i_sb)) {
5463 do {
5c500029 5464 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5465 ext4_da_get_block_prep);
5466 } while (ret == -ENOSPC &&
5467 ext4_should_retry_alloc(inode->i_sb, &retries));
5468 goto out_ret;
2e9ee850 5469 }
0e499890
DW
5470
5471 lock_page(page);
9ea7df53
JK
5472 size = i_size_read(inode);
5473 /* Page got truncated from under us? */
5474 if (page->mapping != mapping || page_offset(page) > size) {
5475 unlock_page(page);
5476 ret = VM_FAULT_NOPAGE;
5477 goto out;
0e499890 5478 }
2e9ee850
AK
5479
5480 if (page->index == size >> PAGE_CACHE_SHIFT)
5481 len = size & ~PAGE_CACHE_MASK;
5482 else
5483 len = PAGE_CACHE_SIZE;
a827eaff 5484 /*
9ea7df53
JK
5485 * Return if we have all the buffers mapped. This avoids the need to do
5486 * journal_start/journal_stop which can block and take a long time
a827eaff 5487 */
2e9ee850 5488 if (page_has_buffers(page)) {
f19d5870
TM
5489 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5490 0, len, NULL,
5491 ext4_bh_unmapped)) {
9ea7df53 5492 /* Wait so that we don't change page under IO */
1d1d1a76 5493 wait_for_stable_page(page);
9ea7df53
JK
5494 ret = VM_FAULT_LOCKED;
5495 goto out;
a827eaff 5496 }
2e9ee850 5497 }
a827eaff 5498 unlock_page(page);
9ea7df53
JK
5499 /* OK, we need to fill the hole... */
5500 if (ext4_should_dioread_nolock(inode))
5501 get_block = ext4_get_block_write;
5502 else
5503 get_block = ext4_get_block;
5504retry_alloc:
9924a92a
TT
5505 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5506 ext4_writepage_trans_blocks(inode));
9ea7df53 5507 if (IS_ERR(handle)) {
c2ec175c 5508 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5509 goto out;
5510 }
5c500029 5511 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5512 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5513 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5514 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5515 unlock_page(page);
5516 ret = VM_FAULT_SIGBUS;
fcbb5515 5517 ext4_journal_stop(handle);
9ea7df53
JK
5518 goto out;
5519 }
5520 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5521 }
5522 ext4_journal_stop(handle);
5523 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5524 goto retry_alloc;
5525out_ret:
5526 ret = block_page_mkwrite_return(ret);
5527out:
ea3d7209 5528 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 5529 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5530 return ret;
5531}
ea3d7209
JK
5532
5533int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5534{
5535 struct inode *inode = file_inode(vma->vm_file);
5536 int err;
5537
5538 down_read(&EXT4_I(inode)->i_mmap_sem);
5539 err = filemap_fault(vma, vmf);
5540 up_read(&EXT4_I(inode)->i_mmap_sem);
5541
5542 return err;
5543}
This page took 1.355663 seconds and 5 git commands to generate.