RISC-V gas: Remove em=linux from configure.tgt
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
61baf725 1@c Copyright (C) 2008-2017 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 147* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
148* Xmethods In Python:: Adding and replacing methods of C++ classes.
149* Xmethod API:: Xmethod types.
150* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
151* Inferiors In Python:: Python representation of inferiors (processes)
152* Events In Python:: Listening for events from @value{GDBN}.
153* Threads In Python:: Accessing inferior threads from Python.
154* Commands In Python:: Implementing new commands in Python.
155* Parameters In Python:: Adding new @value{GDBN} parameters.
156* Functions In Python:: Writing new convenience functions.
157* Progspaces In Python:: Program spaces.
158* Objfiles In Python:: Object files.
159* Frames In Python:: Accessing inferior stack frames from Python.
160* Blocks In Python:: Accessing blocks from Python.
161* Symbols In Python:: Python representation of symbols.
162* Symbol Tables In Python:: Python representation of symbol tables.
163* Line Tables In Python:: Python representation of line tables.
164* Breakpoints In Python:: Manipulating breakpoints using Python.
165* Finish Breakpoints in Python:: Setting Breakpoints on function return
166 using Python.
167* Lazy Strings In Python:: Python representation of lazy strings.
168* Architectures In Python:: Python representation of architectures.
169@end menu
170
171@node Basic Python
172@subsubsection Basic Python
173
174@cindex python stdout
175@cindex python pagination
176At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
177@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
178A Python program which outputs to one of these streams may have its
179output interrupted by the user (@pxref{Screen Size}). In this
180situation, a Python @code{KeyboardInterrupt} exception is thrown.
181
182Some care must be taken when writing Python code to run in
183@value{GDBN}. Two things worth noting in particular:
184
185@itemize @bullet
186@item
187@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
188Python code must not override these, or even change the options using
189@code{sigaction}. If your program changes the handling of these
190signals, @value{GDBN} will most likely stop working correctly. Note
191that it is unfortunately common for GUI toolkits to install a
192@code{SIGCHLD} handler.
193
194@item
195@value{GDBN} takes care to mark its internal file descriptors as
196close-on-exec. However, this cannot be done in a thread-safe way on
197all platforms. Your Python programs should be aware of this and
198should both create new file descriptors with the close-on-exec flag
199set and arrange to close unneeded file descriptors before starting a
200child process.
201@end itemize
202
203@cindex python functions
204@cindex python module
205@cindex gdb module
206@value{GDBN} introduces a new Python module, named @code{gdb}. All
207methods and classes added by @value{GDBN} are placed in this module.
208@value{GDBN} automatically @code{import}s the @code{gdb} module for
209use in all scripts evaluated by the @code{python} command.
210
211@findex gdb.PYTHONDIR
212@defvar gdb.PYTHONDIR
213A string containing the python directory (@pxref{Python}).
214@end defvar
215
216@findex gdb.execute
217@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
218Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
219If a GDB exception happens while @var{command} runs, it is
220translated as described in @ref{Exception Handling,,Exception Handling}.
221
697aa1b7 222The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
223command as having originated from the user invoking it interactively.
224It must be a boolean value. If omitted, it defaults to @code{False}.
225
226By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
227@value{GDBN}'s standard output (and to the log output if logging is
228turned on). If the @var{to_string} parameter is
329baa95
DE
229@code{True}, then output will be collected by @code{gdb.execute} and
230returned as a string. The default is @code{False}, in which case the
231return value is @code{None}. If @var{to_string} is @code{True}, the
232@value{GDBN} virtual terminal will be temporarily set to unlimited width
233and height, and its pagination will be disabled; @pxref{Screen Size}.
234@end defun
235
236@findex gdb.breakpoints
237@defun gdb.breakpoints ()
238Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
239@xref{Breakpoints In Python}, for more information. In @value{GDBN}
240version 7.11 and earlier, this function returned @code{None} if there
241were no breakpoints. This peculiarity was subsequently fixed, and now
242@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
243@end defun
244
245@findex gdb.parameter
246@defun gdb.parameter (parameter)
697aa1b7
EZ
247Return the value of a @value{GDBN} @var{parameter} given by its name,
248a string; the parameter name string may contain spaces if the parameter has a
249multi-part name. For example, @samp{print object} is a valid
250parameter name.
329baa95
DE
251
252If the named parameter does not exist, this function throws a
253@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
254parameter's value is converted to a Python value of the appropriate
255type, and returned.
256@end defun
257
258@findex gdb.history
259@defun gdb.history (number)
260Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 261History}). The @var{number} argument indicates which history element to return.
329baa95
DE
262If @var{number} is negative, then @value{GDBN} will take its absolute value
263and count backward from the last element (i.e., the most recent element) to
264find the value to return. If @var{number} is zero, then @value{GDBN} will
265return the most recent element. If the element specified by @var{number}
266doesn't exist in the value history, a @code{gdb.error} exception will be
267raised.
268
269If no exception is raised, the return value is always an instance of
270@code{gdb.Value} (@pxref{Values From Inferior}).
271@end defun
272
273@findex gdb.parse_and_eval
274@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
275Parse @var{expression}, which must be a string, as an expression in
276the current language, evaluate it, and return the result as a
277@code{gdb.Value}.
329baa95
DE
278
279This function can be useful when implementing a new command
280(@pxref{Commands In Python}), as it provides a way to parse the
281command's argument as an expression. It is also useful simply to
282compute values, for example, it is the only way to get the value of a
283convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
284@end defun
285
286@findex gdb.find_pc_line
287@defun gdb.find_pc_line (pc)
288Return the @code{gdb.Symtab_and_line} object corresponding to the
289@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
290value of @var{pc} is passed as an argument, then the @code{symtab} and
291@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
292will be @code{None} and 0 respectively.
293@end defun
294
295@findex gdb.post_event
296@defun gdb.post_event (event)
297Put @var{event}, a callable object taking no arguments, into
298@value{GDBN}'s internal event queue. This callable will be invoked at
299some later point, during @value{GDBN}'s event processing. Events
300posted using @code{post_event} will be run in the order in which they
301were posted; however, there is no way to know when they will be
302processed relative to other events inside @value{GDBN}.
303
304@value{GDBN} is not thread-safe. If your Python program uses multiple
305threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 306functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
307this. For example:
308
309@smallexample
310(@value{GDBP}) python
311>import threading
312>
313>class Writer():
314> def __init__(self, message):
315> self.message = message;
316> def __call__(self):
317> gdb.write(self.message)
318>
319>class MyThread1 (threading.Thread):
320> def run (self):
321> gdb.post_event(Writer("Hello "))
322>
323>class MyThread2 (threading.Thread):
324> def run (self):
325> gdb.post_event(Writer("World\n"))
326>
327>MyThread1().start()
328>MyThread2().start()
329>end
330(@value{GDBP}) Hello World
331@end smallexample
332@end defun
333
334@findex gdb.write
335@defun gdb.write (string @r{[}, stream{]})
336Print a string to @value{GDBN}'s paginated output stream. The
337optional @var{stream} determines the stream to print to. The default
338stream is @value{GDBN}'s standard output stream. Possible stream
339values are:
340
341@table @code
342@findex STDOUT
343@findex gdb.STDOUT
344@item gdb.STDOUT
345@value{GDBN}'s standard output stream.
346
347@findex STDERR
348@findex gdb.STDERR
349@item gdb.STDERR
350@value{GDBN}'s standard error stream.
351
352@findex STDLOG
353@findex gdb.STDLOG
354@item gdb.STDLOG
355@value{GDBN}'s log stream (@pxref{Logging Output}).
356@end table
357
358Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
359call this function and will automatically direct the output to the
360relevant stream.
361@end defun
362
363@findex gdb.flush
364@defun gdb.flush ()
365Flush the buffer of a @value{GDBN} paginated stream so that the
366contents are displayed immediately. @value{GDBN} will flush the
367contents of a stream automatically when it encounters a newline in the
368buffer. The optional @var{stream} determines the stream to flush. The
369default stream is @value{GDBN}'s standard output stream. Possible
370stream values are:
371
372@table @code
373@findex STDOUT
374@findex gdb.STDOUT
375@item gdb.STDOUT
376@value{GDBN}'s standard output stream.
377
378@findex STDERR
379@findex gdb.STDERR
380@item gdb.STDERR
381@value{GDBN}'s standard error stream.
382
383@findex STDLOG
384@findex gdb.STDLOG
385@item gdb.STDLOG
386@value{GDBN}'s log stream (@pxref{Logging Output}).
387
388@end table
389
390Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
391call this function for the relevant stream.
392@end defun
393
394@findex gdb.target_charset
395@defun gdb.target_charset ()
396Return the name of the current target character set (@pxref{Character
397Sets}). This differs from @code{gdb.parameter('target-charset')} in
398that @samp{auto} is never returned.
399@end defun
400
401@findex gdb.target_wide_charset
402@defun gdb.target_wide_charset ()
403Return the name of the current target wide character set
404(@pxref{Character Sets}). This differs from
405@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
406never returned.
407@end defun
408
409@findex gdb.solib_name
410@defun gdb.solib_name (address)
411Return the name of the shared library holding the given @var{address}
412as a string, or @code{None}.
413@end defun
414
415@findex gdb.decode_line
416@defun gdb.decode_line @r{[}expression@r{]}
417Return locations of the line specified by @var{expression}, or of the
418current line if no argument was given. This function returns a Python
419tuple containing two elements. The first element contains a string
420holding any unparsed section of @var{expression} (or @code{None} if
421the expression has been fully parsed). The second element contains
422either @code{None} or another tuple that contains all the locations
423that match the expression represented as @code{gdb.Symtab_and_line}
424objects (@pxref{Symbol Tables In Python}). If @var{expression} is
425provided, it is decoded the way that @value{GDBN}'s inbuilt
426@code{break} or @code{edit} commands do (@pxref{Specify Location}).
427@end defun
428
429@defun gdb.prompt_hook (current_prompt)
430@anchor{prompt_hook}
431
432If @var{prompt_hook} is callable, @value{GDBN} will call the method
433assigned to this operation before a prompt is displayed by
434@value{GDBN}.
435
436The parameter @code{current_prompt} contains the current @value{GDBN}
437prompt. This method must return a Python string, or @code{None}. If
438a string is returned, the @value{GDBN} prompt will be set to that
439string. If @code{None} is returned, @value{GDBN} will continue to use
440the current prompt.
441
442Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
443such as those used by readline for command input, and annotation
444related prompts are prohibited from being changed.
445@end defun
446
447@node Exception Handling
448@subsubsection Exception Handling
449@cindex python exceptions
450@cindex exceptions, python
451
452When executing the @code{python} command, Python exceptions
453uncaught within the Python code are translated to calls to
454@value{GDBN} error-reporting mechanism. If the command that called
455@code{python} does not handle the error, @value{GDBN} will
456terminate it and print an error message containing the Python
457exception name, the associated value, and the Python call stack
458backtrace at the point where the exception was raised. Example:
459
460@smallexample
461(@value{GDBP}) python print foo
462Traceback (most recent call last):
463 File "<string>", line 1, in <module>
464NameError: name 'foo' is not defined
465@end smallexample
466
467@value{GDBN} errors that happen in @value{GDBN} commands invoked by
468Python code are converted to Python exceptions. The type of the
469Python exception depends on the error.
470
471@ftable @code
472@item gdb.error
473This is the base class for most exceptions generated by @value{GDBN}.
474It is derived from @code{RuntimeError}, for compatibility with earlier
475versions of @value{GDBN}.
476
477If an error occurring in @value{GDBN} does not fit into some more
478specific category, then the generated exception will have this type.
479
480@item gdb.MemoryError
481This is a subclass of @code{gdb.error} which is thrown when an
482operation tried to access invalid memory in the inferior.
483
484@item KeyboardInterrupt
485User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
486prompt) is translated to a Python @code{KeyboardInterrupt} exception.
487@end ftable
488
489In all cases, your exception handler will see the @value{GDBN} error
490message as its value and the Python call stack backtrace at the Python
491statement closest to where the @value{GDBN} error occured as the
492traceback.
493
494@findex gdb.GdbError
495When implementing @value{GDBN} commands in Python via @code{gdb.Command},
496it is useful to be able to throw an exception that doesn't cause a
497traceback to be printed. For example, the user may have invoked the
498command incorrectly. Use the @code{gdb.GdbError} exception
499to handle this case. Example:
500
501@smallexample
502(gdb) python
503>class HelloWorld (gdb.Command):
504> """Greet the whole world."""
505> def __init__ (self):
506> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
507> def invoke (self, args, from_tty):
508> argv = gdb.string_to_argv (args)
509> if len (argv) != 0:
510> raise gdb.GdbError ("hello-world takes no arguments")
511> print "Hello, World!"
512>HelloWorld ()
513>end
514(gdb) hello-world 42
515hello-world takes no arguments
516@end smallexample
517
518@node Values From Inferior
519@subsubsection Values From Inferior
520@cindex values from inferior, with Python
521@cindex python, working with values from inferior
522
523@cindex @code{gdb.Value}
524@value{GDBN} provides values it obtains from the inferior program in
525an object of type @code{gdb.Value}. @value{GDBN} uses this object
526for its internal bookkeeping of the inferior's values, and for
527fetching values when necessary.
528
529Inferior values that are simple scalars can be used directly in
530Python expressions that are valid for the value's data type. Here's
531an example for an integer or floating-point value @code{some_val}:
532
533@smallexample
534bar = some_val + 2
535@end smallexample
536
537@noindent
538As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
539whose values are of the same type as those of @code{some_val}. Valid
540Python operations can also be performed on @code{gdb.Value} objects
541representing a @code{struct} or @code{class} object. For such cases,
542the overloaded operator (if present), is used to perform the operation.
543For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
544representing instances of a @code{class} which overloads the @code{+}
545operator, then one can use the @code{+} operator in their Python script
546as follows:
547
548@smallexample
549val3 = val1 + val2
550@end smallexample
551
552@noindent
553The result of the operation @code{val3} is also a @code{gdb.Value}
554object corresponding to the value returned by the overloaded @code{+}
555operator. In general, overloaded operators are invoked for the
556following operations: @code{+} (binary addition), @code{-} (binary
557subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
558@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
559
560Inferior values that are structures or instances of some class can
561be accessed using the Python @dfn{dictionary syntax}. For example, if
562@code{some_val} is a @code{gdb.Value} instance holding a structure, you
563can access its @code{foo} element with:
564
565@smallexample
566bar = some_val['foo']
567@end smallexample
568
569@cindex getting structure elements using gdb.Field objects as subscripts
570Again, @code{bar} will also be a @code{gdb.Value} object. Structure
571elements can also be accessed by using @code{gdb.Field} objects as
572subscripts (@pxref{Types In Python}, for more information on
573@code{gdb.Field} objects). For example, if @code{foo_field} is a
574@code{gdb.Field} object corresponding to element @code{foo} of the above
575structure, then @code{bar} can also be accessed as follows:
576
577@smallexample
578bar = some_val[foo_field]
579@end smallexample
580
581A @code{gdb.Value} that represents a function can be executed via
582inferior function call. Any arguments provided to the call must match
583the function's prototype, and must be provided in the order specified
584by that prototype.
585
586For example, @code{some_val} is a @code{gdb.Value} instance
587representing a function that takes two integers as arguments. To
588execute this function, call it like so:
589
590@smallexample
591result = some_val (10,20)
592@end smallexample
593
594Any values returned from a function call will be stored as a
595@code{gdb.Value}.
596
597The following attributes are provided:
598
599@defvar Value.address
600If this object is addressable, this read-only attribute holds a
601@code{gdb.Value} object representing the address. Otherwise,
602this attribute holds @code{None}.
603@end defvar
604
605@cindex optimized out value in Python
606@defvar Value.is_optimized_out
607This read-only boolean attribute is true if the compiler optimized out
608this value, thus it is not available for fetching from the inferior.
609@end defvar
610
611@defvar Value.type
612The type of this @code{gdb.Value}. The value of this attribute is a
613@code{gdb.Type} object (@pxref{Types In Python}).
614@end defvar
615
616@defvar Value.dynamic_type
617The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
618type information (@acronym{RTTI}) to determine the dynamic type of the
619value. If this value is of class type, it will return the class in
620which the value is embedded, if any. If this value is of pointer or
621reference to a class type, it will compute the dynamic type of the
622referenced object, and return a pointer or reference to that type,
623respectively. In all other cases, it will return the value's static
624type.
625
626Note that this feature will only work when debugging a C@t{++} program
627that includes @acronym{RTTI} for the object in question. Otherwise,
628it will just return the static type of the value as in @kbd{ptype foo}
629(@pxref{Symbols, ptype}).
630@end defvar
631
632@defvar Value.is_lazy
633The value of this read-only boolean attribute is @code{True} if this
634@code{gdb.Value} has not yet been fetched from the inferior.
635@value{GDBN} does not fetch values until necessary, for efficiency.
636For example:
637
638@smallexample
639myval = gdb.parse_and_eval ('somevar')
640@end smallexample
641
642The value of @code{somevar} is not fetched at this time. It will be
643fetched when the value is needed, or when the @code{fetch_lazy}
644method is invoked.
645@end defvar
646
647The following methods are provided:
648
649@defun Value.__init__ (@var{val})
650Many Python values can be converted directly to a @code{gdb.Value} via
651this object initializer. Specifically:
652
653@table @asis
654@item Python boolean
655A Python boolean is converted to the boolean type from the current
656language.
657
658@item Python integer
659A Python integer is converted to the C @code{long} type for the
660current architecture.
661
662@item Python long
663A Python long is converted to the C @code{long long} type for the
664current architecture.
665
666@item Python float
667A Python float is converted to the C @code{double} type for the
668current architecture.
669
670@item Python string
b3ce5e5f
DE
671A Python string is converted to a target string in the current target
672language using the current target encoding.
673If a character cannot be represented in the current target encoding,
674then an exception is thrown.
329baa95
DE
675
676@item @code{gdb.Value}
677If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
678
679@item @code{gdb.LazyString}
680If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
681Python}), then the lazy string's @code{value} method is called, and
682its result is used.
683@end table
684@end defun
685
686@defun Value.cast (type)
687Return a new instance of @code{gdb.Value} that is the result of
688casting this instance to the type described by @var{type}, which must
689be a @code{gdb.Type} object. If the cast cannot be performed for some
690reason, this method throws an exception.
691@end defun
692
693@defun Value.dereference ()
694For pointer data types, this method returns a new @code{gdb.Value} object
695whose contents is the object pointed to by the pointer. For example, if
696@code{foo} is a C pointer to an @code{int}, declared in your C program as
697
698@smallexample
699int *foo;
700@end smallexample
701
702@noindent
703then you can use the corresponding @code{gdb.Value} to access what
704@code{foo} points to like this:
705
706@smallexample
707bar = foo.dereference ()
708@end smallexample
709
710The result @code{bar} will be a @code{gdb.Value} object holding the
711value pointed to by @code{foo}.
712
713A similar function @code{Value.referenced_value} exists which also
714returns @code{gdb.Value} objects corresonding to the values pointed to
715by pointer values (and additionally, values referenced by reference
716values). However, the behavior of @code{Value.dereference}
717differs from @code{Value.referenced_value} by the fact that the
718behavior of @code{Value.dereference} is identical to applying the C
719unary operator @code{*} on a given value. For example, consider a
720reference to a pointer @code{ptrref}, declared in your C@t{++} program
721as
722
723@smallexample
724typedef int *intptr;
725...
726int val = 10;
727intptr ptr = &val;
728intptr &ptrref = ptr;
729@end smallexample
730
731Though @code{ptrref} is a reference value, one can apply the method
732@code{Value.dereference} to the @code{gdb.Value} object corresponding
733to it and obtain a @code{gdb.Value} which is identical to that
734corresponding to @code{val}. However, if you apply the method
735@code{Value.referenced_value}, the result would be a @code{gdb.Value}
736object identical to that corresponding to @code{ptr}.
737
738@smallexample
739py_ptrref = gdb.parse_and_eval ("ptrref")
740py_val = py_ptrref.dereference ()
741py_ptr = py_ptrref.referenced_value ()
742@end smallexample
743
744The @code{gdb.Value} object @code{py_val} is identical to that
745corresponding to @code{val}, and @code{py_ptr} is identical to that
746corresponding to @code{ptr}. In general, @code{Value.dereference} can
747be applied whenever the C unary operator @code{*} can be applied
748to the corresponding C value. For those cases where applying both
749@code{Value.dereference} and @code{Value.referenced_value} is allowed,
750the results obtained need not be identical (as we have seen in the above
751example). The results are however identical when applied on
752@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
753objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
754@end defun
755
756@defun Value.referenced_value ()
757For pointer or reference data types, this method returns a new
758@code{gdb.Value} object corresponding to the value referenced by the
759pointer/reference value. For pointer data types,
760@code{Value.dereference} and @code{Value.referenced_value} produce
761identical results. The difference between these methods is that
762@code{Value.dereference} cannot get the values referenced by reference
763values. For example, consider a reference to an @code{int}, declared
764in your C@t{++} program as
765
766@smallexample
767int val = 10;
768int &ref = val;
769@end smallexample
770
771@noindent
772then applying @code{Value.dereference} to the @code{gdb.Value} object
773corresponding to @code{ref} will result in an error, while applying
774@code{Value.referenced_value} will result in a @code{gdb.Value} object
775identical to that corresponding to @code{val}.
776
777@smallexample
778py_ref = gdb.parse_and_eval ("ref")
779er_ref = py_ref.dereference () # Results in error
780py_val = py_ref.referenced_value () # Returns the referenced value
781@end smallexample
782
783The @code{gdb.Value} object @code{py_val} is identical to that
784corresponding to @code{val}.
785@end defun
786
4c082a81
SC
787@defun Value.reference_value ()
788Return a @code{gdb.Value} object which is a reference to the value
789encapsulated by this instance.
790@end defun
791
792@defun Value.const_value ()
793Return a @code{gdb.Value} object which is a @code{const} version of the
794value encapsulated by this instance.
795@end defun
796
329baa95
DE
797@defun Value.dynamic_cast (type)
798Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
799operator were used. Consult a C@t{++} reference for details.
800@end defun
801
802@defun Value.reinterpret_cast (type)
803Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
804operator were used. Consult a C@t{++} reference for details.
805@end defun
806
807@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
808If this @code{gdb.Value} represents a string, then this method
809converts the contents to a Python string. Otherwise, this method will
810throw an exception.
811
b3ce5e5f
DE
812Values are interpreted as strings according to the rules of the
813current language. If the optional length argument is given, the
814string will be converted to that length, and will include any embedded
815zeroes that the string may contain. Otherwise, for languages
816where the string is zero-terminated, the entire string will be
817converted.
329baa95 818
b3ce5e5f
DE
819For example, in C-like languages, a value is a string if it is a pointer
820to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
821or @code{char32_t}.
329baa95
DE
822
823If the optional @var{encoding} argument is given, it must be a string
824naming the encoding of the string in the @code{gdb.Value}, such as
825@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
826the same encodings as the corresponding argument to Python's
827@code{string.decode} method, and the Python codec machinery will be used
828to convert the string. If @var{encoding} is not given, or if
829@var{encoding} is the empty string, then either the @code{target-charset}
830(@pxref{Character Sets}) will be used, or a language-specific encoding
831will be used, if the current language is able to supply one.
832
833The optional @var{errors} argument is the same as the corresponding
834argument to Python's @code{string.decode} method.
835
836If the optional @var{length} argument is given, the string will be
837fetched and converted to the given length.
838@end defun
839
840@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
841If this @code{gdb.Value} represents a string, then this method
842converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
843In Python}). Otherwise, this method will throw an exception.
844
845If the optional @var{encoding} argument is given, it must be a string
846naming the encoding of the @code{gdb.LazyString}. Some examples are:
847@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
848@var{encoding} argument is an encoding that @value{GDBN} does
849recognize, @value{GDBN} will raise an error.
850
851When a lazy string is printed, the @value{GDBN} encoding machinery is
852used to convert the string during printing. If the optional
853@var{encoding} argument is not provided, or is an empty string,
854@value{GDBN} will automatically select the encoding most suitable for
855the string type. For further information on encoding in @value{GDBN}
856please see @ref{Character Sets}.
857
858If the optional @var{length} argument is given, the string will be
859fetched and encoded to the length of characters specified. If
860the @var{length} argument is not provided, the string will be fetched
861and encoded until a null of appropriate width is found.
862@end defun
863
864@defun Value.fetch_lazy ()
865If the @code{gdb.Value} object is currently a lazy value
866(@code{gdb.Value.is_lazy} is @code{True}), then the value is
867fetched from the inferior. Any errors that occur in the process
868will produce a Python exception.
869
870If the @code{gdb.Value} object is not a lazy value, this method
871has no effect.
872
873This method does not return a value.
874@end defun
875
876
877@node Types In Python
878@subsubsection Types In Python
879@cindex types in Python
880@cindex Python, working with types
881
882@tindex gdb.Type
883@value{GDBN} represents types from the inferior using the class
884@code{gdb.Type}.
885
886The following type-related functions are available in the @code{gdb}
887module:
888
889@findex gdb.lookup_type
890@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 891This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
892
893If @var{block} is given, then @var{name} is looked up in that scope.
894Otherwise, it is searched for globally.
895
896Ordinarily, this function will return an instance of @code{gdb.Type}.
897If the named type cannot be found, it will throw an exception.
898@end defun
899
900If the type is a structure or class type, or an enum type, the fields
901of that type can be accessed using the Python @dfn{dictionary syntax}.
902For example, if @code{some_type} is a @code{gdb.Type} instance holding
903a structure type, you can access its @code{foo} field with:
904
905@smallexample
906bar = some_type['foo']
907@end smallexample
908
909@code{bar} will be a @code{gdb.Field} object; see below under the
910description of the @code{Type.fields} method for a description of the
911@code{gdb.Field} class.
912
913An instance of @code{Type} has the following attributes:
914
915@defvar Type.code
916The type code for this type. The type code will be one of the
917@code{TYPE_CODE_} constants defined below.
918@end defvar
919
920@defvar Type.name
921The name of this type. If this type has no name, then @code{None}
922is returned.
923@end defvar
924
925@defvar Type.sizeof
926The size of this type, in target @code{char} units. Usually, a
927target's @code{char} type will be an 8-bit byte. However, on some
928unusual platforms, this type may have a different size.
929@end defvar
930
931@defvar Type.tag
932The tag name for this type. The tag name is the name after
933@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
934languages have this concept. If this type has no tag name, then
935@code{None} is returned.
936@end defvar
937
938The following methods are provided:
939
940@defun Type.fields ()
941For structure and union types, this method returns the fields. Range
942types have two fields, the minimum and maximum values. Enum types
943have one field per enum constant. Function and method types have one
944field per parameter. The base types of C@t{++} classes are also
945represented as fields. If the type has no fields, or does not fit
946into one of these categories, an empty sequence will be returned.
947
948Each field is a @code{gdb.Field} object, with some pre-defined attributes:
949@table @code
950@item bitpos
951This attribute is not available for @code{enum} or @code{static}
9c37b5ae 952(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
953in bits, from the start of the containing type.
954
955@item enumval
956This attribute is only available for @code{enum} fields, and its value
957is the enumeration member's integer representation.
958
959@item name
960The name of the field, or @code{None} for anonymous fields.
961
962@item artificial
963This is @code{True} if the field is artificial, usually meaning that
964it was provided by the compiler and not the user. This attribute is
965always provided, and is @code{False} if the field is not artificial.
966
967@item is_base_class
968This is @code{True} if the field represents a base class of a C@t{++}
969structure. This attribute is always provided, and is @code{False}
970if the field is not a base class of the type that is the argument of
971@code{fields}, or if that type was not a C@t{++} class.
972
973@item bitsize
974If the field is packed, or is a bitfield, then this will have a
975non-zero value, which is the size of the field in bits. Otherwise,
976this will be zero; in this case the field's size is given by its type.
977
978@item type
979The type of the field. This is usually an instance of @code{Type},
980but it can be @code{None} in some situations.
981
982@item parent_type
983The type which contains this field. This is an instance of
984@code{gdb.Type}.
985@end table
986@end defun
987
988@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
989Return a new @code{gdb.Type} object which represents an array of this
990type. If one argument is given, it is the inclusive upper bound of
991the array; in this case the lower bound is zero. If two arguments are
992given, the first argument is the lower bound of the array, and the
993second argument is the upper bound of the array. An array's length
994must not be negative, but the bounds can be.
995@end defun
996
997@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
998Return a new @code{gdb.Type} object which represents a vector of this
999type. If one argument is given, it is the inclusive upper bound of
1000the vector; in this case the lower bound is zero. If two arguments are
1001given, the first argument is the lower bound of the vector, and the
1002second argument is the upper bound of the vector. A vector's length
1003must not be negative, but the bounds can be.
1004
1005The difference between an @code{array} and a @code{vector} is that
1006arrays behave like in C: when used in expressions they decay to a pointer
1007to the first element whereas vectors are treated as first class values.
1008@end defun
1009
1010@defun Type.const ()
1011Return a new @code{gdb.Type} object which represents a
1012@code{const}-qualified variant of this type.
1013@end defun
1014
1015@defun Type.volatile ()
1016Return a new @code{gdb.Type} object which represents a
1017@code{volatile}-qualified variant of this type.
1018@end defun
1019
1020@defun Type.unqualified ()
1021Return a new @code{gdb.Type} object which represents an unqualified
1022variant of this type. That is, the result is neither @code{const} nor
1023@code{volatile}.
1024@end defun
1025
1026@defun Type.range ()
1027Return a Python @code{Tuple} object that contains two elements: the
1028low bound of the argument type and the high bound of that type. If
1029the type does not have a range, @value{GDBN} will raise a
1030@code{gdb.error} exception (@pxref{Exception Handling}).
1031@end defun
1032
1033@defun Type.reference ()
1034Return a new @code{gdb.Type} object which represents a reference to this
1035type.
1036@end defun
1037
1038@defun Type.pointer ()
1039Return a new @code{gdb.Type} object which represents a pointer to this
1040type.
1041@end defun
1042
1043@defun Type.strip_typedefs ()
1044Return a new @code{gdb.Type} that represents the real type,
1045after removing all layers of typedefs.
1046@end defun
1047
1048@defun Type.target ()
1049Return a new @code{gdb.Type} object which represents the target type
1050of this type.
1051
1052For a pointer type, the target type is the type of the pointed-to
1053object. For an array type (meaning C-like arrays), the target type is
1054the type of the elements of the array. For a function or method type,
1055the target type is the type of the return value. For a complex type,
1056the target type is the type of the elements. For a typedef, the
1057target type is the aliased type.
1058
1059If the type does not have a target, this method will throw an
1060exception.
1061@end defun
1062
1063@defun Type.template_argument (n @r{[}, block@r{]})
1064If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1065return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1066value of the @var{n}th template argument (indexed starting at 0).
329baa95 1067
1a6a384b
JL
1068If this @code{gdb.Type} is not a template type, or if the type has fewer
1069than @var{n} template arguments, this will throw an exception.
1070Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1071
1072If @var{block} is given, then @var{name} is looked up in that scope.
1073Otherwise, it is searched for globally.
1074@end defun
1075
59fb7612
SS
1076@defun Type.optimized_out ()
1077Return @code{gdb.Value} instance of this type whose value is optimized
1078out. This allows a frame decorator to indicate that the value of an
1079argument or a local variable is not known.
1080@end defun
329baa95
DE
1081
1082Each type has a code, which indicates what category this type falls
1083into. The available type categories are represented by constants
1084defined in the @code{gdb} module:
1085
b3ce5e5f
DE
1086@vtable @code
1087@vindex TYPE_CODE_PTR
329baa95
DE
1088@item gdb.TYPE_CODE_PTR
1089The type is a pointer.
1090
b3ce5e5f 1091@vindex TYPE_CODE_ARRAY
329baa95
DE
1092@item gdb.TYPE_CODE_ARRAY
1093The type is an array.
1094
b3ce5e5f 1095@vindex TYPE_CODE_STRUCT
329baa95
DE
1096@item gdb.TYPE_CODE_STRUCT
1097The type is a structure.
1098
b3ce5e5f 1099@vindex TYPE_CODE_UNION
329baa95
DE
1100@item gdb.TYPE_CODE_UNION
1101The type is a union.
1102
b3ce5e5f 1103@vindex TYPE_CODE_ENUM
329baa95
DE
1104@item gdb.TYPE_CODE_ENUM
1105The type is an enum.
1106
b3ce5e5f 1107@vindex TYPE_CODE_FLAGS
329baa95
DE
1108@item gdb.TYPE_CODE_FLAGS
1109A bit flags type, used for things such as status registers.
1110
b3ce5e5f 1111@vindex TYPE_CODE_FUNC
329baa95
DE
1112@item gdb.TYPE_CODE_FUNC
1113The type is a function.
1114
b3ce5e5f 1115@vindex TYPE_CODE_INT
329baa95
DE
1116@item gdb.TYPE_CODE_INT
1117The type is an integer type.
1118
b3ce5e5f 1119@vindex TYPE_CODE_FLT
329baa95
DE
1120@item gdb.TYPE_CODE_FLT
1121A floating point type.
1122
b3ce5e5f 1123@vindex TYPE_CODE_VOID
329baa95
DE
1124@item gdb.TYPE_CODE_VOID
1125The special type @code{void}.
1126
b3ce5e5f 1127@vindex TYPE_CODE_SET
329baa95
DE
1128@item gdb.TYPE_CODE_SET
1129A Pascal set type.
1130
b3ce5e5f 1131@vindex TYPE_CODE_RANGE
329baa95
DE
1132@item gdb.TYPE_CODE_RANGE
1133A range type, that is, an integer type with bounds.
1134
b3ce5e5f 1135@vindex TYPE_CODE_STRING
329baa95
DE
1136@item gdb.TYPE_CODE_STRING
1137A string type. Note that this is only used for certain languages with
1138language-defined string types; C strings are not represented this way.
1139
b3ce5e5f 1140@vindex TYPE_CODE_BITSTRING
329baa95
DE
1141@item gdb.TYPE_CODE_BITSTRING
1142A string of bits. It is deprecated.
1143
b3ce5e5f 1144@vindex TYPE_CODE_ERROR
329baa95
DE
1145@item gdb.TYPE_CODE_ERROR
1146An unknown or erroneous type.
1147
b3ce5e5f 1148@vindex TYPE_CODE_METHOD
329baa95 1149@item gdb.TYPE_CODE_METHOD
9c37b5ae 1150A method type, as found in C@t{++}.
329baa95 1151
b3ce5e5f 1152@vindex TYPE_CODE_METHODPTR
329baa95
DE
1153@item gdb.TYPE_CODE_METHODPTR
1154A pointer-to-member-function.
1155
b3ce5e5f 1156@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1157@item gdb.TYPE_CODE_MEMBERPTR
1158A pointer-to-member.
1159
b3ce5e5f 1160@vindex TYPE_CODE_REF
329baa95
DE
1161@item gdb.TYPE_CODE_REF
1162A reference type.
1163
b3ce5e5f 1164@vindex TYPE_CODE_CHAR
329baa95
DE
1165@item gdb.TYPE_CODE_CHAR
1166A character type.
1167
b3ce5e5f 1168@vindex TYPE_CODE_BOOL
329baa95
DE
1169@item gdb.TYPE_CODE_BOOL
1170A boolean type.
1171
b3ce5e5f 1172@vindex TYPE_CODE_COMPLEX
329baa95
DE
1173@item gdb.TYPE_CODE_COMPLEX
1174A complex float type.
1175
b3ce5e5f 1176@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1177@item gdb.TYPE_CODE_TYPEDEF
1178A typedef to some other type.
1179
b3ce5e5f 1180@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1181@item gdb.TYPE_CODE_NAMESPACE
1182A C@t{++} namespace.
1183
b3ce5e5f 1184@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1185@item gdb.TYPE_CODE_DECFLOAT
1186A decimal floating point type.
1187
b3ce5e5f 1188@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1189@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1190A function internal to @value{GDBN}. This is the type used to represent
1191convenience functions.
b3ce5e5f 1192@end vtable
329baa95
DE
1193
1194Further support for types is provided in the @code{gdb.types}
1195Python module (@pxref{gdb.types}).
1196
1197@node Pretty Printing API
1198@subsubsection Pretty Printing API
b3ce5e5f 1199@cindex python pretty printing api
329baa95
DE
1200
1201An example output is provided (@pxref{Pretty Printing}).
1202
1203A pretty-printer is just an object that holds a value and implements a
1204specific interface, defined here.
1205
1206@defun pretty_printer.children (self)
1207@value{GDBN} will call this method on a pretty-printer to compute the
1208children of the pretty-printer's value.
1209
1210This method must return an object conforming to the Python iterator
1211protocol. Each item returned by the iterator must be a tuple holding
1212two elements. The first element is the ``name'' of the child; the
1213second element is the child's value. The value can be any Python
1214object which is convertible to a @value{GDBN} value.
1215
1216This method is optional. If it does not exist, @value{GDBN} will act
1217as though the value has no children.
1218@end defun
1219
1220@defun pretty_printer.display_hint (self)
1221The CLI may call this method and use its result to change the
1222formatting of a value. The result will also be supplied to an MI
1223consumer as a @samp{displayhint} attribute of the variable being
1224printed.
1225
1226This method is optional. If it does exist, this method must return a
1227string.
1228
1229Some display hints are predefined by @value{GDBN}:
1230
1231@table @samp
1232@item array
1233Indicate that the object being printed is ``array-like''. The CLI
1234uses this to respect parameters such as @code{set print elements} and
1235@code{set print array}.
1236
1237@item map
1238Indicate that the object being printed is ``map-like'', and that the
1239children of this value can be assumed to alternate between keys and
1240values.
1241
1242@item string
1243Indicate that the object being printed is ``string-like''. If the
1244printer's @code{to_string} method returns a Python string of some
1245kind, then @value{GDBN} will call its internal language-specific
1246string-printing function to format the string. For the CLI this means
1247adding quotation marks, possibly escaping some characters, respecting
1248@code{set print elements}, and the like.
1249@end table
1250@end defun
1251
1252@defun pretty_printer.to_string (self)
1253@value{GDBN} will call this method to display the string
1254representation of the value passed to the object's constructor.
1255
1256When printing from the CLI, if the @code{to_string} method exists,
1257then @value{GDBN} will prepend its result to the values returned by
1258@code{children}. Exactly how this formatting is done is dependent on
1259the display hint, and may change as more hints are added. Also,
1260depending on the print settings (@pxref{Print Settings}), the CLI may
1261print just the result of @code{to_string} in a stack trace, omitting
1262the result of @code{children}.
1263
1264If this method returns a string, it is printed verbatim.
1265
1266Otherwise, if this method returns an instance of @code{gdb.Value},
1267then @value{GDBN} prints this value. This may result in a call to
1268another pretty-printer.
1269
1270If instead the method returns a Python value which is convertible to a
1271@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1272the resulting value. Again, this may result in a call to another
1273pretty-printer. Python scalars (integers, floats, and booleans) and
1274strings are convertible to @code{gdb.Value}; other types are not.
1275
1276Finally, if this method returns @code{None} then no further operations
1277are peformed in this method and nothing is printed.
1278
1279If the result is not one of these types, an exception is raised.
1280@end defun
1281
1282@value{GDBN} provides a function which can be used to look up the
1283default pretty-printer for a @code{gdb.Value}:
1284
1285@findex gdb.default_visualizer
1286@defun gdb.default_visualizer (value)
1287This function takes a @code{gdb.Value} object as an argument. If a
1288pretty-printer for this value exists, then it is returned. If no such
1289printer exists, then this returns @code{None}.
1290@end defun
1291
1292@node Selecting Pretty-Printers
1293@subsubsection Selecting Pretty-Printers
b3ce5e5f 1294@cindex selecting python pretty-printers
329baa95
DE
1295
1296The Python list @code{gdb.pretty_printers} contains an array of
1297functions or callable objects that have been registered via addition
1298as a pretty-printer. Printers in this list are called @code{global}
1299printers, they're available when debugging all inferiors.
1300Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1301Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1302attribute.
1303
1304Each function on these lists is passed a single @code{gdb.Value}
1305argument and should return a pretty-printer object conforming to the
1306interface definition above (@pxref{Pretty Printing API}). If a function
1307cannot create a pretty-printer for the value, it should return
1308@code{None}.
1309
1310@value{GDBN} first checks the @code{pretty_printers} attribute of each
1311@code{gdb.Objfile} in the current program space and iteratively calls
1312each enabled lookup routine in the list for that @code{gdb.Objfile}
1313until it receives a pretty-printer object.
1314If no pretty-printer is found in the objfile lists, @value{GDBN} then
1315searches the pretty-printer list of the current program space,
1316calling each enabled function until an object is returned.
1317After these lists have been exhausted, it tries the global
1318@code{gdb.pretty_printers} list, again calling each enabled function until an
1319object is returned.
1320
1321The order in which the objfiles are searched is not specified. For a
1322given list, functions are always invoked from the head of the list,
1323and iterated over sequentially until the end of the list, or a printer
1324object is returned.
1325
1326For various reasons a pretty-printer may not work.
1327For example, the underlying data structure may have changed and
1328the pretty-printer is out of date.
1329
1330The consequences of a broken pretty-printer are severe enough that
1331@value{GDBN} provides support for enabling and disabling individual
1332printers. For example, if @code{print frame-arguments} is on,
1333a backtrace can become highly illegible if any argument is printed
1334with a broken printer.
1335
1336Pretty-printers are enabled and disabled by attaching an @code{enabled}
1337attribute to the registered function or callable object. If this attribute
1338is present and its value is @code{False}, the printer is disabled, otherwise
1339the printer is enabled.
1340
1341@node Writing a Pretty-Printer
1342@subsubsection Writing a Pretty-Printer
1343@cindex writing a pretty-printer
1344
1345A pretty-printer consists of two parts: a lookup function to detect
1346if the type is supported, and the printer itself.
1347
1348Here is an example showing how a @code{std::string} printer might be
1349written. @xref{Pretty Printing API}, for details on the API this class
1350must provide.
1351
1352@smallexample
1353class StdStringPrinter(object):
1354 "Print a std::string"
1355
1356 def __init__(self, val):
1357 self.val = val
1358
1359 def to_string(self):
1360 return self.val['_M_dataplus']['_M_p']
1361
1362 def display_hint(self):
1363 return 'string'
1364@end smallexample
1365
1366And here is an example showing how a lookup function for the printer
1367example above might be written.
1368
1369@smallexample
1370def str_lookup_function(val):
1371 lookup_tag = val.type.tag
1372 if lookup_tag == None:
1373 return None
1374 regex = re.compile("^std::basic_string<char,.*>$")
1375 if regex.match(lookup_tag):
1376 return StdStringPrinter(val)
1377 return None
1378@end smallexample
1379
1380The example lookup function extracts the value's type, and attempts to
1381match it to a type that it can pretty-print. If it is a type the
1382printer can pretty-print, it will return a printer object. If not, it
1383returns @code{None}.
1384
1385We recommend that you put your core pretty-printers into a Python
1386package. If your pretty-printers are for use with a library, we
1387further recommend embedding a version number into the package name.
1388This practice will enable @value{GDBN} to load multiple versions of
1389your pretty-printers at the same time, because they will have
1390different names.
1391
1392You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1393can be evaluated multiple times without changing its meaning. An
1394ideal auto-load file will consist solely of @code{import}s of your
1395printer modules, followed by a call to a register pretty-printers with
1396the current objfile.
1397
1398Taken as a whole, this approach will scale nicely to multiple
1399inferiors, each potentially using a different library version.
1400Embedding a version number in the Python package name will ensure that
1401@value{GDBN} is able to load both sets of printers simultaneously.
1402Then, because the search for pretty-printers is done by objfile, and
1403because your auto-loaded code took care to register your library's
1404printers with a specific objfile, @value{GDBN} will find the correct
1405printers for the specific version of the library used by each
1406inferior.
1407
1408To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1409this code might appear in @code{gdb.libstdcxx.v6}:
1410
1411@smallexample
1412def register_printers(objfile):
1413 objfile.pretty_printers.append(str_lookup_function)
1414@end smallexample
1415
1416@noindent
1417And then the corresponding contents of the auto-load file would be:
1418
1419@smallexample
1420import gdb.libstdcxx.v6
1421gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1422@end smallexample
1423
1424The previous example illustrates a basic pretty-printer.
1425There are a few things that can be improved on.
1426The printer doesn't have a name, making it hard to identify in a
1427list of installed printers. The lookup function has a name, but
1428lookup functions can have arbitrary, even identical, names.
1429
1430Second, the printer only handles one type, whereas a library typically has
1431several types. One could install a lookup function for each desired type
1432in the library, but one could also have a single lookup function recognize
1433several types. The latter is the conventional way this is handled.
1434If a pretty-printer can handle multiple data types, then its
1435@dfn{subprinters} are the printers for the individual data types.
1436
1437The @code{gdb.printing} module provides a formal way of solving these
1438problems (@pxref{gdb.printing}).
1439Here is another example that handles multiple types.
1440
1441These are the types we are going to pretty-print:
1442
1443@smallexample
1444struct foo @{ int a, b; @};
1445struct bar @{ struct foo x, y; @};
1446@end smallexample
1447
1448Here are the printers:
1449
1450@smallexample
1451class fooPrinter:
1452 """Print a foo object."""
1453
1454 def __init__(self, val):
1455 self.val = val
1456
1457 def to_string(self):
1458 return ("a=<" + str(self.val["a"]) +
1459 "> b=<" + str(self.val["b"]) + ">")
1460
1461class barPrinter:
1462 """Print a bar object."""
1463
1464 def __init__(self, val):
1465 self.val = val
1466
1467 def to_string(self):
1468 return ("x=<" + str(self.val["x"]) +
1469 "> y=<" + str(self.val["y"]) + ">")
1470@end smallexample
1471
1472This example doesn't need a lookup function, that is handled by the
1473@code{gdb.printing} module. Instead a function is provided to build up
1474the object that handles the lookup.
1475
1476@smallexample
1477import gdb.printing
1478
1479def build_pretty_printer():
1480 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1481 "my_library")
1482 pp.add_printer('foo', '^foo$', fooPrinter)
1483 pp.add_printer('bar', '^bar$', barPrinter)
1484 return pp
1485@end smallexample
1486
1487And here is the autoload support:
1488
1489@smallexample
1490import gdb.printing
1491import my_library
1492gdb.printing.register_pretty_printer(
1493 gdb.current_objfile(),
1494 my_library.build_pretty_printer())
1495@end smallexample
1496
1497Finally, when this printer is loaded into @value{GDBN}, here is the
1498corresponding output of @samp{info pretty-printer}:
1499
1500@smallexample
1501(gdb) info pretty-printer
1502my_library.so:
1503 my_library
1504 foo
1505 bar
1506@end smallexample
1507
1508@node Type Printing API
1509@subsubsection Type Printing API
1510@cindex type printing API for Python
1511
1512@value{GDBN} provides a way for Python code to customize type display.
1513This is mainly useful for substituting canonical typedef names for
1514types.
1515
1516@cindex type printer
1517A @dfn{type printer} is just a Python object conforming to a certain
1518protocol. A simple base class implementing the protocol is provided;
1519see @ref{gdb.types}. A type printer must supply at least:
1520
1521@defivar type_printer enabled
1522A boolean which is True if the printer is enabled, and False
1523otherwise. This is manipulated by the @code{enable type-printer}
1524and @code{disable type-printer} commands.
1525@end defivar
1526
1527@defivar type_printer name
1528The name of the type printer. This must be a string. This is used by
1529the @code{enable type-printer} and @code{disable type-printer}
1530commands.
1531@end defivar
1532
1533@defmethod type_printer instantiate (self)
1534This is called by @value{GDBN} at the start of type-printing. It is
1535only called if the type printer is enabled. This method must return a
1536new object that supplies a @code{recognize} method, as described below.
1537@end defmethod
1538
1539
1540When displaying a type, say via the @code{ptype} command, @value{GDBN}
1541will compute a list of type recognizers. This is done by iterating
1542first over the per-objfile type printers (@pxref{Objfiles In Python}),
1543followed by the per-progspace type printers (@pxref{Progspaces In
1544Python}), and finally the global type printers.
1545
1546@value{GDBN} will call the @code{instantiate} method of each enabled
1547type printer. If this method returns @code{None}, then the result is
1548ignored; otherwise, it is appended to the list of recognizers.
1549
1550Then, when @value{GDBN} is going to display a type name, it iterates
1551over the list of recognizers. For each one, it calls the recognition
1552function, stopping if the function returns a non-@code{None} value.
1553The recognition function is defined as:
1554
1555@defmethod type_recognizer recognize (self, type)
1556If @var{type} is not recognized, return @code{None}. Otherwise,
1557return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1558The @var{type} argument will be an instance of @code{gdb.Type}
1559(@pxref{Types In Python}).
329baa95
DE
1560@end defmethod
1561
1562@value{GDBN} uses this two-pass approach so that type printers can
1563efficiently cache information without holding on to it too long. For
1564example, it can be convenient to look up type information in a type
1565printer and hold it for a recognizer's lifetime; if a single pass were
1566done then type printers would have to make use of the event system in
1567order to avoid holding information that could become stale as the
1568inferior changed.
1569
1570@node Frame Filter API
1571@subsubsection Filtering Frames.
1572@cindex frame filters api
1573
1574Frame filters are Python objects that manipulate the visibility of a
1575frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1576@value{GDBN}.
1577
1578Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1579commands (@pxref{GDB/MI}), those that return a collection of frames
1580are affected. The commands that work with frame filters are:
1581
1582@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1583@code{-stack-list-frames}
1584(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1585@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1586-stack-list-variables command}), @code{-stack-list-arguments}
1587@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1588@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1589-stack-list-locals command}).
1590
1591A frame filter works by taking an iterator as an argument, applying
1592actions to the contents of that iterator, and returning another
1593iterator (or, possibly, the same iterator it was provided in the case
1594where the filter does not perform any operations). Typically, frame
1595filters utilize tools such as the Python's @code{itertools} module to
1596work with and create new iterators from the source iterator.
1597Regardless of how a filter chooses to apply actions, it must not alter
1598the underlying @value{GDBN} frame or frames, or attempt to alter the
1599call-stack within @value{GDBN}. This preserves data integrity within
1600@value{GDBN}. Frame filters are executed on a priority basis and care
1601should be taken that some frame filters may have been executed before,
1602and that some frame filters will be executed after.
1603
1604An important consideration when designing frame filters, and well
1605worth reflecting upon, is that frame filters should avoid unwinding
1606the call stack if possible. Some stacks can run very deep, into the
1607tens of thousands in some cases. To search every frame when a frame
1608filter executes may be too expensive at that step. The frame filter
1609cannot know how many frames it has to iterate over, and it may have to
1610iterate through them all. This ends up duplicating effort as
1611@value{GDBN} performs this iteration when it prints the frames. If
1612the filter can defer unwinding frames until frame decorators are
1613executed, after the last filter has executed, it should. @xref{Frame
1614Decorator API}, for more information on decorators. Also, there are
1615examples for both frame decorators and filters in later chapters.
1616@xref{Writing a Frame Filter}, for more information.
1617
1618The Python dictionary @code{gdb.frame_filters} contains key/object
1619pairings that comprise a frame filter. Frame filters in this
1620dictionary are called @code{global} frame filters, and they are
1621available when debugging all inferiors. These frame filters must
1622register with the dictionary directly. In addition to the
1623@code{global} dictionary, there are other dictionaries that are loaded
1624with different inferiors via auto-loading (@pxref{Python
1625Auto-loading}). The two other areas where frame filter dictionaries
1626can be found are: @code{gdb.Progspace} which contains a
1627@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1628object which also contains a @code{frame_filters} dictionary
1629attribute.
1630
1631When a command is executed from @value{GDBN} that is compatible with
1632frame filters, @value{GDBN} combines the @code{global},
1633@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1634loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1635several frames, and thus several object files, might be in use.
1636@value{GDBN} then prunes any frame filter whose @code{enabled}
1637attribute is @code{False}. This pruned list is then sorted according
1638to the @code{priority} attribute in each filter.
1639
1640Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1641creates an iterator which wraps each frame in the call stack in a
1642@code{FrameDecorator} object, and calls each filter in order. The
1643output from the previous filter will always be the input to the next
1644filter, and so on.
1645
1646Frame filters have a mandatory interface which each frame filter must
1647implement, defined here:
1648
1649@defun FrameFilter.filter (iterator)
1650@value{GDBN} will call this method on a frame filter when it has
1651reached the order in the priority list for that filter.
1652
1653For example, if there are four frame filters:
1654
1655@smallexample
1656Name Priority
1657
1658Filter1 5
1659Filter2 10
1660Filter3 100
1661Filter4 1
1662@end smallexample
1663
1664The order that the frame filters will be called is:
1665
1666@smallexample
1667Filter3 -> Filter2 -> Filter1 -> Filter4
1668@end smallexample
1669
1670Note that the output from @code{Filter3} is passed to the input of
1671@code{Filter2}, and so on.
1672
1673This @code{filter} method is passed a Python iterator. This iterator
1674contains a sequence of frame decorators that wrap each
1675@code{gdb.Frame}, or a frame decorator that wraps another frame
1676decorator. The first filter that is executed in the sequence of frame
1677filters will receive an iterator entirely comprised of default
1678@code{FrameDecorator} objects. However, after each frame filter is
1679executed, the previous frame filter may have wrapped some or all of
1680the frame decorators with their own frame decorator. As frame
1681decorators must also conform to a mandatory interface, these
1682decorators can be assumed to act in a uniform manner (@pxref{Frame
1683Decorator API}).
1684
1685This method must return an object conforming to the Python iterator
1686protocol. Each item in the iterator must be an object conforming to
1687the frame decorator interface. If a frame filter does not wish to
1688perform any operations on this iterator, it should return that
1689iterator untouched.
1690
1691This method is not optional. If it does not exist, @value{GDBN} will
1692raise and print an error.
1693@end defun
1694
1695@defvar FrameFilter.name
1696The @code{name} attribute must be Python string which contains the
1697name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1698Management}). This attribute may contain any combination of letters
1699or numbers. Care should be taken to ensure that it is unique. This
1700attribute is mandatory.
1701@end defvar
1702
1703@defvar FrameFilter.enabled
1704The @code{enabled} attribute must be Python boolean. This attribute
1705indicates to @value{GDBN} whether the frame filter is enabled, and
1706should be considered when frame filters are executed. If
1707@code{enabled} is @code{True}, then the frame filter will be executed
1708when any of the backtrace commands detailed earlier in this chapter
1709are executed. If @code{enabled} is @code{False}, then the frame
1710filter will not be executed. This attribute is mandatory.
1711@end defvar
1712
1713@defvar FrameFilter.priority
1714The @code{priority} attribute must be Python integer. This attribute
1715controls the order of execution in relation to other frame filters.
1716There are no imposed limits on the range of @code{priority} other than
1717it must be a valid integer. The higher the @code{priority} attribute,
1718the sooner the frame filter will be executed in relation to other
1719frame filters. Although @code{priority} can be negative, it is
1720recommended practice to assume zero is the lowest priority that a
1721frame filter can be assigned. Frame filters that have the same
1722priority are executed in unsorted order in that priority slot. This
1723attribute is mandatory.
1724@end defvar
1725
1726@node Frame Decorator API
1727@subsubsection Decorating Frames.
1728@cindex frame decorator api
1729
1730Frame decorators are sister objects to frame filters (@pxref{Frame
1731Filter API}). Frame decorators are applied by a frame filter and can
1732only be used in conjunction with frame filters.
1733
1734The purpose of a frame decorator is to customize the printed content
1735of each @code{gdb.Frame} in commands where frame filters are executed.
1736This concept is called decorating a frame. Frame decorators decorate
1737a @code{gdb.Frame} with Python code contained within each API call.
1738This separates the actual data contained in a @code{gdb.Frame} from
1739the decorated data produced by a frame decorator. This abstraction is
1740necessary to maintain integrity of the data contained in each
1741@code{gdb.Frame}.
1742
1743Frame decorators have a mandatory interface, defined below.
1744
1745@value{GDBN} already contains a frame decorator called
1746@code{FrameDecorator}. This contains substantial amounts of
1747boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1748recommended that other frame decorators inherit and extend this
1749object, and only to override the methods needed.
1750
1751@defun FrameDecorator.elided (self)
1752
1753The @code{elided} method groups frames together in a hierarchical
1754system. An example would be an interpreter, where multiple low-level
1755frames make up a single call in the interpreted language. In this
1756example, the frame filter would elide the low-level frames and present
1757a single high-level frame, representing the call in the interpreted
1758language, to the user.
1759
1760The @code{elided} function must return an iterable and this iterable
1761must contain the frames that are being elided wrapped in a suitable
1762frame decorator. If no frames are being elided this function may
1763return an empty iterable, or @code{None}. Elided frames are indented
1764from normal frames in a @code{CLI} backtrace, or in the case of
1765@code{GDB/MI}, are placed in the @code{children} field of the eliding
1766frame.
1767
1768It is the frame filter's task to also filter out the elided frames from
1769the source iterator. This will avoid printing the frame twice.
1770@end defun
1771
1772@defun FrameDecorator.function (self)
1773
1774This method returns the name of the function in the frame that is to
1775be printed.
1776
1777This method must return a Python string describing the function, or
1778@code{None}.
1779
1780If this function returns @code{None}, @value{GDBN} will not print any
1781data for this field.
1782@end defun
1783
1784@defun FrameDecorator.address (self)
1785
1786This method returns the address of the frame that is to be printed.
1787
1788This method must return a Python numeric integer type of sufficient
1789size to describe the address of the frame, or @code{None}.
1790
1791If this function returns a @code{None}, @value{GDBN} will not print
1792any data for this field.
1793@end defun
1794
1795@defun FrameDecorator.filename (self)
1796
1797This method returns the filename and path associated with this frame.
1798
1799This method must return a Python string containing the filename and
1800the path to the object file backing the frame, or @code{None}.
1801
1802If this function returns a @code{None}, @value{GDBN} will not print
1803any data for this field.
1804@end defun
1805
1806@defun FrameDecorator.line (self):
1807
1808This method returns the line number associated with the current
1809position within the function addressed by this frame.
1810
1811This method must return a Python integer type, or @code{None}.
1812
1813If this function returns a @code{None}, @value{GDBN} will not print
1814any data for this field.
1815@end defun
1816
1817@defun FrameDecorator.frame_args (self)
1818@anchor{frame_args}
1819
1820This method must return an iterable, or @code{None}. Returning an
1821empty iterable, or @code{None} means frame arguments will not be
1822printed for this frame. This iterable must contain objects that
1823implement two methods, described here.
1824
1825This object must implement a @code{argument} method which takes a
1826single @code{self} parameter and must return a @code{gdb.Symbol}
1827(@pxref{Symbols In Python}), or a Python string. The object must also
1828implement a @code{value} method which takes a single @code{self}
1829parameter and must return a @code{gdb.Value} (@pxref{Values From
1830Inferior}), a Python value, or @code{None}. If the @code{value}
1831method returns @code{None}, and the @code{argument} method returns a
1832@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1833the @code{gdb.Symbol} automatically.
1834
1835A brief example:
1836
1837@smallexample
1838class SymValueWrapper():
1839
1840 def __init__(self, symbol, value):
1841 self.sym = symbol
1842 self.val = value
1843
1844 def value(self):
1845 return self.val
1846
1847 def symbol(self):
1848 return self.sym
1849
1850class SomeFrameDecorator()
1851...
1852...
1853 def frame_args(self):
1854 args = []
1855 try:
1856 block = self.inferior_frame.block()
1857 except:
1858 return None
1859
1860 # Iterate over all symbols in a block. Only add
1861 # symbols that are arguments.
1862 for sym in block:
1863 if not sym.is_argument:
1864 continue
1865 args.append(SymValueWrapper(sym,None))
1866
1867 # Add example synthetic argument.
1868 args.append(SymValueWrapper(``foo'', 42))
1869
1870 return args
1871@end smallexample
1872@end defun
1873
1874@defun FrameDecorator.frame_locals (self)
1875
1876This method must return an iterable or @code{None}. Returning an
1877empty iterable, or @code{None} means frame local arguments will not be
1878printed for this frame.
1879
1880The object interface, the description of the various strategies for
1881reading frame locals, and the example are largely similar to those
1882described in the @code{frame_args} function, (@pxref{frame_args,,The
1883frame filter frame_args function}). Below is a modified example:
1884
1885@smallexample
1886class SomeFrameDecorator()
1887...
1888...
1889 def frame_locals(self):
1890 vars = []
1891 try:
1892 block = self.inferior_frame.block()
1893 except:
1894 return None
1895
1896 # Iterate over all symbols in a block. Add all
1897 # symbols, except arguments.
1898 for sym in block:
1899 if sym.is_argument:
1900 continue
1901 vars.append(SymValueWrapper(sym,None))
1902
1903 # Add an example of a synthetic local variable.
1904 vars.append(SymValueWrapper(``bar'', 99))
1905
1906 return vars
1907@end smallexample
1908@end defun
1909
1910@defun FrameDecorator.inferior_frame (self):
1911
1912This method must return the underlying @code{gdb.Frame} that this
1913frame decorator is decorating. @value{GDBN} requires the underlying
1914frame for internal frame information to determine how to print certain
1915values when printing a frame.
1916@end defun
1917
1918@node Writing a Frame Filter
1919@subsubsection Writing a Frame Filter
1920@cindex writing a frame filter
1921
1922There are three basic elements that a frame filter must implement: it
1923must correctly implement the documented interface (@pxref{Frame Filter
1924API}), it must register itself with @value{GDBN}, and finally, it must
1925decide if it is to work on the data provided by @value{GDBN}. In all
1926cases, whether it works on the iterator or not, each frame filter must
1927return an iterator. A bare-bones frame filter follows the pattern in
1928the following example.
1929
1930@smallexample
1931import gdb
1932
1933class FrameFilter():
1934
1935 def __init__(self):
1936 # Frame filter attribute creation.
1937 #
1938 # 'name' is the name of the filter that GDB will display.
1939 #
1940 # 'priority' is the priority of the filter relative to other
1941 # filters.
1942 #
1943 # 'enabled' is a boolean that indicates whether this filter is
1944 # enabled and should be executed.
1945
1946 self.name = "Foo"
1947 self.priority = 100
1948 self.enabled = True
1949
1950 # Register this frame filter with the global frame_filters
1951 # dictionary.
1952 gdb.frame_filters[self.name] = self
1953
1954 def filter(self, frame_iter):
1955 # Just return the iterator.
1956 return frame_iter
1957@end smallexample
1958
1959The frame filter in the example above implements the three
1960requirements for all frame filters. It implements the API, self
1961registers, and makes a decision on the iterator (in this case, it just
1962returns the iterator untouched).
1963
1964The first step is attribute creation and assignment, and as shown in
1965the comments the filter assigns the following attributes: @code{name},
1966@code{priority} and whether the filter should be enabled with the
1967@code{enabled} attribute.
1968
1969The second step is registering the frame filter with the dictionary or
1970dictionaries that the frame filter has interest in. As shown in the
1971comments, this filter just registers itself with the global dictionary
1972@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
1973is a dictionary that is initialized in the @code{gdb} module when
1974@value{GDBN} starts. What dictionary a filter registers with is an
1975important consideration. Generally, if a filter is specific to a set
1976of code, it should be registered either in the @code{objfile} or
1977@code{progspace} dictionaries as they are specific to the program
1978currently loaded in @value{GDBN}. The global dictionary is always
1979present in @value{GDBN} and is never unloaded. Any filters registered
1980with the global dictionary will exist until @value{GDBN} exits. To
1981avoid filters that may conflict, it is generally better to register
1982frame filters against the dictionaries that more closely align with
1983the usage of the filter currently in question. @xref{Python
1984Auto-loading}, for further information on auto-loading Python scripts.
1985
1986@value{GDBN} takes a hands-off approach to frame filter registration,
1987therefore it is the frame filter's responsibility to ensure
1988registration has occurred, and that any exceptions are handled
1989appropriately. In particular, you may wish to handle exceptions
1990relating to Python dictionary key uniqueness. It is mandatory that
1991the dictionary key is the same as frame filter's @code{name}
1992attribute. When a user manages frame filters (@pxref{Frame Filter
1993Management}), the names @value{GDBN} will display are those contained
1994in the @code{name} attribute.
1995
1996The final step of this example is the implementation of the
1997@code{filter} method. As shown in the example comments, we define the
1998@code{filter} method and note that the method must take an iterator,
1999and also must return an iterator. In this bare-bones example, the
2000frame filter is not very useful as it just returns the iterator
2001untouched. However this is a valid operation for frame filters that
2002have the @code{enabled} attribute set, but decide not to operate on
2003any frames.
2004
2005In the next example, the frame filter operates on all frames and
2006utilizes a frame decorator to perform some work on the frames.
2007@xref{Frame Decorator API}, for further information on the frame
2008decorator interface.
2009
2010This example works on inlined frames. It highlights frames which are
2011inlined by tagging them with an ``[inlined]'' tag. By applying a
2012frame decorator to all frames with the Python @code{itertools imap}
2013method, the example defers actions to the frame decorator. Frame
2014decorators are only processed when @value{GDBN} prints the backtrace.
2015
2016This introduces a new decision making topic: whether to perform
2017decision making operations at the filtering step, or at the printing
2018step. In this example's approach, it does not perform any filtering
2019decisions at the filtering step beyond mapping a frame decorator to
2020each frame. This allows the actual decision making to be performed
2021when each frame is printed. This is an important consideration, and
2022well worth reflecting upon when designing a frame filter. An issue
2023that frame filters should avoid is unwinding the stack if possible.
2024Some stacks can run very deep, into the tens of thousands in some
2025cases. To search every frame to determine if it is inlined ahead of
2026time may be too expensive at the filtering step. The frame filter
2027cannot know how many frames it has to iterate over, and it would have
2028to iterate through them all. This ends up duplicating effort as
2029@value{GDBN} performs this iteration when it prints the frames.
2030
2031In this example decision making can be deferred to the printing step.
2032As each frame is printed, the frame decorator can examine each frame
2033in turn when @value{GDBN} iterates. From a performance viewpoint,
2034this is the most appropriate decision to make as it avoids duplicating
2035the effort that the printing step would undertake anyway. Also, if
2036there are many frame filters unwinding the stack during filtering, it
2037can substantially delay the printing of the backtrace which will
2038result in large memory usage, and a poor user experience.
2039
2040@smallexample
2041class InlineFilter():
2042
2043 def __init__(self):
2044 self.name = "InlinedFrameFilter"
2045 self.priority = 100
2046 self.enabled = True
2047 gdb.frame_filters[self.name] = self
2048
2049 def filter(self, frame_iter):
2050 frame_iter = itertools.imap(InlinedFrameDecorator,
2051 frame_iter)
2052 return frame_iter
2053@end smallexample
2054
2055This frame filter is somewhat similar to the earlier example, except
2056that the @code{filter} method applies a frame decorator object called
2057@code{InlinedFrameDecorator} to each element in the iterator. The
2058@code{imap} Python method is light-weight. It does not proactively
2059iterate over the iterator, but rather creates a new iterator which
2060wraps the existing one.
2061
2062Below is the frame decorator for this example.
2063
2064@smallexample
2065class InlinedFrameDecorator(FrameDecorator):
2066
2067 def __init__(self, fobj):
2068 super(InlinedFrameDecorator, self).__init__(fobj)
2069
2070 def function(self):
2071 frame = fobj.inferior_frame()
2072 name = str(frame.name())
2073
2074 if frame.type() == gdb.INLINE_FRAME:
2075 name = name + " [inlined]"
2076
2077 return name
2078@end smallexample
2079
2080This frame decorator only defines and overrides the @code{function}
2081method. It lets the supplied @code{FrameDecorator}, which is shipped
2082with @value{GDBN}, perform the other work associated with printing
2083this frame.
2084
2085The combination of these two objects create this output from a
2086backtrace:
2087
2088@smallexample
2089#0 0x004004e0 in bar () at inline.c:11
2090#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2091#2 0x00400566 in main () at inline.c:31
2092@end smallexample
2093
2094So in the case of this example, a frame decorator is applied to all
2095frames, regardless of whether they may be inlined or not. As
2096@value{GDBN} iterates over the iterator produced by the frame filters,
2097@value{GDBN} executes each frame decorator which then makes a decision
2098on what to print in the @code{function} callback. Using a strategy
2099like this is a way to defer decisions on the frame content to printing
2100time.
2101
2102@subheading Eliding Frames
2103
2104It might be that the above example is not desirable for representing
2105inlined frames, and a hierarchical approach may be preferred. If we
2106want to hierarchically represent frames, the @code{elided} frame
2107decorator interface might be preferable.
2108
2109This example approaches the issue with the @code{elided} method. This
2110example is quite long, but very simplistic. It is out-of-scope for
2111this section to write a complete example that comprehensively covers
2112all approaches of finding and printing inlined frames. However, this
2113example illustrates the approach an author might use.
2114
2115This example comprises of three sections.
2116
2117@smallexample
2118class InlineFrameFilter():
2119
2120 def __init__(self):
2121 self.name = "InlinedFrameFilter"
2122 self.priority = 100
2123 self.enabled = True
2124 gdb.frame_filters[self.name] = self
2125
2126 def filter(self, frame_iter):
2127 return ElidingInlineIterator(frame_iter)
2128@end smallexample
2129
2130This frame filter is very similar to the other examples. The only
2131difference is this frame filter is wrapping the iterator provided to
2132it (@code{frame_iter}) with a custom iterator called
2133@code{ElidingInlineIterator}. This again defers actions to when
2134@value{GDBN} prints the backtrace, as the iterator is not traversed
2135until printing.
2136
2137The iterator for this example is as follows. It is in this section of
2138the example where decisions are made on the content of the backtrace.
2139
2140@smallexample
2141class ElidingInlineIterator:
2142 def __init__(self, ii):
2143 self.input_iterator = ii
2144
2145 def __iter__(self):
2146 return self
2147
2148 def next(self):
2149 frame = next(self.input_iterator)
2150
2151 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2152 return frame
2153
2154 try:
2155 eliding_frame = next(self.input_iterator)
2156 except StopIteration:
2157 return frame
2158 return ElidingFrameDecorator(eliding_frame, [frame])
2159@end smallexample
2160
2161This iterator implements the Python iterator protocol. When the
2162@code{next} function is called (when @value{GDBN} prints each frame),
2163the iterator checks if this frame decorator, @code{frame}, is wrapping
2164an inlined frame. If it is not, it returns the existing frame decorator
2165untouched. If it is wrapping an inlined frame, it assumes that the
2166inlined frame was contained within the next oldest frame,
2167@code{eliding_frame}, which it fetches. It then creates and returns a
2168frame decorator, @code{ElidingFrameDecorator}, which contains both the
2169elided frame, and the eliding frame.
2170
2171@smallexample
2172class ElidingInlineDecorator(FrameDecorator):
2173
2174 def __init__(self, frame, elided_frames):
2175 super(ElidingInlineDecorator, self).__init__(frame)
2176 self.frame = frame
2177 self.elided_frames = elided_frames
2178
2179 def elided(self):
2180 return iter(self.elided_frames)
2181@end smallexample
2182
2183This frame decorator overrides one function and returns the inlined
2184frame in the @code{elided} method. As before it lets
2185@code{FrameDecorator} do the rest of the work involved in printing
2186this frame. This produces the following output.
2187
2188@smallexample
2189#0 0x004004e0 in bar () at inline.c:11
2190#2 0x00400529 in main () at inline.c:25
2191 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2192@end smallexample
2193
2194In that output, @code{max} which has been inlined into @code{main} is
2195printed hierarchically. Another approach would be to combine the
2196@code{function} method, and the @code{elided} method to both print a
2197marker in the inlined frame, and also show the hierarchical
2198relationship.
2199
d11916aa
SS
2200@node Unwinding Frames in Python
2201@subsubsection Unwinding Frames in Python
2202@cindex unwinding frames in Python
2203
2204In @value{GDBN} terminology ``unwinding'' is the process of finding
2205the previous frame (that is, caller's) from the current one. An
2206unwinder has three methods. The first one checks if it can handle
2207given frame (``sniff'' it). For the frames it can sniff an unwinder
2208provides two additional methods: it can return frame's ID, and it can
2209fetch registers from the previous frame. A running @value{GDBN}
2210mantains a list of the unwinders and calls each unwinder's sniffer in
2211turn until it finds the one that recognizes the current frame. There
2212is an API to register an unwinder.
2213
2214The unwinders that come with @value{GDBN} handle standard frames.
2215However, mixed language applications (for example, an application
2216running Java Virtual Machine) sometimes use frame layouts that cannot
2217be handled by the @value{GDBN} unwinders. You can write Python code
2218that can handle such custom frames.
2219
2220You implement a frame unwinder in Python as a class with which has two
2221attributes, @code{name} and @code{enabled}, with obvious meanings, and
2222a single method @code{__call__}, which examines a given frame and
2223returns an object (an instance of @code{gdb.UnwindInfo class)}
2224describing it. If an unwinder does not recognize a frame, it should
2225return @code{None}. The code in @value{GDBN} that enables writing
2226unwinders in Python uses this object to return frame's ID and previous
2227frame registers when @value{GDBN} core asks for them.
2228
2229@subheading Unwinder Input
2230
2231An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2232provides a method to read frame's registers:
2233
2234@defun PendingFrame.read_register (reg)
2235This method returns the contents of the register @var{regn} in the
2236frame as a @code{gdb.Value} object. @var{reg} can be either a
2237register number or a register name; the values are platform-specific.
2238They are usually found in the corresponding
2239@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree.
2240@end defun
2241
2242It also provides a factory method to create a @code{gdb.UnwindInfo}
2243instance to be returned to @value{GDBN}:
2244
2245@defun PendingFrame.create_unwind_info (frame_id)
2246Returns a new @code{gdb.UnwindInfo} instance identified by given
2247@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2248using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2249determine which function will be used, as follows:
2250
2251@table @code
2252@item sp, pc, special
2253@code{frame_id_build_special (@var{frame_id}.sp, @var{frame_id}.pc, @var{frame_id}.special)}
2254
2255@item sp, pc
2256@code{frame_id_build (@var{frame_id}.sp, @var{frame_id}.pc)}
2257
2258This is the most common case.
2259
2260@item sp
2261@code{frame_id_build_wild (@var{frame_id}.sp)}
2262@end table
2263The attribute values should be @code{gdb.Value}
2264
2265@end defun
2266
2267@subheading Unwinder Output: UnwindInfo
2268
2269Use @code{PendingFrame.create_unwind_info} method described above to
2270create a @code{gdb.UnwindInfo} instance. Use the following method to
2271specify caller registers that have been saved in this frame:
2272
2273@defun gdb.UnwindInfo.add_saved_register (reg, value)
2274@var{reg} identifies the register. It can be a number or a name, just
2275as for the @code{PendingFrame.read_register} method above.
2276@var{value} is a register value (a @code{gdb.Value} object).
2277@end defun
2278
2279@subheading Unwinder Skeleton Code
2280
2281@value{GDBN} comes with the module containing the base @code{Unwinder}
2282class. Derive your unwinder class from it and structure the code as
2283follows:
2284
2285@smallexample
2286from gdb.unwinders import Unwinder
2287
2288class FrameId(object):
2289 def __init__(self, sp, pc):
2290 self.sp = sp
2291 self.pc = pc
2292
2293
2294class MyUnwinder(Unwinder):
2295 def __init__(....):
2296 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2297
2298 def __call__(pending_frame):
2299 if not <we recognize frame>:
2300 return None
2301 # Create UnwindInfo. Usually the frame is identified by the stack
2302 # pointer and the program counter.
2303 sp = pending_frame.read_register(<SP number>)
2304 pc = pending_frame.read_register(<PC number>)
2305 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2306
2307 # Find the values of the registers in the caller's frame and
2308 # save them in the result:
2309 unwind_info.add_saved_register(<register>, <value>)
2310 ....
2311
2312 # Return the result:
2313 return unwind_info
2314
2315@end smallexample
2316
2317@subheading Registering a Unwinder
2318
2319An object file, a program space, and the @value{GDBN} proper can have
2320unwinders registered with it.
2321
2322The @code{gdb.unwinders} module provides the function to register a
2323unwinder:
2324
2325@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2326@var{locus} is specifies an object file or a program space to which
2327@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2328@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2329added @var{unwinder} will be called before any other unwinder from the
2330same locus. Two unwinders in the same locus cannot have the same
2331name. An attempt to add a unwinder with already existing name raises
2332an exception unless @var{replace} is @code{True}, in which case the
2333old unwinder is deleted.
2334@end defun
2335
2336@subheading Unwinder Precedence
2337
2338@value{GDBN} first calls the unwinders from all the object files in no
2339particular order, then the unwinders from the current program space,
2340and finally the unwinders from @value{GDBN}.
2341
0c6e92a5
SC
2342@node Xmethods In Python
2343@subsubsection Xmethods In Python
2344@cindex xmethods in Python
2345
2346@dfn{Xmethods} are additional methods or replacements for existing
2347methods of a C@t{++} class. This feature is useful for those cases
2348where a method defined in C@t{++} source code could be inlined or
2349optimized out by the compiler, making it unavailable to @value{GDBN}.
2350For such cases, one can define an xmethod to serve as a replacement
2351for the method defined in the C@t{++} source code. @value{GDBN} will
2352then invoke the xmethod, instead of the C@t{++} method, to
2353evaluate expressions. One can also use xmethods when debugging
2354with core files. Moreover, when debugging live programs, invoking an
2355xmethod need not involve running the inferior (which can potentially
2356perturb its state). Hence, even if the C@t{++} method is available, it
2357is better to use its replacement xmethod if one is defined.
2358
2359The xmethods feature in Python is available via the concepts of an
2360@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2361implement an xmethod, one has to implement a matcher and a
2362corresponding worker for it (more than one worker can be
2363implemented, each catering to a different overloaded instance of the
2364method). Internally, @value{GDBN} invokes the @code{match} method of a
2365matcher to match the class type and method name. On a match, the
2366@code{match} method returns a list of matching @emph{worker} objects.
2367Each worker object typically corresponds to an overloaded instance of
2368the xmethod. They implement a @code{get_arg_types} method which
2369returns a sequence of types corresponding to the arguments the xmethod
2370requires. @value{GDBN} uses this sequence of types to perform
2371overload resolution and picks a winning xmethod worker. A winner
2372is also selected from among the methods @value{GDBN} finds in the
2373C@t{++} source code. Next, the winning xmethod worker and the
2374winning C@t{++} method are compared to select an overall winner. In
2375case of a tie between a xmethod worker and a C@t{++} method, the
2376xmethod worker is selected as the winner. That is, if a winning
2377xmethod worker is found to be equivalent to the winning C@t{++}
2378method, then the xmethod worker is treated as a replacement for
2379the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2380method. If the winning xmethod worker is the overall winner, then
897c3d32 2381the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2382of the worker object.
2383
2384If one wants to implement an xmethod as a replacement for an
2385existing C@t{++} method, then they have to implement an equivalent
2386xmethod which has exactly the same name and takes arguments of
2387exactly the same type as the C@t{++} method. If the user wants to
2388invoke the C@t{++} method even though a replacement xmethod is
2389available for that method, then they can disable the xmethod.
2390
2391@xref{Xmethod API}, for API to implement xmethods in Python.
2392@xref{Writing an Xmethod}, for implementing xmethods in Python.
2393
2394@node Xmethod API
2395@subsubsection Xmethod API
2396@cindex xmethod API
2397
2398The @value{GDBN} Python API provides classes, interfaces and functions
2399to implement, register and manipulate xmethods.
2400@xref{Xmethods In Python}.
2401
2402An xmethod matcher should be an instance of a class derived from
2403@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2404object with similar interface and attributes. An instance of
2405@code{XMethodMatcher} has the following attributes:
2406
2407@defvar name
2408The name of the matcher.
2409@end defvar
2410
2411@defvar enabled
2412A boolean value indicating whether the matcher is enabled or disabled.
2413@end defvar
2414
2415@defvar methods
2416A list of named methods managed by the matcher. Each object in the list
2417is an instance of the class @code{XMethod} defined in the module
2418@code{gdb.xmethod}, or any object with the following attributes:
2419
2420@table @code
2421
2422@item name
2423Name of the xmethod which should be unique for each xmethod
2424managed by the matcher.
2425
2426@item enabled
2427A boolean value indicating whether the xmethod is enabled or
2428disabled.
2429
2430@end table
2431
2432The class @code{XMethod} is a convenience class with same
2433attributes as above along with the following constructor:
2434
dd5d5494 2435@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2436Constructs an enabled xmethod with name @var{name}.
2437@end defun
2438@end defvar
2439
2440@noindent
2441The @code{XMethodMatcher} class has the following methods:
2442
dd5d5494 2443@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2444Constructs an enabled xmethod matcher with name @var{name}. The
2445@code{methods} attribute is initialized to @code{None}.
2446@end defun
2447
dd5d5494 2448@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2449Derived classes should override this method. It should return a
2450xmethod worker object (or a sequence of xmethod worker
2451objects) matching the @var{class_type} and @var{method_name}.
2452@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2453is a string value. If the matcher manages named methods as listed in
2454its @code{methods} attribute, then only those worker objects whose
2455corresponding entries in the @code{methods} list are enabled should be
2456returned.
2457@end defun
2458
2459An xmethod worker should be an instance of a class derived from
2460@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2461or support the following interface:
2462
dd5d5494 2463@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2464This method returns a sequence of @code{gdb.Type} objects corresponding
2465to the arguments that the xmethod takes. It can return an empty
2466sequence or @code{None} if the xmethod does not take any arguments.
2467If the xmethod takes a single argument, then a single
2468@code{gdb.Type} object corresponding to it can be returned.
2469@end defun
2470
2ce1cdbf
DE
2471@defun XMethodWorker.get_result_type (self, *args)
2472This method returns a @code{gdb.Type} object representing the type
2473of the result of invoking this xmethod.
2474The @var{args} argument is the same tuple of arguments that would be
2475passed to the @code{__call__} method of this worker.
2476@end defun
2477
dd5d5494 2478@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2479This is the method which does the @emph{work} of the xmethod. The
2480@var{args} arguments is the tuple of arguments to the xmethod. Each
2481element in this tuple is a gdb.Value object. The first element is
2482always the @code{this} pointer value.
2483@end defun
2484
2485For @value{GDBN} to lookup xmethods, the xmethod matchers
2486should be registered using the following function defined in the module
2487@code{gdb.xmethod}:
2488
dd5d5494 2489@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2490The @code{matcher} is registered with @code{locus}, replacing an
2491existing matcher with the same name as @code{matcher} if
2492@code{replace} is @code{True}. @code{locus} can be a
2493@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2494@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2495@code{None}. If it is @code{None}, then @code{matcher} is registered
2496globally.
2497@end defun
2498
2499@node Writing an Xmethod
2500@subsubsection Writing an Xmethod
2501@cindex writing xmethods in Python
2502
2503Implementing xmethods in Python will require implementing xmethod
2504matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2505the following C@t{++} class:
2506
2507@smallexample
2508class MyClass
2509@{
2510public:
2511 MyClass (int a) : a_(a) @{ @}
2512
2513 int geta (void) @{ return a_; @}
2514 int operator+ (int b);
2515
2516private:
2517 int a_;
2518@};
2519
2520int
2521MyClass::operator+ (int b)
2522@{
2523 return a_ + b;
2524@}
2525@end smallexample
2526
2527@noindent
2528Let us define two xmethods for the class @code{MyClass}, one
2529replacing the method @code{geta}, and another adding an overloaded
2530flavor of @code{operator+} which takes a @code{MyClass} argument (the
2531C@t{++} code above already has an overloaded @code{operator+}
2532which takes an @code{int} argument). The xmethod matcher can be
2533defined as follows:
2534
2535@smallexample
2536class MyClass_geta(gdb.xmethod.XMethod):
2537 def __init__(self):
2538 gdb.xmethod.XMethod.__init__(self, 'geta')
2539
2540 def get_worker(self, method_name):
2541 if method_name == 'geta':
2542 return MyClassWorker_geta()
2543
2544
2545class MyClass_sum(gdb.xmethod.XMethod):
2546 def __init__(self):
2547 gdb.xmethod.XMethod.__init__(self, 'sum')
2548
2549 def get_worker(self, method_name):
2550 if method_name == 'operator+':
2551 return MyClassWorker_plus()
2552
2553
2554class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2555 def __init__(self):
2556 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2557 # List of methods 'managed' by this matcher
2558 self.methods = [MyClass_geta(), MyClass_sum()]
2559
2560 def match(self, class_type, method_name):
2561 if class_type.tag != 'MyClass':
2562 return None
2563 workers = []
2564 for method in self.methods:
2565 if method.enabled:
2566 worker = method.get_worker(method_name)
2567 if worker:
2568 workers.append(worker)
2569
2570 return workers
2571@end smallexample
2572
2573@noindent
2574Notice that the @code{match} method of @code{MyClassMatcher} returns
2575a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2576method, and a worker object of type @code{MyClassWorker_plus} for the
2577@code{operator+} method. This is done indirectly via helper classes
2578derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2579@code{methods} attribute in a matcher as it is optional. However, if a
2580matcher manages more than one xmethod, it is a good practice to list the
2581xmethods in the @code{methods} attribute of the matcher. This will then
2582facilitate enabling and disabling individual xmethods via the
2583@code{enable/disable} commands. Notice also that a worker object is
2584returned only if the corresponding entry in the @code{methods} attribute
2585of the matcher is enabled.
2586
2587The implementation of the worker classes returned by the matcher setup
2588above is as follows:
2589
2590@smallexample
2591class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2592 def get_arg_types(self):
2593 return None
2ce1cdbf
DE
2594
2595 def get_result_type(self, obj):
2596 return gdb.lookup_type('int')
0c6e92a5
SC
2597
2598 def __call__(self, obj):
2599 return obj['a_']
2600
2601
2602class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2603 def get_arg_types(self):
2604 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2605
2606 def get_result_type(self, obj):
2607 return gdb.lookup_type('int')
0c6e92a5
SC
2608
2609 def __call__(self, obj, other):
2610 return obj['a_'] + other['a_']
2611@end smallexample
2612
2613For @value{GDBN} to actually lookup a xmethod, it has to be
2614registered with it. The matcher defined above is registered with
2615@value{GDBN} globally as follows:
2616
2617@smallexample
2618gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2619@end smallexample
2620
2621If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2622code as follows:
2623
2624@smallexample
2625MyClass obj(5);
2626@end smallexample
2627
2628@noindent
2629then, after loading the Python script defining the xmethod matchers
2630and workers into @code{GDBN}, invoking the method @code{geta} or using
2631the operator @code{+} on @code{obj} will invoke the xmethods
2632defined above:
2633
2634@smallexample
2635(gdb) p obj.geta()
2636$1 = 5
2637
2638(gdb) p obj + obj
2639$2 = 10
2640@end smallexample
2641
2642Consider another example with a C++ template class:
2643
2644@smallexample
2645template <class T>
2646class MyTemplate
2647@{
2648public:
2649 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2650 ~MyTemplate () @{ delete [] data_; @}
2651
2652 int footprint (void)
2653 @{
2654 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2655 @}
2656
2657private:
2658 int dsize_;
2659 T *data_;
2660@};
2661@end smallexample
2662
2663Let us implement an xmethod for the above class which serves as a
2664replacement for the @code{footprint} method. The full code listing
2665of the xmethod workers and xmethod matchers is as follows:
2666
2667@smallexample
2668class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2669 def __init__(self, class_type):
2670 self.class_type = class_type
2ce1cdbf 2671
0c6e92a5
SC
2672 def get_arg_types(self):
2673 return None
2ce1cdbf
DE
2674
2675 def get_result_type(self):
2676 return gdb.lookup_type('int')
2677
0c6e92a5
SC
2678 def __call__(self, obj):
2679 return (self.class_type.sizeof +
2680 obj['dsize_'] *
2681 self.class_type.template_argument(0).sizeof)
2682
2683
2684class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2685 def __init__(self):
2686 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2687
2688 def match(self, class_type, method_name):
2689 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2690 class_type.tag) and
2691 method_name == 'footprint'):
2692 return MyTemplateWorker_footprint(class_type)
2693@end smallexample
2694
2695Notice that, in this example, we have not used the @code{methods}
2696attribute of the matcher as the matcher manages only one xmethod. The
2697user can enable/disable this xmethod by enabling/disabling the matcher
2698itself.
2699
329baa95
DE
2700@node Inferiors In Python
2701@subsubsection Inferiors In Python
2702@cindex inferiors in Python
2703
2704@findex gdb.Inferior
2705Programs which are being run under @value{GDBN} are called inferiors
2706(@pxref{Inferiors and Programs}). Python scripts can access
2707information about and manipulate inferiors controlled by @value{GDBN}
2708via objects of the @code{gdb.Inferior} class.
2709
2710The following inferior-related functions are available in the @code{gdb}
2711module:
2712
2713@defun gdb.inferiors ()
2714Return a tuple containing all inferior objects.
2715@end defun
2716
2717@defun gdb.selected_inferior ()
2718Return an object representing the current inferior.
2719@end defun
2720
2721A @code{gdb.Inferior} object has the following attributes:
2722
2723@defvar Inferior.num
2724ID of inferior, as assigned by GDB.
2725@end defvar
2726
2727@defvar Inferior.pid
2728Process ID of the inferior, as assigned by the underlying operating
2729system.
2730@end defvar
2731
2732@defvar Inferior.was_attached
2733Boolean signaling whether the inferior was created using `attach', or
2734started by @value{GDBN} itself.
2735@end defvar
2736
2737A @code{gdb.Inferior} object has the following methods:
2738
2739@defun Inferior.is_valid ()
2740Returns @code{True} if the @code{gdb.Inferior} object is valid,
2741@code{False} if not. A @code{gdb.Inferior} object will become invalid
2742if the inferior no longer exists within @value{GDBN}. All other
2743@code{gdb.Inferior} methods will throw an exception if it is invalid
2744at the time the method is called.
2745@end defun
2746
2747@defun Inferior.threads ()
2748This method returns a tuple holding all the threads which are valid
2749when it is called. If there are no valid threads, the method will
2750return an empty tuple.
2751@end defun
2752
2753@findex Inferior.read_memory
2754@defun Inferior.read_memory (address, length)
a86c90e6 2755Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2756@var{address}. Returns a buffer object, which behaves much like an array
2757or a string. It can be modified and given to the
2758@code{Inferior.write_memory} function. In @code{Python} 3, the return
2759value is a @code{memoryview} object.
2760@end defun
2761
2762@findex Inferior.write_memory
2763@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2764Write the contents of @var{buffer} to the inferior, starting at
2765@var{address}. The @var{buffer} parameter must be a Python object
2766which supports the buffer protocol, i.e., a string, an array or the
2767object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2768determines the number of addressable memory units from @var{buffer} to be
2769written.
329baa95
DE
2770@end defun
2771
2772@findex gdb.search_memory
2773@defun Inferior.search_memory (address, length, pattern)
2774Search a region of the inferior memory starting at @var{address} with
2775the given @var{length} using the search pattern supplied in
2776@var{pattern}. The @var{pattern} parameter must be a Python object
2777which supports the buffer protocol, i.e., a string, an array or the
2778object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2779containing the address where the pattern was found, or @code{None} if
2780the pattern could not be found.
2781@end defun
2782
2783@node Events In Python
2784@subsubsection Events In Python
2785@cindex inferior events in Python
2786
2787@value{GDBN} provides a general event facility so that Python code can be
2788notified of various state changes, particularly changes that occur in
2789the inferior.
2790
2791An @dfn{event} is just an object that describes some state change. The
2792type of the object and its attributes will vary depending on the details
2793of the change. All the existing events are described below.
2794
2795In order to be notified of an event, you must register an event handler
2796with an @dfn{event registry}. An event registry is an object in the
2797@code{gdb.events} module which dispatches particular events. A registry
2798provides methods to register and unregister event handlers:
2799
2800@defun EventRegistry.connect (object)
2801Add the given callable @var{object} to the registry. This object will be
2802called when an event corresponding to this registry occurs.
2803@end defun
2804
2805@defun EventRegistry.disconnect (object)
2806Remove the given @var{object} from the registry. Once removed, the object
2807will no longer receive notifications of events.
2808@end defun
2809
2810Here is an example:
2811
2812@smallexample
2813def exit_handler (event):
2814 print "event type: exit"
2815 print "exit code: %d" % (event.exit_code)
2816
2817gdb.events.exited.connect (exit_handler)
2818@end smallexample
2819
2820In the above example we connect our handler @code{exit_handler} to the
2821registry @code{events.exited}. Once connected, @code{exit_handler} gets
2822called when the inferior exits. The argument @dfn{event} in this example is
2823of type @code{gdb.ExitedEvent}. As you can see in the example the
2824@code{ExitedEvent} object has an attribute which indicates the exit code of
2825the inferior.
2826
2827The following is a listing of the event registries that are available and
2828details of the events they emit:
2829
2830@table @code
2831
2832@item events.cont
2833Emits @code{gdb.ThreadEvent}.
2834
2835Some events can be thread specific when @value{GDBN} is running in non-stop
2836mode. When represented in Python, these events all extend
2837@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2838events which are emitted by this or other modules might extend this event.
2839Examples of these events are @code{gdb.BreakpointEvent} and
2840@code{gdb.ContinueEvent}.
2841
2842@defvar ThreadEvent.inferior_thread
2843In non-stop mode this attribute will be set to the specific thread which was
2844involved in the emitted event. Otherwise, it will be set to @code{None}.
2845@end defvar
2846
2847Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2848
2849This event indicates that the inferior has been continued after a stop. For
2850inherited attribute refer to @code{gdb.ThreadEvent} above.
2851
2852@item events.exited
2853Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2854@code{events.ExitedEvent} has two attributes:
2855@defvar ExitedEvent.exit_code
2856An integer representing the exit code, if available, which the inferior
2857has returned. (The exit code could be unavailable if, for example,
2858@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2859the attribute does not exist.
2860@end defvar
2861@defvar ExitedEvent inferior
2862A reference to the inferior which triggered the @code{exited} event.
2863@end defvar
2864
2865@item events.stop
2866Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2867
2868Indicates that the inferior has stopped. All events emitted by this registry
2869extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2870will indicate the stopped thread when @value{GDBN} is running in non-stop
2871mode. Refer to @code{gdb.ThreadEvent} above for more details.
2872
2873Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2874
2875This event indicates that the inferior or one of its threads has received as
2876signal. @code{gdb.SignalEvent} has the following attributes:
2877
2878@defvar SignalEvent.stop_signal
2879A string representing the signal received by the inferior. A list of possible
2880signal values can be obtained by running the command @code{info signals} in
2881the @value{GDBN} command prompt.
2882@end defvar
2883
2884Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2885
2886@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2887been hit, and has the following attributes:
2888
2889@defvar BreakpointEvent.breakpoints
2890A sequence containing references to all the breakpoints (type
2891@code{gdb.Breakpoint}) that were hit.
2892@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2893@end defvar
2894@defvar BreakpointEvent.breakpoint
2895A reference to the first breakpoint that was hit.
2896This function is maintained for backward compatibility and is now deprecated
2897in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
2898@end defvar
2899
2900@item events.new_objfile
2901Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
2902been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
2903
2904@defvar NewObjFileEvent.new_objfile
2905A reference to the object file (@code{gdb.Objfile}) which has been loaded.
2906@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
2907@end defvar
2908
4ffbba72
DE
2909@item events.clear_objfiles
2910Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
2911files for a program space has been reset.
2912@code{gdb.ClearObjFilesEvent} has one attribute:
2913
2914@defvar ClearObjFilesEvent.progspace
2915A reference to the program space (@code{gdb.Progspace}) whose objfile list has
2916been cleared. @xref{Progspaces In Python}.
2917@end defvar
2918
162078c8
NB
2919@item events.inferior_call_pre
2920Emits @code{gdb.InferiorCallPreEvent} which indicates that a function in
2921the inferior is about to be called.
2922
2923@defvar InferiorCallPreEvent.ptid
2924The thread in which the call will be run.
2925@end defvar
2926
2927@defvar InferiorCallPreEvent.address
2928The location of the function to be called.
2929@end defvar
2930
2931@item events.inferior_call_post
2932Emits @code{gdb.InferiorCallPostEvent} which indicates that a function in
2933the inferior has returned.
2934
2935@defvar InferiorCallPostEvent.ptid
2936The thread in which the call was run.
2937@end defvar
2938
2939@defvar InferiorCallPostEvent.address
2940The location of the function that was called.
2941@end defvar
2942
2943@item events.memory_changed
2944Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
2945inferior has been modified by the @value{GDBN} user, for instance via a
2946command like @w{@code{set *addr = value}}. The event has the following
2947attributes:
2948
2949@defvar MemoryChangedEvent.address
2950The start address of the changed region.
2951@end defvar
2952
2953@defvar MemoryChangedEvent.length
2954Length in bytes of the changed region.
2955@end defvar
2956
2957@item events.register_changed
2958Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
2959inferior has been modified by the @value{GDBN} user.
2960
2961@defvar RegisterChangedEvent.frame
2962A gdb.Frame object representing the frame in which the register was modified.
2963@end defvar
2964@defvar RegisterChangedEvent.regnum
2965Denotes which register was modified.
2966@end defvar
2967
dac790e1
TT
2968@item events.breakpoint_created
2969This is emitted when a new breakpoint has been created. The argument
2970that is passed is the new @code{gdb.Breakpoint} object.
2971
2972@item events.breakpoint_modified
2973This is emitted when a breakpoint has been modified in some way. The
2974argument that is passed is the new @code{gdb.Breakpoint} object.
2975
2976@item events.breakpoint_deleted
2977This is emitted when a breakpoint has been deleted. The argument that
2978is passed is the @code{gdb.Breakpoint} object. When this event is
2979emitted, the @code{gdb.Breakpoint} object will already be in its
2980invalid state; that is, the @code{is_valid} method will return
2981@code{False}.
2982
329baa95
DE
2983@end table
2984
2985@node Threads In Python
2986@subsubsection Threads In Python
2987@cindex threads in python
2988
2989@findex gdb.InferiorThread
2990Python scripts can access information about, and manipulate inferior threads
2991controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
2992
2993The following thread-related functions are available in the @code{gdb}
2994module:
2995
2996@findex gdb.selected_thread
2997@defun gdb.selected_thread ()
2998This function returns the thread object for the selected thread. If there
2999is no selected thread, this will return @code{None}.
3000@end defun
3001
3002A @code{gdb.InferiorThread} object has the following attributes:
3003
3004@defvar InferiorThread.name
3005The name of the thread. If the user specified a name using
3006@code{thread name}, then this returns that name. Otherwise, if an
3007OS-supplied name is available, then it is returned. Otherwise, this
3008returns @code{None}.
3009
3010This attribute can be assigned to. The new value must be a string
3011object, which sets the new name, or @code{None}, which removes any
3012user-specified thread name.
3013@end defvar
3014
3015@defvar InferiorThread.num
5d5658a1 3016The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3017@end defvar
3018
22a02324
PA
3019@defvar InferiorThread.global_num
3020The global ID of the thread, as assigned by GDB. You can use this to
3021make Python breakpoints thread-specific, for example
3022(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3023@end defvar
3024
329baa95
DE
3025@defvar InferiorThread.ptid
3026ID of the thread, as assigned by the operating system. This attribute is a
3027tuple containing three integers. The first is the Process ID (PID); the second
3028is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3029Either the LWPID or TID may be 0, which indicates that the operating system
3030does not use that identifier.
3031@end defvar
3032
84654457
PA
3033@defvar InferiorThread.inferior
3034The inferior this thread belongs to. This attribute is represented as
3035a @code{gdb.Inferior} object. This attribute is not writable.
3036@end defvar
3037
329baa95
DE
3038A @code{gdb.InferiorThread} object has the following methods:
3039
3040@defun InferiorThread.is_valid ()
3041Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3042@code{False} if not. A @code{gdb.InferiorThread} object will become
3043invalid if the thread exits, or the inferior that the thread belongs
3044is deleted. All other @code{gdb.InferiorThread} methods will throw an
3045exception if it is invalid at the time the method is called.
3046@end defun
3047
3048@defun InferiorThread.switch ()
3049This changes @value{GDBN}'s currently selected thread to the one represented
3050by this object.
3051@end defun
3052
3053@defun InferiorThread.is_stopped ()
3054Return a Boolean indicating whether the thread is stopped.
3055@end defun
3056
3057@defun InferiorThread.is_running ()
3058Return a Boolean indicating whether the thread is running.
3059@end defun
3060
3061@defun InferiorThread.is_exited ()
3062Return a Boolean indicating whether the thread is exited.
3063@end defun
3064
3065@node Commands In Python
3066@subsubsection Commands In Python
3067
3068@cindex commands in python
3069@cindex python commands
3070You can implement new @value{GDBN} CLI commands in Python. A CLI
3071command is implemented using an instance of the @code{gdb.Command}
3072class, most commonly using a subclass.
3073
3074@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3075The object initializer for @code{Command} registers the new command
3076with @value{GDBN}. This initializer is normally invoked from the
3077subclass' own @code{__init__} method.
3078
3079@var{name} is the name of the command. If @var{name} consists of
3080multiple words, then the initial words are looked for as prefix
3081commands. In this case, if one of the prefix commands does not exist,
3082an exception is raised.
3083
3084There is no support for multi-line commands.
3085
3086@var{command_class} should be one of the @samp{COMMAND_} constants
3087defined below. This argument tells @value{GDBN} how to categorize the
3088new command in the help system.
3089
3090@var{completer_class} is an optional argument. If given, it should be
3091one of the @samp{COMPLETE_} constants defined below. This argument
3092tells @value{GDBN} how to perform completion for this command. If not
3093given, @value{GDBN} will attempt to complete using the object's
3094@code{complete} method (see below); if no such method is found, an
3095error will occur when completion is attempted.
3096
3097@var{prefix} is an optional argument. If @code{True}, then the new
3098command is a prefix command; sub-commands of this command may be
3099registered.
3100
3101The help text for the new command is taken from the Python
3102documentation string for the command's class, if there is one. If no
3103documentation string is provided, the default value ``This command is
3104not documented.'' is used.
3105@end defun
3106
3107@cindex don't repeat Python command
3108@defun Command.dont_repeat ()
3109By default, a @value{GDBN} command is repeated when the user enters a
3110blank line at the command prompt. A command can suppress this
3111behavior by invoking the @code{dont_repeat} method. This is similar
3112to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3113@end defun
3114
3115@defun Command.invoke (argument, from_tty)
3116This method is called by @value{GDBN} when this command is invoked.
3117
3118@var{argument} is a string. It is the argument to the command, after
3119leading and trailing whitespace has been stripped.
3120
3121@var{from_tty} is a boolean argument. When true, this means that the
3122command was entered by the user at the terminal; when false it means
3123that the command came from elsewhere.
3124
3125If this method throws an exception, it is turned into a @value{GDBN}
3126@code{error} call. Otherwise, the return value is ignored.
3127
3128@findex gdb.string_to_argv
3129To break @var{argument} up into an argv-like string use
3130@code{gdb.string_to_argv}. This function behaves identically to
3131@value{GDBN}'s internal argument lexer @code{buildargv}.
3132It is recommended to use this for consistency.
3133Arguments are separated by spaces and may be quoted.
3134Example:
3135
3136@smallexample
3137print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3138['1', '2 "3', '4 "5', "6 '7"]
3139@end smallexample
3140
3141@end defun
3142
3143@cindex completion of Python commands
3144@defun Command.complete (text, word)
3145This method is called by @value{GDBN} when the user attempts
3146completion on this command. All forms of completion are handled by
3147this method, that is, the @key{TAB} and @key{M-?} key bindings
3148(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3149complete}).
3150
697aa1b7
EZ
3151The arguments @var{text} and @var{word} are both strings; @var{text}
3152holds the complete command line up to the cursor's location, while
329baa95
DE
3153@var{word} holds the last word of the command line; this is computed
3154using a word-breaking heuristic.
3155
3156The @code{complete} method can return several values:
3157@itemize @bullet
3158@item
3159If the return value is a sequence, the contents of the sequence are
3160used as the completions. It is up to @code{complete} to ensure that the
3161contents actually do complete the word. A zero-length sequence is
3162allowed, it means that there were no completions available. Only
3163string elements of the sequence are used; other elements in the
3164sequence are ignored.
3165
3166@item
3167If the return value is one of the @samp{COMPLETE_} constants defined
3168below, then the corresponding @value{GDBN}-internal completion
3169function is invoked, and its result is used.
3170
3171@item
3172All other results are treated as though there were no available
3173completions.
3174@end itemize
3175@end defun
3176
3177When a new command is registered, it must be declared as a member of
3178some general class of commands. This is used to classify top-level
3179commands in the on-line help system; note that prefix commands are not
3180listed under their own category but rather that of their top-level
3181command. The available classifications are represented by constants
3182defined in the @code{gdb} module:
3183
3184@table @code
3185@findex COMMAND_NONE
3186@findex gdb.COMMAND_NONE
3187@item gdb.COMMAND_NONE
3188The command does not belong to any particular class. A command in
3189this category will not be displayed in any of the help categories.
3190
3191@findex COMMAND_RUNNING
3192@findex gdb.COMMAND_RUNNING
3193@item gdb.COMMAND_RUNNING
3194The command is related to running the inferior. For example,
3195@code{start}, @code{step}, and @code{continue} are in this category.
3196Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3197commands in this category.
3198
3199@findex COMMAND_DATA
3200@findex gdb.COMMAND_DATA
3201@item gdb.COMMAND_DATA
3202The command is related to data or variables. For example,
3203@code{call}, @code{find}, and @code{print} are in this category. Type
3204@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3205in this category.
3206
3207@findex COMMAND_STACK
3208@findex gdb.COMMAND_STACK
3209@item gdb.COMMAND_STACK
3210The command has to do with manipulation of the stack. For example,
3211@code{backtrace}, @code{frame}, and @code{return} are in this
3212category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3213list of commands in this category.
3214
3215@findex COMMAND_FILES
3216@findex gdb.COMMAND_FILES
3217@item gdb.COMMAND_FILES
3218This class is used for file-related commands. For example,
3219@code{file}, @code{list} and @code{section} are in this category.
3220Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3221commands in this category.
3222
3223@findex COMMAND_SUPPORT
3224@findex gdb.COMMAND_SUPPORT
3225@item gdb.COMMAND_SUPPORT
3226This should be used for ``support facilities'', generally meaning
3227things that are useful to the user when interacting with @value{GDBN},
3228but not related to the state of the inferior. For example,
3229@code{help}, @code{make}, and @code{shell} are in this category. Type
3230@kbd{help support} at the @value{GDBN} prompt to see a list of
3231commands in this category.
3232
3233@findex COMMAND_STATUS
3234@findex gdb.COMMAND_STATUS
3235@item gdb.COMMAND_STATUS
3236The command is an @samp{info}-related command, that is, related to the
3237state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3238and @code{show} are in this category. Type @kbd{help status} at the
3239@value{GDBN} prompt to see a list of commands in this category.
3240
3241@findex COMMAND_BREAKPOINTS
3242@findex gdb.COMMAND_BREAKPOINTS
3243@item gdb.COMMAND_BREAKPOINTS
3244The command has to do with breakpoints. For example, @code{break},
3245@code{clear}, and @code{delete} are in this category. Type @kbd{help
3246breakpoints} at the @value{GDBN} prompt to see a list of commands in
3247this category.
3248
3249@findex COMMAND_TRACEPOINTS
3250@findex gdb.COMMAND_TRACEPOINTS
3251@item gdb.COMMAND_TRACEPOINTS
3252The command has to do with tracepoints. For example, @code{trace},
3253@code{actions}, and @code{tfind} are in this category. Type
3254@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3255commands in this category.
3256
3257@findex COMMAND_USER
3258@findex gdb.COMMAND_USER
3259@item gdb.COMMAND_USER
3260The command is a general purpose command for the user, and typically
3261does not fit in one of the other categories.
3262Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3263a list of commands in this category, as well as the list of gdb macros
3264(@pxref{Sequences}).
3265
3266@findex COMMAND_OBSCURE
3267@findex gdb.COMMAND_OBSCURE
3268@item gdb.COMMAND_OBSCURE
3269The command is only used in unusual circumstances, or is not of
3270general interest to users. For example, @code{checkpoint},
3271@code{fork}, and @code{stop} are in this category. Type @kbd{help
3272obscure} at the @value{GDBN} prompt to see a list of commands in this
3273category.
3274
3275@findex COMMAND_MAINTENANCE
3276@findex gdb.COMMAND_MAINTENANCE
3277@item gdb.COMMAND_MAINTENANCE
3278The command is only useful to @value{GDBN} maintainers. The
3279@code{maintenance} and @code{flushregs} commands are in this category.
3280Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3281commands in this category.
3282@end table
3283
3284A new command can use a predefined completion function, either by
3285specifying it via an argument at initialization, or by returning it
3286from the @code{complete} method. These predefined completion
3287constants are all defined in the @code{gdb} module:
3288
b3ce5e5f
DE
3289@vtable @code
3290@vindex COMPLETE_NONE
329baa95
DE
3291@item gdb.COMPLETE_NONE
3292This constant means that no completion should be done.
3293
b3ce5e5f 3294@vindex COMPLETE_FILENAME
329baa95
DE
3295@item gdb.COMPLETE_FILENAME
3296This constant means that filename completion should be performed.
3297
b3ce5e5f 3298@vindex COMPLETE_LOCATION
329baa95
DE
3299@item gdb.COMPLETE_LOCATION
3300This constant means that location completion should be done.
3301@xref{Specify Location}.
3302
b3ce5e5f 3303@vindex COMPLETE_COMMAND
329baa95
DE
3304@item gdb.COMPLETE_COMMAND
3305This constant means that completion should examine @value{GDBN}
3306command names.
3307
b3ce5e5f 3308@vindex COMPLETE_SYMBOL
329baa95
DE
3309@item gdb.COMPLETE_SYMBOL
3310This constant means that completion should be done using symbol names
3311as the source.
3312
b3ce5e5f 3313@vindex COMPLETE_EXPRESSION
329baa95
DE
3314@item gdb.COMPLETE_EXPRESSION
3315This constant means that completion should be done on expressions.
3316Often this means completing on symbol names, but some language
3317parsers also have support for completing on field names.
b3ce5e5f 3318@end vtable
329baa95
DE
3319
3320The following code snippet shows how a trivial CLI command can be
3321implemented in Python:
3322
3323@smallexample
3324class HelloWorld (gdb.Command):
3325 """Greet the whole world."""
3326
3327 def __init__ (self):
3328 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3329
3330 def invoke (self, arg, from_tty):
3331 print "Hello, World!"
3332
3333HelloWorld ()
3334@end smallexample
3335
3336The last line instantiates the class, and is necessary to trigger the
3337registration of the command with @value{GDBN}. Depending on how the
3338Python code is read into @value{GDBN}, you may need to import the
3339@code{gdb} module explicitly.
3340
3341@node Parameters In Python
3342@subsubsection Parameters In Python
3343
3344@cindex parameters in python
3345@cindex python parameters
3346@tindex gdb.Parameter
3347@tindex Parameter
3348You can implement new @value{GDBN} parameters using Python. A new
3349parameter is implemented as an instance of the @code{gdb.Parameter}
3350class.
3351
3352Parameters are exposed to the user via the @code{set} and
3353@code{show} commands. @xref{Help}.
3354
3355There are many parameters that already exist and can be set in
3356@value{GDBN}. Two examples are: @code{set follow fork} and
3357@code{set charset}. Setting these parameters influences certain
3358behavior in @value{GDBN}. Similarly, you can define parameters that
3359can be used to influence behavior in custom Python scripts and commands.
3360
3361@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3362The object initializer for @code{Parameter} registers the new
3363parameter with @value{GDBN}. This initializer is normally invoked
3364from the subclass' own @code{__init__} method.
3365
3366@var{name} is the name of the new parameter. If @var{name} consists
3367of multiple words, then the initial words are looked for as prefix
3368parameters. An example of this can be illustrated with the
3369@code{set print} set of parameters. If @var{name} is
3370@code{print foo}, then @code{print} will be searched as the prefix
3371parameter. In this case the parameter can subsequently be accessed in
3372@value{GDBN} as @code{set print foo}.
3373
3374If @var{name} consists of multiple words, and no prefix parameter group
3375can be found, an exception is raised.
3376
3377@var{command-class} should be one of the @samp{COMMAND_} constants
3378(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3379categorize the new parameter in the help system.
3380
3381@var{parameter-class} should be one of the @samp{PARAM_} constants
3382defined below. This argument tells @value{GDBN} the type of the new
3383parameter; this information is used for input validation and
3384completion.
3385
3386If @var{parameter-class} is @code{PARAM_ENUM}, then
3387@var{enum-sequence} must be a sequence of strings. These strings
3388represent the possible values for the parameter.
3389
3390If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3391of a fourth argument will cause an exception to be thrown.
3392
3393The help text for the new parameter is taken from the Python
3394documentation string for the parameter's class, if there is one. If
3395there is no documentation string, a default value is used.
3396@end defun
3397
3398@defvar Parameter.set_doc
3399If this attribute exists, and is a string, then its value is used as
3400the help text for this parameter's @code{set} command. The value is
3401examined when @code{Parameter.__init__} is invoked; subsequent changes
3402have no effect.
3403@end defvar
3404
3405@defvar Parameter.show_doc
3406If this attribute exists, and is a string, then its value is used as
3407the help text for this parameter's @code{show} command. The value is
3408examined when @code{Parameter.__init__} is invoked; subsequent changes
3409have no effect.
3410@end defvar
3411
3412@defvar Parameter.value
3413The @code{value} attribute holds the underlying value of the
3414parameter. It can be read and assigned to just as any other
3415attribute. @value{GDBN} does validation when assignments are made.
3416@end defvar
3417
3418There are two methods that should be implemented in any
3419@code{Parameter} class. These are:
3420
3421@defun Parameter.get_set_string (self)
3422@value{GDBN} will call this method when a @var{parameter}'s value has
3423been changed via the @code{set} API (for example, @kbd{set foo off}).
3424The @code{value} attribute has already been populated with the new
3425value and may be used in output. This method must return a string.
3426@end defun
3427
3428@defun Parameter.get_show_string (self, svalue)
3429@value{GDBN} will call this method when a @var{parameter}'s
3430@code{show} API has been invoked (for example, @kbd{show foo}). The
3431argument @code{svalue} receives the string representation of the
3432current value. This method must return a string.
3433@end defun
3434
3435When a new parameter is defined, its type must be specified. The
3436available types are represented by constants defined in the @code{gdb}
3437module:
3438
3439@table @code
3440@findex PARAM_BOOLEAN
3441@findex gdb.PARAM_BOOLEAN
3442@item gdb.PARAM_BOOLEAN
3443The value is a plain boolean. The Python boolean values, @code{True}
3444and @code{False} are the only valid values.
3445
3446@findex PARAM_AUTO_BOOLEAN
3447@findex gdb.PARAM_AUTO_BOOLEAN
3448@item gdb.PARAM_AUTO_BOOLEAN
3449The value has three possible states: true, false, and @samp{auto}. In
3450Python, true and false are represented using boolean constants, and
3451@samp{auto} is represented using @code{None}.
3452
3453@findex PARAM_UINTEGER
3454@findex gdb.PARAM_UINTEGER
3455@item gdb.PARAM_UINTEGER
3456The value is an unsigned integer. The value of 0 should be
3457interpreted to mean ``unlimited''.
3458
3459@findex PARAM_INTEGER
3460@findex gdb.PARAM_INTEGER
3461@item gdb.PARAM_INTEGER
3462The value is a signed integer. The value of 0 should be interpreted
3463to mean ``unlimited''.
3464
3465@findex PARAM_STRING
3466@findex gdb.PARAM_STRING
3467@item gdb.PARAM_STRING
3468The value is a string. When the user modifies the string, any escape
3469sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3470translated into corresponding characters and encoded into the current
3471host charset.
3472
3473@findex PARAM_STRING_NOESCAPE
3474@findex gdb.PARAM_STRING_NOESCAPE
3475@item gdb.PARAM_STRING_NOESCAPE
3476The value is a string. When the user modifies the string, escapes are
3477passed through untranslated.
3478
3479@findex PARAM_OPTIONAL_FILENAME
3480@findex gdb.PARAM_OPTIONAL_FILENAME
3481@item gdb.PARAM_OPTIONAL_FILENAME
3482The value is a either a filename (a string), or @code{None}.
3483
3484@findex PARAM_FILENAME
3485@findex gdb.PARAM_FILENAME
3486@item gdb.PARAM_FILENAME
3487The value is a filename. This is just like
3488@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3489
3490@findex PARAM_ZINTEGER
3491@findex gdb.PARAM_ZINTEGER
3492@item gdb.PARAM_ZINTEGER
3493The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3494is interpreted as itself.
3495
3496@findex PARAM_ENUM
3497@findex gdb.PARAM_ENUM
3498@item gdb.PARAM_ENUM
3499The value is a string, which must be one of a collection string
3500constants provided when the parameter is created.
3501@end table
3502
3503@node Functions In Python
3504@subsubsection Writing new convenience functions
3505
3506@cindex writing convenience functions
3507@cindex convenience functions in python
3508@cindex python convenience functions
3509@tindex gdb.Function
3510@tindex Function
3511You can implement new convenience functions (@pxref{Convenience Vars})
3512in Python. A convenience function is an instance of a subclass of the
3513class @code{gdb.Function}.
3514
3515@defun Function.__init__ (name)
3516The initializer for @code{Function} registers the new function with
3517@value{GDBN}. The argument @var{name} is the name of the function,
3518a string. The function will be visible to the user as a convenience
3519variable of type @code{internal function}, whose name is the same as
3520the given @var{name}.
3521
3522The documentation for the new function is taken from the documentation
3523string for the new class.
3524@end defun
3525
3526@defun Function.invoke (@var{*args})
3527When a convenience function is evaluated, its arguments are converted
3528to instances of @code{gdb.Value}, and then the function's
3529@code{invoke} method is called. Note that @value{GDBN} does not
3530predetermine the arity of convenience functions. Instead, all
3531available arguments are passed to @code{invoke}, following the
3532standard Python calling convention. In particular, a convenience
3533function can have default values for parameters without ill effect.
3534
3535The return value of this method is used as its value in the enclosing
3536expression. If an ordinary Python value is returned, it is converted
3537to a @code{gdb.Value} following the usual rules.
3538@end defun
3539
3540The following code snippet shows how a trivial convenience function can
3541be implemented in Python:
3542
3543@smallexample
3544class Greet (gdb.Function):
3545 """Return string to greet someone.
3546Takes a name as argument."""
3547
3548 def __init__ (self):
3549 super (Greet, self).__init__ ("greet")
3550
3551 def invoke (self, name):
3552 return "Hello, %s!" % name.string ()
3553
3554Greet ()
3555@end smallexample
3556
3557The last line instantiates the class, and is necessary to trigger the
3558registration of the function with @value{GDBN}. Depending on how the
3559Python code is read into @value{GDBN}, you may need to import the
3560@code{gdb} module explicitly.
3561
3562Now you can use the function in an expression:
3563
3564@smallexample
3565(gdb) print $greet("Bob")
3566$1 = "Hello, Bob!"
3567@end smallexample
3568
3569@node Progspaces In Python
3570@subsubsection Program Spaces In Python
3571
3572@cindex progspaces in python
3573@tindex gdb.Progspace
3574@tindex Progspace
3575A program space, or @dfn{progspace}, represents a symbolic view
3576of an address space.
3577It consists of all of the objfiles of the program.
3578@xref{Objfiles In Python}.
3579@xref{Inferiors and Programs, program spaces}, for more details
3580about program spaces.
3581
3582The following progspace-related functions are available in the
3583@code{gdb} module:
3584
3585@findex gdb.current_progspace
3586@defun gdb.current_progspace ()
3587This function returns the program space of the currently selected inferior.
3588@xref{Inferiors and Programs}.
3589@end defun
3590
3591@findex gdb.progspaces
3592@defun gdb.progspaces ()
3593Return a sequence of all the progspaces currently known to @value{GDBN}.
3594@end defun
3595
3596Each progspace is represented by an instance of the @code{gdb.Progspace}
3597class.
3598
3599@defvar Progspace.filename
3600The file name of the progspace as a string.
3601@end defvar
3602
3603@defvar Progspace.pretty_printers
3604The @code{pretty_printers} attribute is a list of functions. It is
3605used to look up pretty-printers. A @code{Value} is passed to each
3606function in order; if the function returns @code{None}, then the
3607search continues. Otherwise, the return value should be an object
3608which is used to format the value. @xref{Pretty Printing API}, for more
3609information.
3610@end defvar
3611
3612@defvar Progspace.type_printers
3613The @code{type_printers} attribute is a list of type printer objects.
3614@xref{Type Printing API}, for more information.
3615@end defvar
3616
3617@defvar Progspace.frame_filters
3618The @code{frame_filters} attribute is a dictionary of frame filter
3619objects. @xref{Frame Filter API}, for more information.
3620@end defvar
3621
02be9a71
DE
3622One may add arbitrary attributes to @code{gdb.Progspace} objects
3623in the usual Python way.
3624This is useful if, for example, one needs to do some extra record keeping
3625associated with the program space.
3626
3627In this contrived example, we want to perform some processing when
3628an objfile with a certain symbol is loaded, but we only want to do
3629this once because it is expensive. To achieve this we record the results
3630with the program space because we can't predict when the desired objfile
3631will be loaded.
3632
3633@smallexample
3634(gdb) python
3635def clear_objfiles_handler(event):
3636 event.progspace.expensive_computation = None
3637def expensive(symbol):
3638 """A mock routine to perform an "expensive" computation on symbol."""
3639 print "Computing the answer to the ultimate question ..."
3640 return 42
3641def new_objfile_handler(event):
3642 objfile = event.new_objfile
3643 progspace = objfile.progspace
3644 if not hasattr(progspace, 'expensive_computation') or \
3645 progspace.expensive_computation is None:
3646 # We use 'main' for the symbol to keep the example simple.
3647 # Note: There's no current way to constrain the lookup
3648 # to one objfile.
3649 symbol = gdb.lookup_global_symbol('main')
3650 if symbol is not None:
3651 progspace.expensive_computation = expensive(symbol)
3652gdb.events.clear_objfiles.connect(clear_objfiles_handler)
3653gdb.events.new_objfile.connect(new_objfile_handler)
3654end
3655(gdb) file /tmp/hello
3656Reading symbols from /tmp/hello...done.
3657Computing the answer to the ultimate question ...
3658(gdb) python print gdb.current_progspace().expensive_computation
365942
3660(gdb) run
3661Starting program: /tmp/hello
3662Hello.
3663[Inferior 1 (process 4242) exited normally]
3664@end smallexample
3665
329baa95
DE
3666@node Objfiles In Python
3667@subsubsection Objfiles In Python
3668
3669@cindex objfiles in python
3670@tindex gdb.Objfile
3671@tindex Objfile
3672@value{GDBN} loads symbols for an inferior from various
3673symbol-containing files (@pxref{Files}). These include the primary
3674executable file, any shared libraries used by the inferior, and any
3675separate debug info files (@pxref{Separate Debug Files}).
3676@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
3677
3678The following objfile-related functions are available in the
3679@code{gdb} module:
3680
3681@findex gdb.current_objfile
3682@defun gdb.current_objfile ()
3683When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
3684sets the ``current objfile'' to the corresponding objfile. This
3685function returns the current objfile. If there is no current objfile,
3686this function returns @code{None}.
3687@end defun
3688
3689@findex gdb.objfiles
3690@defun gdb.objfiles ()
3691Return a sequence of all the objfiles current known to @value{GDBN}.
3692@xref{Objfiles In Python}.
3693@end defun
3694
6dddd6a5
DE
3695@findex gdb.lookup_objfile
3696@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
3697Look up @var{name}, a file name or build ID, in the list of objfiles
3698for the current program space (@pxref{Progspaces In Python}).
3699If the objfile is not found throw the Python @code{ValueError} exception.
3700
3701If @var{name} is a relative file name, then it will match any
3702source file name with the same trailing components. For example, if
3703@var{name} is @samp{gcc/expr.c}, then it will match source file
3704name of @file{/build/trunk/gcc/expr.c}, but not
3705@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
3706
3707If @var{by_build_id} is provided and is @code{True} then @var{name}
3708is the build ID of the objfile. Otherwise, @var{name} is a file name.
3709This is supported only on some operating systems, notably those which use
3710the ELF format for binary files and the @sc{gnu} Binutils. For more details
3711about this feature, see the description of the @option{--build-id}
3712command-line option in @ref{Options, , Command Line Options, ld.info,
3713The GNU Linker}.
3714@end defun
3715
329baa95
DE
3716Each objfile is represented by an instance of the @code{gdb.Objfile}
3717class.
3718
3719@defvar Objfile.filename
1b549396
DE
3720The file name of the objfile as a string, with symbolic links resolved.
3721
3722The value is @code{None} if the objfile is no longer valid.
3723See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
3724@end defvar
3725
3a8b707a
DE
3726@defvar Objfile.username
3727The file name of the objfile as specified by the user as a string.
3728
3729The value is @code{None} if the objfile is no longer valid.
3730See the @code{gdb.Objfile.is_valid} method, described below.
3731@end defvar
3732
a0be3e44
DE
3733@defvar Objfile.owner
3734For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
3735object that debug info is being provided for.
3736Otherwise this is @code{None}.
3737Separate debug info objfiles are added with the
3738@code{gdb.Objfile.add_separate_debug_file} method, described below.
3739@end defvar
3740
7c50a931
DE
3741@defvar Objfile.build_id
3742The build ID of the objfile as a string.
3743If the objfile does not have a build ID then the value is @code{None}.
3744
3745This is supported only on some operating systems, notably those which use
3746the ELF format for binary files and the @sc{gnu} Binutils. For more details
3747about this feature, see the description of the @option{--build-id}
3748command-line option in @ref{Options, , Command Line Options, ld.info,
3749The GNU Linker}.
3750@end defvar
3751
d096d8c1
DE
3752@defvar Objfile.progspace
3753The containing program space of the objfile as a @code{gdb.Progspace}
3754object. @xref{Progspaces In Python}.
3755@end defvar
3756
329baa95
DE
3757@defvar Objfile.pretty_printers
3758The @code{pretty_printers} attribute is a list of functions. It is
3759used to look up pretty-printers. A @code{Value} is passed to each
3760function in order; if the function returns @code{None}, then the
3761search continues. Otherwise, the return value should be an object
3762which is used to format the value. @xref{Pretty Printing API}, for more
3763information.
3764@end defvar
3765
3766@defvar Objfile.type_printers
3767The @code{type_printers} attribute is a list of type printer objects.
3768@xref{Type Printing API}, for more information.
3769@end defvar
3770
3771@defvar Objfile.frame_filters
3772The @code{frame_filters} attribute is a dictionary of frame filter
3773objects. @xref{Frame Filter API}, for more information.
3774@end defvar
3775
02be9a71
DE
3776One may add arbitrary attributes to @code{gdb.Objfile} objects
3777in the usual Python way.
3778This is useful if, for example, one needs to do some extra record keeping
3779associated with the objfile.
3780
3781In this contrived example we record the time when @value{GDBN}
3782loaded the objfile.
3783
3784@smallexample
3785(gdb) python
3786import datetime
3787def new_objfile_handler(event):
3788 # Set the time_loaded attribute of the new objfile.
3789 event.new_objfile.time_loaded = datetime.datetime.today()
3790gdb.events.new_objfile.connect(new_objfile_handler)
3791end
3792(gdb) file ./hello
3793Reading symbols from ./hello...done.
3794(gdb) python print gdb.objfiles()[0].time_loaded
37952014-10-09 11:41:36.770345
3796@end smallexample
3797
329baa95
DE
3798A @code{gdb.Objfile} object has the following methods:
3799
3800@defun Objfile.is_valid ()
3801Returns @code{True} if the @code{gdb.Objfile} object is valid,
3802@code{False} if not. A @code{gdb.Objfile} object can become invalid
3803if the object file it refers to is not loaded in @value{GDBN} any
3804longer. All other @code{gdb.Objfile} methods will throw an exception
3805if it is invalid at the time the method is called.
3806@end defun
3807
86e4ed39
DE
3808@defun Objfile.add_separate_debug_file (file)
3809Add @var{file} to the list of files that @value{GDBN} will search for
3810debug information for the objfile.
3811This is useful when the debug info has been removed from the program
3812and stored in a separate file. @value{GDBN} has built-in support for
3813finding separate debug info files (@pxref{Separate Debug Files}), but if
3814the file doesn't live in one of the standard places that @value{GDBN}
3815searches then this function can be used to add a debug info file
3816from a different place.
3817@end defun
3818
329baa95
DE
3819@node Frames In Python
3820@subsubsection Accessing inferior stack frames from Python.
3821
3822@cindex frames in python
3823When the debugged program stops, @value{GDBN} is able to analyze its call
3824stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
3825represents a frame in the stack. A @code{gdb.Frame} object is only valid
3826while its corresponding frame exists in the inferior's stack. If you try
3827to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
3828exception (@pxref{Exception Handling}).
3829
3830Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
3831operator, like:
3832
3833@smallexample
3834(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
3835True
3836@end smallexample
3837
3838The following frame-related functions are available in the @code{gdb} module:
3839
3840@findex gdb.selected_frame
3841@defun gdb.selected_frame ()
3842Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
3843@end defun
3844
3845@findex gdb.newest_frame
3846@defun gdb.newest_frame ()
3847Return the newest frame object for the selected thread.
3848@end defun
3849
3850@defun gdb.frame_stop_reason_string (reason)
3851Return a string explaining the reason why @value{GDBN} stopped unwinding
3852frames, as expressed by the given @var{reason} code (an integer, see the
3853@code{unwind_stop_reason} method further down in this section).
3854@end defun
3855
e0f3fd7c
TT
3856@findex gdb.invalidate_cached_frames
3857@defun gdb.invalidate_cached_frames
3858@value{GDBN} internally keeps a cache of the frames that have been
3859unwound. This function invalidates this cache.
3860
3861This function should not generally be called by ordinary Python code.
3862It is documented for the sake of completeness.
3863@end defun
3864
329baa95
DE
3865A @code{gdb.Frame} object has the following methods:
3866
3867@defun Frame.is_valid ()
3868Returns true if the @code{gdb.Frame} object is valid, false if not.
3869A frame object can become invalid if the frame it refers to doesn't
3870exist anymore in the inferior. All @code{gdb.Frame} methods will throw
3871an exception if it is invalid at the time the method is called.
3872@end defun
3873
3874@defun Frame.name ()
3875Returns the function name of the frame, or @code{None} if it can't be
3876obtained.
3877@end defun
3878
3879@defun Frame.architecture ()
3880Returns the @code{gdb.Architecture} object corresponding to the frame's
3881architecture. @xref{Architectures In Python}.
3882@end defun
3883
3884@defun Frame.type ()
3885Returns the type of the frame. The value can be one of:
3886@table @code
3887@item gdb.NORMAL_FRAME
3888An ordinary stack frame.
3889
3890@item gdb.DUMMY_FRAME
3891A fake stack frame that was created by @value{GDBN} when performing an
3892inferior function call.
3893
3894@item gdb.INLINE_FRAME
3895A frame representing an inlined function. The function was inlined
3896into a @code{gdb.NORMAL_FRAME} that is older than this one.
3897
3898@item gdb.TAILCALL_FRAME
3899A frame representing a tail call. @xref{Tail Call Frames}.
3900
3901@item gdb.SIGTRAMP_FRAME
3902A signal trampoline frame. This is the frame created by the OS when
3903it calls into a signal handler.
3904
3905@item gdb.ARCH_FRAME
3906A fake stack frame representing a cross-architecture call.
3907
3908@item gdb.SENTINEL_FRAME
3909This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
3910newest frame.
3911@end table
3912@end defun
3913
3914@defun Frame.unwind_stop_reason ()
3915Return an integer representing the reason why it's not possible to find
3916more frames toward the outermost frame. Use
3917@code{gdb.frame_stop_reason_string} to convert the value returned by this
3918function to a string. The value can be one of:
3919
3920@table @code
3921@item gdb.FRAME_UNWIND_NO_REASON
3922No particular reason (older frames should be available).
3923
3924@item gdb.FRAME_UNWIND_NULL_ID
3925The previous frame's analyzer returns an invalid result. This is no
3926longer used by @value{GDBN}, and is kept only for backward
3927compatibility.
3928
3929@item gdb.FRAME_UNWIND_OUTERMOST
3930This frame is the outermost.
3931
3932@item gdb.FRAME_UNWIND_UNAVAILABLE
3933Cannot unwind further, because that would require knowing the
3934values of registers or memory that have not been collected.
3935
3936@item gdb.FRAME_UNWIND_INNER_ID
3937This frame ID looks like it ought to belong to a NEXT frame,
3938but we got it for a PREV frame. Normally, this is a sign of
3939unwinder failure. It could also indicate stack corruption.
3940
3941@item gdb.FRAME_UNWIND_SAME_ID
3942This frame has the same ID as the previous one. That means
3943that unwinding further would almost certainly give us another
3944frame with exactly the same ID, so break the chain. Normally,
3945this is a sign of unwinder failure. It could also indicate
3946stack corruption.
3947
3948@item gdb.FRAME_UNWIND_NO_SAVED_PC
3949The frame unwinder did not find any saved PC, but we needed
3950one to unwind further.
3951
53e8a631
AB
3952@item gdb.FRAME_UNWIND_MEMORY_ERROR
3953The frame unwinder caused an error while trying to access memory.
3954
329baa95
DE
3955@item gdb.FRAME_UNWIND_FIRST_ERROR
3956Any stop reason greater or equal to this value indicates some kind
3957of error. This special value facilitates writing code that tests
3958for errors in unwinding in a way that will work correctly even if
3959the list of the other values is modified in future @value{GDBN}
3960versions. Using it, you could write:
3961@smallexample
3962reason = gdb.selected_frame().unwind_stop_reason ()
3963reason_str = gdb.frame_stop_reason_string (reason)
3964if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
3965 print "An error occured: %s" % reason_str
3966@end smallexample
3967@end table
3968
3969@end defun
3970
3971@defun Frame.pc ()
3972Returns the frame's resume address.
3973@end defun
3974
3975@defun Frame.block ()
3976Return the frame's code block. @xref{Blocks In Python}.
3977@end defun
3978
3979@defun Frame.function ()
3980Return the symbol for the function corresponding to this frame.
3981@xref{Symbols In Python}.
3982@end defun
3983
3984@defun Frame.older ()
3985Return the frame that called this frame.
3986@end defun
3987
3988@defun Frame.newer ()
3989Return the frame called by this frame.
3990@end defun
3991
3992@defun Frame.find_sal ()
3993Return the frame's symtab and line object.
3994@xref{Symbol Tables In Python}.
3995@end defun
3996
5f3b99cf
SS
3997@defun Frame.read_register (register)
3998Return the value of @var{register} in this frame. The @var{register}
3999argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4000Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4001does not exist.
4002@end defun
4003
329baa95
DE
4004@defun Frame.read_var (variable @r{[}, block@r{]})
4005Return the value of @var{variable} in this frame. If the optional
4006argument @var{block} is provided, search for the variable from that
4007block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4008determined by the frame's current program counter). The @var{variable}
4009argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4010@code{gdb.Block} object.
4011@end defun
4012
4013@defun Frame.select ()
4014Set this frame to be the selected frame. @xref{Stack, ,Examining the
4015Stack}.
4016@end defun
4017
4018@node Blocks In Python
4019@subsubsection Accessing blocks from Python.
4020
4021@cindex blocks in python
4022@tindex gdb.Block
4023
4024In @value{GDBN}, symbols are stored in blocks. A block corresponds
4025roughly to a scope in the source code. Blocks are organized
4026hierarchically, and are represented individually in Python as a
4027@code{gdb.Block}. Blocks rely on debugging information being
4028available.
4029
4030A frame has a block. Please see @ref{Frames In Python}, for a more
4031in-depth discussion of frames.
4032
4033The outermost block is known as the @dfn{global block}. The global
4034block typically holds public global variables and functions.
4035
4036The block nested just inside the global block is the @dfn{static
4037block}. The static block typically holds file-scoped variables and
4038functions.
4039
4040@value{GDBN} provides a method to get a block's superblock, but there
4041is currently no way to examine the sub-blocks of a block, or to
4042iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4043Python}).
4044
4045Here is a short example that should help explain blocks:
4046
4047@smallexample
4048/* This is in the global block. */
4049int global;
4050
4051/* This is in the static block. */
4052static int file_scope;
4053
4054/* 'function' is in the global block, and 'argument' is
4055 in a block nested inside of 'function'. */
4056int function (int argument)
4057@{
4058 /* 'local' is in a block inside 'function'. It may or may
4059 not be in the same block as 'argument'. */
4060 int local;
4061
4062 @{
4063 /* 'inner' is in a block whose superblock is the one holding
4064 'local'. */
4065 int inner;
4066
4067 /* If this call is expanded by the compiler, you may see
4068 a nested block here whose function is 'inline_function'
4069 and whose superblock is the one holding 'inner'. */
4070 inline_function ();
4071 @}
4072@}
4073@end smallexample
4074
4075A @code{gdb.Block} is iterable. The iterator returns the symbols
4076(@pxref{Symbols In Python}) local to the block. Python programs
4077should not assume that a specific block object will always contain a
4078given symbol, since changes in @value{GDBN} features and
4079infrastructure may cause symbols move across blocks in a symbol
4080table.
4081
4082The following block-related functions are available in the @code{gdb}
4083module:
4084
4085@findex gdb.block_for_pc
4086@defun gdb.block_for_pc (pc)
4087Return the innermost @code{gdb.Block} containing the given @var{pc}
4088value. If the block cannot be found for the @var{pc} value specified,
4089the function will return @code{None}.
4090@end defun
4091
4092A @code{gdb.Block} object has the following methods:
4093
4094@defun Block.is_valid ()
4095Returns @code{True} if the @code{gdb.Block} object is valid,
4096@code{False} if not. A block object can become invalid if the block it
4097refers to doesn't exist anymore in the inferior. All other
4098@code{gdb.Block} methods will throw an exception if it is invalid at
4099the time the method is called. The block's validity is also checked
4100during iteration over symbols of the block.
4101@end defun
4102
4103A @code{gdb.Block} object has the following attributes:
4104
4105@defvar Block.start
4106The start address of the block. This attribute is not writable.
4107@end defvar
4108
4109@defvar Block.end
4110The end address of the block. This attribute is not writable.
4111@end defvar
4112
4113@defvar Block.function
4114The name of the block represented as a @code{gdb.Symbol}. If the
4115block is not named, then this attribute holds @code{None}. This
4116attribute is not writable.
4117
4118For ordinary function blocks, the superblock is the static block.
4119However, you should note that it is possible for a function block to
4120have a superblock that is not the static block -- for instance this
4121happens for an inlined function.
4122@end defvar
4123
4124@defvar Block.superblock
4125The block containing this block. If this parent block does not exist,
4126this attribute holds @code{None}. This attribute is not writable.
4127@end defvar
4128
4129@defvar Block.global_block
4130The global block associated with this block. This attribute is not
4131writable.
4132@end defvar
4133
4134@defvar Block.static_block
4135The static block associated with this block. This attribute is not
4136writable.
4137@end defvar
4138
4139@defvar Block.is_global
4140@code{True} if the @code{gdb.Block} object is a global block,
4141@code{False} if not. This attribute is not
4142writable.
4143@end defvar
4144
4145@defvar Block.is_static
4146@code{True} if the @code{gdb.Block} object is a static block,
4147@code{False} if not. This attribute is not writable.
4148@end defvar
4149
4150@node Symbols In Python
4151@subsubsection Python representation of Symbols.
4152
4153@cindex symbols in python
4154@tindex gdb.Symbol
4155
4156@value{GDBN} represents every variable, function and type as an
4157entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4158Similarly, Python represents these symbols in @value{GDBN} with the
4159@code{gdb.Symbol} object.
4160
4161The following symbol-related functions are available in the @code{gdb}
4162module:
4163
4164@findex gdb.lookup_symbol
4165@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4166This function searches for a symbol by name. The search scope can be
4167restricted to the parameters defined in the optional domain and block
4168arguments.
4169
4170@var{name} is the name of the symbol. It must be a string. The
4171optional @var{block} argument restricts the search to symbols visible
4172in that @var{block}. The @var{block} argument must be a
4173@code{gdb.Block} object. If omitted, the block for the current frame
4174is used. The optional @var{domain} argument restricts
4175the search to the domain type. The @var{domain} argument must be a
4176domain constant defined in the @code{gdb} module and described later
4177in this chapter.
4178
4179The result is a tuple of two elements.
4180The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4181is not found.
4182If the symbol is found, the second element is @code{True} if the symbol
4183is a field of a method's object (e.g., @code{this} in C@t{++}),
4184otherwise it is @code{False}.
4185If the symbol is not found, the second element is @code{False}.
4186@end defun
4187
4188@findex gdb.lookup_global_symbol
4189@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4190This function searches for a global symbol by name.
4191The search scope can be restricted to by the domain argument.
4192
4193@var{name} is the name of the symbol. It must be a string.
4194The optional @var{domain} argument restricts the search to the domain type.
4195The @var{domain} argument must be a domain constant defined in the @code{gdb}
4196module and described later in this chapter.
4197
4198The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4199is not found.
4200@end defun
4201
4202A @code{gdb.Symbol} object has the following attributes:
4203
4204@defvar Symbol.type
4205The type of the symbol or @code{None} if no type is recorded.
4206This attribute is represented as a @code{gdb.Type} object.
4207@xref{Types In Python}. This attribute is not writable.
4208@end defvar
4209
4210@defvar Symbol.symtab
4211The symbol table in which the symbol appears. This attribute is
4212represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4213Python}. This attribute is not writable.
4214@end defvar
4215
4216@defvar Symbol.line
4217The line number in the source code at which the symbol was defined.
4218This is an integer.
4219@end defvar
4220
4221@defvar Symbol.name
4222The name of the symbol as a string. This attribute is not writable.
4223@end defvar
4224
4225@defvar Symbol.linkage_name
4226The name of the symbol, as used by the linker (i.e., may be mangled).
4227This attribute is not writable.
4228@end defvar
4229
4230@defvar Symbol.print_name
4231The name of the symbol in a form suitable for output. This is either
4232@code{name} or @code{linkage_name}, depending on whether the user
4233asked @value{GDBN} to display demangled or mangled names.
4234@end defvar
4235
4236@defvar Symbol.addr_class
4237The address class of the symbol. This classifies how to find the value
4238of a symbol. Each address class is a constant defined in the
4239@code{gdb} module and described later in this chapter.
4240@end defvar
4241
4242@defvar Symbol.needs_frame
4243This is @code{True} if evaluating this symbol's value requires a frame
4244(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4245local variables will require a frame, but other symbols will not.
4246@end defvar
4247
4248@defvar Symbol.is_argument
4249@code{True} if the symbol is an argument of a function.
4250@end defvar
4251
4252@defvar Symbol.is_constant
4253@code{True} if the symbol is a constant.
4254@end defvar
4255
4256@defvar Symbol.is_function
4257@code{True} if the symbol is a function or a method.
4258@end defvar
4259
4260@defvar Symbol.is_variable
4261@code{True} if the symbol is a variable.
4262@end defvar
4263
4264A @code{gdb.Symbol} object has the following methods:
4265
4266@defun Symbol.is_valid ()
4267Returns @code{True} if the @code{gdb.Symbol} object is valid,
4268@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4269the symbol it refers to does not exist in @value{GDBN} any longer.
4270All other @code{gdb.Symbol} methods will throw an exception if it is
4271invalid at the time the method is called.
4272@end defun
4273
4274@defun Symbol.value (@r{[}frame@r{]})
4275Compute the value of the symbol, as a @code{gdb.Value}. For
4276functions, this computes the address of the function, cast to the
4277appropriate type. If the symbol requires a frame in order to compute
4278its value, then @var{frame} must be given. If @var{frame} is not
4279given, or if @var{frame} is invalid, then this method will throw an
4280exception.
4281@end defun
4282
4283The available domain categories in @code{gdb.Symbol} are represented
4284as constants in the @code{gdb} module:
4285
b3ce5e5f
DE
4286@vtable @code
4287@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4288@item gdb.SYMBOL_UNDEF_DOMAIN
4289This is used when a domain has not been discovered or none of the
4290following domains apply. This usually indicates an error either
4291in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4292
4293@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4294@item gdb.SYMBOL_VAR_DOMAIN
4295This domain contains variables, function names, typedef names and enum
4296type values.
b3ce5e5f
DE
4297
4298@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4299@item gdb.SYMBOL_STRUCT_DOMAIN
4300This domain holds struct, union and enum type names.
b3ce5e5f
DE
4301
4302@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4303@item gdb.SYMBOL_LABEL_DOMAIN
4304This domain contains names of labels (for gotos).
b3ce5e5f
DE
4305
4306@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4307@item gdb.SYMBOL_VARIABLES_DOMAIN
4308This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4309contains everything minus functions and types.
b3ce5e5f
DE
4310
4311@vindex SYMBOL_FUNCTIONS_DOMAIN
329baa95
DE
4312@item gdb.SYMBOL_FUNCTION_DOMAIN
4313This domain contains all functions.
b3ce5e5f
DE
4314
4315@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4316@item gdb.SYMBOL_TYPES_DOMAIN
4317This domain contains all types.
b3ce5e5f 4318@end vtable
329baa95
DE
4319
4320The available address class categories in @code{gdb.Symbol} are represented
4321as constants in the @code{gdb} module:
4322
b3ce5e5f
DE
4323@vtable @code
4324@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4325@item gdb.SYMBOL_LOC_UNDEF
4326If this is returned by address class, it indicates an error either in
4327the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4328
4329@vindex SYMBOL_LOC_CONST
329baa95
DE
4330@item gdb.SYMBOL_LOC_CONST
4331Value is constant int.
b3ce5e5f
DE
4332
4333@vindex SYMBOL_LOC_STATIC
329baa95
DE
4334@item gdb.SYMBOL_LOC_STATIC
4335Value is at a fixed address.
b3ce5e5f
DE
4336
4337@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4338@item gdb.SYMBOL_LOC_REGISTER
4339Value is in a register.
b3ce5e5f
DE
4340
4341@vindex SYMBOL_LOC_ARG
329baa95
DE
4342@item gdb.SYMBOL_LOC_ARG
4343Value is an argument. This value is at the offset stored within the
4344symbol inside the frame's argument list.
b3ce5e5f
DE
4345
4346@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4347@item gdb.SYMBOL_LOC_REF_ARG
4348Value address is stored in the frame's argument list. Just like
4349@code{LOC_ARG} except that the value's address is stored at the
4350offset, not the value itself.
b3ce5e5f
DE
4351
4352@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4353@item gdb.SYMBOL_LOC_REGPARM_ADDR
4354Value is a specified register. Just like @code{LOC_REGISTER} except
4355the register holds the address of the argument instead of the argument
4356itself.
b3ce5e5f
DE
4357
4358@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4359@item gdb.SYMBOL_LOC_LOCAL
4360Value is a local variable.
b3ce5e5f
DE
4361
4362@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4363@item gdb.SYMBOL_LOC_TYPEDEF
4364Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4365have this class.
b3ce5e5f
DE
4366
4367@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4368@item gdb.SYMBOL_LOC_BLOCK
4369Value is a block.
b3ce5e5f
DE
4370
4371@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4372@item gdb.SYMBOL_LOC_CONST_BYTES
4373Value is a byte-sequence.
b3ce5e5f
DE
4374
4375@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4376@item gdb.SYMBOL_LOC_UNRESOLVED
4377Value is at a fixed address, but the address of the variable has to be
4378determined from the minimal symbol table whenever the variable is
4379referenced.
b3ce5e5f
DE
4380
4381@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4382@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4383The value does not actually exist in the program.
b3ce5e5f
DE
4384
4385@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4386@item gdb.SYMBOL_LOC_COMPUTED
4387The value's address is a computed location.
b3ce5e5f 4388@end vtable
329baa95
DE
4389
4390@node Symbol Tables In Python
4391@subsubsection Symbol table representation in Python.
4392
4393@cindex symbol tables in python
4394@tindex gdb.Symtab
4395@tindex gdb.Symtab_and_line
4396
4397Access to symbol table data maintained by @value{GDBN} on the inferior
4398is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4399@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4400from the @code{find_sal} method in @code{gdb.Frame} object.
4401@xref{Frames In Python}.
4402
4403For more information on @value{GDBN}'s symbol table management, see
4404@ref{Symbols, ,Examining the Symbol Table}, for more information.
4405
4406A @code{gdb.Symtab_and_line} object has the following attributes:
4407
4408@defvar Symtab_and_line.symtab
4409The symbol table object (@code{gdb.Symtab}) for this frame.
4410This attribute is not writable.
4411@end defvar
4412
4413@defvar Symtab_and_line.pc
4414Indicates the start of the address range occupied by code for the
4415current source line. This attribute is not writable.
4416@end defvar
4417
4418@defvar Symtab_and_line.last
4419Indicates the end of the address range occupied by code for the current
4420source line. This attribute is not writable.
4421@end defvar
4422
4423@defvar Symtab_and_line.line
4424Indicates the current line number for this object. This
4425attribute is not writable.
4426@end defvar
4427
4428A @code{gdb.Symtab_and_line} object has the following methods:
4429
4430@defun Symtab_and_line.is_valid ()
4431Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4432@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4433invalid if the Symbol table and line object it refers to does not
4434exist in @value{GDBN} any longer. All other
4435@code{gdb.Symtab_and_line} methods will throw an exception if it is
4436invalid at the time the method is called.
4437@end defun
4438
4439A @code{gdb.Symtab} object has the following attributes:
4440
4441@defvar Symtab.filename
4442The symbol table's source filename. This attribute is not writable.
4443@end defvar
4444
4445@defvar Symtab.objfile
4446The symbol table's backing object file. @xref{Objfiles In Python}.
4447This attribute is not writable.
4448@end defvar
4449
2b4fd423
DE
4450@defvar Symtab.producer
4451The name and possibly version number of the program that
4452compiled the code in the symbol table.
4453The contents of this string is up to the compiler.
4454If no producer information is available then @code{None} is returned.
4455This attribute is not writable.
4456@end defvar
4457
329baa95
DE
4458A @code{gdb.Symtab} object has the following methods:
4459
4460@defun Symtab.is_valid ()
4461Returns @code{True} if the @code{gdb.Symtab} object is valid,
4462@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4463the symbol table it refers to does not exist in @value{GDBN} any
4464longer. All other @code{gdb.Symtab} methods will throw an exception
4465if it is invalid at the time the method is called.
4466@end defun
4467
4468@defun Symtab.fullname ()
4469Return the symbol table's source absolute file name.
4470@end defun
4471
4472@defun Symtab.global_block ()
4473Return the global block of the underlying symbol table.
4474@xref{Blocks In Python}.
4475@end defun
4476
4477@defun Symtab.static_block ()
4478Return the static block of the underlying symbol table.
4479@xref{Blocks In Python}.
4480@end defun
4481
4482@defun Symtab.linetable ()
4483Return the line table associated with the symbol table.
4484@xref{Line Tables In Python}.
4485@end defun
4486
4487@node Line Tables In Python
4488@subsubsection Manipulating line tables using Python
4489
4490@cindex line tables in python
4491@tindex gdb.LineTable
4492
4493Python code can request and inspect line table information from a
4494symbol table that is loaded in @value{GDBN}. A line table is a
4495mapping of source lines to their executable locations in memory. To
4496acquire the line table information for a particular symbol table, use
4497the @code{linetable} function (@pxref{Symbol Tables In Python}).
4498
4499A @code{gdb.LineTable} is iterable. The iterator returns
4500@code{LineTableEntry} objects that correspond to the source line and
4501address for each line table entry. @code{LineTableEntry} objects have
4502the following attributes:
4503
4504@defvar LineTableEntry.line
4505The source line number for this line table entry. This number
4506corresponds to the actual line of source. This attribute is not
4507writable.
4508@end defvar
4509
4510@defvar LineTableEntry.pc
4511The address that is associated with the line table entry where the
4512executable code for that source line resides in memory. This
4513attribute is not writable.
4514@end defvar
4515
4516As there can be multiple addresses for a single source line, you may
4517receive multiple @code{LineTableEntry} objects with matching
4518@code{line} attributes, but with different @code{pc} attributes. The
4519iterator is sorted in ascending @code{pc} order. Here is a small
4520example illustrating iterating over a line table.
4521
4522@smallexample
4523symtab = gdb.selected_frame().find_sal().symtab
4524linetable = symtab.linetable()
4525for line in linetable:
4526 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4527@end smallexample
4528
4529This will have the following output:
4530
4531@smallexample
4532Line: 33 Address: 0x4005c8L
4533Line: 37 Address: 0x4005caL
4534Line: 39 Address: 0x4005d2L
4535Line: 40 Address: 0x4005f8L
4536Line: 42 Address: 0x4005ffL
4537Line: 44 Address: 0x400608L
4538Line: 42 Address: 0x40060cL
4539Line: 45 Address: 0x400615L
4540@end smallexample
4541
4542In addition to being able to iterate over a @code{LineTable}, it also
4543has the following direct access methods:
4544
4545@defun LineTable.line (line)
4546Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4547entries in the line table for the given @var{line}, which specifies
4548the source code line. If there are no entries for that source code
329baa95
DE
4549@var{line}, the Python @code{None} is returned.
4550@end defun
4551
4552@defun LineTable.has_line (line)
4553Return a Python @code{Boolean} indicating whether there is an entry in
4554the line table for this source line. Return @code{True} if an entry
4555is found, or @code{False} if not.
4556@end defun
4557
4558@defun LineTable.source_lines ()
4559Return a Python @code{List} of the source line numbers in the symbol
4560table. Only lines with executable code locations are returned. The
4561contents of the @code{List} will just be the source line entries
4562represented as Python @code{Long} values.
4563@end defun
4564
4565@node Breakpoints In Python
4566@subsubsection Manipulating breakpoints using Python
4567
4568@cindex breakpoints in python
4569@tindex gdb.Breakpoint
4570
4571Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4572class.
4573
4574@defun Breakpoint.__init__ (spec @r{[}, type @r{[}, wp_class @r{[},internal @r{[},temporary@r{]]]]})
697aa1b7
EZ
4575Create a new breakpoint according to @var{spec}, which is a string
4576naming the location of the breakpoint, or an expression that defines a
4577watchpoint. The contents can be any location recognized by the
4578@code{break} command, or in the case of a watchpoint, by the
4579@code{watch} command. The optional @var{type} denotes the breakpoint
4580to create from the types defined later in this chapter. This argument
4581can be either @code{gdb.BP_BREAKPOINT} or @code{gdb.BP_WATCHPOINT}; it
329baa95
DE
4582defaults to @code{gdb.BP_BREAKPOINT}. The optional @var{internal}
4583argument allows the breakpoint to become invisible to the user. The
4584breakpoint will neither be reported when created, nor will it be
4585listed in the output from @code{info breakpoints} (but will be listed
4586with the @code{maint info breakpoints} command). The optional
4587@var{temporary} argument makes the breakpoint a temporary breakpoint.
4588Temporary breakpoints are deleted after they have been hit. Any
4589further access to the Python breakpoint after it has been hit will
4590result in a runtime error (as that breakpoint has now been
4591automatically deleted). The optional @var{wp_class} argument defines
4592the class of watchpoint to create, if @var{type} is
4593@code{gdb.BP_WATCHPOINT}. If a watchpoint class is not provided, it
4594is assumed to be a @code{gdb.WP_WRITE} class.
4595@end defun
4596
cda75e70
TT
4597The available types are represented by constants defined in the @code{gdb}
4598module:
4599
4600@vtable @code
4601@vindex BP_BREAKPOINT
4602@item gdb.BP_BREAKPOINT
4603Normal code breakpoint.
4604
4605@vindex BP_WATCHPOINT
4606@item gdb.BP_WATCHPOINT
4607Watchpoint breakpoint.
4608
4609@vindex BP_HARDWARE_WATCHPOINT
4610@item gdb.BP_HARDWARE_WATCHPOINT
4611Hardware assisted watchpoint.
4612
4613@vindex BP_READ_WATCHPOINT
4614@item gdb.BP_READ_WATCHPOINT
4615Hardware assisted read watchpoint.
4616
4617@vindex BP_ACCESS_WATCHPOINT
4618@item gdb.BP_ACCESS_WATCHPOINT
4619Hardware assisted access watchpoint.
4620@end vtable
4621
4622The available watchpoint types represented by constants are defined in the
4623@code{gdb} module:
4624
4625@vtable @code
4626@vindex WP_READ
4627@item gdb.WP_READ
4628Read only watchpoint.
4629
4630@vindex WP_WRITE
4631@item gdb.WP_WRITE
4632Write only watchpoint.
4633
4634@vindex WP_ACCESS
4635@item gdb.WP_ACCESS
4636Read/Write watchpoint.
4637@end vtable
4638
329baa95
DE
4639@defun Breakpoint.stop (self)
4640The @code{gdb.Breakpoint} class can be sub-classed and, in
4641particular, you may choose to implement the @code{stop} method.
4642If this method is defined in a sub-class of @code{gdb.Breakpoint},
4643it will be called when the inferior reaches any location of a
4644breakpoint which instantiates that sub-class. If the method returns
4645@code{True}, the inferior will be stopped at the location of the
4646breakpoint, otherwise the inferior will continue.
4647
4648If there are multiple breakpoints at the same location with a
4649@code{stop} method, each one will be called regardless of the
4650return status of the previous. This ensures that all @code{stop}
4651methods have a chance to execute at that location. In this scenario
4652if one of the methods returns @code{True} but the others return
4653@code{False}, the inferior will still be stopped.
4654
4655You should not alter the execution state of the inferior (i.e.@:, step,
4656next, etc.), alter the current frame context (i.e.@:, change the current
4657active frame), or alter, add or delete any breakpoint. As a general
4658rule, you should not alter any data within @value{GDBN} or the inferior
4659at this time.
4660
4661Example @code{stop} implementation:
4662
4663@smallexample
4664class MyBreakpoint (gdb.Breakpoint):
4665 def stop (self):
4666 inf_val = gdb.parse_and_eval("foo")
4667 if inf_val == 3:
4668 return True
4669 return False
4670@end smallexample
4671@end defun
4672
329baa95
DE
4673@defun Breakpoint.is_valid ()
4674Return @code{True} if this @code{Breakpoint} object is valid,
4675@code{False} otherwise. A @code{Breakpoint} object can become invalid
4676if the user deletes the breakpoint. In this case, the object still
4677exists, but the underlying breakpoint does not. In the cases of
4678watchpoint scope, the watchpoint remains valid even if execution of the
4679inferior leaves the scope of that watchpoint.
4680@end defun
4681
fab3a15d 4682@defun Breakpoint.delete ()
329baa95
DE
4683Permanently deletes the @value{GDBN} breakpoint. This also
4684invalidates the Python @code{Breakpoint} object. Any further access
4685to this object's attributes or methods will raise an error.
4686@end defun
4687
4688@defvar Breakpoint.enabled
4689This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
4690@code{False} otherwise. This attribute is writable. You can use it to enable
4691or disable the breakpoint.
329baa95
DE
4692@end defvar
4693
4694@defvar Breakpoint.silent
4695This attribute is @code{True} if the breakpoint is silent, and
4696@code{False} otherwise. This attribute is writable.
4697
4698Note that a breakpoint can also be silent if it has commands and the
4699first command is @code{silent}. This is not reported by the
4700@code{silent} attribute.
4701@end defvar
4702
93daf339
TT
4703@defvar Breakpoint.pending
4704This attribute is @code{True} if the breakpoint is pending, and
4705@code{False} otherwise. @xref{Set Breaks}. This attribute is
4706read-only.
4707@end defvar
4708
22a02324 4709@anchor{python_breakpoint_thread}
329baa95 4710@defvar Breakpoint.thread
5d5658a1
PA
4711If the breakpoint is thread-specific, this attribute holds the
4712thread's global id. If the breakpoint is not thread-specific, this
4713attribute is @code{None}. This attribute is writable.
329baa95
DE
4714@end defvar
4715
4716@defvar Breakpoint.task
4717If the breakpoint is Ada task-specific, this attribute holds the Ada task
4718id. If the breakpoint is not task-specific (or the underlying
4719language is not Ada), this attribute is @code{None}. This attribute
4720is writable.
4721@end defvar
4722
4723@defvar Breakpoint.ignore_count
4724This attribute holds the ignore count for the breakpoint, an integer.
4725This attribute is writable.
4726@end defvar
4727
4728@defvar Breakpoint.number
4729This attribute holds the breakpoint's number --- the identifier used by
4730the user to manipulate the breakpoint. This attribute is not writable.
4731@end defvar
4732
4733@defvar Breakpoint.type
4734This attribute holds the breakpoint's type --- the identifier used to
4735determine the actual breakpoint type or use-case. This attribute is not
4736writable.
4737@end defvar
4738
4739@defvar Breakpoint.visible
4740This attribute tells whether the breakpoint is visible to the user
4741when set, or when the @samp{info breakpoints} command is run. This
4742attribute is not writable.
4743@end defvar
4744
4745@defvar Breakpoint.temporary
4746This attribute indicates whether the breakpoint was created as a
4747temporary breakpoint. Temporary breakpoints are automatically deleted
4748after that breakpoint has been hit. Access to this attribute, and all
4749other attributes and functions other than the @code{is_valid}
4750function, will result in an error after the breakpoint has been hit
4751(as it has been automatically deleted). This attribute is not
4752writable.
4753@end defvar
4754
329baa95
DE
4755@defvar Breakpoint.hit_count
4756This attribute holds the hit count for the breakpoint, an integer.
4757This attribute is writable, but currently it can only be set to zero.
4758@end defvar
4759
4760@defvar Breakpoint.location
4761This attribute holds the location of the breakpoint, as specified by
4762the user. It is a string. If the breakpoint does not have a location
4763(that is, it is a watchpoint) the attribute's value is @code{None}. This
4764attribute is not writable.
4765@end defvar
4766
4767@defvar Breakpoint.expression
4768This attribute holds a breakpoint expression, as specified by
4769the user. It is a string. If the breakpoint does not have an
4770expression (the breakpoint is not a watchpoint) the attribute's value
4771is @code{None}. This attribute is not writable.
4772@end defvar
4773
4774@defvar Breakpoint.condition
4775This attribute holds the condition of the breakpoint, as specified by
4776the user. It is a string. If there is no condition, this attribute's
4777value is @code{None}. This attribute is writable.
4778@end defvar
4779
4780@defvar Breakpoint.commands
4781This attribute holds the commands attached to the breakpoint. If
4782there are commands, this attribute's value is a string holding all the
4783commands, separated by newlines. If there are no commands, this
4784attribute is @code{None}. This attribute is not writable.
4785@end defvar
4786
4787@node Finish Breakpoints in Python
4788@subsubsection Finish Breakpoints
4789
4790@cindex python finish breakpoints
4791@tindex gdb.FinishBreakpoint
4792
4793A finish breakpoint is a temporary breakpoint set at the return address of
4794a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
4795extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
4796and deleted when the execution will run out of the breakpoint scope (i.e.@:
4797@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
4798Finish breakpoints are thread specific and must be create with the right
4799thread selected.
4800
4801@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
4802Create a finish breakpoint at the return address of the @code{gdb.Frame}
4803object @var{frame}. If @var{frame} is not provided, this defaults to the
4804newest frame. The optional @var{internal} argument allows the breakpoint to
4805become invisible to the user. @xref{Breakpoints In Python}, for further
4806details about this argument.
4807@end defun
4808
4809@defun FinishBreakpoint.out_of_scope (self)
4810In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
4811@code{return} command, @dots{}), a function may not properly terminate, and
4812thus never hit the finish breakpoint. When @value{GDBN} notices such a
4813situation, the @code{out_of_scope} callback will be triggered.
4814
4815You may want to sub-class @code{gdb.FinishBreakpoint} and override this
4816method:
4817
4818@smallexample
4819class MyFinishBreakpoint (gdb.FinishBreakpoint)
4820 def stop (self):
4821 print "normal finish"
4822 return True
4823
4824 def out_of_scope ():
4825 print "abnormal finish"
4826@end smallexample
4827@end defun
4828
4829@defvar FinishBreakpoint.return_value
4830When @value{GDBN} is stopped at a finish breakpoint and the frame
4831used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
4832attribute will contain a @code{gdb.Value} object corresponding to the return
4833value of the function. The value will be @code{None} if the function return
4834type is @code{void} or if the return value was not computable. This attribute
4835is not writable.
4836@end defvar
4837
4838@node Lazy Strings In Python
4839@subsubsection Python representation of lazy strings.
4840
4841@cindex lazy strings in python
4842@tindex gdb.LazyString
4843
4844A @dfn{lazy string} is a string whose contents is not retrieved or
4845encoded until it is needed.
4846
4847A @code{gdb.LazyString} is represented in @value{GDBN} as an
4848@code{address} that points to a region of memory, an @code{encoding}
4849that will be used to encode that region of memory, and a @code{length}
4850to delimit the region of memory that represents the string. The
4851difference between a @code{gdb.LazyString} and a string wrapped within
4852a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
4853differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
4854retrieved and encoded during printing, while a @code{gdb.Value}
4855wrapping a string is immediately retrieved and encoded on creation.
4856
4857A @code{gdb.LazyString} object has the following functions:
4858
4859@defun LazyString.value ()
4860Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
4861will point to the string in memory, but will lose all the delayed
4862retrieval, encoding and handling that @value{GDBN} applies to a
4863@code{gdb.LazyString}.
4864@end defun
4865
4866@defvar LazyString.address
4867This attribute holds the address of the string. This attribute is not
4868writable.
4869@end defvar
4870
4871@defvar LazyString.length
4872This attribute holds the length of the string in characters. If the
4873length is -1, then the string will be fetched and encoded up to the
4874first null of appropriate width. This attribute is not writable.
4875@end defvar
4876
4877@defvar LazyString.encoding
4878This attribute holds the encoding that will be applied to the string
4879when the string is printed by @value{GDBN}. If the encoding is not
4880set, or contains an empty string, then @value{GDBN} will select the
4881most appropriate encoding when the string is printed. This attribute
4882is not writable.
4883@end defvar
4884
4885@defvar LazyString.type
4886This attribute holds the type that is represented by the lazy string's
4887type. For a lazy string this will always be a pointer type. To
4888resolve this to the lazy string's character type, use the type's
4889@code{target} method. @xref{Types In Python}. This attribute is not
4890writable.
4891@end defvar
4892
4893@node Architectures In Python
4894@subsubsection Python representation of architectures
4895@cindex Python architectures
4896
4897@value{GDBN} uses architecture specific parameters and artifacts in a
4898number of its various computations. An architecture is represented
4899by an instance of the @code{gdb.Architecture} class.
4900
4901A @code{gdb.Architecture} class has the following methods:
4902
4903@defun Architecture.name ()
4904Return the name (string value) of the architecture.
4905@end defun
4906
4907@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
4908Return a list of disassembled instructions starting from the memory
4909address @var{start_pc}. The optional arguments @var{end_pc} and
4910@var{count} determine the number of instructions in the returned list.
4911If both the optional arguments @var{end_pc} and @var{count} are
4912specified, then a list of at most @var{count} disassembled instructions
4913whose start address falls in the closed memory address interval from
4914@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
4915specified, but @var{count} is specified, then @var{count} number of
4916instructions starting from the address @var{start_pc} are returned. If
4917@var{count} is not specified but @var{end_pc} is specified, then all
4918instructions whose start address falls in the closed memory address
4919interval from @var{start_pc} to @var{end_pc} are returned. If neither
4920@var{end_pc} nor @var{count} are specified, then a single instruction at
4921@var{start_pc} is returned. For all of these cases, each element of the
4922returned list is a Python @code{dict} with the following string keys:
4923
4924@table @code
4925
4926@item addr
4927The value corresponding to this key is a Python long integer capturing
4928the memory address of the instruction.
4929
4930@item asm
4931The value corresponding to this key is a string value which represents
4932the instruction with assembly language mnemonics. The assembly
4933language flavor used is the same as that specified by the current CLI
4934variable @code{disassembly-flavor}. @xref{Machine Code}.
4935
4936@item length
4937The value corresponding to this key is the length (integer value) of the
4938instruction in bytes.
4939
4940@end table
4941@end defun
4942
4943@node Python Auto-loading
4944@subsection Python Auto-loading
4945@cindex Python auto-loading
4946
4947When a new object file is read (for example, due to the @code{file}
4948command, or because the inferior has loaded a shared library),
4949@value{GDBN} will look for Python support scripts in several ways:
4950@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
4951@xref{Auto-loading extensions}.
4952
4953The auto-loading feature is useful for supplying application-specific
4954debugging commands and scripts.
4955
4956Auto-loading can be enabled or disabled,
4957and the list of auto-loaded scripts can be printed.
4958
4959@table @code
4960@anchor{set auto-load python-scripts}
4961@kindex set auto-load python-scripts
4962@item set auto-load python-scripts [on|off]
4963Enable or disable the auto-loading of Python scripts.
4964
4965@anchor{show auto-load python-scripts}
4966@kindex show auto-load python-scripts
4967@item show auto-load python-scripts
4968Show whether auto-loading of Python scripts is enabled or disabled.
4969
4970@anchor{info auto-load python-scripts}
4971@kindex info auto-load python-scripts
4972@cindex print list of auto-loaded Python scripts
4973@item info auto-load python-scripts [@var{regexp}]
4974Print the list of all Python scripts that @value{GDBN} auto-loaded.
4975
4976Also printed is the list of Python scripts that were mentioned in
9f050062
DE
4977the @code{.debug_gdb_scripts} section and were either not found
4978(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
4979@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
4980This is useful because their names are not printed when @value{GDBN}
4981tries to load them and fails. There may be many of them, and printing
4982an error message for each one is problematic.
4983
4984If @var{regexp} is supplied only Python scripts with matching names are printed.
4985
4986Example:
4987
4988@smallexample
4989(gdb) info auto-load python-scripts
4990Loaded Script
4991Yes py-section-script.py
4992 full name: /tmp/py-section-script.py
4993No my-foo-pretty-printers.py
4994@end smallexample
4995@end table
4996
9f050062 4997When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
4998@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
4999function (@pxref{Objfiles In Python}). This can be useful for
5000registering objfile-specific pretty-printers and frame-filters.
5001
5002@node Python modules
5003@subsection Python modules
5004@cindex python modules
5005
5006@value{GDBN} comes with several modules to assist writing Python code.
5007
5008@menu
5009* gdb.printing:: Building and registering pretty-printers.
5010* gdb.types:: Utilities for working with types.
5011* gdb.prompt:: Utilities for prompt value substitution.
5012@end menu
5013
5014@node gdb.printing
5015@subsubsection gdb.printing
5016@cindex gdb.printing
5017
5018This module provides a collection of utilities for working with
5019pretty-printers.
5020
5021@table @code
5022@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5023This class specifies the API that makes @samp{info pretty-printer},
5024@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5025Pretty-printers should generally inherit from this class.
5026
5027@item SubPrettyPrinter (@var{name})
5028For printers that handle multiple types, this class specifies the
5029corresponding API for the subprinters.
5030
5031@item RegexpCollectionPrettyPrinter (@var{name})
5032Utility class for handling multiple printers, all recognized via
5033regular expressions.
5034@xref{Writing a Pretty-Printer}, for an example.
5035
5036@item FlagEnumerationPrinter (@var{name})
5037A pretty-printer which handles printing of @code{enum} values. Unlike
5038@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5039work properly when there is some overlap between the enumeration
697aa1b7
EZ
5040constants. The argument @var{name} is the name of the printer and
5041also the name of the @code{enum} type to look up.
329baa95
DE
5042
5043@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5044Register @var{printer} with the pretty-printer list of @var{obj}.
5045If @var{replace} is @code{True} then any existing copy of the printer
5046is replaced. Otherwise a @code{RuntimeError} exception is raised
5047if a printer with the same name already exists.
5048@end table
5049
5050@node gdb.types
5051@subsubsection gdb.types
5052@cindex gdb.types
5053
5054This module provides a collection of utilities for working with
5055@code{gdb.Type} objects.
5056
5057@table @code
5058@item get_basic_type (@var{type})
5059Return @var{type} with const and volatile qualifiers stripped,
5060and with typedefs and C@t{++} references converted to the underlying type.
5061
5062C@t{++} example:
5063
5064@smallexample
5065typedef const int const_int;
5066const_int foo (3);
5067const_int& foo_ref (foo);
5068int main () @{ return 0; @}
5069@end smallexample
5070
5071Then in gdb:
5072
5073@smallexample
5074(gdb) start
5075(gdb) python import gdb.types
5076(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5077(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5078int
5079@end smallexample
5080
5081@item has_field (@var{type}, @var{field})
5082Return @code{True} if @var{type}, assumed to be a type with fields
5083(e.g., a structure or union), has field @var{field}.
5084
5085@item make_enum_dict (@var{enum_type})
5086Return a Python @code{dictionary} type produced from @var{enum_type}.
5087
5088@item deep_items (@var{type})
5089Returns a Python iterator similar to the standard
5090@code{gdb.Type.iteritems} method, except that the iterator returned
5091by @code{deep_items} will recursively traverse anonymous struct or
5092union fields. For example:
5093
5094@smallexample
5095struct A
5096@{
5097 int a;
5098 union @{
5099 int b0;
5100 int b1;
5101 @};
5102@};
5103@end smallexample
5104
5105@noindent
5106Then in @value{GDBN}:
5107@smallexample
5108(@value{GDBP}) python import gdb.types
5109(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5110(@value{GDBP}) python print struct_a.keys ()
5111@{['a', '']@}
5112(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5113@{['a', 'b0', 'b1']@}
5114@end smallexample
5115
5116@item get_type_recognizers ()
5117Return a list of the enabled type recognizers for the current context.
5118This is called by @value{GDBN} during the type-printing process
5119(@pxref{Type Printing API}).
5120
5121@item apply_type_recognizers (recognizers, type_obj)
5122Apply the type recognizers, @var{recognizers}, to the type object
5123@var{type_obj}. If any recognizer returns a string, return that
5124string. Otherwise, return @code{None}. This is called by
5125@value{GDBN} during the type-printing process (@pxref{Type Printing
5126API}).
5127
5128@item register_type_printer (locus, printer)
697aa1b7
EZ
5129This is a convenience function to register a type printer
5130@var{printer}. The printer must implement the type printer protocol.
5131The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5132the printer is registered with that objfile; a @code{gdb.Progspace},
5133in which case the printer is registered with that progspace; or
5134@code{None}, in which case the printer is registered globally.
329baa95
DE
5135
5136@item TypePrinter
5137This is a base class that implements the type printer protocol. Type
5138printers are encouraged, but not required, to derive from this class.
5139It defines a constructor:
5140
5141@defmethod TypePrinter __init__ (self, name)
5142Initialize the type printer with the given name. The new printer
5143starts in the enabled state.
5144@end defmethod
5145
5146@end table
5147
5148@node gdb.prompt
5149@subsubsection gdb.prompt
5150@cindex gdb.prompt
5151
5152This module provides a method for prompt value-substitution.
5153
5154@table @code
5155@item substitute_prompt (@var{string})
5156Return @var{string} with escape sequences substituted by values. Some
5157escape sequences take arguments. You can specify arguments inside
5158``@{@}'' immediately following the escape sequence.
5159
5160The escape sequences you can pass to this function are:
5161
5162@table @code
5163@item \\
5164Substitute a backslash.
5165@item \e
5166Substitute an ESC character.
5167@item \f
5168Substitute the selected frame; an argument names a frame parameter.
5169@item \n
5170Substitute a newline.
5171@item \p
5172Substitute a parameter's value; the argument names the parameter.
5173@item \r
5174Substitute a carriage return.
5175@item \t
5176Substitute the selected thread; an argument names a thread parameter.
5177@item \v
5178Substitute the version of GDB.
5179@item \w
5180Substitute the current working directory.
5181@item \[
5182Begin a sequence of non-printing characters. These sequences are
5183typically used with the ESC character, and are not counted in the string
5184length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5185blue-colored ``(gdb)'' prompt where the length is five.
5186@item \]
5187End a sequence of non-printing characters.
5188@end table
5189
5190For example:
5191
5192@smallexample
5193substitute_prompt (``frame: \f,
5194 print arguments: \p@{print frame-arguments@}'')
5195@end smallexample
5196
5197@exdent will return the string:
5198
5199@smallexample
5200"frame: main, print arguments: scalars"
5201@end smallexample
5202@end table
This page took 0.486437 seconds and 4 git commands to generate.