gdb/ChangeLog:
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4c38e0a4 4 2004, 2005, 2006, 2007, 2008, 2009, 2010
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
94af9270
KS
51#include "typeprint.h"
52#include "jv-lang.h"
ccefe4c4 53#include "psympriv.h"
4c2df51b 54
c906108c
SS
55#include <fcntl.h>
56#include "gdb_string.h"
4bdf3d34 57#include "gdb_assert.h"
c906108c 58#include <sys/types.h>
233a11ab
CS
59#ifdef HAVE_ZLIB_H
60#include <zlib.h>
61#endif
dce234bc
PP
62#ifdef HAVE_MMAP
63#include <sys/mman.h>
85d9bd0e
TT
64#ifndef MAP_FAILED
65#define MAP_FAILED ((void *) -1)
66#endif
dce234bc 67#endif
d8151005 68
107d2387 69#if 0
357e46e7 70/* .debug_info header for a compilation unit
c906108c
SS
71 Because of alignment constraints, this structure has padding and cannot
72 be mapped directly onto the beginning of the .debug_info section. */
73typedef struct comp_unit_header
74 {
75 unsigned int length; /* length of the .debug_info
76 contribution */
77 unsigned short version; /* version number -- 2 for DWARF
78 version 2 */
79 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
80 unsigned char addr_size; /* byte size of an address -- 4 */
81 }
82_COMP_UNIT_HEADER;
83#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 84#endif
c906108c 85
c906108c
SS
86/* .debug_line statement program prologue
87 Because of alignment constraints, this structure has padding and cannot
88 be mapped directly onto the beginning of the .debug_info section. */
89typedef struct statement_prologue
90 {
91 unsigned int total_length; /* byte length of the statement
92 information */
93 unsigned short version; /* version number -- 2 for DWARF
94 version 2 */
95 unsigned int prologue_length; /* # bytes between prologue &
96 stmt program */
97 unsigned char minimum_instruction_length; /* byte size of
98 smallest instr */
99 unsigned char default_is_stmt; /* initial value of is_stmt
100 register */
101 char line_base;
102 unsigned char line_range;
103 unsigned char opcode_base; /* number assigned to first special
104 opcode */
105 unsigned char *standard_opcode_lengths;
106 }
107_STATEMENT_PROLOGUE;
108
d97bc12b
DE
109/* When non-zero, dump DIEs after they are read in. */
110static int dwarf2_die_debug = 0;
111
dce234bc
PP
112static int pagesize;
113
df8a16a1
DJ
114/* When set, the file that we're processing is known to have debugging
115 info for C++ namespaces. GCC 3.3.x did not produce this information,
116 but later versions do. */
117
118static int processing_has_namespace_info;
119
6502dd73
DJ
120static const struct objfile_data *dwarf2_objfile_data_key;
121
dce234bc
PP
122struct dwarf2_section_info
123{
124 asection *asection;
125 gdb_byte *buffer;
126 bfd_size_type size;
127 int was_mmapped;
be391dca
TT
128 /* True if we have tried to read this section. */
129 int readin;
dce234bc
PP
130};
131
6502dd73
DJ
132struct dwarf2_per_objfile
133{
dce234bc
PP
134 struct dwarf2_section_info info;
135 struct dwarf2_section_info abbrev;
136 struct dwarf2_section_info line;
dce234bc
PP
137 struct dwarf2_section_info loc;
138 struct dwarf2_section_info macinfo;
139 struct dwarf2_section_info str;
140 struct dwarf2_section_info ranges;
348e048f 141 struct dwarf2_section_info types;
dce234bc
PP
142 struct dwarf2_section_info frame;
143 struct dwarf2_section_info eh_frame;
ae038cb0 144
be391dca
TT
145 /* Back link. */
146 struct objfile *objfile;
147
10b3939b
DJ
148 /* A list of all the compilation units. This is used to locate
149 the target compilation unit of a particular reference. */
ae038cb0
DJ
150 struct dwarf2_per_cu_data **all_comp_units;
151
152 /* The number of compilation units in ALL_COMP_UNITS. */
153 int n_comp_units;
154
155 /* A chain of compilation units that are currently read in, so that
156 they can be freed later. */
157 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 158
348e048f
DE
159 /* A table mapping .debug_types signatures to its signatured_type entry.
160 This is NULL if the .debug_types section hasn't been read in yet. */
161 htab_t signatured_types;
162
72dca2f5
FR
163 /* A flag indicating wether this objfile has a section loaded at a
164 VMA of 0. */
165 int has_section_at_zero;
6502dd73
DJ
166};
167
168static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c
SS
169
170/* names of the debugging sections */
171
233a11ab
CS
172/* Note that if the debugging section has been compressed, it might
173 have a name like .zdebug_info. */
174
175#define INFO_SECTION "debug_info"
176#define ABBREV_SECTION "debug_abbrev"
177#define LINE_SECTION "debug_line"
233a11ab
CS
178#define LOC_SECTION "debug_loc"
179#define MACINFO_SECTION "debug_macinfo"
180#define STR_SECTION "debug_str"
181#define RANGES_SECTION "debug_ranges"
348e048f 182#define TYPES_SECTION "debug_types"
233a11ab
CS
183#define FRAME_SECTION "debug_frame"
184#define EH_FRAME_SECTION "eh_frame"
c906108c
SS
185
186/* local data types */
187
57349743
JB
188/* We hold several abbreviation tables in memory at the same time. */
189#ifndef ABBREV_HASH_SIZE
190#define ABBREV_HASH_SIZE 121
191#endif
192
107d2387
AC
193/* The data in a compilation unit header, after target2host
194 translation, looks like this. */
c906108c 195struct comp_unit_head
a738430d 196{
c764a876 197 unsigned int length;
a738430d 198 short version;
a738430d
MK
199 unsigned char addr_size;
200 unsigned char signed_addr_p;
9cbfa09e 201 unsigned int abbrev_offset;
57349743 202
a738430d
MK
203 /* Size of file offsets; either 4 or 8. */
204 unsigned int offset_size;
57349743 205
a738430d
MK
206 /* Size of the length field; either 4 or 12. */
207 unsigned int initial_length_size;
57349743 208
a738430d
MK
209 /* Offset to the first byte of this compilation unit header in the
210 .debug_info section, for resolving relative reference dies. */
211 unsigned int offset;
57349743 212
d00adf39
DE
213 /* Offset to first die in this cu from the start of the cu.
214 This will be the first byte following the compilation unit header. */
215 unsigned int first_die_offset;
a738430d 216};
c906108c 217
e7c27a73
DJ
218/* Internal state when decoding a particular compilation unit. */
219struct dwarf2_cu
220{
221 /* The objfile containing this compilation unit. */
222 struct objfile *objfile;
223
d00adf39 224 /* The header of the compilation unit. */
e7c27a73 225 struct comp_unit_head header;
e142c38c 226
d00adf39
DE
227 /* Base address of this compilation unit. */
228 CORE_ADDR base_address;
229
230 /* Non-zero if base_address has been set. */
231 int base_known;
232
e142c38c
DJ
233 struct function_range *first_fn, *last_fn, *cached_fn;
234
235 /* The language we are debugging. */
236 enum language language;
237 const struct language_defn *language_defn;
238
b0f35d58
DL
239 const char *producer;
240
e142c38c
DJ
241 /* The generic symbol table building routines have separate lists for
242 file scope symbols and all all other scopes (local scopes). So
243 we need to select the right one to pass to add_symbol_to_list().
244 We do it by keeping a pointer to the correct list in list_in_scope.
245
246 FIXME: The original dwarf code just treated the file scope as the
247 first local scope, and all other local scopes as nested local
248 scopes, and worked fine. Check to see if we really need to
249 distinguish these in buildsym.c. */
250 struct pending **list_in_scope;
251
f3dd6933
DJ
252 /* DWARF abbreviation table associated with this compilation unit. */
253 struct abbrev_info **dwarf2_abbrevs;
254
255 /* Storage for the abbrev table. */
256 struct obstack abbrev_obstack;
72bf9492
DJ
257
258 /* Hash table holding all the loaded partial DIEs. */
259 htab_t partial_dies;
260
261 /* Storage for things with the same lifetime as this read-in compilation
262 unit, including partial DIEs. */
263 struct obstack comp_unit_obstack;
264
ae038cb0
DJ
265 /* When multiple dwarf2_cu structures are living in memory, this field
266 chains them all together, so that they can be released efficiently.
267 We will probably also want a generation counter so that most-recently-used
268 compilation units are cached... */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* Backchain to our per_cu entry if the tree has been built. */
272 struct dwarf2_per_cu_data *per_cu;
273
f792889a
DJ
274 /* Pointer to the die -> type map. Although it is stored
275 permanently in per_cu, we copy it here to avoid double
276 indirection. */
277 htab_t type_hash;
278
ae038cb0
DJ
279 /* How many compilation units ago was this CU last referenced? */
280 int last_used;
281
10b3939b 282 /* A hash table of die offsets for following references. */
51545339 283 htab_t die_hash;
10b3939b
DJ
284
285 /* Full DIEs if read in. */
286 struct die_info *dies;
287
288 /* A set of pointers to dwarf2_per_cu_data objects for compilation
289 units referenced by this one. Only set during full symbol processing;
290 partial symbol tables do not have dependencies. */
291 htab_t dependencies;
292
cb1df416
DJ
293 /* Header data from the line table, during full symbol processing. */
294 struct line_header *line_header;
295
ae038cb0
DJ
296 /* Mark used when releasing cached dies. */
297 unsigned int mark : 1;
298
299 /* This flag will be set if this compilation unit might include
300 inter-compilation-unit references. */
301 unsigned int has_form_ref_addr : 1;
302
72bf9492
DJ
303 /* This flag will be set if this compilation unit includes any
304 DW_TAG_namespace DIEs. If we know that there are explicit
305 DIEs for namespaces, we don't need to try to infer them
306 from mangled names. */
307 unsigned int has_namespace_info : 1;
e7c27a73
DJ
308};
309
10b3939b
DJ
310/* Persistent data held for a compilation unit, even when not
311 processing it. We put a pointer to this structure in the
312 read_symtab_private field of the psymtab. If we encounter
313 inter-compilation-unit references, we also maintain a sorted
314 list of all compilation units. */
315
ae038cb0
DJ
316struct dwarf2_per_cu_data
317{
348e048f 318 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 319 bytes should suffice to store the length of any compilation unit
45452591
DE
320 - if it doesn't, GDB will fall over anyway.
321 NOTE: Unlike comp_unit_head.length, this length includes
322 initial_length_size. */
c764a876 323 unsigned int offset;
348e048f 324 unsigned int length : 29;
ae038cb0
DJ
325
326 /* Flag indicating this compilation unit will be read in before
327 any of the current compilation units are processed. */
c764a876 328 unsigned int queued : 1;
ae038cb0 329
5afb4e99
DJ
330 /* This flag will be set if we need to load absolutely all DIEs
331 for this compilation unit, instead of just the ones we think
332 are interesting. It gets set if we look for a DIE in the
333 hash table and don't find it. */
334 unsigned int load_all_dies : 1;
335
348e048f
DE
336 /* Non-zero if this CU is from .debug_types.
337 Otherwise it's from .debug_info. */
338 unsigned int from_debug_types : 1;
339
ae038cb0
DJ
340 /* Set iff currently read in. */
341 struct dwarf2_cu *cu;
1c379e20
DJ
342
343 /* If full symbols for this CU have been read in, then this field
344 holds a map of DIE offsets to types. It isn't always possible
345 to reconstruct this information later, so we have to preserve
346 it. */
1c379e20 347 htab_t type_hash;
10b3939b 348
31ffec48
DJ
349 /* The partial symbol table associated with this compilation unit,
350 or NULL for partial units (which do not have an associated
351 symtab). */
10b3939b 352 struct partial_symtab *psymtab;
ae038cb0
DJ
353};
354
348e048f
DE
355/* Entry in the signatured_types hash table. */
356
357struct signatured_type
358{
359 ULONGEST signature;
360
361 /* Offset in .debug_types of the TU (type_unit) for this type. */
362 unsigned int offset;
363
364 /* Offset in .debug_types of the type defined by this TU. */
365 unsigned int type_offset;
366
367 /* The CU(/TU) of this type. */
368 struct dwarf2_per_cu_data per_cu;
369};
370
93311388
DE
371/* Struct used to pass misc. parameters to read_die_and_children, et. al.
372 which are used for both .debug_info and .debug_types dies.
373 All parameters here are unchanging for the life of the call.
374 This struct exists to abstract away the constant parameters of
375 die reading. */
376
377struct die_reader_specs
378{
379 /* The bfd of this objfile. */
380 bfd* abfd;
381
382 /* The CU of the DIE we are parsing. */
383 struct dwarf2_cu *cu;
384
385 /* Pointer to start of section buffer.
386 This is either the start of .debug_info or .debug_types. */
387 const gdb_byte *buffer;
388};
389
debd256d
JB
390/* The line number information for a compilation unit (found in the
391 .debug_line section) begins with a "statement program header",
392 which contains the following information. */
393struct line_header
394{
395 unsigned int total_length;
396 unsigned short version;
397 unsigned int header_length;
398 unsigned char minimum_instruction_length;
399 unsigned char default_is_stmt;
400 int line_base;
401 unsigned char line_range;
402 unsigned char opcode_base;
403
404 /* standard_opcode_lengths[i] is the number of operands for the
405 standard opcode whose value is i. This means that
406 standard_opcode_lengths[0] is unused, and the last meaningful
407 element is standard_opcode_lengths[opcode_base - 1]. */
408 unsigned char *standard_opcode_lengths;
409
410 /* The include_directories table. NOTE! These strings are not
411 allocated with xmalloc; instead, they are pointers into
412 debug_line_buffer. If you try to free them, `free' will get
413 indigestion. */
414 unsigned int num_include_dirs, include_dirs_size;
415 char **include_dirs;
416
417 /* The file_names table. NOTE! These strings are not allocated
418 with xmalloc; instead, they are pointers into debug_line_buffer.
419 Don't try to free them directly. */
420 unsigned int num_file_names, file_names_size;
421 struct file_entry
c906108c 422 {
debd256d
JB
423 char *name;
424 unsigned int dir_index;
425 unsigned int mod_time;
426 unsigned int length;
aaa75496 427 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 428 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
429 } *file_names;
430
431 /* The start and end of the statement program following this
6502dd73 432 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 433 gdb_byte *statement_program_start, *statement_program_end;
debd256d 434};
c906108c
SS
435
436/* When we construct a partial symbol table entry we only
437 need this much information. */
438struct partial_die_info
439 {
72bf9492 440 /* Offset of this DIE. */
c906108c 441 unsigned int offset;
72bf9492
DJ
442
443 /* DWARF-2 tag for this DIE. */
444 ENUM_BITFIELD(dwarf_tag) tag : 16;
445
72bf9492
DJ
446 /* Assorted flags describing the data found in this DIE. */
447 unsigned int has_children : 1;
448 unsigned int is_external : 1;
449 unsigned int is_declaration : 1;
450 unsigned int has_type : 1;
451 unsigned int has_specification : 1;
452 unsigned int has_pc_info : 1;
453
454 /* Flag set if the SCOPE field of this structure has been
455 computed. */
456 unsigned int scope_set : 1;
457
fa4028e9
JB
458 /* Flag set if the DIE has a byte_size attribute. */
459 unsigned int has_byte_size : 1;
460
72bf9492 461 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 462 sometimes a default name for unnamed DIEs. */
c906108c 463 char *name;
72bf9492
DJ
464
465 /* The scope to prepend to our children. This is generally
466 allocated on the comp_unit_obstack, so will disappear
467 when this compilation unit leaves the cache. */
468 char *scope;
469
470 /* The location description associated with this DIE, if any. */
471 struct dwarf_block *locdesc;
472
473 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
474 CORE_ADDR lowpc;
475 CORE_ADDR highpc;
72bf9492 476
93311388 477 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 478 DW_AT_sibling, if any. */
fe1b8b76 479 gdb_byte *sibling;
72bf9492
DJ
480
481 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
482 DW_AT_specification (or DW_AT_abstract_origin or
483 DW_AT_extension). */
484 unsigned int spec_offset;
485
486 /* Pointers to this DIE's parent, first child, and next sibling,
487 if any. */
488 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
489 };
490
491/* This data structure holds the information of an abbrev. */
492struct abbrev_info
493 {
494 unsigned int number; /* number identifying abbrev */
495 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
496 unsigned short has_children; /* boolean */
497 unsigned short num_attrs; /* number of attributes */
c906108c
SS
498 struct attr_abbrev *attrs; /* an array of attribute descriptions */
499 struct abbrev_info *next; /* next in chain */
500 };
501
502struct attr_abbrev
503 {
9d25dd43
DE
504 ENUM_BITFIELD(dwarf_attribute) name : 16;
505 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
506 };
507
b60c80d6
DJ
508/* Attributes have a name and a value */
509struct attribute
510 {
9d25dd43 511 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
512 ENUM_BITFIELD(dwarf_form) form : 15;
513
514 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
515 field should be in u.str (existing only for DW_STRING) but it is kept
516 here for better struct attribute alignment. */
517 unsigned int string_is_canonical : 1;
518
b60c80d6
DJ
519 union
520 {
521 char *str;
522 struct dwarf_block *blk;
43bbcdc2
PH
523 ULONGEST unsnd;
524 LONGEST snd;
b60c80d6 525 CORE_ADDR addr;
348e048f 526 struct signatured_type *signatured_type;
b60c80d6
DJ
527 }
528 u;
529 };
530
c906108c
SS
531/* This data structure holds a complete die structure. */
532struct die_info
533 {
76815b17
DE
534 /* DWARF-2 tag for this DIE. */
535 ENUM_BITFIELD(dwarf_tag) tag : 16;
536
537 /* Number of attributes */
538 unsigned short num_attrs;
539
540 /* Abbrev number */
541 unsigned int abbrev;
542
93311388 543 /* Offset in .debug_info or .debug_types section. */
76815b17 544 unsigned int offset;
78ba4af6
JB
545
546 /* The dies in a compilation unit form an n-ary tree. PARENT
547 points to this die's parent; CHILD points to the first child of
548 this node; and all the children of a given node are chained
549 together via their SIBLING fields, terminated by a die whose
550 tag is zero. */
639d11d3
DC
551 struct die_info *child; /* Its first child, if any. */
552 struct die_info *sibling; /* Its next sibling, if any. */
553 struct die_info *parent; /* Its parent, if any. */
c906108c 554
b60c80d6
DJ
555 /* An array of attributes, with NUM_ATTRS elements. There may be
556 zero, but it's not common and zero-sized arrays are not
557 sufficiently portable C. */
558 struct attribute attrs[1];
c906108c
SS
559 };
560
5fb290d7
DJ
561struct function_range
562{
563 const char *name;
564 CORE_ADDR lowpc, highpc;
565 int seen_line;
566 struct function_range *next;
567};
568
c906108c
SS
569/* Get at parts of an attribute structure */
570
571#define DW_STRING(attr) ((attr)->u.str)
8285870a 572#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
573#define DW_UNSND(attr) ((attr)->u.unsnd)
574#define DW_BLOCK(attr) ((attr)->u.blk)
575#define DW_SND(attr) ((attr)->u.snd)
576#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 577#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c
SS
578
579/* Blocks are a bunch of untyped bytes. */
580struct dwarf_block
581 {
582 unsigned int size;
fe1b8b76 583 gdb_byte *data;
c906108c
SS
584 };
585
c906108c
SS
586#ifndef ATTR_ALLOC_CHUNK
587#define ATTR_ALLOC_CHUNK 4
588#endif
589
c906108c
SS
590/* Allocate fields for structs, unions and enums in this size. */
591#ifndef DW_FIELD_ALLOC_CHUNK
592#define DW_FIELD_ALLOC_CHUNK 4
593#endif
594
c906108c
SS
595/* A zeroed version of a partial die for initialization purposes. */
596static struct partial_die_info zeroed_partial_die;
597
c906108c
SS
598/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
599 but this would require a corresponding change in unpack_field_as_long
600 and friends. */
601static int bits_per_byte = 8;
602
603/* The routines that read and process dies for a C struct or C++ class
604 pass lists of data member fields and lists of member function fields
605 in an instance of a field_info structure, as defined below. */
606struct field_info
c5aa993b
JM
607 {
608 /* List of data member and baseclasses fields. */
609 struct nextfield
610 {
611 struct nextfield *next;
612 int accessibility;
613 int virtuality;
614 struct field field;
615 }
7d0ccb61 616 *fields, *baseclasses;
c906108c 617
7d0ccb61 618 /* Number of fields (including baseclasses). */
c5aa993b 619 int nfields;
c906108c 620
c5aa993b
JM
621 /* Number of baseclasses. */
622 int nbaseclasses;
c906108c 623
c5aa993b
JM
624 /* Set if the accesibility of one of the fields is not public. */
625 int non_public_fields;
c906108c 626
c5aa993b
JM
627 /* Member function fields array, entries are allocated in the order they
628 are encountered in the object file. */
629 struct nextfnfield
630 {
631 struct nextfnfield *next;
632 struct fn_field fnfield;
633 }
634 *fnfields;
c906108c 635
c5aa993b
JM
636 /* Member function fieldlist array, contains name of possibly overloaded
637 member function, number of overloaded member functions and a pointer
638 to the head of the member function field chain. */
639 struct fnfieldlist
640 {
641 char *name;
642 int length;
643 struct nextfnfield *head;
644 }
645 *fnfieldlists;
c906108c 646
c5aa993b
JM
647 /* Number of entries in the fnfieldlists array. */
648 int nfnfields;
649 };
c906108c 650
10b3939b
DJ
651/* One item on the queue of compilation units to read in full symbols
652 for. */
653struct dwarf2_queue_item
654{
655 struct dwarf2_per_cu_data *per_cu;
656 struct dwarf2_queue_item *next;
657};
658
659/* The current queue. */
660static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
661
ae038cb0
DJ
662/* Loaded secondary compilation units are kept in memory until they
663 have not been referenced for the processing of this many
664 compilation units. Set this to zero to disable caching. Cache
665 sizes of up to at least twenty will improve startup time for
666 typical inter-CU-reference binaries, at an obvious memory cost. */
667static int dwarf2_max_cache_age = 5;
920d2a44
AC
668static void
669show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
670 struct cmd_list_element *c, const char *value)
671{
672 fprintf_filtered (file, _("\
673The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
674 value);
675}
676
ae038cb0 677
c906108c
SS
678/* Various complaints about symbol reading that don't abort the process */
679
4d3c2250
KB
680static void
681dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 682{
4d3c2250 683 complaint (&symfile_complaints,
e2e0b3e5 684 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
685}
686
25e43795
DJ
687static void
688dwarf2_debug_line_missing_file_complaint (void)
689{
690 complaint (&symfile_complaints,
691 _(".debug_line section has line data without a file"));
692}
693
59205f5a
JB
694static void
695dwarf2_debug_line_missing_end_sequence_complaint (void)
696{
697 complaint (&symfile_complaints,
698 _(".debug_line section has line program sequence without an end"));
699}
700
4d3c2250
KB
701static void
702dwarf2_complex_location_expr_complaint (void)
2e276125 703{
e2e0b3e5 704 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
705}
706
4d3c2250
KB
707static void
708dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
709 int arg3)
2e276125 710{
4d3c2250 711 complaint (&symfile_complaints,
e2e0b3e5 712 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
713 arg2, arg3);
714}
715
716static void
717dwarf2_macros_too_long_complaint (void)
2e276125 718{
4d3c2250 719 complaint (&symfile_complaints,
e2e0b3e5 720 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
721}
722
723static void
724dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 725{
4d3c2250 726 complaint (&symfile_complaints,
e2e0b3e5 727 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
728 arg1);
729}
730
731static void
732dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 733{
4d3c2250 734 complaint (&symfile_complaints,
e2e0b3e5 735 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 736}
c906108c 737
c906108c
SS
738/* local function prototypes */
739
4efb68b1 740static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 741
aaa75496
JB
742static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
743 struct objfile *);
744
745static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
d85a05f0 746 struct die_info *,
aaa75496
JB
747 struct partial_symtab *);
748
c67a9c90 749static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 750
72bf9492
DJ
751static void scan_partial_symbols (struct partial_die_info *,
752 CORE_ADDR *, CORE_ADDR *,
5734ee8b 753 int, struct dwarf2_cu *);
c906108c 754
72bf9492
DJ
755static void add_partial_symbol (struct partial_die_info *,
756 struct dwarf2_cu *);
63d06c5c 757
72bf9492
DJ
758static void add_partial_namespace (struct partial_die_info *pdi,
759 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 760 int need_pc, struct dwarf2_cu *cu);
63d06c5c 761
5d7cb8df
JK
762static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
763 CORE_ADDR *highpc, int need_pc,
764 struct dwarf2_cu *cu);
765
72bf9492
DJ
766static void add_partial_enumeration (struct partial_die_info *enum_pdi,
767 struct dwarf2_cu *cu);
91c24f0a 768
bc30ff58
JB
769static void add_partial_subprogram (struct partial_die_info *pdi,
770 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 771 int need_pc, struct dwarf2_cu *cu);
bc30ff58 772
fe1b8b76 773static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
774 gdb_byte *buffer, gdb_byte *info_ptr,
775 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 776
a14ed312 777static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 778
a14ed312 779static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 780
e7c27a73 781static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 782
f3dd6933 783static void dwarf2_free_abbrev_table (void *);
c906108c 784
fe1b8b76 785static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 786 struct dwarf2_cu *);
72bf9492 787
57349743 788static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 789 struct dwarf2_cu *);
c906108c 790
93311388
DE
791static struct partial_die_info *load_partial_dies (bfd *,
792 gdb_byte *, gdb_byte *,
793 int, struct dwarf2_cu *);
72bf9492 794
fe1b8b76 795static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
796 struct abbrev_info *abbrev,
797 unsigned int, bfd *,
798 gdb_byte *, gdb_byte *,
799 struct dwarf2_cu *);
c906108c 800
c764a876 801static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 802 struct dwarf2_cu *);
72bf9492
DJ
803
804static void fixup_partial_die (struct partial_die_info *,
805 struct dwarf2_cu *);
806
fe1b8b76
JB
807static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
808 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 809
fe1b8b76
JB
810static gdb_byte *read_attribute_value (struct attribute *, unsigned,
811 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 812
fe1b8b76 813static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 814
fe1b8b76 815static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 816
fe1b8b76 817static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 818
fe1b8b76 819static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 820
93311388 821static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 822
fe1b8b76 823static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 824 unsigned int *);
c906108c 825
c764a876
DE
826static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
827
828static LONGEST read_checked_initial_length_and_offset
829 (bfd *, gdb_byte *, const struct comp_unit_head *,
830 unsigned int *, unsigned int *);
613e1657 831
fe1b8b76 832static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
833 unsigned int *);
834
835static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 836
fe1b8b76 837static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 838
fe1b8b76 839static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 840
fe1b8b76
JB
841static char *read_indirect_string (bfd *, gdb_byte *,
842 const struct comp_unit_head *,
843 unsigned int *);
4bdf3d34 844
fe1b8b76 845static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 846
fe1b8b76 847static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 848
fe1b8b76 849static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 850
e142c38c 851static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 852
e142c38c
DJ
853static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
854 struct dwarf2_cu *);
c906108c 855
348e048f
DE
856static struct attribute *dwarf2_attr_no_follow (struct die_info *,
857 unsigned int,
858 struct dwarf2_cu *);
859
05cf31d1
JB
860static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
861 struct dwarf2_cu *cu);
862
e142c38c 863static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 864
e142c38c 865static struct die_info *die_specification (struct die_info *die,
f2f0e013 866 struct dwarf2_cu **);
63d06c5c 867
debd256d
JB
868static void free_line_header (struct line_header *lh);
869
aaa75496
JB
870static void add_file_name (struct line_header *, char *, unsigned int,
871 unsigned int, unsigned int);
872
debd256d
JB
873static struct line_header *(dwarf_decode_line_header
874 (unsigned int offset,
e7c27a73 875 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
876
877static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 878 struct dwarf2_cu *, struct partial_symtab *);
c906108c 879
4f1520fb 880static void dwarf2_start_subfile (char *, char *, char *);
c906108c 881
a14ed312 882static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 883 struct dwarf2_cu *);
c906108c 884
a14ed312 885static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 886 struct dwarf2_cu *);
c906108c 887
2df3850c
JM
888static void dwarf2_const_value_data (struct attribute *attr,
889 struct symbol *sym,
890 int bits);
891
e7c27a73 892static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 893
b4ba55a1
JB
894static int need_gnat_info (struct dwarf2_cu *);
895
896static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
897
898static void set_descriptive_type (struct type *, struct die_info *,
899 struct dwarf2_cu *);
900
e7c27a73
DJ
901static struct type *die_containing_type (struct die_info *,
902 struct dwarf2_cu *);
c906108c 903
e7c27a73 904static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 905
f792889a 906static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 907
086ed43d 908static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 909
fe1b8b76
JB
910static char *typename_concat (struct obstack *,
911 const char *prefix,
912 const char *suffix,
987504bb 913 struct dwarf2_cu *);
63d06c5c 914
e7c27a73 915static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 916
348e048f
DE
917static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
918
e7c27a73 919static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 920
e7c27a73 921static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 922
ff013f42
JK
923static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
924 struct dwarf2_cu *, struct partial_symtab *);
925
a14ed312 926static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
927 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
928 struct partial_symtab *);
c906108c 929
fae299cd
DC
930static void get_scope_pc_bounds (struct die_info *,
931 CORE_ADDR *, CORE_ADDR *,
932 struct dwarf2_cu *);
933
801e3a5b
JB
934static void dwarf2_record_block_ranges (struct die_info *, struct block *,
935 CORE_ADDR, struct dwarf2_cu *);
936
a14ed312 937static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 938 struct dwarf2_cu *);
c906108c 939
a14ed312 940static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 941 struct type *, struct dwarf2_cu *);
c906108c 942
a14ed312 943static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 944 struct die_info *, struct type *,
e7c27a73 945 struct dwarf2_cu *);
c906108c 946
a14ed312 947static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 948 struct type *, struct dwarf2_cu *);
c906108c 949
134d01f1 950static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 951
e7c27a73 952static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 953
e7c27a73 954static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 955
5d7cb8df
JK
956static void read_module (struct die_info *die, struct dwarf2_cu *cu);
957
27aa8d6a
SW
958static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
959
38d518c9 960static const char *namespace_name (struct die_info *die,
e142c38c 961 int *is_anonymous, struct dwarf2_cu *);
38d518c9 962
134d01f1 963static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 964
e7c27a73 965static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 966
7ca2d3a3
DL
967static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
968 struct dwarf2_cu *);
969
93311388 970static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 971
93311388
DE
972static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
973 gdb_byte *info_ptr,
d97bc12b
DE
974 gdb_byte **new_info_ptr,
975 struct die_info *parent);
976
93311388
DE
977static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
978 gdb_byte *info_ptr,
fe1b8b76 979 gdb_byte **new_info_ptr,
639d11d3
DC
980 struct die_info *parent);
981
93311388
DE
982static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
983 gdb_byte *info_ptr,
fe1b8b76 984 gdb_byte **new_info_ptr,
639d11d3
DC
985 struct die_info *parent);
986
93311388
DE
987static gdb_byte *read_full_die (const struct die_reader_specs *reader,
988 struct die_info **, gdb_byte *,
989 int *);
990
e7c27a73 991static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 992
71c25dea
TT
993static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
994 struct obstack *);
995
e142c38c 996static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 997
e142c38c 998static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 999 struct dwarf2_cu **);
9219021c 1000
a14ed312 1001static char *dwarf_tag_name (unsigned int);
c906108c 1002
a14ed312 1003static char *dwarf_attr_name (unsigned int);
c906108c 1004
a14ed312 1005static char *dwarf_form_name (unsigned int);
c906108c 1006
a14ed312 1007static char *dwarf_stack_op_name (unsigned int);
c906108c 1008
a14ed312 1009static char *dwarf_bool_name (unsigned int);
c906108c 1010
a14ed312 1011static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1012
1013#if 0
a14ed312 1014static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1015#endif
1016
f9aca02d 1017static struct die_info *sibling_die (struct die_info *);
c906108c 1018
d97bc12b
DE
1019static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1020
1021static void dump_die_for_error (struct die_info *);
1022
1023static void dump_die_1 (struct ui_file *, int level, int max_level,
1024 struct die_info *);
c906108c 1025
d97bc12b 1026/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1027
51545339 1028static void store_in_ref_table (struct die_info *,
10b3939b 1029 struct dwarf2_cu *);
c906108c 1030
93311388
DE
1031static int is_ref_attr (struct attribute *);
1032
c764a876 1033static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1034
43bbcdc2 1035static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1036
348e048f
DE
1037static struct die_info *follow_die_ref_or_sig (struct die_info *,
1038 struct attribute *,
1039 struct dwarf2_cu **);
1040
10b3939b
DJ
1041static struct die_info *follow_die_ref (struct die_info *,
1042 struct attribute *,
f2f0e013 1043 struct dwarf2_cu **);
c906108c 1044
348e048f
DE
1045static struct die_info *follow_die_sig (struct die_info *,
1046 struct attribute *,
1047 struct dwarf2_cu **);
1048
1049static void read_signatured_type_at_offset (struct objfile *objfile,
1050 unsigned int offset);
1051
1052static void read_signatured_type (struct objfile *,
1053 struct signatured_type *type_sig);
1054
c906108c
SS
1055/* memory allocation interface */
1056
7b5a2f43 1057static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1058
f3dd6933 1059static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1060
b60c80d6 1061static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1062
e142c38c 1063static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1064
e142c38c
DJ
1065static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1066 struct dwarf2_cu *);
5fb290d7 1067
2e276125 1068static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1069 char *, bfd *, struct dwarf2_cu *);
2e276125 1070
8e19ed76
PS
1071static int attr_form_is_block (struct attribute *);
1072
3690dd37
JB
1073static int attr_form_is_section_offset (struct attribute *);
1074
1075static int attr_form_is_constant (struct attribute *);
1076
93e7bd98
DJ
1077static void dwarf2_symbol_mark_computed (struct attribute *attr,
1078 struct symbol *sym,
1079 struct dwarf2_cu *cu);
4c2df51b 1080
93311388
DE
1081static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1082 struct abbrev_info *abbrev,
1083 struct dwarf2_cu *cu);
4bb7a0a7 1084
72bf9492
DJ
1085static void free_stack_comp_unit (void *);
1086
72bf9492
DJ
1087static hashval_t partial_die_hash (const void *item);
1088
1089static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1090
ae038cb0 1091static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1092 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1093
1094static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1095 (unsigned int offset, struct objfile *objfile);
ae038cb0 1096
93311388
DE
1097static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1098
ae038cb0
DJ
1099static void free_one_comp_unit (void *);
1100
1101static void free_cached_comp_units (void *);
1102
1103static void age_cached_comp_units (void);
1104
1105static void free_one_cached_comp_unit (void *);
1106
f792889a
DJ
1107static struct type *set_die_type (struct die_info *, struct type *,
1108 struct dwarf2_cu *);
1c379e20 1109
ae038cb0
DJ
1110static void create_all_comp_units (struct objfile *);
1111
93311388
DE
1112static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1113 struct objfile *);
10b3939b
DJ
1114
1115static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1116
1117static void dwarf2_add_dependence (struct dwarf2_cu *,
1118 struct dwarf2_per_cu_data *);
1119
ae038cb0
DJ
1120static void dwarf2_mark (struct dwarf2_cu *);
1121
1122static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1123
f792889a 1124static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1125
c906108c
SS
1126/* Try to locate the sections we need for DWARF 2 debugging
1127 information and return true if we have enough to do something. */
1128
1129int
6502dd73 1130dwarf2_has_info (struct objfile *objfile)
c906108c 1131{
be391dca
TT
1132 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1133 if (!dwarf2_per_objfile)
1134 {
1135 /* Initialize per-objfile state. */
1136 struct dwarf2_per_objfile *data
1137 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1138 memset (data, 0, sizeof (*data));
1139 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1140 dwarf2_per_objfile = data;
6502dd73 1141
be391dca
TT
1142 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1143 dwarf2_per_objfile->objfile = objfile;
1144 }
1145 return (dwarf2_per_objfile->info.asection != NULL
1146 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1147}
1148
233a11ab
CS
1149/* When loading sections, we can either look for ".<name>", or for
1150 * ".z<name>", which indicates a compressed section. */
1151
1152static int
dce234bc 1153section_is_p (const char *section_name, const char *name)
233a11ab 1154{
dce234bc
PP
1155 return (section_name[0] == '.'
1156 && (strcmp (section_name + 1, name) == 0
1157 || (section_name[1] == 'z'
1158 && strcmp (section_name + 2, name) == 0)));
233a11ab
CS
1159}
1160
c906108c
SS
1161/* This function is mapped across the sections and remembers the
1162 offset and size of each of the debugging sections we are interested
1163 in. */
1164
1165static void
72dca2f5 1166dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1167{
dce234bc 1168 if (section_is_p (sectp->name, INFO_SECTION))
c906108c 1169 {
dce234bc
PP
1170 dwarf2_per_objfile->info.asection = sectp;
1171 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1172 }
dce234bc 1173 else if (section_is_p (sectp->name, ABBREV_SECTION))
c906108c 1174 {
dce234bc
PP
1175 dwarf2_per_objfile->abbrev.asection = sectp;
1176 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1177 }
dce234bc 1178 else if (section_is_p (sectp->name, LINE_SECTION))
c906108c 1179 {
dce234bc
PP
1180 dwarf2_per_objfile->line.asection = sectp;
1181 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1182 }
dce234bc 1183 else if (section_is_p (sectp->name, LOC_SECTION))
c906108c 1184 {
dce234bc
PP
1185 dwarf2_per_objfile->loc.asection = sectp;
1186 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1187 }
dce234bc 1188 else if (section_is_p (sectp->name, MACINFO_SECTION))
c906108c 1189 {
dce234bc
PP
1190 dwarf2_per_objfile->macinfo.asection = sectp;
1191 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1192 }
dce234bc 1193 else if (section_is_p (sectp->name, STR_SECTION))
c906108c 1194 {
dce234bc
PP
1195 dwarf2_per_objfile->str.asection = sectp;
1196 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1197 }
dce234bc 1198 else if (section_is_p (sectp->name, FRAME_SECTION))
b6af0555 1199 {
dce234bc
PP
1200 dwarf2_per_objfile->frame.asection = sectp;
1201 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1202 }
dce234bc 1203 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
b6af0555 1204 {
3799ccc6
EZ
1205 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1206 if (aflag & SEC_HAS_CONTENTS)
1207 {
dce234bc
PP
1208 dwarf2_per_objfile->eh_frame.asection = sectp;
1209 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1210 }
b6af0555 1211 }
dce234bc 1212 else if (section_is_p (sectp->name, RANGES_SECTION))
af34e669 1213 {
dce234bc
PP
1214 dwarf2_per_objfile->ranges.asection = sectp;
1215 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1216 }
348e048f
DE
1217 else if (section_is_p (sectp->name, TYPES_SECTION))
1218 {
1219 dwarf2_per_objfile->types.asection = sectp;
1220 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1221 }
dce234bc 1222
72dca2f5
FR
1223 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1224 && bfd_section_vma (abfd, sectp) == 0)
1225 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1226}
1227
dce234bc
PP
1228/* Decompress a section that was compressed using zlib. Store the
1229 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1230
1231static void
dce234bc
PP
1232zlib_decompress_section (struct objfile *objfile, asection *sectp,
1233 gdb_byte **outbuf, bfd_size_type *outsize)
1234{
1235 bfd *abfd = objfile->obfd;
1236#ifndef HAVE_ZLIB_H
1237 error (_("Support for zlib-compressed DWARF data (from '%s') "
1238 "is disabled in this copy of GDB"),
1239 bfd_get_filename (abfd));
1240#else
1241 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1242 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1243 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1244 bfd_size_type uncompressed_size;
1245 gdb_byte *uncompressed_buffer;
1246 z_stream strm;
1247 int rc;
1248 int header_size = 12;
1249
1250 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1251 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1252 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1253 bfd_get_filename (abfd));
1254
1255 /* Read the zlib header. In this case, it should be "ZLIB" followed
1256 by the uncompressed section size, 8 bytes in big-endian order. */
1257 if (compressed_size < header_size
1258 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1259 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1260 bfd_get_filename (abfd));
1261 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1262 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1263 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1264 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1265 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1266 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1267 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1268 uncompressed_size += compressed_buffer[11];
1269
1270 /* It is possible the section consists of several compressed
1271 buffers concatenated together, so we uncompress in a loop. */
1272 strm.zalloc = NULL;
1273 strm.zfree = NULL;
1274 strm.opaque = NULL;
1275 strm.avail_in = compressed_size - header_size;
1276 strm.next_in = (Bytef*) compressed_buffer + header_size;
1277 strm.avail_out = uncompressed_size;
1278 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1279 uncompressed_size);
1280 rc = inflateInit (&strm);
1281 while (strm.avail_in > 0)
1282 {
1283 if (rc != Z_OK)
1284 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1285 bfd_get_filename (abfd), rc);
1286 strm.next_out = ((Bytef*) uncompressed_buffer
1287 + (uncompressed_size - strm.avail_out));
1288 rc = inflate (&strm, Z_FINISH);
1289 if (rc != Z_STREAM_END)
1290 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1291 bfd_get_filename (abfd), rc);
1292 rc = inflateReset (&strm);
1293 }
1294 rc = inflateEnd (&strm);
1295 if (rc != Z_OK
1296 || strm.avail_out != 0)
1297 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1298 bfd_get_filename (abfd), rc);
1299
affddf13 1300 do_cleanups (cleanup);
dce234bc
PP
1301 *outbuf = uncompressed_buffer;
1302 *outsize = uncompressed_size;
1303#endif
233a11ab
CS
1304}
1305
dce234bc
PP
1306/* Read the contents of the section SECTP from object file specified by
1307 OBJFILE, store info about the section into INFO.
1308 If the section is compressed, uncompress it before returning. */
c906108c 1309
dce234bc
PP
1310static void
1311dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1312{
dce234bc
PP
1313 bfd *abfd = objfile->obfd;
1314 asection *sectp = info->asection;
1315 gdb_byte *buf, *retbuf;
1316 unsigned char header[4];
c906108c 1317
be391dca
TT
1318 if (info->readin)
1319 return;
dce234bc
PP
1320 info->buffer = NULL;
1321 info->was_mmapped = 0;
be391dca 1322 info->readin = 1;
188dd5d6 1323
dce234bc
PP
1324 if (info->asection == NULL || info->size == 0)
1325 return;
c906108c 1326
dce234bc
PP
1327 /* Check if the file has a 4-byte header indicating compression. */
1328 if (info->size > sizeof (header)
1329 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1330 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1331 {
1332 /* Upon decompression, update the buffer and its size. */
1333 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1334 {
1335 zlib_decompress_section (objfile, sectp, &info->buffer,
1336 &info->size);
1337 return;
1338 }
1339 }
4bdf3d34 1340
dce234bc
PP
1341#ifdef HAVE_MMAP
1342 if (pagesize == 0)
1343 pagesize = getpagesize ();
2e276125 1344
dce234bc
PP
1345 /* Only try to mmap sections which are large enough: we don't want to
1346 waste space due to fragmentation. Also, only try mmap for sections
1347 without relocations. */
1348
1349 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1350 {
1351 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1352 size_t map_length = info->size + sectp->filepos - pg_offset;
1353 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1354 MAP_PRIVATE, pg_offset);
1355
1356 if (retbuf != MAP_FAILED)
1357 {
1358 info->was_mmapped = 1;
1359 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
be391dca
TT
1360#if HAVE_POSIX_MADVISE
1361 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1362#endif
dce234bc
PP
1363 return;
1364 }
1365 }
1366#endif
1367
1368 /* If we get here, we are a normal, not-compressed section. */
1369 info->buffer = buf
1370 = obstack_alloc (&objfile->objfile_obstack, info->size);
1371
1372 /* When debugging .o files, we may need to apply relocations; see
1373 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1374 We never compress sections in .o files, so we only need to
1375 try this when the section is not compressed. */
ac8035ab 1376 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1377 if (retbuf != NULL)
1378 {
1379 info->buffer = retbuf;
1380 return;
1381 }
1382
1383 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1384 || bfd_bread (buf, info->size, abfd) != info->size)
1385 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1386 bfd_get_filename (abfd));
1387}
1388
1389/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1390 SECTION_NAME. */
af34e669 1391
dce234bc
PP
1392void
1393dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1394 asection **sectp, gdb_byte **bufp,
1395 bfd_size_type *sizep)
1396{
1397 struct dwarf2_per_objfile *data
1398 = objfile_data (objfile, dwarf2_objfile_data_key);
1399 struct dwarf2_section_info *info;
a3b2a86b
TT
1400
1401 /* We may see an objfile without any DWARF, in which case we just
1402 return nothing. */
1403 if (data == NULL)
1404 {
1405 *sectp = NULL;
1406 *bufp = NULL;
1407 *sizep = 0;
1408 return;
1409 }
dce234bc
PP
1410 if (section_is_p (section_name, EH_FRAME_SECTION))
1411 info = &data->eh_frame;
1412 else if (section_is_p (section_name, FRAME_SECTION))
1413 info = &data->frame;
0d53c4c4 1414 else
dce234bc
PP
1415 gdb_assert (0);
1416
1417 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1418 /* We haven't read this section in yet. Do it now. */
1419 dwarf2_read_section (objfile, info);
1420
1421 *sectp = info->asection;
1422 *bufp = info->buffer;
1423 *sizep = info->size;
1424}
1425
1426/* Build a partial symbol table. */
1427
1428void
f29dff0a 1429dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 1430{
f29dff0a 1431 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
1432 {
1433 init_psymbol_list (objfile, 1024);
1434 }
1435
d146bf1e 1436 dwarf2_build_psymtabs_hard (objfile);
c906108c 1437}
c906108c 1438
45452591
DE
1439/* Return TRUE if OFFSET is within CU_HEADER. */
1440
1441static inline int
1442offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
1443{
1444 unsigned int bottom = cu_header->offset;
1445 unsigned int top = (cu_header->offset
1446 + cu_header->length
1447 + cu_header->initial_length_size);
1448 return (offset >= bottom && offset < top);
1449}
1450
93311388
DE
1451/* Read in the comp unit header information from the debug_info at info_ptr.
1452 NOTE: This leaves members offset, first_die_offset to be filled in
1453 by the caller. */
107d2387 1454
fe1b8b76 1455static gdb_byte *
107d2387 1456read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1457 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1458{
1459 int signed_addr;
891d2f0b 1460 unsigned int bytes_read;
c764a876
DE
1461
1462 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
1463 cu_header->initial_length_size = bytes_read;
1464 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 1465 info_ptr += bytes_read;
107d2387
AC
1466 cu_header->version = read_2_bytes (abfd, info_ptr);
1467 info_ptr += 2;
613e1657 1468 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 1469 &bytes_read);
613e1657 1470 info_ptr += bytes_read;
107d2387
AC
1471 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1472 info_ptr += 1;
1473 signed_addr = bfd_get_sign_extend_vma (abfd);
1474 if (signed_addr < 0)
8e65ff28 1475 internal_error (__FILE__, __LINE__,
e2e0b3e5 1476 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 1477 cu_header->signed_addr_p = signed_addr;
c764a876 1478
107d2387
AC
1479 return info_ptr;
1480}
1481
fe1b8b76
JB
1482static gdb_byte *
1483partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 1484 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
1485 bfd *abfd)
1486{
fe1b8b76 1487 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1488
1489 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1490
2b949cb6 1491 if (header->version != 2 && header->version != 3)
8a3fe4f8
AC
1492 error (_("Dwarf Error: wrong version in compilation unit header "
1493 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1494 2, bfd_get_filename (abfd));
1495
dce234bc 1496 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
8a3fe4f8
AC
1497 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1498 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 1499 (long) header->abbrev_offset,
93311388 1500 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
1501 bfd_get_filename (abfd));
1502
1503 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 1504 > buffer + buffer_size)
8a3fe4f8
AC
1505 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1506 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 1507 (long) header->length,
93311388 1508 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
1509 bfd_get_filename (abfd));
1510
1511 return info_ptr;
1512}
1513
348e048f
DE
1514/* Read in the types comp unit header information from .debug_types entry at
1515 types_ptr. The result is a pointer to one past the end of the header. */
1516
1517static gdb_byte *
1518read_type_comp_unit_head (struct comp_unit_head *cu_header,
1519 ULONGEST *signature,
1520 gdb_byte *types_ptr, bfd *abfd)
1521{
1522 unsigned int bytes_read;
1523 gdb_byte *initial_types_ptr = types_ptr;
1524
be391dca 1525 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->types);
348e048f
DE
1526 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
1527
1528 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
1529
1530 *signature = read_8_bytes (abfd, types_ptr);
1531 types_ptr += 8;
1532 types_ptr += cu_header->offset_size;
1533 cu_header->first_die_offset = types_ptr - initial_types_ptr;
1534
1535 return types_ptr;
1536}
1537
aaa75496
JB
1538/* Allocate a new partial symtab for file named NAME and mark this new
1539 partial symtab as being an include of PST. */
1540
1541static void
1542dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1543 struct objfile *objfile)
1544{
1545 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1546
1547 subpst->section_offsets = pst->section_offsets;
1548 subpst->textlow = 0;
1549 subpst->texthigh = 0;
1550
1551 subpst->dependencies = (struct partial_symtab **)
1552 obstack_alloc (&objfile->objfile_obstack,
1553 sizeof (struct partial_symtab *));
1554 subpst->dependencies[0] = pst;
1555 subpst->number_of_dependencies = 1;
1556
1557 subpst->globals_offset = 0;
1558 subpst->n_global_syms = 0;
1559 subpst->statics_offset = 0;
1560 subpst->n_static_syms = 0;
1561 subpst->symtab = NULL;
1562 subpst->read_symtab = pst->read_symtab;
1563 subpst->readin = 0;
1564
1565 /* No private part is necessary for include psymtabs. This property
1566 can be used to differentiate between such include psymtabs and
10b3939b 1567 the regular ones. */
58a9656e 1568 subpst->read_symtab_private = NULL;
aaa75496
JB
1569}
1570
1571/* Read the Line Number Program data and extract the list of files
1572 included by the source file represented by PST. Build an include
d85a05f0 1573 partial symtab for each of these included files. */
aaa75496
JB
1574
1575static void
1576dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 1577 struct die_info *die,
aaa75496
JB
1578 struct partial_symtab *pst)
1579{
1580 struct objfile *objfile = cu->objfile;
1581 bfd *abfd = objfile->obfd;
d85a05f0
DJ
1582 struct line_header *lh = NULL;
1583 struct attribute *attr;
aaa75496 1584
d85a05f0
DJ
1585 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
1586 if (attr)
1587 {
1588 unsigned int line_offset = DW_UNSND (attr);
1589 lh = dwarf_decode_line_header (line_offset, abfd, cu);
1590 }
aaa75496
JB
1591 if (lh == NULL)
1592 return; /* No linetable, so no includes. */
1593
1594 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1595
1596 free_line_header (lh);
1597}
1598
348e048f
DE
1599static hashval_t
1600hash_type_signature (const void *item)
1601{
1602 const struct signatured_type *type_sig = item;
1603 /* This drops the top 32 bits of the signature, but is ok for a hash. */
1604 return type_sig->signature;
1605}
1606
1607static int
1608eq_type_signature (const void *item_lhs, const void *item_rhs)
1609{
1610 const struct signatured_type *lhs = item_lhs;
1611 const struct signatured_type *rhs = item_rhs;
1612 return lhs->signature == rhs->signature;
1613}
1614
1615/* Create the hash table of all entries in the .debug_types section.
1616 The result is zero if there is an error (e.g. missing .debug_types section),
1617 otherwise non-zero. */
1618
1619static int
1620create_debug_types_hash_table (struct objfile *objfile)
1621{
be391dca 1622 gdb_byte *info_ptr;
348e048f
DE
1623 htab_t types_htab;
1624
be391dca
TT
1625 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
1626 info_ptr = dwarf2_per_objfile->types.buffer;
1627
348e048f
DE
1628 if (info_ptr == NULL)
1629 {
1630 dwarf2_per_objfile->signatured_types = NULL;
1631 return 0;
1632 }
1633
1634 types_htab = htab_create_alloc_ex (41,
1635 hash_type_signature,
1636 eq_type_signature,
1637 NULL,
1638 &objfile->objfile_obstack,
1639 hashtab_obstack_allocate,
1640 dummy_obstack_deallocate);
1641
1642 if (dwarf2_die_debug)
1643 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
1644
1645 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1646 {
1647 unsigned int offset;
1648 unsigned int offset_size;
1649 unsigned int type_offset;
1650 unsigned int length, initial_length_size;
1651 unsigned short version;
1652 ULONGEST signature;
1653 struct signatured_type *type_sig;
1654 void **slot;
1655 gdb_byte *ptr = info_ptr;
1656
1657 offset = ptr - dwarf2_per_objfile->types.buffer;
1658
1659 /* We need to read the type's signature in order to build the hash
1660 table, but we don't need to read anything else just yet. */
1661
1662 /* Sanity check to ensure entire cu is present. */
1663 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
1664 if (ptr + length + initial_length_size
1665 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1666 {
1667 complaint (&symfile_complaints,
1668 _("debug type entry runs off end of `.debug_types' section, ignored"));
1669 break;
1670 }
1671
1672 offset_size = initial_length_size == 4 ? 4 : 8;
1673 ptr += initial_length_size;
1674 version = bfd_get_16 (objfile->obfd, ptr);
1675 ptr += 2;
1676 ptr += offset_size; /* abbrev offset */
1677 ptr += 1; /* address size */
1678 signature = bfd_get_64 (objfile->obfd, ptr);
1679 ptr += 8;
1680 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
1681
1682 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
1683 memset (type_sig, 0, sizeof (*type_sig));
1684 type_sig->signature = signature;
1685 type_sig->offset = offset;
1686 type_sig->type_offset = type_offset;
1687
1688 slot = htab_find_slot (types_htab, type_sig, INSERT);
1689 gdb_assert (slot != NULL);
1690 *slot = type_sig;
1691
1692 if (dwarf2_die_debug)
1693 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
1694 offset, phex (signature, sizeof (signature)));
1695
1696 info_ptr = info_ptr + initial_length_size + length;
1697 }
1698
1699 dwarf2_per_objfile->signatured_types = types_htab;
1700
1701 return 1;
1702}
1703
1704/* Lookup a signature based type.
1705 Returns NULL if SIG is not present in the table. */
1706
1707static struct signatured_type *
1708lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
1709{
1710 struct signatured_type find_entry, *entry;
1711
1712 if (dwarf2_per_objfile->signatured_types == NULL)
1713 {
1714 complaint (&symfile_complaints,
1715 _("missing `.debug_types' section for DW_FORM_sig8 die"));
1716 return 0;
1717 }
1718
1719 find_entry.signature = sig;
1720 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
1721 return entry;
1722}
1723
d85a05f0
DJ
1724/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
1725
1726static void
1727init_cu_die_reader (struct die_reader_specs *reader,
1728 struct dwarf2_cu *cu)
1729{
1730 reader->abfd = cu->objfile->obfd;
1731 reader->cu = cu;
1732 if (cu->per_cu->from_debug_types)
be391dca
TT
1733 {
1734 gdb_assert (dwarf2_per_objfile->types.readin);
1735 reader->buffer = dwarf2_per_objfile->types.buffer;
1736 }
d85a05f0 1737 else
be391dca
TT
1738 {
1739 gdb_assert (dwarf2_per_objfile->info.readin);
1740 reader->buffer = dwarf2_per_objfile->info.buffer;
1741 }
d85a05f0
DJ
1742}
1743
1744/* Find the base address of the compilation unit for range lists and
1745 location lists. It will normally be specified by DW_AT_low_pc.
1746 In DWARF-3 draft 4, the base address could be overridden by
1747 DW_AT_entry_pc. It's been removed, but GCC still uses this for
1748 compilation units with discontinuous ranges. */
1749
1750static void
1751dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
1752{
1753 struct attribute *attr;
1754
1755 cu->base_known = 0;
1756 cu->base_address = 0;
1757
1758 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
1759 if (attr)
1760 {
1761 cu->base_address = DW_ADDR (attr);
1762 cu->base_known = 1;
1763 }
1764 else
1765 {
1766 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
1767 if (attr)
1768 {
1769 cu->base_address = DW_ADDR (attr);
1770 cu->base_known = 1;
1771 }
1772 }
1773}
1774
348e048f
DE
1775/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
1776 to combine the common parts.
93311388 1777 Process a compilation unit for a psymtab.
348e048f
DE
1778 BUFFER is a pointer to the beginning of the dwarf section buffer,
1779 either .debug_info or debug_types.
93311388
DE
1780 INFO_PTR is a pointer to the start of the CU.
1781 Returns a pointer to the next CU. */
aaa75496 1782
93311388
DE
1783static gdb_byte *
1784process_psymtab_comp_unit (struct objfile *objfile,
1785 struct dwarf2_per_cu_data *this_cu,
1786 gdb_byte *buffer, gdb_byte *info_ptr,
1787 unsigned int buffer_size)
c906108c 1788{
c906108c 1789 bfd *abfd = objfile->obfd;
93311388 1790 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 1791 struct die_info *comp_unit_die;
c906108c 1792 struct partial_symtab *pst;
5734ee8b 1793 CORE_ADDR baseaddr;
93311388
DE
1794 struct cleanup *back_to_inner;
1795 struct dwarf2_cu cu;
93311388 1796 unsigned int bytes_read;
d85a05f0
DJ
1797 int has_children, has_pc_info;
1798 struct attribute *attr;
1799 const char *name;
1800 CORE_ADDR best_lowpc = 0, best_highpc = 0;
1801 struct die_reader_specs reader_specs;
c906108c 1802
93311388
DE
1803 memset (&cu, 0, sizeof (cu));
1804 cu.objfile = objfile;
1805 obstack_init (&cu.comp_unit_obstack);
c906108c 1806
93311388 1807 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 1808
93311388
DE
1809 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
1810 buffer, buffer_size,
1811 abfd);
10b3939b 1812
93311388
DE
1813 /* Complete the cu_header. */
1814 cu.header.offset = beg_of_comp_unit - buffer;
1815 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 1816
93311388 1817 cu.list_in_scope = &file_symbols;
af703f96 1818
328c9494
DJ
1819 /* If this compilation unit was already read in, free the
1820 cached copy in order to read it in again. This is
1821 necessary because we skipped some symbols when we first
1822 read in the compilation unit (see load_partial_dies).
1823 This problem could be avoided, but the benefit is
1824 unclear. */
1825 if (this_cu->cu != NULL)
1826 free_one_cached_comp_unit (this_cu->cu);
1827
1828 /* Note that this is a pointer to our stack frame, being
1829 added to a global data structure. It will be cleaned up
1830 in free_stack_comp_unit when we finish with this
1831 compilation unit. */
1832 this_cu->cu = &cu;
d85a05f0
DJ
1833 cu.per_cu = this_cu;
1834
93311388
DE
1835 /* Read the abbrevs for this compilation unit into a table. */
1836 dwarf2_read_abbrevs (abfd, &cu);
1837 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 1838
93311388 1839 /* Read the compilation unit die. */
348e048f
DE
1840 if (this_cu->from_debug_types)
1841 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
1842 init_cu_die_reader (&reader_specs, &cu);
1843 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
1844 &has_children);
93311388 1845
348e048f
DE
1846 if (this_cu->from_debug_types)
1847 {
1848 /* offset,length haven't been set yet for type units. */
1849 this_cu->offset = cu.header.offset;
1850 this_cu->length = cu.header.length + cu.header.initial_length_size;
1851 }
d85a05f0 1852 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 1853 {
93311388
DE
1854 info_ptr = (beg_of_comp_unit + cu.header.length
1855 + cu.header.initial_length_size);
1856 do_cleanups (back_to_inner);
1857 return info_ptr;
1858 }
72bf9492 1859
93311388 1860 /* Set the language we're debugging. */
d85a05f0
DJ
1861 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
1862 if (attr)
1863 set_cu_language (DW_UNSND (attr), &cu);
1864 else
1865 set_cu_language (language_minimal, &cu);
c906108c 1866
93311388 1867 /* Allocate a new partial symbol table structure. */
d85a05f0 1868 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
93311388 1869 pst = start_psymtab_common (objfile, objfile->section_offsets,
d85a05f0 1870 (attr != NULL) ? DW_STRING (attr) : "",
93311388
DE
1871 /* TEXTLOW and TEXTHIGH are set below. */
1872 0,
1873 objfile->global_psymbols.next,
1874 objfile->static_psymbols.next);
72bf9492 1875
d85a05f0
DJ
1876 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
1877 if (attr != NULL)
1878 pst->dirname = DW_STRING (attr);
72bf9492 1879
e38df1d0 1880 pst->read_symtab_private = this_cu;
72bf9492 1881
93311388 1882 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 1883
93311388
DE
1884 /* Store the function that reads in the rest of the symbol table */
1885 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 1886
93311388 1887 this_cu->psymtab = pst;
c906108c 1888
d85a05f0
DJ
1889 dwarf2_find_base_address (comp_unit_die, &cu);
1890
93311388
DE
1891 /* Possibly set the default values of LOWPC and HIGHPC from
1892 `DW_AT_ranges'. */
d85a05f0
DJ
1893 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
1894 &best_highpc, &cu, pst);
1895 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
1896 /* Store the contiguous range if it is not empty; it can be empty for
1897 CUs with no code. */
1898 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
1899 best_lowpc + baseaddr,
1900 best_highpc + baseaddr - 1, pst);
93311388
DE
1901
1902 /* Check if comp unit has_children.
1903 If so, read the rest of the partial symbols from this comp unit.
1904 If not, there's no more debug_info for this comp unit. */
d85a05f0 1905 if (has_children)
93311388
DE
1906 {
1907 struct partial_die_info *first_die;
1908 CORE_ADDR lowpc, highpc;
31ffec48 1909
93311388
DE
1910 lowpc = ((CORE_ADDR) -1);
1911 highpc = ((CORE_ADDR) 0);
c906108c 1912
93311388 1913 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 1914
93311388 1915 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 1916 ! has_pc_info, &cu);
57c22c6c 1917
93311388
DE
1918 /* If we didn't find a lowpc, set it to highpc to avoid
1919 complaints from `maint check'. */
1920 if (lowpc == ((CORE_ADDR) -1))
1921 lowpc = highpc;
10b3939b 1922
93311388
DE
1923 /* If the compilation unit didn't have an explicit address range,
1924 then use the information extracted from its child dies. */
d85a05f0 1925 if (! has_pc_info)
93311388 1926 {
d85a05f0
DJ
1927 best_lowpc = lowpc;
1928 best_highpc = highpc;
93311388
DE
1929 }
1930 }
d85a05f0
DJ
1931 pst->textlow = best_lowpc + baseaddr;
1932 pst->texthigh = best_highpc + baseaddr;
c906108c 1933
93311388
DE
1934 pst->n_global_syms = objfile->global_psymbols.next -
1935 (objfile->global_psymbols.list + pst->globals_offset);
1936 pst->n_static_syms = objfile->static_psymbols.next -
1937 (objfile->static_psymbols.list + pst->statics_offset);
1938 sort_pst_symbols (pst);
c906108c 1939
93311388
DE
1940 info_ptr = (beg_of_comp_unit + cu.header.length
1941 + cu.header.initial_length_size);
ae038cb0 1942
348e048f
DE
1943 if (this_cu->from_debug_types)
1944 {
1945 /* It's not clear we want to do anything with stmt lists here.
1946 Waiting to see what gcc ultimately does. */
1947 }
d85a05f0 1948 else
93311388
DE
1949 {
1950 /* Get the list of files included in the current compilation unit,
1951 and build a psymtab for each of them. */
d85a05f0 1952 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 1953 }
ae038cb0 1954
93311388 1955 do_cleanups (back_to_inner);
ae038cb0 1956
93311388
DE
1957 return info_ptr;
1958}
ff013f42 1959
348e048f
DE
1960/* Traversal function for htab_traverse_noresize.
1961 Process one .debug_types comp-unit. */
1962
1963static int
1964process_type_comp_unit (void **slot, void *info)
1965{
1966 struct signatured_type *entry = (struct signatured_type *) *slot;
1967 struct objfile *objfile = (struct objfile *) info;
1968 struct dwarf2_per_cu_data *this_cu;
1969
1970 this_cu = &entry->per_cu;
1971 this_cu->from_debug_types = 1;
1972
be391dca 1973 gdb_assert (dwarf2_per_objfile->types.readin);
348e048f
DE
1974 process_psymtab_comp_unit (objfile, this_cu,
1975 dwarf2_per_objfile->types.buffer,
1976 dwarf2_per_objfile->types.buffer + entry->offset,
1977 dwarf2_per_objfile->types.size);
1978
1979 return 1;
1980}
1981
1982/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
1983 Build partial symbol tables for the .debug_types comp-units. */
1984
1985static void
1986build_type_psymtabs (struct objfile *objfile)
1987{
1988 if (! create_debug_types_hash_table (objfile))
1989 return;
1990
1991 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
1992 process_type_comp_unit, objfile);
1993}
1994
93311388
DE
1995/* Build the partial symbol table by doing a quick pass through the
1996 .debug_info and .debug_abbrev sections. */
72bf9492 1997
93311388 1998static void
c67a9c90 1999dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 2000{
93311388
DE
2001 bfd *abfd = objfile->obfd;
2002 gdb_byte *info_ptr;
2003 struct cleanup *back_to;
2004
be391dca 2005 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
93311388 2006 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 2007
93311388
DE
2008 /* Any cached compilation units will be linked by the per-objfile
2009 read_in_chain. Make sure to free them when we're done. */
2010 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 2011
348e048f
DE
2012 build_type_psymtabs (objfile);
2013
93311388 2014 create_all_comp_units (objfile);
c906108c 2015
93311388
DE
2016 objfile->psymtabs_addrmap =
2017 addrmap_create_mutable (&objfile->objfile_obstack);
72bf9492 2018
93311388
DE
2019 /* Since the objects we're extracting from .debug_info vary in
2020 length, only the individual functions to extract them (like
2021 read_comp_unit_head and load_partial_die) can really know whether
2022 the buffer is large enough to hold another complete object.
c906108c 2023
93311388
DE
2024 At the moment, they don't actually check that. If .debug_info
2025 holds just one extra byte after the last compilation unit's dies,
2026 then read_comp_unit_head will happily read off the end of the
2027 buffer. read_partial_die is similarly casual. Those functions
2028 should be fixed.
c906108c 2029
93311388
DE
2030 For this loop condition, simply checking whether there's any data
2031 left at all should be sufficient. */
c906108c 2032
93311388
DE
2033 while (info_ptr < (dwarf2_per_objfile->info.buffer
2034 + dwarf2_per_objfile->info.size))
2035 {
2036 struct dwarf2_per_cu_data *this_cu;
dd373385 2037
93311388
DE
2038 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
2039 objfile);
aaa75496 2040
93311388
DE
2041 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
2042 dwarf2_per_objfile->info.buffer,
2043 info_ptr,
2044 dwarf2_per_objfile->info.size);
c906108c 2045 }
ff013f42
JK
2046
2047 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
2048 &objfile->objfile_obstack);
2049
ae038cb0
DJ
2050 do_cleanups (back_to);
2051}
2052
93311388 2053/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
2054
2055static void
93311388
DE
2056load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
2057 struct objfile *objfile)
ae038cb0
DJ
2058{
2059 bfd *abfd = objfile->obfd;
fe1b8b76 2060 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 2061 struct die_info *comp_unit_die;
ae038cb0 2062 struct dwarf2_cu *cu;
ae038cb0
DJ
2063 unsigned int bytes_read;
2064 struct cleanup *back_to;
d85a05f0
DJ
2065 struct attribute *attr;
2066 int has_children;
2067 struct die_reader_specs reader_specs;
ae038cb0 2068
348e048f
DE
2069 gdb_assert (! this_cu->from_debug_types);
2070
be391dca 2071 gdb_assert (dwarf2_per_objfile->info.readin);
dce234bc 2072 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
2073 beg_of_comp_unit = info_ptr;
2074
93311388 2075 cu = alloc_one_comp_unit (objfile);
ae038cb0 2076
93311388 2077 /* ??? Missing cleanup for CU? */
ae038cb0 2078
328c9494
DJ
2079 /* Link this compilation unit into the compilation unit tree. */
2080 this_cu->cu = cu;
2081 cu->per_cu = this_cu;
2082 cu->type_hash = this_cu->type_hash;
2083
93311388
DE
2084 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
2085 dwarf2_per_objfile->info.buffer,
2086 dwarf2_per_objfile->info.size,
2087 abfd);
ae038cb0
DJ
2088
2089 /* Complete the cu_header. */
93311388 2090 cu->header.offset = this_cu->offset;
d00adf39 2091 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
ae038cb0
DJ
2092
2093 /* Read the abbrevs for this compilation unit into a table. */
2094 dwarf2_read_abbrevs (abfd, cu);
2095 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2096
2097 /* Read the compilation unit die. */
d85a05f0
DJ
2098 init_cu_die_reader (&reader_specs, cu);
2099 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2100 &has_children);
ae038cb0
DJ
2101
2102 /* Set the language we're debugging. */
d85a05f0
DJ
2103 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
2104 if (attr)
2105 set_cu_language (DW_UNSND (attr), cu);
2106 else
2107 set_cu_language (language_minimal, cu);
ae038cb0 2108
ae038cb0
DJ
2109 /* Check if comp unit has_children.
2110 If so, read the rest of the partial symbols from this comp unit.
2111 If not, there's no more debug_info for this comp unit. */
d85a05f0 2112 if (has_children)
93311388 2113 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0
DJ
2114
2115 do_cleanups (back_to);
2116}
2117
2118/* Create a list of all compilation units in OBJFILE. We do this only
2119 if an inter-comp-unit reference is found; presumably if there is one,
2120 there will be many, and one will occur early in the .debug_info section.
2121 So there's no point in building this list incrementally. */
2122
2123static void
2124create_all_comp_units (struct objfile *objfile)
2125{
2126 int n_allocated;
2127 int n_comp_units;
2128 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
2129 gdb_byte *info_ptr;
2130
2131 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
2132 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
2133
2134 n_comp_units = 0;
2135 n_allocated = 10;
2136 all_comp_units = xmalloc (n_allocated
2137 * sizeof (struct dwarf2_per_cu_data *));
2138
dce234bc 2139 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
ae038cb0 2140 {
c764a876 2141 unsigned int length, initial_length_size;
fe1b8b76 2142 gdb_byte *beg_of_comp_unit;
ae038cb0 2143 struct dwarf2_per_cu_data *this_cu;
c764a876 2144 unsigned int offset;
ae038cb0 2145
dce234bc 2146 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
2147
2148 /* Read just enough information to find out where the next
2149 compilation unit is. */
c764a876
DE
2150 length = read_initial_length (objfile->obfd, info_ptr,
2151 &initial_length_size);
ae038cb0
DJ
2152
2153 /* Save the compilation unit for later lookup. */
2154 this_cu = obstack_alloc (&objfile->objfile_obstack,
2155 sizeof (struct dwarf2_per_cu_data));
2156 memset (this_cu, 0, sizeof (*this_cu));
2157 this_cu->offset = offset;
c764a876 2158 this_cu->length = length + initial_length_size;
ae038cb0
DJ
2159
2160 if (n_comp_units == n_allocated)
2161 {
2162 n_allocated *= 2;
2163 all_comp_units = xrealloc (all_comp_units,
2164 n_allocated
2165 * sizeof (struct dwarf2_per_cu_data *));
2166 }
2167 all_comp_units[n_comp_units++] = this_cu;
2168
2169 info_ptr = info_ptr + this_cu->length;
2170 }
2171
2172 dwarf2_per_objfile->all_comp_units
2173 = obstack_alloc (&objfile->objfile_obstack,
2174 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2175 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
2176 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2177 xfree (all_comp_units);
2178 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
2179}
2180
5734ee8b
DJ
2181/* Process all loaded DIEs for compilation unit CU, starting at
2182 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
2183 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
2184 DW_AT_ranges). If NEED_PC is set, then this function will set
2185 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
2186 and record the covered ranges in the addrmap. */
c906108c 2187
72bf9492
DJ
2188static void
2189scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 2190 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 2191{
e7c27a73 2192 struct objfile *objfile = cu->objfile;
c906108c 2193 bfd *abfd = objfile->obfd;
72bf9492 2194 struct partial_die_info *pdi;
c906108c 2195
91c24f0a
DC
2196 /* Now, march along the PDI's, descending into ones which have
2197 interesting children but skipping the children of the other ones,
2198 until we reach the end of the compilation unit. */
c906108c 2199
72bf9492 2200 pdi = first_die;
91c24f0a 2201
72bf9492
DJ
2202 while (pdi != NULL)
2203 {
2204 fixup_partial_die (pdi, cu);
c906108c 2205
91c24f0a
DC
2206 /* Anonymous namespaces have no name but have interesting
2207 children, so we need to look at them. Ditto for anonymous
2208 enums. */
933c6fe4 2209
72bf9492
DJ
2210 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
2211 || pdi->tag == DW_TAG_enumeration_type)
c906108c 2212 {
72bf9492 2213 switch (pdi->tag)
c906108c
SS
2214 {
2215 case DW_TAG_subprogram:
5734ee8b 2216 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c
SS
2217 break;
2218 case DW_TAG_variable:
2219 case DW_TAG_typedef:
91c24f0a 2220 case DW_TAG_union_type:
72bf9492 2221 if (!pdi->is_declaration)
63d06c5c 2222 {
72bf9492 2223 add_partial_symbol (pdi, cu);
63d06c5c
DC
2224 }
2225 break;
c906108c 2226 case DW_TAG_class_type:
680b30c7 2227 case DW_TAG_interface_type:
c906108c 2228 case DW_TAG_structure_type:
72bf9492 2229 if (!pdi->is_declaration)
c906108c 2230 {
72bf9492 2231 add_partial_symbol (pdi, cu);
c906108c
SS
2232 }
2233 break;
91c24f0a 2234 case DW_TAG_enumeration_type:
72bf9492
DJ
2235 if (!pdi->is_declaration)
2236 add_partial_enumeration (pdi, cu);
c906108c
SS
2237 break;
2238 case DW_TAG_base_type:
a02abb62 2239 case DW_TAG_subrange_type:
c906108c 2240 /* File scope base type definitions are added to the partial
c5aa993b 2241 symbol table. */
72bf9492 2242 add_partial_symbol (pdi, cu);
c906108c 2243 break;
d9fa45fe 2244 case DW_TAG_namespace:
5734ee8b 2245 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 2246 break;
5d7cb8df
JK
2247 case DW_TAG_module:
2248 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
2249 break;
c906108c
SS
2250 default:
2251 break;
2252 }
2253 }
2254
72bf9492
DJ
2255 /* If the die has a sibling, skip to the sibling. */
2256
2257 pdi = pdi->die_sibling;
2258 }
2259}
2260
2261/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 2262
72bf9492 2263 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
2264 name is concatenated with "::" and the partial DIE's name. For
2265 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
2266 Enumerators are an exception; they use the scope of their parent
2267 enumeration type, i.e. the name of the enumeration type is not
2268 prepended to the enumerator.
91c24f0a 2269
72bf9492
DJ
2270 There are two complexities. One is DW_AT_specification; in this
2271 case "parent" means the parent of the target of the specification,
2272 instead of the direct parent of the DIE. The other is compilers
2273 which do not emit DW_TAG_namespace; in this case we try to guess
2274 the fully qualified name of structure types from their members'
2275 linkage names. This must be done using the DIE's children rather
2276 than the children of any DW_AT_specification target. We only need
2277 to do this for structures at the top level, i.e. if the target of
2278 any DW_AT_specification (if any; otherwise the DIE itself) does not
2279 have a parent. */
2280
2281/* Compute the scope prefix associated with PDI's parent, in
2282 compilation unit CU. The result will be allocated on CU's
2283 comp_unit_obstack, or a copy of the already allocated PDI->NAME
2284 field. NULL is returned if no prefix is necessary. */
2285static char *
2286partial_die_parent_scope (struct partial_die_info *pdi,
2287 struct dwarf2_cu *cu)
2288{
2289 char *grandparent_scope;
2290 struct partial_die_info *parent, *real_pdi;
91c24f0a 2291
72bf9492
DJ
2292 /* We need to look at our parent DIE; if we have a DW_AT_specification,
2293 then this means the parent of the specification DIE. */
2294
2295 real_pdi = pdi;
72bf9492 2296 while (real_pdi->has_specification)
10b3939b 2297 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
2298
2299 parent = real_pdi->die_parent;
2300 if (parent == NULL)
2301 return NULL;
2302
2303 if (parent->scope_set)
2304 return parent->scope;
2305
2306 fixup_partial_die (parent, cu);
2307
10b3939b 2308 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 2309
acebe513
UW
2310 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
2311 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
2312 Work around this problem here. */
2313 if (cu->language == language_cplus
2314 && parent->tag == DW_TAG_namespace
2315 && strcmp (parent->name, "::") == 0
2316 && grandparent_scope == NULL)
2317 {
2318 parent->scope = NULL;
2319 parent->scope_set = 1;
2320 return NULL;
2321 }
2322
72bf9492
DJ
2323 if (parent->tag == DW_TAG_namespace
2324 || parent->tag == DW_TAG_structure_type
2325 || parent->tag == DW_TAG_class_type
680b30c7 2326 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
2327 || parent->tag == DW_TAG_union_type
2328 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
2329 {
2330 if (grandparent_scope == NULL)
2331 parent->scope = parent->name;
2332 else
987504bb
JJ
2333 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
2334 parent->name, cu);
72bf9492 2335 }
ceeb3d5a 2336 else if (parent->tag == DW_TAG_enumerator)
72bf9492
DJ
2337 /* Enumerators should not get the name of the enumeration as a prefix. */
2338 parent->scope = grandparent_scope;
2339 else
2340 {
2341 /* FIXME drow/2004-04-01: What should we be doing with
2342 function-local names? For partial symbols, we should probably be
2343 ignoring them. */
2344 complaint (&symfile_complaints,
e2e0b3e5 2345 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
2346 parent->tag, pdi->offset);
2347 parent->scope = grandparent_scope;
c906108c
SS
2348 }
2349
72bf9492
DJ
2350 parent->scope_set = 1;
2351 return parent->scope;
2352}
2353
2354/* Return the fully scoped name associated with PDI, from compilation unit
2355 CU. The result will be allocated with malloc. */
2356static char *
2357partial_die_full_name (struct partial_die_info *pdi,
2358 struct dwarf2_cu *cu)
2359{
2360 char *parent_scope;
2361
2362 parent_scope = partial_die_parent_scope (pdi, cu);
2363 if (parent_scope == NULL)
2364 return NULL;
2365 else
987504bb 2366 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
2367}
2368
2369static void
72bf9492 2370add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 2371{
e7c27a73 2372 struct objfile *objfile = cu->objfile;
c906108c 2373 CORE_ADDR addr = 0;
decbce07 2374 char *actual_name = NULL;
72bf9492 2375 const char *my_prefix;
5c4e30ca 2376 const struct partial_symbol *psym = NULL;
e142c38c 2377 CORE_ADDR baseaddr;
72bf9492 2378 int built_actual_name = 0;
e142c38c
DJ
2379
2380 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2381
94af9270
KS
2382 actual_name = partial_die_full_name (pdi, cu);
2383 if (actual_name)
2384 built_actual_name = 1;
63d06c5c 2385
72bf9492
DJ
2386 if (actual_name == NULL)
2387 actual_name = pdi->name;
2388
c906108c
SS
2389 switch (pdi->tag)
2390 {
2391 case DW_TAG_subprogram:
2cfa0c8d 2392 if (pdi->is_external || cu->language == language_ada)
c906108c 2393 {
2cfa0c8d
JB
2394 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
2395 of the global scope. But in Ada, we want to be able to access
2396 nested procedures globally. So all Ada subprograms are stored
2397 in the global scope. */
38d518c9 2398 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 2399 mst_text, objfile); */
38d518c9 2400 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2401 built_actual_name,
5c4e30ca
DC
2402 VAR_DOMAIN, LOC_BLOCK,
2403 &objfile->global_psymbols,
2404 0, pdi->lowpc + baseaddr,
e142c38c 2405 cu->language, objfile);
c906108c
SS
2406 }
2407 else
2408 {
38d518c9 2409 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 2410 mst_file_text, objfile); */
38d518c9 2411 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2412 built_actual_name,
5c4e30ca
DC
2413 VAR_DOMAIN, LOC_BLOCK,
2414 &objfile->static_psymbols,
2415 0, pdi->lowpc + baseaddr,
e142c38c 2416 cu->language, objfile);
c906108c
SS
2417 }
2418 break;
2419 case DW_TAG_variable:
2420 if (pdi->is_external)
2421 {
2422 /* Global Variable.
2423 Don't enter into the minimal symbol tables as there is
2424 a minimal symbol table entry from the ELF symbols already.
2425 Enter into partial symbol table if it has a location
2426 descriptor or a type.
2427 If the location descriptor is missing, new_symbol will create
2428 a LOC_UNRESOLVED symbol, the address of the variable will then
2429 be determined from the minimal symbol table whenever the variable
2430 is referenced.
2431 The address for the partial symbol table entry is not
2432 used by GDB, but it comes in handy for debugging partial symbol
2433 table building. */
2434
2435 if (pdi->locdesc)
e7c27a73 2436 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 2437 if (pdi->locdesc || pdi->has_type)
38d518c9 2438 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2439 built_actual_name,
5c4e30ca
DC
2440 VAR_DOMAIN, LOC_STATIC,
2441 &objfile->global_psymbols,
2442 0, addr + baseaddr,
e142c38c 2443 cu->language, objfile);
c906108c
SS
2444 }
2445 else
2446 {
2447 /* Static Variable. Skip symbols without location descriptors. */
2448 if (pdi->locdesc == NULL)
decbce07
MS
2449 {
2450 if (built_actual_name)
2451 xfree (actual_name);
2452 return;
2453 }
e7c27a73 2454 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 2455 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 2456 mst_file_data, objfile); */
38d518c9 2457 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2458 built_actual_name,
5c4e30ca
DC
2459 VAR_DOMAIN, LOC_STATIC,
2460 &objfile->static_psymbols,
2461 0, addr + baseaddr,
e142c38c 2462 cu->language, objfile);
c906108c
SS
2463 }
2464 break;
2465 case DW_TAG_typedef:
2466 case DW_TAG_base_type:
a02abb62 2467 case DW_TAG_subrange_type:
38d518c9 2468 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2469 built_actual_name,
176620f1 2470 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 2471 &objfile->static_psymbols,
e142c38c 2472 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2473 break;
72bf9492
DJ
2474 case DW_TAG_namespace:
2475 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2476 built_actual_name,
72bf9492
DJ
2477 VAR_DOMAIN, LOC_TYPEDEF,
2478 &objfile->global_psymbols,
2479 0, (CORE_ADDR) 0, cu->language, objfile);
2480 break;
c906108c 2481 case DW_TAG_class_type:
680b30c7 2482 case DW_TAG_interface_type:
c906108c
SS
2483 case DW_TAG_structure_type:
2484 case DW_TAG_union_type:
2485 case DW_TAG_enumeration_type:
fa4028e9
JB
2486 /* Skip external references. The DWARF standard says in the section
2487 about "Structure, Union, and Class Type Entries": "An incomplete
2488 structure, union or class type is represented by a structure,
2489 union or class entry that does not have a byte size attribute
2490 and that has a DW_AT_declaration attribute." */
2491 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
2492 {
2493 if (built_actual_name)
2494 xfree (actual_name);
2495 return;
2496 }
fa4028e9 2497
63d06c5c
DC
2498 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2499 static vs. global. */
38d518c9 2500 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2501 built_actual_name,
176620f1 2502 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
2503 (cu->language == language_cplus
2504 || cu->language == language_java)
63d06c5c
DC
2505 ? &objfile->global_psymbols
2506 : &objfile->static_psymbols,
e142c38c 2507 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2508
c906108c
SS
2509 break;
2510 case DW_TAG_enumerator:
38d518c9 2511 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2512 built_actual_name,
176620f1 2513 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2514 (cu->language == language_cplus
2515 || cu->language == language_java)
f6fe98ef
DJ
2516 ? &objfile->global_psymbols
2517 : &objfile->static_psymbols,
e142c38c 2518 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2519 break;
2520 default:
2521 break;
2522 }
5c4e30ca 2523
72bf9492
DJ
2524 if (built_actual_name)
2525 xfree (actual_name);
c906108c
SS
2526}
2527
5c4e30ca
DC
2528/* Read a partial die corresponding to a namespace; also, add a symbol
2529 corresponding to that namespace to the symbol table. NAMESPACE is
2530 the name of the enclosing namespace. */
91c24f0a 2531
72bf9492
DJ
2532static void
2533add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2534 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 2535 int need_pc, struct dwarf2_cu *cu)
91c24f0a 2536{
e7c27a73 2537 struct objfile *objfile = cu->objfile;
5c4e30ca 2538
72bf9492 2539 /* Add a symbol for the namespace. */
e7c27a73 2540
72bf9492 2541 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2542
2543 /* Now scan partial symbols in that namespace. */
2544
91c24f0a 2545 if (pdi->has_children)
5734ee8b 2546 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
2547}
2548
5d7cb8df
JK
2549/* Read a partial die corresponding to a Fortran module. */
2550
2551static void
2552add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
2553 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2554{
2555 /* Now scan partial symbols in that module.
2556
2557 FIXME: Support the separate Fortran module namespaces. */
2558
2559 if (pdi->has_children)
2560 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2561}
2562
bc30ff58
JB
2563/* Read a partial die corresponding to a subprogram and create a partial
2564 symbol for that subprogram. When the CU language allows it, this
2565 routine also defines a partial symbol for each nested subprogram
2566 that this subprogram contains.
2567
2568 DIE my also be a lexical block, in which case we simply search
2569 recursively for suprograms defined inside that lexical block.
2570 Again, this is only performed when the CU language allows this
2571 type of definitions. */
2572
2573static void
2574add_partial_subprogram (struct partial_die_info *pdi,
2575 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 2576 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
2577{
2578 if (pdi->tag == DW_TAG_subprogram)
2579 {
2580 if (pdi->has_pc_info)
2581 {
2582 if (pdi->lowpc < *lowpc)
2583 *lowpc = pdi->lowpc;
2584 if (pdi->highpc > *highpc)
2585 *highpc = pdi->highpc;
5734ee8b
DJ
2586 if (need_pc)
2587 {
2588 CORE_ADDR baseaddr;
2589 struct objfile *objfile = cu->objfile;
2590
2591 baseaddr = ANOFFSET (objfile->section_offsets,
2592 SECT_OFF_TEXT (objfile));
2593 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
2594 pdi->lowpc + baseaddr,
2595 pdi->highpc - 1 + baseaddr,
5734ee8b
DJ
2596 cu->per_cu->psymtab);
2597 }
bc30ff58 2598 if (!pdi->is_declaration)
e8d05480
JB
2599 /* Ignore subprogram DIEs that do not have a name, they are
2600 illegal. Do not emit a complaint at this point, we will
2601 do so when we convert this psymtab into a symtab. */
2602 if (pdi->name)
2603 add_partial_symbol (pdi, cu);
bc30ff58
JB
2604 }
2605 }
2606
2607 if (! pdi->has_children)
2608 return;
2609
2610 if (cu->language == language_ada)
2611 {
2612 pdi = pdi->die_child;
2613 while (pdi != NULL)
2614 {
2615 fixup_partial_die (pdi, cu);
2616 if (pdi->tag == DW_TAG_subprogram
2617 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 2618 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
2619 pdi = pdi->die_sibling;
2620 }
2621 }
2622}
2623
72bf9492
DJ
2624/* See if we can figure out if the class lives in a namespace. We do
2625 this by looking for a member function; its demangled name will
2626 contain namespace info, if there is any. */
63d06c5c 2627
72bf9492
DJ
2628static void
2629guess_structure_name (struct partial_die_info *struct_pdi,
2630 struct dwarf2_cu *cu)
63d06c5c 2631{
987504bb
JJ
2632 if ((cu->language == language_cplus
2633 || cu->language == language_java)
72bf9492 2634 && cu->has_namespace_info == 0
63d06c5c
DC
2635 && struct_pdi->has_children)
2636 {
63d06c5c
DC
2637 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2638 what template types look like, because the demangler
2639 frequently doesn't give the same name as the debug info. We
2640 could fix this by only using the demangled name to get the
134d01f1 2641 prefix (but see comment in read_structure_type). */
63d06c5c 2642
72bf9492 2643 struct partial_die_info *real_pdi;
5d51ca54 2644
72bf9492
DJ
2645 /* If this DIE (this DIE's specification, if any) has a parent, then
2646 we should not do this. We'll prepend the parent's fully qualified
2647 name when we create the partial symbol. */
5d51ca54 2648
72bf9492 2649 real_pdi = struct_pdi;
72bf9492 2650 while (real_pdi->has_specification)
10b3939b 2651 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2652
72bf9492
DJ
2653 if (real_pdi->die_parent != NULL)
2654 return;
63d06c5c 2655 }
63d06c5c
DC
2656}
2657
91c24f0a
DC
2658/* Read a partial die corresponding to an enumeration type. */
2659
72bf9492
DJ
2660static void
2661add_partial_enumeration (struct partial_die_info *enum_pdi,
2662 struct dwarf2_cu *cu)
91c24f0a 2663{
e7c27a73 2664 struct objfile *objfile = cu->objfile;
91c24f0a 2665 bfd *abfd = objfile->obfd;
72bf9492 2666 struct partial_die_info *pdi;
91c24f0a
DC
2667
2668 if (enum_pdi->name != NULL)
72bf9492
DJ
2669 add_partial_symbol (enum_pdi, cu);
2670
2671 pdi = enum_pdi->die_child;
2672 while (pdi)
91c24f0a 2673 {
72bf9492 2674 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2675 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2676 else
72bf9492
DJ
2677 add_partial_symbol (pdi, cu);
2678 pdi = pdi->die_sibling;
91c24f0a 2679 }
91c24f0a
DC
2680}
2681
4bb7a0a7
DJ
2682/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2683 Return the corresponding abbrev, or NULL if the number is zero (indicating
2684 an empty DIE). In either case *BYTES_READ will be set to the length of
2685 the initial number. */
2686
2687static struct abbrev_info *
fe1b8b76 2688peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2689 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2690{
2691 bfd *abfd = cu->objfile->obfd;
2692 unsigned int abbrev_number;
2693 struct abbrev_info *abbrev;
2694
2695 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2696
2697 if (abbrev_number == 0)
2698 return NULL;
2699
2700 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2701 if (!abbrev)
2702 {
8a3fe4f8 2703 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2704 bfd_get_filename (abfd));
2705 }
2706
2707 return abbrev;
2708}
2709
93311388
DE
2710/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2711 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
2712 DIE. Any children of the skipped DIEs will also be skipped. */
2713
fe1b8b76 2714static gdb_byte *
93311388 2715skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2716{
2717 struct abbrev_info *abbrev;
2718 unsigned int bytes_read;
2719
2720 while (1)
2721 {
2722 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2723 if (abbrev == NULL)
2724 return info_ptr + bytes_read;
2725 else
93311388 2726 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
2727 }
2728}
2729
93311388
DE
2730/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2731 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
2732 abbrev corresponding to that skipped uleb128 should be passed in
2733 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2734 children. */
2735
fe1b8b76 2736static gdb_byte *
93311388
DE
2737skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
2738 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2739{
2740 unsigned int bytes_read;
2741 struct attribute attr;
2742 bfd *abfd = cu->objfile->obfd;
2743 unsigned int form, i;
2744
2745 for (i = 0; i < abbrev->num_attrs; i++)
2746 {
2747 /* The only abbrev we care about is DW_AT_sibling. */
2748 if (abbrev->attrs[i].name == DW_AT_sibling)
2749 {
2750 read_attribute (&attr, &abbrev->attrs[i],
2751 abfd, info_ptr, cu);
2752 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2753 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2754 else
93311388 2755 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
2756 }
2757
2758 /* If it isn't DW_AT_sibling, skip this attribute. */
2759 form = abbrev->attrs[i].form;
2760 skip_attribute:
2761 switch (form)
2762 {
4bb7a0a7 2763 case DW_FORM_ref_addr:
ae411497
TT
2764 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
2765 and later it is offset sized. */
2766 if (cu->header.version == 2)
2767 info_ptr += cu->header.addr_size;
2768 else
2769 info_ptr += cu->header.offset_size;
2770 break;
2771 case DW_FORM_addr:
4bb7a0a7
DJ
2772 info_ptr += cu->header.addr_size;
2773 break;
2774 case DW_FORM_data1:
2775 case DW_FORM_ref1:
2776 case DW_FORM_flag:
2777 info_ptr += 1;
2778 break;
2779 case DW_FORM_data2:
2780 case DW_FORM_ref2:
2781 info_ptr += 2;
2782 break;
2783 case DW_FORM_data4:
2784 case DW_FORM_ref4:
2785 info_ptr += 4;
2786 break;
2787 case DW_FORM_data8:
2788 case DW_FORM_ref8:
348e048f 2789 case DW_FORM_sig8:
4bb7a0a7
DJ
2790 info_ptr += 8;
2791 break;
2792 case DW_FORM_string:
2793 read_string (abfd, info_ptr, &bytes_read);
2794 info_ptr += bytes_read;
2795 break;
2796 case DW_FORM_strp:
2797 info_ptr += cu->header.offset_size;
2798 break;
2799 case DW_FORM_block:
2800 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2801 info_ptr += bytes_read;
2802 break;
2803 case DW_FORM_block1:
2804 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2805 break;
2806 case DW_FORM_block2:
2807 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2808 break;
2809 case DW_FORM_block4:
2810 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2811 break;
2812 case DW_FORM_sdata:
2813 case DW_FORM_udata:
2814 case DW_FORM_ref_udata:
2815 info_ptr = skip_leb128 (abfd, info_ptr);
2816 break;
2817 case DW_FORM_indirect:
2818 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2819 info_ptr += bytes_read;
2820 /* We need to continue parsing from here, so just go back to
2821 the top. */
2822 goto skip_attribute;
2823
2824 default:
8a3fe4f8 2825 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2826 dwarf_form_name (form),
2827 bfd_get_filename (abfd));
2828 }
2829 }
2830
2831 if (abbrev->has_children)
93311388 2832 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
2833 else
2834 return info_ptr;
2835}
2836
93311388
DE
2837/* Locate ORIG_PDI's sibling.
2838 INFO_PTR should point to the start of the next DIE after ORIG_PDI
2839 in BUFFER. */
91c24f0a 2840
fe1b8b76 2841static gdb_byte *
93311388
DE
2842locate_pdi_sibling (struct partial_die_info *orig_pdi,
2843 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 2844 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2845{
2846 /* Do we know the sibling already? */
72bf9492 2847
91c24f0a
DC
2848 if (orig_pdi->sibling)
2849 return orig_pdi->sibling;
2850
2851 /* Are there any children to deal with? */
2852
2853 if (!orig_pdi->has_children)
2854 return info_ptr;
2855
4bb7a0a7 2856 /* Skip the children the long way. */
91c24f0a 2857
93311388 2858 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
2859}
2860
c906108c
SS
2861/* Expand this partial symbol table into a full symbol table. */
2862
2863static void
fba45db2 2864dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2865{
2866 /* FIXME: This is barely more than a stub. */
2867 if (pst != NULL)
2868 {
2869 if (pst->readin)
2870 {
8a3fe4f8 2871 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2872 }
2873 else
2874 {
2875 if (info_verbose)
2876 {
a3f17187 2877 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2878 gdb_flush (gdb_stdout);
2879 }
2880
10b3939b
DJ
2881 /* Restore our global data. */
2882 dwarf2_per_objfile = objfile_data (pst->objfile,
2883 dwarf2_objfile_data_key);
2884
b2ab525c
KB
2885 /* If this psymtab is constructed from a debug-only objfile, the
2886 has_section_at_zero flag will not necessarily be correct. We
2887 can get the correct value for this flag by looking at the data
2888 associated with the (presumably stripped) associated objfile. */
2889 if (pst->objfile->separate_debug_objfile_backlink)
2890 {
2891 struct dwarf2_per_objfile *dpo_backlink
2892 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
2893 dwarf2_objfile_data_key);
2894 dwarf2_per_objfile->has_section_at_zero
2895 = dpo_backlink->has_section_at_zero;
2896 }
2897
c906108c
SS
2898 psymtab_to_symtab_1 (pst);
2899
2900 /* Finish up the debug error message. */
2901 if (info_verbose)
a3f17187 2902 printf_filtered (_("done.\n"));
c906108c
SS
2903 }
2904 }
2905}
2906
10b3939b
DJ
2907/* Add PER_CU to the queue. */
2908
2909static void
03dd20cc 2910queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
2911{
2912 struct dwarf2_queue_item *item;
2913
2914 per_cu->queued = 1;
2915 item = xmalloc (sizeof (*item));
2916 item->per_cu = per_cu;
2917 item->next = NULL;
2918
2919 if (dwarf2_queue == NULL)
2920 dwarf2_queue = item;
2921 else
2922 dwarf2_queue_tail->next = item;
2923
2924 dwarf2_queue_tail = item;
2925}
2926
2927/* Process the queue. */
2928
2929static void
2930process_queue (struct objfile *objfile)
2931{
2932 struct dwarf2_queue_item *item, *next_item;
2933
03dd20cc
DJ
2934 /* The queue starts out with one item, but following a DIE reference
2935 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
2936 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2937 {
31ffec48 2938 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
2939 process_full_comp_unit (item->per_cu);
2940
2941 item->per_cu->queued = 0;
2942 next_item = item->next;
2943 xfree (item);
2944 }
2945
2946 dwarf2_queue_tail = NULL;
2947}
2948
2949/* Free all allocated queue entries. This function only releases anything if
2950 an error was thrown; if the queue was processed then it would have been
2951 freed as we went along. */
2952
2953static void
2954dwarf2_release_queue (void *dummy)
2955{
2956 struct dwarf2_queue_item *item, *last;
2957
2958 item = dwarf2_queue;
2959 while (item)
2960 {
2961 /* Anything still marked queued is likely to be in an
2962 inconsistent state, so discard it. */
2963 if (item->per_cu->queued)
2964 {
2965 if (item->per_cu->cu != NULL)
2966 free_one_cached_comp_unit (item->per_cu->cu);
2967 item->per_cu->queued = 0;
2968 }
2969
2970 last = item;
2971 item = item->next;
2972 xfree (last);
2973 }
2974
2975 dwarf2_queue = dwarf2_queue_tail = NULL;
2976}
2977
2978/* Read in full symbols for PST, and anything it depends on. */
2979
c906108c 2980static void
fba45db2 2981psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2982{
10b3939b 2983 struct dwarf2_per_cu_data *per_cu;
c906108c 2984 struct cleanup *back_to;
aaa75496
JB
2985 int i;
2986
2987 for (i = 0; i < pst->number_of_dependencies; i++)
2988 if (!pst->dependencies[i]->readin)
2989 {
2990 /* Inform about additional files that need to be read in. */
2991 if (info_verbose)
2992 {
a3f17187 2993 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2994 fputs_filtered (" ", gdb_stdout);
2995 wrap_here ("");
2996 fputs_filtered ("and ", gdb_stdout);
2997 wrap_here ("");
2998 printf_filtered ("%s...", pst->dependencies[i]->filename);
2999 wrap_here (""); /* Flush output */
3000 gdb_flush (gdb_stdout);
3001 }
3002 psymtab_to_symtab_1 (pst->dependencies[i]);
3003 }
3004
e38df1d0 3005 per_cu = pst->read_symtab_private;
10b3939b
DJ
3006
3007 if (per_cu == NULL)
aaa75496
JB
3008 {
3009 /* It's an include file, no symbols to read for it.
3010 Everything is in the parent symtab. */
3011 pst->readin = 1;
3012 return;
3013 }
c906108c 3014
10b3939b
DJ
3015 back_to = make_cleanup (dwarf2_release_queue, NULL);
3016
03dd20cc 3017 queue_comp_unit (per_cu, pst->objfile);
10b3939b 3018
348e048f
DE
3019 if (per_cu->from_debug_types)
3020 read_signatured_type_at_offset (pst->objfile, per_cu->offset);
3021 else
3022 load_full_comp_unit (per_cu, pst->objfile);
3023
10b3939b
DJ
3024 process_queue (pst->objfile);
3025
3026 /* Age the cache, releasing compilation units that have not
3027 been used recently. */
3028 age_cached_comp_units ();
3029
3030 do_cleanups (back_to);
3031}
3032
93311388 3033/* Load the DIEs associated with PER_CU into memory. */
10b3939b 3034
93311388 3035static void
31ffec48 3036load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 3037{
31ffec48 3038 bfd *abfd = objfile->obfd;
10b3939b 3039 struct dwarf2_cu *cu;
c764a876 3040 unsigned int offset;
93311388 3041 gdb_byte *info_ptr, *beg_of_comp_unit;
10b3939b
DJ
3042 struct cleanup *back_to, *free_cu_cleanup;
3043 struct attribute *attr;
3044 CORE_ADDR baseaddr;
6502dd73 3045
348e048f
DE
3046 gdb_assert (! per_cu->from_debug_types);
3047
c906108c 3048 /* Set local variables from the partial symbol table info. */
10b3939b 3049 offset = per_cu->offset;
6502dd73 3050
be391dca 3051 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 3052 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 3053 beg_of_comp_unit = info_ptr;
63d06c5c 3054
93311388 3055 cu = alloc_one_comp_unit (objfile);
c906108c 3056
10b3939b
DJ
3057 /* If an error occurs while loading, release our storage. */
3058 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 3059
93311388 3060 /* Read in the comp_unit header. */
10b3939b 3061 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 3062
93311388
DE
3063 /* Complete the cu_header. */
3064 cu->header.offset = offset;
3065 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3066
3067 /* Read the abbrevs for this compilation unit. */
10b3939b
DJ
3068 dwarf2_read_abbrevs (abfd, cu);
3069 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
3070
93311388 3071 /* Link this compilation unit into the compilation unit tree. */
10b3939b 3072 per_cu->cu = cu;
93311388 3073 cu->per_cu = per_cu;
f792889a 3074 cu->type_hash = per_cu->type_hash;
e142c38c 3075
93311388 3076 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
3077
3078 /* We try not to read any attributes in this function, because not
3079 all objfiles needed for references have been loaded yet, and symbol
3080 table processing isn't initialized. But we have to set the CU language,
3081 or we won't be able to build types correctly. */
3082 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
3083 if (attr)
3084 set_cu_language (DW_UNSND (attr), cu);
3085 else
3086 set_cu_language (language_minimal, cu);
3087
a6c727b2
DJ
3088 /* Similarly, if we do not read the producer, we can not apply
3089 producer-specific interpretation. */
3090 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
3091 if (attr)
3092 cu->producer = DW_STRING (attr);
3093
348e048f
DE
3094 /* Link this CU into read_in_chain. */
3095 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3096 dwarf2_per_objfile->read_in_chain = per_cu;
3097
10b3939b 3098 do_cleanups (back_to);
e142c38c 3099
10b3939b
DJ
3100 /* We've successfully allocated this compilation unit. Let our caller
3101 clean it up when finished with it. */
3102 discard_cleanups (free_cu_cleanup);
10b3939b
DJ
3103}
3104
3105/* Generate full symbol information for PST and CU, whose DIEs have
3106 already been loaded into memory. */
3107
3108static void
3109process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
3110{
3111 struct partial_symtab *pst = per_cu->psymtab;
3112 struct dwarf2_cu *cu = per_cu->cu;
3113 struct objfile *objfile = pst->objfile;
3114 bfd *abfd = objfile->obfd;
3115 CORE_ADDR lowpc, highpc;
3116 struct symtab *symtab;
3117 struct cleanup *back_to;
10b3939b
DJ
3118 CORE_ADDR baseaddr;
3119
3120 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3121
10b3939b
DJ
3122 buildsym_init ();
3123 back_to = make_cleanup (really_free_pendings, NULL);
3124
3125 cu->list_in_scope = &file_symbols;
c906108c 3126
d85a05f0 3127 dwarf2_find_base_address (cu->dies, cu);
0d53c4c4 3128
c906108c 3129 /* Do line number decoding in read_file_scope () */
10b3939b 3130 process_die (cu->dies, cu);
c906108c 3131
fae299cd
DC
3132 /* Some compilers don't define a DW_AT_high_pc attribute for the
3133 compilation unit. If the DW_AT_high_pc is missing, synthesize
3134 it, by scanning the DIE's below the compilation unit. */
10b3939b 3135 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 3136
613e1657 3137 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
3138
3139 /* Set symtab language to language from DW_AT_language.
3140 If the compilation is from a C file generated by language preprocessors,
3141 do not set the language if it was already deduced by start_subfile. */
3142 if (symtab != NULL
10b3939b 3143 && !(cu->language == language_c && symtab->language != language_c))
c906108c 3144 {
10b3939b 3145 symtab->language = cu->language;
c906108c
SS
3146 }
3147 pst->symtab = symtab;
3148 pst->readin = 1;
c906108c
SS
3149
3150 do_cleanups (back_to);
3151}
3152
3153/* Process a die and its children. */
3154
3155static void
e7c27a73 3156process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
3157{
3158 switch (die->tag)
3159 {
3160 case DW_TAG_padding:
3161 break;
3162 case DW_TAG_compile_unit:
e7c27a73 3163 read_file_scope (die, cu);
c906108c 3164 break;
348e048f
DE
3165 case DW_TAG_type_unit:
3166 read_type_unit_scope (die, cu);
3167 break;
c906108c 3168 case DW_TAG_subprogram:
c906108c 3169 case DW_TAG_inlined_subroutine:
edb3359d 3170 read_func_scope (die, cu);
c906108c
SS
3171 break;
3172 case DW_TAG_lexical_block:
14898363
L
3173 case DW_TAG_try_block:
3174 case DW_TAG_catch_block:
e7c27a73 3175 read_lexical_block_scope (die, cu);
c906108c
SS
3176 break;
3177 case DW_TAG_class_type:
680b30c7 3178 case DW_TAG_interface_type:
c906108c
SS
3179 case DW_TAG_structure_type:
3180 case DW_TAG_union_type:
134d01f1 3181 process_structure_scope (die, cu);
c906108c
SS
3182 break;
3183 case DW_TAG_enumeration_type:
134d01f1 3184 process_enumeration_scope (die, cu);
c906108c 3185 break;
134d01f1 3186
f792889a
DJ
3187 /* These dies have a type, but processing them does not create
3188 a symbol or recurse to process the children. Therefore we can
3189 read them on-demand through read_type_die. */
c906108c 3190 case DW_TAG_subroutine_type:
72019c9c 3191 case DW_TAG_set_type:
c906108c 3192 case DW_TAG_array_type:
c906108c 3193 case DW_TAG_pointer_type:
c906108c 3194 case DW_TAG_ptr_to_member_type:
c906108c 3195 case DW_TAG_reference_type:
c906108c 3196 case DW_TAG_string_type:
c906108c 3197 break;
134d01f1 3198
c906108c 3199 case DW_TAG_base_type:
a02abb62 3200 case DW_TAG_subrange_type:
cb249c71 3201 case DW_TAG_typedef:
134d01f1
DJ
3202 /* Add a typedef symbol for the type definition, if it has a
3203 DW_AT_name. */
f792889a 3204 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 3205 break;
c906108c 3206 case DW_TAG_common_block:
e7c27a73 3207 read_common_block (die, cu);
c906108c
SS
3208 break;
3209 case DW_TAG_common_inclusion:
3210 break;
d9fa45fe 3211 case DW_TAG_namespace:
63d06c5c 3212 processing_has_namespace_info = 1;
e7c27a73 3213 read_namespace (die, cu);
d9fa45fe 3214 break;
5d7cb8df
JK
3215 case DW_TAG_module:
3216 read_module (die, cu);
3217 break;
d9fa45fe
DC
3218 case DW_TAG_imported_declaration:
3219 case DW_TAG_imported_module:
63d06c5c 3220 processing_has_namespace_info = 1;
27aa8d6a
SW
3221 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
3222 || cu->language != language_fortran))
3223 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
3224 dwarf_tag_name (die->tag));
3225 read_import_statement (die, cu);
d9fa45fe 3226 break;
c906108c 3227 default:
e7c27a73 3228 new_symbol (die, NULL, cu);
c906108c
SS
3229 break;
3230 }
3231}
3232
94af9270
KS
3233/* A helper function for dwarf2_compute_name which determines whether DIE
3234 needs to have the name of the scope prepended to the name listed in the
3235 die. */
3236
3237static int
3238die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
3239{
1c809c68
TT
3240 struct attribute *attr;
3241
94af9270
KS
3242 switch (die->tag)
3243 {
3244 case DW_TAG_namespace:
3245 case DW_TAG_typedef:
3246 case DW_TAG_class_type:
3247 case DW_TAG_interface_type:
3248 case DW_TAG_structure_type:
3249 case DW_TAG_union_type:
3250 case DW_TAG_enumeration_type:
3251 case DW_TAG_enumerator:
3252 case DW_TAG_subprogram:
3253 case DW_TAG_member:
3254 return 1;
3255
3256 case DW_TAG_variable:
3257 /* We only need to prefix "globally" visible variables. These include
3258 any variable marked with DW_AT_external or any variable that
3259 lives in a namespace. [Variables in anonymous namespaces
3260 require prefixing, but they are not DW_AT_external.] */
3261
3262 if (dwarf2_attr (die, DW_AT_specification, cu))
3263 {
3264 struct dwarf2_cu *spec_cu = cu;
3265 return die_needs_namespace (die_specification (die, &spec_cu),
3266 spec_cu);
3267 }
3268
1c809c68
TT
3269 attr = dwarf2_attr (die, DW_AT_external, cu);
3270 if (attr == NULL && die->parent->tag != DW_TAG_namespace)
3271 return 0;
3272 /* A variable in a lexical block of some kind does not need a
3273 namespace, even though in C++ such variables may be external
3274 and have a mangled name. */
3275 if (die->parent->tag == DW_TAG_lexical_block
3276 || die->parent->tag == DW_TAG_try_block
1054b214
TT
3277 || die->parent->tag == DW_TAG_catch_block
3278 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
3279 return 0;
3280 return 1;
94af9270
KS
3281
3282 default:
3283 return 0;
3284 }
3285}
3286
3287/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
3288 compute the physname for the object, which include a method's
3289 formal parameters (C++/Java) and return type (Java).
3290
af6b7be1
JB
3291 For Ada, return the DIE's linkage name rather than the fully qualified
3292 name. PHYSNAME is ignored..
3293
94af9270
KS
3294 The result is allocated on the objfile_obstack and canonicalized. */
3295
3296static const char *
3297dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
3298 int physname)
3299{
3300 if (name == NULL)
3301 name = dwarf2_name (die, cu);
3302
3303 /* These are the only languages we know how to qualify names in. */
3304 if (name != NULL
3305 && (cu->language == language_cplus || cu->language == language_java))
3306 {
3307 if (die_needs_namespace (die, cu))
3308 {
3309 long length;
3310 char *prefix;
3311 struct ui_file *buf;
3312
3313 prefix = determine_prefix (die, cu);
3314 buf = mem_fileopen ();
3315 if (*prefix != '\0')
3316 {
3317 char *prefixed_name = typename_concat (NULL, prefix, name, cu);
3318 fputs_unfiltered (prefixed_name, buf);
3319 xfree (prefixed_name);
3320 }
3321 else
3322 fputs_unfiltered (name ? name : "", buf);
3323
3324 /* For Java and C++ methods, append formal parameter type
3325 information, if PHYSNAME. */
3326
3327 if (physname && die->tag == DW_TAG_subprogram
3328 && (cu->language == language_cplus
3329 || cu->language == language_java))
3330 {
3331 struct type *type = read_type_die (die, cu);
3332
3333 c_type_print_args (type, buf, 0, cu->language);
3334
3335 if (cu->language == language_java)
3336 {
3337 /* For java, we must append the return type to method
3338 names. */
3339 if (die->tag == DW_TAG_subprogram)
3340 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
3341 0, 0);
3342 }
3343 else if (cu->language == language_cplus)
3344 {
3345 if (TYPE_NFIELDS (type) > 0
3346 && TYPE_FIELD_ARTIFICIAL (type, 0)
3347 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
3348 fputs_unfiltered (" const", buf);
3349 }
3350 }
3351
3352 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
3353 &length);
3354 ui_file_delete (buf);
3355
3356 if (cu->language == language_cplus)
3357 {
3358 char *cname
3359 = dwarf2_canonicalize_name (name, cu,
3360 &cu->objfile->objfile_obstack);
3361 if (cname != NULL)
3362 name = cname;
3363 }
3364 }
3365 }
af6b7be1
JB
3366 else if (cu->language == language_ada)
3367 {
3368 /* For Ada unit, we prefer the linkage name over the name, as
3369 the former contains the exported name, which the user expects
3370 to be able to reference. Ideally, we want the user to be able
3371 to reference this entity using either natural or linkage name,
3372 but we haven't started looking at this enhancement yet. */
3373 struct attribute *attr;
3374
3375 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
3376 if (attr && DW_STRING (attr))
3377 name = DW_STRING (attr);
3378 }
94af9270
KS
3379
3380 return name;
3381}
3382
0114d602
DJ
3383/* Return the fully qualified name of DIE, based on its DW_AT_name.
3384 If scope qualifiers are appropriate they will be added. The result
3385 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
3386 not have a name. NAME may either be from a previous call to
3387 dwarf2_name or NULL.
3388
3389 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
3390
3391static const char *
94af9270 3392dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 3393{
94af9270
KS
3394 return dwarf2_compute_name (name, die, cu, 0);
3395}
0114d602 3396
94af9270
KS
3397/* Construct a physname for the given DIE in CU. NAME may either be
3398 from a previous call to dwarf2_name or NULL. The result will be
3399 allocated on the objfile_objstack or NULL if the DIE does not have a
3400 name.
0114d602 3401
94af9270 3402 The output string will be canonicalized (if C++/Java). */
0114d602 3403
94af9270
KS
3404static const char *
3405dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
3406{
3407 return dwarf2_compute_name (name, die, cu, 1);
0114d602
DJ
3408}
3409
27aa8d6a
SW
3410/* Read the import statement specified by the given die and record it. */
3411
3412static void
3413read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
3414{
3415 struct attribute *import_attr;
3416 struct die_info *imported_die;
de4affc9 3417 struct dwarf2_cu *imported_cu;
27aa8d6a 3418 const char *imported_name;
794684b6 3419 const char *imported_name_prefix;
13387711
SW
3420 const char *canonical_name;
3421 const char *import_alias;
3422 const char *imported_declaration = NULL;
794684b6 3423 const char *import_prefix;
13387711
SW
3424
3425 char *temp;
27aa8d6a
SW
3426
3427 import_attr = dwarf2_attr (die, DW_AT_import, cu);
3428 if (import_attr == NULL)
3429 {
3430 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
3431 dwarf_tag_name (die->tag));
3432 return;
3433 }
3434
de4affc9
CC
3435 imported_cu = cu;
3436 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
3437 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
3438 if (imported_name == NULL)
3439 {
3440 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
3441
3442 The import in the following code:
3443 namespace A
3444 {
3445 typedef int B;
3446 }
3447
3448 int main ()
3449 {
3450 using A::B;
3451 B b;
3452 return b;
3453 }
3454
3455 ...
3456 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
3457 <52> DW_AT_decl_file : 1
3458 <53> DW_AT_decl_line : 6
3459 <54> DW_AT_import : <0x75>
3460 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
3461 <59> DW_AT_name : B
3462 <5b> DW_AT_decl_file : 1
3463 <5c> DW_AT_decl_line : 2
3464 <5d> DW_AT_type : <0x6e>
3465 ...
3466 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
3467 <76> DW_AT_byte_size : 4
3468 <77> DW_AT_encoding : 5 (signed)
3469
3470 imports the wrong die ( 0x75 instead of 0x58 ).
3471 This case will be ignored until the gcc bug is fixed. */
3472 return;
3473 }
3474
82856980
SW
3475 /* Figure out the local name after import. */
3476 import_alias = dwarf2_name (die, cu);
27aa8d6a 3477
794684b6
SW
3478 /* Figure out where the statement is being imported to. */
3479 import_prefix = determine_prefix (die, cu);
3480
3481 /* Figure out what the scope of the imported die is and prepend it
3482 to the name of the imported die. */
de4affc9 3483 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 3484
13387711 3485 if (imported_die->tag != DW_TAG_namespace)
794684b6 3486 {
13387711
SW
3487 imported_declaration = imported_name;
3488 canonical_name = imported_name_prefix;
794684b6 3489 }
13387711 3490 else if (strlen (imported_name_prefix) > 0)
794684b6 3491 {
13387711
SW
3492 temp = alloca (strlen (imported_name_prefix)
3493 + 2 + strlen (imported_name) + 1);
3494 strcpy (temp, imported_name_prefix);
3495 strcat (temp, "::");
3496 strcat (temp, imported_name);
3497 canonical_name = temp;
794684b6 3498 }
13387711
SW
3499 else
3500 canonical_name = imported_name;
794684b6 3501
c0cc3a76
SW
3502 cp_add_using_directive (import_prefix,
3503 canonical_name,
3504 import_alias,
13387711 3505 imported_declaration,
c0cc3a76 3506 &cu->objfile->objfile_obstack);
27aa8d6a
SW
3507}
3508
5fb290d7 3509static void
e142c38c 3510initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 3511{
e142c38c 3512 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
3513}
3514
cb1df416
DJ
3515static void
3516free_cu_line_header (void *arg)
3517{
3518 struct dwarf2_cu *cu = arg;
3519
3520 free_line_header (cu->line_header);
3521 cu->line_header = NULL;
3522}
3523
c906108c 3524static void
e7c27a73 3525read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3526{
e7c27a73
DJ
3527 struct objfile *objfile = cu->objfile;
3528 struct comp_unit_head *cu_header = &cu->header;
debd256d 3529 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 3530 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
3531 CORE_ADDR highpc = ((CORE_ADDR) 0);
3532 struct attribute *attr;
e1024ff1 3533 char *name = NULL;
c906108c
SS
3534 char *comp_dir = NULL;
3535 struct die_info *child_die;
3536 bfd *abfd = objfile->obfd;
debd256d 3537 struct line_header *line_header = 0;
e142c38c
DJ
3538 CORE_ADDR baseaddr;
3539
3540 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3541
fae299cd 3542 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
3543
3544 /* If we didn't find a lowpc, set it to highpc to avoid complaints
3545 from finish_block. */
2acceee2 3546 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
3547 lowpc = highpc;
3548 lowpc += baseaddr;
3549 highpc += baseaddr;
3550
39cbfefa
DJ
3551 /* Find the filename. Do not use dwarf2_name here, since the filename
3552 is not a source language identifier. */
e142c38c 3553 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3554 if (attr)
3555 {
3556 name = DW_STRING (attr);
3557 }
e1024ff1 3558
e142c38c 3559 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c 3560 if (attr)
e1024ff1
DJ
3561 comp_dir = DW_STRING (attr);
3562 else if (name != NULL && IS_ABSOLUTE_PATH (name))
c906108c 3563 {
e1024ff1
DJ
3564 comp_dir = ldirname (name);
3565 if (comp_dir != NULL)
3566 make_cleanup (xfree, comp_dir);
3567 }
3568 if (comp_dir != NULL)
3569 {
3570 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3571 directory, get rid of it. */
3572 char *cp = strchr (comp_dir, ':');
c906108c 3573
e1024ff1
DJ
3574 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3575 comp_dir = cp + 1;
c906108c
SS
3576 }
3577
e1024ff1
DJ
3578 if (name == NULL)
3579 name = "<unknown>";
3580
e142c38c 3581 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
3582 if (attr)
3583 {
e142c38c 3584 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
3585 }
3586
b0f35d58
DL
3587 attr = dwarf2_attr (die, DW_AT_producer, cu);
3588 if (attr)
3589 cu->producer = DW_STRING (attr);
303b6f5d 3590
c906108c
SS
3591 /* We assume that we're processing GCC output. */
3592 processing_gcc_compilation = 2;
c906108c 3593
df8a16a1
DJ
3594 processing_has_namespace_info = 0;
3595
c906108c
SS
3596 start_symtab (name, comp_dir, lowpc);
3597 record_debugformat ("DWARF 2");
303b6f5d 3598 record_producer (cu->producer);
c906108c 3599
e142c38c 3600 initialize_cu_func_list (cu);
c906108c 3601
cb1df416
DJ
3602 /* Decode line number information if present. We do this before
3603 processing child DIEs, so that the line header table is available
3604 for DW_AT_decl_file. */
e142c38c 3605 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
3606 if (attr)
3607 {
debd256d 3608 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 3609 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
3610 if (line_header)
3611 {
cb1df416
DJ
3612 cu->line_header = line_header;
3613 make_cleanup (free_cu_line_header, cu);
aaa75496 3614 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 3615 }
5fb290d7 3616 }
debd256d 3617
cb1df416
DJ
3618 /* Process all dies in compilation unit. */
3619 if (die->child != NULL)
3620 {
3621 child_die = die->child;
3622 while (child_die && child_die->tag)
3623 {
3624 process_die (child_die, cu);
3625 child_die = sibling_die (child_die);
3626 }
3627 }
3628
2e276125
JB
3629 /* Decode macro information, if present. Dwarf 2 macro information
3630 refers to information in the line number info statement program
3631 header, so we can only read it if we've read the header
3632 successfully. */
e142c38c 3633 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 3634 if (attr && line_header)
2e276125
JB
3635 {
3636 unsigned int macro_offset = DW_UNSND (attr);
3637 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 3638 comp_dir, abfd, cu);
2e276125 3639 }
debd256d 3640 do_cleanups (back_to);
5fb290d7
DJ
3641}
3642
348e048f
DE
3643/* For TUs we want to skip the first top level sibling if it's not the
3644 actual type being defined by this TU. In this case the first top
3645 level sibling is there to provide context only. */
3646
3647static void
3648read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
3649{
3650 struct objfile *objfile = cu->objfile;
3651 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3652 CORE_ADDR lowpc;
3653 struct attribute *attr;
3654 char *name = NULL;
3655 char *comp_dir = NULL;
3656 struct die_info *child_die;
3657 bfd *abfd = objfile->obfd;
3658 struct line_header *line_header = 0;
3659
3660 /* start_symtab needs a low pc, but we don't really have one.
3661 Do what read_file_scope would do in the absence of such info. */
3662 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3663
3664 /* Find the filename. Do not use dwarf2_name here, since the filename
3665 is not a source language identifier. */
3666 attr = dwarf2_attr (die, DW_AT_name, cu);
3667 if (attr)
3668 name = DW_STRING (attr);
3669
3670 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3671 if (attr)
3672 comp_dir = DW_STRING (attr);
3673 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3674 {
3675 comp_dir = ldirname (name);
3676 if (comp_dir != NULL)
3677 make_cleanup (xfree, comp_dir);
3678 }
3679
3680 if (name == NULL)
3681 name = "<unknown>";
3682
3683 attr = dwarf2_attr (die, DW_AT_language, cu);
3684 if (attr)
3685 set_cu_language (DW_UNSND (attr), cu);
3686
3687 /* This isn't technically needed today. It is done for symmetry
3688 with read_file_scope. */
3689 attr = dwarf2_attr (die, DW_AT_producer, cu);
3690 if (attr)
3691 cu->producer = DW_STRING (attr);
3692
3693 /* We assume that we're processing GCC output. */
3694 processing_gcc_compilation = 2;
3695
3696 processing_has_namespace_info = 0;
3697
3698 start_symtab (name, comp_dir, lowpc);
3699 record_debugformat ("DWARF 2");
3700 record_producer (cu->producer);
3701
3702 /* Process the dies in the type unit. */
3703 if (die->child == NULL)
3704 {
3705 dump_die_for_error (die);
3706 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
3707 bfd_get_filename (abfd));
3708 }
3709
3710 child_die = die->child;
3711
3712 while (child_die && child_die->tag)
3713 {
3714 process_die (child_die, cu);
3715
3716 child_die = sibling_die (child_die);
3717 }
3718
3719 do_cleanups (back_to);
3720}
3721
5fb290d7 3722static void
e142c38c
DJ
3723add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
3724 struct dwarf2_cu *cu)
5fb290d7
DJ
3725{
3726 struct function_range *thisfn;
3727
3728 thisfn = (struct function_range *)
7b5a2f43 3729 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
3730 thisfn->name = name;
3731 thisfn->lowpc = lowpc;
3732 thisfn->highpc = highpc;
3733 thisfn->seen_line = 0;
3734 thisfn->next = NULL;
3735
e142c38c
DJ
3736 if (cu->last_fn == NULL)
3737 cu->first_fn = thisfn;
5fb290d7 3738 else
e142c38c 3739 cu->last_fn->next = thisfn;
5fb290d7 3740
e142c38c 3741 cu->last_fn = thisfn;
c906108c
SS
3742}
3743
d389af10
JK
3744/* qsort helper for inherit_abstract_dies. */
3745
3746static int
3747unsigned_int_compar (const void *ap, const void *bp)
3748{
3749 unsigned int a = *(unsigned int *) ap;
3750 unsigned int b = *(unsigned int *) bp;
3751
3752 return (a > b) - (b > a);
3753}
3754
3755/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3756 Inherit only the children of the DW_AT_abstract_origin DIE not being already
3757 referenced by DW_AT_abstract_origin from the children of the current DIE. */
3758
3759static void
3760inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
3761{
3762 struct die_info *child_die;
3763 unsigned die_children_count;
3764 /* CU offsets which were referenced by children of the current DIE. */
3765 unsigned *offsets;
3766 unsigned *offsets_end, *offsetp;
3767 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
3768 struct die_info *origin_die;
3769 /* Iterator of the ORIGIN_DIE children. */
3770 struct die_info *origin_child_die;
3771 struct cleanup *cleanups;
3772 struct attribute *attr;
3773
3774 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
3775 if (!attr)
3776 return;
3777
3778 origin_die = follow_die_ref (die, attr, &cu);
edb3359d
DJ
3779 if (die->tag != origin_die->tag
3780 && !(die->tag == DW_TAG_inlined_subroutine
3781 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
3782 complaint (&symfile_complaints,
3783 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
3784 die->offset, origin_die->offset);
3785
3786 child_die = die->child;
3787 die_children_count = 0;
3788 while (child_die && child_die->tag)
3789 {
3790 child_die = sibling_die (child_die);
3791 die_children_count++;
3792 }
3793 offsets = xmalloc (sizeof (*offsets) * die_children_count);
3794 cleanups = make_cleanup (xfree, offsets);
3795
3796 offsets_end = offsets;
3797 child_die = die->child;
3798 while (child_die && child_die->tag)
3799 {
c38f313d
DJ
3800 /* For each CHILD_DIE, find the corresponding child of
3801 ORIGIN_DIE. If there is more than one layer of
3802 DW_AT_abstract_origin, follow them all; there shouldn't be,
3803 but GCC versions at least through 4.4 generate this (GCC PR
3804 40573). */
3805 struct die_info *child_origin_die = child_die;
3806 while (1)
3807 {
3808 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu);
3809 if (attr == NULL)
3810 break;
3811 child_origin_die = follow_die_ref (child_origin_die, attr, &cu);
3812 }
3813
d389af10
JK
3814 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
3815 counterpart may exist. */
c38f313d 3816 if (child_origin_die != child_die)
d389af10 3817 {
edb3359d
DJ
3818 if (child_die->tag != child_origin_die->tag
3819 && !(child_die->tag == DW_TAG_inlined_subroutine
3820 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
3821 complaint (&symfile_complaints,
3822 _("Child DIE 0x%x and its abstract origin 0x%x have "
3823 "different tags"), child_die->offset,
3824 child_origin_die->offset);
c38f313d
DJ
3825 if (child_origin_die->parent != origin_die)
3826 complaint (&symfile_complaints,
3827 _("Child DIE 0x%x and its abstract origin 0x%x have "
3828 "different parents"), child_die->offset,
3829 child_origin_die->offset);
3830 else
3831 *offsets_end++ = child_origin_die->offset;
d389af10
JK
3832 }
3833 child_die = sibling_die (child_die);
3834 }
3835 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
3836 unsigned_int_compar);
3837 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
3838 if (offsetp[-1] == *offsetp)
3839 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
3840 "to DIE 0x%x as their abstract origin"),
3841 die->offset, *offsetp);
3842
3843 offsetp = offsets;
3844 origin_child_die = origin_die->child;
3845 while (origin_child_die && origin_child_die->tag)
3846 {
3847 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
3848 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
3849 offsetp++;
3850 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
3851 {
3852 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
3853 process_die (origin_child_die, cu);
3854 }
3855 origin_child_die = sibling_die (origin_child_die);
3856 }
3857
3858 do_cleanups (cleanups);
3859}
3860
c906108c 3861static void
e7c27a73 3862read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3863{
e7c27a73 3864 struct objfile *objfile = cu->objfile;
52f0bd74 3865 struct context_stack *new;
c906108c
SS
3866 CORE_ADDR lowpc;
3867 CORE_ADDR highpc;
3868 struct die_info *child_die;
edb3359d 3869 struct attribute *attr, *call_line, *call_file;
c906108c 3870 char *name;
e142c38c 3871 CORE_ADDR baseaddr;
801e3a5b 3872 struct block *block;
edb3359d
DJ
3873 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
3874
3875 if (inlined_func)
3876 {
3877 /* If we do not have call site information, we can't show the
3878 caller of this inlined function. That's too confusing, so
3879 only use the scope for local variables. */
3880 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
3881 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
3882 if (call_line == NULL || call_file == NULL)
3883 {
3884 read_lexical_block_scope (die, cu);
3885 return;
3886 }
3887 }
c906108c 3888
e142c38c
DJ
3889 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3890
94af9270 3891 name = dwarf2_name (die, cu);
c906108c 3892
e8d05480
JB
3893 /* Ignore functions with missing or empty names. These are actually
3894 illegal according to the DWARF standard. */
3895 if (name == NULL)
3896 {
3897 complaint (&symfile_complaints,
3898 _("missing name for subprogram DIE at %d"), die->offset);
3899 return;
3900 }
3901
3902 /* Ignore functions with missing or invalid low and high pc attributes. */
3903 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
3904 {
3905 complaint (&symfile_complaints,
3906 _("cannot get low and high bounds for subprogram DIE at %d"),
3907 die->offset);
3908 return;
3909 }
c906108c
SS
3910
3911 lowpc += baseaddr;
3912 highpc += baseaddr;
3913
5fb290d7 3914 /* Record the function range for dwarf_decode_lines. */
e142c38c 3915 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 3916
c906108c 3917 new = push_context (0, lowpc);
f792889a 3918 new->name = new_symbol (die, read_type_die (die, cu), cu);
4c2df51b 3919
4cecd739
DJ
3920 /* If there is a location expression for DW_AT_frame_base, record
3921 it. */
e142c38c 3922 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 3923 if (attr)
c034e007
AC
3924 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
3925 expression is being recorded directly in the function's symbol
3926 and not in a separate frame-base object. I guess this hack is
3927 to avoid adding some sort of frame-base adjunct/annex to the
3928 function's symbol :-(. The problem with doing this is that it
3929 results in a function symbol with a location expression that
3930 has nothing to do with the location of the function, ouch! The
3931 relationship should be: a function's symbol has-a frame base; a
3932 frame-base has-a location expression. */
e7c27a73 3933 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 3934
e142c38c 3935 cu->list_in_scope = &local_symbols;
c906108c 3936
639d11d3 3937 if (die->child != NULL)
c906108c 3938 {
639d11d3 3939 child_die = die->child;
c906108c
SS
3940 while (child_die && child_die->tag)
3941 {
e7c27a73 3942 process_die (child_die, cu);
c906108c
SS
3943 child_die = sibling_die (child_die);
3944 }
3945 }
3946
d389af10
JK
3947 inherit_abstract_dies (die, cu);
3948
4a811a97
UW
3949 /* If we have a DW_AT_specification, we might need to import using
3950 directives from the context of the specification DIE. See the
3951 comment in determine_prefix. */
3952 if (cu->language == language_cplus
3953 && dwarf2_attr (die, DW_AT_specification, cu))
3954 {
3955 struct dwarf2_cu *spec_cu = cu;
3956 struct die_info *spec_die = die_specification (die, &spec_cu);
3957
3958 while (spec_die)
3959 {
3960 child_die = spec_die->child;
3961 while (child_die && child_die->tag)
3962 {
3963 if (child_die->tag == DW_TAG_imported_module)
3964 process_die (child_die, spec_cu);
3965 child_die = sibling_die (child_die);
3966 }
3967
3968 /* In some cases, GCC generates specification DIEs that
3969 themselves contain DW_AT_specification attributes. */
3970 spec_die = die_specification (spec_die, &spec_cu);
3971 }
3972 }
3973
c906108c
SS
3974 new = pop_context ();
3975 /* Make a block for the local symbols within. */
801e3a5b
JB
3976 block = finish_block (new->name, &local_symbols, new->old_blocks,
3977 lowpc, highpc, objfile);
3978
df8a16a1
DJ
3979 /* For C++, set the block's scope. */
3980 if (cu->language == language_cplus)
3981 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 3982 determine_prefix (die, cu),
df8a16a1
DJ
3983 processing_has_namespace_info);
3984
801e3a5b
JB
3985 /* If we have address ranges, record them. */
3986 dwarf2_record_block_ranges (die, block, baseaddr, cu);
208d8187
JB
3987
3988 /* In C++, we can have functions nested inside functions (e.g., when
3989 a function declares a class that has methods). This means that
3990 when we finish processing a function scope, we may need to go
3991 back to building a containing block's symbol lists. */
3992 local_symbols = new->locals;
3993 param_symbols = new->params;
27aa8d6a 3994 using_directives = new->using_directives;
208d8187 3995
921e78cf
JB
3996 /* If we've finished processing a top-level function, subsequent
3997 symbols go in the file symbol list. */
3998 if (outermost_context_p ())
e142c38c 3999 cu->list_in_scope = &file_symbols;
c906108c
SS
4000}
4001
4002/* Process all the DIES contained within a lexical block scope. Start
4003 a new scope, process the dies, and then close the scope. */
4004
4005static void
e7c27a73 4006read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4007{
e7c27a73 4008 struct objfile *objfile = cu->objfile;
52f0bd74 4009 struct context_stack *new;
c906108c
SS
4010 CORE_ADDR lowpc, highpc;
4011 struct die_info *child_die;
e142c38c
DJ
4012 CORE_ADDR baseaddr;
4013
4014 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
4015
4016 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
4017 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
4018 as multiple lexical blocks? Handling children in a sane way would
4019 be nasty. Might be easier to properly extend generic blocks to
4020 describe ranges. */
d85a05f0 4021 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
4022 return;
4023 lowpc += baseaddr;
4024 highpc += baseaddr;
4025
4026 push_context (0, lowpc);
639d11d3 4027 if (die->child != NULL)
c906108c 4028 {
639d11d3 4029 child_die = die->child;
c906108c
SS
4030 while (child_die && child_die->tag)
4031 {
e7c27a73 4032 process_die (child_die, cu);
c906108c
SS
4033 child_die = sibling_die (child_die);
4034 }
4035 }
4036 new = pop_context ();
4037
8540c487 4038 if (local_symbols != NULL || using_directives != NULL)
c906108c 4039 {
801e3a5b
JB
4040 struct block *block
4041 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
4042 highpc, objfile);
4043
4044 /* Note that recording ranges after traversing children, as we
4045 do here, means that recording a parent's ranges entails
4046 walking across all its children's ranges as they appear in
4047 the address map, which is quadratic behavior.
4048
4049 It would be nicer to record the parent's ranges before
4050 traversing its children, simply overriding whatever you find
4051 there. But since we don't even decide whether to create a
4052 block until after we've traversed its children, that's hard
4053 to do. */
4054 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
4055 }
4056 local_symbols = new->locals;
27aa8d6a 4057 using_directives = new->using_directives;
c906108c
SS
4058}
4059
43039443 4060/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
4061 Return 1 if the attributes are present and valid, otherwise, return 0.
4062 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
4063
4064static int
4065dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
4066 CORE_ADDR *high_return, struct dwarf2_cu *cu,
4067 struct partial_symtab *ranges_pst)
43039443
JK
4068{
4069 struct objfile *objfile = cu->objfile;
4070 struct comp_unit_head *cu_header = &cu->header;
4071 bfd *obfd = objfile->obfd;
4072 unsigned int addr_size = cu_header->addr_size;
4073 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4074 /* Base address selection entry. */
4075 CORE_ADDR base;
4076 int found_base;
4077 unsigned int dummy;
4078 gdb_byte *buffer;
4079 CORE_ADDR marker;
4080 int low_set;
4081 CORE_ADDR low = 0;
4082 CORE_ADDR high = 0;
ff013f42 4083 CORE_ADDR baseaddr;
43039443 4084
d00adf39
DE
4085 found_base = cu->base_known;
4086 base = cu->base_address;
43039443 4087
be391dca 4088 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 4089 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
4090 {
4091 complaint (&symfile_complaints,
4092 _("Offset %d out of bounds for DW_AT_ranges attribute"),
4093 offset);
4094 return 0;
4095 }
dce234bc 4096 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
4097
4098 /* Read in the largest possible address. */
4099 marker = read_address (obfd, buffer, cu, &dummy);
4100 if ((marker & mask) == mask)
4101 {
4102 /* If we found the largest possible address, then
4103 read the base address. */
4104 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4105 buffer += 2 * addr_size;
4106 offset += 2 * addr_size;
4107 found_base = 1;
4108 }
4109
4110 low_set = 0;
4111
e7030f15 4112 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 4113
43039443
JK
4114 while (1)
4115 {
4116 CORE_ADDR range_beginning, range_end;
4117
4118 range_beginning = read_address (obfd, buffer, cu, &dummy);
4119 buffer += addr_size;
4120 range_end = read_address (obfd, buffer, cu, &dummy);
4121 buffer += addr_size;
4122 offset += 2 * addr_size;
4123
4124 /* An end of list marker is a pair of zero addresses. */
4125 if (range_beginning == 0 && range_end == 0)
4126 /* Found the end of list entry. */
4127 break;
4128
4129 /* Each base address selection entry is a pair of 2 values.
4130 The first is the largest possible address, the second is
4131 the base address. Check for a base address here. */
4132 if ((range_beginning & mask) == mask)
4133 {
4134 /* If we found the largest possible address, then
4135 read the base address. */
4136 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4137 found_base = 1;
4138 continue;
4139 }
4140
4141 if (!found_base)
4142 {
4143 /* We have no valid base address for the ranges
4144 data. */
4145 complaint (&symfile_complaints,
4146 _("Invalid .debug_ranges data (no base address)"));
4147 return 0;
4148 }
4149
4150 range_beginning += base;
4151 range_end += base;
4152
ff013f42
JK
4153 if (ranges_pst != NULL && range_beginning < range_end)
4154 addrmap_set_empty (objfile->psymtabs_addrmap,
4155 range_beginning + baseaddr, range_end - 1 + baseaddr,
4156 ranges_pst);
4157
43039443
JK
4158 /* FIXME: This is recording everything as a low-high
4159 segment of consecutive addresses. We should have a
4160 data structure for discontiguous block ranges
4161 instead. */
4162 if (! low_set)
4163 {
4164 low = range_beginning;
4165 high = range_end;
4166 low_set = 1;
4167 }
4168 else
4169 {
4170 if (range_beginning < low)
4171 low = range_beginning;
4172 if (range_end > high)
4173 high = range_end;
4174 }
4175 }
4176
4177 if (! low_set)
4178 /* If the first entry is an end-of-list marker, the range
4179 describes an empty scope, i.e. no instructions. */
4180 return 0;
4181
4182 if (low_return)
4183 *low_return = low;
4184 if (high_return)
4185 *high_return = high;
4186 return 1;
4187}
4188
af34e669
DJ
4189/* Get low and high pc attributes from a die. Return 1 if the attributes
4190 are present and valid, otherwise, return 0. Return -1 if the range is
4191 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 4192static int
af34e669 4193dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
4194 CORE_ADDR *highpc, struct dwarf2_cu *cu,
4195 struct partial_symtab *pst)
c906108c
SS
4196{
4197 struct attribute *attr;
af34e669
DJ
4198 CORE_ADDR low = 0;
4199 CORE_ADDR high = 0;
4200 int ret = 0;
c906108c 4201
e142c38c 4202 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 4203 if (attr)
af34e669
DJ
4204 {
4205 high = DW_ADDR (attr);
e142c38c 4206 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
4207 if (attr)
4208 low = DW_ADDR (attr);
4209 else
4210 /* Found high w/o low attribute. */
4211 return 0;
4212
4213 /* Found consecutive range of addresses. */
4214 ret = 1;
4215 }
c906108c 4216 else
af34e669 4217 {
e142c38c 4218 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
4219 if (attr != NULL)
4220 {
af34e669 4221 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 4222 .debug_ranges section. */
d85a05f0 4223 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 4224 return 0;
43039443 4225 /* Found discontinuous range of addresses. */
af34e669
DJ
4226 ret = -1;
4227 }
4228 }
c906108c
SS
4229
4230 if (high < low)
4231 return 0;
4232
4233 /* When using the GNU linker, .gnu.linkonce. sections are used to
4234 eliminate duplicate copies of functions and vtables and such.
4235 The linker will arbitrarily choose one and discard the others.
4236 The AT_*_pc values for such functions refer to local labels in
4237 these sections. If the section from that file was discarded, the
4238 labels are not in the output, so the relocs get a value of 0.
4239 If this is a discarded function, mark the pc bounds as invalid,
4240 so that GDB will ignore it. */
72dca2f5 4241 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
4242 return 0;
4243
4244 *lowpc = low;
4245 *highpc = high;
af34e669 4246 return ret;
c906108c
SS
4247}
4248
b084d499
JB
4249/* Assuming that DIE represents a subprogram DIE or a lexical block, get
4250 its low and high PC addresses. Do nothing if these addresses could not
4251 be determined. Otherwise, set LOWPC to the low address if it is smaller,
4252 and HIGHPC to the high address if greater than HIGHPC. */
4253
4254static void
4255dwarf2_get_subprogram_pc_bounds (struct die_info *die,
4256 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4257 struct dwarf2_cu *cu)
4258{
4259 CORE_ADDR low, high;
4260 struct die_info *child = die->child;
4261
d85a05f0 4262 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
4263 {
4264 *lowpc = min (*lowpc, low);
4265 *highpc = max (*highpc, high);
4266 }
4267
4268 /* If the language does not allow nested subprograms (either inside
4269 subprograms or lexical blocks), we're done. */
4270 if (cu->language != language_ada)
4271 return;
4272
4273 /* Check all the children of the given DIE. If it contains nested
4274 subprograms, then check their pc bounds. Likewise, we need to
4275 check lexical blocks as well, as they may also contain subprogram
4276 definitions. */
4277 while (child && child->tag)
4278 {
4279 if (child->tag == DW_TAG_subprogram
4280 || child->tag == DW_TAG_lexical_block)
4281 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
4282 child = sibling_die (child);
4283 }
4284}
4285
fae299cd
DC
4286/* Get the low and high pc's represented by the scope DIE, and store
4287 them in *LOWPC and *HIGHPC. If the correct values can't be
4288 determined, set *LOWPC to -1 and *HIGHPC to 0. */
4289
4290static void
4291get_scope_pc_bounds (struct die_info *die,
4292 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4293 struct dwarf2_cu *cu)
4294{
4295 CORE_ADDR best_low = (CORE_ADDR) -1;
4296 CORE_ADDR best_high = (CORE_ADDR) 0;
4297 CORE_ADDR current_low, current_high;
4298
d85a05f0 4299 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
4300 {
4301 best_low = current_low;
4302 best_high = current_high;
4303 }
4304 else
4305 {
4306 struct die_info *child = die->child;
4307
4308 while (child && child->tag)
4309 {
4310 switch (child->tag) {
4311 case DW_TAG_subprogram:
b084d499 4312 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
4313 break;
4314 case DW_TAG_namespace:
4315 /* FIXME: carlton/2004-01-16: Should we do this for
4316 DW_TAG_class_type/DW_TAG_structure_type, too? I think
4317 that current GCC's always emit the DIEs corresponding
4318 to definitions of methods of classes as children of a
4319 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
4320 the DIEs giving the declarations, which could be
4321 anywhere). But I don't see any reason why the
4322 standards says that they have to be there. */
4323 get_scope_pc_bounds (child, &current_low, &current_high, cu);
4324
4325 if (current_low != ((CORE_ADDR) -1))
4326 {
4327 best_low = min (best_low, current_low);
4328 best_high = max (best_high, current_high);
4329 }
4330 break;
4331 default:
4332 /* Ignore. */
4333 break;
4334 }
4335
4336 child = sibling_die (child);
4337 }
4338 }
4339
4340 *lowpc = best_low;
4341 *highpc = best_high;
4342}
4343
801e3a5b
JB
4344/* Record the address ranges for BLOCK, offset by BASEADDR, as given
4345 in DIE. */
4346static void
4347dwarf2_record_block_ranges (struct die_info *die, struct block *block,
4348 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
4349{
4350 struct attribute *attr;
4351
4352 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4353 if (attr)
4354 {
4355 CORE_ADDR high = DW_ADDR (attr);
4356 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4357 if (attr)
4358 {
4359 CORE_ADDR low = DW_ADDR (attr);
4360 record_block_range (block, baseaddr + low, baseaddr + high - 1);
4361 }
4362 }
4363
4364 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4365 if (attr)
4366 {
4367 bfd *obfd = cu->objfile->obfd;
4368
4369 /* The value of the DW_AT_ranges attribute is the offset of the
4370 address range list in the .debug_ranges section. */
4371 unsigned long offset = DW_UNSND (attr);
dce234bc 4372 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
4373
4374 /* For some target architectures, but not others, the
4375 read_address function sign-extends the addresses it returns.
4376 To recognize base address selection entries, we need a
4377 mask. */
4378 unsigned int addr_size = cu->header.addr_size;
4379 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4380
4381 /* The base address, to which the next pair is relative. Note
4382 that this 'base' is a DWARF concept: most entries in a range
4383 list are relative, to reduce the number of relocs against the
4384 debugging information. This is separate from this function's
4385 'baseaddr' argument, which GDB uses to relocate debugging
4386 information from a shared library based on the address at
4387 which the library was loaded. */
d00adf39
DE
4388 CORE_ADDR base = cu->base_address;
4389 int base_known = cu->base_known;
801e3a5b 4390
be391dca 4391 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 4392 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
4393 {
4394 complaint (&symfile_complaints,
4395 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
4396 offset);
4397 return;
4398 }
4399
4400 for (;;)
4401 {
4402 unsigned int bytes_read;
4403 CORE_ADDR start, end;
4404
4405 start = read_address (obfd, buffer, cu, &bytes_read);
4406 buffer += bytes_read;
4407 end = read_address (obfd, buffer, cu, &bytes_read);
4408 buffer += bytes_read;
4409
4410 /* Did we find the end of the range list? */
4411 if (start == 0 && end == 0)
4412 break;
4413
4414 /* Did we find a base address selection entry? */
4415 else if ((start & base_select_mask) == base_select_mask)
4416 {
4417 base = end;
4418 base_known = 1;
4419 }
4420
4421 /* We found an ordinary address range. */
4422 else
4423 {
4424 if (!base_known)
4425 {
4426 complaint (&symfile_complaints,
4427 _("Invalid .debug_ranges data (no base address)"));
4428 return;
4429 }
4430
4431 record_block_range (block,
4432 baseaddr + base + start,
4433 baseaddr + base + end - 1);
4434 }
4435 }
4436 }
4437}
4438
c906108c
SS
4439/* Add an aggregate field to the field list. */
4440
4441static void
107d2387 4442dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
4443 struct dwarf2_cu *cu)
4444{
4445 struct objfile *objfile = cu->objfile;
5e2b427d 4446 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
4447 struct nextfield *new_field;
4448 struct attribute *attr;
4449 struct field *fp;
4450 char *fieldname = "";
4451
4452 /* Allocate a new field list entry and link it in. */
4453 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 4454 make_cleanup (xfree, new_field);
c906108c 4455 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
4456
4457 if (die->tag == DW_TAG_inheritance)
4458 {
4459 new_field->next = fip->baseclasses;
4460 fip->baseclasses = new_field;
4461 }
4462 else
4463 {
4464 new_field->next = fip->fields;
4465 fip->fields = new_field;
4466 }
c906108c
SS
4467 fip->nfields++;
4468
4469 /* Handle accessibility and virtuality of field.
4470 The default accessibility for members is public, the default
4471 accessibility for inheritance is private. */
4472 if (die->tag != DW_TAG_inheritance)
4473 new_field->accessibility = DW_ACCESS_public;
4474 else
4475 new_field->accessibility = DW_ACCESS_private;
4476 new_field->virtuality = DW_VIRTUALITY_none;
4477
e142c38c 4478 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
4479 if (attr)
4480 new_field->accessibility = DW_UNSND (attr);
4481 if (new_field->accessibility != DW_ACCESS_public)
4482 fip->non_public_fields = 1;
e142c38c 4483 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
4484 if (attr)
4485 new_field->virtuality = DW_UNSND (attr);
4486
4487 fp = &new_field->field;
a9a9bd0f 4488
e142c38c 4489 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 4490 {
a9a9bd0f
DC
4491 /* Data member other than a C++ static data member. */
4492
c906108c 4493 /* Get type of field. */
e7c27a73 4494 fp->type = die_type (die, cu);
c906108c 4495
d6a843b5 4496 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 4497
c906108c 4498 /* Get bit size of field (zero if none). */
e142c38c 4499 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
4500 if (attr)
4501 {
4502 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
4503 }
4504 else
4505 {
4506 FIELD_BITSIZE (*fp) = 0;
4507 }
4508
4509 /* Get bit offset of field. */
e142c38c 4510 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
4511 if (attr)
4512 {
d4b96c9a 4513 int byte_offset = 0;
c6a0999f 4514
3690dd37 4515 if (attr_form_is_section_offset (attr))
d4b96c9a 4516 dwarf2_complex_location_expr_complaint ();
3690dd37 4517 else if (attr_form_is_constant (attr))
c6a0999f 4518 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
d4b96c9a 4519 else if (attr_form_is_block (attr))
c6a0999f 4520 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
d4b96c9a
JK
4521 else
4522 dwarf2_complex_location_expr_complaint ();
c6a0999f 4523
d6a843b5 4524 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
c906108c 4525 }
e142c38c 4526 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
4527 if (attr)
4528 {
5e2b427d 4529 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
4530 {
4531 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
4532 additional bit offset from the MSB of the containing
4533 anonymous object to the MSB of the field. We don't
4534 have to do anything special since we don't need to
4535 know the size of the anonymous object. */
c906108c
SS
4536 FIELD_BITPOS (*fp) += DW_UNSND (attr);
4537 }
4538 else
4539 {
4540 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
4541 MSB of the anonymous object, subtract off the number of
4542 bits from the MSB of the field to the MSB of the
4543 object, and then subtract off the number of bits of
4544 the field itself. The result is the bit offset of
4545 the LSB of the field. */
c906108c
SS
4546 int anonymous_size;
4547 int bit_offset = DW_UNSND (attr);
4548
e142c38c 4549 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4550 if (attr)
4551 {
4552 /* The size of the anonymous object containing
4553 the bit field is explicit, so use the
4554 indicated size (in bytes). */
4555 anonymous_size = DW_UNSND (attr);
4556 }
4557 else
4558 {
4559 /* The size of the anonymous object containing
4560 the bit field must be inferred from the type
4561 attribute of the data member containing the
4562 bit field. */
4563 anonymous_size = TYPE_LENGTH (fp->type);
4564 }
4565 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
4566 - bit_offset - FIELD_BITSIZE (*fp);
4567 }
4568 }
4569
4570 /* Get name of field. */
39cbfefa
DJ
4571 fieldname = dwarf2_name (die, cu);
4572 if (fieldname == NULL)
4573 fieldname = "";
d8151005
DJ
4574
4575 /* The name is already allocated along with this objfile, so we don't
4576 need to duplicate it for the type. */
4577 fp->name = fieldname;
c906108c
SS
4578
4579 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 4580 pointer or virtual base class pointer) to private. */
e142c38c 4581 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 4582 {
d48cc9dd 4583 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
4584 new_field->accessibility = DW_ACCESS_private;
4585 fip->non_public_fields = 1;
4586 }
4587 }
a9a9bd0f 4588 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 4589 {
a9a9bd0f
DC
4590 /* C++ static member. */
4591
4592 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
4593 is a declaration, but all versions of G++ as of this writing
4594 (so through at least 3.2.1) incorrectly generate
4595 DW_TAG_variable tags. */
4596
c906108c 4597 char *physname;
c906108c 4598
a9a9bd0f 4599 /* Get name of field. */
39cbfefa
DJ
4600 fieldname = dwarf2_name (die, cu);
4601 if (fieldname == NULL)
c906108c
SS
4602 return;
4603
2df3850c 4604 /* Get physical name. */
94af9270 4605 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c 4606
d8151005
DJ
4607 /* The name is already allocated along with this objfile, so we don't
4608 need to duplicate it for the type. */
4609 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 4610 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 4611 FIELD_NAME (*fp) = fieldname;
c906108c
SS
4612 }
4613 else if (die->tag == DW_TAG_inheritance)
4614 {
4615 /* C++ base class field. */
e142c38c 4616 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 4617 if (attr)
d4b96c9a
JK
4618 {
4619 int byte_offset = 0;
4620
4621 if (attr_form_is_section_offset (attr))
4622 dwarf2_complex_location_expr_complaint ();
4623 else if (attr_form_is_constant (attr))
4624 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4625 else if (attr_form_is_block (attr))
4626 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4627 else
4628 dwarf2_complex_location_expr_complaint ();
4629
4630 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4631 }
c906108c 4632 FIELD_BITSIZE (*fp) = 0;
e7c27a73 4633 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
4634 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
4635 fip->nbaseclasses++;
4636 }
4637}
4638
4639/* Create the vector of fields, and attach it to the type. */
4640
4641static void
fba45db2 4642dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 4643 struct dwarf2_cu *cu)
c906108c
SS
4644{
4645 int nfields = fip->nfields;
4646
4647 /* Record the field count, allocate space for the array of fields,
4648 and create blank accessibility bitfields if necessary. */
4649 TYPE_NFIELDS (type) = nfields;
4650 TYPE_FIELDS (type) = (struct field *)
4651 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4652 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4653
b4ba55a1 4654 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
4655 {
4656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4657
4658 TYPE_FIELD_PRIVATE_BITS (type) =
4659 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4660 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4661
4662 TYPE_FIELD_PROTECTED_BITS (type) =
4663 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4664 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4665
4666 TYPE_FIELD_IGNORE_BITS (type) =
4667 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4668 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4669 }
4670
4671 /* If the type has baseclasses, allocate and clear a bit vector for
4672 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 4673 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
4674 {
4675 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 4676 unsigned char *pointer;
c906108c
SS
4677
4678 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
4679 pointer = TYPE_ALLOC (type, num_bytes);
4680 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
4681 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
4682 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
4683 }
4684
4685 /* Copy the saved-up fields into the field vector. Start from the head
4686 of the list, adding to the tail of the field array, so that they end
4687 up in the same order in the array in which they were added to the list. */
4688 while (nfields-- > 0)
4689 {
7d0ccb61
DJ
4690 struct nextfield *fieldp;
4691
4692 if (fip->fields)
4693 {
4694 fieldp = fip->fields;
4695 fip->fields = fieldp->next;
4696 }
4697 else
4698 {
4699 fieldp = fip->baseclasses;
4700 fip->baseclasses = fieldp->next;
4701 }
4702
4703 TYPE_FIELD (type, nfields) = fieldp->field;
4704 switch (fieldp->accessibility)
c906108c 4705 {
c5aa993b 4706 case DW_ACCESS_private:
b4ba55a1
JB
4707 if (cu->language != language_ada)
4708 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 4709 break;
c906108c 4710
c5aa993b 4711 case DW_ACCESS_protected:
b4ba55a1
JB
4712 if (cu->language != language_ada)
4713 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 4714 break;
c906108c 4715
c5aa993b
JM
4716 case DW_ACCESS_public:
4717 break;
c906108c 4718
c5aa993b
JM
4719 default:
4720 /* Unknown accessibility. Complain and treat it as public. */
4721 {
e2e0b3e5 4722 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 4723 fieldp->accessibility);
c5aa993b
JM
4724 }
4725 break;
c906108c
SS
4726 }
4727 if (nfields < fip->nbaseclasses)
4728 {
7d0ccb61 4729 switch (fieldp->virtuality)
c906108c 4730 {
c5aa993b
JM
4731 case DW_VIRTUALITY_virtual:
4732 case DW_VIRTUALITY_pure_virtual:
b4ba55a1
JB
4733 if (cu->language == language_ada)
4734 error ("unexpected virtuality in component of Ada type");
c5aa993b
JM
4735 SET_TYPE_FIELD_VIRTUAL (type, nfields);
4736 break;
c906108c
SS
4737 }
4738 }
c906108c
SS
4739 }
4740}
4741
c906108c
SS
4742/* Add a member function to the proper fieldlist. */
4743
4744static void
107d2387 4745dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 4746 struct type *type, struct dwarf2_cu *cu)
c906108c 4747{
e7c27a73 4748 struct objfile *objfile = cu->objfile;
c906108c
SS
4749 struct attribute *attr;
4750 struct fnfieldlist *flp;
4751 int i;
4752 struct fn_field *fnp;
4753 char *fieldname;
4754 char *physname;
4755 struct nextfnfield *new_fnfield;
f792889a 4756 struct type *this_type;
c906108c 4757
b4ba55a1
JB
4758 if (cu->language == language_ada)
4759 error ("unexpected member function in Ada type");
4760
2df3850c 4761 /* Get name of member function. */
39cbfefa
DJ
4762 fieldname = dwarf2_name (die, cu);
4763 if (fieldname == NULL)
2df3850c 4764 return;
c906108c 4765
2df3850c 4766 /* Get the mangled name. */
94af9270 4767 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c
SS
4768
4769 /* Look up member function name in fieldlist. */
4770 for (i = 0; i < fip->nfnfields; i++)
4771 {
27bfe10e 4772 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
4773 break;
4774 }
4775
4776 /* Create new list element if necessary. */
4777 if (i < fip->nfnfields)
4778 flp = &fip->fnfieldlists[i];
4779 else
4780 {
4781 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
4782 {
4783 fip->fnfieldlists = (struct fnfieldlist *)
4784 xrealloc (fip->fnfieldlists,
4785 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4786 * sizeof (struct fnfieldlist));
c906108c 4787 if (fip->nfnfields == 0)
c13c43fd 4788 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
4789 }
4790 flp = &fip->fnfieldlists[fip->nfnfields];
4791 flp->name = fieldname;
4792 flp->length = 0;
4793 flp->head = NULL;
4794 fip->nfnfields++;
4795 }
4796
4797 /* Create a new member function field and chain it to the field list
4798 entry. */
4799 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 4800 make_cleanup (xfree, new_fnfield);
c906108c
SS
4801 memset (new_fnfield, 0, sizeof (struct nextfnfield));
4802 new_fnfield->next = flp->head;
4803 flp->head = new_fnfield;
4804 flp->length++;
4805
4806 /* Fill in the member function field info. */
4807 fnp = &new_fnfield->fnfield;
d8151005
DJ
4808 /* The name is already allocated along with this objfile, so we don't
4809 need to duplicate it for the type. */
4810 fnp->physname = physname ? physname : "";
c906108c 4811 fnp->type = alloc_type (objfile);
f792889a
DJ
4812 this_type = read_type_die (die, cu);
4813 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 4814 {
f792889a 4815 int nparams = TYPE_NFIELDS (this_type);
c906108c 4816
f792889a 4817 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
4818 of the method itself (TYPE_CODE_METHOD). */
4819 smash_to_method_type (fnp->type, type,
f792889a
DJ
4820 TYPE_TARGET_TYPE (this_type),
4821 TYPE_FIELDS (this_type),
4822 TYPE_NFIELDS (this_type),
4823 TYPE_VARARGS (this_type));
c906108c
SS
4824
4825 /* Handle static member functions.
c5aa993b
JM
4826 Dwarf2 has no clean way to discern C++ static and non-static
4827 member functions. G++ helps GDB by marking the first
4828 parameter for non-static member functions (which is the
4829 this pointer) as artificial. We obtain this information
4830 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 4831 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
4832 fnp->voffset = VOFFSET_STATIC;
4833 }
4834 else
e2e0b3e5 4835 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 4836 physname);
c906108c
SS
4837
4838 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 4839 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 4840 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
4841
4842 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
4843 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
4844
4845 /* Get accessibility. */
e142c38c 4846 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
4847 if (attr)
4848 {
4849 switch (DW_UNSND (attr))
4850 {
c5aa993b
JM
4851 case DW_ACCESS_private:
4852 fnp->is_private = 1;
4853 break;
4854 case DW_ACCESS_protected:
4855 fnp->is_protected = 1;
4856 break;
c906108c
SS
4857 }
4858 }
4859
b02dede2 4860 /* Check for artificial methods. */
e142c38c 4861 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
4862 if (attr && DW_UNSND (attr) != 0)
4863 fnp->is_artificial = 1;
4864
0d564a31
DJ
4865 /* Get index in virtual function table if it is a virtual member
4866 function. For GCC, this is an offset in the appropriate
4867 virtual table, as specified by DW_AT_containing_type. For
4868 everyone else, it is an expression to be evaluated relative
4869 to the object address. */
4870
e142c38c 4871 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
0d564a31 4872 if (attr && fnp->fcontext)
8e19ed76
PS
4873 {
4874 /* Support the .debug_loc offsets */
4875 if (attr_form_is_block (attr))
4876 {
e7c27a73 4877 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76 4878 }
3690dd37 4879 else if (attr_form_is_section_offset (attr))
8e19ed76 4880 {
4d3c2250 4881 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4882 }
4883 else
4884 {
4d3c2250
KB
4885 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
4886 fieldname);
8e19ed76 4887 }
0d564a31
DJ
4888 }
4889 else if (attr)
4890 {
4891 /* We only support trivial expressions here. This hack will work
ba950e4d 4892 for v3 classes, which always start with the vtable pointer. */
0d564a31
DJ
4893 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0
4894 && DW_BLOCK (attr)->data[0] == DW_OP_deref)
4895 {
4896 struct dwarf_block blk;
4897 blk.size = DW_BLOCK (attr)->size - 1;
4898 blk.data = DW_BLOCK (attr)->data + 1;
ba950e4d
DJ
4899 fnp->voffset = decode_locdesc (&blk, cu);
4900 if ((fnp->voffset % cu->header.addr_size) != 0)
4901 dwarf2_complex_location_expr_complaint ();
4902 else
4903 fnp->voffset /= cu->header.addr_size;
0d564a31
DJ
4904 fnp->voffset += 2;
4905 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
4906 }
4907 else
4908 dwarf2_complex_location_expr_complaint ();
4909 }
d48cc9dd
DJ
4910 else
4911 {
4912 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4913 if (attr && DW_UNSND (attr))
4914 {
4915 /* GCC does this, as of 2008-08-25; PR debug/37237. */
4916 complaint (&symfile_complaints,
4917 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
4918 fieldname, die->offset);
4919 TYPE_CPLUS_DYNAMIC (type) = 1;
4920 }
4921 }
c906108c
SS
4922}
4923
4924/* Create the vector of member function fields, and attach it to the type. */
4925
4926static void
fba45db2 4927dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 4928 struct dwarf2_cu *cu)
c906108c
SS
4929{
4930 struct fnfieldlist *flp;
4931 int total_length = 0;
4932 int i;
4933
b4ba55a1
JB
4934 if (cu->language == language_ada)
4935 error ("unexpected member functions in Ada type");
4936
c906108c
SS
4937 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4938 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
4939 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
4940
4941 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
4942 {
4943 struct nextfnfield *nfp = flp->head;
4944 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
4945 int k;
4946
4947 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
4948 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
4949 fn_flp->fn_fields = (struct fn_field *)
4950 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
4951 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 4952 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
4953
4954 total_length += flp->length;
4955 }
4956
4957 TYPE_NFN_FIELDS (type) = fip->nfnfields;
4958 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4959}
4960
1168df01
JB
4961/* Returns non-zero if NAME is the name of a vtable member in CU's
4962 language, zero otherwise. */
4963static int
4964is_vtable_name (const char *name, struct dwarf2_cu *cu)
4965{
4966 static const char vptr[] = "_vptr";
987504bb 4967 static const char vtable[] = "vtable";
1168df01 4968
987504bb
JJ
4969 /* Look for the C++ and Java forms of the vtable. */
4970 if ((cu->language == language_java
4971 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
4972 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
4973 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
4974 return 1;
4975
4976 return 0;
4977}
4978
c0dd20ea 4979/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
4980 functions, with the ABI-specified layout. If TYPE describes
4981 such a structure, smash it into a member function type.
61049d3b
DJ
4982
4983 GCC shouldn't do this; it should just output pointer to member DIEs.
4984 This is GCC PR debug/28767. */
c0dd20ea 4985
0b92b5bb
TT
4986static void
4987quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 4988{
0b92b5bb 4989 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
4990
4991 /* Check for a structure with no name and two children. */
0b92b5bb
TT
4992 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
4993 return;
c0dd20ea
DJ
4994
4995 /* Check for __pfn and __delta members. */
0b92b5bb
TT
4996 if (TYPE_FIELD_NAME (type, 0) == NULL
4997 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
4998 || TYPE_FIELD_NAME (type, 1) == NULL
4999 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
5000 return;
c0dd20ea
DJ
5001
5002 /* Find the type of the method. */
0b92b5bb 5003 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
5004 if (pfn_type == NULL
5005 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
5006 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 5007 return;
c0dd20ea
DJ
5008
5009 /* Look for the "this" argument. */
5010 pfn_type = TYPE_TARGET_TYPE (pfn_type);
5011 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 5012 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 5013 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 5014 return;
c0dd20ea
DJ
5015
5016 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
5017 new_type = alloc_type (objfile);
5018 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
5019 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
5020 TYPE_VARARGS (pfn_type));
0b92b5bb 5021 smash_to_methodptr_type (type, new_type);
c0dd20ea 5022}
1168df01 5023
c906108c
SS
5024/* Called when we find the DIE that starts a structure or union scope
5025 (definition) to process all dies that define the members of the
5026 structure or union.
5027
5028 NOTE: we need to call struct_type regardless of whether or not the
5029 DIE has an at_name attribute, since it might be an anonymous
5030 structure or union. This gets the type entered into our set of
5031 user defined types.
5032
5033 However, if the structure is incomplete (an opaque struct/union)
5034 then suppress creating a symbol table entry for it since gdb only
5035 wants to find the one with the complete definition. Note that if
5036 it is complete, we just call new_symbol, which does it's own
5037 checking about whether the struct/union is anonymous or not (and
5038 suppresses creating a symbol table entry itself). */
5039
f792889a 5040static struct type *
134d01f1 5041read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5042{
e7c27a73 5043 struct objfile *objfile = cu->objfile;
c906108c
SS
5044 struct type *type;
5045 struct attribute *attr;
39cbfefa 5046 char *name;
0114d602 5047 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 5048
348e048f
DE
5049 /* If the definition of this type lives in .debug_types, read that type.
5050 Don't follow DW_AT_specification though, that will take us back up
5051 the chain and we want to go down. */
5052 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5053 if (attr)
5054 {
5055 struct dwarf2_cu *type_cu = cu;
5056 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
5057 /* We could just recurse on read_structure_type, but we need to call
5058 get_die_type to ensure only one type for this DIE is created.
5059 This is important, for example, because for c++ classes we need
5060 TYPE_NAME set which is only done by new_symbol. Blech. */
5061 type = read_type_die (type_die, type_cu);
5062 return set_die_type (die, type, cu);
5063 }
5064
c0dd20ea 5065 type = alloc_type (objfile);
c906108c 5066 INIT_CPLUS_SPECIFIC (type);
93311388 5067
39cbfefa
DJ
5068 name = dwarf2_name (die, cu);
5069 if (name != NULL)
c906108c 5070 {
987504bb
JJ
5071 if (cu->language == language_cplus
5072 || cu->language == language_java)
63d06c5c 5073 {
94af9270
KS
5074 TYPE_TAG_NAME (type) = (char *) dwarf2_full_name (name, die, cu);
5075 if (die->tag == DW_TAG_structure_type
5076 || die->tag == DW_TAG_class_type)
5077 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
5078 }
5079 else
5080 {
d8151005
DJ
5081 /* The name is already allocated along with this objfile, so
5082 we don't need to duplicate it for the type. */
94af9270
KS
5083 TYPE_TAG_NAME (type) = (char *) name;
5084 if (die->tag == DW_TAG_class_type)
5085 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 5086 }
c906108c
SS
5087 }
5088
5089 if (die->tag == DW_TAG_structure_type)
5090 {
5091 TYPE_CODE (type) = TYPE_CODE_STRUCT;
5092 }
5093 else if (die->tag == DW_TAG_union_type)
5094 {
5095 TYPE_CODE (type) = TYPE_CODE_UNION;
5096 }
5097 else
5098 {
c906108c
SS
5099 TYPE_CODE (type) = TYPE_CODE_CLASS;
5100 }
5101
0cc2414c
TT
5102 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
5103 TYPE_DECLARED_CLASS (type) = 1;
5104
e142c38c 5105 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5106 if (attr)
5107 {
5108 TYPE_LENGTH (type) = DW_UNSND (attr);
5109 }
5110 else
5111 {
5112 TYPE_LENGTH (type) = 0;
5113 }
5114
876cecd0 5115 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 5116 if (die_is_declaration (die, cu))
876cecd0 5117 TYPE_STUB (type) = 1;
a6c727b2
DJ
5118 else if (attr == NULL && die->child == NULL
5119 && producer_is_realview (cu->producer))
5120 /* RealView does not output the required DW_AT_declaration
5121 on incomplete types. */
5122 TYPE_STUB (type) = 1;
dc718098 5123
b4ba55a1
JB
5124 set_descriptive_type (type, die, cu);
5125
c906108c
SS
5126 /* We need to add the type field to the die immediately so we don't
5127 infinitely recurse when dealing with pointers to the structure
5128 type within the structure itself. */
1c379e20 5129 set_die_type (die, type, cu);
c906108c 5130
e142c38c 5131 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
5132 {
5133 struct field_info fi;
5134 struct die_info *child_die;
c906108c
SS
5135
5136 memset (&fi, 0, sizeof (struct field_info));
5137
639d11d3 5138 child_die = die->child;
c906108c
SS
5139
5140 while (child_die && child_die->tag)
5141 {
a9a9bd0f
DC
5142 if (child_die->tag == DW_TAG_member
5143 || child_die->tag == DW_TAG_variable)
c906108c 5144 {
a9a9bd0f
DC
5145 /* NOTE: carlton/2002-11-05: A C++ static data member
5146 should be a DW_TAG_member that is a declaration, but
5147 all versions of G++ as of this writing (so through at
5148 least 3.2.1) incorrectly generate DW_TAG_variable
5149 tags for them instead. */
e7c27a73 5150 dwarf2_add_field (&fi, child_die, cu);
c906108c 5151 }
8713b1b1 5152 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
5153 {
5154 /* C++ member function. */
e7c27a73 5155 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
5156 }
5157 else if (child_die->tag == DW_TAG_inheritance)
5158 {
5159 /* C++ base class field. */
e7c27a73 5160 dwarf2_add_field (&fi, child_die, cu);
c906108c 5161 }
c906108c
SS
5162 child_die = sibling_die (child_die);
5163 }
5164
5165 /* Attach fields and member functions to the type. */
5166 if (fi.nfields)
e7c27a73 5167 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
5168 if (fi.nfnfields)
5169 {
e7c27a73 5170 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 5171
c5aa993b 5172 /* Get the type which refers to the base class (possibly this
c906108c 5173 class itself) which contains the vtable pointer for the current
0d564a31
DJ
5174 class from the DW_AT_containing_type attribute. This use of
5175 DW_AT_containing_type is a GNU extension. */
c906108c 5176
e142c38c 5177 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 5178 {
e7c27a73 5179 struct type *t = die_containing_type (die, cu);
c906108c
SS
5180
5181 TYPE_VPTR_BASETYPE (type) = t;
5182 if (type == t)
5183 {
c906108c
SS
5184 int i;
5185
5186 /* Our own class provides vtbl ptr. */
5187 for (i = TYPE_NFIELDS (t) - 1;
5188 i >= TYPE_N_BASECLASSES (t);
5189 --i)
5190 {
5191 char *fieldname = TYPE_FIELD_NAME (t, i);
5192
1168df01 5193 if (is_vtable_name (fieldname, cu))
c906108c
SS
5194 {
5195 TYPE_VPTR_FIELDNO (type) = i;
5196 break;
5197 }
5198 }
5199
5200 /* Complain if virtual function table field not found. */
5201 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 5202 complaint (&symfile_complaints,
e2e0b3e5 5203 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
5204 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
5205 "");
c906108c
SS
5206 }
5207 else
5208 {
5209 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
5210 }
5211 }
f6235d4c
EZ
5212 else if (cu->producer
5213 && strncmp (cu->producer,
5214 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
5215 {
5216 /* The IBM XLC compiler does not provide direct indication
5217 of the containing type, but the vtable pointer is
5218 always named __vfp. */
5219
5220 int i;
5221
5222 for (i = TYPE_NFIELDS (type) - 1;
5223 i >= TYPE_N_BASECLASSES (type);
5224 --i)
5225 {
5226 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
5227 {
5228 TYPE_VPTR_FIELDNO (type) = i;
5229 TYPE_VPTR_BASETYPE (type) = type;
5230 break;
5231 }
5232 }
5233 }
c906108c 5234 }
c906108c 5235 }
63d06c5c 5236
0b92b5bb
TT
5237 quirk_gcc_member_function_pointer (type, cu->objfile);
5238
0114d602 5239 do_cleanups (back_to);
f792889a 5240 return type;
c906108c
SS
5241}
5242
134d01f1
DJ
5243static void
5244process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
5245{
5246 struct objfile *objfile = cu->objfile;
90aeadfc 5247 struct die_info *child_die = die->child;
f792889a 5248 struct type *this_type;
c906108c 5249
f792889a
DJ
5250 this_type = get_die_type (die, cu);
5251 if (this_type == NULL)
5252 this_type = read_structure_type (die, cu);
c906108c 5253
90aeadfc
DC
5254 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
5255 snapshots) has been known to create a die giving a declaration
5256 for a class that has, as a child, a die giving a definition for a
5257 nested class. So we have to process our children even if the
5258 current die is a declaration. Normally, of course, a declaration
5259 won't have any children at all. */
134d01f1 5260
90aeadfc
DC
5261 while (child_die != NULL && child_die->tag)
5262 {
5263 if (child_die->tag == DW_TAG_member
5264 || child_die->tag == DW_TAG_variable
5265 || child_die->tag == DW_TAG_inheritance)
134d01f1 5266 {
90aeadfc 5267 /* Do nothing. */
134d01f1 5268 }
90aeadfc
DC
5269 else
5270 process_die (child_die, cu);
134d01f1 5271
90aeadfc 5272 child_die = sibling_die (child_die);
134d01f1
DJ
5273 }
5274
fa4028e9
JB
5275 /* Do not consider external references. According to the DWARF standard,
5276 these DIEs are identified by the fact that they have no byte_size
5277 attribute, and a declaration attribute. */
5278 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
5279 || !die_is_declaration (die, cu))
f792889a 5280 new_symbol (die, this_type, cu);
134d01f1
DJ
5281}
5282
5283/* Given a DW_AT_enumeration_type die, set its type. We do not
5284 complete the type's fields yet, or create any symbols. */
c906108c 5285
f792889a 5286static struct type *
134d01f1 5287read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5288{
e7c27a73 5289 struct objfile *objfile = cu->objfile;
c906108c 5290 struct type *type;
c906108c 5291 struct attribute *attr;
0114d602 5292 const char *name;
134d01f1 5293
348e048f
DE
5294 /* If the definition of this type lives in .debug_types, read that type.
5295 Don't follow DW_AT_specification though, that will take us back up
5296 the chain and we want to go down. */
5297 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5298 if (attr)
5299 {
5300 struct dwarf2_cu *type_cu = cu;
5301 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
5302 type = read_type_die (type_die, type_cu);
5303 return set_die_type (die, type, cu);
5304 }
5305
c906108c
SS
5306 type = alloc_type (objfile);
5307
5308 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 5309 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 5310 if (name != NULL)
0114d602 5311 TYPE_TAG_NAME (type) = (char *) name;
c906108c 5312
e142c38c 5313 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5314 if (attr)
5315 {
5316 TYPE_LENGTH (type) = DW_UNSND (attr);
5317 }
5318 else
5319 {
5320 TYPE_LENGTH (type) = 0;
5321 }
5322
137033e9
JB
5323 /* The enumeration DIE can be incomplete. In Ada, any type can be
5324 declared as private in the package spec, and then defined only
5325 inside the package body. Such types are known as Taft Amendment
5326 Types. When another package uses such a type, an incomplete DIE
5327 may be generated by the compiler. */
02eb380e 5328 if (die_is_declaration (die, cu))
876cecd0 5329 TYPE_STUB (type) = 1;
02eb380e 5330
f792889a 5331 return set_die_type (die, type, cu);
134d01f1
DJ
5332}
5333
5334/* Given a pointer to a die which begins an enumeration, process all
5335 the dies that define the members of the enumeration, and create the
5336 symbol for the enumeration type.
5337
5338 NOTE: We reverse the order of the element list. */
5339
5340static void
5341process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
5342{
5343 struct objfile *objfile = cu->objfile;
5344 struct die_info *child_die;
5345 struct field *fields;
134d01f1
DJ
5346 struct symbol *sym;
5347 int num_fields;
5348 int unsigned_enum = 1;
39cbfefa 5349 char *name;
f792889a 5350 struct type *this_type;
134d01f1 5351
c906108c
SS
5352 num_fields = 0;
5353 fields = NULL;
f792889a
DJ
5354 this_type = get_die_type (die, cu);
5355 if (this_type == NULL)
5356 this_type = read_enumeration_type (die, cu);
639d11d3 5357 if (die->child != NULL)
c906108c 5358 {
639d11d3 5359 child_die = die->child;
c906108c
SS
5360 while (child_die && child_die->tag)
5361 {
5362 if (child_die->tag != DW_TAG_enumerator)
5363 {
e7c27a73 5364 process_die (child_die, cu);
c906108c
SS
5365 }
5366 else
5367 {
39cbfefa
DJ
5368 name = dwarf2_name (child_die, cu);
5369 if (name)
c906108c 5370 {
f792889a 5371 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
5372 if (SYMBOL_VALUE (sym) < 0)
5373 unsigned_enum = 0;
5374
5375 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
5376 {
5377 fields = (struct field *)
5378 xrealloc (fields,
5379 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 5380 * sizeof (struct field));
c906108c
SS
5381 }
5382
3567439c 5383 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 5384 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 5385 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
5386 FIELD_BITSIZE (fields[num_fields]) = 0;
5387
5388 num_fields++;
5389 }
5390 }
5391
5392 child_die = sibling_die (child_die);
5393 }
5394
5395 if (num_fields)
5396 {
f792889a
DJ
5397 TYPE_NFIELDS (this_type) = num_fields;
5398 TYPE_FIELDS (this_type) = (struct field *)
5399 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
5400 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 5401 sizeof (struct field) * num_fields);
b8c9b27d 5402 xfree (fields);
c906108c
SS
5403 }
5404 if (unsigned_enum)
876cecd0 5405 TYPE_UNSIGNED (this_type) = 1;
c906108c 5406 }
134d01f1 5407
f792889a 5408 new_symbol (die, this_type, cu);
c906108c
SS
5409}
5410
5411/* Extract all information from a DW_TAG_array_type DIE and put it in
5412 the DIE's type field. For now, this only handles one dimensional
5413 arrays. */
5414
f792889a 5415static struct type *
e7c27a73 5416read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5417{
e7c27a73 5418 struct objfile *objfile = cu->objfile;
c906108c
SS
5419 struct die_info *child_die;
5420 struct type *type = NULL;
5421 struct type *element_type, *range_type, *index_type;
5422 struct type **range_types = NULL;
5423 struct attribute *attr;
5424 int ndim = 0;
5425 struct cleanup *back_to;
39cbfefa 5426 char *name;
c906108c 5427
e7c27a73 5428 element_type = die_type (die, cu);
c906108c
SS
5429
5430 /* Irix 6.2 native cc creates array types without children for
5431 arrays with unspecified length. */
639d11d3 5432 if (die->child == NULL)
c906108c 5433 {
46bf5051 5434 index_type = objfile_type (objfile)->builtin_int;
c906108c 5435 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
5436 type = create_array_type (NULL, element_type, range_type);
5437 return set_die_type (die, type, cu);
c906108c
SS
5438 }
5439
5440 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 5441 child_die = die->child;
c906108c
SS
5442 while (child_die && child_die->tag)
5443 {
5444 if (child_die->tag == DW_TAG_subrange_type)
5445 {
f792889a
DJ
5446 struct type *child_type = read_type_die (child_die, cu);
5447 if (child_type != NULL)
a02abb62
JB
5448 {
5449 /* The range type was succesfully read. Save it for
5450 the array type creation. */
5451 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
5452 {
5453 range_types = (struct type **)
5454 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
5455 * sizeof (struct type *));
5456 if (ndim == 0)
5457 make_cleanup (free_current_contents, &range_types);
5458 }
f792889a 5459 range_types[ndim++] = child_type;
a02abb62 5460 }
c906108c
SS
5461 }
5462 child_die = sibling_die (child_die);
5463 }
5464
5465 /* Dwarf2 dimensions are output from left to right, create the
5466 necessary array types in backwards order. */
7ca2d3a3 5467
c906108c 5468 type = element_type;
7ca2d3a3
DL
5469
5470 if (read_array_order (die, cu) == DW_ORD_col_major)
5471 {
5472 int i = 0;
5473 while (i < ndim)
5474 type = create_array_type (NULL, type, range_types[i++]);
5475 }
5476 else
5477 {
5478 while (ndim-- > 0)
5479 type = create_array_type (NULL, type, range_types[ndim]);
5480 }
c906108c 5481
f5f8a009
EZ
5482 /* Understand Dwarf2 support for vector types (like they occur on
5483 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
5484 array type. This is not part of the Dwarf2/3 standard yet, but a
5485 custom vendor extension. The main difference between a regular
5486 array and the vector variant is that vectors are passed by value
5487 to functions. */
e142c38c 5488 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 5489 if (attr)
ea37ba09 5490 make_vector_type (type);
f5f8a009 5491
39cbfefa
DJ
5492 name = dwarf2_name (die, cu);
5493 if (name)
5494 TYPE_NAME (type) = name;
714e295e 5495
b4ba55a1
JB
5496 set_descriptive_type (type, die, cu);
5497
c906108c
SS
5498 do_cleanups (back_to);
5499
5500 /* Install the type in the die. */
f792889a 5501 return set_die_type (die, type, cu);
c906108c
SS
5502}
5503
7ca2d3a3
DL
5504static enum dwarf_array_dim_ordering
5505read_array_order (struct die_info *die, struct dwarf2_cu *cu)
5506{
5507 struct attribute *attr;
5508
5509 attr = dwarf2_attr (die, DW_AT_ordering, cu);
5510
5511 if (attr) return DW_SND (attr);
5512
5513 /*
5514 GNU F77 is a special case, as at 08/2004 array type info is the
5515 opposite order to the dwarf2 specification, but data is still
5516 laid out as per normal fortran.
5517
5518 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
5519 version checking.
5520 */
5521
905e0470
PM
5522 if (cu->language == language_fortran
5523 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
5524 {
5525 return DW_ORD_row_major;
5526 }
5527
5528 switch (cu->language_defn->la_array_ordering)
5529 {
5530 case array_column_major:
5531 return DW_ORD_col_major;
5532 case array_row_major:
5533 default:
5534 return DW_ORD_row_major;
5535 };
5536}
5537
72019c9c
GM
5538/* Extract all information from a DW_TAG_set_type DIE and put it in
5539 the DIE's type field. */
5540
f792889a 5541static struct type *
72019c9c
GM
5542read_set_type (struct die_info *die, struct dwarf2_cu *cu)
5543{
f792889a
DJ
5544 struct type *set_type = create_set_type (NULL, die_type (die, cu));
5545
5546 return set_die_type (die, set_type, cu);
72019c9c 5547}
7ca2d3a3 5548
c906108c
SS
5549/* First cut: install each common block member as a global variable. */
5550
5551static void
e7c27a73 5552read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5553{
5554 struct die_info *child_die;
5555 struct attribute *attr;
5556 struct symbol *sym;
5557 CORE_ADDR base = (CORE_ADDR) 0;
5558
e142c38c 5559 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
5560 if (attr)
5561 {
8e19ed76
PS
5562 /* Support the .debug_loc offsets */
5563 if (attr_form_is_block (attr))
5564 {
e7c27a73 5565 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 5566 }
3690dd37 5567 else if (attr_form_is_section_offset (attr))
8e19ed76 5568 {
4d3c2250 5569 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5570 }
5571 else
5572 {
4d3c2250
KB
5573 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5574 "common block member");
8e19ed76 5575 }
c906108c 5576 }
639d11d3 5577 if (die->child != NULL)
c906108c 5578 {
639d11d3 5579 child_die = die->child;
c906108c
SS
5580 while (child_die && child_die->tag)
5581 {
e7c27a73 5582 sym = new_symbol (child_die, NULL, cu);
e142c38c 5583 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
5584 if (attr)
5585 {
d4b96c9a
JK
5586 CORE_ADDR byte_offset = 0;
5587
5588 if (attr_form_is_section_offset (attr))
5589 dwarf2_complex_location_expr_complaint ();
5590 else if (attr_form_is_constant (attr))
5591 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5592 else if (attr_form_is_block (attr))
5593 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5594 else
5595 dwarf2_complex_location_expr_complaint ();
5596
5597 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
c906108c
SS
5598 add_symbol_to_list (sym, &global_symbols);
5599 }
5600 child_die = sibling_die (child_die);
5601 }
5602 }
5603}
5604
0114d602 5605/* Create a type for a C++ namespace. */
d9fa45fe 5606
0114d602
DJ
5607static struct type *
5608read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 5609{
e7c27a73 5610 struct objfile *objfile = cu->objfile;
0114d602 5611 const char *previous_prefix, *name;
9219021c 5612 int is_anonymous;
0114d602
DJ
5613 struct type *type;
5614
5615 /* For extensions, reuse the type of the original namespace. */
5616 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
5617 {
5618 struct die_info *ext_die;
5619 struct dwarf2_cu *ext_cu = cu;
5620 ext_die = dwarf2_extension (die, &ext_cu);
5621 type = read_type_die (ext_die, ext_cu);
5622 return set_die_type (die, type, cu);
5623 }
9219021c 5624
e142c38c 5625 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
5626
5627 /* Now build the name of the current namespace. */
5628
0114d602
DJ
5629 previous_prefix = determine_prefix (die, cu);
5630 if (previous_prefix[0] != '\0')
5631 name = typename_concat (&objfile->objfile_obstack,
5632 previous_prefix, name, cu);
5633
5634 /* Create the type. */
5635 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
5636 objfile);
5637 TYPE_NAME (type) = (char *) name;
5638 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5639
60531b24 5640 return set_die_type (die, type, cu);
0114d602
DJ
5641}
5642
5643/* Read a C++ namespace. */
5644
5645static void
5646read_namespace (struct die_info *die, struct dwarf2_cu *cu)
5647{
5648 struct objfile *objfile = cu->objfile;
5649 const char *name;
5650 int is_anonymous;
9219021c 5651
5c4e30ca
DC
5652 /* Add a symbol associated to this if we haven't seen the namespace
5653 before. Also, add a using directive if it's an anonymous
5654 namespace. */
9219021c 5655
f2f0e013 5656 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
5657 {
5658 struct type *type;
5659
0114d602 5660 type = read_type_die (die, cu);
e7c27a73 5661 new_symbol (die, type, cu);
5c4e30ca 5662
0114d602 5663 name = namespace_name (die, &is_anonymous, cu);
5c4e30ca 5664 if (is_anonymous)
0114d602
DJ
5665 {
5666 const char *previous_prefix = determine_prefix (die, cu);
c0cc3a76 5667 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13387711 5668 NULL, &objfile->objfile_obstack);
0114d602 5669 }
5c4e30ca 5670 }
9219021c 5671
639d11d3 5672 if (die->child != NULL)
d9fa45fe 5673 {
639d11d3 5674 struct die_info *child_die = die->child;
d9fa45fe
DC
5675
5676 while (child_die && child_die->tag)
5677 {
e7c27a73 5678 process_die (child_die, cu);
d9fa45fe
DC
5679 child_die = sibling_die (child_die);
5680 }
5681 }
38d518c9
EZ
5682}
5683
5d7cb8df
JK
5684/* Read a Fortran module. */
5685
5686static void
5687read_module (struct die_info *die, struct dwarf2_cu *cu)
5688{
5689 struct die_info *child_die = die->child;
5690
5691 /* FIXME: Support the separate Fortran module namespaces. */
5692
5693 while (child_die && child_die->tag)
5694 {
5695 process_die (child_die, cu);
5696 child_die = sibling_die (child_die);
5697 }
5698}
5699
38d518c9
EZ
5700/* Return the name of the namespace represented by DIE. Set
5701 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
5702 namespace. */
5703
5704static const char *
e142c38c 5705namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
5706{
5707 struct die_info *current_die;
5708 const char *name = NULL;
5709
5710 /* Loop through the extensions until we find a name. */
5711
5712 for (current_die = die;
5713 current_die != NULL;
f2f0e013 5714 current_die = dwarf2_extension (die, &cu))
38d518c9 5715 {
e142c38c 5716 name = dwarf2_name (current_die, cu);
38d518c9
EZ
5717 if (name != NULL)
5718 break;
5719 }
5720
5721 /* Is it an anonymous namespace? */
5722
5723 *is_anonymous = (name == NULL);
5724 if (*is_anonymous)
5725 name = "(anonymous namespace)";
5726
5727 return name;
d9fa45fe
DC
5728}
5729
c906108c
SS
5730/* Extract all information from a DW_TAG_pointer_type DIE and add to
5731 the user defined type vector. */
5732
f792889a 5733static struct type *
e7c27a73 5734read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5735{
5e2b427d 5736 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 5737 struct comp_unit_head *cu_header = &cu->header;
c906108c 5738 struct type *type;
8b2dbe47
KB
5739 struct attribute *attr_byte_size;
5740 struct attribute *attr_address_class;
5741 int byte_size, addr_class;
c906108c 5742
e7c27a73 5743 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 5744
e142c38c 5745 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
5746 if (attr_byte_size)
5747 byte_size = DW_UNSND (attr_byte_size);
c906108c 5748 else
8b2dbe47
KB
5749 byte_size = cu_header->addr_size;
5750
e142c38c 5751 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
5752 if (attr_address_class)
5753 addr_class = DW_UNSND (attr_address_class);
5754 else
5755 addr_class = DW_ADDR_none;
5756
5757 /* If the pointer size or address class is different than the
5758 default, create a type variant marked as such and set the
5759 length accordingly. */
5760 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 5761 {
5e2b427d 5762 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
5763 {
5764 int type_flags;
5765
849957d9 5766 type_flags = gdbarch_address_class_type_flags
5e2b427d 5767 (gdbarch, byte_size, addr_class);
876cecd0
TT
5768 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5769 == 0);
8b2dbe47
KB
5770 type = make_type_with_address_space (type, type_flags);
5771 }
5772 else if (TYPE_LENGTH (type) != byte_size)
5773 {
e2e0b3e5 5774 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
5775 }
5776 else {
5777 /* Should we also complain about unhandled address classes? */
5778 }
c906108c 5779 }
8b2dbe47
KB
5780
5781 TYPE_LENGTH (type) = byte_size;
f792889a 5782 return set_die_type (die, type, cu);
c906108c
SS
5783}
5784
5785/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
5786 the user defined type vector. */
5787
f792889a 5788static struct type *
e7c27a73 5789read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5790{
e7c27a73 5791 struct objfile *objfile = cu->objfile;
c906108c
SS
5792 struct type *type;
5793 struct type *to_type;
5794 struct type *domain;
5795
e7c27a73
DJ
5796 to_type = die_type (die, cu);
5797 domain = die_containing_type (die, cu);
0d5de010
DJ
5798
5799 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
5800 type = lookup_methodptr_type (to_type);
5801 else
5802 type = lookup_memberptr_type (to_type, domain);
c906108c 5803
f792889a 5804 return set_die_type (die, type, cu);
c906108c
SS
5805}
5806
5807/* Extract all information from a DW_TAG_reference_type DIE and add to
5808 the user defined type vector. */
5809
f792889a 5810static struct type *
e7c27a73 5811read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5812{
e7c27a73 5813 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5814 struct type *type;
5815 struct attribute *attr;
5816
e7c27a73 5817 type = lookup_reference_type (die_type (die, cu));
e142c38c 5818 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5819 if (attr)
5820 {
5821 TYPE_LENGTH (type) = DW_UNSND (attr);
5822 }
5823 else
5824 {
107d2387 5825 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 5826 }
f792889a 5827 return set_die_type (die, type, cu);
c906108c
SS
5828}
5829
f792889a 5830static struct type *
e7c27a73 5831read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5832{
f792889a 5833 struct type *base_type, *cv_type;
c906108c 5834
e7c27a73 5835 base_type = die_type (die, cu);
f792889a
DJ
5836 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
5837 return set_die_type (die, cv_type, cu);
c906108c
SS
5838}
5839
f792889a 5840static struct type *
e7c27a73 5841read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5842{
f792889a 5843 struct type *base_type, *cv_type;
c906108c 5844
e7c27a73 5845 base_type = die_type (die, cu);
f792889a
DJ
5846 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
5847 return set_die_type (die, cv_type, cu);
c906108c
SS
5848}
5849
5850/* Extract all information from a DW_TAG_string_type DIE and add to
5851 the user defined type vector. It isn't really a user defined type,
5852 but it behaves like one, with other DIE's using an AT_user_def_type
5853 attribute to reference it. */
5854
f792889a 5855static struct type *
e7c27a73 5856read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5857{
e7c27a73 5858 struct objfile *objfile = cu->objfile;
3b7538c0 5859 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
5860 struct type *type, *range_type, *index_type, *char_type;
5861 struct attribute *attr;
5862 unsigned int length;
5863
e142c38c 5864 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
5865 if (attr)
5866 {
5867 length = DW_UNSND (attr);
5868 }
5869 else
5870 {
b21b22e0 5871 /* check for the DW_AT_byte_size attribute */
e142c38c 5872 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
5873 if (attr)
5874 {
5875 length = DW_UNSND (attr);
5876 }
5877 else
5878 {
5879 length = 1;
5880 }
c906108c 5881 }
6ccb9162 5882
46bf5051 5883 index_type = objfile_type (objfile)->builtin_int;
c906108c 5884 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
5885 char_type = language_string_char_type (cu->language_defn, gdbarch);
5886 type = create_string_type (NULL, char_type, range_type);
6ccb9162 5887
f792889a 5888 return set_die_type (die, type, cu);
c906108c
SS
5889}
5890
5891/* Handle DIES due to C code like:
5892
5893 struct foo
c5aa993b
JM
5894 {
5895 int (*funcp)(int a, long l);
5896 int b;
5897 };
c906108c
SS
5898
5899 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 5900 */
c906108c 5901
f792889a 5902static struct type *
e7c27a73 5903read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5904{
5905 struct type *type; /* Type that this function returns */
5906 struct type *ftype; /* Function that returns above type */
5907 struct attribute *attr;
5908
e7c27a73 5909 type = die_type (die, cu);
0c8b41f1 5910 ftype = lookup_function_type (type);
c906108c 5911
5b8101ae 5912 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 5913 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 5914 if ((attr && (DW_UNSND (attr) != 0))
987504bb 5915 || cu->language == language_cplus
5b8101ae
PM
5916 || cu->language == language_java
5917 || cu->language == language_pascal)
876cecd0 5918 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
5919 else if (producer_is_realview (cu->producer))
5920 /* RealView does not emit DW_AT_prototyped. We can not
5921 distinguish prototyped and unprototyped functions; default to
5922 prototyped, since that is more common in modern code (and
5923 RealView warns about unprototyped functions). */
5924 TYPE_PROTOTYPED (ftype) = 1;
c906108c 5925
c055b101
CV
5926 /* Store the calling convention in the type if it's available in
5927 the subroutine die. Otherwise set the calling convention to
5928 the default value DW_CC_normal. */
5929 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
5930 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
76c10ea2
GM
5931
5932 /* We need to add the subroutine type to the die immediately so
5933 we don't infinitely recurse when dealing with parameters
5934 declared as the same subroutine type. */
5935 set_die_type (die, ftype, cu);
c055b101 5936
639d11d3 5937 if (die->child != NULL)
c906108c 5938 {
8072405b 5939 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
c906108c 5940 struct die_info *child_die;
8072405b 5941 int nparams, iparams;
c906108c
SS
5942
5943 /* Count the number of parameters.
5944 FIXME: GDB currently ignores vararg functions, but knows about
5945 vararg member functions. */
8072405b 5946 nparams = 0;
639d11d3 5947 child_die = die->child;
c906108c
SS
5948 while (child_die && child_die->tag)
5949 {
5950 if (child_die->tag == DW_TAG_formal_parameter)
5951 nparams++;
5952 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 5953 TYPE_VARARGS (ftype) = 1;
c906108c
SS
5954 child_die = sibling_die (child_die);
5955 }
5956
5957 /* Allocate storage for parameters and fill them in. */
5958 TYPE_NFIELDS (ftype) = nparams;
5959 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 5960 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 5961
8072405b
JK
5962 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
5963 even if we error out during the parameters reading below. */
5964 for (iparams = 0; iparams < nparams; iparams++)
5965 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
5966
5967 iparams = 0;
639d11d3 5968 child_die = die->child;
c906108c
SS
5969 while (child_die && child_die->tag)
5970 {
5971 if (child_die->tag == DW_TAG_formal_parameter)
5972 {
5973 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
5974 member functions. G++ helps GDB by marking the first
5975 parameter for non-static member functions (which is the
5976 this pointer) as artificial. We pass this information
5977 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 5978 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
5979 if (attr)
5980 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
5981 else
418835cc
KS
5982 {
5983 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
5984
5985 /* GCC/43521: In java, the formal parameter
5986 "this" is sometimes not marked with DW_AT_artificial. */
5987 if (cu->language == language_java)
5988 {
5989 const char *name = dwarf2_name (child_die, cu);
5990 if (name && !strcmp (name, "this"))
5991 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
5992 }
5993 }
e7c27a73 5994 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
5995 iparams++;
5996 }
5997 child_die = sibling_die (child_die);
5998 }
5999 }
6000
76c10ea2 6001 return ftype;
c906108c
SS
6002}
6003
f792889a 6004static struct type *
e7c27a73 6005read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6006{
e7c27a73 6007 struct objfile *objfile = cu->objfile;
2f038fcb 6008 struct attribute *attr;
0114d602 6009 const char *name = NULL;
f792889a 6010 struct type *this_type;
c906108c 6011
94af9270 6012 name = dwarf2_full_name (NULL, die, cu);
f792889a 6013 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
6014 TYPE_FLAG_TARGET_STUB, NULL, objfile);
6015 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
6016 set_die_type (die, this_type, cu);
6017 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
6018 return this_type;
c906108c
SS
6019}
6020
6021/* Find a representation of a given base type and install
6022 it in the TYPE field of the die. */
6023
f792889a 6024static struct type *
e7c27a73 6025read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6026{
e7c27a73 6027 struct objfile *objfile = cu->objfile;
c906108c
SS
6028 struct type *type;
6029 struct attribute *attr;
6030 int encoding = 0, size = 0;
39cbfefa 6031 char *name;
6ccb9162
UW
6032 enum type_code code = TYPE_CODE_INT;
6033 int type_flags = 0;
6034 struct type *target_type = NULL;
c906108c 6035
e142c38c 6036 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
6037 if (attr)
6038 {
6039 encoding = DW_UNSND (attr);
6040 }
e142c38c 6041 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6042 if (attr)
6043 {
6044 size = DW_UNSND (attr);
6045 }
39cbfefa 6046 name = dwarf2_name (die, cu);
6ccb9162 6047 if (!name)
c906108c 6048 {
6ccb9162
UW
6049 complaint (&symfile_complaints,
6050 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 6051 }
6ccb9162
UW
6052
6053 switch (encoding)
c906108c 6054 {
6ccb9162
UW
6055 case DW_ATE_address:
6056 /* Turn DW_ATE_address into a void * pointer. */
6057 code = TYPE_CODE_PTR;
6058 type_flags |= TYPE_FLAG_UNSIGNED;
6059 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
6060 break;
6061 case DW_ATE_boolean:
6062 code = TYPE_CODE_BOOL;
6063 type_flags |= TYPE_FLAG_UNSIGNED;
6064 break;
6065 case DW_ATE_complex_float:
6066 code = TYPE_CODE_COMPLEX;
6067 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
6068 break;
6069 case DW_ATE_decimal_float:
6070 code = TYPE_CODE_DECFLOAT;
6071 break;
6072 case DW_ATE_float:
6073 code = TYPE_CODE_FLT;
6074 break;
6075 case DW_ATE_signed:
6076 break;
6077 case DW_ATE_unsigned:
6078 type_flags |= TYPE_FLAG_UNSIGNED;
6079 break;
6080 case DW_ATE_signed_char:
868a0084
PM
6081 if (cu->language == language_ada || cu->language == language_m2
6082 || cu->language == language_pascal)
6ccb9162
UW
6083 code = TYPE_CODE_CHAR;
6084 break;
6085 case DW_ATE_unsigned_char:
868a0084
PM
6086 if (cu->language == language_ada || cu->language == language_m2
6087 || cu->language == language_pascal)
6ccb9162
UW
6088 code = TYPE_CODE_CHAR;
6089 type_flags |= TYPE_FLAG_UNSIGNED;
6090 break;
6091 default:
6092 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
6093 dwarf_type_encoding_name (encoding));
6094 break;
c906108c 6095 }
6ccb9162 6096
0114d602
DJ
6097 type = init_type (code, size, type_flags, NULL, objfile);
6098 TYPE_NAME (type) = name;
6ccb9162
UW
6099 TYPE_TARGET_TYPE (type) = target_type;
6100
0114d602 6101 if (name && strcmp (name, "char") == 0)
876cecd0 6102 TYPE_NOSIGN (type) = 1;
0114d602 6103
f792889a 6104 return set_die_type (die, type, cu);
c906108c
SS
6105}
6106
a02abb62
JB
6107/* Read the given DW_AT_subrange DIE. */
6108
f792889a 6109static struct type *
a02abb62
JB
6110read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
6111{
5e2b427d 6112 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
a02abb62
JB
6113 struct type *base_type;
6114 struct type *range_type;
6115 struct attribute *attr;
43bbcdc2
PH
6116 LONGEST low = 0;
6117 LONGEST high = -1;
39cbfefa 6118 char *name;
43bbcdc2 6119 LONGEST negative_mask;
a02abb62 6120
a02abb62 6121 base_type = die_type (die, cu);
3d1f72c2 6122 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
a02abb62
JB
6123 {
6124 complaint (&symfile_complaints,
e2e0b3e5 6125 _("DW_AT_type missing from DW_TAG_subrange_type"));
17a912b6 6126 base_type
5e2b427d 6127 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (gdbarch) / 8,
6ccb9162 6128 0, NULL, cu->objfile);
a02abb62
JB
6129 }
6130
e142c38c 6131 if (cu->language == language_fortran)
a02abb62
JB
6132 {
6133 /* FORTRAN implies a lower bound of 1, if not given. */
6134 low = 1;
6135 }
6136
dd5e6932
DJ
6137 /* FIXME: For variable sized arrays either of these could be
6138 a variable rather than a constant value. We'll allow it,
6139 but we don't know how to handle it. */
e142c38c 6140 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
6141 if (attr)
6142 low = dwarf2_get_attr_constant_value (attr, 0);
6143
e142c38c 6144 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
6145 if (attr)
6146 {
6147 if (attr->form == DW_FORM_block1)
6148 {
6149 /* GCC encodes arrays with unspecified or dynamic length
6150 with a DW_FORM_block1 attribute.
6151 FIXME: GDB does not yet know how to handle dynamic
6152 arrays properly, treat them as arrays with unspecified
6153 length for now.
6154
6155 FIXME: jimb/2003-09-22: GDB does not really know
6156 how to handle arrays of unspecified length
6157 either; we just represent them as zero-length
6158 arrays. Choose an appropriate upper bound given
6159 the lower bound we've computed above. */
6160 high = low - 1;
6161 }
6162 else
6163 high = dwarf2_get_attr_constant_value (attr, 1);
6164 }
6165
43bbcdc2
PH
6166 negative_mask =
6167 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
6168 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
6169 low |= negative_mask;
6170 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
6171 high |= negative_mask;
6172
a02abb62
JB
6173 range_type = create_range_type (NULL, base_type, low, high);
6174
bbb0eef6
JK
6175 /* Mark arrays with dynamic length at least as an array of unspecified
6176 length. GDB could check the boundary but before it gets implemented at
6177 least allow accessing the array elements. */
6178 if (attr && attr->form == DW_FORM_block1)
6179 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
6180
39cbfefa
DJ
6181 name = dwarf2_name (die, cu);
6182 if (name)
6183 TYPE_NAME (range_type) = name;
a02abb62 6184
e142c38c 6185 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
6186 if (attr)
6187 TYPE_LENGTH (range_type) = DW_UNSND (attr);
6188
b4ba55a1
JB
6189 set_descriptive_type (range_type, die, cu);
6190
f792889a 6191 return set_die_type (die, range_type, cu);
a02abb62
JB
6192}
6193
f792889a 6194static struct type *
81a17f79
JB
6195read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
6196{
6197 struct type *type;
81a17f79 6198
81a17f79
JB
6199 /* For now, we only support the C meaning of an unspecified type: void. */
6200
0114d602
DJ
6201 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
6202 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 6203
f792889a 6204 return set_die_type (die, type, cu);
81a17f79 6205}
a02abb62 6206
51545339
DJ
6207/* Trivial hash function for die_info: the hash value of a DIE
6208 is its offset in .debug_info for this objfile. */
6209
6210static hashval_t
6211die_hash (const void *item)
6212{
6213 const struct die_info *die = item;
6214 return die->offset;
6215}
6216
6217/* Trivial comparison function for die_info structures: two DIEs
6218 are equal if they have the same offset. */
6219
6220static int
6221die_eq (const void *item_lhs, const void *item_rhs)
6222{
6223 const struct die_info *die_lhs = item_lhs;
6224 const struct die_info *die_rhs = item_rhs;
6225 return die_lhs->offset == die_rhs->offset;
6226}
6227
c906108c
SS
6228/* Read a whole compilation unit into a linked list of dies. */
6229
f9aca02d 6230static struct die_info *
93311388 6231read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 6232{
93311388
DE
6233 struct die_reader_specs reader_specs;
6234
348e048f 6235 gdb_assert (cu->die_hash == NULL);
51545339
DJ
6236 cu->die_hash
6237 = htab_create_alloc_ex (cu->header.length / 12,
6238 die_hash,
6239 die_eq,
6240 NULL,
6241 &cu->comp_unit_obstack,
6242 hashtab_obstack_allocate,
6243 dummy_obstack_deallocate);
6244
93311388
DE
6245 init_cu_die_reader (&reader_specs, cu);
6246
6247 return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
639d11d3
DC
6248}
6249
d97bc12b
DE
6250/* Main entry point for reading a DIE and all children.
6251 Read the DIE and dump it if requested. */
6252
6253static struct die_info *
93311388
DE
6254read_die_and_children (const struct die_reader_specs *reader,
6255 gdb_byte *info_ptr,
d97bc12b
DE
6256 gdb_byte **new_info_ptr,
6257 struct die_info *parent)
6258{
93311388 6259 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
6260 new_info_ptr, parent);
6261
6262 if (dwarf2_die_debug)
6263 {
348e048f
DE
6264 fprintf_unfiltered (gdb_stdlog,
6265 "\nRead die from %s of %s:\n",
6266 reader->buffer == dwarf2_per_objfile->info.buffer
6267 ? ".debug_info"
6268 : reader->buffer == dwarf2_per_objfile->types.buffer
6269 ? ".debug_types"
6270 : "unknown section",
6271 reader->abfd->filename);
d97bc12b
DE
6272 dump_die (result, dwarf2_die_debug);
6273 }
6274
6275 return result;
6276}
6277
639d11d3
DC
6278/* Read a single die and all its descendents. Set the die's sibling
6279 field to NULL; set other fields in the die correctly, and set all
6280 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
6281 location of the info_ptr after reading all of those dies. PARENT
6282 is the parent of the die in question. */
6283
6284static struct die_info *
93311388
DE
6285read_die_and_children_1 (const struct die_reader_specs *reader,
6286 gdb_byte *info_ptr,
d97bc12b
DE
6287 gdb_byte **new_info_ptr,
6288 struct die_info *parent)
639d11d3
DC
6289{
6290 struct die_info *die;
fe1b8b76 6291 gdb_byte *cur_ptr;
639d11d3
DC
6292 int has_children;
6293
93311388 6294 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
6295 if (die == NULL)
6296 {
6297 *new_info_ptr = cur_ptr;
6298 return NULL;
6299 }
93311388 6300 store_in_ref_table (die, reader->cu);
639d11d3
DC
6301
6302 if (has_children)
348e048f 6303 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
6304 else
6305 {
6306 die->child = NULL;
6307 *new_info_ptr = cur_ptr;
6308 }
6309
6310 die->sibling = NULL;
6311 die->parent = parent;
6312 return die;
6313}
6314
6315/* Read a die, all of its descendents, and all of its siblings; set
6316 all of the fields of all of the dies correctly. Arguments are as
6317 in read_die_and_children. */
6318
6319static struct die_info *
93311388
DE
6320read_die_and_siblings (const struct die_reader_specs *reader,
6321 gdb_byte *info_ptr,
fe1b8b76 6322 gdb_byte **new_info_ptr,
639d11d3
DC
6323 struct die_info *parent)
6324{
6325 struct die_info *first_die, *last_sibling;
fe1b8b76 6326 gdb_byte *cur_ptr;
639d11d3 6327
c906108c 6328 cur_ptr = info_ptr;
639d11d3
DC
6329 first_die = last_sibling = NULL;
6330
6331 while (1)
c906108c 6332 {
639d11d3 6333 struct die_info *die
93311388 6334 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 6335
1d325ec1 6336 if (die == NULL)
c906108c 6337 {
639d11d3
DC
6338 *new_info_ptr = cur_ptr;
6339 return first_die;
c906108c 6340 }
1d325ec1
DJ
6341
6342 if (!first_die)
6343 first_die = die;
c906108c 6344 else
1d325ec1
DJ
6345 last_sibling->sibling = die;
6346
6347 last_sibling = die;
c906108c 6348 }
c906108c
SS
6349}
6350
93311388
DE
6351/* Read the die from the .debug_info section buffer. Set DIEP to
6352 point to a newly allocated die with its information, except for its
6353 child, sibling, and parent fields. Set HAS_CHILDREN to tell
6354 whether the die has children or not. */
6355
6356static gdb_byte *
6357read_full_die (const struct die_reader_specs *reader,
6358 struct die_info **diep, gdb_byte *info_ptr,
6359 int *has_children)
6360{
6361 unsigned int abbrev_number, bytes_read, i, offset;
6362 struct abbrev_info *abbrev;
6363 struct die_info *die;
6364 struct dwarf2_cu *cu = reader->cu;
6365 bfd *abfd = reader->abfd;
6366
6367 offset = info_ptr - reader->buffer;
6368 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6369 info_ptr += bytes_read;
6370 if (!abbrev_number)
6371 {
6372 *diep = NULL;
6373 *has_children = 0;
6374 return info_ptr;
6375 }
6376
6377 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
6378 if (!abbrev)
348e048f
DE
6379 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
6380 abbrev_number,
6381 bfd_get_filename (abfd));
6382
93311388
DE
6383 die = dwarf_alloc_die (cu, abbrev->num_attrs);
6384 die->offset = offset;
6385 die->tag = abbrev->tag;
6386 die->abbrev = abbrev_number;
6387
6388 die->num_attrs = abbrev->num_attrs;
6389
6390 for (i = 0; i < abbrev->num_attrs; ++i)
6391 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
6392 abfd, info_ptr, cu);
6393
6394 *diep = die;
6395 *has_children = abbrev->has_children;
6396 return info_ptr;
6397}
6398
c906108c
SS
6399/* In DWARF version 2, the description of the debugging information is
6400 stored in a separate .debug_abbrev section. Before we read any
6401 dies from a section we read in all abbreviations and install them
72bf9492
DJ
6402 in a hash table. This function also sets flags in CU describing
6403 the data found in the abbrev table. */
c906108c
SS
6404
6405static void
e7c27a73 6406dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 6407{
e7c27a73 6408 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 6409 gdb_byte *abbrev_ptr;
c906108c
SS
6410 struct abbrev_info *cur_abbrev;
6411 unsigned int abbrev_number, bytes_read, abbrev_name;
6412 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
6413 struct attr_abbrev *cur_attrs;
6414 unsigned int allocated_attrs;
c906108c 6415
57349743 6416 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
6417 obstack_init (&cu->abbrev_obstack);
6418 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
6419 (ABBREV_HASH_SIZE
6420 * sizeof (struct abbrev_info *)));
6421 memset (cu->dwarf2_abbrevs, 0,
6422 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 6423
be391dca
TT
6424 dwarf2_read_section (dwarf2_per_objfile->objfile,
6425 &dwarf2_per_objfile->abbrev);
dce234bc 6426 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
6427 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6428 abbrev_ptr += bytes_read;
6429
f3dd6933
DJ
6430 allocated_attrs = ATTR_ALLOC_CHUNK;
6431 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6432
c906108c
SS
6433 /* loop until we reach an abbrev number of 0 */
6434 while (abbrev_number)
6435 {
f3dd6933 6436 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
6437
6438 /* read in abbrev header */
6439 cur_abbrev->number = abbrev_number;
6440 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6441 abbrev_ptr += bytes_read;
6442 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
6443 abbrev_ptr += 1;
6444
72bf9492
DJ
6445 if (cur_abbrev->tag == DW_TAG_namespace)
6446 cu->has_namespace_info = 1;
6447
c906108c
SS
6448 /* now read in declarations */
6449 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6450 abbrev_ptr += bytes_read;
6451 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6452 abbrev_ptr += bytes_read;
6453 while (abbrev_name)
6454 {
f3dd6933 6455 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 6456 {
f3dd6933
DJ
6457 allocated_attrs += ATTR_ALLOC_CHUNK;
6458 cur_attrs
6459 = xrealloc (cur_attrs, (allocated_attrs
6460 * sizeof (struct attr_abbrev)));
c906108c 6461 }
ae038cb0
DJ
6462
6463 /* Record whether this compilation unit might have
6464 inter-compilation-unit references. If we don't know what form
6465 this attribute will have, then it might potentially be a
6466 DW_FORM_ref_addr, so we conservatively expect inter-CU
6467 references. */
6468
6469 if (abbrev_form == DW_FORM_ref_addr
6470 || abbrev_form == DW_FORM_indirect)
6471 cu->has_form_ref_addr = 1;
6472
f3dd6933
DJ
6473 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
6474 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
6475 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6476 abbrev_ptr += bytes_read;
6477 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6478 abbrev_ptr += bytes_read;
6479 }
6480
f3dd6933
DJ
6481 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
6482 (cur_abbrev->num_attrs
6483 * sizeof (struct attr_abbrev)));
6484 memcpy (cur_abbrev->attrs, cur_attrs,
6485 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
6486
c906108c 6487 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
6488 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
6489 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
6490
6491 /* Get next abbreviation.
6492 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
6493 always properly terminated with an abbrev number of 0.
6494 Exit loop if we encounter an abbreviation which we have
6495 already read (which means we are about to read the abbreviations
6496 for the next compile unit) or if the end of the abbreviation
6497 table is reached. */
dce234bc
PP
6498 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
6499 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
6500 break;
6501 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6502 abbrev_ptr += bytes_read;
e7c27a73 6503 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
6504 break;
6505 }
f3dd6933
DJ
6506
6507 xfree (cur_attrs);
c906108c
SS
6508}
6509
f3dd6933 6510/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 6511
c906108c 6512static void
f3dd6933 6513dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 6514{
f3dd6933 6515 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 6516
f3dd6933
DJ
6517 obstack_free (&cu->abbrev_obstack, NULL);
6518 cu->dwarf2_abbrevs = NULL;
c906108c
SS
6519}
6520
6521/* Lookup an abbrev_info structure in the abbrev hash table. */
6522
6523static struct abbrev_info *
e7c27a73 6524dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
6525{
6526 unsigned int hash_number;
6527 struct abbrev_info *abbrev;
6528
6529 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 6530 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
6531
6532 while (abbrev)
6533 {
6534 if (abbrev->number == number)
6535 return abbrev;
6536 else
6537 abbrev = abbrev->next;
6538 }
6539 return NULL;
6540}
6541
72bf9492
DJ
6542/* Returns nonzero if TAG represents a type that we might generate a partial
6543 symbol for. */
6544
6545static int
6546is_type_tag_for_partial (int tag)
6547{
6548 switch (tag)
6549 {
6550#if 0
6551 /* Some types that would be reasonable to generate partial symbols for,
6552 that we don't at present. */
6553 case DW_TAG_array_type:
6554 case DW_TAG_file_type:
6555 case DW_TAG_ptr_to_member_type:
6556 case DW_TAG_set_type:
6557 case DW_TAG_string_type:
6558 case DW_TAG_subroutine_type:
6559#endif
6560 case DW_TAG_base_type:
6561 case DW_TAG_class_type:
680b30c7 6562 case DW_TAG_interface_type:
72bf9492
DJ
6563 case DW_TAG_enumeration_type:
6564 case DW_TAG_structure_type:
6565 case DW_TAG_subrange_type:
6566 case DW_TAG_typedef:
6567 case DW_TAG_union_type:
6568 return 1;
6569 default:
6570 return 0;
6571 }
6572}
6573
6574/* Load all DIEs that are interesting for partial symbols into memory. */
6575
6576static struct partial_die_info *
93311388
DE
6577load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
6578 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
6579{
6580 struct partial_die_info *part_die;
6581 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
6582 struct abbrev_info *abbrev;
6583 unsigned int bytes_read;
5afb4e99 6584 unsigned int load_all = 0;
72bf9492
DJ
6585
6586 int nesting_level = 1;
6587
6588 parent_die = NULL;
6589 last_die = NULL;
6590
5afb4e99
DJ
6591 if (cu->per_cu && cu->per_cu->load_all_dies)
6592 load_all = 1;
6593
72bf9492
DJ
6594 cu->partial_dies
6595 = htab_create_alloc_ex (cu->header.length / 12,
6596 partial_die_hash,
6597 partial_die_eq,
6598 NULL,
6599 &cu->comp_unit_obstack,
6600 hashtab_obstack_allocate,
6601 dummy_obstack_deallocate);
6602
6603 part_die = obstack_alloc (&cu->comp_unit_obstack,
6604 sizeof (struct partial_die_info));
6605
6606 while (1)
6607 {
6608 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6609
6610 /* A NULL abbrev means the end of a series of children. */
6611 if (abbrev == NULL)
6612 {
6613 if (--nesting_level == 0)
6614 {
6615 /* PART_DIE was probably the last thing allocated on the
6616 comp_unit_obstack, so we could call obstack_free
6617 here. We don't do that because the waste is small,
6618 and will be cleaned up when we're done with this
6619 compilation unit. This way, we're also more robust
6620 against other users of the comp_unit_obstack. */
6621 return first_die;
6622 }
6623 info_ptr += bytes_read;
6624 last_die = parent_die;
6625 parent_die = parent_die->die_parent;
6626 continue;
6627 }
6628
5afb4e99
DJ
6629 /* Check whether this DIE is interesting enough to save. Normally
6630 we would not be interested in members here, but there may be
6631 later variables referencing them via DW_AT_specification (for
6632 static members). */
6633 if (!load_all
6634 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
6635 && abbrev->tag != DW_TAG_enumerator
6636 && abbrev->tag != DW_TAG_subprogram
bc30ff58 6637 && abbrev->tag != DW_TAG_lexical_block
72bf9492 6638 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
6639 && abbrev->tag != DW_TAG_namespace
6640 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
6641 {
6642 /* Otherwise we skip to the next sibling, if any. */
93311388 6643 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
6644 continue;
6645 }
6646
93311388
DE
6647 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
6648 buffer, info_ptr, cu);
72bf9492
DJ
6649
6650 /* This two-pass algorithm for processing partial symbols has a
6651 high cost in cache pressure. Thus, handle some simple cases
6652 here which cover the majority of C partial symbols. DIEs
6653 which neither have specification tags in them, nor could have
6654 specification tags elsewhere pointing at them, can simply be
6655 processed and discarded.
6656
6657 This segment is also optional; scan_partial_symbols and
6658 add_partial_symbol will handle these DIEs if we chain
6659 them in normally. When compilers which do not emit large
6660 quantities of duplicate debug information are more common,
6661 this code can probably be removed. */
6662
6663 /* Any complete simple types at the top level (pretty much all
6664 of them, for a language without namespaces), can be processed
6665 directly. */
6666 if (parent_die == NULL
6667 && part_die->has_specification == 0
6668 && part_die->is_declaration == 0
6669 && (part_die->tag == DW_TAG_typedef
6670 || part_die->tag == DW_TAG_base_type
6671 || part_die->tag == DW_TAG_subrange_type))
6672 {
6673 if (building_psymtab && part_die->name != NULL)
04a679b8 6674 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
6675 VAR_DOMAIN, LOC_TYPEDEF,
6676 &cu->objfile->static_psymbols,
6677 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 6678 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6679 continue;
6680 }
6681
6682 /* If we're at the second level, and we're an enumerator, and
6683 our parent has no specification (meaning possibly lives in a
6684 namespace elsewhere), then we can add the partial symbol now
6685 instead of queueing it. */
6686 if (part_die->tag == DW_TAG_enumerator
6687 && parent_die != NULL
6688 && parent_die->die_parent == NULL
6689 && parent_die->tag == DW_TAG_enumeration_type
6690 && parent_die->has_specification == 0)
6691 {
6692 if (part_die->name == NULL)
e2e0b3e5 6693 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492 6694 else if (building_psymtab)
04a679b8 6695 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 6696 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6697 (cu->language == language_cplus
6698 || cu->language == language_java)
72bf9492
DJ
6699 ? &cu->objfile->global_psymbols
6700 : &cu->objfile->static_psymbols,
6701 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6702
93311388 6703 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6704 continue;
6705 }
6706
6707 /* We'll save this DIE so link it in. */
6708 part_die->die_parent = parent_die;
6709 part_die->die_sibling = NULL;
6710 part_die->die_child = NULL;
6711
6712 if (last_die && last_die == parent_die)
6713 last_die->die_child = part_die;
6714 else if (last_die)
6715 last_die->die_sibling = part_die;
6716
6717 last_die = part_die;
6718
6719 if (first_die == NULL)
6720 first_die = part_die;
6721
6722 /* Maybe add the DIE to the hash table. Not all DIEs that we
6723 find interesting need to be in the hash table, because we
6724 also have the parent/sibling/child chains; only those that we
6725 might refer to by offset later during partial symbol reading.
6726
6727 For now this means things that might have be the target of a
6728 DW_AT_specification, DW_AT_abstract_origin, or
6729 DW_AT_extension. DW_AT_extension will refer only to
6730 namespaces; DW_AT_abstract_origin refers to functions (and
6731 many things under the function DIE, but we do not recurse
6732 into function DIEs during partial symbol reading) and
6733 possibly variables as well; DW_AT_specification refers to
6734 declarations. Declarations ought to have the DW_AT_declaration
6735 flag. It happens that GCC forgets to put it in sometimes, but
6736 only for functions, not for types.
6737
6738 Adding more things than necessary to the hash table is harmless
6739 except for the performance cost. Adding too few will result in
5afb4e99
DJ
6740 wasted time in find_partial_die, when we reread the compilation
6741 unit with load_all_dies set. */
72bf9492 6742
5afb4e99
DJ
6743 if (load_all
6744 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
6745 || abbrev->tag == DW_TAG_variable
6746 || abbrev->tag == DW_TAG_namespace
6747 || part_die->is_declaration)
6748 {
6749 void **slot;
6750
6751 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
6752 part_die->offset, INSERT);
6753 *slot = part_die;
6754 }
6755
6756 part_die = obstack_alloc (&cu->comp_unit_obstack,
6757 sizeof (struct partial_die_info));
6758
6759 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 6760 we have no reason to follow the children of structures; for other
72bf9492 6761 languages we have to, both so that we can get at method physnames
bc30ff58
JB
6762 to infer fully qualified class names, and for DW_AT_specification.
6763
6764 For Ada, we need to scan the children of subprograms and lexical
6765 blocks as well because Ada allows the definition of nested
6766 entities that could be interesting for the debugger, such as
6767 nested subprograms for instance. */
72bf9492 6768 if (last_die->has_children
5afb4e99
DJ
6769 && (load_all
6770 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
6771 || last_die->tag == DW_TAG_enumeration_type
6772 || (cu->language != language_c
6773 && (last_die->tag == DW_TAG_class_type
680b30c7 6774 || last_die->tag == DW_TAG_interface_type
72bf9492 6775 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
6776 || last_die->tag == DW_TAG_union_type))
6777 || (cu->language == language_ada
6778 && (last_die->tag == DW_TAG_subprogram
6779 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
6780 {
6781 nesting_level++;
6782 parent_die = last_die;
6783 continue;
6784 }
6785
6786 /* Otherwise we skip to the next sibling, if any. */
93311388 6787 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6788
6789 /* Back to the top, do it again. */
6790 }
6791}
6792
c906108c
SS
6793/* Read a minimal amount of information into the minimal die structure. */
6794
fe1b8b76 6795static gdb_byte *
72bf9492
DJ
6796read_partial_die (struct partial_die_info *part_die,
6797 struct abbrev_info *abbrev,
6798 unsigned int abbrev_len, bfd *abfd,
93311388
DE
6799 gdb_byte *buffer, gdb_byte *info_ptr,
6800 struct dwarf2_cu *cu)
c906108c 6801{
72bf9492 6802 unsigned int bytes_read, i;
c906108c 6803 struct attribute attr;
c5aa993b 6804 int has_low_pc_attr = 0;
c906108c
SS
6805 int has_high_pc_attr = 0;
6806
72bf9492 6807 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 6808
93311388 6809 part_die->offset = info_ptr - buffer;
72bf9492
DJ
6810
6811 info_ptr += abbrev_len;
6812
6813 if (abbrev == NULL)
6814 return info_ptr;
6815
c906108c
SS
6816 part_die->tag = abbrev->tag;
6817 part_die->has_children = abbrev->has_children;
c906108c
SS
6818
6819 for (i = 0; i < abbrev->num_attrs; ++i)
6820 {
e7c27a73 6821 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
6822
6823 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 6824 partial symbol table. */
c906108c
SS
6825 switch (attr.name)
6826 {
6827 case DW_AT_name:
71c25dea
TT
6828 switch (part_die->tag)
6829 {
6830 case DW_TAG_compile_unit:
348e048f 6831 case DW_TAG_type_unit:
71c25dea
TT
6832 /* Compilation units have a DW_AT_name that is a filename, not
6833 a source language identifier. */
6834 case DW_TAG_enumeration_type:
6835 case DW_TAG_enumerator:
6836 /* These tags always have simple identifiers already; no need
6837 to canonicalize them. */
6838 part_die->name = DW_STRING (&attr);
6839 break;
6840 default:
6841 part_die->name
6842 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 6843 &cu->objfile->objfile_obstack);
71c25dea
TT
6844 break;
6845 }
c906108c
SS
6846 break;
6847 case DW_AT_MIPS_linkage_name:
94af9270
KS
6848 if (cu->language == language_ada)
6849 part_die->name = DW_STRING (&attr);
c906108c
SS
6850 break;
6851 case DW_AT_low_pc:
6852 has_low_pc_attr = 1;
6853 part_die->lowpc = DW_ADDR (&attr);
6854 break;
6855 case DW_AT_high_pc:
6856 has_high_pc_attr = 1;
6857 part_die->highpc = DW_ADDR (&attr);
6858 break;
6859 case DW_AT_location:
8e19ed76
PS
6860 /* Support the .debug_loc offsets */
6861 if (attr_form_is_block (&attr))
6862 {
6863 part_die->locdesc = DW_BLOCK (&attr);
6864 }
3690dd37 6865 else if (attr_form_is_section_offset (&attr))
8e19ed76 6866 {
4d3c2250 6867 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
6868 }
6869 else
6870 {
4d3c2250
KB
6871 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
6872 "partial symbol information");
8e19ed76 6873 }
c906108c 6874 break;
c906108c
SS
6875 case DW_AT_external:
6876 part_die->is_external = DW_UNSND (&attr);
6877 break;
6878 case DW_AT_declaration:
6879 part_die->is_declaration = DW_UNSND (&attr);
6880 break;
6881 case DW_AT_type:
6882 part_die->has_type = 1;
6883 break;
6884 case DW_AT_abstract_origin:
6885 case DW_AT_specification:
72bf9492
DJ
6886 case DW_AT_extension:
6887 part_die->has_specification = 1;
c764a876 6888 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
6889 break;
6890 case DW_AT_sibling:
6891 /* Ignore absolute siblings, they might point outside of
6892 the current compile unit. */
6893 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 6894 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 6895 else
93311388 6896 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 6897 break;
fa4028e9
JB
6898 case DW_AT_byte_size:
6899 part_die->has_byte_size = 1;
6900 break;
68511cec
CES
6901 case DW_AT_calling_convention:
6902 /* DWARF doesn't provide a way to identify a program's source-level
6903 entry point. DW_AT_calling_convention attributes are only meant
6904 to describe functions' calling conventions.
6905
6906 However, because it's a necessary piece of information in
6907 Fortran, and because DW_CC_program is the only piece of debugging
6908 information whose definition refers to a 'main program' at all,
6909 several compilers have begun marking Fortran main programs with
6910 DW_CC_program --- even when those functions use the standard
6911 calling conventions.
6912
6913 So until DWARF specifies a way to provide this information and
6914 compilers pick up the new representation, we'll support this
6915 practice. */
6916 if (DW_UNSND (&attr) == DW_CC_program
6917 && cu->language == language_fortran)
6918 set_main_name (part_die->name);
6919 break;
c906108c
SS
6920 default:
6921 break;
6922 }
6923 }
6924
c906108c
SS
6925 /* When using the GNU linker, .gnu.linkonce. sections are used to
6926 eliminate duplicate copies of functions and vtables and such.
6927 The linker will arbitrarily choose one and discard the others.
6928 The AT_*_pc values for such functions refer to local labels in
6929 these sections. If the section from that file was discarded, the
6930 labels are not in the output, so the relocs get a value of 0.
6931 If this is a discarded function, mark the pc bounds as invalid,
6932 so that GDB will ignore it. */
6933 if (has_low_pc_attr && has_high_pc_attr
6934 && part_die->lowpc < part_die->highpc
6935 && (part_die->lowpc != 0
72dca2f5 6936 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 6937 part_die->has_pc_info = 1;
85cbf3d3 6938
c906108c
SS
6939 return info_ptr;
6940}
6941
72bf9492
DJ
6942/* Find a cached partial DIE at OFFSET in CU. */
6943
6944static struct partial_die_info *
c764a876 6945find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
6946{
6947 struct partial_die_info *lookup_die = NULL;
6948 struct partial_die_info part_die;
6949
6950 part_die.offset = offset;
6951 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
6952
72bf9492
DJ
6953 return lookup_die;
6954}
6955
348e048f
DE
6956/* Find a partial DIE at OFFSET, which may or may not be in CU,
6957 except in the case of .debug_types DIEs which do not reference
6958 outside their CU (they do however referencing other types via
6959 DW_FORM_sig8). */
72bf9492
DJ
6960
6961static struct partial_die_info *
c764a876 6962find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 6963{
5afb4e99
DJ
6964 struct dwarf2_per_cu_data *per_cu = NULL;
6965 struct partial_die_info *pd = NULL;
72bf9492 6966
348e048f
DE
6967 if (cu->per_cu->from_debug_types)
6968 {
6969 pd = find_partial_die_in_comp_unit (offset, cu);
6970 if (pd != NULL)
6971 return pd;
6972 goto not_found;
6973 }
6974
45452591 6975 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
6976 {
6977 pd = find_partial_die_in_comp_unit (offset, cu);
6978 if (pd != NULL)
6979 return pd;
6980 }
72bf9492 6981
ae038cb0
DJ
6982 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
6983
ae038cb0
DJ
6984 if (per_cu->cu == NULL)
6985 {
93311388 6986 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
6987 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6988 dwarf2_per_objfile->read_in_chain = per_cu;
6989 }
6990
6991 per_cu->cu->last_used = 0;
5afb4e99
DJ
6992 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
6993
6994 if (pd == NULL && per_cu->load_all_dies == 0)
6995 {
6996 struct cleanup *back_to;
6997 struct partial_die_info comp_unit_die;
6998 struct abbrev_info *abbrev;
6999 unsigned int bytes_read;
7000 char *info_ptr;
7001
7002 per_cu->load_all_dies = 1;
7003
7004 /* Re-read the DIEs. */
7005 back_to = make_cleanup (null_cleanup, 0);
7006 if (per_cu->cu->dwarf2_abbrevs == NULL)
7007 {
7008 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 7009 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 7010 }
dce234bc 7011 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
7012 + per_cu->cu->header.offset
7013 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
7014 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
7015 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
7016 per_cu->cu->objfile->obfd,
7017 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
7018 per_cu->cu);
7019 if (comp_unit_die.has_children)
93311388
DE
7020 load_partial_dies (per_cu->cu->objfile->obfd,
7021 dwarf2_per_objfile->info.buffer, info_ptr,
7022 0, per_cu->cu);
5afb4e99
DJ
7023 do_cleanups (back_to);
7024
7025 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
7026 }
7027
348e048f
DE
7028 not_found:
7029
5afb4e99
DJ
7030 if (pd == NULL)
7031 internal_error (__FILE__, __LINE__,
c764a876 7032 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
5afb4e99
DJ
7033 offset, bfd_get_filename (cu->objfile->obfd));
7034 return pd;
72bf9492
DJ
7035}
7036
7037/* Adjust PART_DIE before generating a symbol for it. This function
7038 may set the is_external flag or change the DIE's name. */
7039
7040static void
7041fixup_partial_die (struct partial_die_info *part_die,
7042 struct dwarf2_cu *cu)
7043{
7044 /* If we found a reference attribute and the DIE has no name, try
7045 to find a name in the referred to DIE. */
7046
7047 if (part_die->name == NULL && part_die->has_specification)
7048 {
7049 struct partial_die_info *spec_die;
72bf9492 7050
10b3939b 7051 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 7052
10b3939b 7053 fixup_partial_die (spec_die, cu);
72bf9492
DJ
7054
7055 if (spec_die->name)
7056 {
7057 part_die->name = spec_die->name;
7058
7059 /* Copy DW_AT_external attribute if it is set. */
7060 if (spec_die->is_external)
7061 part_die->is_external = spec_die->is_external;
7062 }
7063 }
7064
7065 /* Set default names for some unnamed DIEs. */
7066 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
7067 || part_die->tag == DW_TAG_class_type))
7068 part_die->name = "(anonymous class)";
7069
7070 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
7071 part_die->name = "(anonymous namespace)";
7072
7073 if (part_die->tag == DW_TAG_structure_type
7074 || part_die->tag == DW_TAG_class_type
7075 || part_die->tag == DW_TAG_union_type)
7076 guess_structure_name (part_die, cu);
7077}
7078
a8329558 7079/* Read an attribute value described by an attribute form. */
c906108c 7080
fe1b8b76 7081static gdb_byte *
a8329558 7082read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 7083 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 7084 struct dwarf2_cu *cu)
c906108c 7085{
e7c27a73 7086 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7087 unsigned int bytes_read;
7088 struct dwarf_block *blk;
7089
a8329558
KW
7090 attr->form = form;
7091 switch (form)
c906108c 7092 {
c906108c 7093 case DW_FORM_ref_addr:
ae411497
TT
7094 if (cu->header.version == 2)
7095 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
7096 else
7097 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
7098 info_ptr += bytes_read;
7099 break;
7100 case DW_FORM_addr:
e7c27a73 7101 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 7102 info_ptr += bytes_read;
c906108c
SS
7103 break;
7104 case DW_FORM_block2:
7b5a2f43 7105 blk = dwarf_alloc_block (cu);
c906108c
SS
7106 blk->size = read_2_bytes (abfd, info_ptr);
7107 info_ptr += 2;
7108 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7109 info_ptr += blk->size;
7110 DW_BLOCK (attr) = blk;
7111 break;
7112 case DW_FORM_block4:
7b5a2f43 7113 blk = dwarf_alloc_block (cu);
c906108c
SS
7114 blk->size = read_4_bytes (abfd, info_ptr);
7115 info_ptr += 4;
7116 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7117 info_ptr += blk->size;
7118 DW_BLOCK (attr) = blk;
7119 break;
7120 case DW_FORM_data2:
7121 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
7122 info_ptr += 2;
7123 break;
7124 case DW_FORM_data4:
7125 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
7126 info_ptr += 4;
7127 break;
7128 case DW_FORM_data8:
7129 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
7130 info_ptr += 8;
7131 break;
7132 case DW_FORM_string:
7133 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
8285870a 7134 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
7135 info_ptr += bytes_read;
7136 break;
4bdf3d34
JJ
7137 case DW_FORM_strp:
7138 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
7139 &bytes_read);
8285870a 7140 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
7141 info_ptr += bytes_read;
7142 break;
c906108c 7143 case DW_FORM_block:
7b5a2f43 7144 blk = dwarf_alloc_block (cu);
c906108c
SS
7145 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7146 info_ptr += bytes_read;
7147 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7148 info_ptr += blk->size;
7149 DW_BLOCK (attr) = blk;
7150 break;
7151 case DW_FORM_block1:
7b5a2f43 7152 blk = dwarf_alloc_block (cu);
c906108c
SS
7153 blk->size = read_1_byte (abfd, info_ptr);
7154 info_ptr += 1;
7155 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7156 info_ptr += blk->size;
7157 DW_BLOCK (attr) = blk;
7158 break;
7159 case DW_FORM_data1:
7160 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7161 info_ptr += 1;
7162 break;
7163 case DW_FORM_flag:
7164 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7165 info_ptr += 1;
7166 break;
7167 case DW_FORM_sdata:
7168 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
7169 info_ptr += bytes_read;
7170 break;
7171 case DW_FORM_udata:
7172 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7173 info_ptr += bytes_read;
7174 break;
7175 case DW_FORM_ref1:
10b3939b 7176 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
7177 info_ptr += 1;
7178 break;
7179 case DW_FORM_ref2:
10b3939b 7180 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
7181 info_ptr += 2;
7182 break;
7183 case DW_FORM_ref4:
10b3939b 7184 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
7185 info_ptr += 4;
7186 break;
613e1657 7187 case DW_FORM_ref8:
10b3939b 7188 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
7189 info_ptr += 8;
7190 break;
348e048f
DE
7191 case DW_FORM_sig8:
7192 /* Convert the signature to something we can record in DW_UNSND
7193 for later lookup.
7194 NOTE: This is NULL if the type wasn't found. */
7195 DW_SIGNATURED_TYPE (attr) =
7196 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
7197 info_ptr += 8;
7198 break;
c906108c 7199 case DW_FORM_ref_udata:
10b3939b
DJ
7200 DW_ADDR (attr) = (cu->header.offset
7201 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
7202 info_ptr += bytes_read;
7203 break;
c906108c 7204 case DW_FORM_indirect:
a8329558
KW
7205 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7206 info_ptr += bytes_read;
e7c27a73 7207 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 7208 break;
c906108c 7209 default:
8a3fe4f8 7210 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
7211 dwarf_form_name (form),
7212 bfd_get_filename (abfd));
c906108c 7213 }
28e94949
JB
7214
7215 /* We have seen instances where the compiler tried to emit a byte
7216 size attribute of -1 which ended up being encoded as an unsigned
7217 0xffffffff. Although 0xffffffff is technically a valid size value,
7218 an object of this size seems pretty unlikely so we can relatively
7219 safely treat these cases as if the size attribute was invalid and
7220 treat them as zero by default. */
7221 if (attr->name == DW_AT_byte_size
7222 && form == DW_FORM_data4
7223 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
7224 {
7225 complaint
7226 (&symfile_complaints,
43bbcdc2
PH
7227 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
7228 hex_string (DW_UNSND (attr)));
01c66ae6
JB
7229 DW_UNSND (attr) = 0;
7230 }
28e94949 7231
c906108c
SS
7232 return info_ptr;
7233}
7234
a8329558
KW
7235/* Read an attribute described by an abbreviated attribute. */
7236
fe1b8b76 7237static gdb_byte *
a8329558 7238read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 7239 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
7240{
7241 attr->name = abbrev->name;
e7c27a73 7242 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
7243}
7244
c906108c
SS
7245/* read dwarf information from a buffer */
7246
7247static unsigned int
fe1b8b76 7248read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 7249{
fe1b8b76 7250 return bfd_get_8 (abfd, buf);
c906108c
SS
7251}
7252
7253static int
fe1b8b76 7254read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 7255{
fe1b8b76 7256 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
7257}
7258
7259static unsigned int
fe1b8b76 7260read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7261{
fe1b8b76 7262 return bfd_get_16 (abfd, buf);
c906108c
SS
7263}
7264
7265static int
fe1b8b76 7266read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7267{
fe1b8b76 7268 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
7269}
7270
7271static unsigned int
fe1b8b76 7272read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7273{
fe1b8b76 7274 return bfd_get_32 (abfd, buf);
c906108c
SS
7275}
7276
7277static int
fe1b8b76 7278read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7279{
fe1b8b76 7280 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
7281}
7282
93311388 7283static ULONGEST
fe1b8b76 7284read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7285{
fe1b8b76 7286 return bfd_get_64 (abfd, buf);
c906108c
SS
7287}
7288
7289static CORE_ADDR
fe1b8b76 7290read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 7291 unsigned int *bytes_read)
c906108c 7292{
e7c27a73 7293 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7294 CORE_ADDR retval = 0;
7295
107d2387 7296 if (cu_header->signed_addr_p)
c906108c 7297 {
107d2387
AC
7298 switch (cu_header->addr_size)
7299 {
7300 case 2:
fe1b8b76 7301 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
7302 break;
7303 case 4:
fe1b8b76 7304 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
7305 break;
7306 case 8:
fe1b8b76 7307 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
7308 break;
7309 default:
8e65ff28 7310 internal_error (__FILE__, __LINE__,
e2e0b3e5 7311 _("read_address: bad switch, signed [in module %s]"),
659b0389 7312 bfd_get_filename (abfd));
107d2387
AC
7313 }
7314 }
7315 else
7316 {
7317 switch (cu_header->addr_size)
7318 {
7319 case 2:
fe1b8b76 7320 retval = bfd_get_16 (abfd, buf);
107d2387
AC
7321 break;
7322 case 4:
fe1b8b76 7323 retval = bfd_get_32 (abfd, buf);
107d2387
AC
7324 break;
7325 case 8:
fe1b8b76 7326 retval = bfd_get_64 (abfd, buf);
107d2387
AC
7327 break;
7328 default:
8e65ff28 7329 internal_error (__FILE__, __LINE__,
e2e0b3e5 7330 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 7331 bfd_get_filename (abfd));
107d2387 7332 }
c906108c 7333 }
64367e0a 7334
107d2387
AC
7335 *bytes_read = cu_header->addr_size;
7336 return retval;
c906108c
SS
7337}
7338
f7ef9339 7339/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
7340 specification allows the initial length to take up either 4 bytes
7341 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
7342 bytes describe the length and all offsets will be 8 bytes in length
7343 instead of 4.
7344
f7ef9339
KB
7345 An older, non-standard 64-bit format is also handled by this
7346 function. The older format in question stores the initial length
7347 as an 8-byte quantity without an escape value. Lengths greater
7348 than 2^32 aren't very common which means that the initial 4 bytes
7349 is almost always zero. Since a length value of zero doesn't make
7350 sense for the 32-bit format, this initial zero can be considered to
7351 be an escape value which indicates the presence of the older 64-bit
7352 format. As written, the code can't detect (old format) lengths
917c78fc
MK
7353 greater than 4GB. If it becomes necessary to handle lengths
7354 somewhat larger than 4GB, we could allow other small values (such
7355 as the non-sensical values of 1, 2, and 3) to also be used as
7356 escape values indicating the presence of the old format.
f7ef9339 7357
917c78fc
MK
7358 The value returned via bytes_read should be used to increment the
7359 relevant pointer after calling read_initial_length().
c764a876 7360
613e1657
KB
7361 [ Note: read_initial_length() and read_offset() are based on the
7362 document entitled "DWARF Debugging Information Format", revision
f7ef9339 7363 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
7364 from:
7365
f7ef9339 7366 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
7367
7368 This document is only a draft and is subject to change. (So beware.)
7369
f7ef9339 7370 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
7371 determined empirically by examining 64-bit ELF files produced by
7372 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
7373
7374 - Kevin, July 16, 2002
613e1657
KB
7375 ] */
7376
7377static LONGEST
c764a876 7378read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 7379{
fe1b8b76 7380 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 7381
dd373385 7382 if (length == 0xffffffff)
613e1657 7383 {
fe1b8b76 7384 length = bfd_get_64 (abfd, buf + 4);
613e1657 7385 *bytes_read = 12;
613e1657 7386 }
dd373385 7387 else if (length == 0)
f7ef9339 7388 {
dd373385 7389 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 7390 length = bfd_get_64 (abfd, buf);
f7ef9339 7391 *bytes_read = 8;
f7ef9339 7392 }
613e1657
KB
7393 else
7394 {
7395 *bytes_read = 4;
613e1657
KB
7396 }
7397
c764a876
DE
7398 return length;
7399}
dd373385 7400
c764a876
DE
7401/* Cover function for read_initial_length.
7402 Returns the length of the object at BUF, and stores the size of the
7403 initial length in *BYTES_READ and stores the size that offsets will be in
7404 *OFFSET_SIZE.
7405 If the initial length size is not equivalent to that specified in
7406 CU_HEADER then issue a complaint.
7407 This is useful when reading non-comp-unit headers. */
dd373385 7408
c764a876
DE
7409static LONGEST
7410read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
7411 const struct comp_unit_head *cu_header,
7412 unsigned int *bytes_read,
7413 unsigned int *offset_size)
7414{
7415 LONGEST length = read_initial_length (abfd, buf, bytes_read);
7416
7417 gdb_assert (cu_header->initial_length_size == 4
7418 || cu_header->initial_length_size == 8
7419 || cu_header->initial_length_size == 12);
7420
7421 if (cu_header->initial_length_size != *bytes_read)
7422 complaint (&symfile_complaints,
7423 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 7424
c764a876 7425 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 7426 return length;
613e1657
KB
7427}
7428
7429/* Read an offset from the data stream. The size of the offset is
917c78fc 7430 given by cu_header->offset_size. */
613e1657
KB
7431
7432static LONGEST
fe1b8b76 7433read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 7434 unsigned int *bytes_read)
c764a876
DE
7435{
7436 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
7437 *bytes_read = cu_header->offset_size;
7438 return offset;
7439}
7440
7441/* Read an offset from the data stream. */
7442
7443static LONGEST
7444read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
7445{
7446 LONGEST retval = 0;
7447
c764a876 7448 switch (offset_size)
613e1657
KB
7449 {
7450 case 4:
fe1b8b76 7451 retval = bfd_get_32 (abfd, buf);
613e1657
KB
7452 break;
7453 case 8:
fe1b8b76 7454 retval = bfd_get_64 (abfd, buf);
613e1657
KB
7455 break;
7456 default:
8e65ff28 7457 internal_error (__FILE__, __LINE__,
c764a876 7458 _("read_offset_1: bad switch [in module %s]"),
659b0389 7459 bfd_get_filename (abfd));
613e1657
KB
7460 }
7461
917c78fc 7462 return retval;
613e1657
KB
7463}
7464
fe1b8b76
JB
7465static gdb_byte *
7466read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
7467{
7468 /* If the size of a host char is 8 bits, we can return a pointer
7469 to the buffer, otherwise we have to copy the data to a buffer
7470 allocated on the temporary obstack. */
4bdf3d34 7471 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 7472 return buf;
c906108c
SS
7473}
7474
7475static char *
fe1b8b76 7476read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
7477{
7478 /* If the size of a host char is 8 bits, we can return a pointer
7479 to the string, otherwise we have to copy the string to a buffer
7480 allocated on the temporary obstack. */
4bdf3d34 7481 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
7482 if (*buf == '\0')
7483 {
7484 *bytes_read_ptr = 1;
7485 return NULL;
7486 }
fe1b8b76
JB
7487 *bytes_read_ptr = strlen ((char *) buf) + 1;
7488 return (char *) buf;
4bdf3d34
JJ
7489}
7490
7491static char *
fe1b8b76 7492read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
7493 const struct comp_unit_head *cu_header,
7494 unsigned int *bytes_read_ptr)
7495{
c764a876 7496 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
c906108c 7497
be391dca 7498 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 7499 if (dwarf2_per_objfile->str.buffer == NULL)
c906108c 7500 {
8a3fe4f8 7501 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 7502 bfd_get_filename (abfd));
4bdf3d34 7503 return NULL;
c906108c 7504 }
dce234bc 7505 if (str_offset >= dwarf2_per_objfile->str.size)
c906108c 7506 {
8a3fe4f8 7507 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 7508 bfd_get_filename (abfd));
c906108c
SS
7509 return NULL;
7510 }
4bdf3d34 7511 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 7512 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 7513 return NULL;
dce234bc 7514 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
7515}
7516
ce5d95e1 7517static unsigned long
fe1b8b76 7518read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 7519{
ce5d95e1
JB
7520 unsigned long result;
7521 unsigned int num_read;
c906108c
SS
7522 int i, shift;
7523 unsigned char byte;
7524
7525 result = 0;
7526 shift = 0;
7527 num_read = 0;
7528 i = 0;
7529 while (1)
7530 {
fe1b8b76 7531 byte = bfd_get_8 (abfd, buf);
c906108c
SS
7532 buf++;
7533 num_read++;
ce5d95e1 7534 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
7535 if ((byte & 128) == 0)
7536 {
7537 break;
7538 }
7539 shift += 7;
7540 }
7541 *bytes_read_ptr = num_read;
7542 return result;
7543}
7544
ce5d95e1 7545static long
fe1b8b76 7546read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 7547{
ce5d95e1 7548 long result;
77e0b926 7549 int i, shift, num_read;
c906108c
SS
7550 unsigned char byte;
7551
7552 result = 0;
7553 shift = 0;
c906108c
SS
7554 num_read = 0;
7555 i = 0;
7556 while (1)
7557 {
fe1b8b76 7558 byte = bfd_get_8 (abfd, buf);
c906108c
SS
7559 buf++;
7560 num_read++;
ce5d95e1 7561 result |= ((long)(byte & 127) << shift);
c906108c
SS
7562 shift += 7;
7563 if ((byte & 128) == 0)
7564 {
7565 break;
7566 }
7567 }
77e0b926
DJ
7568 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
7569 result |= -(((long)1) << shift);
c906108c
SS
7570 *bytes_read_ptr = num_read;
7571 return result;
7572}
7573
4bb7a0a7
DJ
7574/* Return a pointer to just past the end of an LEB128 number in BUF. */
7575
fe1b8b76
JB
7576static gdb_byte *
7577skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
7578{
7579 int byte;
7580
7581 while (1)
7582 {
fe1b8b76 7583 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
7584 buf++;
7585 if ((byte & 128) == 0)
7586 return buf;
7587 }
7588}
7589
c906108c 7590static void
e142c38c 7591set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
7592{
7593 switch (lang)
7594 {
7595 case DW_LANG_C89:
76bee0cc 7596 case DW_LANG_C99:
c906108c 7597 case DW_LANG_C:
e142c38c 7598 cu->language = language_c;
c906108c
SS
7599 break;
7600 case DW_LANG_C_plus_plus:
e142c38c 7601 cu->language = language_cplus;
c906108c
SS
7602 break;
7603 case DW_LANG_Fortran77:
7604 case DW_LANG_Fortran90:
b21b22e0 7605 case DW_LANG_Fortran95:
e142c38c 7606 cu->language = language_fortran;
c906108c
SS
7607 break;
7608 case DW_LANG_Mips_Assembler:
e142c38c 7609 cu->language = language_asm;
c906108c 7610 break;
bebd888e 7611 case DW_LANG_Java:
e142c38c 7612 cu->language = language_java;
bebd888e 7613 break;
c906108c 7614 case DW_LANG_Ada83:
8aaf0b47 7615 case DW_LANG_Ada95:
bc5f45f8
JB
7616 cu->language = language_ada;
7617 break;
72019c9c
GM
7618 case DW_LANG_Modula2:
7619 cu->language = language_m2;
7620 break;
fe8e67fd
PM
7621 case DW_LANG_Pascal83:
7622 cu->language = language_pascal;
7623 break;
22566fbd
DJ
7624 case DW_LANG_ObjC:
7625 cu->language = language_objc;
7626 break;
c906108c
SS
7627 case DW_LANG_Cobol74:
7628 case DW_LANG_Cobol85:
c906108c 7629 default:
e142c38c 7630 cu->language = language_minimal;
c906108c
SS
7631 break;
7632 }
e142c38c 7633 cu->language_defn = language_def (cu->language);
c906108c
SS
7634}
7635
7636/* Return the named attribute or NULL if not there. */
7637
7638static struct attribute *
e142c38c 7639dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
7640{
7641 unsigned int i;
7642 struct attribute *spec = NULL;
7643
7644 for (i = 0; i < die->num_attrs; ++i)
7645 {
7646 if (die->attrs[i].name == name)
10b3939b 7647 return &die->attrs[i];
c906108c
SS
7648 if (die->attrs[i].name == DW_AT_specification
7649 || die->attrs[i].name == DW_AT_abstract_origin)
7650 spec = &die->attrs[i];
7651 }
c906108c 7652
10b3939b 7653 if (spec)
f2f0e013
DJ
7654 {
7655 die = follow_die_ref (die, spec, &cu);
7656 return dwarf2_attr (die, name, cu);
7657 }
c5aa993b 7658
c906108c
SS
7659 return NULL;
7660}
7661
348e048f
DE
7662/* Return the named attribute or NULL if not there,
7663 but do not follow DW_AT_specification, etc.
7664 This is for use in contexts where we're reading .debug_types dies.
7665 Following DW_AT_specification, DW_AT_abstract_origin will take us
7666 back up the chain, and we want to go down. */
7667
7668static struct attribute *
7669dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
7670 struct dwarf2_cu *cu)
7671{
7672 unsigned int i;
7673
7674 for (i = 0; i < die->num_attrs; ++i)
7675 if (die->attrs[i].name == name)
7676 return &die->attrs[i];
7677
7678 return NULL;
7679}
7680
05cf31d1
JB
7681/* Return non-zero iff the attribute NAME is defined for the given DIE,
7682 and holds a non-zero value. This function should only be used for
7683 DW_FORM_flag attributes. */
7684
7685static int
7686dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
7687{
7688 struct attribute *attr = dwarf2_attr (die, name, cu);
7689
7690 return (attr && DW_UNSND (attr));
7691}
7692
3ca72b44 7693static int
e142c38c 7694die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 7695{
05cf31d1
JB
7696 /* A DIE is a declaration if it has a DW_AT_declaration attribute
7697 which value is non-zero. However, we have to be careful with
7698 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
7699 (via dwarf2_flag_true_p) follows this attribute. So we may
7700 end up accidently finding a declaration attribute that belongs
7701 to a different DIE referenced by the specification attribute,
7702 even though the given DIE does not have a declaration attribute. */
7703 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
7704 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
7705}
7706
63d06c5c 7707/* Return the die giving the specification for DIE, if there is
f2f0e013 7708 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
7709 containing the return value on output. If there is no
7710 specification, but there is an abstract origin, that is
7711 returned. */
63d06c5c
DC
7712
7713static struct die_info *
f2f0e013 7714die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 7715{
f2f0e013
DJ
7716 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
7717 *spec_cu);
63d06c5c 7718
edb3359d
DJ
7719 if (spec_attr == NULL)
7720 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
7721
63d06c5c
DC
7722 if (spec_attr == NULL)
7723 return NULL;
7724 else
f2f0e013 7725 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 7726}
c906108c 7727
debd256d
JB
7728/* Free the line_header structure *LH, and any arrays and strings it
7729 refers to. */
7730static void
7731free_line_header (struct line_header *lh)
7732{
7733 if (lh->standard_opcode_lengths)
a8bc7b56 7734 xfree (lh->standard_opcode_lengths);
debd256d
JB
7735
7736 /* Remember that all the lh->file_names[i].name pointers are
7737 pointers into debug_line_buffer, and don't need to be freed. */
7738 if (lh->file_names)
a8bc7b56 7739 xfree (lh->file_names);
debd256d
JB
7740
7741 /* Similarly for the include directory names. */
7742 if (lh->include_dirs)
a8bc7b56 7743 xfree (lh->include_dirs);
debd256d 7744
a8bc7b56 7745 xfree (lh);
debd256d
JB
7746}
7747
7748
7749/* Add an entry to LH's include directory table. */
7750static void
7751add_include_dir (struct line_header *lh, char *include_dir)
c906108c 7752{
debd256d
JB
7753 /* Grow the array if necessary. */
7754 if (lh->include_dirs_size == 0)
c5aa993b 7755 {
debd256d
JB
7756 lh->include_dirs_size = 1; /* for testing */
7757 lh->include_dirs = xmalloc (lh->include_dirs_size
7758 * sizeof (*lh->include_dirs));
7759 }
7760 else if (lh->num_include_dirs >= lh->include_dirs_size)
7761 {
7762 lh->include_dirs_size *= 2;
7763 lh->include_dirs = xrealloc (lh->include_dirs,
7764 (lh->include_dirs_size
7765 * sizeof (*lh->include_dirs)));
c5aa993b 7766 }
c906108c 7767
debd256d
JB
7768 lh->include_dirs[lh->num_include_dirs++] = include_dir;
7769}
7770
7771
7772/* Add an entry to LH's file name table. */
7773static void
7774add_file_name (struct line_header *lh,
7775 char *name,
7776 unsigned int dir_index,
7777 unsigned int mod_time,
7778 unsigned int length)
7779{
7780 struct file_entry *fe;
7781
7782 /* Grow the array if necessary. */
7783 if (lh->file_names_size == 0)
7784 {
7785 lh->file_names_size = 1; /* for testing */
7786 lh->file_names = xmalloc (lh->file_names_size
7787 * sizeof (*lh->file_names));
7788 }
7789 else if (lh->num_file_names >= lh->file_names_size)
7790 {
7791 lh->file_names_size *= 2;
7792 lh->file_names = xrealloc (lh->file_names,
7793 (lh->file_names_size
7794 * sizeof (*lh->file_names)));
7795 }
7796
7797 fe = &lh->file_names[lh->num_file_names++];
7798 fe->name = name;
7799 fe->dir_index = dir_index;
7800 fe->mod_time = mod_time;
7801 fe->length = length;
aaa75496 7802 fe->included_p = 0;
cb1df416 7803 fe->symtab = NULL;
debd256d
JB
7804}
7805
7806
7807/* Read the statement program header starting at OFFSET in
6502dd73
DJ
7808 .debug_line, according to the endianness of ABFD. Return a pointer
7809 to a struct line_header, allocated using xmalloc.
debd256d
JB
7810
7811 NOTE: the strings in the include directory and file name tables of
7812 the returned object point into debug_line_buffer, and must not be
7813 freed. */
7814static struct line_header *
7815dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 7816 struct dwarf2_cu *cu)
debd256d
JB
7817{
7818 struct cleanup *back_to;
7819 struct line_header *lh;
fe1b8b76 7820 gdb_byte *line_ptr;
c764a876 7821 unsigned int bytes_read, offset_size;
debd256d
JB
7822 int i;
7823 char *cur_dir, *cur_file;
7824
be391dca 7825 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 7826 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 7827 {
e2e0b3e5 7828 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
7829 return 0;
7830 }
7831
a738430d
MK
7832 /* Make sure that at least there's room for the total_length field.
7833 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 7834 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 7835 {
4d3c2250 7836 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
7837 return 0;
7838 }
7839
7840 lh = xmalloc (sizeof (*lh));
7841 memset (lh, 0, sizeof (*lh));
7842 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
7843 (void *) lh);
7844
dce234bc 7845 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 7846
a738430d 7847 /* Read in the header. */
dd373385 7848 lh->total_length =
c764a876
DE
7849 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
7850 &bytes_read, &offset_size);
debd256d 7851 line_ptr += bytes_read;
dce234bc
PP
7852 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
7853 + dwarf2_per_objfile->line.size))
debd256d 7854 {
4d3c2250 7855 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
7856 return 0;
7857 }
7858 lh->statement_program_end = line_ptr + lh->total_length;
7859 lh->version = read_2_bytes (abfd, line_ptr);
7860 line_ptr += 2;
c764a876
DE
7861 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
7862 line_ptr += offset_size;
debd256d
JB
7863 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
7864 line_ptr += 1;
7865 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
7866 line_ptr += 1;
7867 lh->line_base = read_1_signed_byte (abfd, line_ptr);
7868 line_ptr += 1;
7869 lh->line_range = read_1_byte (abfd, line_ptr);
7870 line_ptr += 1;
7871 lh->opcode_base = read_1_byte (abfd, line_ptr);
7872 line_ptr += 1;
7873 lh->standard_opcode_lengths
fe1b8b76 7874 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
7875
7876 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
7877 for (i = 1; i < lh->opcode_base; ++i)
7878 {
7879 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
7880 line_ptr += 1;
7881 }
7882
a738430d 7883 /* Read directory table. */
debd256d
JB
7884 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7885 {
7886 line_ptr += bytes_read;
7887 add_include_dir (lh, cur_dir);
7888 }
7889 line_ptr += bytes_read;
7890
a738430d 7891 /* Read file name table. */
debd256d
JB
7892 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7893 {
7894 unsigned int dir_index, mod_time, length;
7895
7896 line_ptr += bytes_read;
7897 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7898 line_ptr += bytes_read;
7899 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7900 line_ptr += bytes_read;
7901 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7902 line_ptr += bytes_read;
7903
7904 add_file_name (lh, cur_file, dir_index, mod_time, length);
7905 }
7906 line_ptr += bytes_read;
7907 lh->statement_program_start = line_ptr;
7908
dce234bc
PP
7909 if (line_ptr > (dwarf2_per_objfile->line.buffer
7910 + dwarf2_per_objfile->line.size))
4d3c2250 7911 complaint (&symfile_complaints,
e2e0b3e5 7912 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
7913
7914 discard_cleanups (back_to);
7915 return lh;
7916}
c906108c 7917
5fb290d7
DJ
7918/* This function exists to work around a bug in certain compilers
7919 (particularly GCC 2.95), in which the first line number marker of a
7920 function does not show up until after the prologue, right before
7921 the second line number marker. This function shifts ADDRESS down
7922 to the beginning of the function if necessary, and is called on
7923 addresses passed to record_line. */
7924
7925static CORE_ADDR
e142c38c 7926check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
7927{
7928 struct function_range *fn;
7929
7930 /* Find the function_range containing address. */
e142c38c 7931 if (!cu->first_fn)
5fb290d7
DJ
7932 return address;
7933
e142c38c
DJ
7934 if (!cu->cached_fn)
7935 cu->cached_fn = cu->first_fn;
5fb290d7 7936
e142c38c 7937 fn = cu->cached_fn;
5fb290d7
DJ
7938 while (fn)
7939 if (fn->lowpc <= address && fn->highpc > address)
7940 goto found;
7941 else
7942 fn = fn->next;
7943
e142c38c
DJ
7944 fn = cu->first_fn;
7945 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
7946 if (fn->lowpc <= address && fn->highpc > address)
7947 goto found;
7948 else
7949 fn = fn->next;
7950
7951 return address;
7952
7953 found:
7954 if (fn->seen_line)
7955 return address;
7956 if (address != fn->lowpc)
4d3c2250 7957 complaint (&symfile_complaints,
e2e0b3e5 7958 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 7959 (unsigned long) address, fn->name);
5fb290d7
DJ
7960 fn->seen_line = 1;
7961 return fn->lowpc;
7962}
7963
aaa75496
JB
7964/* Decode the Line Number Program (LNP) for the given line_header
7965 structure and CU. The actual information extracted and the type
7966 of structures created from the LNP depends on the value of PST.
7967
7968 1. If PST is NULL, then this procedure uses the data from the program
7969 to create all necessary symbol tables, and their linetables.
7970 The compilation directory of the file is passed in COMP_DIR,
7971 and must not be NULL.
7972
7973 2. If PST is not NULL, this procedure reads the program to determine
7974 the list of files included by the unit represented by PST, and
7975 builds all the associated partial symbol tables. In this case,
7976 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
7977 is not used to compute the full name of the symtab, and therefore
7978 omitting it when building the partial symtab does not introduce
7979 the potential for inconsistency - a partial symtab and its associated
7980 symbtab having a different fullname -). */
debd256d 7981
c906108c 7982static void
debd256d 7983dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 7984 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 7985{
a8c50c1f 7986 gdb_byte *line_ptr, *extended_end;
fe1b8b76 7987 gdb_byte *line_end;
a8c50c1f 7988 unsigned int bytes_read, extended_len;
c906108c 7989 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
7990 CORE_ADDR baseaddr;
7991 struct objfile *objfile = cu->objfile;
fbf65064 7992 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 7993 const int decode_for_pst_p = (pst != NULL);
cb1df416 7994 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
7995
7996 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7997
debd256d
JB
7998 line_ptr = lh->statement_program_start;
7999 line_end = lh->statement_program_end;
c906108c
SS
8000
8001 /* Read the statement sequences until there's nothing left. */
8002 while (line_ptr < line_end)
8003 {
8004 /* state machine registers */
8005 CORE_ADDR address = 0;
8006 unsigned int file = 1;
8007 unsigned int line = 1;
8008 unsigned int column = 0;
debd256d 8009 int is_stmt = lh->default_is_stmt;
c906108c
SS
8010 int basic_block = 0;
8011 int end_sequence = 0;
fbf65064 8012 CORE_ADDR addr;
c906108c 8013
aaa75496 8014 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 8015 {
aaa75496 8016 /* Start a subfile for the current file of the state machine. */
debd256d
JB
8017 /* lh->include_dirs and lh->file_names are 0-based, but the
8018 directory and file name numbers in the statement program
8019 are 1-based. */
8020 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 8021 char *dir = NULL;
a738430d 8022
debd256d
JB
8023 if (fe->dir_index)
8024 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
8025
8026 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
8027 }
8028
a738430d 8029 /* Decode the table. */
c5aa993b 8030 while (!end_sequence)
c906108c
SS
8031 {
8032 op_code = read_1_byte (abfd, line_ptr);
8033 line_ptr += 1;
59205f5a
JB
8034 if (line_ptr > line_end)
8035 {
8036 dwarf2_debug_line_missing_end_sequence_complaint ();
8037 break;
8038 }
9aa1fe7e 8039
debd256d 8040 if (op_code >= lh->opcode_base)
a738430d
MK
8041 {
8042 /* Special operand. */
debd256d
JB
8043 adj_opcode = op_code - lh->opcode_base;
8044 address += (adj_opcode / lh->line_range)
8045 * lh->minimum_instruction_length;
8046 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 8047 if (lh->num_file_names < file || file == 0)
25e43795
DJ
8048 dwarf2_debug_line_missing_file_complaint ();
8049 else
8050 {
8051 lh->file_names[file - 1].included_p = 1;
ca5f395d 8052 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
8053 {
8054 if (last_subfile != current_subfile)
8055 {
8056 addr = gdbarch_addr_bits_remove (gdbarch, address);
8057 if (last_subfile)
8058 record_line (last_subfile, 0, addr);
8059 last_subfile = current_subfile;
8060 }
25e43795 8061 /* Append row to matrix using current values. */
fbf65064
UW
8062 addr = check_cu_functions (address, cu);
8063 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8064 record_line (current_subfile, line, addr);
366da635 8065 }
25e43795 8066 }
ca5f395d 8067 basic_block = 0;
9aa1fe7e
GK
8068 }
8069 else switch (op_code)
c906108c
SS
8070 {
8071 case DW_LNS_extended_op:
a8c50c1f 8072 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 8073 line_ptr += bytes_read;
a8c50c1f 8074 extended_end = line_ptr + extended_len;
c906108c
SS
8075 extended_op = read_1_byte (abfd, line_ptr);
8076 line_ptr += 1;
8077 switch (extended_op)
8078 {
8079 case DW_LNE_end_sequence:
8080 end_sequence = 1;
c906108c
SS
8081 break;
8082 case DW_LNE_set_address:
e7c27a73 8083 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
8084 line_ptr += bytes_read;
8085 address += baseaddr;
c906108c
SS
8086 break;
8087 case DW_LNE_define_file:
debd256d
JB
8088 {
8089 char *cur_file;
8090 unsigned int dir_index, mod_time, length;
8091
8092 cur_file = read_string (abfd, line_ptr, &bytes_read);
8093 line_ptr += bytes_read;
8094 dir_index =
8095 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8096 line_ptr += bytes_read;
8097 mod_time =
8098 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8099 line_ptr += bytes_read;
8100 length =
8101 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8102 line_ptr += bytes_read;
8103 add_file_name (lh, cur_file, dir_index, mod_time, length);
8104 }
c906108c 8105 break;
d0c6ba3d
CC
8106 case DW_LNE_set_discriminator:
8107 /* The discriminator is not interesting to the debugger;
8108 just ignore it. */
8109 line_ptr = extended_end;
8110 break;
c906108c 8111 default:
4d3c2250 8112 complaint (&symfile_complaints,
e2e0b3e5 8113 _("mangled .debug_line section"));
debd256d 8114 return;
c906108c 8115 }
a8c50c1f
DJ
8116 /* Make sure that we parsed the extended op correctly. If e.g.
8117 we expected a different address size than the producer used,
8118 we may have read the wrong number of bytes. */
8119 if (line_ptr != extended_end)
8120 {
8121 complaint (&symfile_complaints,
8122 _("mangled .debug_line section"));
8123 return;
8124 }
c906108c
SS
8125 break;
8126 case DW_LNS_copy:
59205f5a 8127 if (lh->num_file_names < file || file == 0)
25e43795
DJ
8128 dwarf2_debug_line_missing_file_complaint ();
8129 else
366da635 8130 {
25e43795 8131 lh->file_names[file - 1].included_p = 1;
ca5f395d 8132 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
8133 {
8134 if (last_subfile != current_subfile)
8135 {
8136 addr = gdbarch_addr_bits_remove (gdbarch, address);
8137 if (last_subfile)
8138 record_line (last_subfile, 0, addr);
8139 last_subfile = current_subfile;
8140 }
8141 addr = check_cu_functions (address, cu);
8142 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8143 record_line (current_subfile, line, addr);
8144 }
366da635 8145 }
c906108c
SS
8146 basic_block = 0;
8147 break;
8148 case DW_LNS_advance_pc:
debd256d 8149 address += lh->minimum_instruction_length
c906108c
SS
8150 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8151 line_ptr += bytes_read;
8152 break;
8153 case DW_LNS_advance_line:
8154 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
8155 line_ptr += bytes_read;
8156 break;
8157 case DW_LNS_set_file:
debd256d 8158 {
a738430d
MK
8159 /* The arrays lh->include_dirs and lh->file_names are
8160 0-based, but the directory and file name numbers in
8161 the statement program are 1-based. */
debd256d 8162 struct file_entry *fe;
4f1520fb 8163 char *dir = NULL;
a738430d 8164
debd256d
JB
8165 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8166 line_ptr += bytes_read;
59205f5a 8167 if (lh->num_file_names < file || file == 0)
25e43795
DJ
8168 dwarf2_debug_line_missing_file_complaint ();
8169 else
8170 {
8171 fe = &lh->file_names[file - 1];
8172 if (fe->dir_index)
8173 dir = lh->include_dirs[fe->dir_index - 1];
8174 if (!decode_for_pst_p)
8175 {
8176 last_subfile = current_subfile;
8177 dwarf2_start_subfile (fe->name, dir, comp_dir);
8178 }
8179 }
debd256d 8180 }
c906108c
SS
8181 break;
8182 case DW_LNS_set_column:
8183 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8184 line_ptr += bytes_read;
8185 break;
8186 case DW_LNS_negate_stmt:
8187 is_stmt = (!is_stmt);
8188 break;
8189 case DW_LNS_set_basic_block:
8190 basic_block = 1;
8191 break;
c2c6d25f
JM
8192 /* Add to the address register of the state machine the
8193 address increment value corresponding to special opcode
a738430d
MK
8194 255. I.e., this value is scaled by the minimum
8195 instruction length since special opcode 255 would have
8196 scaled the the increment. */
c906108c 8197 case DW_LNS_const_add_pc:
debd256d
JB
8198 address += (lh->minimum_instruction_length
8199 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
8200 break;
8201 case DW_LNS_fixed_advance_pc:
8202 address += read_2_bytes (abfd, line_ptr);
8203 line_ptr += 2;
8204 break;
9aa1fe7e 8205 default:
a738430d
MK
8206 {
8207 /* Unknown standard opcode, ignore it. */
9aa1fe7e 8208 int i;
a738430d 8209
debd256d 8210 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
8211 {
8212 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8213 line_ptr += bytes_read;
8214 }
8215 }
c906108c
SS
8216 }
8217 }
59205f5a
JB
8218 if (lh->num_file_names < file || file == 0)
8219 dwarf2_debug_line_missing_file_complaint ();
8220 else
8221 {
8222 lh->file_names[file - 1].included_p = 1;
8223 if (!decode_for_pst_p)
fbf65064
UW
8224 {
8225 addr = gdbarch_addr_bits_remove (gdbarch, address);
8226 record_line (current_subfile, 0, addr);
8227 }
59205f5a 8228 }
c906108c 8229 }
aaa75496
JB
8230
8231 if (decode_for_pst_p)
8232 {
8233 int file_index;
8234
8235 /* Now that we're done scanning the Line Header Program, we can
8236 create the psymtab of each included file. */
8237 for (file_index = 0; file_index < lh->num_file_names; file_index++)
8238 if (lh->file_names[file_index].included_p == 1)
8239 {
5b5464ad
JB
8240 const struct file_entry fe = lh->file_names [file_index];
8241 char *include_name = fe.name;
8242 char *dir_name = NULL;
8243 char *pst_filename = pst->filename;
8244
8245 if (fe.dir_index)
8246 dir_name = lh->include_dirs[fe.dir_index - 1];
8247
8248 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
8249 {
1754f103
MK
8250 include_name = concat (dir_name, SLASH_STRING,
8251 include_name, (char *)NULL);
5b5464ad
JB
8252 make_cleanup (xfree, include_name);
8253 }
8254
8255 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
8256 {
1754f103
MK
8257 pst_filename = concat (pst->dirname, SLASH_STRING,
8258 pst_filename, (char *)NULL);
5b5464ad
JB
8259 make_cleanup (xfree, pst_filename);
8260 }
8261
8262 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
8263 dwarf2_create_include_psymtab (include_name, pst, objfile);
8264 }
8265 }
cb1df416
DJ
8266 else
8267 {
8268 /* Make sure a symtab is created for every file, even files
8269 which contain only variables (i.e. no code with associated
8270 line numbers). */
8271
8272 int i;
8273 struct file_entry *fe;
8274
8275 for (i = 0; i < lh->num_file_names; i++)
8276 {
8277 char *dir = NULL;
8278 fe = &lh->file_names[i];
8279 if (fe->dir_index)
8280 dir = lh->include_dirs[fe->dir_index - 1];
8281 dwarf2_start_subfile (fe->name, dir, comp_dir);
8282
8283 /* Skip the main file; we don't need it, and it must be
8284 allocated last, so that it will show up before the
8285 non-primary symtabs in the objfile's symtab list. */
8286 if (current_subfile == first_subfile)
8287 continue;
8288
8289 if (current_subfile->symtab == NULL)
8290 current_subfile->symtab = allocate_symtab (current_subfile->name,
8291 cu->objfile);
8292 fe->symtab = current_subfile->symtab;
8293 }
8294 }
c906108c
SS
8295}
8296
8297/* Start a subfile for DWARF. FILENAME is the name of the file and
8298 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
8299 or NULL if not known. COMP_DIR is the compilation directory for the
8300 linetable's compilation unit or NULL if not known.
c906108c
SS
8301 This routine tries to keep line numbers from identical absolute and
8302 relative file names in a common subfile.
8303
8304 Using the `list' example from the GDB testsuite, which resides in
8305 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
8306 of /srcdir/list0.c yields the following debugging information for list0.c:
8307
c5aa993b
JM
8308 DW_AT_name: /srcdir/list0.c
8309 DW_AT_comp_dir: /compdir
357e46e7 8310 files.files[0].name: list0.h
c5aa993b 8311 files.files[0].dir: /srcdir
357e46e7 8312 files.files[1].name: list0.c
c5aa993b 8313 files.files[1].dir: /srcdir
c906108c
SS
8314
8315 The line number information for list0.c has to end up in a single
4f1520fb
FR
8316 subfile, so that `break /srcdir/list0.c:1' works as expected.
8317 start_subfile will ensure that this happens provided that we pass the
8318 concatenation of files.files[1].dir and files.files[1].name as the
8319 subfile's name. */
c906108c
SS
8320
8321static void
4f1520fb 8322dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 8323{
4f1520fb
FR
8324 char *fullname;
8325
8326 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
8327 `start_symtab' will always pass the contents of DW_AT_comp_dir as
8328 second argument to start_subfile. To be consistent, we do the
8329 same here. In order not to lose the line information directory,
8330 we concatenate it to the filename when it makes sense.
8331 Note that the Dwarf3 standard says (speaking of filenames in line
8332 information): ``The directory index is ignored for file names
8333 that represent full path names''. Thus ignoring dirname in the
8334 `else' branch below isn't an issue. */
c906108c 8335
d5166ae1 8336 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
8337 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
8338 else
8339 fullname = filename;
c906108c 8340
4f1520fb
FR
8341 start_subfile (fullname, comp_dir);
8342
8343 if (fullname != filename)
8344 xfree (fullname);
c906108c
SS
8345}
8346
4c2df51b
DJ
8347static void
8348var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 8349 struct dwarf2_cu *cu)
4c2df51b 8350{
e7c27a73
DJ
8351 struct objfile *objfile = cu->objfile;
8352 struct comp_unit_head *cu_header = &cu->header;
8353
4c2df51b
DJ
8354 /* NOTE drow/2003-01-30: There used to be a comment and some special
8355 code here to turn a symbol with DW_AT_external and a
8356 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
8357 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
8358 with some versions of binutils) where shared libraries could have
8359 relocations against symbols in their debug information - the
8360 minimal symbol would have the right address, but the debug info
8361 would not. It's no longer necessary, because we will explicitly
8362 apply relocations when we read in the debug information now. */
8363
8364 /* A DW_AT_location attribute with no contents indicates that a
8365 variable has been optimized away. */
8366 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
8367 {
8368 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8369 return;
8370 }
8371
8372 /* Handle one degenerate form of location expression specially, to
8373 preserve GDB's previous behavior when section offsets are
8374 specified. If this is just a DW_OP_addr then mark this symbol
8375 as LOC_STATIC. */
8376
8377 if (attr_form_is_block (attr)
8378 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
8379 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
8380 {
891d2f0b 8381 unsigned int dummy;
4c2df51b
DJ
8382
8383 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 8384 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 8385 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
8386 fixup_symbol_section (sym, objfile);
8387 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
8388 SYMBOL_SECTION (sym));
4c2df51b
DJ
8389 return;
8390 }
8391
8392 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
8393 expression evaluator, and use LOC_COMPUTED only when necessary
8394 (i.e. when the value of a register or memory location is
8395 referenced, or a thread-local block, etc.). Then again, it might
8396 not be worthwhile. I'm assuming that it isn't unless performance
8397 or memory numbers show me otherwise. */
8398
e7c27a73 8399 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
8400 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8401}
8402
c906108c
SS
8403/* Given a pointer to a DWARF information entry, figure out if we need
8404 to make a symbol table entry for it, and if so, create a new entry
8405 and return a pointer to it.
8406 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 8407 used the passed type. */
c906108c
SS
8408
8409static struct symbol *
e7c27a73 8410new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 8411{
e7c27a73 8412 struct objfile *objfile = cu->objfile;
c906108c
SS
8413 struct symbol *sym = NULL;
8414 char *name;
8415 struct attribute *attr = NULL;
8416 struct attribute *attr2 = NULL;
e142c38c 8417 CORE_ADDR baseaddr;
edb3359d 8418 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
8419
8420 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8421
94af9270 8422 name = dwarf2_name (die, cu);
c906108c
SS
8423 if (name)
8424 {
94af9270
KS
8425 const char *linkagename;
8426
4a146b47 8427 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
8428 sizeof (struct symbol));
8429 OBJSTAT (objfile, n_syms++);
8430 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
8431
8432 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 8433 SYMBOL_LANGUAGE (sym) = cu->language;
94af9270
KS
8434 linkagename = dwarf2_physname (name, die, cu);
8435 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c
SS
8436
8437 /* Default assumptions.
c5aa993b 8438 Use the passed type or decode it from the die. */
176620f1 8439 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 8440 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
8441 if (type != NULL)
8442 SYMBOL_TYPE (sym) = type;
8443 else
e7c27a73 8444 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
8445 attr = dwarf2_attr (die,
8446 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
8447 cu);
c906108c
SS
8448 if (attr)
8449 {
8450 SYMBOL_LINE (sym) = DW_UNSND (attr);
8451 }
cb1df416 8452
edb3359d
DJ
8453 attr = dwarf2_attr (die,
8454 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
8455 cu);
cb1df416
DJ
8456 if (attr)
8457 {
8458 int file_index = DW_UNSND (attr);
8459 if (cu->line_header == NULL
8460 || file_index > cu->line_header->num_file_names)
8461 complaint (&symfile_complaints,
8462 _("file index out of range"));
1c3d648d 8463 else if (file_index > 0)
cb1df416
DJ
8464 {
8465 struct file_entry *fe;
8466 fe = &cu->line_header->file_names[file_index - 1];
8467 SYMBOL_SYMTAB (sym) = fe->symtab;
8468 }
8469 }
8470
c906108c
SS
8471 switch (die->tag)
8472 {
8473 case DW_TAG_label:
e142c38c 8474 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
8475 if (attr)
8476 {
8477 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
8478 }
8479 SYMBOL_CLASS (sym) = LOC_LABEL;
8480 break;
8481 case DW_TAG_subprogram:
8482 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8483 finish_block. */
8484 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 8485 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
8486 if ((attr2 && (DW_UNSND (attr2) != 0))
8487 || cu->language == language_ada)
c906108c 8488 {
2cfa0c8d
JB
8489 /* Subprograms marked external are stored as a global symbol.
8490 Ada subprograms, whether marked external or not, are always
8491 stored as a global symbol, because we want to be able to
8492 access them globally. For instance, we want to be able
8493 to break on a nested subprogram without having to
8494 specify the context. */
c906108c
SS
8495 add_symbol_to_list (sym, &global_symbols);
8496 }
8497 else
8498 {
e142c38c 8499 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8500 }
8501 break;
edb3359d
DJ
8502 case DW_TAG_inlined_subroutine:
8503 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8504 finish_block. */
8505 SYMBOL_CLASS (sym) = LOC_BLOCK;
8506 SYMBOL_INLINED (sym) = 1;
8507 /* Do not add the symbol to any lists. It will be found via
8508 BLOCK_FUNCTION from the blockvector. */
8509 break;
c906108c
SS
8510 case DW_TAG_variable:
8511 /* Compilation with minimal debug info may result in variables
8512 with missing type entries. Change the misleading `void' type
8513 to something sensible. */
8514 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 8515 SYMBOL_TYPE (sym)
46bf5051 8516 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 8517
e142c38c 8518 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8519 if (attr)
8520 {
e7c27a73 8521 dwarf2_const_value (attr, sym, cu);
e142c38c 8522 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
8523 if (attr2 && (DW_UNSND (attr2) != 0))
8524 add_symbol_to_list (sym, &global_symbols);
8525 else
e142c38c 8526 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8527 break;
8528 }
e142c38c 8529 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
8530 if (attr)
8531 {
e7c27a73 8532 var_decode_location (attr, sym, cu);
e142c38c 8533 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 8534 if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68
TT
8535 {
8536 struct pending **list_to_add;
8537
8538 /* A variable with DW_AT_external is never static,
8539 but it may be block-scoped. */
8540 list_to_add = (cu->list_in_scope == &file_symbols
8541 ? &global_symbols : cu->list_in_scope);
8542 add_symbol_to_list (sym, list_to_add);
8543 }
c906108c 8544 else
e142c38c 8545 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8546 }
8547 else
8548 {
8549 /* We do not know the address of this symbol.
c5aa993b
JM
8550 If it is an external symbol and we have type information
8551 for it, enter the symbol as a LOC_UNRESOLVED symbol.
8552 The address of the variable will then be determined from
8553 the minimal symbol table whenever the variable is
8554 referenced. */
e142c38c 8555 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 8556 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 8557 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 8558 {
0fe7935b
DJ
8559 struct pending **list_to_add;
8560
8561 /* A variable with DW_AT_external is never static, but it
8562 may be block-scoped. */
8563 list_to_add = (cu->list_in_scope == &file_symbols
8564 ? &global_symbols : cu->list_in_scope);
8565
c906108c 8566 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
0fe7935b 8567 add_symbol_to_list (sym, list_to_add);
c906108c 8568 }
442ddf59
JK
8569 else if (!die_is_declaration (die, cu))
8570 {
8571 /* Use the default LOC_OPTIMIZED_OUT class. */
8572 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
8573 add_symbol_to_list (sym, cu->list_in_scope);
8574 }
c906108c
SS
8575 }
8576 break;
8577 case DW_TAG_formal_parameter:
edb3359d
DJ
8578 /* If we are inside a function, mark this as an argument. If
8579 not, we might be looking at an argument to an inlined function
8580 when we do not have enough information to show inlined frames;
8581 pretend it's a local variable in that case so that the user can
8582 still see it. */
8583 if (context_stack_depth > 0
8584 && context_stack[context_stack_depth - 1].name != NULL)
8585 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 8586 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
8587 if (attr)
8588 {
e7c27a73 8589 var_decode_location (attr, sym, cu);
c906108c 8590 }
e142c38c 8591 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8592 if (attr)
8593 {
e7c27a73 8594 dwarf2_const_value (attr, sym, cu);
c906108c 8595 }
e142c38c 8596 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8597 break;
8598 case DW_TAG_unspecified_parameters:
8599 /* From varargs functions; gdb doesn't seem to have any
8600 interest in this information, so just ignore it for now.
8601 (FIXME?) */
8602 break;
8603 case DW_TAG_class_type:
680b30c7 8604 case DW_TAG_interface_type:
c906108c
SS
8605 case DW_TAG_structure_type:
8606 case DW_TAG_union_type:
72019c9c 8607 case DW_TAG_set_type:
c906108c
SS
8608 case DW_TAG_enumeration_type:
8609 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 8610 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 8611
63d06c5c
DC
8612 /* Make sure that the symbol includes appropriate enclosing
8613 classes/namespaces in its name. These are calculated in
134d01f1 8614 read_structure_type, and the correct name is saved in
63d06c5c
DC
8615 the type. */
8616
987504bb
JJ
8617 if (cu->language == language_cplus
8618 || cu->language == language_java)
c906108c 8619 {
63d06c5c
DC
8620 struct type *type = SYMBOL_TYPE (sym);
8621
8622 if (TYPE_TAG_NAME (type) != NULL)
8623 {
8624 /* FIXME: carlton/2003-11-10: Should this use
8625 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
8626 arises further down in this function.) */
8627 /* The type's name is already allocated along with
8628 this objfile, so we don't need to duplicate it
8629 for the symbol. */
8630 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 8631 }
c906108c 8632 }
63d06c5c
DC
8633
8634 {
987504bb 8635 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
8636 really ever be static objects: otherwise, if you try
8637 to, say, break of a class's method and you're in a file
8638 which doesn't mention that class, it won't work unless
8639 the check for all static symbols in lookup_symbol_aux
8640 saves you. See the OtherFileClass tests in
8641 gdb.c++/namespace.exp. */
8642
8643 struct pending **list_to_add;
8644
e142c38c 8645 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
8646 && (cu->language == language_cplus
8647 || cu->language == language_java)
e142c38c 8648 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
8649
8650 add_symbol_to_list (sym, list_to_add);
8651
8652 /* The semantics of C++ state that "struct foo { ... }" also
987504bb 8653 defines a typedef for "foo". A Java class declaration also
5eeb2539 8654 defines a typedef for the class. */
987504bb 8655 if (cu->language == language_cplus
8c6860bb
JB
8656 || cu->language == language_java
8657 || cu->language == language_ada)
63d06c5c 8658 {
d8151005
DJ
8659 /* The symbol's name is already allocated along with
8660 this objfile, so we don't need to duplicate it for
8661 the type. */
63d06c5c 8662 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 8663 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
8664 }
8665 }
c906108c
SS
8666 break;
8667 case DW_TAG_typedef:
94af9270
KS
8668 SYMBOL_LINKAGE_NAME (sym)
8669 = (char *) dwarf2_full_name (name, die, cu);
63d06c5c
DC
8670 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8671 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 8672 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 8673 break;
c906108c 8674 case DW_TAG_base_type:
a02abb62 8675 case DW_TAG_subrange_type:
c906108c 8676 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 8677 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 8678 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8679 break;
8680 case DW_TAG_enumerator:
94af9270
KS
8681 SYMBOL_LINKAGE_NAME (sym)
8682 = (char *) dwarf2_full_name (name, die, cu);
e142c38c 8683 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8684 if (attr)
8685 {
e7c27a73 8686 dwarf2_const_value (attr, sym, cu);
c906108c 8687 }
63d06c5c
DC
8688 {
8689 /* NOTE: carlton/2003-11-10: See comment above in the
8690 DW_TAG_class_type, etc. block. */
8691
8692 struct pending **list_to_add;
8693
e142c38c 8694 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
8695 && (cu->language == language_cplus
8696 || cu->language == language_java)
e142c38c 8697 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
8698
8699 add_symbol_to_list (sym, list_to_add);
8700 }
c906108c 8701 break;
5c4e30ca
DC
8702 case DW_TAG_namespace:
8703 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8704 add_symbol_to_list (sym, &global_symbols);
8705 break;
c906108c
SS
8706 default:
8707 /* Not a tag we recognize. Hopefully we aren't processing
8708 trash data, but since we must specifically ignore things
8709 we don't recognize, there is nothing else we should do at
8710 this point. */
e2e0b3e5 8711 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 8712 dwarf_tag_name (die->tag));
c906108c
SS
8713 break;
8714 }
df8a16a1
DJ
8715
8716 /* For the benefit of old versions of GCC, check for anonymous
8717 namespaces based on the demangled name. */
8718 if (!processing_has_namespace_info
94af9270 8719 && cu->language == language_cplus)
df8a16a1 8720 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
8721 }
8722 return (sym);
8723}
8724
8725/* Copy constant value from an attribute to a symbol. */
8726
8727static void
107d2387 8728dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 8729 struct dwarf2_cu *cu)
c906108c 8730{
e7c27a73
DJ
8731 struct objfile *objfile = cu->objfile;
8732 struct comp_unit_head *cu_header = &cu->header;
e17a4113
UW
8733 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
8734 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
c906108c
SS
8735 struct dwarf_block *blk;
8736
8737 switch (attr->form)
8738 {
8739 case DW_FORM_addr:
107d2387 8740 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
3567439c 8741 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
4d3c2250
KB
8742 cu_header->addr_size,
8743 TYPE_LENGTH (SYMBOL_TYPE
8744 (sym)));
4e38b386 8745 SYMBOL_VALUE_BYTES (sym) =
4a146b47 8746 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
8747 /* NOTE: cagney/2003-05-09: In-lined store_address call with
8748 it's body - store_unsigned_integer. */
8749 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
72f2769e 8750 byte_order, DW_ADDR (attr));
c906108c
SS
8751 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8752 break;
4ac36638 8753 case DW_FORM_string:
93b5768b
PA
8754 case DW_FORM_strp:
8755 /* DW_STRING is already allocated on the obstack, point directly
8756 to it. */
8757 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
8758 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8759 break;
c906108c
SS
8760 case DW_FORM_block1:
8761 case DW_FORM_block2:
8762 case DW_FORM_block4:
8763 case DW_FORM_block:
8764 blk = DW_BLOCK (attr);
8765 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
3567439c 8766 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
4d3c2250
KB
8767 blk->size,
8768 TYPE_LENGTH (SYMBOL_TYPE
8769 (sym)));
4e38b386 8770 SYMBOL_VALUE_BYTES (sym) =
4a146b47 8771 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
8772 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
8773 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8774 break;
2df3850c
JM
8775
8776 /* The DW_AT_const_value attributes are supposed to carry the
8777 symbol's value "represented as it would be on the target
8778 architecture." By the time we get here, it's already been
8779 converted to host endianness, so we just need to sign- or
8780 zero-extend it as appropriate. */
8781 case DW_FORM_data1:
8782 dwarf2_const_value_data (attr, sym, 8);
8783 break;
c906108c 8784 case DW_FORM_data2:
2df3850c
JM
8785 dwarf2_const_value_data (attr, sym, 16);
8786 break;
c906108c 8787 case DW_FORM_data4:
2df3850c
JM
8788 dwarf2_const_value_data (attr, sym, 32);
8789 break;
c906108c 8790 case DW_FORM_data8:
2df3850c
JM
8791 dwarf2_const_value_data (attr, sym, 64);
8792 break;
8793
c906108c 8794 case DW_FORM_sdata:
2df3850c
JM
8795 SYMBOL_VALUE (sym) = DW_SND (attr);
8796 SYMBOL_CLASS (sym) = LOC_CONST;
8797 break;
8798
c906108c
SS
8799 case DW_FORM_udata:
8800 SYMBOL_VALUE (sym) = DW_UNSND (attr);
8801 SYMBOL_CLASS (sym) = LOC_CONST;
8802 break;
2df3850c 8803
c906108c 8804 default:
4d3c2250 8805 complaint (&symfile_complaints,
e2e0b3e5 8806 _("unsupported const value attribute form: '%s'"),
4d3c2250 8807 dwarf_form_name (attr->form));
c906108c
SS
8808 SYMBOL_VALUE (sym) = 0;
8809 SYMBOL_CLASS (sym) = LOC_CONST;
8810 break;
8811 }
8812}
8813
2df3850c
JM
8814
8815/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
8816 or zero-extend it as appropriate for the symbol's type. */
8817static void
8818dwarf2_const_value_data (struct attribute *attr,
8819 struct symbol *sym,
8820 int bits)
8821{
8822 LONGEST l = DW_UNSND (attr);
8823
8824 if (bits < sizeof (l) * 8)
8825 {
8826 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
8827 l &= ((LONGEST) 1 << bits) - 1;
8828 else
bf9198f1 8829 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
8830 }
8831
8832 SYMBOL_VALUE (sym) = l;
8833 SYMBOL_CLASS (sym) = LOC_CONST;
8834}
8835
8836
c906108c
SS
8837/* Return the type of the die in question using its DW_AT_type attribute. */
8838
8839static struct type *
e7c27a73 8840die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
8841{
8842 struct type *type;
8843 struct attribute *type_attr;
8844 struct die_info *type_die;
c906108c 8845
e142c38c 8846 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
8847 if (!type_attr)
8848 {
8849 /* A missing DW_AT_type represents a void type. */
46bf5051 8850 return objfile_type (cu->objfile)->builtin_void;
c906108c 8851 }
348e048f
DE
8852
8853 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
10b3939b 8854
e7c27a73 8855 type = tag_type_to_type (type_die, cu);
c906108c
SS
8856 if (!type)
8857 {
d97bc12b 8858 dump_die_for_error (type_die);
8a3fe4f8 8859 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 8860 cu->objfile->name);
c906108c
SS
8861 }
8862 return type;
8863}
8864
b4ba55a1
JB
8865/* True iff CU's producer generates GNAT Ada auxiliary information
8866 that allows to find parallel types through that information instead
8867 of having to do expensive parallel lookups by type name. */
8868
8869static int
8870need_gnat_info (struct dwarf2_cu *cu)
8871{
8872 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
8873 of GNAT produces this auxiliary information, without any indication
8874 that it is produced. Part of enhancing the FSF version of GNAT
8875 to produce that information will be to put in place an indicator
8876 that we can use in order to determine whether the descriptive type
8877 info is available or not. One suggestion that has been made is
8878 to use a new attribute, attached to the CU die. For now, assume
8879 that the descriptive type info is not available. */
8880 return 0;
8881}
8882
8883
8884/* Return the auxiliary type of the die in question using its
8885 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
8886 attribute is not present. */
8887
8888static struct type *
8889die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
8890{
8891 struct type *type;
8892 struct attribute *type_attr;
8893 struct die_info *type_die;
8894
8895 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
8896 if (!type_attr)
8897 return NULL;
8898
8899 type_die = follow_die_ref (die, type_attr, &cu);
8900 type = tag_type_to_type (type_die, cu);
8901 if (!type)
8902 {
8903 dump_die_for_error (type_die);
8904 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
8905 cu->objfile->name);
8906 }
8907 return type;
8908}
8909
8910/* If DIE has a descriptive_type attribute, then set the TYPE's
8911 descriptive type accordingly. */
8912
8913static void
8914set_descriptive_type (struct type *type, struct die_info *die,
8915 struct dwarf2_cu *cu)
8916{
8917 struct type *descriptive_type = die_descriptive_type (die, cu);
8918
8919 if (descriptive_type)
8920 {
8921 ALLOCATE_GNAT_AUX_TYPE (type);
8922 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
8923 }
8924}
8925
c906108c
SS
8926/* Return the containing type of the die in question using its
8927 DW_AT_containing_type attribute. */
8928
8929static struct type *
e7c27a73 8930die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
8931{
8932 struct type *type = NULL;
8933 struct attribute *type_attr;
8934 struct die_info *type_die = NULL;
c906108c 8935
e142c38c 8936 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
8937 if (type_attr)
8938 {
348e048f 8939 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
e7c27a73 8940 type = tag_type_to_type (type_die, cu);
c906108c
SS
8941 }
8942 if (!type)
8943 {
8944 if (type_die)
d97bc12b 8945 dump_die_for_error (type_die);
8a3fe4f8 8946 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 8947 cu->objfile->name);
c906108c
SS
8948 }
8949 return type;
8950}
8951
c906108c 8952static struct type *
e7c27a73 8953tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8954{
f792889a
DJ
8955 struct type *this_type;
8956
8957 this_type = read_type_die (die, cu);
8958 if (!this_type)
c906108c 8959 {
d97bc12b 8960 dump_die_for_error (die);
f792889a
DJ
8961 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
8962 cu->objfile->name);
c906108c 8963 }
f792889a 8964 return this_type;
c906108c
SS
8965}
8966
f792889a 8967static struct type *
e7c27a73 8968read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8969{
f792889a
DJ
8970 struct type *this_type;
8971
8972 this_type = get_die_type (die, cu);
8973 if (this_type)
8974 return this_type;
8975
c906108c
SS
8976 switch (die->tag)
8977 {
8978 case DW_TAG_class_type:
680b30c7 8979 case DW_TAG_interface_type:
c906108c
SS
8980 case DW_TAG_structure_type:
8981 case DW_TAG_union_type:
f792889a 8982 this_type = read_structure_type (die, cu);
c906108c
SS
8983 break;
8984 case DW_TAG_enumeration_type:
f792889a 8985 this_type = read_enumeration_type (die, cu);
c906108c
SS
8986 break;
8987 case DW_TAG_subprogram:
8988 case DW_TAG_subroutine_type:
edb3359d 8989 case DW_TAG_inlined_subroutine:
f792889a 8990 this_type = read_subroutine_type (die, cu);
c906108c
SS
8991 break;
8992 case DW_TAG_array_type:
f792889a 8993 this_type = read_array_type (die, cu);
c906108c 8994 break;
72019c9c 8995 case DW_TAG_set_type:
f792889a 8996 this_type = read_set_type (die, cu);
72019c9c 8997 break;
c906108c 8998 case DW_TAG_pointer_type:
f792889a 8999 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
9000 break;
9001 case DW_TAG_ptr_to_member_type:
f792889a 9002 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
9003 break;
9004 case DW_TAG_reference_type:
f792889a 9005 this_type = read_tag_reference_type (die, cu);
c906108c
SS
9006 break;
9007 case DW_TAG_const_type:
f792889a 9008 this_type = read_tag_const_type (die, cu);
c906108c
SS
9009 break;
9010 case DW_TAG_volatile_type:
f792889a 9011 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
9012 break;
9013 case DW_TAG_string_type:
f792889a 9014 this_type = read_tag_string_type (die, cu);
c906108c
SS
9015 break;
9016 case DW_TAG_typedef:
f792889a 9017 this_type = read_typedef (die, cu);
c906108c 9018 break;
a02abb62 9019 case DW_TAG_subrange_type:
f792889a 9020 this_type = read_subrange_type (die, cu);
a02abb62 9021 break;
c906108c 9022 case DW_TAG_base_type:
f792889a 9023 this_type = read_base_type (die, cu);
c906108c 9024 break;
81a17f79 9025 case DW_TAG_unspecified_type:
f792889a 9026 this_type = read_unspecified_type (die, cu);
81a17f79 9027 break;
0114d602
DJ
9028 case DW_TAG_namespace:
9029 this_type = read_namespace_type (die, cu);
9030 break;
c906108c 9031 default:
a1f5b845 9032 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 9033 dwarf_tag_name (die->tag));
c906108c
SS
9034 break;
9035 }
63d06c5c 9036
f792889a 9037 return this_type;
63d06c5c
DC
9038}
9039
fdde2d81 9040/* Return the name of the namespace/class that DIE is defined within,
0114d602 9041 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 9042
0114d602
DJ
9043 For example, if we're within the method foo() in the following
9044 code:
9045
9046 namespace N {
9047 class C {
9048 void foo () {
9049 }
9050 };
9051 }
9052
9053 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
9054
9055static char *
e142c38c 9056determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 9057{
0114d602
DJ
9058 struct die_info *parent, *spec_die;
9059 struct dwarf2_cu *spec_cu;
9060 struct type *parent_type;
63d06c5c 9061
987504bb
JJ
9062 if (cu->language != language_cplus
9063 && cu->language != language_java)
0114d602
DJ
9064 return "";
9065
9066 /* We have to be careful in the presence of DW_AT_specification.
9067 For example, with GCC 3.4, given the code
9068
9069 namespace N {
9070 void foo() {
9071 // Definition of N::foo.
9072 }
9073 }
9074
9075 then we'll have a tree of DIEs like this:
9076
9077 1: DW_TAG_compile_unit
9078 2: DW_TAG_namespace // N
9079 3: DW_TAG_subprogram // declaration of N::foo
9080 4: DW_TAG_subprogram // definition of N::foo
9081 DW_AT_specification // refers to die #3
9082
9083 Thus, when processing die #4, we have to pretend that we're in
9084 the context of its DW_AT_specification, namely the contex of die
9085 #3. */
9086 spec_cu = cu;
9087 spec_die = die_specification (die, &spec_cu);
9088 if (spec_die == NULL)
9089 parent = die->parent;
9090 else
63d06c5c 9091 {
0114d602
DJ
9092 parent = spec_die->parent;
9093 cu = spec_cu;
63d06c5c 9094 }
0114d602
DJ
9095
9096 if (parent == NULL)
9097 return "";
63d06c5c 9098 else
0114d602
DJ
9099 switch (parent->tag)
9100 {
63d06c5c 9101 case DW_TAG_namespace:
0114d602 9102 parent_type = read_type_die (parent, cu);
acebe513
UW
9103 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9104 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9105 Work around this problem here. */
9106 if (cu->language == language_cplus
9107 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
9108 return "";
0114d602
DJ
9109 /* We give a name to even anonymous namespaces. */
9110 return TYPE_TAG_NAME (parent_type);
63d06c5c 9111 case DW_TAG_class_type:
680b30c7 9112 case DW_TAG_interface_type:
63d06c5c 9113 case DW_TAG_structure_type:
0114d602
DJ
9114 case DW_TAG_union_type:
9115 parent_type = read_type_die (parent, cu);
9116 if (TYPE_TAG_NAME (parent_type) != NULL)
9117 return TYPE_TAG_NAME (parent_type);
9118 else
9119 /* An anonymous structure is only allowed non-static data
9120 members; no typedefs, no member functions, et cetera.
9121 So it does not need a prefix. */
9122 return "";
63d06c5c 9123 default:
8176b9b8 9124 return determine_prefix (parent, cu);
63d06c5c 9125 }
63d06c5c
DC
9126}
9127
987504bb
JJ
9128/* Return a newly-allocated string formed by concatenating PREFIX and
9129 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
9130 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
9131 perform an obconcat, otherwise allocate storage for the result. The CU argument
9132 is used to determine the language and hence, the appropriate separator. */
9133
9134#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
9135
9136static char *
987504bb
JJ
9137typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
9138 struct dwarf2_cu *cu)
63d06c5c 9139{
987504bb 9140 char *sep;
63d06c5c 9141
987504bb
JJ
9142 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
9143 sep = "";
9144 else if (cu->language == language_java)
9145 sep = ".";
9146 else
9147 sep = "::";
63d06c5c 9148
6dd47d34
DE
9149 if (prefix == NULL)
9150 prefix = "";
9151 if (suffix == NULL)
9152 suffix = "";
9153
987504bb
JJ
9154 if (obs == NULL)
9155 {
9156 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
6dd47d34
DE
9157 strcpy (retval, prefix);
9158 strcat (retval, sep);
9159 strcat (retval, suffix);
63d06c5c
DC
9160 return retval;
9161 }
987504bb
JJ
9162 else
9163 {
9164 /* We have an obstack. */
9165 return obconcat (obs, prefix, sep, suffix);
9166 }
63d06c5c
DC
9167}
9168
c906108c
SS
9169/* Return sibling of die, NULL if no sibling. */
9170
f9aca02d 9171static struct die_info *
fba45db2 9172sibling_die (struct die_info *die)
c906108c 9173{
639d11d3 9174 return die->sibling;
c906108c
SS
9175}
9176
71c25dea
TT
9177/* Get name of a die, return NULL if not found. */
9178
9179static char *
9180dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
9181 struct obstack *obstack)
9182{
9183 if (name && cu->language == language_cplus)
9184 {
9185 char *canon_name = cp_canonicalize_string (name);
9186
9187 if (canon_name != NULL)
9188 {
9189 if (strcmp (canon_name, name) != 0)
9190 name = obsavestring (canon_name, strlen (canon_name),
9191 obstack);
9192 xfree (canon_name);
9193 }
9194 }
9195
9196 return name;
c906108c
SS
9197}
9198
9219021c
DC
9199/* Get name of a die, return NULL if not found. */
9200
9201static char *
e142c38c 9202dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
9203{
9204 struct attribute *attr;
9205
e142c38c 9206 attr = dwarf2_attr (die, DW_AT_name, cu);
71c25dea
TT
9207 if (!attr || !DW_STRING (attr))
9208 return NULL;
9209
9210 switch (die->tag)
9211 {
9212 case DW_TAG_compile_unit:
9213 /* Compilation units have a DW_AT_name that is a filename, not
9214 a source language identifier. */
9215 case DW_TAG_enumeration_type:
9216 case DW_TAG_enumerator:
9217 /* These tags always have simple identifiers already; no need
9218 to canonicalize them. */
9219 return DW_STRING (attr);
907af001 9220
418835cc
KS
9221 case DW_TAG_subprogram:
9222 /* Java constructors will all be named "<init>", so return
9223 the class name when we see this special case. */
9224 if (cu->language == language_java
9225 && DW_STRING (attr) != NULL
9226 && strcmp (DW_STRING (attr), "<init>") == 0)
9227 {
9228 struct dwarf2_cu *spec_cu = cu;
9229 struct die_info *spec_die;
9230
9231 /* GCJ will output '<init>' for Java constructor names.
9232 For this special case, return the name of the parent class. */
9233
9234 /* GCJ may output suprogram DIEs with AT_specification set.
9235 If so, use the name of the specified DIE. */
9236 spec_die = die_specification (die, &spec_cu);
9237 if (spec_die != NULL)
9238 return dwarf2_name (spec_die, spec_cu);
9239
9240 do
9241 {
9242 die = die->parent;
9243 if (die->tag == DW_TAG_class_type)
9244 return dwarf2_name (die, cu);
9245 }
9246 while (die->tag != DW_TAG_compile_unit);
9247 }
907af001
UW
9248 break;
9249
9250 case DW_TAG_class_type:
9251 case DW_TAG_interface_type:
9252 case DW_TAG_structure_type:
9253 case DW_TAG_union_type:
9254 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
9255 structures or unions. These were of the form "._%d" in GCC 4.1,
9256 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
9257 and GCC 4.4. We work around this problem by ignoring these. */
9258 if (strncmp (DW_STRING (attr), "._", 2) == 0
9259 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
9260 return NULL;
9261 break;
9262
71c25dea 9263 default:
907af001
UW
9264 break;
9265 }
9266
9267 if (!DW_STRING_IS_CANONICAL (attr))
9268 {
9269 DW_STRING (attr)
9270 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
9271 &cu->objfile->objfile_obstack);
9272 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 9273 }
907af001 9274 return DW_STRING (attr);
9219021c
DC
9275}
9276
9277/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
9278 is none. *EXT_CU is the CU containing DIE on input, and the CU
9279 containing the return value on output. */
9219021c
DC
9280
9281static struct die_info *
f2f0e013 9282dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
9283{
9284 struct attribute *attr;
9219021c 9285
f2f0e013 9286 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
9287 if (attr == NULL)
9288 return NULL;
9289
f2f0e013 9290 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
9291}
9292
c906108c
SS
9293/* Convert a DIE tag into its string name. */
9294
9295static char *
aa1ee363 9296dwarf_tag_name (unsigned tag)
c906108c
SS
9297{
9298 switch (tag)
9299 {
9300 case DW_TAG_padding:
9301 return "DW_TAG_padding";
9302 case DW_TAG_array_type:
9303 return "DW_TAG_array_type";
9304 case DW_TAG_class_type:
9305 return "DW_TAG_class_type";
9306 case DW_TAG_entry_point:
9307 return "DW_TAG_entry_point";
9308 case DW_TAG_enumeration_type:
9309 return "DW_TAG_enumeration_type";
9310 case DW_TAG_formal_parameter:
9311 return "DW_TAG_formal_parameter";
9312 case DW_TAG_imported_declaration:
9313 return "DW_TAG_imported_declaration";
9314 case DW_TAG_label:
9315 return "DW_TAG_label";
9316 case DW_TAG_lexical_block:
9317 return "DW_TAG_lexical_block";
9318 case DW_TAG_member:
9319 return "DW_TAG_member";
9320 case DW_TAG_pointer_type:
9321 return "DW_TAG_pointer_type";
9322 case DW_TAG_reference_type:
9323 return "DW_TAG_reference_type";
9324 case DW_TAG_compile_unit:
9325 return "DW_TAG_compile_unit";
9326 case DW_TAG_string_type:
9327 return "DW_TAG_string_type";
9328 case DW_TAG_structure_type:
9329 return "DW_TAG_structure_type";
9330 case DW_TAG_subroutine_type:
9331 return "DW_TAG_subroutine_type";
9332 case DW_TAG_typedef:
9333 return "DW_TAG_typedef";
9334 case DW_TAG_union_type:
9335 return "DW_TAG_union_type";
9336 case DW_TAG_unspecified_parameters:
9337 return "DW_TAG_unspecified_parameters";
9338 case DW_TAG_variant:
9339 return "DW_TAG_variant";
9340 case DW_TAG_common_block:
9341 return "DW_TAG_common_block";
9342 case DW_TAG_common_inclusion:
9343 return "DW_TAG_common_inclusion";
9344 case DW_TAG_inheritance:
9345 return "DW_TAG_inheritance";
9346 case DW_TAG_inlined_subroutine:
9347 return "DW_TAG_inlined_subroutine";
9348 case DW_TAG_module:
9349 return "DW_TAG_module";
9350 case DW_TAG_ptr_to_member_type:
9351 return "DW_TAG_ptr_to_member_type";
9352 case DW_TAG_set_type:
9353 return "DW_TAG_set_type";
9354 case DW_TAG_subrange_type:
9355 return "DW_TAG_subrange_type";
9356 case DW_TAG_with_stmt:
9357 return "DW_TAG_with_stmt";
9358 case DW_TAG_access_declaration:
9359 return "DW_TAG_access_declaration";
9360 case DW_TAG_base_type:
9361 return "DW_TAG_base_type";
9362 case DW_TAG_catch_block:
9363 return "DW_TAG_catch_block";
9364 case DW_TAG_const_type:
9365 return "DW_TAG_const_type";
9366 case DW_TAG_constant:
9367 return "DW_TAG_constant";
9368 case DW_TAG_enumerator:
9369 return "DW_TAG_enumerator";
9370 case DW_TAG_file_type:
9371 return "DW_TAG_file_type";
9372 case DW_TAG_friend:
9373 return "DW_TAG_friend";
9374 case DW_TAG_namelist:
9375 return "DW_TAG_namelist";
9376 case DW_TAG_namelist_item:
9377 return "DW_TAG_namelist_item";
9378 case DW_TAG_packed_type:
9379 return "DW_TAG_packed_type";
9380 case DW_TAG_subprogram:
9381 return "DW_TAG_subprogram";
9382 case DW_TAG_template_type_param:
9383 return "DW_TAG_template_type_param";
9384 case DW_TAG_template_value_param:
9385 return "DW_TAG_template_value_param";
9386 case DW_TAG_thrown_type:
9387 return "DW_TAG_thrown_type";
9388 case DW_TAG_try_block:
9389 return "DW_TAG_try_block";
9390 case DW_TAG_variant_part:
9391 return "DW_TAG_variant_part";
9392 case DW_TAG_variable:
9393 return "DW_TAG_variable";
9394 case DW_TAG_volatile_type:
9395 return "DW_TAG_volatile_type";
d9fa45fe
DC
9396 case DW_TAG_dwarf_procedure:
9397 return "DW_TAG_dwarf_procedure";
9398 case DW_TAG_restrict_type:
9399 return "DW_TAG_restrict_type";
9400 case DW_TAG_interface_type:
9401 return "DW_TAG_interface_type";
9402 case DW_TAG_namespace:
9403 return "DW_TAG_namespace";
9404 case DW_TAG_imported_module:
9405 return "DW_TAG_imported_module";
9406 case DW_TAG_unspecified_type:
9407 return "DW_TAG_unspecified_type";
9408 case DW_TAG_partial_unit:
9409 return "DW_TAG_partial_unit";
9410 case DW_TAG_imported_unit:
9411 return "DW_TAG_imported_unit";
b7619582
GF
9412 case DW_TAG_condition:
9413 return "DW_TAG_condition";
9414 case DW_TAG_shared_type:
9415 return "DW_TAG_shared_type";
348e048f
DE
9416 case DW_TAG_type_unit:
9417 return "DW_TAG_type_unit";
c906108c
SS
9418 case DW_TAG_MIPS_loop:
9419 return "DW_TAG_MIPS_loop";
b7619582
GF
9420 case DW_TAG_HP_array_descriptor:
9421 return "DW_TAG_HP_array_descriptor";
c906108c
SS
9422 case DW_TAG_format_label:
9423 return "DW_TAG_format_label";
9424 case DW_TAG_function_template:
9425 return "DW_TAG_function_template";
9426 case DW_TAG_class_template:
9427 return "DW_TAG_class_template";
b7619582
GF
9428 case DW_TAG_GNU_BINCL:
9429 return "DW_TAG_GNU_BINCL";
9430 case DW_TAG_GNU_EINCL:
9431 return "DW_TAG_GNU_EINCL";
9432 case DW_TAG_upc_shared_type:
9433 return "DW_TAG_upc_shared_type";
9434 case DW_TAG_upc_strict_type:
9435 return "DW_TAG_upc_strict_type";
9436 case DW_TAG_upc_relaxed_type:
9437 return "DW_TAG_upc_relaxed_type";
9438 case DW_TAG_PGI_kanji_type:
9439 return "DW_TAG_PGI_kanji_type";
9440 case DW_TAG_PGI_interface_block:
9441 return "DW_TAG_PGI_interface_block";
c906108c
SS
9442 default:
9443 return "DW_TAG_<unknown>";
9444 }
9445}
9446
9447/* Convert a DWARF attribute code into its string name. */
9448
9449static char *
aa1ee363 9450dwarf_attr_name (unsigned attr)
c906108c
SS
9451{
9452 switch (attr)
9453 {
9454 case DW_AT_sibling:
9455 return "DW_AT_sibling";
9456 case DW_AT_location:
9457 return "DW_AT_location";
9458 case DW_AT_name:
9459 return "DW_AT_name";
9460 case DW_AT_ordering:
9461 return "DW_AT_ordering";
9462 case DW_AT_subscr_data:
9463 return "DW_AT_subscr_data";
9464 case DW_AT_byte_size:
9465 return "DW_AT_byte_size";
9466 case DW_AT_bit_offset:
9467 return "DW_AT_bit_offset";
9468 case DW_AT_bit_size:
9469 return "DW_AT_bit_size";
9470 case DW_AT_element_list:
9471 return "DW_AT_element_list";
9472 case DW_AT_stmt_list:
9473 return "DW_AT_stmt_list";
9474 case DW_AT_low_pc:
9475 return "DW_AT_low_pc";
9476 case DW_AT_high_pc:
9477 return "DW_AT_high_pc";
9478 case DW_AT_language:
9479 return "DW_AT_language";
9480 case DW_AT_member:
9481 return "DW_AT_member";
9482 case DW_AT_discr:
9483 return "DW_AT_discr";
9484 case DW_AT_discr_value:
9485 return "DW_AT_discr_value";
9486 case DW_AT_visibility:
9487 return "DW_AT_visibility";
9488 case DW_AT_import:
9489 return "DW_AT_import";
9490 case DW_AT_string_length:
9491 return "DW_AT_string_length";
9492 case DW_AT_common_reference:
9493 return "DW_AT_common_reference";
9494 case DW_AT_comp_dir:
9495 return "DW_AT_comp_dir";
9496 case DW_AT_const_value:
9497 return "DW_AT_const_value";
9498 case DW_AT_containing_type:
9499 return "DW_AT_containing_type";
9500 case DW_AT_default_value:
9501 return "DW_AT_default_value";
9502 case DW_AT_inline:
9503 return "DW_AT_inline";
9504 case DW_AT_is_optional:
9505 return "DW_AT_is_optional";
9506 case DW_AT_lower_bound:
9507 return "DW_AT_lower_bound";
9508 case DW_AT_producer:
9509 return "DW_AT_producer";
9510 case DW_AT_prototyped:
9511 return "DW_AT_prototyped";
9512 case DW_AT_return_addr:
9513 return "DW_AT_return_addr";
9514 case DW_AT_start_scope:
9515 return "DW_AT_start_scope";
09fa0d7c
JK
9516 case DW_AT_bit_stride:
9517 return "DW_AT_bit_stride";
c906108c
SS
9518 case DW_AT_upper_bound:
9519 return "DW_AT_upper_bound";
9520 case DW_AT_abstract_origin:
9521 return "DW_AT_abstract_origin";
9522 case DW_AT_accessibility:
9523 return "DW_AT_accessibility";
9524 case DW_AT_address_class:
9525 return "DW_AT_address_class";
9526 case DW_AT_artificial:
9527 return "DW_AT_artificial";
9528 case DW_AT_base_types:
9529 return "DW_AT_base_types";
9530 case DW_AT_calling_convention:
9531 return "DW_AT_calling_convention";
9532 case DW_AT_count:
9533 return "DW_AT_count";
9534 case DW_AT_data_member_location:
9535 return "DW_AT_data_member_location";
9536 case DW_AT_decl_column:
9537 return "DW_AT_decl_column";
9538 case DW_AT_decl_file:
9539 return "DW_AT_decl_file";
9540 case DW_AT_decl_line:
9541 return "DW_AT_decl_line";
9542 case DW_AT_declaration:
9543 return "DW_AT_declaration";
9544 case DW_AT_discr_list:
9545 return "DW_AT_discr_list";
9546 case DW_AT_encoding:
9547 return "DW_AT_encoding";
9548 case DW_AT_external:
9549 return "DW_AT_external";
9550 case DW_AT_frame_base:
9551 return "DW_AT_frame_base";
9552 case DW_AT_friend:
9553 return "DW_AT_friend";
9554 case DW_AT_identifier_case:
9555 return "DW_AT_identifier_case";
9556 case DW_AT_macro_info:
9557 return "DW_AT_macro_info";
9558 case DW_AT_namelist_items:
9559 return "DW_AT_namelist_items";
9560 case DW_AT_priority:
9561 return "DW_AT_priority";
9562 case DW_AT_segment:
9563 return "DW_AT_segment";
9564 case DW_AT_specification:
9565 return "DW_AT_specification";
9566 case DW_AT_static_link:
9567 return "DW_AT_static_link";
9568 case DW_AT_type:
9569 return "DW_AT_type";
9570 case DW_AT_use_location:
9571 return "DW_AT_use_location";
9572 case DW_AT_variable_parameter:
9573 return "DW_AT_variable_parameter";
9574 case DW_AT_virtuality:
9575 return "DW_AT_virtuality";
9576 case DW_AT_vtable_elem_location:
9577 return "DW_AT_vtable_elem_location";
b7619582 9578 /* DWARF 3 values. */
d9fa45fe
DC
9579 case DW_AT_allocated:
9580 return "DW_AT_allocated";
9581 case DW_AT_associated:
9582 return "DW_AT_associated";
9583 case DW_AT_data_location:
9584 return "DW_AT_data_location";
09fa0d7c
JK
9585 case DW_AT_byte_stride:
9586 return "DW_AT_byte_stride";
d9fa45fe
DC
9587 case DW_AT_entry_pc:
9588 return "DW_AT_entry_pc";
9589 case DW_AT_use_UTF8:
9590 return "DW_AT_use_UTF8";
9591 case DW_AT_extension:
9592 return "DW_AT_extension";
9593 case DW_AT_ranges:
9594 return "DW_AT_ranges";
9595 case DW_AT_trampoline:
9596 return "DW_AT_trampoline";
9597 case DW_AT_call_column:
9598 return "DW_AT_call_column";
9599 case DW_AT_call_file:
9600 return "DW_AT_call_file";
9601 case DW_AT_call_line:
9602 return "DW_AT_call_line";
b7619582
GF
9603 case DW_AT_description:
9604 return "DW_AT_description";
9605 case DW_AT_binary_scale:
9606 return "DW_AT_binary_scale";
9607 case DW_AT_decimal_scale:
9608 return "DW_AT_decimal_scale";
9609 case DW_AT_small:
9610 return "DW_AT_small";
9611 case DW_AT_decimal_sign:
9612 return "DW_AT_decimal_sign";
9613 case DW_AT_digit_count:
9614 return "DW_AT_digit_count";
9615 case DW_AT_picture_string:
9616 return "DW_AT_picture_string";
9617 case DW_AT_mutable:
9618 return "DW_AT_mutable";
9619 case DW_AT_threads_scaled:
9620 return "DW_AT_threads_scaled";
9621 case DW_AT_explicit:
9622 return "DW_AT_explicit";
9623 case DW_AT_object_pointer:
9624 return "DW_AT_object_pointer";
9625 case DW_AT_endianity:
9626 return "DW_AT_endianity";
9627 case DW_AT_elemental:
9628 return "DW_AT_elemental";
9629 case DW_AT_pure:
9630 return "DW_AT_pure";
9631 case DW_AT_recursive:
9632 return "DW_AT_recursive";
348e048f
DE
9633 /* DWARF 4 values. */
9634 case DW_AT_signature:
9635 return "DW_AT_signature";
b7619582 9636 /* SGI/MIPS extensions. */
c764a876 9637#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
9638 case DW_AT_MIPS_fde:
9639 return "DW_AT_MIPS_fde";
c764a876 9640#endif
c906108c
SS
9641 case DW_AT_MIPS_loop_begin:
9642 return "DW_AT_MIPS_loop_begin";
9643 case DW_AT_MIPS_tail_loop_begin:
9644 return "DW_AT_MIPS_tail_loop_begin";
9645 case DW_AT_MIPS_epilog_begin:
9646 return "DW_AT_MIPS_epilog_begin";
9647 case DW_AT_MIPS_loop_unroll_factor:
9648 return "DW_AT_MIPS_loop_unroll_factor";
9649 case DW_AT_MIPS_software_pipeline_depth:
9650 return "DW_AT_MIPS_software_pipeline_depth";
9651 case DW_AT_MIPS_linkage_name:
9652 return "DW_AT_MIPS_linkage_name";
b7619582
GF
9653 case DW_AT_MIPS_stride:
9654 return "DW_AT_MIPS_stride";
9655 case DW_AT_MIPS_abstract_name:
9656 return "DW_AT_MIPS_abstract_name";
9657 case DW_AT_MIPS_clone_origin:
9658 return "DW_AT_MIPS_clone_origin";
9659 case DW_AT_MIPS_has_inlines:
9660 return "DW_AT_MIPS_has_inlines";
b7619582 9661 /* HP extensions. */
c764a876 9662#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
9663 case DW_AT_HP_block_index:
9664 return "DW_AT_HP_block_index";
c764a876 9665#endif
b7619582
GF
9666 case DW_AT_HP_unmodifiable:
9667 return "DW_AT_HP_unmodifiable";
9668 case DW_AT_HP_actuals_stmt_list:
9669 return "DW_AT_HP_actuals_stmt_list";
9670 case DW_AT_HP_proc_per_section:
9671 return "DW_AT_HP_proc_per_section";
9672 case DW_AT_HP_raw_data_ptr:
9673 return "DW_AT_HP_raw_data_ptr";
9674 case DW_AT_HP_pass_by_reference:
9675 return "DW_AT_HP_pass_by_reference";
9676 case DW_AT_HP_opt_level:
9677 return "DW_AT_HP_opt_level";
9678 case DW_AT_HP_prof_version_id:
9679 return "DW_AT_HP_prof_version_id";
9680 case DW_AT_HP_opt_flags:
9681 return "DW_AT_HP_opt_flags";
9682 case DW_AT_HP_cold_region_low_pc:
9683 return "DW_AT_HP_cold_region_low_pc";
9684 case DW_AT_HP_cold_region_high_pc:
9685 return "DW_AT_HP_cold_region_high_pc";
9686 case DW_AT_HP_all_variables_modifiable:
9687 return "DW_AT_HP_all_variables_modifiable";
9688 case DW_AT_HP_linkage_name:
9689 return "DW_AT_HP_linkage_name";
9690 case DW_AT_HP_prof_flags:
9691 return "DW_AT_HP_prof_flags";
9692 /* GNU extensions. */
c906108c
SS
9693 case DW_AT_sf_names:
9694 return "DW_AT_sf_names";
9695 case DW_AT_src_info:
9696 return "DW_AT_src_info";
9697 case DW_AT_mac_info:
9698 return "DW_AT_mac_info";
9699 case DW_AT_src_coords:
9700 return "DW_AT_src_coords";
9701 case DW_AT_body_begin:
9702 return "DW_AT_body_begin";
9703 case DW_AT_body_end:
9704 return "DW_AT_body_end";
f5f8a009
EZ
9705 case DW_AT_GNU_vector:
9706 return "DW_AT_GNU_vector";
b7619582
GF
9707 /* VMS extensions. */
9708 case DW_AT_VMS_rtnbeg_pd_address:
9709 return "DW_AT_VMS_rtnbeg_pd_address";
9710 /* UPC extension. */
9711 case DW_AT_upc_threads_scaled:
9712 return "DW_AT_upc_threads_scaled";
9713 /* PGI (STMicroelectronics) extensions. */
9714 case DW_AT_PGI_lbase:
9715 return "DW_AT_PGI_lbase";
9716 case DW_AT_PGI_soffset:
9717 return "DW_AT_PGI_soffset";
9718 case DW_AT_PGI_lstride:
9719 return "DW_AT_PGI_lstride";
c906108c
SS
9720 default:
9721 return "DW_AT_<unknown>";
9722 }
9723}
9724
9725/* Convert a DWARF value form code into its string name. */
9726
9727static char *
aa1ee363 9728dwarf_form_name (unsigned form)
c906108c
SS
9729{
9730 switch (form)
9731 {
9732 case DW_FORM_addr:
9733 return "DW_FORM_addr";
9734 case DW_FORM_block2:
9735 return "DW_FORM_block2";
9736 case DW_FORM_block4:
9737 return "DW_FORM_block4";
9738 case DW_FORM_data2:
9739 return "DW_FORM_data2";
9740 case DW_FORM_data4:
9741 return "DW_FORM_data4";
9742 case DW_FORM_data8:
9743 return "DW_FORM_data8";
9744 case DW_FORM_string:
9745 return "DW_FORM_string";
9746 case DW_FORM_block:
9747 return "DW_FORM_block";
9748 case DW_FORM_block1:
9749 return "DW_FORM_block1";
9750 case DW_FORM_data1:
9751 return "DW_FORM_data1";
9752 case DW_FORM_flag:
9753 return "DW_FORM_flag";
9754 case DW_FORM_sdata:
9755 return "DW_FORM_sdata";
9756 case DW_FORM_strp:
9757 return "DW_FORM_strp";
9758 case DW_FORM_udata:
9759 return "DW_FORM_udata";
9760 case DW_FORM_ref_addr:
9761 return "DW_FORM_ref_addr";
9762 case DW_FORM_ref1:
9763 return "DW_FORM_ref1";
9764 case DW_FORM_ref2:
9765 return "DW_FORM_ref2";
9766 case DW_FORM_ref4:
9767 return "DW_FORM_ref4";
9768 case DW_FORM_ref8:
9769 return "DW_FORM_ref8";
9770 case DW_FORM_ref_udata:
9771 return "DW_FORM_ref_udata";
9772 case DW_FORM_indirect:
9773 return "DW_FORM_indirect";
348e048f
DE
9774 case DW_FORM_sec_offset:
9775 return "DW_FORM_sec_offset";
9776 case DW_FORM_exprloc:
9777 return "DW_FORM_exprloc";
9778 case DW_FORM_flag_present:
9779 return "DW_FORM_flag_present";
9780 case DW_FORM_sig8:
9781 return "DW_FORM_sig8";
c906108c
SS
9782 default:
9783 return "DW_FORM_<unknown>";
9784 }
9785}
9786
9787/* Convert a DWARF stack opcode into its string name. */
9788
9789static char *
aa1ee363 9790dwarf_stack_op_name (unsigned op)
c906108c
SS
9791{
9792 switch (op)
9793 {
9794 case DW_OP_addr:
9795 return "DW_OP_addr";
9796 case DW_OP_deref:
9797 return "DW_OP_deref";
9798 case DW_OP_const1u:
9799 return "DW_OP_const1u";
9800 case DW_OP_const1s:
9801 return "DW_OP_const1s";
9802 case DW_OP_const2u:
9803 return "DW_OP_const2u";
9804 case DW_OP_const2s:
9805 return "DW_OP_const2s";
9806 case DW_OP_const4u:
9807 return "DW_OP_const4u";
9808 case DW_OP_const4s:
9809 return "DW_OP_const4s";
9810 case DW_OP_const8u:
9811 return "DW_OP_const8u";
9812 case DW_OP_const8s:
9813 return "DW_OP_const8s";
9814 case DW_OP_constu:
9815 return "DW_OP_constu";
9816 case DW_OP_consts:
9817 return "DW_OP_consts";
9818 case DW_OP_dup:
9819 return "DW_OP_dup";
9820 case DW_OP_drop:
9821 return "DW_OP_drop";
9822 case DW_OP_over:
9823 return "DW_OP_over";
9824 case DW_OP_pick:
9825 return "DW_OP_pick";
9826 case DW_OP_swap:
9827 return "DW_OP_swap";
9828 case DW_OP_rot:
9829 return "DW_OP_rot";
9830 case DW_OP_xderef:
9831 return "DW_OP_xderef";
9832 case DW_OP_abs:
9833 return "DW_OP_abs";
9834 case DW_OP_and:
9835 return "DW_OP_and";
9836 case DW_OP_div:
9837 return "DW_OP_div";
9838 case DW_OP_minus:
9839 return "DW_OP_minus";
9840 case DW_OP_mod:
9841 return "DW_OP_mod";
9842 case DW_OP_mul:
9843 return "DW_OP_mul";
9844 case DW_OP_neg:
9845 return "DW_OP_neg";
9846 case DW_OP_not:
9847 return "DW_OP_not";
9848 case DW_OP_or:
9849 return "DW_OP_or";
9850 case DW_OP_plus:
9851 return "DW_OP_plus";
9852 case DW_OP_plus_uconst:
9853 return "DW_OP_plus_uconst";
9854 case DW_OP_shl:
9855 return "DW_OP_shl";
9856 case DW_OP_shr:
9857 return "DW_OP_shr";
9858 case DW_OP_shra:
9859 return "DW_OP_shra";
9860 case DW_OP_xor:
9861 return "DW_OP_xor";
9862 case DW_OP_bra:
9863 return "DW_OP_bra";
9864 case DW_OP_eq:
9865 return "DW_OP_eq";
9866 case DW_OP_ge:
9867 return "DW_OP_ge";
9868 case DW_OP_gt:
9869 return "DW_OP_gt";
9870 case DW_OP_le:
9871 return "DW_OP_le";
9872 case DW_OP_lt:
9873 return "DW_OP_lt";
9874 case DW_OP_ne:
9875 return "DW_OP_ne";
9876 case DW_OP_skip:
9877 return "DW_OP_skip";
9878 case DW_OP_lit0:
9879 return "DW_OP_lit0";
9880 case DW_OP_lit1:
9881 return "DW_OP_lit1";
9882 case DW_OP_lit2:
9883 return "DW_OP_lit2";
9884 case DW_OP_lit3:
9885 return "DW_OP_lit3";
9886 case DW_OP_lit4:
9887 return "DW_OP_lit4";
9888 case DW_OP_lit5:
9889 return "DW_OP_lit5";
9890 case DW_OP_lit6:
9891 return "DW_OP_lit6";
9892 case DW_OP_lit7:
9893 return "DW_OP_lit7";
9894 case DW_OP_lit8:
9895 return "DW_OP_lit8";
9896 case DW_OP_lit9:
9897 return "DW_OP_lit9";
9898 case DW_OP_lit10:
9899 return "DW_OP_lit10";
9900 case DW_OP_lit11:
9901 return "DW_OP_lit11";
9902 case DW_OP_lit12:
9903 return "DW_OP_lit12";
9904 case DW_OP_lit13:
9905 return "DW_OP_lit13";
9906 case DW_OP_lit14:
9907 return "DW_OP_lit14";
9908 case DW_OP_lit15:
9909 return "DW_OP_lit15";
9910 case DW_OP_lit16:
9911 return "DW_OP_lit16";
9912 case DW_OP_lit17:
9913 return "DW_OP_lit17";
9914 case DW_OP_lit18:
9915 return "DW_OP_lit18";
9916 case DW_OP_lit19:
9917 return "DW_OP_lit19";
9918 case DW_OP_lit20:
9919 return "DW_OP_lit20";
9920 case DW_OP_lit21:
9921 return "DW_OP_lit21";
9922 case DW_OP_lit22:
9923 return "DW_OP_lit22";
9924 case DW_OP_lit23:
9925 return "DW_OP_lit23";
9926 case DW_OP_lit24:
9927 return "DW_OP_lit24";
9928 case DW_OP_lit25:
9929 return "DW_OP_lit25";
9930 case DW_OP_lit26:
9931 return "DW_OP_lit26";
9932 case DW_OP_lit27:
9933 return "DW_OP_lit27";
9934 case DW_OP_lit28:
9935 return "DW_OP_lit28";
9936 case DW_OP_lit29:
9937 return "DW_OP_lit29";
9938 case DW_OP_lit30:
9939 return "DW_OP_lit30";
9940 case DW_OP_lit31:
9941 return "DW_OP_lit31";
9942 case DW_OP_reg0:
9943 return "DW_OP_reg0";
9944 case DW_OP_reg1:
9945 return "DW_OP_reg1";
9946 case DW_OP_reg2:
9947 return "DW_OP_reg2";
9948 case DW_OP_reg3:
9949 return "DW_OP_reg3";
9950 case DW_OP_reg4:
9951 return "DW_OP_reg4";
9952 case DW_OP_reg5:
9953 return "DW_OP_reg5";
9954 case DW_OP_reg6:
9955 return "DW_OP_reg6";
9956 case DW_OP_reg7:
9957 return "DW_OP_reg7";
9958 case DW_OP_reg8:
9959 return "DW_OP_reg8";
9960 case DW_OP_reg9:
9961 return "DW_OP_reg9";
9962 case DW_OP_reg10:
9963 return "DW_OP_reg10";
9964 case DW_OP_reg11:
9965 return "DW_OP_reg11";
9966 case DW_OP_reg12:
9967 return "DW_OP_reg12";
9968 case DW_OP_reg13:
9969 return "DW_OP_reg13";
9970 case DW_OP_reg14:
9971 return "DW_OP_reg14";
9972 case DW_OP_reg15:
9973 return "DW_OP_reg15";
9974 case DW_OP_reg16:
9975 return "DW_OP_reg16";
9976 case DW_OP_reg17:
9977 return "DW_OP_reg17";
9978 case DW_OP_reg18:
9979 return "DW_OP_reg18";
9980 case DW_OP_reg19:
9981 return "DW_OP_reg19";
9982 case DW_OP_reg20:
9983 return "DW_OP_reg20";
9984 case DW_OP_reg21:
9985 return "DW_OP_reg21";
9986 case DW_OP_reg22:
9987 return "DW_OP_reg22";
9988 case DW_OP_reg23:
9989 return "DW_OP_reg23";
9990 case DW_OP_reg24:
9991 return "DW_OP_reg24";
9992 case DW_OP_reg25:
9993 return "DW_OP_reg25";
9994 case DW_OP_reg26:
9995 return "DW_OP_reg26";
9996 case DW_OP_reg27:
9997 return "DW_OP_reg27";
9998 case DW_OP_reg28:
9999 return "DW_OP_reg28";
10000 case DW_OP_reg29:
10001 return "DW_OP_reg29";
10002 case DW_OP_reg30:
10003 return "DW_OP_reg30";
10004 case DW_OP_reg31:
10005 return "DW_OP_reg31";
10006 case DW_OP_breg0:
10007 return "DW_OP_breg0";
10008 case DW_OP_breg1:
10009 return "DW_OP_breg1";
10010 case DW_OP_breg2:
10011 return "DW_OP_breg2";
10012 case DW_OP_breg3:
10013 return "DW_OP_breg3";
10014 case DW_OP_breg4:
10015 return "DW_OP_breg4";
10016 case DW_OP_breg5:
10017 return "DW_OP_breg5";
10018 case DW_OP_breg6:
10019 return "DW_OP_breg6";
10020 case DW_OP_breg7:
10021 return "DW_OP_breg7";
10022 case DW_OP_breg8:
10023 return "DW_OP_breg8";
10024 case DW_OP_breg9:
10025 return "DW_OP_breg9";
10026 case DW_OP_breg10:
10027 return "DW_OP_breg10";
10028 case DW_OP_breg11:
10029 return "DW_OP_breg11";
10030 case DW_OP_breg12:
10031 return "DW_OP_breg12";
10032 case DW_OP_breg13:
10033 return "DW_OP_breg13";
10034 case DW_OP_breg14:
10035 return "DW_OP_breg14";
10036 case DW_OP_breg15:
10037 return "DW_OP_breg15";
10038 case DW_OP_breg16:
10039 return "DW_OP_breg16";
10040 case DW_OP_breg17:
10041 return "DW_OP_breg17";
10042 case DW_OP_breg18:
10043 return "DW_OP_breg18";
10044 case DW_OP_breg19:
10045 return "DW_OP_breg19";
10046 case DW_OP_breg20:
10047 return "DW_OP_breg20";
10048 case DW_OP_breg21:
10049 return "DW_OP_breg21";
10050 case DW_OP_breg22:
10051 return "DW_OP_breg22";
10052 case DW_OP_breg23:
10053 return "DW_OP_breg23";
10054 case DW_OP_breg24:
10055 return "DW_OP_breg24";
10056 case DW_OP_breg25:
10057 return "DW_OP_breg25";
10058 case DW_OP_breg26:
10059 return "DW_OP_breg26";
10060 case DW_OP_breg27:
10061 return "DW_OP_breg27";
10062 case DW_OP_breg28:
10063 return "DW_OP_breg28";
10064 case DW_OP_breg29:
10065 return "DW_OP_breg29";
10066 case DW_OP_breg30:
10067 return "DW_OP_breg30";
10068 case DW_OP_breg31:
10069 return "DW_OP_breg31";
10070 case DW_OP_regx:
10071 return "DW_OP_regx";
10072 case DW_OP_fbreg:
10073 return "DW_OP_fbreg";
10074 case DW_OP_bregx:
10075 return "DW_OP_bregx";
10076 case DW_OP_piece:
10077 return "DW_OP_piece";
10078 case DW_OP_deref_size:
10079 return "DW_OP_deref_size";
10080 case DW_OP_xderef_size:
10081 return "DW_OP_xderef_size";
10082 case DW_OP_nop:
10083 return "DW_OP_nop";
b7619582 10084 /* DWARF 3 extensions. */
ed348acc
EZ
10085 case DW_OP_push_object_address:
10086 return "DW_OP_push_object_address";
10087 case DW_OP_call2:
10088 return "DW_OP_call2";
10089 case DW_OP_call4:
10090 return "DW_OP_call4";
10091 case DW_OP_call_ref:
10092 return "DW_OP_call_ref";
b7619582
GF
10093 /* GNU extensions. */
10094 case DW_OP_form_tls_address:
10095 return "DW_OP_form_tls_address";
10096 case DW_OP_call_frame_cfa:
10097 return "DW_OP_call_frame_cfa";
10098 case DW_OP_bit_piece:
10099 return "DW_OP_bit_piece";
ed348acc
EZ
10100 case DW_OP_GNU_push_tls_address:
10101 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
10102 case DW_OP_GNU_uninit:
10103 return "DW_OP_GNU_uninit";
b7619582
GF
10104 /* HP extensions. */
10105 case DW_OP_HP_is_value:
10106 return "DW_OP_HP_is_value";
10107 case DW_OP_HP_fltconst4:
10108 return "DW_OP_HP_fltconst4";
10109 case DW_OP_HP_fltconst8:
10110 return "DW_OP_HP_fltconst8";
10111 case DW_OP_HP_mod_range:
10112 return "DW_OP_HP_mod_range";
10113 case DW_OP_HP_unmod_range:
10114 return "DW_OP_HP_unmod_range";
10115 case DW_OP_HP_tls:
10116 return "DW_OP_HP_tls";
c906108c
SS
10117 default:
10118 return "OP_<unknown>";
10119 }
10120}
10121
10122static char *
fba45db2 10123dwarf_bool_name (unsigned mybool)
c906108c
SS
10124{
10125 if (mybool)
10126 return "TRUE";
10127 else
10128 return "FALSE";
10129}
10130
10131/* Convert a DWARF type code into its string name. */
10132
10133static char *
aa1ee363 10134dwarf_type_encoding_name (unsigned enc)
c906108c
SS
10135{
10136 switch (enc)
10137 {
b7619582
GF
10138 case DW_ATE_void:
10139 return "DW_ATE_void";
c906108c
SS
10140 case DW_ATE_address:
10141 return "DW_ATE_address";
10142 case DW_ATE_boolean:
10143 return "DW_ATE_boolean";
10144 case DW_ATE_complex_float:
10145 return "DW_ATE_complex_float";
10146 case DW_ATE_float:
10147 return "DW_ATE_float";
10148 case DW_ATE_signed:
10149 return "DW_ATE_signed";
10150 case DW_ATE_signed_char:
10151 return "DW_ATE_signed_char";
10152 case DW_ATE_unsigned:
10153 return "DW_ATE_unsigned";
10154 case DW_ATE_unsigned_char:
10155 return "DW_ATE_unsigned_char";
b7619582 10156 /* DWARF 3. */
d9fa45fe
DC
10157 case DW_ATE_imaginary_float:
10158 return "DW_ATE_imaginary_float";
b7619582
GF
10159 case DW_ATE_packed_decimal:
10160 return "DW_ATE_packed_decimal";
10161 case DW_ATE_numeric_string:
10162 return "DW_ATE_numeric_string";
10163 case DW_ATE_edited:
10164 return "DW_ATE_edited";
10165 case DW_ATE_signed_fixed:
10166 return "DW_ATE_signed_fixed";
10167 case DW_ATE_unsigned_fixed:
10168 return "DW_ATE_unsigned_fixed";
10169 case DW_ATE_decimal_float:
10170 return "DW_ATE_decimal_float";
10171 /* HP extensions. */
10172 case DW_ATE_HP_float80:
10173 return "DW_ATE_HP_float80";
10174 case DW_ATE_HP_complex_float80:
10175 return "DW_ATE_HP_complex_float80";
10176 case DW_ATE_HP_float128:
10177 return "DW_ATE_HP_float128";
10178 case DW_ATE_HP_complex_float128:
10179 return "DW_ATE_HP_complex_float128";
10180 case DW_ATE_HP_floathpintel:
10181 return "DW_ATE_HP_floathpintel";
10182 case DW_ATE_HP_imaginary_float80:
10183 return "DW_ATE_HP_imaginary_float80";
10184 case DW_ATE_HP_imaginary_float128:
10185 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
10186 default:
10187 return "DW_ATE_<unknown>";
10188 }
10189}
10190
10191/* Convert a DWARF call frame info operation to its string name. */
10192
10193#if 0
10194static char *
aa1ee363 10195dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
10196{
10197 switch (cfi_opc)
10198 {
10199 case DW_CFA_advance_loc:
10200 return "DW_CFA_advance_loc";
10201 case DW_CFA_offset:
10202 return "DW_CFA_offset";
10203 case DW_CFA_restore:
10204 return "DW_CFA_restore";
10205 case DW_CFA_nop:
10206 return "DW_CFA_nop";
10207 case DW_CFA_set_loc:
10208 return "DW_CFA_set_loc";
10209 case DW_CFA_advance_loc1:
10210 return "DW_CFA_advance_loc1";
10211 case DW_CFA_advance_loc2:
10212 return "DW_CFA_advance_loc2";
10213 case DW_CFA_advance_loc4:
10214 return "DW_CFA_advance_loc4";
10215 case DW_CFA_offset_extended:
10216 return "DW_CFA_offset_extended";
10217 case DW_CFA_restore_extended:
10218 return "DW_CFA_restore_extended";
10219 case DW_CFA_undefined:
10220 return "DW_CFA_undefined";
10221 case DW_CFA_same_value:
10222 return "DW_CFA_same_value";
10223 case DW_CFA_register:
10224 return "DW_CFA_register";
10225 case DW_CFA_remember_state:
10226 return "DW_CFA_remember_state";
10227 case DW_CFA_restore_state:
10228 return "DW_CFA_restore_state";
10229 case DW_CFA_def_cfa:
10230 return "DW_CFA_def_cfa";
10231 case DW_CFA_def_cfa_register:
10232 return "DW_CFA_def_cfa_register";
10233 case DW_CFA_def_cfa_offset:
10234 return "DW_CFA_def_cfa_offset";
b7619582 10235 /* DWARF 3. */
985cb1a3
JM
10236 case DW_CFA_def_cfa_expression:
10237 return "DW_CFA_def_cfa_expression";
10238 case DW_CFA_expression:
10239 return "DW_CFA_expression";
10240 case DW_CFA_offset_extended_sf:
10241 return "DW_CFA_offset_extended_sf";
10242 case DW_CFA_def_cfa_sf:
10243 return "DW_CFA_def_cfa_sf";
10244 case DW_CFA_def_cfa_offset_sf:
10245 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
10246 case DW_CFA_val_offset:
10247 return "DW_CFA_val_offset";
10248 case DW_CFA_val_offset_sf:
10249 return "DW_CFA_val_offset_sf";
10250 case DW_CFA_val_expression:
10251 return "DW_CFA_val_expression";
10252 /* SGI/MIPS specific. */
c906108c
SS
10253 case DW_CFA_MIPS_advance_loc8:
10254 return "DW_CFA_MIPS_advance_loc8";
b7619582 10255 /* GNU extensions. */
985cb1a3
JM
10256 case DW_CFA_GNU_window_save:
10257 return "DW_CFA_GNU_window_save";
10258 case DW_CFA_GNU_args_size:
10259 return "DW_CFA_GNU_args_size";
10260 case DW_CFA_GNU_negative_offset_extended:
10261 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
10262 default:
10263 return "DW_CFA_<unknown>";
10264 }
10265}
10266#endif
10267
f9aca02d 10268static void
d97bc12b 10269dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
10270{
10271 unsigned int i;
10272
d97bc12b
DE
10273 print_spaces (indent, f);
10274 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 10275 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
10276
10277 if (die->parent != NULL)
10278 {
10279 print_spaces (indent, f);
10280 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
10281 die->parent->offset);
10282 }
10283
10284 print_spaces (indent, f);
10285 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 10286 dwarf_bool_name (die->child != NULL));
c906108c 10287
d97bc12b
DE
10288 print_spaces (indent, f);
10289 fprintf_unfiltered (f, " attributes:\n");
10290
c906108c
SS
10291 for (i = 0; i < die->num_attrs; ++i)
10292 {
d97bc12b
DE
10293 print_spaces (indent, f);
10294 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
10295 dwarf_attr_name (die->attrs[i].name),
10296 dwarf_form_name (die->attrs[i].form));
d97bc12b 10297
c906108c
SS
10298 switch (die->attrs[i].form)
10299 {
10300 case DW_FORM_ref_addr:
10301 case DW_FORM_addr:
d97bc12b 10302 fprintf_unfiltered (f, "address: ");
5af949e3 10303 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
10304 break;
10305 case DW_FORM_block2:
10306 case DW_FORM_block4:
10307 case DW_FORM_block:
10308 case DW_FORM_block1:
d97bc12b 10309 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 10310 break;
10b3939b
DJ
10311 case DW_FORM_ref1:
10312 case DW_FORM_ref2:
10313 case DW_FORM_ref4:
d97bc12b 10314 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
10315 (long) (DW_ADDR (&die->attrs[i])));
10316 break;
c906108c
SS
10317 case DW_FORM_data1:
10318 case DW_FORM_data2:
10319 case DW_FORM_data4:
ce5d95e1 10320 case DW_FORM_data8:
c906108c
SS
10321 case DW_FORM_udata:
10322 case DW_FORM_sdata:
43bbcdc2
PH
10323 fprintf_unfiltered (f, "constant: %s",
10324 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 10325 break;
348e048f
DE
10326 case DW_FORM_sig8:
10327 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
10328 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
10329 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
10330 else
10331 fprintf_unfiltered (f, "signatured type, offset: unknown");
10332 break;
c906108c 10333 case DW_FORM_string:
4bdf3d34 10334 case DW_FORM_strp:
8285870a 10335 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 10336 DW_STRING (&die->attrs[i])
8285870a
JK
10337 ? DW_STRING (&die->attrs[i]) : "",
10338 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
10339 break;
10340 case DW_FORM_flag:
10341 if (DW_UNSND (&die->attrs[i]))
d97bc12b 10342 fprintf_unfiltered (f, "flag: TRUE");
c906108c 10343 else
d97bc12b 10344 fprintf_unfiltered (f, "flag: FALSE");
c906108c 10345 break;
a8329558
KW
10346 case DW_FORM_indirect:
10347 /* the reader will have reduced the indirect form to
10348 the "base form" so this form should not occur */
d97bc12b 10349 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
a8329558 10350 break;
c906108c 10351 default:
d97bc12b 10352 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 10353 die->attrs[i].form);
d97bc12b 10354 break;
c906108c 10355 }
d97bc12b 10356 fprintf_unfiltered (f, "\n");
c906108c
SS
10357 }
10358}
10359
f9aca02d 10360static void
d97bc12b 10361dump_die_for_error (struct die_info *die)
c906108c 10362{
d97bc12b
DE
10363 dump_die_shallow (gdb_stderr, 0, die);
10364}
10365
10366static void
10367dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
10368{
10369 int indent = level * 4;
10370
10371 gdb_assert (die != NULL);
10372
10373 if (level >= max_level)
10374 return;
10375
10376 dump_die_shallow (f, indent, die);
10377
10378 if (die->child != NULL)
c906108c 10379 {
d97bc12b
DE
10380 print_spaces (indent, f);
10381 fprintf_unfiltered (f, " Children:");
10382 if (level + 1 < max_level)
10383 {
10384 fprintf_unfiltered (f, "\n");
10385 dump_die_1 (f, level + 1, max_level, die->child);
10386 }
10387 else
10388 {
10389 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
10390 }
10391 }
10392
10393 if (die->sibling != NULL && level > 0)
10394 {
10395 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
10396 }
10397}
10398
d97bc12b
DE
10399/* This is called from the pdie macro in gdbinit.in.
10400 It's not static so gcc will keep a copy callable from gdb. */
10401
10402void
10403dump_die (struct die_info *die, int max_level)
10404{
10405 dump_die_1 (gdb_stdlog, 0, max_level, die);
10406}
10407
f9aca02d 10408static void
51545339 10409store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10410{
51545339 10411 void **slot;
c906108c 10412
51545339
DJ
10413 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
10414
10415 *slot = die;
c906108c
SS
10416}
10417
93311388
DE
10418static int
10419is_ref_attr (struct attribute *attr)
c906108c 10420{
c906108c
SS
10421 switch (attr->form)
10422 {
10423 case DW_FORM_ref_addr:
c906108c
SS
10424 case DW_FORM_ref1:
10425 case DW_FORM_ref2:
10426 case DW_FORM_ref4:
613e1657 10427 case DW_FORM_ref8:
c906108c 10428 case DW_FORM_ref_udata:
93311388 10429 return 1;
c906108c 10430 default:
93311388 10431 return 0;
c906108c 10432 }
93311388
DE
10433}
10434
10435static unsigned int
10436dwarf2_get_ref_die_offset (struct attribute *attr)
10437{
10438 if (is_ref_attr (attr))
10439 return DW_ADDR (attr);
10440
10441 complaint (&symfile_complaints,
10442 _("unsupported die ref attribute form: '%s'"),
10443 dwarf_form_name (attr->form));
10444 return 0;
c906108c
SS
10445}
10446
43bbcdc2
PH
10447/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
10448 * the value held by the attribute is not constant. */
a02abb62 10449
43bbcdc2 10450static LONGEST
a02abb62
JB
10451dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
10452{
10453 if (attr->form == DW_FORM_sdata)
10454 return DW_SND (attr);
10455 else if (attr->form == DW_FORM_udata
10456 || attr->form == DW_FORM_data1
10457 || attr->form == DW_FORM_data2
10458 || attr->form == DW_FORM_data4
10459 || attr->form == DW_FORM_data8)
10460 return DW_UNSND (attr);
10461 else
10462 {
e2e0b3e5 10463 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
10464 dwarf_form_name (attr->form));
10465 return default_value;
10466 }
10467}
10468
03dd20cc 10469/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
10470 unit and add it to our queue.
10471 The result is non-zero if PER_CU was queued, otherwise the result is zero
10472 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 10473
348e048f 10474static int
03dd20cc
DJ
10475maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
10476 struct dwarf2_per_cu_data *per_cu)
10477{
10478 /* Mark the dependence relation so that we don't flush PER_CU
10479 too early. */
10480 dwarf2_add_dependence (this_cu, per_cu);
10481
10482 /* If it's already on the queue, we have nothing to do. */
10483 if (per_cu->queued)
348e048f 10484 return 0;
03dd20cc
DJ
10485
10486 /* If the compilation unit is already loaded, just mark it as
10487 used. */
10488 if (per_cu->cu != NULL)
10489 {
10490 per_cu->cu->last_used = 0;
348e048f 10491 return 0;
03dd20cc
DJ
10492 }
10493
10494 /* Add it to the queue. */
10495 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
10496
10497 return 1;
10498}
10499
10500/* Follow reference or signature attribute ATTR of SRC_DIE.
10501 On entry *REF_CU is the CU of SRC_DIE.
10502 On exit *REF_CU is the CU of the result. */
10503
10504static struct die_info *
10505follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
10506 struct dwarf2_cu **ref_cu)
10507{
10508 struct die_info *die;
10509
10510 if (is_ref_attr (attr))
10511 die = follow_die_ref (src_die, attr, ref_cu);
10512 else if (attr->form == DW_FORM_sig8)
10513 die = follow_die_sig (src_die, attr, ref_cu);
10514 else
10515 {
10516 dump_die_for_error (src_die);
10517 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
10518 (*ref_cu)->objfile->name);
10519 }
10520
10521 return die;
03dd20cc
DJ
10522}
10523
f504f079
DE
10524/* Follow reference attribute ATTR of SRC_DIE.
10525 On entry *REF_CU is the CU of SRC_DIE.
10526 On exit *REF_CU is the CU of the result. */
10527
f9aca02d 10528static struct die_info *
10b3939b 10529follow_die_ref (struct die_info *src_die, struct attribute *attr,
f2f0e013 10530 struct dwarf2_cu **ref_cu)
c906108c
SS
10531{
10532 struct die_info *die;
10b3939b 10533 unsigned int offset;
10b3939b 10534 struct die_info temp_die;
f2f0e013 10535 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 10536
348e048f
DE
10537 gdb_assert (cu->per_cu != NULL);
10538
c764a876 10539 offset = dwarf2_get_ref_die_offset (attr);
10b3939b 10540
348e048f
DE
10541 if (cu->per_cu->from_debug_types)
10542 {
10543 /* .debug_types CUs cannot reference anything outside their CU.
10544 If they need to, they have to reference a signatured type via
10545 DW_FORM_sig8. */
10546 if (! offset_in_cu_p (&cu->header, offset))
10547 goto not_found;
10548 target_cu = cu;
10549 }
10550 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
10551 {
10552 struct dwarf2_per_cu_data *per_cu;
45452591 10553 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
10554
10555 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
10556 if (maybe_queue_comp_unit (cu, per_cu))
10557 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 10558
10b3939b
DJ
10559 target_cu = per_cu->cu;
10560 }
10561 else
10562 target_cu = cu;
c906108c 10563
f2f0e013 10564 *ref_cu = target_cu;
51545339
DJ
10565 temp_die.offset = offset;
10566 die = htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
10567 if (die)
10568 return die;
10b3939b 10569
348e048f
DE
10570 not_found:
10571
10572 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
10573 "at 0x%x [in module %s]"),
10574 offset, src_die->offset, cu->objfile->name);
10575}
10576
10577/* Follow the signature attribute ATTR in SRC_DIE.
10578 On entry *REF_CU is the CU of SRC_DIE.
10579 On exit *REF_CU is the CU of the result. */
10580
10581static struct die_info *
10582follow_die_sig (struct die_info *src_die, struct attribute *attr,
10583 struct dwarf2_cu **ref_cu)
10584{
10585 struct objfile *objfile = (*ref_cu)->objfile;
10586 struct die_info temp_die;
10587 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
10588 struct dwarf2_cu *sig_cu;
10589 struct die_info *die;
10590
10591 /* sig_type will be NULL if the signatured type is missing from
10592 the debug info. */
10593 if (sig_type == NULL)
10594 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
10595 "at 0x%x [in module %s]"),
10596 src_die->offset, objfile->name);
10597
10598 /* If necessary, add it to the queue and load its DIEs. */
10599
10600 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
10601 read_signatured_type (objfile, sig_type);
10602
10603 gdb_assert (sig_type->per_cu.cu != NULL);
10604
10605 sig_cu = sig_type->per_cu.cu;
10606 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
10607 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
10608 if (die)
10609 {
10610 *ref_cu = sig_cu;
10611 return die;
10612 }
10613
10614 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
10615 "at 0x%x [in module %s]"),
10616 sig_type->type_offset, src_die->offset, objfile->name);
10617}
10618
10619/* Given an offset of a signatured type, return its signatured_type. */
10620
10621static struct signatured_type *
10622lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
10623{
10624 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
10625 unsigned int length, initial_length_size;
10626 unsigned int sig_offset;
10627 struct signatured_type find_entry, *type_sig;
10628
10629 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
10630 sig_offset = (initial_length_size
10631 + 2 /*version*/
10632 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
10633 + 1 /*address_size*/);
10634 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
10635 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
10636
10637 /* This is only used to lookup previously recorded types.
10638 If we didn't find it, it's our bug. */
10639 gdb_assert (type_sig != NULL);
10640 gdb_assert (offset == type_sig->offset);
10641
10642 return type_sig;
10643}
10644
10645/* Read in signatured type at OFFSET and build its CU and die(s). */
10646
10647static void
10648read_signatured_type_at_offset (struct objfile *objfile,
10649 unsigned int offset)
10650{
10651 struct signatured_type *type_sig;
10652
be391dca
TT
10653 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
10654
348e048f
DE
10655 /* We have the section offset, but we need the signature to do the
10656 hash table lookup. */
10657 type_sig = lookup_signatured_type_at_offset (objfile, offset);
10658
10659 gdb_assert (type_sig->per_cu.cu == NULL);
10660
10661 read_signatured_type (objfile, type_sig);
10662
10663 gdb_assert (type_sig->per_cu.cu != NULL);
10664}
10665
10666/* Read in a signatured type and build its CU and DIEs. */
10667
10668static void
10669read_signatured_type (struct objfile *objfile,
10670 struct signatured_type *type_sig)
10671{
10672 gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
10673 struct die_reader_specs reader_specs;
10674 struct dwarf2_cu *cu;
10675 ULONGEST signature;
10676 struct cleanup *back_to, *free_cu_cleanup;
10677 struct attribute *attr;
10678
10679 gdb_assert (type_sig->per_cu.cu == NULL);
10680
10681 cu = xmalloc (sizeof (struct dwarf2_cu));
10682 memset (cu, 0, sizeof (struct dwarf2_cu));
10683 obstack_init (&cu->comp_unit_obstack);
10684 cu->objfile = objfile;
10685 type_sig->per_cu.cu = cu;
10686 cu->per_cu = &type_sig->per_cu;
10687
10688 /* If an error occurs while loading, release our storage. */
10689 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
10690
10691 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
10692 types_ptr, objfile->obfd);
10693 gdb_assert (signature == type_sig->signature);
10694
10695 cu->die_hash
10696 = htab_create_alloc_ex (cu->header.length / 12,
10697 die_hash,
10698 die_eq,
10699 NULL,
10700 &cu->comp_unit_obstack,
10701 hashtab_obstack_allocate,
10702 dummy_obstack_deallocate);
10703
10704 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
10705 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
10706
10707 init_cu_die_reader (&reader_specs, cu);
10708
10709 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
10710 NULL /*parent*/);
10711
10712 /* We try not to read any attributes in this function, because not
10713 all objfiles needed for references have been loaded yet, and symbol
10714 table processing isn't initialized. But we have to set the CU language,
10715 or we won't be able to build types correctly. */
10716 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
10717 if (attr)
10718 set_cu_language (DW_UNSND (attr), cu);
10719 else
10720 set_cu_language (language_minimal, cu);
10721
10722 do_cleanups (back_to);
10723
10724 /* We've successfully allocated this compilation unit. Let our caller
10725 clean it up when finished with it. */
10726 discard_cleanups (free_cu_cleanup);
10727
10728 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
10729 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
10730}
10731
c906108c
SS
10732/* Decode simple location descriptions.
10733 Given a pointer to a dwarf block that defines a location, compute
10734 the location and return the value.
10735
4cecd739
DJ
10736 NOTE drow/2003-11-18: This function is called in two situations
10737 now: for the address of static or global variables (partial symbols
10738 only) and for offsets into structures which are expected to be
10739 (more or less) constant. The partial symbol case should go away,
10740 and only the constant case should remain. That will let this
10741 function complain more accurately. A few special modes are allowed
10742 without complaint for global variables (for instance, global
10743 register values and thread-local values).
c906108c
SS
10744
10745 A location description containing no operations indicates that the
4cecd739 10746 object is optimized out. The return value is 0 for that case.
6b992462
DJ
10747 FIXME drow/2003-11-16: No callers check for this case any more; soon all
10748 callers will only want a very basic result and this can become a
10749 complaint.
c906108c 10750
c906108c
SS
10751 Note that stack[0] is unused except as a default error return.
10752 Note that stack overflow is not yet handled. */
10753
10754static CORE_ADDR
e7c27a73 10755decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 10756{
e7c27a73
DJ
10757 struct objfile *objfile = cu->objfile;
10758 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
10759 int i;
10760 int size = blk->size;
fe1b8b76 10761 gdb_byte *data = blk->data;
c906108c
SS
10762 CORE_ADDR stack[64];
10763 int stacki;
10764 unsigned int bytes_read, unsnd;
fe1b8b76 10765 gdb_byte op;
c906108c
SS
10766
10767 i = 0;
10768 stacki = 0;
10769 stack[stacki] = 0;
c906108c
SS
10770
10771 while (i < size)
10772 {
c906108c
SS
10773 op = data[i++];
10774 switch (op)
10775 {
f1bea926
JM
10776 case DW_OP_lit0:
10777 case DW_OP_lit1:
10778 case DW_OP_lit2:
10779 case DW_OP_lit3:
10780 case DW_OP_lit4:
10781 case DW_OP_lit5:
10782 case DW_OP_lit6:
10783 case DW_OP_lit7:
10784 case DW_OP_lit8:
10785 case DW_OP_lit9:
10786 case DW_OP_lit10:
10787 case DW_OP_lit11:
10788 case DW_OP_lit12:
10789 case DW_OP_lit13:
10790 case DW_OP_lit14:
10791 case DW_OP_lit15:
10792 case DW_OP_lit16:
10793 case DW_OP_lit17:
10794 case DW_OP_lit18:
10795 case DW_OP_lit19:
10796 case DW_OP_lit20:
10797 case DW_OP_lit21:
10798 case DW_OP_lit22:
10799 case DW_OP_lit23:
10800 case DW_OP_lit24:
10801 case DW_OP_lit25:
10802 case DW_OP_lit26:
10803 case DW_OP_lit27:
10804 case DW_OP_lit28:
10805 case DW_OP_lit29:
10806 case DW_OP_lit30:
10807 case DW_OP_lit31:
10808 stack[++stacki] = op - DW_OP_lit0;
10809 break;
10810
c906108c
SS
10811 case DW_OP_reg0:
10812 case DW_OP_reg1:
10813 case DW_OP_reg2:
10814 case DW_OP_reg3:
10815 case DW_OP_reg4:
10816 case DW_OP_reg5:
10817 case DW_OP_reg6:
10818 case DW_OP_reg7:
10819 case DW_OP_reg8:
10820 case DW_OP_reg9:
10821 case DW_OP_reg10:
10822 case DW_OP_reg11:
10823 case DW_OP_reg12:
10824 case DW_OP_reg13:
10825 case DW_OP_reg14:
10826 case DW_OP_reg15:
10827 case DW_OP_reg16:
10828 case DW_OP_reg17:
10829 case DW_OP_reg18:
10830 case DW_OP_reg19:
10831 case DW_OP_reg20:
10832 case DW_OP_reg21:
10833 case DW_OP_reg22:
10834 case DW_OP_reg23:
10835 case DW_OP_reg24:
10836 case DW_OP_reg25:
10837 case DW_OP_reg26:
10838 case DW_OP_reg27:
10839 case DW_OP_reg28:
10840 case DW_OP_reg29:
10841 case DW_OP_reg30:
10842 case DW_OP_reg31:
c906108c 10843 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
10844 if (i < size)
10845 dwarf2_complex_location_expr_complaint ();
c906108c
SS
10846 break;
10847
10848 case DW_OP_regx:
c906108c
SS
10849 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10850 i += bytes_read;
c906108c 10851 stack[++stacki] = unsnd;
4cecd739
DJ
10852 if (i < size)
10853 dwarf2_complex_location_expr_complaint ();
c906108c
SS
10854 break;
10855
10856 case DW_OP_addr:
107d2387 10857 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 10858 cu, &bytes_read);
107d2387 10859 i += bytes_read;
c906108c
SS
10860 break;
10861
10862 case DW_OP_const1u:
10863 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
10864 i += 1;
10865 break;
10866
10867 case DW_OP_const1s:
10868 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
10869 i += 1;
10870 break;
10871
10872 case DW_OP_const2u:
10873 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
10874 i += 2;
10875 break;
10876
10877 case DW_OP_const2s:
10878 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
10879 i += 2;
10880 break;
10881
10882 case DW_OP_const4u:
10883 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
10884 i += 4;
10885 break;
10886
10887 case DW_OP_const4s:
10888 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
10889 i += 4;
10890 break;
10891
10892 case DW_OP_constu:
10893 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 10894 &bytes_read);
c906108c
SS
10895 i += bytes_read;
10896 break;
10897
10898 case DW_OP_consts:
10899 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
10900 i += bytes_read;
10901 break;
10902
f1bea926
JM
10903 case DW_OP_dup:
10904 stack[stacki + 1] = stack[stacki];
10905 stacki++;
10906 break;
10907
c906108c
SS
10908 case DW_OP_plus:
10909 stack[stacki - 1] += stack[stacki];
10910 stacki--;
10911 break;
10912
10913 case DW_OP_plus_uconst:
10914 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10915 i += bytes_read;
10916 break;
10917
10918 case DW_OP_minus:
f1bea926 10919 stack[stacki - 1] -= stack[stacki];
c906108c
SS
10920 stacki--;
10921 break;
10922
7a292a7a 10923 case DW_OP_deref:
7a292a7a 10924 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
10925 this using GDB's address_class enum. This is valid for partial
10926 global symbols, although the variable's address will be bogus
10927 in the psymtab. */
7a292a7a 10928 if (i < size)
4d3c2250 10929 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
10930 break;
10931
9d774e44 10932 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
10933 /* The top of the stack has the offset from the beginning
10934 of the thread control block at which the variable is located. */
10935 /* Nothing should follow this operator, so the top of stack would
10936 be returned. */
4cecd739
DJ
10937 /* This is valid for partial global symbols, but the variable's
10938 address will be bogus in the psymtab. */
9d774e44 10939 if (i < size)
4d3c2250 10940 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
10941 break;
10942
42be36b3
CT
10943 case DW_OP_GNU_uninit:
10944 break;
10945
c906108c 10946 default:
e2e0b3e5 10947 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 10948 dwarf_stack_op_name (op));
c906108c
SS
10949 return (stack[stacki]);
10950 }
10951 }
10952 return (stack[stacki]);
10953}
10954
10955/* memory allocation interface */
10956
c906108c 10957static struct dwarf_block *
7b5a2f43 10958dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
10959{
10960 struct dwarf_block *blk;
10961
10962 blk = (struct dwarf_block *)
7b5a2f43 10963 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
10964 return (blk);
10965}
10966
10967static struct abbrev_info *
f3dd6933 10968dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
10969{
10970 struct abbrev_info *abbrev;
10971
f3dd6933
DJ
10972 abbrev = (struct abbrev_info *)
10973 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
10974 memset (abbrev, 0, sizeof (struct abbrev_info));
10975 return (abbrev);
10976}
10977
10978static struct die_info *
b60c80d6 10979dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
10980{
10981 struct die_info *die;
b60c80d6
DJ
10982 size_t size = sizeof (struct die_info);
10983
10984 if (num_attrs > 1)
10985 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 10986
b60c80d6 10987 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
10988 memset (die, 0, sizeof (struct die_info));
10989 return (die);
10990}
2e276125
JB
10991
10992\f
10993/* Macro support. */
10994
10995
10996/* Return the full name of file number I in *LH's file name table.
10997 Use COMP_DIR as the name of the current directory of the
10998 compilation. The result is allocated using xmalloc; the caller is
10999 responsible for freeing it. */
11000static char *
11001file_full_name (int file, struct line_header *lh, const char *comp_dir)
11002{
6a83a1e6
EZ
11003 /* Is the file number a valid index into the line header's file name
11004 table? Remember that file numbers start with one, not zero. */
11005 if (1 <= file && file <= lh->num_file_names)
11006 {
11007 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 11008
6a83a1e6
EZ
11009 if (IS_ABSOLUTE_PATH (fe->name))
11010 return xstrdup (fe->name);
11011 else
11012 {
11013 const char *dir;
11014 int dir_len;
11015 char *full_name;
11016
11017 if (fe->dir_index)
11018 dir = lh->include_dirs[fe->dir_index - 1];
11019 else
11020 dir = comp_dir;
11021
11022 if (dir)
11023 {
11024 dir_len = strlen (dir);
11025 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
11026 strcpy (full_name, dir);
11027 full_name[dir_len] = '/';
11028 strcpy (full_name + dir_len + 1, fe->name);
11029 return full_name;
11030 }
11031 else
11032 return xstrdup (fe->name);
11033 }
11034 }
2e276125
JB
11035 else
11036 {
6a83a1e6
EZ
11037 /* The compiler produced a bogus file number. We can at least
11038 record the macro definitions made in the file, even if we
11039 won't be able to find the file by name. */
11040 char fake_name[80];
11041 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 11042
6a83a1e6
EZ
11043 complaint (&symfile_complaints,
11044 _("bad file number in macro information (%d)"),
11045 file);
2e276125 11046
6a83a1e6 11047 return xstrdup (fake_name);
2e276125
JB
11048 }
11049}
11050
11051
11052static struct macro_source_file *
11053macro_start_file (int file, int line,
11054 struct macro_source_file *current_file,
11055 const char *comp_dir,
11056 struct line_header *lh, struct objfile *objfile)
11057{
11058 /* The full name of this source file. */
11059 char *full_name = file_full_name (file, lh, comp_dir);
11060
11061 /* We don't create a macro table for this compilation unit
11062 at all until we actually get a filename. */
11063 if (! pending_macros)
4a146b47 11064 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 11065 objfile->macro_cache);
2e276125
JB
11066
11067 if (! current_file)
11068 /* If we have no current file, then this must be the start_file
11069 directive for the compilation unit's main source file. */
11070 current_file = macro_set_main (pending_macros, full_name);
11071 else
11072 current_file = macro_include (current_file, line, full_name);
11073
11074 xfree (full_name);
11075
11076 return current_file;
11077}
11078
11079
11080/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
11081 followed by a null byte. */
11082static char *
11083copy_string (const char *buf, int len)
11084{
11085 char *s = xmalloc (len + 1);
11086 memcpy (s, buf, len);
11087 s[len] = '\0';
11088
11089 return s;
11090}
11091
11092
11093static const char *
11094consume_improper_spaces (const char *p, const char *body)
11095{
11096 if (*p == ' ')
11097 {
4d3c2250 11098 complaint (&symfile_complaints,
e2e0b3e5 11099 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 11100 body);
2e276125
JB
11101
11102 while (*p == ' ')
11103 p++;
11104 }
11105
11106 return p;
11107}
11108
11109
11110static void
11111parse_macro_definition (struct macro_source_file *file, int line,
11112 const char *body)
11113{
11114 const char *p;
11115
11116 /* The body string takes one of two forms. For object-like macro
11117 definitions, it should be:
11118
11119 <macro name> " " <definition>
11120
11121 For function-like macro definitions, it should be:
11122
11123 <macro name> "() " <definition>
11124 or
11125 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
11126
11127 Spaces may appear only where explicitly indicated, and in the
11128 <definition>.
11129
11130 The Dwarf 2 spec says that an object-like macro's name is always
11131 followed by a space, but versions of GCC around March 2002 omit
11132 the space when the macro's definition is the empty string.
11133
11134 The Dwarf 2 spec says that there should be no spaces between the
11135 formal arguments in a function-like macro's formal argument list,
11136 but versions of GCC around March 2002 include spaces after the
11137 commas. */
11138
11139
11140 /* Find the extent of the macro name. The macro name is terminated
11141 by either a space or null character (for an object-like macro) or
11142 an opening paren (for a function-like macro). */
11143 for (p = body; *p; p++)
11144 if (*p == ' ' || *p == '(')
11145 break;
11146
11147 if (*p == ' ' || *p == '\0')
11148 {
11149 /* It's an object-like macro. */
11150 int name_len = p - body;
11151 char *name = copy_string (body, name_len);
11152 const char *replacement;
11153
11154 if (*p == ' ')
11155 replacement = body + name_len + 1;
11156 else
11157 {
4d3c2250 11158 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11159 replacement = body + name_len;
11160 }
11161
11162 macro_define_object (file, line, name, replacement);
11163
11164 xfree (name);
11165 }
11166 else if (*p == '(')
11167 {
11168 /* It's a function-like macro. */
11169 char *name = copy_string (body, p - body);
11170 int argc = 0;
11171 int argv_size = 1;
11172 char **argv = xmalloc (argv_size * sizeof (*argv));
11173
11174 p++;
11175
11176 p = consume_improper_spaces (p, body);
11177
11178 /* Parse the formal argument list. */
11179 while (*p && *p != ')')
11180 {
11181 /* Find the extent of the current argument name. */
11182 const char *arg_start = p;
11183
11184 while (*p && *p != ',' && *p != ')' && *p != ' ')
11185 p++;
11186
11187 if (! *p || p == arg_start)
4d3c2250 11188 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11189 else
11190 {
11191 /* Make sure argv has room for the new argument. */
11192 if (argc >= argv_size)
11193 {
11194 argv_size *= 2;
11195 argv = xrealloc (argv, argv_size * sizeof (*argv));
11196 }
11197
11198 argv[argc++] = copy_string (arg_start, p - arg_start);
11199 }
11200
11201 p = consume_improper_spaces (p, body);
11202
11203 /* Consume the comma, if present. */
11204 if (*p == ',')
11205 {
11206 p++;
11207
11208 p = consume_improper_spaces (p, body);
11209 }
11210 }
11211
11212 if (*p == ')')
11213 {
11214 p++;
11215
11216 if (*p == ' ')
11217 /* Perfectly formed definition, no complaints. */
11218 macro_define_function (file, line, name,
11219 argc, (const char **) argv,
11220 p + 1);
11221 else if (*p == '\0')
11222 {
11223 /* Complain, but do define it. */
4d3c2250 11224 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11225 macro_define_function (file, line, name,
11226 argc, (const char **) argv,
11227 p);
11228 }
11229 else
11230 /* Just complain. */
4d3c2250 11231 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11232 }
11233 else
11234 /* Just complain. */
4d3c2250 11235 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11236
11237 xfree (name);
11238 {
11239 int i;
11240
11241 for (i = 0; i < argc; i++)
11242 xfree (argv[i]);
11243 }
11244 xfree (argv);
11245 }
11246 else
4d3c2250 11247 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11248}
11249
11250
11251static void
11252dwarf_decode_macros (struct line_header *lh, unsigned int offset,
11253 char *comp_dir, bfd *abfd,
e7c27a73 11254 struct dwarf2_cu *cu)
2e276125 11255{
fe1b8b76 11256 gdb_byte *mac_ptr, *mac_end;
2e276125 11257 struct macro_source_file *current_file = 0;
757a13d0
JK
11258 enum dwarf_macinfo_record_type macinfo_type;
11259 int at_commandline;
2e276125 11260
be391dca
TT
11261 dwarf2_read_section (dwarf2_per_objfile->objfile,
11262 &dwarf2_per_objfile->macinfo);
dce234bc 11263 if (dwarf2_per_objfile->macinfo.buffer == NULL)
2e276125 11264 {
e2e0b3e5 11265 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
11266 return;
11267 }
11268
757a13d0
JK
11269 /* First pass: Find the name of the base filename.
11270 This filename is needed in order to process all macros whose definition
11271 (or undefinition) comes from the command line. These macros are defined
11272 before the first DW_MACINFO_start_file entry, and yet still need to be
11273 associated to the base file.
11274
11275 To determine the base file name, we scan the macro definitions until we
11276 reach the first DW_MACINFO_start_file entry. We then initialize
11277 CURRENT_FILE accordingly so that any macro definition found before the
11278 first DW_MACINFO_start_file can still be associated to the base file. */
11279
dce234bc
PP
11280 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11281 mac_end = dwarf2_per_objfile->macinfo.buffer
11282 + dwarf2_per_objfile->macinfo.size;
2e276125 11283
757a13d0 11284 do
2e276125 11285 {
2e276125
JB
11286 /* Do we at least have room for a macinfo type byte? */
11287 if (mac_ptr >= mac_end)
11288 {
757a13d0
JK
11289 /* Complaint is printed during the second pass as GDB will probably
11290 stop the first pass earlier upon finding DW_MACINFO_start_file. */
11291 break;
2e276125
JB
11292 }
11293
11294 macinfo_type = read_1_byte (abfd, mac_ptr);
11295 mac_ptr++;
11296
11297 switch (macinfo_type)
11298 {
11299 /* A zero macinfo type indicates the end of the macro
11300 information. */
11301 case 0:
757a13d0
JK
11302 break;
11303
11304 case DW_MACINFO_define:
11305 case DW_MACINFO_undef:
11306 /* Only skip the data by MAC_PTR. */
11307 {
11308 unsigned int bytes_read;
11309
11310 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11311 mac_ptr += bytes_read;
11312 read_string (abfd, mac_ptr, &bytes_read);
11313 mac_ptr += bytes_read;
11314 }
11315 break;
11316
11317 case DW_MACINFO_start_file:
11318 {
11319 unsigned int bytes_read;
11320 int line, file;
11321
11322 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11323 mac_ptr += bytes_read;
11324 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11325 mac_ptr += bytes_read;
11326
11327 current_file = macro_start_file (file, line, current_file, comp_dir,
11328 lh, cu->objfile);
11329 }
11330 break;
11331
11332 case DW_MACINFO_end_file:
11333 /* No data to skip by MAC_PTR. */
11334 break;
11335
11336 case DW_MACINFO_vendor_ext:
11337 /* Only skip the data by MAC_PTR. */
11338 {
11339 unsigned int bytes_read;
11340
11341 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11342 mac_ptr += bytes_read;
11343 read_string (abfd, mac_ptr, &bytes_read);
11344 mac_ptr += bytes_read;
11345 }
11346 break;
11347
11348 default:
11349 break;
11350 }
11351 } while (macinfo_type != 0 && current_file == NULL);
11352
11353 /* Second pass: Process all entries.
11354
11355 Use the AT_COMMAND_LINE flag to determine whether we are still processing
11356 command-line macro definitions/undefinitions. This flag is unset when we
11357 reach the first DW_MACINFO_start_file entry. */
11358
dce234bc 11359 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
757a13d0
JK
11360
11361 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
11362 GDB is still reading the definitions from command line. First
11363 DW_MACINFO_start_file will need to be ignored as it was already executed
11364 to create CURRENT_FILE for the main source holding also the command line
11365 definitions. On first met DW_MACINFO_start_file this flag is reset to
11366 normally execute all the remaining DW_MACINFO_start_file macinfos. */
11367
11368 at_commandline = 1;
11369
11370 do
11371 {
11372 /* Do we at least have room for a macinfo type byte? */
11373 if (mac_ptr >= mac_end)
11374 {
11375 dwarf2_macros_too_long_complaint ();
11376 break;
11377 }
11378
11379 macinfo_type = read_1_byte (abfd, mac_ptr);
11380 mac_ptr++;
11381
11382 switch (macinfo_type)
11383 {
11384 /* A zero macinfo type indicates the end of the macro
11385 information. */
11386 case 0:
11387 break;
2e276125
JB
11388
11389 case DW_MACINFO_define:
11390 case DW_MACINFO_undef:
11391 {
891d2f0b 11392 unsigned int bytes_read;
2e276125
JB
11393 int line;
11394 char *body;
11395
11396 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11397 mac_ptr += bytes_read;
11398 body = read_string (abfd, mac_ptr, &bytes_read);
11399 mac_ptr += bytes_read;
11400
11401 if (! current_file)
757a13d0
JK
11402 {
11403 /* DWARF violation as no main source is present. */
11404 complaint (&symfile_complaints,
11405 _("debug info with no main source gives macro %s "
11406 "on line %d: %s"),
905e0470
PM
11407 macinfo_type == DW_MACINFO_define ?
11408 _("definition") :
11409 macinfo_type == DW_MACINFO_undef ?
11410 _("undefinition") :
11411 _("something-or-other"), line, body);
757a13d0
JK
11412 break;
11413 }
11414 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
4d3c2250 11415 complaint (&symfile_complaints,
757a13d0
JK
11416 _("debug info gives %s macro %s with %s line %d: %s"),
11417 at_commandline ? _("command-line") : _("in-file"),
905e0470
PM
11418 macinfo_type == DW_MACINFO_define ?
11419 _("definition") :
11420 macinfo_type == DW_MACINFO_undef ?
11421 _("undefinition") :
11422 _("something-or-other"),
757a13d0
JK
11423 line == 0 ? _("zero") : _("non-zero"), line, body);
11424
11425 if (macinfo_type == DW_MACINFO_define)
11426 parse_macro_definition (current_file, line, body);
11427 else if (macinfo_type == DW_MACINFO_undef)
11428 macro_undef (current_file, line, body);
2e276125
JB
11429 }
11430 break;
11431
11432 case DW_MACINFO_start_file:
11433 {
891d2f0b 11434 unsigned int bytes_read;
2e276125
JB
11435 int line, file;
11436
11437 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11438 mac_ptr += bytes_read;
11439 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11440 mac_ptr += bytes_read;
11441
757a13d0
JK
11442 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11443 complaint (&symfile_complaints,
11444 _("debug info gives source %d included "
11445 "from %s at %s line %d"),
11446 file, at_commandline ? _("command-line") : _("file"),
11447 line == 0 ? _("zero") : _("non-zero"), line);
11448
11449 if (at_commandline)
11450 {
11451 /* This DW_MACINFO_start_file was executed in the pass one. */
11452 at_commandline = 0;
11453 }
11454 else
11455 current_file = macro_start_file (file, line,
11456 current_file, comp_dir,
11457 lh, cu->objfile);
2e276125
JB
11458 }
11459 break;
11460
11461 case DW_MACINFO_end_file:
11462 if (! current_file)
4d3c2250 11463 complaint (&symfile_complaints,
e2e0b3e5 11464 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
11465 else
11466 {
11467 current_file = current_file->included_by;
11468 if (! current_file)
11469 {
11470 enum dwarf_macinfo_record_type next_type;
11471
11472 /* GCC circa March 2002 doesn't produce the zero
11473 type byte marking the end of the compilation
11474 unit. Complain if it's not there, but exit no
11475 matter what. */
11476
11477 /* Do we at least have room for a macinfo type byte? */
11478 if (mac_ptr >= mac_end)
11479 {
4d3c2250 11480 dwarf2_macros_too_long_complaint ();
2e276125
JB
11481 return;
11482 }
11483
11484 /* We don't increment mac_ptr here, so this is just
11485 a look-ahead. */
11486 next_type = read_1_byte (abfd, mac_ptr);
11487 if (next_type != 0)
4d3c2250 11488 complaint (&symfile_complaints,
e2e0b3e5 11489 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
11490
11491 return;
11492 }
11493 }
11494 break;
11495
11496 case DW_MACINFO_vendor_ext:
11497 {
891d2f0b 11498 unsigned int bytes_read;
2e276125
JB
11499 int constant;
11500 char *string;
11501
11502 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11503 mac_ptr += bytes_read;
11504 string = read_string (abfd, mac_ptr, &bytes_read);
11505 mac_ptr += bytes_read;
11506
11507 /* We don't recognize any vendor extensions. */
11508 }
11509 break;
11510 }
757a13d0 11511 } while (macinfo_type != 0);
2e276125 11512}
8e19ed76
PS
11513
11514/* Check if the attribute's form is a DW_FORM_block*
11515 if so return true else false. */
11516static int
11517attr_form_is_block (struct attribute *attr)
11518{
11519 return (attr == NULL ? 0 :
11520 attr->form == DW_FORM_block1
11521 || attr->form == DW_FORM_block2
11522 || attr->form == DW_FORM_block4
11523 || attr->form == DW_FORM_block);
11524}
4c2df51b 11525
c6a0999f
JB
11526/* Return non-zero if ATTR's value is a section offset --- classes
11527 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
11528 You may use DW_UNSND (attr) to retrieve such offsets.
11529
11530 Section 7.5.4, "Attribute Encodings", explains that no attribute
11531 may have a value that belongs to more than one of these classes; it
11532 would be ambiguous if we did, because we use the same forms for all
11533 of them. */
3690dd37
JB
11534static int
11535attr_form_is_section_offset (struct attribute *attr)
11536{
11537 return (attr->form == DW_FORM_data4
11538 || attr->form == DW_FORM_data8);
11539}
11540
11541
11542/* Return non-zero if ATTR's value falls in the 'constant' class, or
11543 zero otherwise. When this function returns true, you can apply
11544 dwarf2_get_attr_constant_value to it.
11545
11546 However, note that for some attributes you must check
11547 attr_form_is_section_offset before using this test. DW_FORM_data4
11548 and DW_FORM_data8 are members of both the constant class, and of
11549 the classes that contain offsets into other debug sections
11550 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
11551 that, if an attribute's can be either a constant or one of the
11552 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
11553 taken as section offsets, not constants. */
11554static int
11555attr_form_is_constant (struct attribute *attr)
11556{
11557 switch (attr->form)
11558 {
11559 case DW_FORM_sdata:
11560 case DW_FORM_udata:
11561 case DW_FORM_data1:
11562 case DW_FORM_data2:
11563 case DW_FORM_data4:
11564 case DW_FORM_data8:
11565 return 1;
11566 default:
11567 return 0;
11568 }
11569}
11570
4c2df51b
DJ
11571static void
11572dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 11573 struct dwarf2_cu *cu)
4c2df51b 11574{
3690dd37 11575 if (attr_form_is_section_offset (attr)
99bcc461
DJ
11576 /* ".debug_loc" may not exist at all, or the offset may be outside
11577 the section. If so, fall through to the complaint in the
11578 other branch. */
dce234bc 11579 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
4c2df51b 11580 {
0d53c4c4 11581 struct dwarf2_loclist_baton *baton;
4c2df51b 11582
4a146b47 11583 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 11584 sizeof (struct dwarf2_loclist_baton));
ae0d2f24
UW
11585 baton->per_cu = cu->per_cu;
11586 gdb_assert (baton->per_cu);
4c2df51b 11587
be391dca
TT
11588 dwarf2_read_section (dwarf2_per_objfile->objfile,
11589 &dwarf2_per_objfile->loc);
11590
0d53c4c4
DJ
11591 /* We don't know how long the location list is, but make sure we
11592 don't run off the edge of the section. */
dce234bc
PP
11593 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
11594 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
d00adf39
DE
11595 baton->base_address = cu->base_address;
11596 if (cu->base_known == 0)
0d53c4c4 11597 complaint (&symfile_complaints,
e2e0b3e5 11598 _("Location list used without specifying the CU base address."));
4c2df51b 11599
768a979c 11600 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
11601 SYMBOL_LOCATION_BATON (sym) = baton;
11602 }
11603 else
11604 {
11605 struct dwarf2_locexpr_baton *baton;
11606
4a146b47 11607 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 11608 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
11609 baton->per_cu = cu->per_cu;
11610 gdb_assert (baton->per_cu);
0d53c4c4
DJ
11611
11612 if (attr_form_is_block (attr))
11613 {
11614 /* Note that we're just copying the block's data pointer
11615 here, not the actual data. We're still pointing into the
6502dd73
DJ
11616 info_buffer for SYM's objfile; right now we never release
11617 that buffer, but when we do clean up properly this may
11618 need to change. */
0d53c4c4
DJ
11619 baton->size = DW_BLOCK (attr)->size;
11620 baton->data = DW_BLOCK (attr)->data;
11621 }
11622 else
11623 {
11624 dwarf2_invalid_attrib_class_complaint ("location description",
11625 SYMBOL_NATURAL_NAME (sym));
11626 baton->size = 0;
11627 baton->data = NULL;
11628 }
11629
768a979c 11630 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
11631 SYMBOL_LOCATION_BATON (sym) = baton;
11632 }
4c2df51b 11633}
6502dd73 11634
ae0d2f24
UW
11635/* Return the OBJFILE associated with the compilation unit CU. */
11636
11637struct objfile *
11638dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
11639{
11640 struct objfile *objfile = per_cu->psymtab->objfile;
11641
11642 /* Return the master objfile, so that we can report and look up the
11643 correct file containing this variable. */
11644 if (objfile->separate_debug_objfile_backlink)
11645 objfile = objfile->separate_debug_objfile_backlink;
11646
11647 return objfile;
11648}
11649
11650/* Return the address size given in the compilation unit header for CU. */
11651
11652CORE_ADDR
11653dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
11654{
11655 if (per_cu->cu)
11656 return per_cu->cu->header.addr_size;
11657 else
11658 {
11659 /* If the CU is not currently read in, we re-read its header. */
11660 struct objfile *objfile = per_cu->psymtab->objfile;
11661 struct dwarf2_per_objfile *per_objfile
11662 = objfile_data (objfile, dwarf2_objfile_data_key);
dce234bc 11663 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
ae0d2f24
UW
11664
11665 struct comp_unit_head cu_header;
11666 memset (&cu_header, 0, sizeof cu_header);
11667 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
11668 return cu_header.addr_size;
11669 }
11670}
11671
348e048f
DE
11672/* Locate the .debug_info compilation unit from CU's objfile which contains
11673 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
11674
11675static struct dwarf2_per_cu_data *
c764a876 11676dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
11677 struct objfile *objfile)
11678{
11679 struct dwarf2_per_cu_data *this_cu;
11680 int low, high;
11681
ae038cb0
DJ
11682 low = 0;
11683 high = dwarf2_per_objfile->n_comp_units - 1;
11684 while (high > low)
11685 {
11686 int mid = low + (high - low) / 2;
11687 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
11688 high = mid;
11689 else
11690 low = mid + 1;
11691 }
11692 gdb_assert (low == high);
11693 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
11694 {
10b3939b 11695 if (low == 0)
8a3fe4f8
AC
11696 error (_("Dwarf Error: could not find partial DIE containing "
11697 "offset 0x%lx [in module %s]"),
10b3939b
DJ
11698 (long) offset, bfd_get_filename (objfile->obfd));
11699
ae038cb0
DJ
11700 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
11701 return dwarf2_per_objfile->all_comp_units[low-1];
11702 }
11703 else
11704 {
11705 this_cu = dwarf2_per_objfile->all_comp_units[low];
11706 if (low == dwarf2_per_objfile->n_comp_units - 1
11707 && offset >= this_cu->offset + this_cu->length)
c764a876 11708 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
11709 gdb_assert (offset < this_cu->offset + this_cu->length);
11710 return this_cu;
11711 }
11712}
11713
10b3939b
DJ
11714/* Locate the compilation unit from OBJFILE which is located at exactly
11715 OFFSET. Raises an error on failure. */
11716
ae038cb0 11717static struct dwarf2_per_cu_data *
c764a876 11718dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
11719{
11720 struct dwarf2_per_cu_data *this_cu;
11721 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
11722 if (this_cu->offset != offset)
c764a876 11723 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
11724 return this_cu;
11725}
11726
93311388
DE
11727/* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
11728
11729static struct dwarf2_cu *
11730alloc_one_comp_unit (struct objfile *objfile)
11731{
11732 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
11733 cu->objfile = objfile;
11734 obstack_init (&cu->comp_unit_obstack);
11735 return cu;
11736}
11737
ae038cb0
DJ
11738/* Release one cached compilation unit, CU. We unlink it from the tree
11739 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
11740 the caller is responsible for that.
11741 NOTE: DATA is a void * because this function is also used as a
11742 cleanup routine. */
ae038cb0
DJ
11743
11744static void
11745free_one_comp_unit (void *data)
11746{
11747 struct dwarf2_cu *cu = data;
11748
11749 if (cu->per_cu != NULL)
11750 cu->per_cu->cu = NULL;
11751 cu->per_cu = NULL;
11752
11753 obstack_free (&cu->comp_unit_obstack, NULL);
11754
11755 xfree (cu);
11756}
11757
72bf9492 11758/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
11759 when we're finished with it. We can't free the pointer itself, but be
11760 sure to unlink it from the cache. Also release any associated storage
11761 and perform cache maintenance.
72bf9492
DJ
11762
11763 Only used during partial symbol parsing. */
11764
11765static void
11766free_stack_comp_unit (void *data)
11767{
11768 struct dwarf2_cu *cu = data;
11769
11770 obstack_free (&cu->comp_unit_obstack, NULL);
11771 cu->partial_dies = NULL;
ae038cb0
DJ
11772
11773 if (cu->per_cu != NULL)
11774 {
11775 /* This compilation unit is on the stack in our caller, so we
11776 should not xfree it. Just unlink it. */
11777 cu->per_cu->cu = NULL;
11778 cu->per_cu = NULL;
11779
11780 /* If we had a per-cu pointer, then we may have other compilation
11781 units loaded, so age them now. */
11782 age_cached_comp_units ();
11783 }
11784}
11785
11786/* Free all cached compilation units. */
11787
11788static void
11789free_cached_comp_units (void *data)
11790{
11791 struct dwarf2_per_cu_data *per_cu, **last_chain;
11792
11793 per_cu = dwarf2_per_objfile->read_in_chain;
11794 last_chain = &dwarf2_per_objfile->read_in_chain;
11795 while (per_cu != NULL)
11796 {
11797 struct dwarf2_per_cu_data *next_cu;
11798
11799 next_cu = per_cu->cu->read_in_chain;
11800
11801 free_one_comp_unit (per_cu->cu);
11802 *last_chain = next_cu;
11803
11804 per_cu = next_cu;
11805 }
11806}
11807
11808/* Increase the age counter on each cached compilation unit, and free
11809 any that are too old. */
11810
11811static void
11812age_cached_comp_units (void)
11813{
11814 struct dwarf2_per_cu_data *per_cu, **last_chain;
11815
11816 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
11817 per_cu = dwarf2_per_objfile->read_in_chain;
11818 while (per_cu != NULL)
11819 {
11820 per_cu->cu->last_used ++;
11821 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
11822 dwarf2_mark (per_cu->cu);
11823 per_cu = per_cu->cu->read_in_chain;
11824 }
11825
11826 per_cu = dwarf2_per_objfile->read_in_chain;
11827 last_chain = &dwarf2_per_objfile->read_in_chain;
11828 while (per_cu != NULL)
11829 {
11830 struct dwarf2_per_cu_data *next_cu;
11831
11832 next_cu = per_cu->cu->read_in_chain;
11833
11834 if (!per_cu->cu->mark)
11835 {
11836 free_one_comp_unit (per_cu->cu);
11837 *last_chain = next_cu;
11838 }
11839 else
11840 last_chain = &per_cu->cu->read_in_chain;
11841
11842 per_cu = next_cu;
11843 }
11844}
11845
11846/* Remove a single compilation unit from the cache. */
11847
11848static void
11849free_one_cached_comp_unit (void *target_cu)
11850{
11851 struct dwarf2_per_cu_data *per_cu, **last_chain;
11852
11853 per_cu = dwarf2_per_objfile->read_in_chain;
11854 last_chain = &dwarf2_per_objfile->read_in_chain;
11855 while (per_cu != NULL)
11856 {
11857 struct dwarf2_per_cu_data *next_cu;
11858
11859 next_cu = per_cu->cu->read_in_chain;
11860
11861 if (per_cu->cu == target_cu)
11862 {
11863 free_one_comp_unit (per_cu->cu);
11864 *last_chain = next_cu;
11865 break;
11866 }
11867 else
11868 last_chain = &per_cu->cu->read_in_chain;
11869
11870 per_cu = next_cu;
11871 }
11872}
11873
fe3e1990
DJ
11874/* Release all extra memory associated with OBJFILE. */
11875
11876void
11877dwarf2_free_objfile (struct objfile *objfile)
11878{
11879 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
11880
11881 if (dwarf2_per_objfile == NULL)
11882 return;
11883
11884 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
11885 free_cached_comp_units (NULL);
11886
11887 /* Everything else should be on the objfile obstack. */
11888}
11889
1c379e20
DJ
11890/* A pair of DIE offset and GDB type pointer. We store these
11891 in a hash table separate from the DIEs, and preserve them
11892 when the DIEs are flushed out of cache. */
11893
11894struct dwarf2_offset_and_type
11895{
11896 unsigned int offset;
11897 struct type *type;
11898};
11899
11900/* Hash function for a dwarf2_offset_and_type. */
11901
11902static hashval_t
11903offset_and_type_hash (const void *item)
11904{
11905 const struct dwarf2_offset_and_type *ofs = item;
11906 return ofs->offset;
11907}
11908
11909/* Equality function for a dwarf2_offset_and_type. */
11910
11911static int
11912offset_and_type_eq (const void *item_lhs, const void *item_rhs)
11913{
11914 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
11915 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
11916 return ofs_lhs->offset == ofs_rhs->offset;
11917}
11918
11919/* Set the type associated with DIE to TYPE. Save it in CU's hash
f792889a 11920 table if necessary. For convenience, return TYPE. */
1c379e20 11921
f792889a 11922static struct type *
1c379e20
DJ
11923set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11924{
11925 struct dwarf2_offset_and_type **slot, ofs;
11926
b4ba55a1
JB
11927 /* For Ada types, make sure that the gnat-specific data is always
11928 initialized (if not already set). There are a few types where
11929 we should not be doing so, because the type-specific area is
11930 already used to hold some other piece of info (eg: TYPE_CODE_FLT
11931 where the type-specific area is used to store the floatformat).
11932 But this is not a problem, because the gnat-specific information
11933 is actually not needed for these types. */
11934 if (need_gnat_info (cu)
11935 && TYPE_CODE (type) != TYPE_CODE_FUNC
11936 && TYPE_CODE (type) != TYPE_CODE_FLT
11937 && !HAVE_GNAT_AUX_INFO (type))
11938 INIT_GNAT_SPECIFIC (type);
11939
f792889a
DJ
11940 if (cu->type_hash == NULL)
11941 {
11942 gdb_assert (cu->per_cu != NULL);
11943 cu->per_cu->type_hash
11944 = htab_create_alloc_ex (cu->header.length / 24,
11945 offset_and_type_hash,
11946 offset_and_type_eq,
11947 NULL,
11948 &cu->objfile->objfile_obstack,
11949 hashtab_obstack_allocate,
11950 dummy_obstack_deallocate);
11951 cu->type_hash = cu->per_cu->type_hash;
11952 }
1c379e20
DJ
11953
11954 ofs.offset = die->offset;
11955 ofs.type = type;
11956 slot = (struct dwarf2_offset_and_type **)
f792889a 11957 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
1c379e20
DJ
11958 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
11959 **slot = ofs;
f792889a 11960 return type;
1c379e20
DJ
11961}
11962
f792889a
DJ
11963/* Find the type for DIE in CU's type_hash, or return NULL if DIE does
11964 not have a saved type. */
1c379e20
DJ
11965
11966static struct type *
f792889a 11967get_die_type (struct die_info *die, struct dwarf2_cu *cu)
1c379e20
DJ
11968{
11969 struct dwarf2_offset_and_type *slot, ofs;
f792889a
DJ
11970 htab_t type_hash = cu->type_hash;
11971
11972 if (type_hash == NULL)
11973 return NULL;
1c379e20
DJ
11974
11975 ofs.offset = die->offset;
11976 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
11977 if (slot)
11978 return slot->type;
11979 else
11980 return NULL;
11981}
11982
10b3939b
DJ
11983/* Add a dependence relationship from CU to REF_PER_CU. */
11984
11985static void
11986dwarf2_add_dependence (struct dwarf2_cu *cu,
11987 struct dwarf2_per_cu_data *ref_per_cu)
11988{
11989 void **slot;
11990
11991 if (cu->dependencies == NULL)
11992 cu->dependencies
11993 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
11994 NULL, &cu->comp_unit_obstack,
11995 hashtab_obstack_allocate,
11996 dummy_obstack_deallocate);
11997
11998 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
11999 if (*slot == NULL)
12000 *slot = ref_per_cu;
12001}
1c379e20 12002
f504f079
DE
12003/* Subroutine of dwarf2_mark to pass to htab_traverse.
12004 Set the mark field in every compilation unit in the
ae038cb0
DJ
12005 cache that we must keep because we are keeping CU. */
12006
10b3939b
DJ
12007static int
12008dwarf2_mark_helper (void **slot, void *data)
12009{
12010 struct dwarf2_per_cu_data *per_cu;
12011
12012 per_cu = (struct dwarf2_per_cu_data *) *slot;
12013 if (per_cu->cu->mark)
12014 return 1;
12015 per_cu->cu->mark = 1;
12016
12017 if (per_cu->cu->dependencies != NULL)
12018 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
12019
12020 return 1;
12021}
12022
f504f079
DE
12023/* Set the mark field in CU and in every other compilation unit in the
12024 cache that we must keep because we are keeping CU. */
12025
ae038cb0
DJ
12026static void
12027dwarf2_mark (struct dwarf2_cu *cu)
12028{
12029 if (cu->mark)
12030 return;
12031 cu->mark = 1;
10b3939b
DJ
12032 if (cu->dependencies != NULL)
12033 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
12034}
12035
12036static void
12037dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
12038{
12039 while (per_cu)
12040 {
12041 per_cu->cu->mark = 0;
12042 per_cu = per_cu->cu->read_in_chain;
12043 }
72bf9492
DJ
12044}
12045
72bf9492
DJ
12046/* Trivial hash function for partial_die_info: the hash value of a DIE
12047 is its offset in .debug_info for this objfile. */
12048
12049static hashval_t
12050partial_die_hash (const void *item)
12051{
12052 const struct partial_die_info *part_die = item;
12053 return part_die->offset;
12054}
12055
12056/* Trivial comparison function for partial_die_info structures: two DIEs
12057 are equal if they have the same offset. */
12058
12059static int
12060partial_die_eq (const void *item_lhs, const void *item_rhs)
12061{
12062 const struct partial_die_info *part_die_lhs = item_lhs;
12063 const struct partial_die_info *part_die_rhs = item_rhs;
12064 return part_die_lhs->offset == part_die_rhs->offset;
12065}
12066
ae038cb0
DJ
12067static struct cmd_list_element *set_dwarf2_cmdlist;
12068static struct cmd_list_element *show_dwarf2_cmdlist;
12069
12070static void
12071set_dwarf2_cmd (char *args, int from_tty)
12072{
12073 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
12074}
12075
12076static void
12077show_dwarf2_cmd (char *args, int from_tty)
12078{
12079 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
12080}
12081
dce234bc
PP
12082/* If section described by INFO was mmapped, munmap it now. */
12083
12084static void
12085munmap_section_buffer (struct dwarf2_section_info *info)
12086{
12087 if (info->was_mmapped)
12088 {
12089#ifdef HAVE_MMAP
12090 intptr_t begin = (intptr_t) info->buffer;
12091 intptr_t map_begin = begin & ~(pagesize - 1);
12092 size_t map_length = info->size + begin - map_begin;
12093 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
12094#else
12095 /* Without HAVE_MMAP, we should never be here to begin with. */
12096 gdb_assert (0);
12097#endif
12098 }
12099}
12100
12101/* munmap debug sections for OBJFILE, if necessary. */
12102
12103static void
c1bd65d0 12104dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
12105{
12106 struct dwarf2_per_objfile *data = d;
12107 munmap_section_buffer (&data->info);
12108 munmap_section_buffer (&data->abbrev);
12109 munmap_section_buffer (&data->line);
12110 munmap_section_buffer (&data->str);
12111 munmap_section_buffer (&data->macinfo);
12112 munmap_section_buffer (&data->ranges);
12113 munmap_section_buffer (&data->loc);
12114 munmap_section_buffer (&data->frame);
12115 munmap_section_buffer (&data->eh_frame);
12116}
12117
6502dd73
DJ
12118void _initialize_dwarf2_read (void);
12119
12120void
12121_initialize_dwarf2_read (void)
12122{
dce234bc 12123 dwarf2_objfile_data_key
c1bd65d0 12124 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 12125
1bedd215
AC
12126 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
12127Set DWARF 2 specific variables.\n\
12128Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
12129 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
12130 0/*allow-unknown*/, &maintenance_set_cmdlist);
12131
1bedd215
AC
12132 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
12133Show DWARF 2 specific variables\n\
12134Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
12135 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
12136 0/*allow-unknown*/, &maintenance_show_cmdlist);
12137
12138 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
12139 &dwarf2_max_cache_age, _("\
12140Set the upper bound on the age of cached dwarf2 compilation units."), _("\
12141Show the upper bound on the age of cached dwarf2 compilation units."), _("\
12142A higher limit means that cached compilation units will be stored\n\
12143in memory longer, and more total memory will be used. Zero disables\n\
12144caching, which can slow down startup."),
2c5b56ce 12145 NULL,
920d2a44 12146 show_dwarf2_max_cache_age,
2c5b56ce 12147 &set_dwarf2_cmdlist,
ae038cb0 12148 &show_dwarf2_cmdlist);
d97bc12b
DE
12149
12150 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
12151Set debugging of the dwarf2 DIE reader."), _("\
12152Show debugging of the dwarf2 DIE reader."), _("\
12153When enabled (non-zero), DIEs are dumped after they are read in.\n\
12154The value is the maximum depth to print."),
12155 NULL,
12156 NULL,
12157 &setdebuglist, &showdebuglist);
6502dd73 12158}
This page took 2.059977 seconds and 4 git commands to generate.