Merge tag 'renesas-fixes-for-v3.9' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / xfs / xfs_extfree_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
1da177e4
LT
21#include "xfs_log.h"
22#include "xfs_trans.h"
23#include "xfs_buf_item.h"
24#include "xfs_sb.h"
da353b0d 25#include "xfs_ag.h"
1da177e4
LT
26#include "xfs_mount.h"
27#include "xfs_trans_priv.h"
28#include "xfs_extfree_item.h"
29
30
31kmem_zone_t *xfs_efi_zone;
32kmem_zone_t *xfs_efd_zone;
33
7bfa31d8
CH
34static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35{
36 return container_of(lip, struct xfs_efi_log_item, efi_item);
37}
1da177e4 38
7d795ca3 39void
7bfa31d8
CH
40xfs_efi_item_free(
41 struct xfs_efi_log_item *efip)
7d795ca3 42{
7bfa31d8 43 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
f0e2d93c 44 kmem_free(efip);
7bfa31d8 45 else
7d795ca3 46 kmem_zone_free(xfs_efi_zone, efip);
7d795ca3 47}
1da177e4 48
b199c8a4
DC
49/*
50 * Freeing the efi requires that we remove it from the AIL if it has already
51 * been placed there. However, the EFI may not yet have been placed in the AIL
52 * when called by xfs_efi_release() from EFD processing due to the ordering of
53 * committed vs unpin operations in bulk insert operations. Hence the
54 * test_and_clear_bit(XFS_EFI_COMMITTED) to ensure only the last caller frees
55 * the EFI.
56 */
57STATIC void
58__xfs_efi_release(
59 struct xfs_efi_log_item *efip)
60{
61 struct xfs_ail *ailp = efip->efi_item.li_ailp;
62
63 if (!test_and_clear_bit(XFS_EFI_COMMITTED, &efip->efi_flags)) {
64 spin_lock(&ailp->xa_lock);
65 /* xfs_trans_ail_delete() drops the AIL lock. */
04913fdd
DC
66 xfs_trans_ail_delete(ailp, &efip->efi_item,
67 SHUTDOWN_LOG_IO_ERROR);
b199c8a4
DC
68 xfs_efi_item_free(efip);
69 }
70}
71
1da177e4
LT
72/*
73 * This returns the number of iovecs needed to log the given efi item.
74 * We only need 1 iovec for an efi item. It just logs the efi_log_format
75 * structure.
76 */
1da177e4 77STATIC uint
7bfa31d8
CH
78xfs_efi_item_size(
79 struct xfs_log_item *lip)
1da177e4
LT
80{
81 return 1;
82}
83
84/*
85 * This is called to fill in the vector of log iovecs for the
86 * given efi log item. We use only 1 iovec, and we point that
87 * at the efi_log_format structure embedded in the efi item.
88 * It is at this point that we assert that all of the extent
89 * slots in the efi item have been filled.
90 */
91STATIC void
7bfa31d8
CH
92xfs_efi_item_format(
93 struct xfs_log_item *lip,
94 struct xfs_log_iovec *log_vector)
1da177e4 95{
7bfa31d8
CH
96 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
97 uint size;
1da177e4 98
b199c8a4
DC
99 ASSERT(atomic_read(&efip->efi_next_extent) ==
100 efip->efi_format.efi_nextents);
1da177e4
LT
101
102 efip->efi_format.efi_type = XFS_LI_EFI;
103
104 size = sizeof(xfs_efi_log_format_t);
105 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
106 efip->efi_format.efi_size = 1;
107
4e0d5f92 108 log_vector->i_addr = &efip->efi_format;
1da177e4 109 log_vector->i_len = size;
4139b3b3 110 log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT;
1da177e4
LT
111 ASSERT(size >= sizeof(xfs_efi_log_format_t));
112}
113
114
115/*
116 * Pinning has no meaning for an efi item, so just return.
117 */
1da177e4 118STATIC void
7bfa31d8
CH
119xfs_efi_item_pin(
120 struct xfs_log_item *lip)
1da177e4 121{
1da177e4
LT
122}
123
1da177e4 124/*
9c5f8414
DC
125 * While EFIs cannot really be pinned, the unpin operation is the last place at
126 * which the EFI is manipulated during a transaction. If we are being asked to
127 * remove the EFI it's because the transaction has been cancelled and by
128 * definition that means the EFI cannot be in the AIL so remove it from the
b199c8a4
DC
129 * transaction and free it. Otherwise coordinate with xfs_efi_release() (via
130 * XFS_EFI_COMMITTED) to determine who gets to free the EFI.
1da177e4 131 */
1da177e4 132STATIC void
7bfa31d8
CH
133xfs_efi_item_unpin(
134 struct xfs_log_item *lip,
135 int remove)
1da177e4 136{
7bfa31d8 137 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
1da177e4 138
9c5f8414
DC
139 if (remove) {
140 ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
e34a314c
DC
141 if (lip->li_desc)
142 xfs_trans_del_item(lip);
7d795ca3 143 xfs_efi_item_free(efip);
b199c8a4 144 return;
1da177e4 145 }
b199c8a4 146 __xfs_efi_release(efip);
1da177e4
LT
147}
148
149/*
43ff2122
CH
150 * Efi items have no locking or pushing. However, since EFIs are pulled from
151 * the AIL when their corresponding EFDs are committed to disk, their situation
152 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
153 * will eventually flush the log. This should help in getting the EFI out of
154 * the AIL.
1da177e4 155 */
1da177e4 156STATIC uint
43ff2122
CH
157xfs_efi_item_push(
158 struct xfs_log_item *lip,
159 struct list_head *buffer_list)
1da177e4
LT
160{
161 return XFS_ITEM_PINNED;
162}
163
1da177e4 164STATIC void
7bfa31d8
CH
165xfs_efi_item_unlock(
166 struct xfs_log_item *lip)
1da177e4 167{
7bfa31d8
CH
168 if (lip->li_flags & XFS_LI_ABORTED)
169 xfs_efi_item_free(EFI_ITEM(lip));
1da177e4
LT
170}
171
172/*
b199c8a4
DC
173 * The EFI is logged only once and cannot be moved in the log, so simply return
174 * the lsn at which it's been logged. For bulk transaction committed
175 * processing, the EFI may be processed but not yet unpinned prior to the EFD
176 * being processed. Set the XFS_EFI_COMMITTED flag so this case can be detected
177 * when processing the EFD.
1da177e4 178 */
1da177e4 179STATIC xfs_lsn_t
7bfa31d8
CH
180xfs_efi_item_committed(
181 struct xfs_log_item *lip,
182 xfs_lsn_t lsn)
1da177e4 183{
b199c8a4
DC
184 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
185
186 set_bit(XFS_EFI_COMMITTED, &efip->efi_flags);
1da177e4
LT
187 return lsn;
188}
189
1da177e4
LT
190/*
191 * The EFI dependency tracking op doesn't do squat. It can't because
192 * it doesn't know where the free extent is coming from. The dependency
193 * tracking has to be handled by the "enclosing" metadata object. For
194 * example, for inodes, the inode is locked throughout the extent freeing
195 * so the dependency should be recorded there.
196 */
1da177e4 197STATIC void
7bfa31d8
CH
198xfs_efi_item_committing(
199 struct xfs_log_item *lip,
200 xfs_lsn_t lsn)
1da177e4 201{
1da177e4
LT
202}
203
204/*
205 * This is the ops vector shared by all efi log items.
206 */
272e42b2 207static const struct xfs_item_ops xfs_efi_item_ops = {
7bfa31d8
CH
208 .iop_size = xfs_efi_item_size,
209 .iop_format = xfs_efi_item_format,
210 .iop_pin = xfs_efi_item_pin,
211 .iop_unpin = xfs_efi_item_unpin,
7bfa31d8
CH
212 .iop_unlock = xfs_efi_item_unlock,
213 .iop_committed = xfs_efi_item_committed,
214 .iop_push = xfs_efi_item_push,
215 .iop_committing = xfs_efi_item_committing
1da177e4
LT
216};
217
218
219/*
220 * Allocate and initialize an efi item with the given number of extents.
221 */
7bfa31d8
CH
222struct xfs_efi_log_item *
223xfs_efi_init(
224 struct xfs_mount *mp,
225 uint nextents)
1da177e4
LT
226
227{
7bfa31d8 228 struct xfs_efi_log_item *efip;
1da177e4
LT
229 uint size;
230
231 ASSERT(nextents > 0);
232 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
233 size = (uint)(sizeof(xfs_efi_log_item_t) +
234 ((nextents - 1) * sizeof(xfs_extent_t)));
7bfa31d8 235 efip = kmem_zalloc(size, KM_SLEEP);
1da177e4 236 } else {
7bfa31d8 237 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
1da177e4
LT
238 }
239
43f5efc5 240 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
1da177e4
LT
241 efip->efi_format.efi_nextents = nextents;
242 efip->efi_format.efi_id = (__psint_t)(void*)efip;
b199c8a4 243 atomic_set(&efip->efi_next_extent, 0);
1da177e4 244
7bfa31d8 245 return efip;
1da177e4
LT
246}
247
6d192a9b
TS
248/*
249 * Copy an EFI format buffer from the given buf, and into the destination
250 * EFI format structure.
251 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
252 * one of which will be the native format for this kernel.
253 * It will handle the conversion of formats if necessary.
254 */
255int
256xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
257{
4e0d5f92 258 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
6d192a9b
TS
259 uint i;
260 uint len = sizeof(xfs_efi_log_format_t) +
261 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
262 uint len32 = sizeof(xfs_efi_log_format_32_t) +
263 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
264 uint len64 = sizeof(xfs_efi_log_format_64_t) +
265 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
266
267 if (buf->i_len == len) {
268 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
269 return 0;
270 } else if (buf->i_len == len32) {
4e0d5f92 271 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
6d192a9b
TS
272
273 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
274 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
275 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
276 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
277 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
278 dst_efi_fmt->efi_extents[i].ext_start =
279 src_efi_fmt_32->efi_extents[i].ext_start;
280 dst_efi_fmt->efi_extents[i].ext_len =
281 src_efi_fmt_32->efi_extents[i].ext_len;
282 }
283 return 0;
284 } else if (buf->i_len == len64) {
4e0d5f92 285 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
6d192a9b
TS
286
287 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
288 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
289 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
290 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
291 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
292 dst_efi_fmt->efi_extents[i].ext_start =
293 src_efi_fmt_64->efi_extents[i].ext_start;
294 dst_efi_fmt->efi_extents[i].ext_len =
295 src_efi_fmt_64->efi_extents[i].ext_len;
296 }
297 return 0;
298 }
299 return EFSCORRUPTED;
300}
301
1da177e4 302/*
b199c8a4
DC
303 * This is called by the efd item code below to release references to the given
304 * efi item. Each efd calls this with the number of extents that it has
305 * logged, and when the sum of these reaches the total number of extents logged
306 * by this efi item we can free the efi item.
1da177e4
LT
307 */
308void
309xfs_efi_release(xfs_efi_log_item_t *efip,
310 uint nextents)
311{
b199c8a4
DC
312 ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
313 if (atomic_sub_and_test(nextents, &efip->efi_next_extent))
314 __xfs_efi_release(efip);
1da177e4
LT
315}
316
7bfa31d8 317static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
7d795ca3 318{
7bfa31d8
CH
319 return container_of(lip, struct xfs_efd_log_item, efd_item);
320}
1da177e4 321
7bfa31d8
CH
322STATIC void
323xfs_efd_item_free(struct xfs_efd_log_item *efdp)
324{
325 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
f0e2d93c 326 kmem_free(efdp);
7bfa31d8 327 else
7d795ca3 328 kmem_zone_free(xfs_efd_zone, efdp);
7d795ca3 329}
1da177e4
LT
330
331/*
332 * This returns the number of iovecs needed to log the given efd item.
333 * We only need 1 iovec for an efd item. It just logs the efd_log_format
334 * structure.
335 */
1da177e4 336STATIC uint
7bfa31d8
CH
337xfs_efd_item_size(
338 struct xfs_log_item *lip)
1da177e4
LT
339{
340 return 1;
341}
342
343/*
344 * This is called to fill in the vector of log iovecs for the
345 * given efd log item. We use only 1 iovec, and we point that
346 * at the efd_log_format structure embedded in the efd item.
347 * It is at this point that we assert that all of the extent
348 * slots in the efd item have been filled.
349 */
350STATIC void
7bfa31d8
CH
351xfs_efd_item_format(
352 struct xfs_log_item *lip,
353 struct xfs_log_iovec *log_vector)
1da177e4 354{
7bfa31d8
CH
355 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
356 uint size;
1da177e4
LT
357
358 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
359
360 efdp->efd_format.efd_type = XFS_LI_EFD;
361
362 size = sizeof(xfs_efd_log_format_t);
363 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
364 efdp->efd_format.efd_size = 1;
365
4e0d5f92 366 log_vector->i_addr = &efdp->efd_format;
1da177e4 367 log_vector->i_len = size;
4139b3b3 368 log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT;
1da177e4
LT
369 ASSERT(size >= sizeof(xfs_efd_log_format_t));
370}
371
1da177e4
LT
372/*
373 * Pinning has no meaning for an efd item, so just return.
374 */
1da177e4 375STATIC void
7bfa31d8
CH
376xfs_efd_item_pin(
377 struct xfs_log_item *lip)
1da177e4 378{
1da177e4
LT
379}
380
1da177e4
LT
381/*
382 * Since pinning has no meaning for an efd item, unpinning does
383 * not either.
384 */
1da177e4 385STATIC void
7bfa31d8
CH
386xfs_efd_item_unpin(
387 struct xfs_log_item *lip,
388 int remove)
1da177e4 389{
1da177e4
LT
390}
391
392/*
43ff2122
CH
393 * There isn't much you can do to push on an efd item. It is simply stuck
394 * waiting for the log to be flushed to disk.
1da177e4 395 */
1da177e4 396STATIC uint
43ff2122
CH
397xfs_efd_item_push(
398 struct xfs_log_item *lip,
399 struct list_head *buffer_list)
1da177e4 400{
43ff2122 401 return XFS_ITEM_PINNED;
1da177e4
LT
402}
403
1da177e4 404STATIC void
7bfa31d8
CH
405xfs_efd_item_unlock(
406 struct xfs_log_item *lip)
1da177e4 407{
7bfa31d8
CH
408 if (lip->li_flags & XFS_LI_ABORTED)
409 xfs_efd_item_free(EFD_ITEM(lip));
1da177e4
LT
410}
411
412/*
413 * When the efd item is committed to disk, all we need to do
414 * is delete our reference to our partner efi item and then
415 * free ourselves. Since we're freeing ourselves we must
416 * return -1 to keep the transaction code from further referencing
417 * this item.
418 */
1da177e4 419STATIC xfs_lsn_t
7bfa31d8
CH
420xfs_efd_item_committed(
421 struct xfs_log_item *lip,
422 xfs_lsn_t lsn)
1da177e4 423{
7bfa31d8
CH
424 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
425
1da177e4
LT
426 /*
427 * If we got a log I/O error, it's always the case that the LR with the
428 * EFI got unpinned and freed before the EFD got aborted.
429 */
7bfa31d8 430 if (!(lip->li_flags & XFS_LI_ABORTED))
1da177e4
LT
431 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
432
7d795ca3 433 xfs_efd_item_free(efdp);
1da177e4
LT
434 return (xfs_lsn_t)-1;
435}
436
1da177e4
LT
437/*
438 * The EFD dependency tracking op doesn't do squat. It can't because
439 * it doesn't know where the free extent is coming from. The dependency
440 * tracking has to be handled by the "enclosing" metadata object. For
441 * example, for inodes, the inode is locked throughout the extent freeing
442 * so the dependency should be recorded there.
443 */
1da177e4 444STATIC void
7bfa31d8
CH
445xfs_efd_item_committing(
446 struct xfs_log_item *lip,
447 xfs_lsn_t lsn)
1da177e4 448{
1da177e4
LT
449}
450
451/*
452 * This is the ops vector shared by all efd log items.
453 */
272e42b2 454static const struct xfs_item_ops xfs_efd_item_ops = {
7bfa31d8
CH
455 .iop_size = xfs_efd_item_size,
456 .iop_format = xfs_efd_item_format,
457 .iop_pin = xfs_efd_item_pin,
458 .iop_unpin = xfs_efd_item_unpin,
7bfa31d8
CH
459 .iop_unlock = xfs_efd_item_unlock,
460 .iop_committed = xfs_efd_item_committed,
461 .iop_push = xfs_efd_item_push,
462 .iop_committing = xfs_efd_item_committing
1da177e4
LT
463};
464
1da177e4
LT
465/*
466 * Allocate and initialize an efd item with the given number of extents.
467 */
7bfa31d8
CH
468struct xfs_efd_log_item *
469xfs_efd_init(
470 struct xfs_mount *mp,
471 struct xfs_efi_log_item *efip,
472 uint nextents)
1da177e4
LT
473
474{
7bfa31d8 475 struct xfs_efd_log_item *efdp;
1da177e4
LT
476 uint size;
477
478 ASSERT(nextents > 0);
479 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
480 size = (uint)(sizeof(xfs_efd_log_item_t) +
481 ((nextents - 1) * sizeof(xfs_extent_t)));
7bfa31d8 482 efdp = kmem_zalloc(size, KM_SLEEP);
1da177e4 483 } else {
7bfa31d8 484 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
1da177e4
LT
485 }
486
43f5efc5 487 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
1da177e4
LT
488 efdp->efd_efip = efip;
489 efdp->efd_format.efd_nextents = nextents;
490 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
491
7bfa31d8 492 return efdp;
1da177e4 493}
This page took 0.627189 seconds and 5 git commands to generate.