Remove prepare_re_set_context
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
61baf725 3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270 55#include "typeprint.h"
ccefe4c4 56#include "psympriv.h"
53ce3c39 57#include <sys/stat.h>
96d19272 58#include "completer.h"
34eaf542 59#include "vec.h"
98bfdba5 60#include "c-lang.h"
a766d390 61#include "go-lang.h"
98bfdba5 62#include "valprint.h"
3019eac3 63#include "gdbcore.h" /* for gnutarget */
156942c7 64#include "gdb/gdb-index.h"
60d5a603 65#include <ctype.h>
cbb099e8 66#include "gdb_bfd.h"
4357ac6c 67#include "f-lang.h"
05cba821 68#include "source.h"
614c279d 69#include "filestuff.h"
dc294be5 70#include "build-id.h"
22cee43f 71#include "namespace.h"
bef155c3 72#include "common/gdb_unlinker.h"
14bc53a8 73#include "common/function-view.h"
ecfb656c
PA
74#include "common/gdb_optional.h"
75#include "common/underlying.h"
d5722aa2 76#include "common/byte-vector.h"
bbf2f4df 77#include "filename-seen-cache.h"
b32b108a 78#include "producer.h"
c906108c 79#include <fcntl.h>
c906108c 80#include <sys/types.h>
325fac50 81#include <algorithm>
bc8f2430
JK
82#include <unordered_set>
83#include <unordered_map>
d8151005 84
34eaf542
TT
85typedef struct symbol *symbolp;
86DEF_VEC_P (symbolp);
87
73be47f5
DE
88/* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
b4f54984
DE
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91static unsigned int dwarf_read_debug = 0;
45cfd468 92
d97bc12b 93/* When non-zero, dump DIEs after they are read in. */
b4f54984 94static unsigned int dwarf_die_debug = 0;
d97bc12b 95
27e0867f
DE
96/* When non-zero, dump line number entries as they are read in. */
97static unsigned int dwarf_line_debug = 0;
98
900e11f9
JK
99/* When non-zero, cross-check physname against demangler. */
100static int check_physname = 0;
101
481860b3 102/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 103static int use_deprecated_index_sections = 0;
481860b3 104
6502dd73
DJ
105static const struct objfile_data *dwarf2_objfile_data_key;
106
f1e6e072
TT
107/* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109static int dwarf2_locexpr_index;
110static int dwarf2_loclist_index;
111static int dwarf2_locexpr_block_index;
112static int dwarf2_loclist_block_index;
113
73869dc2
DE
114/* A descriptor for dwarf sections.
115
116 S.ASECTION, SIZE are typically initialized when the objfile is first
117 scanned. BUFFER, READIN are filled in later when the section is read.
118 If the section contained compressed data then SIZE is updated to record
119 the uncompressed size of the section.
120
121 DWP file format V2 introduces a wrinkle that is easiest to handle by
122 creating the concept of virtual sections contained within a real section.
123 In DWP V2 the sections of the input DWO files are concatenated together
124 into one section, but section offsets are kept relative to the original
125 input section.
126 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
127 the real section this "virtual" section is contained in, and BUFFER,SIZE
128 describe the virtual section. */
129
dce234bc
PP
130struct dwarf2_section_info
131{
73869dc2
DE
132 union
133 {
e5aa3347 134 /* If this is a real section, the bfd section. */
049412e3 135 asection *section;
73869dc2 136 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 137 section. */
73869dc2
DE
138 struct dwarf2_section_info *containing_section;
139 } s;
19ac8c2e 140 /* Pointer to section data, only valid if readin. */
d521ce57 141 const gdb_byte *buffer;
73869dc2 142 /* The size of the section, real or virtual. */
dce234bc 143 bfd_size_type size;
73869dc2
DE
144 /* If this is a virtual section, the offset in the real section.
145 Only valid if is_virtual. */
146 bfd_size_type virtual_offset;
be391dca 147 /* True if we have tried to read this section. */
73869dc2
DE
148 char readin;
149 /* True if this is a virtual section, False otherwise.
049412e3 150 This specifies which of s.section and s.containing_section to use. */
73869dc2 151 char is_virtual;
dce234bc
PP
152};
153
8b70b953
TT
154typedef struct dwarf2_section_info dwarf2_section_info_def;
155DEF_VEC_O (dwarf2_section_info_def);
156
9291a0cd
TT
157/* All offsets in the index are of this type. It must be
158 architecture-independent. */
159typedef uint32_t offset_type;
160
161DEF_VEC_I (offset_type);
162
156942c7
DE
163/* Ensure only legit values are used. */
164#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((unsigned int) (value) <= 1); \
167 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure only legit values are used. */
171#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
174 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
175 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178/* Ensure we don't use more than the alloted nuber of bits for the CU. */
179#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
180 do { \
181 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
182 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
183 } while (0)
184
9291a0cd
TT
185/* A description of the mapped index. The file format is described in
186 a comment by the code that writes the index. */
187struct mapped_index
188{
559a7a62
JK
189 /* Index data format version. */
190 int version;
191
9291a0cd
TT
192 /* The total length of the buffer. */
193 off_t total_size;
b11b1f88 194
9291a0cd
TT
195 /* A pointer to the address table data. */
196 const gdb_byte *address_table;
b11b1f88 197
9291a0cd
TT
198 /* Size of the address table data in bytes. */
199 offset_type address_table_size;
b11b1f88 200
3876f04e
DE
201 /* The symbol table, implemented as a hash table. */
202 const offset_type *symbol_table;
b11b1f88 203
9291a0cd 204 /* Size in slots, each slot is 2 offset_types. */
3876f04e 205 offset_type symbol_table_slots;
b11b1f88 206
9291a0cd
TT
207 /* A pointer to the constant pool. */
208 const char *constant_pool;
209};
210
95554aad
TT
211typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
212DEF_VEC_P (dwarf2_per_cu_ptr);
213
52059ffd
TT
214struct tu_stats
215{
216 int nr_uniq_abbrev_tables;
217 int nr_symtabs;
218 int nr_symtab_sharers;
219 int nr_stmt_less_type_units;
220 int nr_all_type_units_reallocs;
221};
222
9cdd5dbd
DE
223/* Collection of data recorded per objfile.
224 This hangs off of dwarf2_objfile_data_key. */
225
6502dd73
DJ
226struct dwarf2_per_objfile
227{
330cdd98
PA
228 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
229 dwarf2 section names, or is NULL if the standard ELF names are
230 used. */
231 dwarf2_per_objfile (struct objfile *objfile,
232 const dwarf2_debug_sections *names);
ae038cb0 233
330cdd98
PA
234 ~dwarf2_per_objfile ();
235
d6541620 236 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
330cdd98
PA
237
238 /* Free all cached compilation units. */
239 void free_cached_comp_units ();
240private:
241 /* This function is mapped across the sections and remembers the
242 offset and size of each of the debugging sections we are
243 interested in. */
244 void locate_sections (bfd *abfd, asection *sectp,
245 const dwarf2_debug_sections &names);
246
247public:
248 dwarf2_section_info info {};
249 dwarf2_section_info abbrev {};
250 dwarf2_section_info line {};
251 dwarf2_section_info loc {};
252 dwarf2_section_info loclists {};
253 dwarf2_section_info macinfo {};
254 dwarf2_section_info macro {};
255 dwarf2_section_info str {};
256 dwarf2_section_info line_str {};
257 dwarf2_section_info ranges {};
258 dwarf2_section_info rnglists {};
259 dwarf2_section_info addr {};
260 dwarf2_section_info frame {};
261 dwarf2_section_info eh_frame {};
262 dwarf2_section_info gdb_index {};
263
264 VEC (dwarf2_section_info_def) *types = NULL;
8b70b953 265
be391dca 266 /* Back link. */
330cdd98 267 struct objfile *objfile = NULL;
be391dca 268
d467dd73 269 /* Table of all the compilation units. This is used to locate
10b3939b 270 the target compilation unit of a particular reference. */
330cdd98 271 struct dwarf2_per_cu_data **all_comp_units = NULL;
ae038cb0
DJ
272
273 /* The number of compilation units in ALL_COMP_UNITS. */
330cdd98 274 int n_comp_units = 0;
ae038cb0 275
1fd400ff 276 /* The number of .debug_types-related CUs. */
330cdd98 277 int n_type_units = 0;
1fd400ff 278
6aa5f3a6
DE
279 /* The number of elements allocated in all_type_units.
280 If there are skeleton-less TUs, we add them to all_type_units lazily. */
330cdd98 281 int n_allocated_type_units = 0;
6aa5f3a6 282
a2ce51a0
DE
283 /* The .debug_types-related CUs (TUs).
284 This is stored in malloc space because we may realloc it. */
330cdd98 285 struct signatured_type **all_type_units = NULL;
1fd400ff 286
f4dc4d17
DE
287 /* Table of struct type_unit_group objects.
288 The hash key is the DW_AT_stmt_list value. */
330cdd98 289 htab_t type_unit_groups {};
72dca2f5 290
348e048f
DE
291 /* A table mapping .debug_types signatures to its signatured_type entry.
292 This is NULL if the .debug_types section hasn't been read in yet. */
330cdd98 293 htab_t signatured_types {};
348e048f 294
f4dc4d17
DE
295 /* Type unit statistics, to see how well the scaling improvements
296 are doing. */
330cdd98 297 struct tu_stats tu_stats {};
f4dc4d17
DE
298
299 /* A chain of compilation units that are currently read in, so that
300 they can be freed later. */
330cdd98 301 dwarf2_per_cu_data *read_in_chain = NULL;
f4dc4d17 302
3019eac3
DE
303 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
304 This is NULL if the table hasn't been allocated yet. */
330cdd98 305 htab_t dwo_files {};
3019eac3 306
330cdd98
PA
307 /* True if we've checked for whether there is a DWP file. */
308 bool dwp_checked = false;
80626a55
DE
309
310 /* The DWP file if there is one, or NULL. */
330cdd98 311 struct dwp_file *dwp_file = NULL;
80626a55 312
36586728
TT
313 /* The shared '.dwz' file, if one exists. This is used when the
314 original data was compressed using 'dwz -m'. */
330cdd98 315 struct dwz_file *dwz_file = NULL;
36586728 316
330cdd98 317 /* A flag indicating whether this objfile has a section loaded at a
72dca2f5 318 VMA of 0. */
330cdd98 319 bool has_section_at_zero = false;
9291a0cd 320
ae2de4f8
DE
321 /* True if we are using the mapped index,
322 or we are faking it for OBJF_READNOW's sake. */
330cdd98 323 bool using_index = false;
9291a0cd 324
ae2de4f8 325 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
330cdd98 326 mapped_index *index_table = NULL;
98bfdba5 327
7b9f3c50 328 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
329 TUs typically share line table entries with a CU, so we maintain a
330 separate table of all line table entries to support the sharing.
331 Note that while there can be way more TUs than CUs, we've already
332 sorted all the TUs into "type unit groups", grouped by their
333 DW_AT_stmt_list value. Therefore the only sharing done here is with a
334 CU and its associated TU group if there is one. */
330cdd98 335 htab_t quick_file_names_table {};
7b9f3c50 336
98bfdba5
PA
337 /* Set during partial symbol reading, to prevent queueing of full
338 symbols. */
330cdd98 339 bool reading_partial_symbols = false;
673bfd45 340
dee91e82 341 /* Table mapping type DIEs to their struct type *.
673bfd45 342 This is NULL if not allocated yet.
02142a6c 343 The mapping is done via (CU/TU + DIE offset) -> type. */
330cdd98 344 htab_t die_type_hash {};
95554aad
TT
345
346 /* The CUs we recently read. */
330cdd98 347 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
527f3840
JK
348
349 /* Table containing line_header indexed by offset and offset_in_dwz. */
330cdd98 350 htab_t line_header_hash {};
bbf2f4df
PA
351
352 /* Table containing all filenames. This is an optional because the
353 table is lazily constructed on first access. */
354 gdb::optional<filename_seen_cache> filenames_cache;
6502dd73
DJ
355};
356
357static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 358
251d32d9 359/* Default names of the debugging sections. */
c906108c 360
233a11ab
CS
361/* Note that if the debugging section has been compressed, it might
362 have a name like .zdebug_info. */
363
9cdd5dbd
DE
364static const struct dwarf2_debug_sections dwarf2_elf_names =
365{
251d32d9
TG
366 { ".debug_info", ".zdebug_info" },
367 { ".debug_abbrev", ".zdebug_abbrev" },
368 { ".debug_line", ".zdebug_line" },
369 { ".debug_loc", ".zdebug_loc" },
43988095 370 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 371 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 372 { ".debug_macro", ".zdebug_macro" },
251d32d9 373 { ".debug_str", ".zdebug_str" },
43988095 374 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 375 { ".debug_ranges", ".zdebug_ranges" },
43988095 376 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 377 { ".debug_types", ".zdebug_types" },
3019eac3 378 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
379 { ".debug_frame", ".zdebug_frame" },
380 { ".eh_frame", NULL },
24d3216f
TT
381 { ".gdb_index", ".zgdb_index" },
382 23
251d32d9 383};
c906108c 384
80626a55 385/* List of DWO/DWP sections. */
3019eac3 386
80626a55 387static const struct dwop_section_names
3019eac3
DE
388{
389 struct dwarf2_section_names abbrev_dwo;
390 struct dwarf2_section_names info_dwo;
391 struct dwarf2_section_names line_dwo;
392 struct dwarf2_section_names loc_dwo;
43988095 393 struct dwarf2_section_names loclists_dwo;
09262596
DE
394 struct dwarf2_section_names macinfo_dwo;
395 struct dwarf2_section_names macro_dwo;
3019eac3
DE
396 struct dwarf2_section_names str_dwo;
397 struct dwarf2_section_names str_offsets_dwo;
398 struct dwarf2_section_names types_dwo;
80626a55
DE
399 struct dwarf2_section_names cu_index;
400 struct dwarf2_section_names tu_index;
3019eac3 401}
80626a55 402dwop_section_names =
3019eac3
DE
403{
404 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
405 { ".debug_info.dwo", ".zdebug_info.dwo" },
406 { ".debug_line.dwo", ".zdebug_line.dwo" },
407 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 408 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
409 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
410 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
411 { ".debug_str.dwo", ".zdebug_str.dwo" },
412 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
413 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
414 { ".debug_cu_index", ".zdebug_cu_index" },
415 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
416};
417
c906108c
SS
418/* local data types */
419
107d2387
AC
420/* The data in a compilation unit header, after target2host
421 translation, looks like this. */
c906108c 422struct comp_unit_head
a738430d 423{
c764a876 424 unsigned int length;
a738430d 425 short version;
a738430d
MK
426 unsigned char addr_size;
427 unsigned char signed_addr_p;
9c541725 428 sect_offset abbrev_sect_off;
57349743 429
a738430d
MK
430 /* Size of file offsets; either 4 or 8. */
431 unsigned int offset_size;
57349743 432
a738430d
MK
433 /* Size of the length field; either 4 or 12. */
434 unsigned int initial_length_size;
57349743 435
43988095
JK
436 enum dwarf_unit_type unit_type;
437
a738430d
MK
438 /* Offset to the first byte of this compilation unit header in the
439 .debug_info section, for resolving relative reference dies. */
9c541725 440 sect_offset sect_off;
57349743 441
d00adf39
DE
442 /* Offset to first die in this cu from the start of the cu.
443 This will be the first byte following the compilation unit header. */
9c541725 444 cu_offset first_die_cu_offset;
43988095
JK
445
446 /* 64-bit signature of this type unit - it is valid only for
447 UNIT_TYPE DW_UT_type. */
448 ULONGEST signature;
449
450 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 451 cu_offset type_cu_offset_in_tu;
a738430d 452};
c906108c 453
3da10d80
KS
454/* Type used for delaying computation of method physnames.
455 See comments for compute_delayed_physnames. */
456struct delayed_method_info
457{
458 /* The type to which the method is attached, i.e., its parent class. */
459 struct type *type;
460
461 /* The index of the method in the type's function fieldlists. */
462 int fnfield_index;
463
464 /* The index of the method in the fieldlist. */
465 int index;
466
467 /* The name of the DIE. */
468 const char *name;
469
470 /* The DIE associated with this method. */
471 struct die_info *die;
472};
473
474typedef struct delayed_method_info delayed_method_info;
475DEF_VEC_O (delayed_method_info);
476
e7c27a73
DJ
477/* Internal state when decoding a particular compilation unit. */
478struct dwarf2_cu
479{
480 /* The objfile containing this compilation unit. */
481 struct objfile *objfile;
482
d00adf39 483 /* The header of the compilation unit. */
e7c27a73 484 struct comp_unit_head header;
e142c38c 485
d00adf39
DE
486 /* Base address of this compilation unit. */
487 CORE_ADDR base_address;
488
489 /* Non-zero if base_address has been set. */
490 int base_known;
491
e142c38c
DJ
492 /* The language we are debugging. */
493 enum language language;
494 const struct language_defn *language_defn;
495
b0f35d58
DL
496 const char *producer;
497
e142c38c
DJ
498 /* The generic symbol table building routines have separate lists for
499 file scope symbols and all all other scopes (local scopes). So
500 we need to select the right one to pass to add_symbol_to_list().
501 We do it by keeping a pointer to the correct list in list_in_scope.
502
503 FIXME: The original dwarf code just treated the file scope as the
504 first local scope, and all other local scopes as nested local
505 scopes, and worked fine. Check to see if we really need to
506 distinguish these in buildsym.c. */
507 struct pending **list_in_scope;
508
433df2d4
DE
509 /* The abbrev table for this CU.
510 Normally this points to the abbrev table in the objfile.
511 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
512 struct abbrev_table *abbrev_table;
72bf9492 513
b64f50a1
JK
514 /* Hash table holding all the loaded partial DIEs
515 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
516 htab_t partial_dies;
517
518 /* Storage for things with the same lifetime as this read-in compilation
519 unit, including partial DIEs. */
520 struct obstack comp_unit_obstack;
521
ae038cb0
DJ
522 /* When multiple dwarf2_cu structures are living in memory, this field
523 chains them all together, so that they can be released efficiently.
524 We will probably also want a generation counter so that most-recently-used
525 compilation units are cached... */
526 struct dwarf2_per_cu_data *read_in_chain;
527
69d751e3 528 /* Backlink to our per_cu entry. */
ae038cb0
DJ
529 struct dwarf2_per_cu_data *per_cu;
530
531 /* How many compilation units ago was this CU last referenced? */
532 int last_used;
533
b64f50a1
JK
534 /* A hash table of DIE cu_offset for following references with
535 die_info->offset.sect_off as hash. */
51545339 536 htab_t die_hash;
10b3939b
DJ
537
538 /* Full DIEs if read in. */
539 struct die_info *dies;
540
541 /* A set of pointers to dwarf2_per_cu_data objects for compilation
542 units referenced by this one. Only set during full symbol processing;
543 partial symbol tables do not have dependencies. */
544 htab_t dependencies;
545
cb1df416
DJ
546 /* Header data from the line table, during full symbol processing. */
547 struct line_header *line_header;
4c8aa72d
PA
548 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
549 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
550 this is the DW_TAG_compile_unit die for this CU. We'll hold on
551 to the line header as long as this DIE is being processed. See
552 process_die_scope. */
553 die_info *line_header_die_owner;
cb1df416 554
3da10d80
KS
555 /* A list of methods which need to have physnames computed
556 after all type information has been read. */
557 VEC (delayed_method_info) *method_list;
558
96408a79
SA
559 /* To be copied to symtab->call_site_htab. */
560 htab_t call_site_htab;
561
034e5797
DE
562 /* Non-NULL if this CU came from a DWO file.
563 There is an invariant here that is important to remember:
564 Except for attributes copied from the top level DIE in the "main"
565 (or "stub") file in preparation for reading the DWO file
566 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
567 Either there isn't a DWO file (in which case this is NULL and the point
568 is moot), or there is and either we're not going to read it (in which
569 case this is NULL) or there is and we are reading it (in which case this
570 is non-NULL). */
3019eac3
DE
571 struct dwo_unit *dwo_unit;
572
573 /* The DW_AT_addr_base attribute if present, zero otherwise
574 (zero is a valid value though).
1dbab08b 575 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
576 ULONGEST addr_base;
577
2e3cf129
DE
578 /* The DW_AT_ranges_base attribute if present, zero otherwise
579 (zero is a valid value though).
1dbab08b 580 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 581 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
582 be used without needing to know whether DWO files are in use or not.
583 N.B. This does not apply to DW_AT_ranges appearing in
584 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
585 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
586 DW_AT_ranges_base *would* have to be applied, and we'd have to care
587 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
588 ULONGEST ranges_base;
589
ae038cb0
DJ
590 /* Mark used when releasing cached dies. */
591 unsigned int mark : 1;
592
8be455d7
JK
593 /* This CU references .debug_loc. See the symtab->locations_valid field.
594 This test is imperfect as there may exist optimized debug code not using
595 any location list and still facing inlining issues if handled as
596 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 597 unsigned int has_loclist : 1;
ba919b58 598
1b80a9fa
JK
599 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
600 if all the producer_is_* fields are valid. This information is cached
601 because profiling CU expansion showed excessive time spent in
602 producer_is_gxx_lt_4_6. */
ba919b58
TT
603 unsigned int checked_producer : 1;
604 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 605 unsigned int producer_is_gcc_lt_4_3 : 1;
5230b05a 606 unsigned int producer_is_icc_lt_14 : 1;
4d4ec4e5
TT
607
608 /* When set, the file that we're processing is known to have
609 debugging info for C++ namespaces. GCC 3.3.x did not produce
610 this information, but later versions do. */
611
612 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
613};
614
10b3939b
DJ
615/* Persistent data held for a compilation unit, even when not
616 processing it. We put a pointer to this structure in the
28dee7f5 617 read_symtab_private field of the psymtab. */
10b3939b 618
ae038cb0
DJ
619struct dwarf2_per_cu_data
620{
36586728 621 /* The start offset and length of this compilation unit.
45452591 622 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
623 initial_length_size.
624 If the DIE refers to a DWO file, this is always of the original die,
625 not the DWO file. */
9c541725 626 sect_offset sect_off;
36586728 627 unsigned int length;
ae038cb0 628
43988095
JK
629 /* DWARF standard version this data has been read from (such as 4 or 5). */
630 short dwarf_version;
631
ae038cb0
DJ
632 /* Flag indicating this compilation unit will be read in before
633 any of the current compilation units are processed. */
c764a876 634 unsigned int queued : 1;
ae038cb0 635
0d99eb77
DE
636 /* This flag will be set when reading partial DIEs if we need to load
637 absolutely all DIEs for this compilation unit, instead of just the ones
638 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
639 hash table and don't find it. */
640 unsigned int load_all_dies : 1;
641
0186c6a7
DE
642 /* Non-zero if this CU is from .debug_types.
643 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
644 this is non-zero. */
3019eac3
DE
645 unsigned int is_debug_types : 1;
646
36586728
TT
647 /* Non-zero if this CU is from the .dwz file. */
648 unsigned int is_dwz : 1;
649
a2ce51a0
DE
650 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
651 This flag is only valid if is_debug_types is true.
652 We can't read a CU directly from a DWO file: There are required
653 attributes in the stub. */
654 unsigned int reading_dwo_directly : 1;
655
7ee85ab1
DE
656 /* Non-zero if the TU has been read.
657 This is used to assist the "Stay in DWO Optimization" for Fission:
658 When reading a DWO, it's faster to read TUs from the DWO instead of
659 fetching them from random other DWOs (due to comdat folding).
660 If the TU has already been read, the optimization is unnecessary
661 (and unwise - we don't want to change where gdb thinks the TU lives
662 "midflight").
663 This flag is only valid if is_debug_types is true. */
664 unsigned int tu_read : 1;
665
3019eac3
DE
666 /* The section this CU/TU lives in.
667 If the DIE refers to a DWO file, this is always the original die,
668 not the DWO file. */
8a0459fd 669 struct dwarf2_section_info *section;
348e048f 670
17ea53c3 671 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
672 of the CU cache it gets reset to NULL again. This is left as NULL for
673 dummy CUs (a CU header, but nothing else). */
ae038cb0 674 struct dwarf2_cu *cu;
1c379e20 675
9cdd5dbd
DE
676 /* The corresponding objfile.
677 Normally we can get the objfile from dwarf2_per_objfile.
678 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
679 struct objfile *objfile;
680
fffbe6a8
YQ
681 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
682 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
683 union
684 {
685 /* The partial symbol table associated with this compilation unit,
95554aad 686 or NULL for unread partial units. */
9291a0cd
TT
687 struct partial_symtab *psymtab;
688
689 /* Data needed by the "quick" functions. */
690 struct dwarf2_per_cu_quick_data *quick;
691 } v;
95554aad 692
796a7ff8
DE
693 /* The CUs we import using DW_TAG_imported_unit. This is filled in
694 while reading psymtabs, used to compute the psymtab dependencies,
695 and then cleared. Then it is filled in again while reading full
696 symbols, and only deleted when the objfile is destroyed.
697
698 This is also used to work around a difference between the way gold
699 generates .gdb_index version <=7 and the way gdb does. Arguably this
700 is a gold bug. For symbols coming from TUs, gold records in the index
701 the CU that includes the TU instead of the TU itself. This breaks
702 dw2_lookup_symbol: It assumes that if the index says symbol X lives
703 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
704 will find X. Alas TUs live in their own symtab, so after expanding CU Y
705 we need to look in TU Z to find X. Fortunately, this is akin to
706 DW_TAG_imported_unit, so we just use the same mechanism: For
707 .gdb_index version <=7 this also records the TUs that the CU referred
708 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
709 indices so we only pay a price for gold generated indices.
710 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 711 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
712};
713
348e048f
DE
714/* Entry in the signatured_types hash table. */
715
716struct signatured_type
717{
42e7ad6c 718 /* The "per_cu" object of this type.
ac9ec31b 719 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
720 N.B.: This is the first member so that it's easy to convert pointers
721 between them. */
722 struct dwarf2_per_cu_data per_cu;
723
3019eac3 724 /* The type's signature. */
348e048f
DE
725 ULONGEST signature;
726
3019eac3 727 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
728 If this TU is a DWO stub and the definition lives in a DWO file
729 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
730 cu_offset type_offset_in_tu;
731
732 /* Offset in the section of the type's DIE.
733 If the definition lives in a DWO file, this is the offset in the
734 .debug_types.dwo section.
735 The value is zero until the actual value is known.
736 Zero is otherwise not a valid section offset. */
737 sect_offset type_offset_in_section;
0186c6a7
DE
738
739 /* Type units are grouped by their DW_AT_stmt_list entry so that they
740 can share them. This points to the containing symtab. */
741 struct type_unit_group *type_unit_group;
ac9ec31b
DE
742
743 /* The type.
744 The first time we encounter this type we fully read it in and install it
745 in the symbol tables. Subsequent times we only need the type. */
746 struct type *type;
a2ce51a0
DE
747
748 /* Containing DWO unit.
749 This field is valid iff per_cu.reading_dwo_directly. */
750 struct dwo_unit *dwo_unit;
348e048f
DE
751};
752
0186c6a7
DE
753typedef struct signatured_type *sig_type_ptr;
754DEF_VEC_P (sig_type_ptr);
755
094b34ac
DE
756/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
757 This includes type_unit_group and quick_file_names. */
758
759struct stmt_list_hash
760{
761 /* The DWO unit this table is from or NULL if there is none. */
762 struct dwo_unit *dwo_unit;
763
764 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 765 sect_offset line_sect_off;
094b34ac
DE
766};
767
f4dc4d17
DE
768/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
769 an object of this type. */
770
771struct type_unit_group
772{
0186c6a7 773 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
774 To simplify things we create an artificial CU that "includes" all the
775 type units using this stmt_list so that the rest of the code still has
776 a "per_cu" handle on the symtab.
777 This PER_CU is recognized by having no section. */
8a0459fd 778#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
779 struct dwarf2_per_cu_data per_cu;
780
0186c6a7
DE
781 /* The TUs that share this DW_AT_stmt_list entry.
782 This is added to while parsing type units to build partial symtabs,
783 and is deleted afterwards and not used again. */
784 VEC (sig_type_ptr) *tus;
f4dc4d17 785
43f3e411 786 /* The compunit symtab.
094b34ac 787 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
788 so we create an essentially anonymous symtab as the compunit symtab. */
789 struct compunit_symtab *compunit_symtab;
f4dc4d17 790
094b34ac
DE
791 /* The data used to construct the hash key. */
792 struct stmt_list_hash hash;
f4dc4d17
DE
793
794 /* The number of symtabs from the line header.
795 The value here must match line_header.num_file_names. */
796 unsigned int num_symtabs;
797
798 /* The symbol tables for this TU (obtained from the files listed in
799 DW_AT_stmt_list).
800 WARNING: The order of entries here must match the order of entries
801 in the line header. After the first TU using this type_unit_group, the
802 line header for the subsequent TUs is recreated from this. This is done
803 because we need to use the same symtabs for each TU using the same
804 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
805 there's no guarantee the line header doesn't have duplicate entries. */
806 struct symtab **symtabs;
807};
808
73869dc2 809/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
810
811struct dwo_sections
812{
813 struct dwarf2_section_info abbrev;
3019eac3
DE
814 struct dwarf2_section_info line;
815 struct dwarf2_section_info loc;
43988095 816 struct dwarf2_section_info loclists;
09262596
DE
817 struct dwarf2_section_info macinfo;
818 struct dwarf2_section_info macro;
3019eac3
DE
819 struct dwarf2_section_info str;
820 struct dwarf2_section_info str_offsets;
80626a55
DE
821 /* In the case of a virtual DWO file, these two are unused. */
822 struct dwarf2_section_info info;
3019eac3
DE
823 VEC (dwarf2_section_info_def) *types;
824};
825
c88ee1f0 826/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
827
828struct dwo_unit
829{
830 /* Backlink to the containing struct dwo_file. */
831 struct dwo_file *dwo_file;
832
833 /* The "id" that distinguishes this CU/TU.
834 .debug_info calls this "dwo_id", .debug_types calls this "signature".
835 Since signatures came first, we stick with it for consistency. */
836 ULONGEST signature;
837
838 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 839 struct dwarf2_section_info *section;
3019eac3 840
9c541725
PA
841 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
842 sect_offset sect_off;
3019eac3
DE
843 unsigned int length;
844
845 /* For types, offset in the type's DIE of the type defined by this TU. */
846 cu_offset type_offset_in_tu;
847};
848
73869dc2
DE
849/* include/dwarf2.h defines the DWP section codes.
850 It defines a max value but it doesn't define a min value, which we
851 use for error checking, so provide one. */
852
853enum dwp_v2_section_ids
854{
855 DW_SECT_MIN = 1
856};
857
80626a55 858/* Data for one DWO file.
57d63ce2
DE
859
860 This includes virtual DWO files (a virtual DWO file is a DWO file as it
861 appears in a DWP file). DWP files don't really have DWO files per se -
862 comdat folding of types "loses" the DWO file they came from, and from
863 a high level view DWP files appear to contain a mass of random types.
864 However, to maintain consistency with the non-DWP case we pretend DWP
865 files contain virtual DWO files, and we assign each TU with one virtual
866 DWO file (generally based on the line and abbrev section offsets -
867 a heuristic that seems to work in practice). */
3019eac3
DE
868
869struct dwo_file
870{
0ac5b59e 871 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
872 For virtual DWO files the name is constructed from the section offsets
873 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
874 from related CU+TUs. */
0ac5b59e
DE
875 const char *dwo_name;
876
877 /* The DW_AT_comp_dir attribute. */
878 const char *comp_dir;
3019eac3 879
80626a55
DE
880 /* The bfd, when the file is open. Otherwise this is NULL.
881 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
882 bfd *dbfd;
3019eac3 883
73869dc2
DE
884 /* The sections that make up this DWO file.
885 Remember that for virtual DWO files in DWP V2, these are virtual
886 sections (for lack of a better name). */
3019eac3
DE
887 struct dwo_sections sections;
888
33c5cd75
DB
889 /* The CUs in the file.
890 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
891 an extension to handle LLVM's Link Time Optimization output (where
892 multiple source files may be compiled into a single object/dwo pair). */
893 htab_t cus;
3019eac3
DE
894
895 /* Table of TUs in the file.
896 Each element is a struct dwo_unit. */
897 htab_t tus;
898};
899
80626a55
DE
900/* These sections are what may appear in a DWP file. */
901
902struct dwp_sections
903{
73869dc2 904 /* These are used by both DWP version 1 and 2. */
80626a55
DE
905 struct dwarf2_section_info str;
906 struct dwarf2_section_info cu_index;
907 struct dwarf2_section_info tu_index;
73869dc2
DE
908
909 /* These are only used by DWP version 2 files.
910 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
911 sections are referenced by section number, and are not recorded here.
912 In DWP version 2 there is at most one copy of all these sections, each
913 section being (effectively) comprised of the concatenation of all of the
914 individual sections that exist in the version 1 format.
915 To keep the code simple we treat each of these concatenated pieces as a
916 section itself (a virtual section?). */
917 struct dwarf2_section_info abbrev;
918 struct dwarf2_section_info info;
919 struct dwarf2_section_info line;
920 struct dwarf2_section_info loc;
921 struct dwarf2_section_info macinfo;
922 struct dwarf2_section_info macro;
923 struct dwarf2_section_info str_offsets;
924 struct dwarf2_section_info types;
80626a55
DE
925};
926
73869dc2
DE
927/* These sections are what may appear in a virtual DWO file in DWP version 1.
928 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 929
73869dc2 930struct virtual_v1_dwo_sections
80626a55
DE
931{
932 struct dwarf2_section_info abbrev;
933 struct dwarf2_section_info line;
934 struct dwarf2_section_info loc;
935 struct dwarf2_section_info macinfo;
936 struct dwarf2_section_info macro;
937 struct dwarf2_section_info str_offsets;
938 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 939 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
940 struct dwarf2_section_info info_or_types;
941};
942
73869dc2
DE
943/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
944 In version 2, the sections of the DWO files are concatenated together
945 and stored in one section of that name. Thus each ELF section contains
946 several "virtual" sections. */
947
948struct virtual_v2_dwo_sections
949{
950 bfd_size_type abbrev_offset;
951 bfd_size_type abbrev_size;
952
953 bfd_size_type line_offset;
954 bfd_size_type line_size;
955
956 bfd_size_type loc_offset;
957 bfd_size_type loc_size;
958
959 bfd_size_type macinfo_offset;
960 bfd_size_type macinfo_size;
961
962 bfd_size_type macro_offset;
963 bfd_size_type macro_size;
964
965 bfd_size_type str_offsets_offset;
966 bfd_size_type str_offsets_size;
967
968 /* Each DWP hash table entry records one CU or one TU.
969 That is recorded here, and copied to dwo_unit.section. */
970 bfd_size_type info_or_types_offset;
971 bfd_size_type info_or_types_size;
972};
973
80626a55
DE
974/* Contents of DWP hash tables. */
975
976struct dwp_hash_table
977{
73869dc2 978 uint32_t version, nr_columns;
80626a55 979 uint32_t nr_units, nr_slots;
73869dc2
DE
980 const gdb_byte *hash_table, *unit_table;
981 union
982 {
983 struct
984 {
985 const gdb_byte *indices;
986 } v1;
987 struct
988 {
989 /* This is indexed by column number and gives the id of the section
990 in that column. */
991#define MAX_NR_V2_DWO_SECTIONS \
992 (1 /* .debug_info or .debug_types */ \
993 + 1 /* .debug_abbrev */ \
994 + 1 /* .debug_line */ \
995 + 1 /* .debug_loc */ \
996 + 1 /* .debug_str_offsets */ \
997 + 1 /* .debug_macro or .debug_macinfo */)
998 int section_ids[MAX_NR_V2_DWO_SECTIONS];
999 const gdb_byte *offsets;
1000 const gdb_byte *sizes;
1001 } v2;
1002 } section_pool;
80626a55
DE
1003};
1004
1005/* Data for one DWP file. */
1006
1007struct dwp_file
1008{
1009 /* Name of the file. */
1010 const char *name;
1011
73869dc2
DE
1012 /* File format version. */
1013 int version;
1014
93417882 1015 /* The bfd. */
80626a55
DE
1016 bfd *dbfd;
1017
1018 /* Section info for this file. */
1019 struct dwp_sections sections;
1020
57d63ce2 1021 /* Table of CUs in the file. */
80626a55
DE
1022 const struct dwp_hash_table *cus;
1023
1024 /* Table of TUs in the file. */
1025 const struct dwp_hash_table *tus;
1026
19ac8c2e
DE
1027 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1028 htab_t loaded_cus;
1029 htab_t loaded_tus;
80626a55 1030
73869dc2
DE
1031 /* Table to map ELF section numbers to their sections.
1032 This is only needed for the DWP V1 file format. */
80626a55
DE
1033 unsigned int num_sections;
1034 asection **elf_sections;
1035};
1036
36586728
TT
1037/* This represents a '.dwz' file. */
1038
1039struct dwz_file
1040{
1041 /* A dwz file can only contain a few sections. */
1042 struct dwarf2_section_info abbrev;
1043 struct dwarf2_section_info info;
1044 struct dwarf2_section_info str;
1045 struct dwarf2_section_info line;
1046 struct dwarf2_section_info macro;
2ec9a5e0 1047 struct dwarf2_section_info gdb_index;
36586728
TT
1048
1049 /* The dwz's BFD. */
1050 bfd *dwz_bfd;
1051};
1052
0963b4bd
MS
1053/* Struct used to pass misc. parameters to read_die_and_children, et
1054 al. which are used for both .debug_info and .debug_types dies.
1055 All parameters here are unchanging for the life of the call. This
dee91e82 1056 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
1057
1058struct die_reader_specs
1059{
a32a8923 1060 /* The bfd of die_section. */
93311388
DE
1061 bfd* abfd;
1062
1063 /* The CU of the DIE we are parsing. */
1064 struct dwarf2_cu *cu;
1065
80626a55 1066 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1067 struct dwo_file *dwo_file;
1068
dee91e82 1069 /* The section the die comes from.
3019eac3 1070 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1071 struct dwarf2_section_info *die_section;
1072
1073 /* die_section->buffer. */
d521ce57 1074 const gdb_byte *buffer;
f664829e
DE
1075
1076 /* The end of the buffer. */
1077 const gdb_byte *buffer_end;
a2ce51a0
DE
1078
1079 /* The value of the DW_AT_comp_dir attribute. */
1080 const char *comp_dir;
93311388
DE
1081};
1082
fd820528 1083/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1084typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1085 const gdb_byte *info_ptr,
dee91e82
DE
1086 struct die_info *comp_unit_die,
1087 int has_children,
1088 void *data);
1089
ecfb656c
PA
1090/* A 1-based directory index. This is a strong typedef to prevent
1091 accidentally using a directory index as a 0-based index into an
1092 array/vector. */
1093enum class dir_index : unsigned int {};
1094
1095/* Likewise, a 1-based file name index. */
1096enum class file_name_index : unsigned int {};
1097
52059ffd
TT
1098struct file_entry
1099{
fff8551c
PA
1100 file_entry () = default;
1101
ecfb656c 1102 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
1103 unsigned int mod_time_, unsigned int length_)
1104 : name (name_),
ecfb656c 1105 d_index (d_index_),
fff8551c
PA
1106 mod_time (mod_time_),
1107 length (length_)
1108 {}
1109
ecfb656c
PA
1110 /* Return the include directory at D_INDEX stored in LH. Returns
1111 NULL if D_INDEX is out of bounds. */
8c43009f
PA
1112 const char *include_dir (const line_header *lh) const;
1113
fff8551c
PA
1114 /* The file name. Note this is an observing pointer. The memory is
1115 owned by debug_line_buffer. */
1116 const char *name {};
1117
8c43009f 1118 /* The directory index (1-based). */
ecfb656c 1119 dir_index d_index {};
fff8551c
PA
1120
1121 unsigned int mod_time {};
1122
1123 unsigned int length {};
1124
1125 /* True if referenced by the Line Number Program. */
1126 bool included_p {};
1127
83769d0b 1128 /* The associated symbol table, if any. */
fff8551c 1129 struct symtab *symtab {};
52059ffd
TT
1130};
1131
debd256d
JB
1132/* The line number information for a compilation unit (found in the
1133 .debug_line section) begins with a "statement program header",
1134 which contains the following information. */
1135struct line_header
1136{
fff8551c
PA
1137 line_header ()
1138 : offset_in_dwz {}
1139 {}
1140
1141 /* Add an entry to the include directory table. */
1142 void add_include_dir (const char *include_dir);
1143
1144 /* Add an entry to the file name table. */
ecfb656c 1145 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
1146 unsigned int mod_time, unsigned int length);
1147
ecfb656c 1148 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
8c43009f 1149 is out of bounds. */
ecfb656c 1150 const char *include_dir_at (dir_index index) const
8c43009f 1151 {
ecfb656c
PA
1152 /* Convert directory index number (1-based) to vector index
1153 (0-based). */
1154 size_t vec_index = to_underlying (index) - 1;
1155
1156 if (vec_index >= include_dirs.size ())
8c43009f 1157 return NULL;
ecfb656c 1158 return include_dirs[vec_index];
8c43009f
PA
1159 }
1160
ecfb656c 1161 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
8c43009f 1162 is out of bounds. */
ecfb656c 1163 file_entry *file_name_at (file_name_index index)
8c43009f 1164 {
ecfb656c
PA
1165 /* Convert file name index number (1-based) to vector index
1166 (0-based). */
1167 size_t vec_index = to_underlying (index) - 1;
1168
1169 if (vec_index >= file_names.size ())
fff8551c 1170 return NULL;
ecfb656c 1171 return &file_names[vec_index];
fff8551c
PA
1172 }
1173
1174 /* Const version of the above. */
1175 const file_entry *file_name_at (unsigned int index) const
1176 {
1177 if (index >= file_names.size ())
8c43009f
PA
1178 return NULL;
1179 return &file_names[index];
1180 }
1181
527f3840 1182 /* Offset of line number information in .debug_line section. */
9c541725 1183 sect_offset sect_off {};
527f3840
JK
1184
1185 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1186 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1187
1188 unsigned int total_length {};
1189 unsigned short version {};
1190 unsigned int header_length {};
1191 unsigned char minimum_instruction_length {};
1192 unsigned char maximum_ops_per_instruction {};
1193 unsigned char default_is_stmt {};
1194 int line_base {};
1195 unsigned char line_range {};
1196 unsigned char opcode_base {};
debd256d
JB
1197
1198 /* standard_opcode_lengths[i] is the number of operands for the
1199 standard opcode whose value is i. This means that
1200 standard_opcode_lengths[0] is unused, and the last meaningful
1201 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1202 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1203
fff8551c
PA
1204 /* The include_directories table. Note these are observing
1205 pointers. The memory is owned by debug_line_buffer. */
1206 std::vector<const char *> include_dirs;
debd256d 1207
fff8551c
PA
1208 /* The file_names table. */
1209 std::vector<file_entry> file_names;
debd256d
JB
1210
1211 /* The start and end of the statement program following this
6502dd73 1212 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1213 const gdb_byte *statement_program_start {}, *statement_program_end {};
debd256d 1214};
c906108c 1215
fff8551c
PA
1216typedef std::unique_ptr<line_header> line_header_up;
1217
8c43009f
PA
1218const char *
1219file_entry::include_dir (const line_header *lh) const
1220{
ecfb656c 1221 return lh->include_dir_at (d_index);
8c43009f
PA
1222}
1223
c906108c 1224/* When we construct a partial symbol table entry we only
0963b4bd 1225 need this much information. */
c906108c
SS
1226struct partial_die_info
1227 {
72bf9492 1228 /* Offset of this DIE. */
9c541725 1229 sect_offset sect_off;
72bf9492
DJ
1230
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1233
72bf9492
DJ
1234 /* Assorted flags describing the data found in this DIE. */
1235 unsigned int has_children : 1;
1236 unsigned int is_external : 1;
1237 unsigned int is_declaration : 1;
1238 unsigned int has_type : 1;
1239 unsigned int has_specification : 1;
1240 unsigned int has_pc_info : 1;
481860b3 1241 unsigned int may_be_inlined : 1;
72bf9492 1242
0c1b455e
TT
1243 /* This DIE has been marked DW_AT_main_subprogram. */
1244 unsigned int main_subprogram : 1;
1245
72bf9492
DJ
1246 /* Flag set if the SCOPE field of this structure has been
1247 computed. */
1248 unsigned int scope_set : 1;
1249
fa4028e9
JB
1250 /* Flag set if the DIE has a byte_size attribute. */
1251 unsigned int has_byte_size : 1;
1252
ff908ebf
AW
1253 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1254 unsigned int has_const_value : 1;
1255
98bfdba5
PA
1256 /* Flag set if any of the DIE's children are template arguments. */
1257 unsigned int has_template_arguments : 1;
1258
abc72ce4
DE
1259 /* Flag set if fixup_partial_die has been called on this die. */
1260 unsigned int fixup_called : 1;
1261
36586728
TT
1262 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1263 unsigned int is_dwz : 1;
1264
1265 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1266 unsigned int spec_is_dwz : 1;
1267
72bf9492 1268 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1269 sometimes a default name for unnamed DIEs. */
15d034d0 1270 const char *name;
72bf9492 1271
abc72ce4
DE
1272 /* The linkage name, if present. */
1273 const char *linkage_name;
1274
72bf9492
DJ
1275 /* The scope to prepend to our children. This is generally
1276 allocated on the comp_unit_obstack, so will disappear
1277 when this compilation unit leaves the cache. */
15d034d0 1278 const char *scope;
72bf9492 1279
95554aad
TT
1280 /* Some data associated with the partial DIE. The tag determines
1281 which field is live. */
1282 union
1283 {
1284 /* The location description associated with this DIE, if any. */
1285 struct dwarf_block *locdesc;
1286 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1287 sect_offset sect_off;
95554aad 1288 } d;
72bf9492
DJ
1289
1290 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1291 CORE_ADDR lowpc;
1292 CORE_ADDR highpc;
72bf9492 1293
93311388 1294 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1295 DW_AT_sibling, if any. */
abc72ce4
DE
1296 /* NOTE: This member isn't strictly necessary, read_partial_die could
1297 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1298 const gdb_byte *sibling;
72bf9492
DJ
1299
1300 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1301 DW_AT_specification (or DW_AT_abstract_origin or
1302 DW_AT_extension). */
b64f50a1 1303 sect_offset spec_offset;
72bf9492
DJ
1304
1305 /* Pointers to this DIE's parent, first child, and next sibling,
1306 if any. */
1307 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1308 };
1309
0963b4bd 1310/* This data structure holds the information of an abbrev. */
c906108c
SS
1311struct abbrev_info
1312 {
1313 unsigned int number; /* number identifying abbrev */
1314 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1315 unsigned short has_children; /* boolean */
1316 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1317 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1318 struct abbrev_info *next; /* next in chain */
1319 };
1320
1321struct attr_abbrev
1322 {
9d25dd43
DE
1323 ENUM_BITFIELD(dwarf_attribute) name : 16;
1324 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1325
1326 /* It is valid only if FORM is DW_FORM_implicit_const. */
1327 LONGEST implicit_const;
c906108c
SS
1328 };
1329
433df2d4
DE
1330/* Size of abbrev_table.abbrev_hash_table. */
1331#define ABBREV_HASH_SIZE 121
1332
1333/* Top level data structure to contain an abbreviation table. */
1334
1335struct abbrev_table
1336{
f4dc4d17
DE
1337 /* Where the abbrev table came from.
1338 This is used as a sanity check when the table is used. */
9c541725 1339 sect_offset sect_off;
433df2d4
DE
1340
1341 /* Storage for the abbrev table. */
1342 struct obstack abbrev_obstack;
1343
1344 /* Hash table of abbrevs.
1345 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1346 It could be statically allocated, but the previous code didn't so we
1347 don't either. */
1348 struct abbrev_info **abbrevs;
1349};
1350
0963b4bd 1351/* Attributes have a name and a value. */
b60c80d6
DJ
1352struct attribute
1353 {
9d25dd43 1354 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1355 ENUM_BITFIELD(dwarf_form) form : 15;
1356
1357 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1358 field should be in u.str (existing only for DW_STRING) but it is kept
1359 here for better struct attribute alignment. */
1360 unsigned int string_is_canonical : 1;
1361
b60c80d6
DJ
1362 union
1363 {
15d034d0 1364 const char *str;
b60c80d6 1365 struct dwarf_block *blk;
43bbcdc2
PH
1366 ULONGEST unsnd;
1367 LONGEST snd;
b60c80d6 1368 CORE_ADDR addr;
ac9ec31b 1369 ULONGEST signature;
b60c80d6
DJ
1370 }
1371 u;
1372 };
1373
0963b4bd 1374/* This data structure holds a complete die structure. */
c906108c
SS
1375struct die_info
1376 {
76815b17
DE
1377 /* DWARF-2 tag for this DIE. */
1378 ENUM_BITFIELD(dwarf_tag) tag : 16;
1379
1380 /* Number of attributes */
98bfdba5
PA
1381 unsigned char num_attrs;
1382
1383 /* True if we're presently building the full type name for the
1384 type derived from this DIE. */
1385 unsigned char building_fullname : 1;
76815b17 1386
adde2bff
DE
1387 /* True if this die is in process. PR 16581. */
1388 unsigned char in_process : 1;
1389
76815b17
DE
1390 /* Abbrev number */
1391 unsigned int abbrev;
1392
93311388 1393 /* Offset in .debug_info or .debug_types section. */
9c541725 1394 sect_offset sect_off;
78ba4af6
JB
1395
1396 /* The dies in a compilation unit form an n-ary tree. PARENT
1397 points to this die's parent; CHILD points to the first child of
1398 this node; and all the children of a given node are chained
4950bc1c 1399 together via their SIBLING fields. */
639d11d3
DC
1400 struct die_info *child; /* Its first child, if any. */
1401 struct die_info *sibling; /* Its next sibling, if any. */
1402 struct die_info *parent; /* Its parent, if any. */
c906108c 1403
b60c80d6
DJ
1404 /* An array of attributes, with NUM_ATTRS elements. There may be
1405 zero, but it's not common and zero-sized arrays are not
1406 sufficiently portable C. */
1407 struct attribute attrs[1];
c906108c
SS
1408 };
1409
0963b4bd 1410/* Get at parts of an attribute structure. */
c906108c
SS
1411
1412#define DW_STRING(attr) ((attr)->u.str)
8285870a 1413#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1414#define DW_UNSND(attr) ((attr)->u.unsnd)
1415#define DW_BLOCK(attr) ((attr)->u.blk)
1416#define DW_SND(attr) ((attr)->u.snd)
1417#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1418#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1419
0963b4bd 1420/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1421struct dwarf_block
1422 {
56eb65bd 1423 size_t size;
1d6edc3c
JK
1424
1425 /* Valid only if SIZE is not zero. */
d521ce57 1426 const gdb_byte *data;
c906108c
SS
1427 };
1428
c906108c
SS
1429#ifndef ATTR_ALLOC_CHUNK
1430#define ATTR_ALLOC_CHUNK 4
1431#endif
1432
c906108c
SS
1433/* Allocate fields for structs, unions and enums in this size. */
1434#ifndef DW_FIELD_ALLOC_CHUNK
1435#define DW_FIELD_ALLOC_CHUNK 4
1436#endif
1437
c906108c
SS
1438/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1439 but this would require a corresponding change in unpack_field_as_long
1440 and friends. */
1441static int bits_per_byte = 8;
1442
52059ffd
TT
1443struct nextfield
1444{
1445 struct nextfield *next;
1446 int accessibility;
1447 int virtuality;
1448 struct field field;
1449};
1450
1451struct nextfnfield
1452{
1453 struct nextfnfield *next;
1454 struct fn_field fnfield;
1455};
1456
1457struct fnfieldlist
1458{
1459 const char *name;
1460 int length;
1461 struct nextfnfield *head;
1462};
1463
1464struct typedef_field_list
1465{
1466 struct typedef_field field;
1467 struct typedef_field_list *next;
1468};
1469
c906108c
SS
1470/* The routines that read and process dies for a C struct or C++ class
1471 pass lists of data member fields and lists of member function fields
1472 in an instance of a field_info structure, as defined below. */
1473struct field_info
c5aa993b 1474 {
0963b4bd 1475 /* List of data member and baseclasses fields. */
52059ffd 1476 struct nextfield *fields, *baseclasses;
c906108c 1477
7d0ccb61 1478 /* Number of fields (including baseclasses). */
c5aa993b 1479 int nfields;
c906108c 1480
c5aa993b
JM
1481 /* Number of baseclasses. */
1482 int nbaseclasses;
c906108c 1483
c5aa993b
JM
1484 /* Set if the accesibility of one of the fields is not public. */
1485 int non_public_fields;
c906108c 1486
c5aa993b
JM
1487 /* Member function fieldlist array, contains name of possibly overloaded
1488 member function, number of overloaded member functions and a pointer
1489 to the head of the member function field chain. */
52059ffd 1490 struct fnfieldlist *fnfieldlists;
c906108c 1491
c5aa993b
JM
1492 /* Number of entries in the fnfieldlists array. */
1493 int nfnfields;
98751a41
JK
1494
1495 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1496 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1497 struct typedef_field_list *typedef_field_list;
98751a41 1498 unsigned typedef_field_list_count;
c5aa993b 1499 };
c906108c 1500
10b3939b
DJ
1501/* One item on the queue of compilation units to read in full symbols
1502 for. */
1503struct dwarf2_queue_item
1504{
1505 struct dwarf2_per_cu_data *per_cu;
95554aad 1506 enum language pretend_language;
10b3939b
DJ
1507 struct dwarf2_queue_item *next;
1508};
1509
1510/* The current queue. */
1511static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1512
ae038cb0
DJ
1513/* Loaded secondary compilation units are kept in memory until they
1514 have not been referenced for the processing of this many
1515 compilation units. Set this to zero to disable caching. Cache
1516 sizes of up to at least twenty will improve startup time for
1517 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1518static int dwarf_max_cache_age = 5;
920d2a44 1519static void
b4f54984
DE
1520show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1521 struct cmd_list_element *c, const char *value)
920d2a44 1522{
3e43a32a 1523 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1524 "DWARF compilation units is %s.\n"),
920d2a44
AC
1525 value);
1526}
4390d890 1527\f
c906108c
SS
1528/* local function prototypes */
1529
a32a8923
DE
1530static const char *get_section_name (const struct dwarf2_section_info *);
1531
1532static const char *get_section_file_name (const struct dwarf2_section_info *);
1533
918dd910
JK
1534static void dwarf2_find_base_address (struct die_info *die,
1535 struct dwarf2_cu *cu);
1536
0018ea6f
DE
1537static struct partial_symtab *create_partial_symtab
1538 (struct dwarf2_per_cu_data *per_cu, const char *name);
1539
f1902523
JK
1540static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1541 const gdb_byte *info_ptr,
1542 struct die_info *type_unit_die,
1543 int has_children, void *data);
1544
c67a9c90 1545static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1546
72bf9492
DJ
1547static void scan_partial_symbols (struct partial_die_info *,
1548 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1549 int, struct dwarf2_cu *);
c906108c 1550
72bf9492
DJ
1551static void add_partial_symbol (struct partial_die_info *,
1552 struct dwarf2_cu *);
63d06c5c 1553
72bf9492
DJ
1554static void add_partial_namespace (struct partial_die_info *pdi,
1555 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1556 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1557
5d7cb8df 1558static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1559 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1560 struct dwarf2_cu *cu);
1561
72bf9492
DJ
1562static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1563 struct dwarf2_cu *cu);
91c24f0a 1564
bc30ff58
JB
1565static void add_partial_subprogram (struct partial_die_info *pdi,
1566 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1567 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1568
257e7a09
YQ
1569static void dwarf2_read_symtab (struct partial_symtab *,
1570 struct objfile *);
c906108c 1571
a14ed312 1572static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1573
433df2d4
DE
1574static struct abbrev_info *abbrev_table_lookup_abbrev
1575 (const struct abbrev_table *, unsigned int);
1576
1577static struct abbrev_table *abbrev_table_read_table
1578 (struct dwarf2_section_info *, sect_offset);
1579
1580static void abbrev_table_free (struct abbrev_table *);
1581
f4dc4d17
DE
1582static void abbrev_table_free_cleanup (void *);
1583
dee91e82
DE
1584static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1585 struct dwarf2_section_info *);
c906108c 1586
f3dd6933 1587static void dwarf2_free_abbrev_table (void *);
c906108c 1588
d521ce57 1589static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1590
dee91e82 1591static struct partial_die_info *load_partial_dies
d521ce57 1592 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1593
d521ce57
TT
1594static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1595 struct partial_die_info *,
1596 struct abbrev_info *,
1597 unsigned int,
1598 const gdb_byte *);
c906108c 1599
36586728 1600static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1601 struct dwarf2_cu *);
72bf9492
DJ
1602
1603static void fixup_partial_die (struct partial_die_info *,
1604 struct dwarf2_cu *);
1605
d521ce57
TT
1606static const gdb_byte *read_attribute (const struct die_reader_specs *,
1607 struct attribute *, struct attr_abbrev *,
1608 const gdb_byte *);
a8329558 1609
a1855c1d 1610static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1611
a1855c1d 1612static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1613
a1855c1d 1614static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1615
a1855c1d 1616static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1617
a1855c1d 1618static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1619
d521ce57 1620static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1621 unsigned int *);
c906108c 1622
d521ce57 1623static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1624
1625static LONGEST read_checked_initial_length_and_offset
d521ce57 1626 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1627 unsigned int *, unsigned int *);
613e1657 1628
d521ce57
TT
1629static LONGEST read_offset (bfd *, const gdb_byte *,
1630 const struct comp_unit_head *,
c764a876
DE
1631 unsigned int *);
1632
d521ce57 1633static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1634
f4dc4d17
DE
1635static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1636 sect_offset);
1637
d521ce57 1638static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1639
d521ce57 1640static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1641
d521ce57
TT
1642static const char *read_indirect_string (bfd *, const gdb_byte *,
1643 const struct comp_unit_head *,
1644 unsigned int *);
4bdf3d34 1645
43988095
JK
1646static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1647 const struct comp_unit_head *,
1648 unsigned int *);
36586728 1649
43988095 1650static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
c906108c 1651
d521ce57 1652static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1653
d521ce57
TT
1654static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1655 const gdb_byte *,
3019eac3
DE
1656 unsigned int *);
1657
d521ce57 1658static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1659 ULONGEST str_index);
3019eac3 1660
e142c38c 1661static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1662
e142c38c
DJ
1663static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1664 struct dwarf2_cu *);
c906108c 1665
348e048f 1666static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1667 unsigned int);
348e048f 1668
7d45c7c3
KB
1669static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1670 struct dwarf2_cu *cu);
1671
05cf31d1
JB
1672static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1673 struct dwarf2_cu *cu);
1674
e142c38c 1675static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1676
e142c38c 1677static struct die_info *die_specification (struct die_info *die,
f2f0e013 1678 struct dwarf2_cu **);
63d06c5c 1679
9c541725 1680static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1681 struct dwarf2_cu *cu);
debd256d 1682
f3f5162e 1683static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1684 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1685 CORE_ADDR, int decode_mapping);
c906108c 1686
4d663531 1687static void dwarf2_start_subfile (const char *, const char *);
c906108c 1688
43f3e411
DE
1689static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1690 const char *, const char *,
1691 CORE_ADDR);
f4dc4d17 1692
a14ed312 1693static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1694 struct dwarf2_cu *);
c906108c 1695
34eaf542
TT
1696static struct symbol *new_symbol_full (struct die_info *, struct type *,
1697 struct dwarf2_cu *, struct symbol *);
1698
ff39bb5e 1699static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1700 struct dwarf2_cu *);
c906108c 1701
ff39bb5e 1702static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1703 struct type *type,
1704 const char *name,
1705 struct obstack *obstack,
12df843f 1706 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1707 const gdb_byte **bytes,
98bfdba5 1708 struct dwarf2_locexpr_baton **baton);
2df3850c 1709
e7c27a73 1710static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1711
b4ba55a1
JB
1712static int need_gnat_info (struct dwarf2_cu *);
1713
3e43a32a
MS
1714static struct type *die_descriptive_type (struct die_info *,
1715 struct dwarf2_cu *);
b4ba55a1
JB
1716
1717static void set_descriptive_type (struct type *, struct die_info *,
1718 struct dwarf2_cu *);
1719
e7c27a73
DJ
1720static struct type *die_containing_type (struct die_info *,
1721 struct dwarf2_cu *);
c906108c 1722
ff39bb5e 1723static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1724 struct dwarf2_cu *);
c906108c 1725
f792889a 1726static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1727
673bfd45
DE
1728static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1729
0d5cff50 1730static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1731
6e70227d 1732static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1733 const char *suffix, int physname,
1734 struct dwarf2_cu *cu);
63d06c5c 1735
e7c27a73 1736static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1737
348e048f
DE
1738static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1739
e7c27a73 1740static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1741
e7c27a73 1742static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1743
96408a79
SA
1744static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1745
ff013f42
JK
1746static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1747 struct dwarf2_cu *, struct partial_symtab *);
1748
3a2b436a 1749/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1750 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1751enum pc_bounds_kind
1752{
e385593e 1753 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1754 PC_BOUNDS_NOT_PRESENT,
1755
e385593e
JK
1756 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1757 were present but they do not form a valid range of PC addresses. */
1758 PC_BOUNDS_INVALID,
1759
3a2b436a
JK
1760 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1761 PC_BOUNDS_RANGES,
1762
1763 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1764 PC_BOUNDS_HIGH_LOW,
1765};
1766
1767static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1768 CORE_ADDR *, CORE_ADDR *,
1769 struct dwarf2_cu *,
1770 struct partial_symtab *);
c906108c 1771
fae299cd
DC
1772static void get_scope_pc_bounds (struct die_info *,
1773 CORE_ADDR *, CORE_ADDR *,
1774 struct dwarf2_cu *);
1775
801e3a5b
JB
1776static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1777 CORE_ADDR, struct dwarf2_cu *);
1778
a14ed312 1779static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1780 struct dwarf2_cu *);
c906108c 1781
a14ed312 1782static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1783 struct type *, struct dwarf2_cu *);
c906108c 1784
a14ed312 1785static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1786 struct die_info *, struct type *,
e7c27a73 1787 struct dwarf2_cu *);
c906108c 1788
a14ed312 1789static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1790 struct type *,
1791 struct dwarf2_cu *);
c906108c 1792
134d01f1 1793static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1794
e7c27a73 1795static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1796
e7c27a73 1797static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1798
5d7cb8df
JK
1799static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1800
22cee43f
PMR
1801static struct using_direct **using_directives (enum language);
1802
27aa8d6a
SW
1803static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1804
74921315
KS
1805static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1806
f55ee35c
JK
1807static struct type *read_module_type (struct die_info *die,
1808 struct dwarf2_cu *cu);
1809
38d518c9 1810static const char *namespace_name (struct die_info *die,
e142c38c 1811 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1812
134d01f1 1813static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1814
e7c27a73 1815static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1816
6e70227d 1817static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1818 struct dwarf2_cu *);
1819
bf6af496 1820static struct die_info *read_die_and_siblings_1
d521ce57 1821 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1822 struct die_info *);
639d11d3 1823
dee91e82 1824static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1825 const gdb_byte *info_ptr,
1826 const gdb_byte **new_info_ptr,
639d11d3
DC
1827 struct die_info *parent);
1828
d521ce57
TT
1829static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1830 struct die_info **, const gdb_byte *,
1831 int *, int);
3019eac3 1832
d521ce57
TT
1833static const gdb_byte *read_full_die (const struct die_reader_specs *,
1834 struct die_info **, const gdb_byte *,
1835 int *);
93311388 1836
e7c27a73 1837static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1838
15d034d0
TT
1839static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1840 struct obstack *);
71c25dea 1841
15d034d0 1842static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1843
15d034d0 1844static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1845 struct die_info *die,
1846 struct dwarf2_cu *cu);
1847
ca69b9e6
DE
1848static const char *dwarf2_physname (const char *name, struct die_info *die,
1849 struct dwarf2_cu *cu);
1850
e142c38c 1851static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1852 struct dwarf2_cu **);
9219021c 1853
f39c6ffd 1854static const char *dwarf_tag_name (unsigned int);
c906108c 1855
f39c6ffd 1856static const char *dwarf_attr_name (unsigned int);
c906108c 1857
f39c6ffd 1858static const char *dwarf_form_name (unsigned int);
c906108c 1859
a121b7c1 1860static const char *dwarf_bool_name (unsigned int);
c906108c 1861
f39c6ffd 1862static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1863
f9aca02d 1864static struct die_info *sibling_die (struct die_info *);
c906108c 1865
d97bc12b
DE
1866static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1867
1868static void dump_die_for_error (struct die_info *);
1869
1870static void dump_die_1 (struct ui_file *, int level, int max_level,
1871 struct die_info *);
c906108c 1872
d97bc12b 1873/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1874
51545339 1875static void store_in_ref_table (struct die_info *,
10b3939b 1876 struct dwarf2_cu *);
c906108c 1877
ff39bb5e 1878static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1879
ff39bb5e 1880static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1881
348e048f 1882static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1883 const struct attribute *,
348e048f
DE
1884 struct dwarf2_cu **);
1885
10b3939b 1886static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1887 const struct attribute *,
f2f0e013 1888 struct dwarf2_cu **);
c906108c 1889
348e048f 1890static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1891 const struct attribute *,
348e048f
DE
1892 struct dwarf2_cu **);
1893
ac9ec31b
DE
1894static struct type *get_signatured_type (struct die_info *, ULONGEST,
1895 struct dwarf2_cu *);
1896
1897static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1898 const struct attribute *,
ac9ec31b
DE
1899 struct dwarf2_cu *);
1900
e5fe5e75 1901static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1902
52dc124a 1903static void read_signatured_type (struct signatured_type *);
348e048f 1904
63e43d3a
PMR
1905static int attr_to_dynamic_prop (const struct attribute *attr,
1906 struct die_info *die, struct dwarf2_cu *cu,
1907 struct dynamic_prop *prop);
1908
c906108c
SS
1909/* memory allocation interface */
1910
7b5a2f43 1911static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1912
b60c80d6 1913static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1914
43f3e411 1915static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1916
6e5a29e1 1917static int attr_form_is_block (const struct attribute *);
8e19ed76 1918
6e5a29e1 1919static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1920
6e5a29e1 1921static int attr_form_is_constant (const struct attribute *);
3690dd37 1922
6e5a29e1 1923static int attr_form_is_ref (const struct attribute *);
7771576e 1924
8cf6f0b1
TT
1925static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1926 struct dwarf2_loclist_baton *baton,
ff39bb5e 1927 const struct attribute *attr);
8cf6f0b1 1928
ff39bb5e 1929static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1930 struct symbol *sym,
f1e6e072
TT
1931 struct dwarf2_cu *cu,
1932 int is_block);
4c2df51b 1933
d521ce57
TT
1934static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1935 const gdb_byte *info_ptr,
1936 struct abbrev_info *abbrev);
4bb7a0a7 1937
72bf9492
DJ
1938static void free_stack_comp_unit (void *);
1939
72bf9492
DJ
1940static hashval_t partial_die_hash (const void *item);
1941
1942static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1943
ae038cb0 1944static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
9c541725 1945 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1946
9816fde3 1947static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1948 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1949
1950static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1951 struct die_info *comp_unit_die,
1952 enum language pretend_language);
93311388 1953
68dc6402 1954static void free_heap_comp_unit (void *);
ae038cb0
DJ
1955
1956static void free_cached_comp_units (void *);
1957
1958static void age_cached_comp_units (void);
1959
dee91e82 1960static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1961
f792889a
DJ
1962static struct type *set_die_type (struct die_info *, struct type *,
1963 struct dwarf2_cu *);
1c379e20 1964
ae038cb0
DJ
1965static void create_all_comp_units (struct objfile *);
1966
0e50663e 1967static int create_all_type_units (struct objfile *);
1fd400ff 1968
95554aad
TT
1969static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1970 enum language);
10b3939b 1971
95554aad
TT
1972static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1973 enum language);
10b3939b 1974
f4dc4d17
DE
1975static void process_full_type_unit (struct dwarf2_per_cu_data *,
1976 enum language);
1977
10b3939b
DJ
1978static void dwarf2_add_dependence (struct dwarf2_cu *,
1979 struct dwarf2_per_cu_data *);
1980
ae038cb0
DJ
1981static void dwarf2_mark (struct dwarf2_cu *);
1982
1983static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1984
b64f50a1 1985static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1986 struct dwarf2_per_cu_data *);
673bfd45 1987
f792889a 1988static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1989
9291a0cd
TT
1990static void dwarf2_release_queue (void *dummy);
1991
95554aad
TT
1992static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1993 enum language pretend_language);
1994
a0f42c21 1995static void process_queue (void);
9291a0cd 1996
d721ba37
PA
1997/* The return type of find_file_and_directory. Note, the enclosed
1998 string pointers are only valid while this object is valid. */
1999
2000struct file_and_directory
2001{
2002 /* The filename. This is never NULL. */
2003 const char *name;
2004
2005 /* The compilation directory. NULL if not known. If we needed to
2006 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2007 points directly to the DW_AT_comp_dir string attribute owned by
2008 the obstack that owns the DIE. */
2009 const char *comp_dir;
2010
2011 /* If we needed to build a new string for comp_dir, this is what
2012 owns the storage. */
2013 std::string comp_dir_storage;
2014};
2015
2016static file_and_directory find_file_and_directory (struct die_info *die,
2017 struct dwarf2_cu *cu);
9291a0cd
TT
2018
2019static char *file_full_name (int file, struct line_header *lh,
2020 const char *comp_dir);
2021
43988095
JK
2022/* Expected enum dwarf_unit_type for read_comp_unit_head. */
2023enum class rcuh_kind { COMPILE, TYPE };
2024
d521ce57 2025static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
2026 (struct comp_unit_head *header,
2027 struct dwarf2_section_info *section,
d521ce57 2028 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 2029 rcuh_kind section_kind);
36586728 2030
fd820528 2031static void init_cutu_and_read_dies
f4dc4d17
DE
2032 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2033 int use_existing_cu, int keep,
3019eac3
DE
2034 die_reader_func_ftype *die_reader_func, void *data);
2035
dee91e82
DE
2036static void init_cutu_and_read_dies_simple
2037 (struct dwarf2_per_cu_data *this_cu,
2038 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 2039
673bfd45 2040static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 2041
3019eac3
DE
2042static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2043
57d63ce2
DE
2044static struct dwo_unit *lookup_dwo_unit_in_dwp
2045 (struct dwp_file *dwp_file, const char *comp_dir,
2046 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
2047
2048static struct dwp_file *get_dwp_file (void);
2049
3019eac3 2050static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 2051 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
2052
2053static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 2054 (struct signatured_type *, const char *, const char *);
3019eac3 2055
89e63ee4
DE
2056static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2057
3019eac3
DE
2058static void free_dwo_file_cleanup (void *);
2059
95554aad
TT
2060static void process_cu_includes (void);
2061
1b80a9fa 2062static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
2063
2064static void free_line_header_voidp (void *arg);
4390d890
DE
2065\f
2066/* Various complaints about symbol reading that don't abort the process. */
2067
2068static void
2069dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2070{
2071 complaint (&symfile_complaints,
2072 _("statement list doesn't fit in .debug_line section"));
2073}
2074
2075static void
2076dwarf2_debug_line_missing_file_complaint (void)
2077{
2078 complaint (&symfile_complaints,
2079 _(".debug_line section has line data without a file"));
2080}
2081
2082static void
2083dwarf2_debug_line_missing_end_sequence_complaint (void)
2084{
2085 complaint (&symfile_complaints,
2086 _(".debug_line section has line "
2087 "program sequence without an end"));
2088}
2089
2090static void
2091dwarf2_complex_location_expr_complaint (void)
2092{
2093 complaint (&symfile_complaints, _("location expression too complex"));
2094}
2095
2096static void
2097dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2098 int arg3)
2099{
2100 complaint (&symfile_complaints,
2101 _("const value length mismatch for '%s', got %d, expected %d"),
2102 arg1, arg2, arg3);
2103}
2104
2105static void
2106dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2107{
2108 complaint (&symfile_complaints,
2109 _("debug info runs off end of %s section"
2110 " [in module %s]"),
a32a8923
DE
2111 get_section_name (section),
2112 get_section_file_name (section));
4390d890 2113}
1b80a9fa 2114
4390d890
DE
2115static void
2116dwarf2_macro_malformed_definition_complaint (const char *arg1)
2117{
2118 complaint (&symfile_complaints,
2119 _("macro debug info contains a "
2120 "malformed macro definition:\n`%s'"),
2121 arg1);
2122}
2123
2124static void
2125dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2126{
2127 complaint (&symfile_complaints,
2128 _("invalid attribute class or form for '%s' in '%s'"),
2129 arg1, arg2);
2130}
527f3840
JK
2131
2132/* Hash function for line_header_hash. */
2133
2134static hashval_t
2135line_header_hash (const struct line_header *ofs)
2136{
9c541725 2137 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2138}
2139
2140/* Hash function for htab_create_alloc_ex for line_header_hash. */
2141
2142static hashval_t
2143line_header_hash_voidp (const void *item)
2144{
9a3c8263 2145 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2146
2147 return line_header_hash (ofs);
2148}
2149
2150/* Equality function for line_header_hash. */
2151
2152static int
2153line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2154{
9a3c8263
SM
2155 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2156 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2157
9c541725 2158 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2159 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2160}
2161
4390d890 2162\f
9291a0cd
TT
2163#if WORDS_BIGENDIAN
2164
2165/* Convert VALUE between big- and little-endian. */
2166static offset_type
2167byte_swap (offset_type value)
2168{
2169 offset_type result;
2170
2171 result = (value & 0xff) << 24;
2172 result |= (value & 0xff00) << 8;
2173 result |= (value & 0xff0000) >> 8;
2174 result |= (value & 0xff000000) >> 24;
2175 return result;
2176}
2177
2178#define MAYBE_SWAP(V) byte_swap (V)
2179
2180#else
bc8f2430 2181#define MAYBE_SWAP(V) static_cast<offset_type> (V)
9291a0cd
TT
2182#endif /* WORDS_BIGENDIAN */
2183
31aa7e4e
JB
2184/* Read the given attribute value as an address, taking the attribute's
2185 form into account. */
2186
2187static CORE_ADDR
2188attr_value_as_address (struct attribute *attr)
2189{
2190 CORE_ADDR addr;
2191
2192 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2193 {
2194 /* Aside from a few clearly defined exceptions, attributes that
2195 contain an address must always be in DW_FORM_addr form.
2196 Unfortunately, some compilers happen to be violating this
2197 requirement by encoding addresses using other forms, such
2198 as DW_FORM_data4 for example. For those broken compilers,
2199 we try to do our best, without any guarantee of success,
2200 to interpret the address correctly. It would also be nice
2201 to generate a complaint, but that would require us to maintain
2202 a list of legitimate cases where a non-address form is allowed,
2203 as well as update callers to pass in at least the CU's DWARF
2204 version. This is more overhead than what we're willing to
2205 expand for a pretty rare case. */
2206 addr = DW_UNSND (attr);
2207 }
2208 else
2209 addr = DW_ADDR (attr);
2210
2211 return addr;
2212}
2213
9291a0cd
TT
2214/* The suffix for an index file. */
2215#define INDEX_SUFFIX ".gdb-index"
2216
330cdd98
PA
2217/* See declaration. */
2218
2219dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2220 const dwarf2_debug_sections *names)
2221 : objfile (objfile_)
2222{
2223 if (names == NULL)
2224 names = &dwarf2_elf_names;
2225
2226 bfd *obfd = objfile->obfd;
2227
2228 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2229 locate_sections (obfd, sec, *names);
2230}
2231
2232dwarf2_per_objfile::~dwarf2_per_objfile ()
2233{
2234 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2235 free_cached_comp_units ();
2236
2237 if (quick_file_names_table)
2238 htab_delete (quick_file_names_table);
2239
2240 if (line_header_hash)
2241 htab_delete (line_header_hash);
2242
2243 /* Everything else should be on the objfile obstack. */
2244}
2245
2246/* See declaration. */
2247
2248void
2249dwarf2_per_objfile::free_cached_comp_units ()
2250{
2251 dwarf2_per_cu_data *per_cu = read_in_chain;
2252 dwarf2_per_cu_data **last_chain = &read_in_chain;
2253 while (per_cu != NULL)
2254 {
2255 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2256
2257 free_heap_comp_unit (per_cu->cu);
2258 *last_chain = next_cu;
2259 per_cu = next_cu;
2260 }
2261}
2262
c906108c 2263/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2264 information and return true if we have enough to do something.
2265 NAMES points to the dwarf2 section names, or is NULL if the standard
2266 ELF names are used. */
c906108c
SS
2267
2268int
251d32d9
TG
2269dwarf2_has_info (struct objfile *objfile,
2270 const struct dwarf2_debug_sections *names)
c906108c 2271{
9a3c8263
SM
2272 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2273 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2274 if (!dwarf2_per_objfile)
2275 {
2276 /* Initialize per-objfile state. */
2277 struct dwarf2_per_objfile *data
8d749320 2278 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2279
330cdd98
PA
2280 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2281 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
be391dca 2282 }
73869dc2 2283 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2284 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2285 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2286 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2287}
2288
2289/* Return the containing section of virtual section SECTION. */
2290
2291static struct dwarf2_section_info *
2292get_containing_section (const struct dwarf2_section_info *section)
2293{
2294 gdb_assert (section->is_virtual);
2295 return section->s.containing_section;
c906108c
SS
2296}
2297
a32a8923
DE
2298/* Return the bfd owner of SECTION. */
2299
2300static struct bfd *
2301get_section_bfd_owner (const struct dwarf2_section_info *section)
2302{
73869dc2
DE
2303 if (section->is_virtual)
2304 {
2305 section = get_containing_section (section);
2306 gdb_assert (!section->is_virtual);
2307 }
049412e3 2308 return section->s.section->owner;
a32a8923
DE
2309}
2310
2311/* Return the bfd section of SECTION.
2312 Returns NULL if the section is not present. */
2313
2314static asection *
2315get_section_bfd_section (const struct dwarf2_section_info *section)
2316{
73869dc2
DE
2317 if (section->is_virtual)
2318 {
2319 section = get_containing_section (section);
2320 gdb_assert (!section->is_virtual);
2321 }
049412e3 2322 return section->s.section;
a32a8923
DE
2323}
2324
2325/* Return the name of SECTION. */
2326
2327static const char *
2328get_section_name (const struct dwarf2_section_info *section)
2329{
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 gdb_assert (sectp != NULL);
2333 return bfd_section_name (get_section_bfd_owner (section), sectp);
2334}
2335
2336/* Return the name of the file SECTION is in. */
2337
2338static const char *
2339get_section_file_name (const struct dwarf2_section_info *section)
2340{
2341 bfd *abfd = get_section_bfd_owner (section);
2342
2343 return bfd_get_filename (abfd);
2344}
2345
2346/* Return the id of SECTION.
2347 Returns 0 if SECTION doesn't exist. */
2348
2349static int
2350get_section_id (const struct dwarf2_section_info *section)
2351{
2352 asection *sectp = get_section_bfd_section (section);
2353
2354 if (sectp == NULL)
2355 return 0;
2356 return sectp->id;
2357}
2358
2359/* Return the flags of SECTION.
73869dc2 2360 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2361
2362static int
2363get_section_flags (const struct dwarf2_section_info *section)
2364{
2365 asection *sectp = get_section_bfd_section (section);
2366
2367 gdb_assert (sectp != NULL);
2368 return bfd_get_section_flags (sectp->owner, sectp);
2369}
2370
251d32d9
TG
2371/* When loading sections, we look either for uncompressed section or for
2372 compressed section names. */
233a11ab
CS
2373
2374static int
251d32d9
TG
2375section_is_p (const char *section_name,
2376 const struct dwarf2_section_names *names)
233a11ab 2377{
251d32d9
TG
2378 if (names->normal != NULL
2379 && strcmp (section_name, names->normal) == 0)
2380 return 1;
2381 if (names->compressed != NULL
2382 && strcmp (section_name, names->compressed) == 0)
2383 return 1;
2384 return 0;
233a11ab
CS
2385}
2386
330cdd98 2387/* See declaration. */
c906108c 2388
330cdd98
PA
2389void
2390dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2391 const dwarf2_debug_sections &names)
c906108c 2392{
dc7650b8 2393 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9 2394
dc7650b8
JK
2395 if ((aflag & SEC_HAS_CONTENTS) == 0)
2396 {
2397 }
330cdd98 2398 else if (section_is_p (sectp->name, &names.info))
c906108c 2399 {
330cdd98
PA
2400 this->info.s.section = sectp;
2401 this->info.size = bfd_get_section_size (sectp);
c906108c 2402 }
330cdd98 2403 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2404 {
330cdd98
PA
2405 this->abbrev.s.section = sectp;
2406 this->abbrev.size = bfd_get_section_size (sectp);
c906108c 2407 }
330cdd98 2408 else if (section_is_p (sectp->name, &names.line))
c906108c 2409 {
330cdd98
PA
2410 this->line.s.section = sectp;
2411 this->line.size = bfd_get_section_size (sectp);
c906108c 2412 }
330cdd98 2413 else if (section_is_p (sectp->name, &names.loc))
c906108c 2414 {
330cdd98
PA
2415 this->loc.s.section = sectp;
2416 this->loc.size = bfd_get_section_size (sectp);
c906108c 2417 }
330cdd98 2418 else if (section_is_p (sectp->name, &names.loclists))
43988095 2419 {
330cdd98
PA
2420 this->loclists.s.section = sectp;
2421 this->loclists.size = bfd_get_section_size (sectp);
43988095 2422 }
330cdd98 2423 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2424 {
330cdd98
PA
2425 this->macinfo.s.section = sectp;
2426 this->macinfo.size = bfd_get_section_size (sectp);
c906108c 2427 }
330cdd98 2428 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2429 {
330cdd98
PA
2430 this->macro.s.section = sectp;
2431 this->macro.size = bfd_get_section_size (sectp);
cf2c3c16 2432 }
330cdd98 2433 else if (section_is_p (sectp->name, &names.str))
c906108c 2434 {
330cdd98
PA
2435 this->str.s.section = sectp;
2436 this->str.size = bfd_get_section_size (sectp);
c906108c 2437 }
330cdd98 2438 else if (section_is_p (sectp->name, &names.line_str))
43988095 2439 {
330cdd98
PA
2440 this->line_str.s.section = sectp;
2441 this->line_str.size = bfd_get_section_size (sectp);
43988095 2442 }
330cdd98 2443 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2444 {
330cdd98
PA
2445 this->addr.s.section = sectp;
2446 this->addr.size = bfd_get_section_size (sectp);
3019eac3 2447 }
330cdd98 2448 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2449 {
330cdd98
PA
2450 this->frame.s.section = sectp;
2451 this->frame.size = bfd_get_section_size (sectp);
b6af0555 2452 }
330cdd98 2453 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2454 {
330cdd98
PA
2455 this->eh_frame.s.section = sectp;
2456 this->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2457 }
330cdd98 2458 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2459 {
330cdd98
PA
2460 this->ranges.s.section = sectp;
2461 this->ranges.size = bfd_get_section_size (sectp);
af34e669 2462 }
330cdd98 2463 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2464 {
330cdd98
PA
2465 this->rnglists.s.section = sectp;
2466 this->rnglists.size = bfd_get_section_size (sectp);
43988095 2467 }
330cdd98 2468 else if (section_is_p (sectp->name, &names.types))
348e048f 2469 {
8b70b953
TT
2470 struct dwarf2_section_info type_section;
2471
2472 memset (&type_section, 0, sizeof (type_section));
049412e3 2473 type_section.s.section = sectp;
8b70b953
TT
2474 type_section.size = bfd_get_section_size (sectp);
2475
330cdd98 2476 VEC_safe_push (dwarf2_section_info_def, this->types,
8b70b953 2477 &type_section);
348e048f 2478 }
330cdd98 2479 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2480 {
330cdd98
PA
2481 this->gdb_index.s.section = sectp;
2482 this->gdb_index.size = bfd_get_section_size (sectp);
9291a0cd 2483 }
dce234bc 2484
b4e1fd61 2485 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5 2486 && bfd_section_vma (abfd, sectp) == 0)
330cdd98 2487 this->has_section_at_zero = true;
c906108c
SS
2488}
2489
fceca515
DE
2490/* A helper function that decides whether a section is empty,
2491 or not present. */
9e0ac564
TT
2492
2493static int
19ac8c2e 2494dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2495{
73869dc2
DE
2496 if (section->is_virtual)
2497 return section->size == 0;
049412e3 2498 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2499}
2500
3019eac3
DE
2501/* Read the contents of the section INFO.
2502 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2503 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2504 of the DWO file.
dce234bc 2505 If the section is compressed, uncompress it before returning. */
c906108c 2506
dce234bc
PP
2507static void
2508dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2509{
a32a8923 2510 asection *sectp;
3019eac3 2511 bfd *abfd;
dce234bc 2512 gdb_byte *buf, *retbuf;
c906108c 2513
be391dca
TT
2514 if (info->readin)
2515 return;
dce234bc 2516 info->buffer = NULL;
be391dca 2517 info->readin = 1;
188dd5d6 2518
9e0ac564 2519 if (dwarf2_section_empty_p (info))
dce234bc 2520 return;
c906108c 2521
a32a8923 2522 sectp = get_section_bfd_section (info);
3019eac3 2523
73869dc2
DE
2524 /* If this is a virtual section we need to read in the real one first. */
2525 if (info->is_virtual)
2526 {
2527 struct dwarf2_section_info *containing_section =
2528 get_containing_section (info);
2529
2530 gdb_assert (sectp != NULL);
2531 if ((sectp->flags & SEC_RELOC) != 0)
2532 {
2533 error (_("Dwarf Error: DWP format V2 with relocations is not"
2534 " supported in section %s [in module %s]"),
2535 get_section_name (info), get_section_file_name (info));
2536 }
2537 dwarf2_read_section (objfile, containing_section);
2538 /* Other code should have already caught virtual sections that don't
2539 fit. */
2540 gdb_assert (info->virtual_offset + info->size
2541 <= containing_section->size);
2542 /* If the real section is empty or there was a problem reading the
2543 section we shouldn't get here. */
2544 gdb_assert (containing_section->buffer != NULL);
2545 info->buffer = containing_section->buffer + info->virtual_offset;
2546 return;
2547 }
2548
4bf44c1c
TT
2549 /* If the section has relocations, we must read it ourselves.
2550 Otherwise we attach it to the BFD. */
2551 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2552 {
d521ce57 2553 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2554 return;
dce234bc 2555 }
dce234bc 2556
224c3ddb 2557 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2558 info->buffer = buf;
dce234bc
PP
2559
2560 /* When debugging .o files, we may need to apply relocations; see
2561 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2562 We never compress sections in .o files, so we only need to
2563 try this when the section is not compressed. */
ac8035ab 2564 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2565 if (retbuf != NULL)
2566 {
2567 info->buffer = retbuf;
2568 return;
2569 }
2570
a32a8923
DE
2571 abfd = get_section_bfd_owner (info);
2572 gdb_assert (abfd != NULL);
2573
dce234bc
PP
2574 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2575 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2576 {
2577 error (_("Dwarf Error: Can't read DWARF data"
2578 " in section %s [in module %s]"),
2579 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2580 }
dce234bc
PP
2581}
2582
9e0ac564
TT
2583/* A helper function that returns the size of a section in a safe way.
2584 If you are positive that the section has been read before using the
2585 size, then it is safe to refer to the dwarf2_section_info object's
2586 "size" field directly. In other cases, you must call this
2587 function, because for compressed sections the size field is not set
2588 correctly until the section has been read. */
2589
2590static bfd_size_type
2591dwarf2_section_size (struct objfile *objfile,
2592 struct dwarf2_section_info *info)
2593{
2594 if (!info->readin)
2595 dwarf2_read_section (objfile, info);
2596 return info->size;
2597}
2598
dce234bc 2599/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2600 SECTION_NAME. */
af34e669 2601
dce234bc 2602void
3017a003
TG
2603dwarf2_get_section_info (struct objfile *objfile,
2604 enum dwarf2_section_enum sect,
d521ce57 2605 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2606 bfd_size_type *sizep)
2607{
2608 struct dwarf2_per_objfile *data
9a3c8263
SM
2609 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2610 dwarf2_objfile_data_key);
dce234bc 2611 struct dwarf2_section_info *info;
a3b2a86b
TT
2612
2613 /* We may see an objfile without any DWARF, in which case we just
2614 return nothing. */
2615 if (data == NULL)
2616 {
2617 *sectp = NULL;
2618 *bufp = NULL;
2619 *sizep = 0;
2620 return;
2621 }
3017a003
TG
2622 switch (sect)
2623 {
2624 case DWARF2_DEBUG_FRAME:
2625 info = &data->frame;
2626 break;
2627 case DWARF2_EH_FRAME:
2628 info = &data->eh_frame;
2629 break;
2630 default:
2631 gdb_assert_not_reached ("unexpected section");
2632 }
dce234bc 2633
9e0ac564 2634 dwarf2_read_section (objfile, info);
dce234bc 2635
a32a8923 2636 *sectp = get_section_bfd_section (info);
dce234bc
PP
2637 *bufp = info->buffer;
2638 *sizep = info->size;
2639}
2640
36586728
TT
2641/* A helper function to find the sections for a .dwz file. */
2642
2643static void
2644locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2645{
9a3c8263 2646 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2647
2648 /* Note that we only support the standard ELF names, because .dwz
2649 is ELF-only (at the time of writing). */
2650 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2651 {
049412e3 2652 dwz_file->abbrev.s.section = sectp;
36586728
TT
2653 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2654 }
2655 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2656 {
049412e3 2657 dwz_file->info.s.section = sectp;
36586728
TT
2658 dwz_file->info.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2661 {
049412e3 2662 dwz_file->str.s.section = sectp;
36586728
TT
2663 dwz_file->str.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2666 {
049412e3 2667 dwz_file->line.s.section = sectp;
36586728
TT
2668 dwz_file->line.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2671 {
049412e3 2672 dwz_file->macro.s.section = sectp;
36586728
TT
2673 dwz_file->macro.size = bfd_get_section_size (sectp);
2674 }
2ec9a5e0
TT
2675 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2676 {
049412e3 2677 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2678 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2679 }
36586728
TT
2680}
2681
4db1a1dc
TT
2682/* Open the separate '.dwz' debug file, if needed. Return NULL if
2683 there is no .gnu_debugaltlink section in the file. Error if there
2684 is such a section but the file cannot be found. */
36586728
TT
2685
2686static struct dwz_file *
2687dwarf2_get_dwz_file (void)
2688{
36586728
TT
2689 const char *filename;
2690 struct dwz_file *result;
acd13123 2691 bfd_size_type buildid_len_arg;
dc294be5
TT
2692 size_t buildid_len;
2693 bfd_byte *buildid;
36586728
TT
2694
2695 if (dwarf2_per_objfile->dwz_file != NULL)
2696 return dwarf2_per_objfile->dwz_file;
2697
4db1a1dc 2698 bfd_set_error (bfd_error_no_error);
791afaa2
TT
2699 gdb::unique_xmalloc_ptr<char> data
2700 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2701 &buildid_len_arg, &buildid));
4db1a1dc
TT
2702 if (data == NULL)
2703 {
2704 if (bfd_get_error () == bfd_error_no_error)
2705 return NULL;
2706 error (_("could not read '.gnu_debugaltlink' section: %s"),
2707 bfd_errmsg (bfd_get_error ()));
2708 }
791afaa2
TT
2709
2710 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
36586728 2711
acd13123
TT
2712 buildid_len = (size_t) buildid_len_arg;
2713
791afaa2 2714 filename = data.get ();
d721ba37
PA
2715
2716 std::string abs_storage;
36586728
TT
2717 if (!IS_ABSOLUTE_PATH (filename))
2718 {
14278e1f
TT
2719 gdb::unique_xmalloc_ptr<char> abs
2720 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728 2721
14278e1f 2722 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
d721ba37 2723 filename = abs_storage.c_str ();
36586728
TT
2724 }
2725
dc294be5
TT
2726 /* First try the file name given in the section. If that doesn't
2727 work, try to use the build-id instead. */
192b62ce 2728 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2729 if (dwz_bfd != NULL)
36586728 2730 {
192b62ce
TT
2731 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2732 dwz_bfd.release ();
36586728
TT
2733 }
2734
dc294be5
TT
2735 if (dwz_bfd == NULL)
2736 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2737
2738 if (dwz_bfd == NULL)
2739 error (_("could not find '.gnu_debugaltlink' file for %s"),
2740 objfile_name (dwarf2_per_objfile->objfile));
2741
36586728
TT
2742 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2743 struct dwz_file);
192b62ce 2744 result->dwz_bfd = dwz_bfd.release ();
36586728 2745
192b62ce 2746 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
36586728 2747
192b62ce 2748 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
8d2cc612 2749 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2750 return result;
2751}
9291a0cd 2752\f
7b9f3c50
DE
2753/* DWARF quick_symbols_functions support. */
2754
2755/* TUs can share .debug_line entries, and there can be a lot more TUs than
2756 unique line tables, so we maintain a separate table of all .debug_line
2757 derived entries to support the sharing.
2758 All the quick functions need is the list of file names. We discard the
2759 line_header when we're done and don't need to record it here. */
2760struct quick_file_names
2761{
094b34ac
DE
2762 /* The data used to construct the hash key. */
2763 struct stmt_list_hash hash;
7b9f3c50
DE
2764
2765 /* The number of entries in file_names, real_names. */
2766 unsigned int num_file_names;
2767
2768 /* The file names from the line table, after being run through
2769 file_full_name. */
2770 const char **file_names;
2771
2772 /* The file names from the line table after being run through
2773 gdb_realpath. These are computed lazily. */
2774 const char **real_names;
2775};
2776
2777/* When using the index (and thus not using psymtabs), each CU has an
2778 object of this type. This is used to hold information needed by
2779 the various "quick" methods. */
2780struct dwarf2_per_cu_quick_data
2781{
2782 /* The file table. This can be NULL if there was no file table
2783 or it's currently not read in.
2784 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2785 struct quick_file_names *file_names;
2786
2787 /* The corresponding symbol table. This is NULL if symbols for this
2788 CU have not yet been read. */
43f3e411 2789 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2790
2791 /* A temporary mark bit used when iterating over all CUs in
2792 expand_symtabs_matching. */
2793 unsigned int mark : 1;
2794
2795 /* True if we've tried to read the file table and found there isn't one.
2796 There will be no point in trying to read it again next time. */
2797 unsigned int no_file_data : 1;
2798};
2799
094b34ac
DE
2800/* Utility hash function for a stmt_list_hash. */
2801
2802static hashval_t
2803hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2804{
2805 hashval_t v = 0;
2806
2807 if (stmt_list_hash->dwo_unit != NULL)
2808 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2809 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2810 return v;
2811}
2812
2813/* Utility equality function for a stmt_list_hash. */
2814
2815static int
2816eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2817 const struct stmt_list_hash *rhs)
2818{
2819 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2820 return 0;
2821 if (lhs->dwo_unit != NULL
2822 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2823 return 0;
2824
9c541725 2825 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2826}
2827
7b9f3c50
DE
2828/* Hash function for a quick_file_names. */
2829
2830static hashval_t
2831hash_file_name_entry (const void *e)
2832{
9a3c8263
SM
2833 const struct quick_file_names *file_data
2834 = (const struct quick_file_names *) e;
7b9f3c50 2835
094b34ac 2836 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2837}
2838
2839/* Equality function for a quick_file_names. */
2840
2841static int
2842eq_file_name_entry (const void *a, const void *b)
2843{
9a3c8263
SM
2844 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2845 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2846
094b34ac 2847 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2848}
2849
2850/* Delete function for a quick_file_names. */
2851
2852static void
2853delete_file_name_entry (void *e)
2854{
9a3c8263 2855 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2856 int i;
2857
2858 for (i = 0; i < file_data->num_file_names; ++i)
2859 {
2860 xfree ((void*) file_data->file_names[i]);
2861 if (file_data->real_names)
2862 xfree ((void*) file_data->real_names[i]);
2863 }
2864
2865 /* The space for the struct itself lives on objfile_obstack,
2866 so we don't free it here. */
2867}
2868
2869/* Create a quick_file_names hash table. */
2870
2871static htab_t
2872create_quick_file_names_table (unsigned int nr_initial_entries)
2873{
2874 return htab_create_alloc (nr_initial_entries,
2875 hash_file_name_entry, eq_file_name_entry,
2876 delete_file_name_entry, xcalloc, xfree);
2877}
9291a0cd 2878
918dd910
JK
2879/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2880 have to be created afterwards. You should call age_cached_comp_units after
2881 processing PER_CU->CU. dw2_setup must have been already called. */
2882
2883static void
2884load_cu (struct dwarf2_per_cu_data *per_cu)
2885{
3019eac3 2886 if (per_cu->is_debug_types)
e5fe5e75 2887 load_full_type_unit (per_cu);
918dd910 2888 else
95554aad 2889 load_full_comp_unit (per_cu, language_minimal);
918dd910 2890
cc12ce38
DE
2891 if (per_cu->cu == NULL)
2892 return; /* Dummy CU. */
2dc860c0
DE
2893
2894 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2895}
2896
a0f42c21 2897/* Read in the symbols for PER_CU. */
2fdf6df6 2898
9291a0cd 2899static void
a0f42c21 2900dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2901{
2902 struct cleanup *back_to;
2903
f4dc4d17
DE
2904 /* Skip type_unit_groups, reading the type units they contain
2905 is handled elsewhere. */
2906 if (IS_TYPE_UNIT_GROUP (per_cu))
2907 return;
2908
9291a0cd
TT
2909 back_to = make_cleanup (dwarf2_release_queue, NULL);
2910
95554aad 2911 if (dwarf2_per_objfile->using_index
43f3e411 2912 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2913 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2914 {
2915 queue_comp_unit (per_cu, language_minimal);
2916 load_cu (per_cu);
89e63ee4
DE
2917
2918 /* If we just loaded a CU from a DWO, and we're working with an index
2919 that may badly handle TUs, load all the TUs in that DWO as well.
2920 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2921 if (!per_cu->is_debug_types
cc12ce38 2922 && per_cu->cu != NULL
89e63ee4
DE
2923 && per_cu->cu->dwo_unit != NULL
2924 && dwarf2_per_objfile->index_table != NULL
2925 && dwarf2_per_objfile->index_table->version <= 7
2926 /* DWP files aren't supported yet. */
2927 && get_dwp_file () == NULL)
2928 queue_and_load_all_dwo_tus (per_cu);
95554aad 2929 }
9291a0cd 2930
a0f42c21 2931 process_queue ();
9291a0cd
TT
2932
2933 /* Age the cache, releasing compilation units that have not
2934 been used recently. */
2935 age_cached_comp_units ();
2936
2937 do_cleanups (back_to);
2938}
2939
2940/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2941 the objfile from which this CU came. Returns the resulting symbol
2942 table. */
2fdf6df6 2943
43f3e411 2944static struct compunit_symtab *
a0f42c21 2945dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2946{
95554aad 2947 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2948 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2949 {
2950 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
c83dd867 2951 scoped_restore decrementer = increment_reading_symtab ();
a0f42c21 2952 dw2_do_instantiate_symtab (per_cu);
95554aad 2953 process_cu_includes ();
9291a0cd
TT
2954 do_cleanups (back_to);
2955 }
f194fefb 2956
43f3e411 2957 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2958}
2959
8832e7e3 2960/* Return the CU/TU given its index.
f4dc4d17
DE
2961
2962 This is intended for loops like:
2963
2964 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2965 + dwarf2_per_objfile->n_type_units); ++i)
2966 {
8832e7e3 2967 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2968
2969 ...;
2970 }
2971*/
2fdf6df6 2972
1fd400ff 2973static struct dwarf2_per_cu_data *
8832e7e3 2974dw2_get_cutu (int index)
1fd400ff
TT
2975{
2976 if (index >= dwarf2_per_objfile->n_comp_units)
2977 {
f4dc4d17 2978 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2979 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2980 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2981 }
2982
2983 return dwarf2_per_objfile->all_comp_units[index];
2984}
2985
8832e7e3
DE
2986/* Return the CU given its index.
2987 This differs from dw2_get_cutu in that it's for when you know INDEX
2988 refers to a CU. */
f4dc4d17
DE
2989
2990static struct dwarf2_per_cu_data *
8832e7e3 2991dw2_get_cu (int index)
f4dc4d17 2992{
8832e7e3 2993 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2994
1fd400ff
TT
2995 return dwarf2_per_objfile->all_comp_units[index];
2996}
2997
2ec9a5e0
TT
2998/* A helper for create_cus_from_index that handles a given list of
2999 CUs. */
2fdf6df6 3000
74a0d9f6 3001static void
2ec9a5e0
TT
3002create_cus_from_index_list (struct objfile *objfile,
3003 const gdb_byte *cu_list, offset_type n_elements,
3004 struct dwarf2_section_info *section,
3005 int is_dwz,
3006 int base_offset)
9291a0cd
TT
3007{
3008 offset_type i;
9291a0cd 3009
2ec9a5e0 3010 for (i = 0; i < n_elements; i += 2)
9291a0cd 3011 {
74a0d9f6 3012 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3013
3014 sect_offset sect_off
3015 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3016 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
3017 cu_list += 2 * 8;
3018
9c541725
PA
3019 dwarf2_per_cu_data *the_cu
3020 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3021 struct dwarf2_per_cu_data);
3022 the_cu->sect_off = sect_off;
9291a0cd
TT
3023 the_cu->length = length;
3024 the_cu->objfile = objfile;
8a0459fd 3025 the_cu->section = section;
9291a0cd
TT
3026 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3027 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
3028 the_cu->is_dwz = is_dwz;
3029 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 3030 }
9291a0cd
TT
3031}
3032
2ec9a5e0 3033/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 3034 the CU objects for this objfile. */
2ec9a5e0 3035
74a0d9f6 3036static void
2ec9a5e0
TT
3037create_cus_from_index (struct objfile *objfile,
3038 const gdb_byte *cu_list, offset_type cu_list_elements,
3039 const gdb_byte *dwz_list, offset_type dwz_elements)
3040{
3041 struct dwz_file *dwz;
3042
3043 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
3044 dwarf2_per_objfile->all_comp_units =
3045 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3046 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 3047
74a0d9f6
JK
3048 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3049 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
3050
3051 if (dwz_elements == 0)
74a0d9f6 3052 return;
2ec9a5e0
TT
3053
3054 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
3055 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3056 cu_list_elements / 2);
2ec9a5e0
TT
3057}
3058
1fd400ff 3059/* Create the signatured type hash table from the index. */
673bfd45 3060
74a0d9f6 3061static void
673bfd45 3062create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 3063 struct dwarf2_section_info *section,
673bfd45
DE
3064 const gdb_byte *bytes,
3065 offset_type elements)
1fd400ff
TT
3066{
3067 offset_type i;
673bfd45 3068 htab_t sig_types_hash;
1fd400ff 3069
6aa5f3a6
DE
3070 dwarf2_per_objfile->n_type_units
3071 = dwarf2_per_objfile->n_allocated_type_units
3072 = elements / 3;
8d749320
SM
3073 dwarf2_per_objfile->all_type_units =
3074 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 3075
673bfd45 3076 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
3077
3078 for (i = 0; i < elements; i += 3)
3079 {
52dc124a 3080 struct signatured_type *sig_type;
9c541725 3081 ULONGEST signature;
1fd400ff 3082 void **slot;
9c541725 3083 cu_offset type_offset_in_tu;
1fd400ff 3084
74a0d9f6 3085 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3086 sect_offset sect_off
3087 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3088 type_offset_in_tu
3089 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3090 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3091 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3092 bytes += 3 * 8;
3093
52dc124a 3094 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3095 struct signatured_type);
52dc124a 3096 sig_type->signature = signature;
9c541725 3097 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3098 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3099 sig_type->per_cu.section = section;
9c541725 3100 sig_type->per_cu.sect_off = sect_off;
52dc124a
DE
3101 sig_type->per_cu.objfile = objfile;
3102 sig_type->per_cu.v.quick
1fd400ff
TT
3103 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3104 struct dwarf2_per_cu_quick_data);
3105
52dc124a
DE
3106 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3107 *slot = sig_type;
1fd400ff 3108
b4dd5633 3109 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
3110 }
3111
673bfd45 3112 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3113}
3114
9291a0cd
TT
3115/* Read the address map data from the mapped index, and use it to
3116 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3117
9291a0cd
TT
3118static void
3119create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3120{
3e29f34a 3121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3122 const gdb_byte *iter, *end;
9291a0cd 3123 struct addrmap *mutable_map;
9291a0cd
TT
3124 CORE_ADDR baseaddr;
3125
8268c778
PA
3126 auto_obstack temp_obstack;
3127
9291a0cd
TT
3128 mutable_map = addrmap_create_mutable (&temp_obstack);
3129
3130 iter = index->address_table;
3131 end = iter + index->address_table_size;
3132
3133 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3134
3135 while (iter < end)
3136 {
3137 ULONGEST hi, lo, cu_index;
3138 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3139 iter += 8;
3140 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3141 iter += 8;
3142 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3143 iter += 4;
f652bce2 3144
24a55014 3145 if (lo > hi)
f652bce2 3146 {
24a55014
DE
3147 complaint (&symfile_complaints,
3148 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3149 hex_string (lo), hex_string (hi));
24a55014 3150 continue;
f652bce2 3151 }
24a55014
DE
3152
3153 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
3154 {
3155 complaint (&symfile_complaints,
3156 _(".gdb_index address table has invalid CU number %u"),
3157 (unsigned) cu_index);
24a55014 3158 continue;
f652bce2 3159 }
24a55014 3160
3e29f34a
MR
3161 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3162 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3163 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
3164 }
3165
3166 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3167 &objfile->objfile_obstack);
9291a0cd
TT
3168}
3169
59d7bcaf
JK
3170/* The hash function for strings in the mapped index. This is the same as
3171 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3172 implementation. This is necessary because the hash function is tied to the
3173 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
3174 SYMBOL_HASH_NEXT.
3175
3176 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 3177
9291a0cd 3178static hashval_t
559a7a62 3179mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
3180{
3181 const unsigned char *str = (const unsigned char *) p;
3182 hashval_t r = 0;
3183 unsigned char c;
3184
3185 while ((c = *str++) != 0)
559a7a62
JK
3186 {
3187 if (index_version >= 5)
3188 c = tolower (c);
3189 r = r * 67 + c - 113;
3190 }
9291a0cd
TT
3191
3192 return r;
3193}
3194
3195/* Find a slot in the mapped index INDEX for the object named NAME.
3196 If NAME is found, set *VEC_OUT to point to the CU vector in the
109483d9
PA
3197 constant pool and return true. If NAME cannot be found, return
3198 false. */
2fdf6df6 3199
109483d9 3200static bool
9291a0cd
TT
3201find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3202 offset_type **vec_out)
3203{
0cf03b49 3204 offset_type hash;
9291a0cd 3205 offset_type slot, step;
559a7a62 3206 int (*cmp) (const char *, const char *);
9291a0cd 3207
791afaa2 3208 gdb::unique_xmalloc_ptr<char> without_params;
0cf03b49 3209 if (current_language->la_language == language_cplus
45280282
IB
3210 || current_language->la_language == language_fortran
3211 || current_language->la_language == language_d)
0cf03b49
JK
3212 {
3213 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3214 not contain any. */
a8719064 3215
72998fb3 3216 if (strchr (name, '(') != NULL)
0cf03b49 3217 {
109483d9 3218 without_params = cp_remove_params (name);
0cf03b49 3219
72998fb3 3220 if (without_params != NULL)
791afaa2 3221 name = without_params.get ();
0cf03b49
JK
3222 }
3223 }
3224
559a7a62 3225 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3226 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3227 simulate our NAME being searched is also lowercased. */
3228 hash = mapped_index_string_hash ((index->version == 4
3229 && case_sensitivity == case_sensitive_off
3230 ? 5 : index->version),
3231 name);
3232
3876f04e
DE
3233 slot = hash & (index->symbol_table_slots - 1);
3234 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3235 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3236
3237 for (;;)
3238 {
3239 /* Convert a slot number to an offset into the table. */
3240 offset_type i = 2 * slot;
3241 const char *str;
3876f04e 3242 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
109483d9 3243 return false;
9291a0cd 3244
3876f04e 3245 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3246 if (!cmp (name, str))
9291a0cd
TT
3247 {
3248 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3249 + MAYBE_SWAP (index->symbol_table[i + 1]));
109483d9 3250 return true;
9291a0cd
TT
3251 }
3252
3876f04e 3253 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3254 }
3255}
3256
2ec9a5e0
TT
3257/* A helper function that reads the .gdb_index from SECTION and fills
3258 in MAP. FILENAME is the name of the file containing the section;
3259 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3260 ok to use deprecated sections.
3261
3262 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3263 out parameters that are filled in with information about the CU and
3264 TU lists in the section.
3265
3266 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3267
9291a0cd 3268static int
2ec9a5e0
TT
3269read_index_from_section (struct objfile *objfile,
3270 const char *filename,
3271 int deprecated_ok,
3272 struct dwarf2_section_info *section,
3273 struct mapped_index *map,
3274 const gdb_byte **cu_list,
3275 offset_type *cu_list_elements,
3276 const gdb_byte **types_list,
3277 offset_type *types_list_elements)
9291a0cd 3278{
948f8e3d 3279 const gdb_byte *addr;
2ec9a5e0 3280 offset_type version;
b3b272e1 3281 offset_type *metadata;
1fd400ff 3282 int i;
9291a0cd 3283
2ec9a5e0 3284 if (dwarf2_section_empty_p (section))
9291a0cd 3285 return 0;
82430852
JK
3286
3287 /* Older elfutils strip versions could keep the section in the main
3288 executable while splitting it for the separate debug info file. */
a32a8923 3289 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3290 return 0;
3291
2ec9a5e0 3292 dwarf2_read_section (objfile, section);
9291a0cd 3293
2ec9a5e0 3294 addr = section->buffer;
9291a0cd 3295 /* Version check. */
1fd400ff 3296 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3297 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3298 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3299 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3300 indices. */
831adc1f 3301 if (version < 4)
481860b3
GB
3302 {
3303 static int warning_printed = 0;
3304 if (!warning_printed)
3305 {
3306 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3307 filename);
481860b3
GB
3308 warning_printed = 1;
3309 }
3310 return 0;
3311 }
3312 /* Index version 4 uses a different hash function than index version
3313 5 and later.
3314
3315 Versions earlier than 6 did not emit psymbols for inlined
3316 functions. Using these files will cause GDB not to be able to
3317 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3318 indices unless the user has done
3319 "set use-deprecated-index-sections on". */
2ec9a5e0 3320 if (version < 6 && !deprecated_ok)
481860b3
GB
3321 {
3322 static int warning_printed = 0;
3323 if (!warning_printed)
3324 {
e615022a
DE
3325 warning (_("\
3326Skipping deprecated .gdb_index section in %s.\n\
3327Do \"set use-deprecated-index-sections on\" before the file is read\n\
3328to use the section anyway."),
2ec9a5e0 3329 filename);
481860b3
GB
3330 warning_printed = 1;
3331 }
3332 return 0;
3333 }
796a7ff8 3334 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3335 of the TU (for symbols coming from TUs),
3336 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3337 Plus gold-generated indices can have duplicate entries for global symbols,
3338 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3339 These are just performance bugs, and we can't distinguish gdb-generated
3340 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3341
481860b3 3342 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3343 longer backward compatible. */
796a7ff8 3344 if (version > 8)
594e8718 3345 return 0;
9291a0cd 3346
559a7a62 3347 map->version = version;
2ec9a5e0 3348 map->total_size = section->size;
9291a0cd
TT
3349
3350 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3351
3352 i = 0;
2ec9a5e0
TT
3353 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3354 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3355 / 8);
1fd400ff
TT
3356 ++i;
3357
2ec9a5e0
TT
3358 *types_list = addr + MAYBE_SWAP (metadata[i]);
3359 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3360 - MAYBE_SWAP (metadata[i]))
3361 / 8);
987d643c 3362 ++i;
1fd400ff
TT
3363
3364 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3365 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3366 - MAYBE_SWAP (metadata[i]));
3367 ++i;
3368
3876f04e
DE
3369 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3370 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3371 - MAYBE_SWAP (metadata[i]))
3372 / (2 * sizeof (offset_type)));
1fd400ff 3373 ++i;
9291a0cd 3374
f9d83a0b 3375 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3376
2ec9a5e0
TT
3377 return 1;
3378}
3379
3380
3381/* Read the index file. If everything went ok, initialize the "quick"
3382 elements of all the CUs and return 1. Otherwise, return 0. */
3383
3384static int
3385dwarf2_read_index (struct objfile *objfile)
3386{
3387 struct mapped_index local_map, *map;
3388 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3389 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3390 struct dwz_file *dwz;
2ec9a5e0 3391
4262abfb 3392 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3393 use_deprecated_index_sections,
3394 &dwarf2_per_objfile->gdb_index, &local_map,
3395 &cu_list, &cu_list_elements,
3396 &types_list, &types_list_elements))
3397 return 0;
3398
0fefef59 3399 /* Don't use the index if it's empty. */
2ec9a5e0 3400 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3401 return 0;
3402
2ec9a5e0
TT
3403 /* If there is a .dwz file, read it so we can get its CU list as
3404 well. */
4db1a1dc
TT
3405 dwz = dwarf2_get_dwz_file ();
3406 if (dwz != NULL)
2ec9a5e0 3407 {
2ec9a5e0
TT
3408 struct mapped_index dwz_map;
3409 const gdb_byte *dwz_types_ignore;
3410 offset_type dwz_types_elements_ignore;
3411
3412 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3413 1,
3414 &dwz->gdb_index, &dwz_map,
3415 &dwz_list, &dwz_list_elements,
3416 &dwz_types_ignore,
3417 &dwz_types_elements_ignore))
3418 {
3419 warning (_("could not read '.gdb_index' section from %s; skipping"),
3420 bfd_get_filename (dwz->dwz_bfd));
3421 return 0;
3422 }
3423 }
3424
74a0d9f6
JK
3425 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3426 dwz_list_elements);
1fd400ff 3427
8b70b953
TT
3428 if (types_list_elements)
3429 {
3430 struct dwarf2_section_info *section;
3431
3432 /* We can only handle a single .debug_types when we have an
3433 index. */
3434 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3435 return 0;
3436
3437 section = VEC_index (dwarf2_section_info_def,
3438 dwarf2_per_objfile->types, 0);
3439
74a0d9f6
JK
3440 create_signatured_type_table_from_index (objfile, section, types_list,
3441 types_list_elements);
8b70b953 3442 }
9291a0cd 3443
2ec9a5e0
TT
3444 create_addrmap_from_index (objfile, &local_map);
3445
8d749320 3446 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3447 *map = local_map;
9291a0cd
TT
3448
3449 dwarf2_per_objfile->index_table = map;
3450 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3451 dwarf2_per_objfile->quick_file_names_table =
3452 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3453
3454 return 1;
3455}
3456
3457/* A helper for the "quick" functions which sets the global
3458 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3459
9291a0cd
TT
3460static void
3461dw2_setup (struct objfile *objfile)
3462{
9a3c8263
SM
3463 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3464 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3465 gdb_assert (dwarf2_per_objfile);
3466}
3467
dee91e82 3468/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3469
dee91e82
DE
3470static void
3471dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3472 const gdb_byte *info_ptr,
dee91e82
DE
3473 struct die_info *comp_unit_die,
3474 int has_children,
3475 void *data)
9291a0cd 3476{
dee91e82
DE
3477 struct dwarf2_cu *cu = reader->cu;
3478 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3479 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3480 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3481 struct attribute *attr;
dee91e82 3482 int i;
7b9f3c50
DE
3483 void **slot;
3484 struct quick_file_names *qfn;
9291a0cd 3485
0186c6a7
DE
3486 gdb_assert (! this_cu->is_debug_types);
3487
07261596
TT
3488 /* Our callers never want to match partial units -- instead they
3489 will match the enclosing full CU. */
3490 if (comp_unit_die->tag == DW_TAG_partial_unit)
3491 {
3492 this_cu->v.quick->no_file_data = 1;
3493 return;
3494 }
3495
0186c6a7 3496 lh_cu = this_cu;
7b9f3c50 3497 slot = NULL;
dee91e82 3498
fff8551c 3499 line_header_up lh;
9c541725 3500 sect_offset line_offset {};
fff8551c 3501
dee91e82 3502 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3503 if (attr)
3504 {
7b9f3c50
DE
3505 struct quick_file_names find_entry;
3506
9c541725 3507 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3508
3509 /* We may have already read in this line header (TU line header sharing).
3510 If we have we're done. */
094b34ac 3511 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3512 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3513 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3514 &find_entry, INSERT);
3515 if (*slot != NULL)
3516 {
9a3c8263 3517 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3518 return;
7b9f3c50
DE
3519 }
3520
3019eac3 3521 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3522 }
3523 if (lh == NULL)
3524 {
094b34ac 3525 lh_cu->v.quick->no_file_data = 1;
dee91e82 3526 return;
9291a0cd
TT
3527 }
3528
8d749320 3529 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3530 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3531 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3532 gdb_assert (slot != NULL);
3533 *slot = qfn;
9291a0cd 3534
d721ba37 3535 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3536
fff8551c 3537 qfn->num_file_names = lh->file_names.size ();
8d749320 3538 qfn->file_names =
fff8551c
PA
3539 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3540 for (i = 0; i < lh->file_names.size (); ++i)
3541 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3542 qfn->real_names = NULL;
9291a0cd 3543
094b34ac 3544 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3545}
3546
3547/* A helper for the "quick" functions which attempts to read the line
3548 table for THIS_CU. */
3549
3550static struct quick_file_names *
e4a48d9d 3551dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3552{
0186c6a7
DE
3553 /* This should never be called for TUs. */
3554 gdb_assert (! this_cu->is_debug_types);
3555 /* Nor type unit groups. */
3556 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3557
dee91e82
DE
3558 if (this_cu->v.quick->file_names != NULL)
3559 return this_cu->v.quick->file_names;
3560 /* If we know there is no line data, no point in looking again. */
3561 if (this_cu->v.quick->no_file_data)
3562 return NULL;
3563
0186c6a7 3564 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3565
3566 if (this_cu->v.quick->no_file_data)
3567 return NULL;
3568 return this_cu->v.quick->file_names;
9291a0cd
TT
3569}
3570
3571/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3572 real path for a given file name from the line table. */
2fdf6df6 3573
9291a0cd 3574static const char *
7b9f3c50
DE
3575dw2_get_real_path (struct objfile *objfile,
3576 struct quick_file_names *qfn, int index)
9291a0cd 3577{
7b9f3c50
DE
3578 if (qfn->real_names == NULL)
3579 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3580 qfn->num_file_names, const char *);
9291a0cd 3581
7b9f3c50 3582 if (qfn->real_names[index] == NULL)
14278e1f 3583 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
9291a0cd 3584
7b9f3c50 3585 return qfn->real_names[index];
9291a0cd
TT
3586}
3587
3588static struct symtab *
3589dw2_find_last_source_symtab (struct objfile *objfile)
3590{
43f3e411 3591 struct compunit_symtab *cust;
9291a0cd 3592 int index;
ae2de4f8 3593
9291a0cd
TT
3594 dw2_setup (objfile);
3595 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3596 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3597 if (cust == NULL)
3598 return NULL;
3599 return compunit_primary_filetab (cust);
9291a0cd
TT
3600}
3601
7b9f3c50
DE
3602/* Traversal function for dw2_forget_cached_source_info. */
3603
3604static int
3605dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3606{
7b9f3c50 3607 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3608
7b9f3c50 3609 if (file_data->real_names)
9291a0cd 3610 {
7b9f3c50 3611 int i;
9291a0cd 3612
7b9f3c50 3613 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3614 {
7b9f3c50
DE
3615 xfree ((void*) file_data->real_names[i]);
3616 file_data->real_names[i] = NULL;
9291a0cd
TT
3617 }
3618 }
7b9f3c50
DE
3619
3620 return 1;
3621}
3622
3623static void
3624dw2_forget_cached_source_info (struct objfile *objfile)
3625{
3626 dw2_setup (objfile);
3627
3628 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3629 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3630}
3631
f8eba3c6
TT
3632/* Helper function for dw2_map_symtabs_matching_filename that expands
3633 the symtabs and calls the iterator. */
3634
3635static int
3636dw2_map_expand_apply (struct objfile *objfile,
3637 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3638 const char *name, const char *real_path,
14bc53a8 3639 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3640{
43f3e411 3641 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3642
3643 /* Don't visit already-expanded CUs. */
43f3e411 3644 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3645 return 0;
3646
3647 /* This may expand more than one symtab, and we want to iterate over
3648 all of them. */
a0f42c21 3649 dw2_instantiate_symtab (per_cu);
f8eba3c6 3650
14bc53a8
PA
3651 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3652 last_made, callback);
f8eba3c6
TT
3653}
3654
3655/* Implementation of the map_symtabs_matching_filename method. */
3656
14bc53a8
PA
3657static bool
3658dw2_map_symtabs_matching_filename
3659 (struct objfile *objfile, const char *name, const char *real_path,
3660 gdb::function_view<bool (symtab *)> callback)
9291a0cd
TT
3661{
3662 int i;
c011a4f4 3663 const char *name_basename = lbasename (name);
9291a0cd
TT
3664
3665 dw2_setup (objfile);
ae2de4f8 3666
848e3e78
DE
3667 /* The rule is CUs specify all the files, including those used by
3668 any TU, so there's no need to scan TUs here. */
f4dc4d17 3669
848e3e78 3670 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3671 {
3672 int j;
8832e7e3 3673 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3674 struct quick_file_names *file_data;
9291a0cd 3675
3d7bb9d9 3676 /* We only need to look at symtabs not already expanded. */
43f3e411 3677 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3678 continue;
3679
e4a48d9d 3680 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3681 if (file_data == NULL)
9291a0cd
TT
3682 continue;
3683
7b9f3c50 3684 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3685 {
7b9f3c50 3686 const char *this_name = file_data->file_names[j];
da235a7c 3687 const char *this_real_name;
9291a0cd 3688
af529f8f 3689 if (compare_filenames_for_search (this_name, name))
9291a0cd 3690 {
f5b95b50 3691 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3692 callback))
3693 return true;
288e77a7 3694 continue;
4aac40c8 3695 }
9291a0cd 3696
c011a4f4
DE
3697 /* Before we invoke realpath, which can get expensive when many
3698 files are involved, do a quick comparison of the basenames. */
3699 if (! basenames_may_differ
3700 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3701 continue;
3702
da235a7c
JK
3703 this_real_name = dw2_get_real_path (objfile, file_data, j);
3704 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3705 {
da235a7c 3706 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3707 callback))
3708 return true;
288e77a7 3709 continue;
da235a7c 3710 }
9291a0cd 3711
da235a7c
JK
3712 if (real_path != NULL)
3713 {
af529f8f
JK
3714 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3715 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3716 if (this_real_name != NULL
af529f8f 3717 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3718 {
f5b95b50 3719 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3720 callback))
3721 return true;
288e77a7 3722 continue;
9291a0cd
TT
3723 }
3724 }
3725 }
3726 }
3727
14bc53a8 3728 return false;
9291a0cd
TT
3729}
3730
da51c347
DE
3731/* Struct used to manage iterating over all CUs looking for a symbol. */
3732
3733struct dw2_symtab_iterator
9291a0cd 3734{
da51c347
DE
3735 /* The internalized form of .gdb_index. */
3736 struct mapped_index *index;
3737 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3738 int want_specific_block;
3739 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3740 Unused if !WANT_SPECIFIC_BLOCK. */
3741 int block_index;
3742 /* The kind of symbol we're looking for. */
3743 domain_enum domain;
3744 /* The list of CUs from the index entry of the symbol,
3745 or NULL if not found. */
3746 offset_type *vec;
3747 /* The next element in VEC to look at. */
3748 int next;
3749 /* The number of elements in VEC, or zero if there is no match. */
3750 int length;
8943b874
DE
3751 /* Have we seen a global version of the symbol?
3752 If so we can ignore all further global instances.
3753 This is to work around gold/15646, inefficient gold-generated
3754 indices. */
3755 int global_seen;
da51c347 3756};
9291a0cd 3757
da51c347
DE
3758/* Initialize the index symtab iterator ITER.
3759 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3760 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3761
9291a0cd 3762static void
da51c347
DE
3763dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3764 struct mapped_index *index,
3765 int want_specific_block,
3766 int block_index,
3767 domain_enum domain,
3768 const char *name)
3769{
3770 iter->index = index;
3771 iter->want_specific_block = want_specific_block;
3772 iter->block_index = block_index;
3773 iter->domain = domain;
3774 iter->next = 0;
8943b874 3775 iter->global_seen = 0;
da51c347
DE
3776
3777 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3778 iter->length = MAYBE_SWAP (*iter->vec);
3779 else
3780 {
3781 iter->vec = NULL;
3782 iter->length = 0;
3783 }
3784}
3785
3786/* Return the next matching CU or NULL if there are no more. */
3787
3788static struct dwarf2_per_cu_data *
3789dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3790{
3791 for ( ; iter->next < iter->length; ++iter->next)
3792 {
3793 offset_type cu_index_and_attrs =
3794 MAYBE_SWAP (iter->vec[iter->next + 1]);
3795 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3796 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3797 int want_static = iter->block_index != GLOBAL_BLOCK;
3798 /* This value is only valid for index versions >= 7. */
3799 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3800 gdb_index_symbol_kind symbol_kind =
3801 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3802 /* Only check the symbol attributes if they're present.
3803 Indices prior to version 7 don't record them,
3804 and indices >= 7 may elide them for certain symbols
3805 (gold does this). */
3806 int attrs_valid =
3807 (iter->index->version >= 7
3808 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3809
3190f0c6
DE
3810 /* Don't crash on bad data. */
3811 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3812 + dwarf2_per_objfile->n_type_units))
3813 {
3814 complaint (&symfile_complaints,
3815 _(".gdb_index entry has bad CU index"
4262abfb
JK
3816 " [in module %s]"),
3817 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3818 continue;
3819 }
3820
8832e7e3 3821 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3822
da51c347 3823 /* Skip if already read in. */
43f3e411 3824 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3825 continue;
3826
8943b874
DE
3827 /* Check static vs global. */
3828 if (attrs_valid)
3829 {
3830 if (iter->want_specific_block
3831 && want_static != is_static)
3832 continue;
3833 /* Work around gold/15646. */
3834 if (!is_static && iter->global_seen)
3835 continue;
3836 if (!is_static)
3837 iter->global_seen = 1;
3838 }
da51c347
DE
3839
3840 /* Only check the symbol's kind if it has one. */
3841 if (attrs_valid)
3842 {
3843 switch (iter->domain)
3844 {
3845 case VAR_DOMAIN:
3846 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3847 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3848 /* Some types are also in VAR_DOMAIN. */
3849 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3850 continue;
3851 break;
3852 case STRUCT_DOMAIN:
3853 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3854 continue;
3855 break;
3856 case LABEL_DOMAIN:
3857 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3858 continue;
3859 break;
3860 default:
3861 break;
3862 }
3863 }
3864
3865 ++iter->next;
3866 return per_cu;
3867 }
3868
3869 return NULL;
3870}
3871
43f3e411 3872static struct compunit_symtab *
da51c347
DE
3873dw2_lookup_symbol (struct objfile *objfile, int block_index,
3874 const char *name, domain_enum domain)
9291a0cd 3875{
43f3e411 3876 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3877 struct mapped_index *index;
3878
9291a0cd
TT
3879 dw2_setup (objfile);
3880
156942c7
DE
3881 index = dwarf2_per_objfile->index_table;
3882
da51c347 3883 /* index is NULL if OBJF_READNOW. */
156942c7 3884 if (index)
9291a0cd 3885 {
da51c347
DE
3886 struct dw2_symtab_iterator iter;
3887 struct dwarf2_per_cu_data *per_cu;
3888
3889 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3890
da51c347 3891 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3892 {
b2e2f908 3893 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3894 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3895 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3896 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3897
b2e2f908
DE
3898 sym = block_find_symbol (block, name, domain,
3899 block_find_non_opaque_type_preferred,
3900 &with_opaque);
3901
da51c347
DE
3902 /* Some caution must be observed with overloaded functions
3903 and methods, since the index will not contain any overload
3904 information (but NAME might contain it). */
da51c347 3905
b2e2f908 3906 if (sym != NULL
a778f165 3907 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
b2e2f908
DE
3908 return stab;
3909 if (with_opaque != NULL
a778f165 3910 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
b2e2f908 3911 stab_best = stab;
da51c347
DE
3912
3913 /* Keep looking through other CUs. */
9291a0cd
TT
3914 }
3915 }
9291a0cd 3916
da51c347 3917 return stab_best;
9291a0cd
TT
3918}
3919
3920static void
3921dw2_print_stats (struct objfile *objfile)
3922{
e4a48d9d 3923 int i, total, count;
9291a0cd
TT
3924
3925 dw2_setup (objfile);
e4a48d9d 3926 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3927 count = 0;
e4a48d9d 3928 for (i = 0; i < total; ++i)
9291a0cd 3929 {
8832e7e3 3930 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3931
43f3e411 3932 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3933 ++count;
3934 }
e4a48d9d 3935 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3936 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3937}
3938
779bd270
DE
3939/* This dumps minimal information about the index.
3940 It is called via "mt print objfiles".
3941 One use is to verify .gdb_index has been loaded by the
3942 gdb.dwarf2/gdb-index.exp testcase. */
3943
9291a0cd
TT
3944static void
3945dw2_dump (struct objfile *objfile)
3946{
779bd270
DE
3947 dw2_setup (objfile);
3948 gdb_assert (dwarf2_per_objfile->using_index);
3949 printf_filtered (".gdb_index:");
3950 if (dwarf2_per_objfile->index_table != NULL)
3951 {
3952 printf_filtered (" version %d\n",
3953 dwarf2_per_objfile->index_table->version);
3954 }
3955 else
3956 printf_filtered (" faked for \"readnow\"\n");
3957 printf_filtered ("\n");
9291a0cd
TT
3958}
3959
3960static void
3189cb12
DE
3961dw2_relocate (struct objfile *objfile,
3962 const struct section_offsets *new_offsets,
3963 const struct section_offsets *delta)
9291a0cd
TT
3964{
3965 /* There's nothing to relocate here. */
3966}
3967
3968static void
3969dw2_expand_symtabs_for_function (struct objfile *objfile,
3970 const char *func_name)
3971{
da51c347
DE
3972 struct mapped_index *index;
3973
3974 dw2_setup (objfile);
3975
3976 index = dwarf2_per_objfile->index_table;
3977
3978 /* index is NULL if OBJF_READNOW. */
3979 if (index)
3980 {
3981 struct dw2_symtab_iterator iter;
3982 struct dwarf2_per_cu_data *per_cu;
3983
3984 /* Note: It doesn't matter what we pass for block_index here. */
3985 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3986 func_name);
3987
3988 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3989 dw2_instantiate_symtab (per_cu);
3990 }
9291a0cd
TT
3991}
3992
3993static void
3994dw2_expand_all_symtabs (struct objfile *objfile)
3995{
3996 int i;
3997
3998 dw2_setup (objfile);
1fd400ff
TT
3999
4000 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4001 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4002 {
8832e7e3 4003 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4004
a0f42c21 4005 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4006 }
4007}
4008
4009static void
652a8996
JK
4010dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4011 const char *fullname)
9291a0cd
TT
4012{
4013 int i;
4014
4015 dw2_setup (objfile);
d4637a04
DE
4016
4017 /* We don't need to consider type units here.
4018 This is only called for examining code, e.g. expand_line_sal.
4019 There can be an order of magnitude (or more) more type units
4020 than comp units, and we avoid them if we can. */
4021
4022 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4023 {
4024 int j;
8832e7e3 4025 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 4026 struct quick_file_names *file_data;
9291a0cd 4027
3d7bb9d9 4028 /* We only need to look at symtabs not already expanded. */
43f3e411 4029 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4030 continue;
4031
e4a48d9d 4032 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4033 if (file_data == NULL)
9291a0cd
TT
4034 continue;
4035
7b9f3c50 4036 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4037 {
652a8996
JK
4038 const char *this_fullname = file_data->file_names[j];
4039
4040 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4041 {
a0f42c21 4042 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4043 break;
4044 }
4045 }
4046 }
4047}
4048
9291a0cd 4049static void
ade7ed9e 4050dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 4051 const char * name, domain_enum domain,
ade7ed9e 4052 int global,
40658b94
PH
4053 int (*callback) (struct block *,
4054 struct symbol *, void *),
2edb89d3
JK
4055 void *data, symbol_compare_ftype *match,
4056 symbol_compare_ftype *ordered_compare)
9291a0cd 4057{
40658b94 4058 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4059 current language is Ada for a non-Ada objfile using GNU index. As Ada
4060 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4061}
4062
4063static void
f8eba3c6
TT
4064dw2_expand_symtabs_matching
4065 (struct objfile *objfile,
14bc53a8
PA
4066 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4067 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4068 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4069 enum search_domain kind)
9291a0cd
TT
4070{
4071 int i;
4072 offset_type iter;
4b5246aa 4073 struct mapped_index *index;
9291a0cd
TT
4074
4075 dw2_setup (objfile);
ae2de4f8
DE
4076
4077 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
4078 if (!dwarf2_per_objfile->index_table)
4079 return;
4b5246aa 4080 index = dwarf2_per_objfile->index_table;
9291a0cd 4081
7b08b9eb 4082 if (file_matcher != NULL)
24c79950 4083 {
fc4007c9
TT
4084 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4085 htab_eq_pointer,
4086 NULL, xcalloc, xfree));
4087 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4088 htab_eq_pointer,
4089 NULL, xcalloc, xfree));
24c79950 4090
848e3e78
DE
4091 /* The rule is CUs specify all the files, including those used by
4092 any TU, so there's no need to scan TUs here. */
4093
4094 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
4095 {
4096 int j;
8832e7e3 4097 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
4098 struct quick_file_names *file_data;
4099 void **slot;
7b08b9eb 4100
61d96d7e
DE
4101 QUIT;
4102
24c79950 4103 per_cu->v.quick->mark = 0;
3d7bb9d9 4104
24c79950 4105 /* We only need to look at symtabs not already expanded. */
43f3e411 4106 if (per_cu->v.quick->compunit_symtab)
24c79950 4107 continue;
7b08b9eb 4108
e4a48d9d 4109 file_data = dw2_get_file_names (per_cu);
24c79950
TT
4110 if (file_data == NULL)
4111 continue;
7b08b9eb 4112
fc4007c9 4113 if (htab_find (visited_not_found.get (), file_data) != NULL)
24c79950 4114 continue;
fc4007c9 4115 else if (htab_find (visited_found.get (), file_data) != NULL)
24c79950
TT
4116 {
4117 per_cu->v.quick->mark = 1;
4118 continue;
4119 }
4120
4121 for (j = 0; j < file_data->num_file_names; ++j)
4122 {
da235a7c
JK
4123 const char *this_real_name;
4124
14bc53a8 4125 if (file_matcher (file_data->file_names[j], false))
24c79950
TT
4126 {
4127 per_cu->v.quick->mark = 1;
4128 break;
4129 }
da235a7c
JK
4130
4131 /* Before we invoke realpath, which can get expensive when many
4132 files are involved, do a quick comparison of the basenames. */
4133 if (!basenames_may_differ
4134 && !file_matcher (lbasename (file_data->file_names[j]),
14bc53a8 4135 true))
da235a7c
JK
4136 continue;
4137
4138 this_real_name = dw2_get_real_path (objfile, file_data, j);
14bc53a8 4139 if (file_matcher (this_real_name, false))
da235a7c
JK
4140 {
4141 per_cu->v.quick->mark = 1;
4142 break;
4143 }
24c79950
TT
4144 }
4145
4146 slot = htab_find_slot (per_cu->v.quick->mark
fc4007c9
TT
4147 ? visited_found.get ()
4148 : visited_not_found.get (),
24c79950
TT
4149 file_data, INSERT);
4150 *slot = file_data;
4151 }
24c79950 4152 }
9291a0cd 4153
3876f04e 4154 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
4155 {
4156 offset_type idx = 2 * iter;
4157 const char *name;
4158 offset_type *vec, vec_len, vec_idx;
8943b874 4159 int global_seen = 0;
9291a0cd 4160
61d96d7e
DE
4161 QUIT;
4162
3876f04e 4163 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
4164 continue;
4165
3876f04e 4166 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 4167
14bc53a8 4168 if (!symbol_matcher (name))
9291a0cd
TT
4169 continue;
4170
4171 /* The name was matched, now expand corresponding CUs that were
4172 marked. */
4b5246aa 4173 vec = (offset_type *) (index->constant_pool
3876f04e 4174 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
4175 vec_len = MAYBE_SWAP (vec[0]);
4176 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4177 {
e254ef6a 4178 struct dwarf2_per_cu_data *per_cu;
156942c7 4179 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4180 /* This value is only valid for index versions >= 7. */
4181 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4182 gdb_index_symbol_kind symbol_kind =
4183 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4184 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4185 /* Only check the symbol attributes if they're present.
4186 Indices prior to version 7 don't record them,
4187 and indices >= 7 may elide them for certain symbols
4188 (gold does this). */
4189 int attrs_valid =
4190 (index->version >= 7
4191 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4192
8943b874
DE
4193 /* Work around gold/15646. */
4194 if (attrs_valid)
4195 {
4196 if (!is_static && global_seen)
4197 continue;
4198 if (!is_static)
4199 global_seen = 1;
4200 }
4201
3190f0c6
DE
4202 /* Only check the symbol's kind if it has one. */
4203 if (attrs_valid)
156942c7
DE
4204 {
4205 switch (kind)
4206 {
4207 case VARIABLES_DOMAIN:
4208 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4209 continue;
4210 break;
4211 case FUNCTIONS_DOMAIN:
4212 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4213 continue;
4214 break;
4215 case TYPES_DOMAIN:
4216 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4217 continue;
4218 break;
4219 default:
4220 break;
4221 }
4222 }
4223
3190f0c6
DE
4224 /* Don't crash on bad data. */
4225 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4226 + dwarf2_per_objfile->n_type_units))
4227 {
4228 complaint (&symfile_complaints,
4229 _(".gdb_index entry has bad CU index"
4262abfb 4230 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4231 continue;
4232 }
4233
8832e7e3 4234 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4235 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4236 {
4237 int symtab_was_null =
4238 (per_cu->v.quick->compunit_symtab == NULL);
4239
4240 dw2_instantiate_symtab (per_cu);
4241
4242 if (expansion_notify != NULL
4243 && symtab_was_null
4244 && per_cu->v.quick->compunit_symtab != NULL)
4245 {
14bc53a8 4246 expansion_notify (per_cu->v.quick->compunit_symtab);
276d885b
GB
4247 }
4248 }
9291a0cd
TT
4249 }
4250 }
4251}
4252
43f3e411 4253/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4254 symtab. */
4255
43f3e411
DE
4256static struct compunit_symtab *
4257recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4258 CORE_ADDR pc)
9703b513
TT
4259{
4260 int i;
4261
43f3e411
DE
4262 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4263 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4264 return cust;
9703b513 4265
43f3e411 4266 if (cust->includes == NULL)
a3ec0bb1
DE
4267 return NULL;
4268
43f3e411 4269 for (i = 0; cust->includes[i]; ++i)
9703b513 4270 {
43f3e411 4271 struct compunit_symtab *s = cust->includes[i];
9703b513 4272
43f3e411 4273 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4274 if (s != NULL)
4275 return s;
4276 }
4277
4278 return NULL;
4279}
4280
43f3e411
DE
4281static struct compunit_symtab *
4282dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4283 struct bound_minimal_symbol msymbol,
4284 CORE_ADDR pc,
4285 struct obj_section *section,
4286 int warn_if_readin)
9291a0cd
TT
4287{
4288 struct dwarf2_per_cu_data *data;
43f3e411 4289 struct compunit_symtab *result;
9291a0cd
TT
4290
4291 dw2_setup (objfile);
4292
4293 if (!objfile->psymtabs_addrmap)
4294 return NULL;
4295
9a3c8263
SM
4296 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4297 pc);
9291a0cd
TT
4298 if (!data)
4299 return NULL;
4300
43f3e411 4301 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4302 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4303 paddress (get_objfile_arch (objfile), pc));
4304
43f3e411
DE
4305 result
4306 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4307 pc);
9703b513
TT
4308 gdb_assert (result != NULL);
4309 return result;
9291a0cd
TT
4310}
4311
9291a0cd 4312static void
44b13c5a 4313dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4314 void *data, int need_fullname)
9291a0cd 4315{
9291a0cd 4316 dw2_setup (objfile);
ae2de4f8 4317
bbf2f4df 4318 if (!dwarf2_per_objfile->filenames_cache)
24c79950 4319 {
bbf2f4df 4320 dwarf2_per_objfile->filenames_cache.emplace ();
24c79950 4321
bbf2f4df
PA
4322 htab_up visited (htab_create_alloc (10,
4323 htab_hash_pointer, htab_eq_pointer,
4324 NULL, xcalloc, xfree));
24c79950 4325
bbf2f4df
PA
4326 /* The rule is CUs specify all the files, including those used
4327 by any TU, so there's no need to scan TUs here. We can
4328 ignore file names coming from already-expanded CUs. */
24c79950 4329
bbf2f4df
PA
4330 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4331 {
4332 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4333
bbf2f4df
PA
4334 if (per_cu->v.quick->compunit_symtab)
4335 {
4336 void **slot = htab_find_slot (visited.get (),
4337 per_cu->v.quick->file_names,
4338 INSERT);
9291a0cd 4339
bbf2f4df
PA
4340 *slot = per_cu->v.quick->file_names;
4341 }
24c79950 4342 }
24c79950 4343
bbf2f4df 4344 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 4345 {
bbf2f4df
PA
4346 int j;
4347 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4348 struct quick_file_names *file_data;
4349 void **slot;
4350
4351 /* We only need to look at symtabs not already expanded. */
4352 if (per_cu->v.quick->compunit_symtab)
4353 continue;
74e2f255 4354
bbf2f4df
PA
4355 file_data = dw2_get_file_names (per_cu);
4356 if (file_data == NULL)
4357 continue;
4358
4359 slot = htab_find_slot (visited.get (), file_data, INSERT);
4360 if (*slot)
4361 {
4362 /* Already visited. */
4363 continue;
4364 }
4365 *slot = file_data;
4366
4367 for (int j = 0; j < file_data->num_file_names; ++j)
4368 {
4369 const char *filename = file_data->file_names[j];
4370 dwarf2_per_objfile->filenames_cache->seen (filename);
4371 }
9291a0cd
TT
4372 }
4373 }
bbf2f4df
PA
4374
4375 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4376 {
14278e1f 4377 gdb::unique_xmalloc_ptr<char> this_real_name;
bbf2f4df
PA
4378
4379 if (need_fullname)
4380 this_real_name = gdb_realpath (filename);
14278e1f 4381 (*fun) (filename, this_real_name.get (), data);
bbf2f4df 4382 });
9291a0cd
TT
4383}
4384
4385static int
4386dw2_has_symbols (struct objfile *objfile)
4387{
4388 return 1;
4389}
4390
4391const struct quick_symbol_functions dwarf2_gdb_index_functions =
4392{
4393 dw2_has_symbols,
4394 dw2_find_last_source_symtab,
4395 dw2_forget_cached_source_info,
f8eba3c6 4396 dw2_map_symtabs_matching_filename,
9291a0cd 4397 dw2_lookup_symbol,
9291a0cd
TT
4398 dw2_print_stats,
4399 dw2_dump,
4400 dw2_relocate,
4401 dw2_expand_symtabs_for_function,
4402 dw2_expand_all_symtabs,
652a8996 4403 dw2_expand_symtabs_with_fullname,
40658b94 4404 dw2_map_matching_symbols,
9291a0cd 4405 dw2_expand_symtabs_matching,
43f3e411 4406 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4407 dw2_map_symbol_filenames
4408};
4409
4410/* Initialize for reading DWARF for this objfile. Return 0 if this
4411 file will use psymtabs, or 1 if using the GNU index. */
4412
4413int
4414dwarf2_initialize_objfile (struct objfile *objfile)
4415{
4416 /* If we're about to read full symbols, don't bother with the
4417 indices. In this case we also don't care if some other debug
4418 format is making psymtabs, because they are all about to be
4419 expanded anyway. */
4420 if ((objfile->flags & OBJF_READNOW))
4421 {
4422 int i;
4423
4424 dwarf2_per_objfile->using_index = 1;
4425 create_all_comp_units (objfile);
0e50663e 4426 create_all_type_units (objfile);
7b9f3c50
DE
4427 dwarf2_per_objfile->quick_file_names_table =
4428 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4429
1fd400ff 4430 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4431 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4432 {
8832e7e3 4433 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4434
e254ef6a
DE
4435 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4436 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4437 }
4438
4439 /* Return 1 so that gdb sees the "quick" functions. However,
4440 these functions will be no-ops because we will have expanded
4441 all symtabs. */
4442 return 1;
4443 }
4444
4445 if (dwarf2_read_index (objfile))
4446 return 1;
4447
9291a0cd
TT
4448 return 0;
4449}
4450
4451\f
4452
dce234bc
PP
4453/* Build a partial symbol table. */
4454
4455void
f29dff0a 4456dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4457{
c9bf0622 4458
f29dff0a 4459 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4460 {
4461 init_psymbol_list (objfile, 1024);
4462 }
4463
492d29ea 4464 TRY
c9bf0622
TT
4465 {
4466 /* This isn't really ideal: all the data we allocate on the
4467 objfile's obstack is still uselessly kept around. However,
4468 freeing it seems unsafe. */
906768f9 4469 psymtab_discarder psymtabs (objfile);
c9bf0622 4470 dwarf2_build_psymtabs_hard (objfile);
906768f9 4471 psymtabs.keep ();
c9bf0622 4472 }
492d29ea
PA
4473 CATCH (except, RETURN_MASK_ERROR)
4474 {
4475 exception_print (gdb_stderr, except);
4476 }
4477 END_CATCH
c906108c 4478}
c906108c 4479
1ce1cefd
DE
4480/* Return the total length of the CU described by HEADER. */
4481
4482static unsigned int
4483get_cu_length (const struct comp_unit_head *header)
4484{
4485 return header->initial_length_size + header->length;
4486}
4487
9c541725 4488/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 4489
9c541725
PA
4490static inline bool
4491offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 4492{
9c541725
PA
4493 sect_offset bottom = cu_header->sect_off;
4494 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 4495
9c541725 4496 return sect_off >= bottom && sect_off < top;
45452591
DE
4497}
4498
3b80fe9b
DE
4499/* Find the base address of the compilation unit for range lists and
4500 location lists. It will normally be specified by DW_AT_low_pc.
4501 In DWARF-3 draft 4, the base address could be overridden by
4502 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4503 compilation units with discontinuous ranges. */
4504
4505static void
4506dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4507{
4508 struct attribute *attr;
4509
4510 cu->base_known = 0;
4511 cu->base_address = 0;
4512
4513 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4514 if (attr)
4515 {
31aa7e4e 4516 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4517 cu->base_known = 1;
4518 }
4519 else
4520 {
4521 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4522 if (attr)
4523 {
31aa7e4e 4524 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4525 cu->base_known = 1;
4526 }
4527 }
4528}
4529
93311388 4530/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 4531 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
4532 NOTE: This leaves members offset, first_die_offset to be filled in
4533 by the caller. */
107d2387 4534
d521ce57 4535static const gdb_byte *
107d2387 4536read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
4537 const gdb_byte *info_ptr,
4538 struct dwarf2_section_info *section,
4539 rcuh_kind section_kind)
107d2387
AC
4540{
4541 int signed_addr;
891d2f0b 4542 unsigned int bytes_read;
43988095
JK
4543 const char *filename = get_section_file_name (section);
4544 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
4545
4546 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4547 cu_header->initial_length_size = bytes_read;
4548 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4549 info_ptr += bytes_read;
107d2387
AC
4550 cu_header->version = read_2_bytes (abfd, info_ptr);
4551 info_ptr += 2;
43988095
JK
4552 if (cu_header->version < 5)
4553 switch (section_kind)
4554 {
4555 case rcuh_kind::COMPILE:
4556 cu_header->unit_type = DW_UT_compile;
4557 break;
4558 case rcuh_kind::TYPE:
4559 cu_header->unit_type = DW_UT_type;
4560 break;
4561 default:
4562 internal_error (__FILE__, __LINE__,
4563 _("read_comp_unit_head: invalid section_kind"));
4564 }
4565 else
4566 {
4567 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4568 (read_1_byte (abfd, info_ptr));
4569 info_ptr += 1;
4570 switch (cu_header->unit_type)
4571 {
4572 case DW_UT_compile:
4573 if (section_kind != rcuh_kind::COMPILE)
4574 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4575 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4576 filename);
4577 break;
4578 case DW_UT_type:
4579 section_kind = rcuh_kind::TYPE;
4580 break;
4581 default:
4582 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4583 "(is %d, should be %d or %d) [in module %s]"),
4584 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4585 }
4586
4587 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4588 info_ptr += 1;
4589 }
9c541725
PA
4590 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4591 cu_header,
4592 &bytes_read);
613e1657 4593 info_ptr += bytes_read;
43988095
JK
4594 if (cu_header->version < 5)
4595 {
4596 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4597 info_ptr += 1;
4598 }
107d2387
AC
4599 signed_addr = bfd_get_sign_extend_vma (abfd);
4600 if (signed_addr < 0)
8e65ff28 4601 internal_error (__FILE__, __LINE__,
e2e0b3e5 4602 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4603 cu_header->signed_addr_p = signed_addr;
c764a876 4604
43988095
JK
4605 if (section_kind == rcuh_kind::TYPE)
4606 {
4607 LONGEST type_offset;
4608
4609 cu_header->signature = read_8_bytes (abfd, info_ptr);
4610 info_ptr += 8;
4611
4612 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4613 info_ptr += bytes_read;
9c541725
PA
4614 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4615 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
4616 error (_("Dwarf Error: Too big type_offset in compilation unit "
4617 "header (is %s) [in module %s]"), plongest (type_offset),
4618 filename);
4619 }
4620
107d2387
AC
4621 return info_ptr;
4622}
4623
36586728
TT
4624/* Helper function that returns the proper abbrev section for
4625 THIS_CU. */
4626
4627static struct dwarf2_section_info *
4628get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4629{
4630 struct dwarf2_section_info *abbrev;
4631
4632 if (this_cu->is_dwz)
4633 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4634 else
4635 abbrev = &dwarf2_per_objfile->abbrev;
4636
4637 return abbrev;
4638}
4639
9ff913ba
DE
4640/* Subroutine of read_and_check_comp_unit_head and
4641 read_and_check_type_unit_head to simplify them.
4642 Perform various error checking on the header. */
4643
4644static void
4645error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4646 struct dwarf2_section_info *section,
4647 struct dwarf2_section_info *abbrev_section)
9ff913ba 4648{
a32a8923 4649 const char *filename = get_section_file_name (section);
9ff913ba 4650
43988095 4651 if (header->version < 2 || header->version > 5)
9ff913ba 4652 error (_("Dwarf Error: wrong version in compilation unit header "
43988095 4653 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
9ff913ba
DE
4654 filename);
4655
9c541725 4656 if (to_underlying (header->abbrev_sect_off)
36586728 4657 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9c541725
PA
4658 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4659 "(offset 0x%x + 6) [in module %s]"),
4660 to_underlying (header->abbrev_sect_off),
4661 to_underlying (header->sect_off),
9ff913ba
DE
4662 filename);
4663
9c541725 4664 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 4665 avoid potential 32-bit overflow. */
9c541725 4666 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 4667 > section->size)
9c541725
PA
4668 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4669 "(offset 0x%x + 0) [in module %s]"),
4670 header->length, to_underlying (header->sect_off),
9ff913ba
DE
4671 filename);
4672}
4673
4674/* Read in a CU/TU header and perform some basic error checking.
4675 The contents of the header are stored in HEADER.
4676 The result is a pointer to the start of the first DIE. */
adabb602 4677
d521ce57 4678static const gdb_byte *
9ff913ba
DE
4679read_and_check_comp_unit_head (struct comp_unit_head *header,
4680 struct dwarf2_section_info *section,
4bdcc0c1 4681 struct dwarf2_section_info *abbrev_section,
d521ce57 4682 const gdb_byte *info_ptr,
43988095 4683 rcuh_kind section_kind)
72bf9492 4684{
d521ce57 4685 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4686 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4687
9c541725 4688 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 4689
43988095 4690 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 4691
9c541725 4692 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 4693
4bdcc0c1 4694 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4695
4696 return info_ptr;
348e048f
DE
4697}
4698
f4dc4d17
DE
4699/* Fetch the abbreviation table offset from a comp or type unit header. */
4700
4701static sect_offset
4702read_abbrev_offset (struct dwarf2_section_info *section,
9c541725 4703 sect_offset sect_off)
f4dc4d17 4704{
a32a8923 4705 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4706 const gdb_byte *info_ptr;
ac298888 4707 unsigned int initial_length_size, offset_size;
43988095 4708 uint16_t version;
f4dc4d17
DE
4709
4710 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 4711 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 4712 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 4713 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
4714 info_ptr += initial_length_size;
4715
4716 version = read_2_bytes (abfd, info_ptr);
4717 info_ptr += 2;
4718 if (version >= 5)
4719 {
4720 /* Skip unit type and address size. */
4721 info_ptr += 2;
4722 }
4723
9c541725 4724 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
4725}
4726
aaa75496
JB
4727/* Allocate a new partial symtab for file named NAME and mark this new
4728 partial symtab as being an include of PST. */
4729
4730static void
d521ce57 4731dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4732 struct objfile *objfile)
4733{
4734 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4735
fbd9ab74
JK
4736 if (!IS_ABSOLUTE_PATH (subpst->filename))
4737 {
4738 /* It shares objfile->objfile_obstack. */
4739 subpst->dirname = pst->dirname;
4740 }
4741
aaa75496
JB
4742 subpst->textlow = 0;
4743 subpst->texthigh = 0;
4744
8d749320
SM
4745 subpst->dependencies
4746 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4747 subpst->dependencies[0] = pst;
4748 subpst->number_of_dependencies = 1;
4749
4750 subpst->globals_offset = 0;
4751 subpst->n_global_syms = 0;
4752 subpst->statics_offset = 0;
4753 subpst->n_static_syms = 0;
43f3e411 4754 subpst->compunit_symtab = NULL;
aaa75496
JB
4755 subpst->read_symtab = pst->read_symtab;
4756 subpst->readin = 0;
4757
4758 /* No private part is necessary for include psymtabs. This property
4759 can be used to differentiate between such include psymtabs and
10b3939b 4760 the regular ones. */
58a9656e 4761 subpst->read_symtab_private = NULL;
aaa75496
JB
4762}
4763
4764/* Read the Line Number Program data and extract the list of files
4765 included by the source file represented by PST. Build an include
d85a05f0 4766 partial symtab for each of these included files. */
aaa75496
JB
4767
4768static void
4769dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4770 struct die_info *die,
4771 struct partial_symtab *pst)
aaa75496 4772{
fff8551c 4773 line_header_up lh;
d85a05f0 4774 struct attribute *attr;
aaa75496 4775
d85a05f0
DJ
4776 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4777 if (attr)
9c541725 4778 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
4779 if (lh == NULL)
4780 return; /* No linetable, so no includes. */
4781
c6da4cef 4782 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
fff8551c 4783 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4784}
4785
348e048f 4786static hashval_t
52dc124a 4787hash_signatured_type (const void *item)
348e048f 4788{
9a3c8263
SM
4789 const struct signatured_type *sig_type
4790 = (const struct signatured_type *) item;
9a619af0 4791
348e048f 4792 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4793 return sig_type->signature;
348e048f
DE
4794}
4795
4796static int
52dc124a 4797eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4798{
9a3c8263
SM
4799 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4800 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4801
348e048f
DE
4802 return lhs->signature == rhs->signature;
4803}
4804
1fd400ff
TT
4805/* Allocate a hash table for signatured types. */
4806
4807static htab_t
673bfd45 4808allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4809{
4810 return htab_create_alloc_ex (41,
52dc124a
DE
4811 hash_signatured_type,
4812 eq_signatured_type,
1fd400ff
TT
4813 NULL,
4814 &objfile->objfile_obstack,
4815 hashtab_obstack_allocate,
4816 dummy_obstack_deallocate);
4817}
4818
d467dd73 4819/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4820
4821static int
d467dd73 4822add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4823{
9a3c8263
SM
4824 struct signatured_type *sigt = (struct signatured_type *) *slot;
4825 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4826
b4dd5633 4827 **datap = sigt;
1fd400ff
TT
4828 ++*datap;
4829
4830 return 1;
4831}
4832
78d4d2c5 4833/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
4834 and fill them into TYPES_HTAB. It will process only type units,
4835 therefore DW_UT_type. */
c88ee1f0 4836
78d4d2c5
JK
4837static void
4838create_debug_type_hash_table (struct dwo_file *dwo_file,
43988095
JK
4839 dwarf2_section_info *section, htab_t &types_htab,
4840 rcuh_kind section_kind)
348e048f 4841{
3019eac3 4842 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 4843 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
4844 bfd *abfd;
4845 const gdb_byte *info_ptr, *end_ptr;
348e048f 4846
4bdcc0c1
DE
4847 abbrev_section = (dwo_file != NULL
4848 ? &dwo_file->sections.abbrev
4849 : &dwarf2_per_objfile->abbrev);
4850
b4f54984 4851 if (dwarf_read_debug)
43988095
JK
4852 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4853 get_section_name (section),
a32a8923 4854 get_section_file_name (abbrev_section));
09406207 4855
78d4d2c5
JK
4856 dwarf2_read_section (objfile, section);
4857 info_ptr = section->buffer;
348e048f 4858
78d4d2c5
JK
4859 if (info_ptr == NULL)
4860 return;
348e048f 4861
78d4d2c5
JK
4862 /* We can't set abfd until now because the section may be empty or
4863 not present, in which case the bfd is unknown. */
4864 abfd = get_section_bfd_owner (section);
348e048f 4865
78d4d2c5
JK
4866 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4867 because we don't need to read any dies: the signature is in the
4868 header. */
3019eac3 4869
78d4d2c5
JK
4870 end_ptr = info_ptr + section->size;
4871 while (info_ptr < end_ptr)
4872 {
78d4d2c5
JK
4873 struct signatured_type *sig_type;
4874 struct dwo_unit *dwo_tu;
4875 void **slot;
4876 const gdb_byte *ptr = info_ptr;
4877 struct comp_unit_head header;
4878 unsigned int length;
8b70b953 4879
9c541725 4880 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 4881
a49dd8dd
JK
4882 /* Initialize it due to a false compiler warning. */
4883 header.signature = -1;
9c541725 4884 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 4885
78d4d2c5
JK
4886 /* We need to read the type's signature in order to build the hash
4887 table, but we don't need anything else just yet. */
348e048f 4888
43988095
JK
4889 ptr = read_and_check_comp_unit_head (&header, section,
4890 abbrev_section, ptr, section_kind);
348e048f 4891
78d4d2c5 4892 length = get_cu_length (&header);
6caca83c 4893
78d4d2c5
JK
4894 /* Skip dummy type units. */
4895 if (ptr >= info_ptr + length
43988095
JK
4896 || peek_abbrev_code (abfd, ptr) == 0
4897 || header.unit_type != DW_UT_type)
78d4d2c5
JK
4898 {
4899 info_ptr += length;
4900 continue;
4901 }
dee91e82 4902
78d4d2c5
JK
4903 if (types_htab == NULL)
4904 {
4905 if (dwo_file)
4906 types_htab = allocate_dwo_unit_table (objfile);
4907 else
4908 types_htab = allocate_signatured_type_table (objfile);
4909 }
8b70b953 4910
78d4d2c5
JK
4911 if (dwo_file)
4912 {
4913 sig_type = NULL;
4914 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4915 struct dwo_unit);
4916 dwo_tu->dwo_file = dwo_file;
43988095 4917 dwo_tu->signature = header.signature;
9c541725 4918 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 4919 dwo_tu->section = section;
9c541725 4920 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
4921 dwo_tu->length = length;
4922 }
4923 else
4924 {
4925 /* N.B.: type_offset is not usable if this type uses a DWO file.
4926 The real type_offset is in the DWO file. */
4927 dwo_tu = NULL;
4928 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4929 struct signatured_type);
43988095 4930 sig_type->signature = header.signature;
9c541725 4931 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5
JK
4932 sig_type->per_cu.objfile = objfile;
4933 sig_type->per_cu.is_debug_types = 1;
4934 sig_type->per_cu.section = section;
9c541725 4935 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
4936 sig_type->per_cu.length = length;
4937 }
4938
4939 slot = htab_find_slot (types_htab,
4940 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4941 INSERT);
4942 gdb_assert (slot != NULL);
4943 if (*slot != NULL)
4944 {
9c541725 4945 sect_offset dup_sect_off;
0349ea22 4946
3019eac3
DE
4947 if (dwo_file)
4948 {
78d4d2c5
JK
4949 const struct dwo_unit *dup_tu
4950 = (const struct dwo_unit *) *slot;
4951
9c541725 4952 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
4953 }
4954 else
4955 {
78d4d2c5
JK
4956 const struct signatured_type *dup_tu
4957 = (const struct signatured_type *) *slot;
4958
9c541725 4959 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 4960 }
8b70b953 4961
78d4d2c5
JK
4962 complaint (&symfile_complaints,
4963 _("debug type entry at offset 0x%x is duplicate to"
4964 " the entry at offset 0x%x, signature %s"),
9c541725 4965 to_underlying (sect_off), to_underlying (dup_sect_off),
43988095 4966 hex_string (header.signature));
78d4d2c5
JK
4967 }
4968 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 4969
78d4d2c5
JK
4970 if (dwarf_read_debug > 1)
4971 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
9c541725 4972 to_underlying (sect_off),
43988095 4973 hex_string (header.signature));
3019eac3 4974
78d4d2c5
JK
4975 info_ptr += length;
4976 }
4977}
3019eac3 4978
78d4d2c5
JK
4979/* Create the hash table of all entries in the .debug_types
4980 (or .debug_types.dwo) section(s).
4981 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4982 otherwise it is NULL.
b3c8eb43 4983
78d4d2c5 4984 The result is a pointer to the hash table or NULL if there are no types.
348e048f 4985
78d4d2c5 4986 Note: This function processes DWO files only, not DWP files. */
348e048f 4987
78d4d2c5
JK
4988static void
4989create_debug_types_hash_table (struct dwo_file *dwo_file,
4990 VEC (dwarf2_section_info_def) *types,
4991 htab_t &types_htab)
4992{
4993 int ix;
4994 struct dwarf2_section_info *section;
4995
4996 if (VEC_empty (dwarf2_section_info_def, types))
4997 return;
348e048f 4998
78d4d2c5
JK
4999 for (ix = 0;
5000 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5001 ++ix)
43988095
JK
5002 create_debug_type_hash_table (dwo_file, section, types_htab,
5003 rcuh_kind::TYPE);
3019eac3
DE
5004}
5005
5006/* Create the hash table of all entries in the .debug_types section,
5007 and initialize all_type_units.
5008 The result is zero if there is an error (e.g. missing .debug_types section),
5009 otherwise non-zero. */
5010
5011static int
5012create_all_type_units (struct objfile *objfile)
5013{
78d4d2c5 5014 htab_t types_htab = NULL;
b4dd5633 5015 struct signatured_type **iter;
3019eac3 5016
43988095
JK
5017 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5018 rcuh_kind::COMPILE);
78d4d2c5 5019 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
3019eac3
DE
5020 if (types_htab == NULL)
5021 {
5022 dwarf2_per_objfile->signatured_types = NULL;
5023 return 0;
5024 }
5025
348e048f
DE
5026 dwarf2_per_objfile->signatured_types = types_htab;
5027
6aa5f3a6
DE
5028 dwarf2_per_objfile->n_type_units
5029 = dwarf2_per_objfile->n_allocated_type_units
5030 = htab_elements (types_htab);
8d749320
SM
5031 dwarf2_per_objfile->all_type_units =
5032 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
5033 iter = &dwarf2_per_objfile->all_type_units[0];
5034 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5035 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5036 == dwarf2_per_objfile->n_type_units);
1fd400ff 5037
348e048f
DE
5038 return 1;
5039}
5040
6aa5f3a6
DE
5041/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5042 If SLOT is non-NULL, it is the entry to use in the hash table.
5043 Otherwise we find one. */
5044
5045static struct signatured_type *
5046add_type_unit (ULONGEST sig, void **slot)
5047{
5048 struct objfile *objfile = dwarf2_per_objfile->objfile;
5049 int n_type_units = dwarf2_per_objfile->n_type_units;
5050 struct signatured_type *sig_type;
5051
5052 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5053 ++n_type_units;
5054 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5055 {
5056 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5057 dwarf2_per_objfile->n_allocated_type_units = 1;
5058 dwarf2_per_objfile->n_allocated_type_units *= 2;
5059 dwarf2_per_objfile->all_type_units
224c3ddb
SM
5060 = XRESIZEVEC (struct signatured_type *,
5061 dwarf2_per_objfile->all_type_units,
5062 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
5063 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5064 }
5065 dwarf2_per_objfile->n_type_units = n_type_units;
5066
5067 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5068 struct signatured_type);
5069 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5070 sig_type->signature = sig;
5071 sig_type->per_cu.is_debug_types = 1;
5072 if (dwarf2_per_objfile->using_index)
5073 {
5074 sig_type->per_cu.v.quick =
5075 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5076 struct dwarf2_per_cu_quick_data);
5077 }
5078
5079 if (slot == NULL)
5080 {
5081 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5082 sig_type, INSERT);
5083 }
5084 gdb_assert (*slot == NULL);
5085 *slot = sig_type;
5086 /* The rest of sig_type must be filled in by the caller. */
5087 return sig_type;
5088}
5089
a2ce51a0
DE
5090/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5091 Fill in SIG_ENTRY with DWO_ENTRY. */
5092
5093static void
5094fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5095 struct signatured_type *sig_entry,
5096 struct dwo_unit *dwo_entry)
5097{
7ee85ab1 5098 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
5099 gdb_assert (! sig_entry->per_cu.queued);
5100 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
5101 if (dwarf2_per_objfile->using_index)
5102 {
5103 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 5104 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
5105 }
5106 else
5107 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 5108 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 5109 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 5110 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
5111 gdb_assert (sig_entry->dwo_unit == NULL);
5112
5113 sig_entry->per_cu.section = dwo_entry->section;
9c541725 5114 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
5115 sig_entry->per_cu.length = dwo_entry->length;
5116 sig_entry->per_cu.reading_dwo_directly = 1;
5117 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
5118 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5119 sig_entry->dwo_unit = dwo_entry;
5120}
5121
5122/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
5123 If we haven't read the TU yet, create the signatured_type data structure
5124 for a TU to be read in directly from a DWO file, bypassing the stub.
5125 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5126 using .gdb_index, then when reading a CU we want to stay in the DWO file
5127 containing that CU. Otherwise we could end up reading several other DWO
5128 files (due to comdat folding) to process the transitive closure of all the
5129 mentioned TUs, and that can be slow. The current DWO file will have every
5130 type signature that it needs.
a2ce51a0
DE
5131 We only do this for .gdb_index because in the psymtab case we already have
5132 to read all the DWOs to build the type unit groups. */
5133
5134static struct signatured_type *
5135lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5136{
5137 struct objfile *objfile = dwarf2_per_objfile->objfile;
5138 struct dwo_file *dwo_file;
5139 struct dwo_unit find_dwo_entry, *dwo_entry;
5140 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5141 void **slot;
a2ce51a0
DE
5142
5143 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5144
6aa5f3a6
DE
5145 /* If TU skeletons have been removed then we may not have read in any
5146 TUs yet. */
5147 if (dwarf2_per_objfile->signatured_types == NULL)
5148 {
5149 dwarf2_per_objfile->signatured_types
5150 = allocate_signatured_type_table (objfile);
5151 }
a2ce51a0
DE
5152
5153 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
5154 Use the global signatured_types array to do our own comdat-folding
5155 of types. If this is the first time we're reading this TU, and
5156 the TU has an entry in .gdb_index, replace the recorded data from
5157 .gdb_index with this TU. */
a2ce51a0 5158
a2ce51a0 5159 find_sig_entry.signature = sig;
6aa5f3a6
DE
5160 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5161 &find_sig_entry, INSERT);
9a3c8263 5162 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
5163
5164 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
5165 read. Don't reassign the global entry to point to this DWO if that's
5166 the case. Also note that if the TU is already being read, it may not
5167 have come from a DWO, the program may be a mix of Fission-compiled
5168 code and non-Fission-compiled code. */
5169
5170 /* Have we already tried to read this TU?
5171 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5172 needn't exist in the global table yet). */
5173 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
5174 return sig_entry;
5175
6aa5f3a6
DE
5176 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5177 dwo_unit of the TU itself. */
5178 dwo_file = cu->dwo_unit->dwo_file;
5179
a2ce51a0
DE
5180 /* Ok, this is the first time we're reading this TU. */
5181 if (dwo_file->tus == NULL)
5182 return NULL;
5183 find_dwo_entry.signature = sig;
9a3c8263 5184 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
5185 if (dwo_entry == NULL)
5186 return NULL;
5187
6aa5f3a6
DE
5188 /* If the global table doesn't have an entry for this TU, add one. */
5189 if (sig_entry == NULL)
5190 sig_entry = add_type_unit (sig, slot);
5191
a2ce51a0 5192 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 5193 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
5194 return sig_entry;
5195}
5196
a2ce51a0
DE
5197/* Subroutine of lookup_signatured_type.
5198 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
5199 then try the DWP file. If the TU stub (skeleton) has been removed then
5200 it won't be in .gdb_index. */
a2ce51a0
DE
5201
5202static struct signatured_type *
5203lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5204{
5205 struct objfile *objfile = dwarf2_per_objfile->objfile;
5206 struct dwp_file *dwp_file = get_dwp_file ();
5207 struct dwo_unit *dwo_entry;
5208 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5209 void **slot;
a2ce51a0
DE
5210
5211 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5212 gdb_assert (dwp_file != NULL);
5213
6aa5f3a6
DE
5214 /* If TU skeletons have been removed then we may not have read in any
5215 TUs yet. */
5216 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 5217 {
6aa5f3a6
DE
5218 dwarf2_per_objfile->signatured_types
5219 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
5220 }
5221
6aa5f3a6
DE
5222 find_sig_entry.signature = sig;
5223 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5224 &find_sig_entry, INSERT);
9a3c8263 5225 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5226
5227 /* Have we already tried to read this TU?
5228 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5229 needn't exist in the global table yet). */
5230 if (sig_entry != NULL)
5231 return sig_entry;
5232
a2ce51a0
DE
5233 if (dwp_file->tus == NULL)
5234 return NULL;
57d63ce2
DE
5235 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5236 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5237 if (dwo_entry == NULL)
5238 return NULL;
5239
6aa5f3a6 5240 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5241 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5242
a2ce51a0
DE
5243 return sig_entry;
5244}
5245
380bca97 5246/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5247 Returns NULL if signature SIG is not present in the table.
5248 It is up to the caller to complain about this. */
348e048f
DE
5249
5250static struct signatured_type *
a2ce51a0 5251lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5252{
a2ce51a0
DE
5253 if (cu->dwo_unit
5254 && dwarf2_per_objfile->using_index)
5255 {
5256 /* We're in a DWO/DWP file, and we're using .gdb_index.
5257 These cases require special processing. */
5258 if (get_dwp_file () == NULL)
5259 return lookup_dwo_signatured_type (cu, sig);
5260 else
5261 return lookup_dwp_signatured_type (cu, sig);
5262 }
5263 else
5264 {
5265 struct signatured_type find_entry, *entry;
348e048f 5266
a2ce51a0
DE
5267 if (dwarf2_per_objfile->signatured_types == NULL)
5268 return NULL;
5269 find_entry.signature = sig;
9a3c8263
SM
5270 entry = ((struct signatured_type *)
5271 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5272 return entry;
5273 }
348e048f 5274}
42e7ad6c
DE
5275\f
5276/* Low level DIE reading support. */
348e048f 5277
d85a05f0
DJ
5278/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5279
5280static void
5281init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5282 struct dwarf2_cu *cu,
3019eac3
DE
5283 struct dwarf2_section_info *section,
5284 struct dwo_file *dwo_file)
d85a05f0 5285{
fceca515 5286 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5287 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5288 reader->cu = cu;
3019eac3 5289 reader->dwo_file = dwo_file;
dee91e82
DE
5290 reader->die_section = section;
5291 reader->buffer = section->buffer;
f664829e 5292 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5293 reader->comp_dir = NULL;
d85a05f0
DJ
5294}
5295
b0c7bfa9
DE
5296/* Subroutine of init_cutu_and_read_dies to simplify it.
5297 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5298 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5299 already.
5300
5301 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5302 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5303 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5304 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5305 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5306 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5307 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5308 are filled in with the info of the DIE from the DWO file.
5309 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5310 provided an abbrev table to use.
5311 The result is non-zero if a valid (non-dummy) DIE was found. */
5312
5313static int
5314read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5315 struct dwo_unit *dwo_unit,
5316 int abbrev_table_provided,
5317 struct die_info *stub_comp_unit_die,
a2ce51a0 5318 const char *stub_comp_dir,
b0c7bfa9 5319 struct die_reader_specs *result_reader,
d521ce57 5320 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5321 struct die_info **result_comp_unit_die,
5322 int *result_has_children)
5323{
5324 struct objfile *objfile = dwarf2_per_objfile->objfile;
5325 struct dwarf2_cu *cu = this_cu->cu;
5326 struct dwarf2_section_info *section;
5327 bfd *abfd;
d521ce57 5328 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5329 ULONGEST signature; /* Or dwo_id. */
5330 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5331 int i,num_extra_attrs;
5332 struct dwarf2_section_info *dwo_abbrev_section;
5333 struct attribute *attr;
5334 struct die_info *comp_unit_die;
5335
b0aeadb3
DE
5336 /* At most one of these may be provided. */
5337 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5338
b0c7bfa9
DE
5339 /* These attributes aren't processed until later:
5340 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5341 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5342 referenced later. However, these attributes are found in the stub
5343 which we won't have later. In order to not impose this complication
5344 on the rest of the code, we read them here and copy them to the
5345 DWO CU/TU die. */
b0c7bfa9
DE
5346
5347 stmt_list = NULL;
5348 low_pc = NULL;
5349 high_pc = NULL;
5350 ranges = NULL;
5351 comp_dir = NULL;
5352
5353 if (stub_comp_unit_die != NULL)
5354 {
5355 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5356 DWO file. */
5357 if (! this_cu->is_debug_types)
5358 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5359 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5360 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5361 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5362 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5363
5364 /* There should be a DW_AT_addr_base attribute here (if needed).
5365 We need the value before we can process DW_FORM_GNU_addr_index. */
5366 cu->addr_base = 0;
5367 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5368 if (attr)
5369 cu->addr_base = DW_UNSND (attr);
5370
5371 /* There should be a DW_AT_ranges_base attribute here (if needed).
5372 We need the value before we can process DW_AT_ranges. */
5373 cu->ranges_base = 0;
5374 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5375 if (attr)
5376 cu->ranges_base = DW_UNSND (attr);
5377 }
a2ce51a0
DE
5378 else if (stub_comp_dir != NULL)
5379 {
5380 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5381 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5382 comp_dir->name = DW_AT_comp_dir;
5383 comp_dir->form = DW_FORM_string;
5384 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5385 DW_STRING (comp_dir) = stub_comp_dir;
5386 }
b0c7bfa9
DE
5387
5388 /* Set up for reading the DWO CU/TU. */
5389 cu->dwo_unit = dwo_unit;
5390 section = dwo_unit->section;
5391 dwarf2_read_section (objfile, section);
a32a8923 5392 abfd = get_section_bfd_owner (section);
9c541725
PA
5393 begin_info_ptr = info_ptr = (section->buffer
5394 + to_underlying (dwo_unit->sect_off));
b0c7bfa9
DE
5395 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5396 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5397
5398 if (this_cu->is_debug_types)
5399 {
b0c7bfa9
DE
5400 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5401
43988095 5402 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
b0c7bfa9 5403 dwo_abbrev_section,
43988095 5404 info_ptr, rcuh_kind::TYPE);
a2ce51a0 5405 /* This is not an assert because it can be caused by bad debug info. */
43988095 5406 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
5407 {
5408 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5409 " TU at offset 0x%x [in module %s]"),
5410 hex_string (sig_type->signature),
43988095 5411 hex_string (cu->header.signature),
9c541725 5412 to_underlying (dwo_unit->sect_off),
a2ce51a0
DE
5413 bfd_get_filename (abfd));
5414 }
9c541725 5415 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5416 /* For DWOs coming from DWP files, we don't know the CU length
5417 nor the type's offset in the TU until now. */
5418 dwo_unit->length = get_cu_length (&cu->header);
9c541725 5419 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
5420
5421 /* Establish the type offset that can be used to lookup the type.
5422 For DWO files, we don't know it until now. */
9c541725
PA
5423 sig_type->type_offset_in_section
5424 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
5425 }
5426 else
5427 {
5428 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5429 dwo_abbrev_section,
43988095 5430 info_ptr, rcuh_kind::COMPILE);
9c541725 5431 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5432 /* For DWOs coming from DWP files, we don't know the CU length
5433 until now. */
5434 dwo_unit->length = get_cu_length (&cu->header);
5435 }
5436
02142a6c
DE
5437 /* Replace the CU's original abbrev table with the DWO's.
5438 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5439 if (abbrev_table_provided)
5440 {
5441 /* Don't free the provided abbrev table, the caller of
5442 init_cutu_and_read_dies owns it. */
5443 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5444 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5445 make_cleanup (dwarf2_free_abbrev_table, cu);
5446 }
5447 else
5448 {
5449 dwarf2_free_abbrev_table (cu);
5450 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5451 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5452 }
5453
5454 /* Read in the die, but leave space to copy over the attributes
5455 from the stub. This has the benefit of simplifying the rest of
5456 the code - all the work to maintain the illusion of a single
5457 DW_TAG_{compile,type}_unit DIE is done here. */
5458 num_extra_attrs = ((stmt_list != NULL)
5459 + (low_pc != NULL)
5460 + (high_pc != NULL)
5461 + (ranges != NULL)
5462 + (comp_dir != NULL));
5463 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5464 result_has_children, num_extra_attrs);
5465
5466 /* Copy over the attributes from the stub to the DIE we just read in. */
5467 comp_unit_die = *result_comp_unit_die;
5468 i = comp_unit_die->num_attrs;
5469 if (stmt_list != NULL)
5470 comp_unit_die->attrs[i++] = *stmt_list;
5471 if (low_pc != NULL)
5472 comp_unit_die->attrs[i++] = *low_pc;
5473 if (high_pc != NULL)
5474 comp_unit_die->attrs[i++] = *high_pc;
5475 if (ranges != NULL)
5476 comp_unit_die->attrs[i++] = *ranges;
5477 if (comp_dir != NULL)
5478 comp_unit_die->attrs[i++] = *comp_dir;
5479 comp_unit_die->num_attrs += num_extra_attrs;
5480
b4f54984 5481 if (dwarf_die_debug)
bf6af496
DE
5482 {
5483 fprintf_unfiltered (gdb_stdlog,
5484 "Read die from %s@0x%x of %s:\n",
a32a8923 5485 get_section_name (section),
bf6af496
DE
5486 (unsigned) (begin_info_ptr - section->buffer),
5487 bfd_get_filename (abfd));
b4f54984 5488 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5489 }
5490
a2ce51a0
DE
5491 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5492 TUs by skipping the stub and going directly to the entry in the DWO file.
5493 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5494 to get it via circuitous means. Blech. */
5495 if (comp_dir != NULL)
5496 result_reader->comp_dir = DW_STRING (comp_dir);
5497
b0c7bfa9
DE
5498 /* Skip dummy compilation units. */
5499 if (info_ptr >= begin_info_ptr + dwo_unit->length
5500 || peek_abbrev_code (abfd, info_ptr) == 0)
5501 return 0;
5502
5503 *result_info_ptr = info_ptr;
5504 return 1;
5505}
5506
5507/* Subroutine of init_cutu_and_read_dies to simplify it.
5508 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5509 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5510
5511static struct dwo_unit *
5512lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5513 struct die_info *comp_unit_die)
5514{
5515 struct dwarf2_cu *cu = this_cu->cu;
5516 struct attribute *attr;
5517 ULONGEST signature;
5518 struct dwo_unit *dwo_unit;
5519 const char *comp_dir, *dwo_name;
5520
a2ce51a0
DE
5521 gdb_assert (cu != NULL);
5522
b0c7bfa9 5523 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5524 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5525 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5526
5527 if (this_cu->is_debug_types)
5528 {
5529 struct signatured_type *sig_type;
5530
5531 /* Since this_cu is the first member of struct signatured_type,
5532 we can go from a pointer to one to a pointer to the other. */
5533 sig_type = (struct signatured_type *) this_cu;
5534 signature = sig_type->signature;
5535 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5536 }
5537 else
5538 {
5539 struct attribute *attr;
5540
5541 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5542 if (! attr)
5543 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5544 " [in module %s]"),
4262abfb 5545 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5546 signature = DW_UNSND (attr);
5547 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5548 signature);
5549 }
5550
b0c7bfa9
DE
5551 return dwo_unit;
5552}
5553
a2ce51a0 5554/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5555 See it for a description of the parameters.
5556 Read a TU directly from a DWO file, bypassing the stub.
5557
5558 Note: This function could be a little bit simpler if we shared cleanups
5559 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5560 to do, so we keep this function self-contained. Or we could move this
5561 into our caller, but it's complex enough already. */
a2ce51a0
DE
5562
5563static void
6aa5f3a6
DE
5564init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5565 int use_existing_cu, int keep,
a2ce51a0
DE
5566 die_reader_func_ftype *die_reader_func,
5567 void *data)
5568{
5569 struct dwarf2_cu *cu;
5570 struct signatured_type *sig_type;
6aa5f3a6 5571 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5572 struct die_reader_specs reader;
5573 const gdb_byte *info_ptr;
5574 struct die_info *comp_unit_die;
5575 int has_children;
5576
5577 /* Verify we can do the following downcast, and that we have the
5578 data we need. */
5579 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5580 sig_type = (struct signatured_type *) this_cu;
5581 gdb_assert (sig_type->dwo_unit != NULL);
5582
5583 cleanups = make_cleanup (null_cleanup, NULL);
5584
6aa5f3a6
DE
5585 if (use_existing_cu && this_cu->cu != NULL)
5586 {
5587 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5588 cu = this_cu->cu;
5589 /* There's no need to do the rereading_dwo_cu handling that
5590 init_cutu_and_read_dies does since we don't read the stub. */
5591 }
5592 else
5593 {
5594 /* If !use_existing_cu, this_cu->cu must be NULL. */
5595 gdb_assert (this_cu->cu == NULL);
8d749320 5596 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5597 init_one_comp_unit (cu, this_cu);
5598 /* If an error occurs while loading, release our storage. */
5599 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5600 }
5601
5602 /* A future optimization, if needed, would be to use an existing
5603 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5604 could share abbrev tables. */
a2ce51a0
DE
5605
5606 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5607 0 /* abbrev_table_provided */,
5608 NULL /* stub_comp_unit_die */,
5609 sig_type->dwo_unit->dwo_file->comp_dir,
5610 &reader, &info_ptr,
5611 &comp_unit_die, &has_children) == 0)
5612 {
5613 /* Dummy die. */
5614 do_cleanups (cleanups);
5615 return;
5616 }
5617
5618 /* All the "real" work is done here. */
5619 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5620
6aa5f3a6 5621 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5622 but the alternative is making the latter more complex.
5623 This function is only for the special case of using DWO files directly:
5624 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5625 if (free_cu_cleanup != NULL)
a2ce51a0 5626 {
6aa5f3a6
DE
5627 if (keep)
5628 {
5629 /* We've successfully allocated this compilation unit. Let our
5630 caller clean it up when finished with it. */
5631 discard_cleanups (free_cu_cleanup);
a2ce51a0 5632
6aa5f3a6
DE
5633 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5634 So we have to manually free the abbrev table. */
5635 dwarf2_free_abbrev_table (cu);
a2ce51a0 5636
6aa5f3a6
DE
5637 /* Link this CU into read_in_chain. */
5638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = this_cu;
5640 }
5641 else
5642 do_cleanups (free_cu_cleanup);
a2ce51a0 5643 }
a2ce51a0
DE
5644
5645 do_cleanups (cleanups);
5646}
5647
fd820528 5648/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5649 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5650
f4dc4d17
DE
5651 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5652 Otherwise the table specified in the comp unit header is read in and used.
5653 This is an optimization for when we already have the abbrev table.
5654
dee91e82
DE
5655 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5656 Otherwise, a new CU is allocated with xmalloc.
5657
5658 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5659 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5660
5661 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5662 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5663
70221824 5664static void
fd820528 5665init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5666 struct abbrev_table *abbrev_table,
fd820528
DE
5667 int use_existing_cu, int keep,
5668 die_reader_func_ftype *die_reader_func,
5669 void *data)
c906108c 5670{
dee91e82 5671 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5672 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5673 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5674 struct dwarf2_cu *cu;
d521ce57 5675 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5676 struct die_reader_specs reader;
d85a05f0 5677 struct die_info *comp_unit_die;
dee91e82 5678 int has_children;
d85a05f0 5679 struct attribute *attr;
365156ad 5680 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5681 struct signatured_type *sig_type = NULL;
4bdcc0c1 5682 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5683 /* Non-zero if CU currently points to a DWO file and we need to
5684 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5685 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5686 int rereading_dwo_cu = 0;
c906108c 5687
b4f54984 5688 if (dwarf_die_debug)
09406207
DE
5689 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5690 this_cu->is_debug_types ? "type" : "comp",
9c541725 5691 to_underlying (this_cu->sect_off));
09406207 5692
dee91e82
DE
5693 if (use_existing_cu)
5694 gdb_assert (keep);
23745b47 5695
a2ce51a0
DE
5696 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5697 file (instead of going through the stub), short-circuit all of this. */
5698 if (this_cu->reading_dwo_directly)
5699 {
5700 /* Narrow down the scope of possibilities to have to understand. */
5701 gdb_assert (this_cu->is_debug_types);
5702 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5703 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5704 die_reader_func, data);
a2ce51a0
DE
5705 return;
5706 }
5707
dee91e82
DE
5708 cleanups = make_cleanup (null_cleanup, NULL);
5709
5710 /* This is cheap if the section is already read in. */
5711 dwarf2_read_section (objfile, section);
5712
9c541725 5713 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
5714
5715 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5716
5717 if (use_existing_cu && this_cu->cu != NULL)
5718 {
5719 cu = this_cu->cu;
42e7ad6c
DE
5720 /* If this CU is from a DWO file we need to start over, we need to
5721 refetch the attributes from the skeleton CU.
5722 This could be optimized by retrieving those attributes from when we
5723 were here the first time: the previous comp_unit_die was stored in
5724 comp_unit_obstack. But there's no data yet that we need this
5725 optimization. */
5726 if (cu->dwo_unit != NULL)
5727 rereading_dwo_cu = 1;
dee91e82
DE
5728 }
5729 else
5730 {
5731 /* If !use_existing_cu, this_cu->cu must be NULL. */
5732 gdb_assert (this_cu->cu == NULL);
8d749320 5733 cu = XNEW (struct dwarf2_cu);
dee91e82 5734 init_one_comp_unit (cu, this_cu);
dee91e82 5735 /* If an error occurs while loading, release our storage. */
365156ad 5736 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5737 }
dee91e82 5738
b0c7bfa9 5739 /* Get the header. */
9c541725 5740 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
5741 {
5742 /* We already have the header, there's no need to read it in again. */
9c541725 5743 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
5744 }
5745 else
5746 {
3019eac3 5747 if (this_cu->is_debug_types)
dee91e82 5748 {
43988095 5749 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4bdcc0c1 5750 abbrev_section, info_ptr,
43988095 5751 rcuh_kind::TYPE);
dee91e82 5752
42e7ad6c
DE
5753 /* Since per_cu is the first member of struct signatured_type,
5754 we can go from a pointer to one to a pointer to the other. */
5755 sig_type = (struct signatured_type *) this_cu;
43988095 5756 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
5757 gdb_assert (sig_type->type_offset_in_tu
5758 == cu->header.type_cu_offset_in_tu);
5759 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 5760
42e7ad6c
DE
5761 /* LENGTH has not been set yet for type units if we're
5762 using .gdb_index. */
1ce1cefd 5763 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5764
5765 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
5766 sig_type->type_offset_in_section =
5767 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
5768
5769 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5770 }
5771 else
5772 {
4bdcc0c1
DE
5773 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5774 abbrev_section,
43988095
JK
5775 info_ptr,
5776 rcuh_kind::COMPILE);
dee91e82 5777
9c541725 5778 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 5779 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 5780 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5781 }
5782 }
10b3939b 5783
6caca83c 5784 /* Skip dummy compilation units. */
dee91e82 5785 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5786 || peek_abbrev_code (abfd, info_ptr) == 0)
5787 {
dee91e82 5788 do_cleanups (cleanups);
21b2bd31 5789 return;
6caca83c
CC
5790 }
5791
433df2d4
DE
5792 /* If we don't have them yet, read the abbrevs for this compilation unit.
5793 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5794 done. Note that it's important that if the CU had an abbrev table
5795 on entry we don't free it when we're done: Somewhere up the call stack
5796 it may be in use. */
f4dc4d17
DE
5797 if (abbrev_table != NULL)
5798 {
5799 gdb_assert (cu->abbrev_table == NULL);
9c541725 5800 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
f4dc4d17
DE
5801 cu->abbrev_table = abbrev_table;
5802 }
5803 else if (cu->abbrev_table == NULL)
dee91e82 5804 {
4bdcc0c1 5805 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5806 make_cleanup (dwarf2_free_abbrev_table, cu);
5807 }
42e7ad6c
DE
5808 else if (rereading_dwo_cu)
5809 {
5810 dwarf2_free_abbrev_table (cu);
5811 dwarf2_read_abbrevs (cu, abbrev_section);
5812 }
af703f96 5813
dee91e82 5814 /* Read the top level CU/TU die. */
3019eac3 5815 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5816 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5817
b0c7bfa9
DE
5818 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5819 from the DWO file.
5820 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5821 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5822 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5823 if (attr)
5824 {
3019eac3 5825 struct dwo_unit *dwo_unit;
b0c7bfa9 5826 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5827
5828 if (has_children)
6a506a2d
DE
5829 {
5830 complaint (&symfile_complaints,
5831 _("compilation unit with DW_AT_GNU_dwo_name"
5832 " has children (offset 0x%x) [in module %s]"),
9c541725 5833 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6a506a2d 5834 }
b0c7bfa9 5835 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5836 if (dwo_unit != NULL)
3019eac3 5837 {
6a506a2d
DE
5838 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5839 abbrev_table != NULL,
a2ce51a0 5840 comp_unit_die, NULL,
6a506a2d
DE
5841 &reader, &info_ptr,
5842 &dwo_comp_unit_die, &has_children) == 0)
5843 {
5844 /* Dummy die. */
5845 do_cleanups (cleanups);
5846 return;
5847 }
5848 comp_unit_die = dwo_comp_unit_die;
5849 }
5850 else
5851 {
5852 /* Yikes, we couldn't find the rest of the DIE, we only have
5853 the stub. A complaint has already been logged. There's
5854 not much more we can do except pass on the stub DIE to
5855 die_reader_func. We don't want to throw an error on bad
5856 debug info. */
3019eac3
DE
5857 }
5858 }
5859
b0c7bfa9 5860 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5861 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5862
b0c7bfa9 5863 /* Done, clean up. */
365156ad 5864 if (free_cu_cleanup != NULL)
348e048f 5865 {
365156ad
TT
5866 if (keep)
5867 {
5868 /* We've successfully allocated this compilation unit. Let our
5869 caller clean it up when finished with it. */
5870 discard_cleanups (free_cu_cleanup);
dee91e82 5871
365156ad
TT
5872 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5873 So we have to manually free the abbrev table. */
5874 dwarf2_free_abbrev_table (cu);
dee91e82 5875
365156ad
TT
5876 /* Link this CU into read_in_chain. */
5877 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5878 dwarf2_per_objfile->read_in_chain = this_cu;
5879 }
5880 else
5881 do_cleanups (free_cu_cleanup);
348e048f 5882 }
365156ad
TT
5883
5884 do_cleanups (cleanups);
dee91e82
DE
5885}
5886
33e80786
DE
5887/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5888 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5889 to have already done the lookup to find the DWO file).
dee91e82
DE
5890
5891 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5892 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5893
5894 We fill in THIS_CU->length.
5895
5896 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5897 linker) then DIE_READER_FUNC will not get called.
5898
5899 THIS_CU->cu is always freed when done.
3019eac3
DE
5900 This is done in order to not leave THIS_CU->cu in a state where we have
5901 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5902
5903static void
5904init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5905 struct dwo_file *dwo_file,
dee91e82
DE
5906 die_reader_func_ftype *die_reader_func,
5907 void *data)
5908{
5909 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5910 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5911 bfd *abfd = get_section_bfd_owner (section);
33e80786 5912 struct dwarf2_section_info *abbrev_section;
dee91e82 5913 struct dwarf2_cu cu;
d521ce57 5914 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5915 struct die_reader_specs reader;
5916 struct cleanup *cleanups;
5917 struct die_info *comp_unit_die;
5918 int has_children;
5919
b4f54984 5920 if (dwarf_die_debug)
09406207
DE
5921 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5922 this_cu->is_debug_types ? "type" : "comp",
9c541725 5923 to_underlying (this_cu->sect_off));
09406207 5924
dee91e82
DE
5925 gdb_assert (this_cu->cu == NULL);
5926
33e80786
DE
5927 abbrev_section = (dwo_file != NULL
5928 ? &dwo_file->sections.abbrev
5929 : get_abbrev_section_for_cu (this_cu));
5930
dee91e82
DE
5931 /* This is cheap if the section is already read in. */
5932 dwarf2_read_section (objfile, section);
5933
5934 init_one_comp_unit (&cu, this_cu);
5935
5936 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5937
9c541725 5938 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
4bdcc0c1
DE
5939 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5940 abbrev_section, info_ptr,
43988095
JK
5941 (this_cu->is_debug_types
5942 ? rcuh_kind::TYPE
5943 : rcuh_kind::COMPILE));
dee91e82 5944
1ce1cefd 5945 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5946
5947 /* Skip dummy compilation units. */
5948 if (info_ptr >= begin_info_ptr + this_cu->length
5949 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5950 {
dee91e82 5951 do_cleanups (cleanups);
21b2bd31 5952 return;
93311388 5953 }
72bf9492 5954
dee91e82
DE
5955 dwarf2_read_abbrevs (&cu, abbrev_section);
5956 make_cleanup (dwarf2_free_abbrev_table, &cu);
5957
3019eac3 5958 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5959 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5960
5961 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5962
5963 do_cleanups (cleanups);
5964}
5965
3019eac3
DE
5966/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5967 does not lookup the specified DWO file.
5968 This cannot be used to read DWO files.
dee91e82
DE
5969
5970 THIS_CU->cu is always freed when done.
3019eac3
DE
5971 This is done in order to not leave THIS_CU->cu in a state where we have
5972 to care whether it refers to the "main" CU or the DWO CU.
5973 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5974
5975static void
5976init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5977 die_reader_func_ftype *die_reader_func,
5978 void *data)
5979{
33e80786 5980 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5981}
0018ea6f
DE
5982\f
5983/* Type Unit Groups.
dee91e82 5984
0018ea6f
DE
5985 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5986 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5987 so that all types coming from the same compilation (.o file) are grouped
5988 together. A future step could be to put the types in the same symtab as
5989 the CU the types ultimately came from. */
ff013f42 5990
f4dc4d17
DE
5991static hashval_t
5992hash_type_unit_group (const void *item)
5993{
9a3c8263
SM
5994 const struct type_unit_group *tu_group
5995 = (const struct type_unit_group *) item;
f4dc4d17 5996
094b34ac 5997 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5998}
348e048f
DE
5999
6000static int
f4dc4d17 6001eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 6002{
9a3c8263
SM
6003 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6004 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 6005
094b34ac 6006 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 6007}
348e048f 6008
f4dc4d17
DE
6009/* Allocate a hash table for type unit groups. */
6010
6011static htab_t
6012allocate_type_unit_groups_table (void)
6013{
6014 return htab_create_alloc_ex (3,
6015 hash_type_unit_group,
6016 eq_type_unit_group,
6017 NULL,
6018 &dwarf2_per_objfile->objfile->objfile_obstack,
6019 hashtab_obstack_allocate,
6020 dummy_obstack_deallocate);
6021}
dee91e82 6022
f4dc4d17
DE
6023/* Type units that don't have DW_AT_stmt_list are grouped into their own
6024 partial symtabs. We combine several TUs per psymtab to not let the size
6025 of any one psymtab grow too big. */
6026#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6027#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 6028
094b34ac 6029/* Helper routine for get_type_unit_group.
f4dc4d17
DE
6030 Create the type_unit_group object used to hold one or more TUs. */
6031
6032static struct type_unit_group *
094b34ac 6033create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
6034{
6035 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 6036 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 6037 struct type_unit_group *tu_group;
f4dc4d17
DE
6038
6039 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6040 struct type_unit_group);
094b34ac 6041 per_cu = &tu_group->per_cu;
f4dc4d17 6042 per_cu->objfile = objfile;
f4dc4d17 6043
094b34ac
DE
6044 if (dwarf2_per_objfile->using_index)
6045 {
6046 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6047 struct dwarf2_per_cu_quick_data);
094b34ac
DE
6048 }
6049 else
6050 {
9c541725 6051 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac
DE
6052 struct partial_symtab *pst;
6053 char *name;
6054
6055 /* Give the symtab a useful name for debug purposes. */
6056 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6057 name = xstrprintf ("<type_units_%d>",
6058 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6059 else
6060 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6061
6062 pst = create_partial_symtab (per_cu, name);
6063 pst->anonymous = 1;
f4dc4d17 6064
094b34ac
DE
6065 xfree (name);
6066 }
f4dc4d17 6067
094b34ac 6068 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 6069 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
6070
6071 return tu_group;
6072}
6073
094b34ac
DE
6074/* Look up the type_unit_group for type unit CU, and create it if necessary.
6075 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
6076
6077static struct type_unit_group *
ff39bb5e 6078get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
6079{
6080 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6081 struct type_unit_group *tu_group;
6082 void **slot;
6083 unsigned int line_offset;
6084 struct type_unit_group type_unit_group_for_lookup;
6085
6086 if (dwarf2_per_objfile->type_unit_groups == NULL)
6087 {
6088 dwarf2_per_objfile->type_unit_groups =
6089 allocate_type_unit_groups_table ();
6090 }
6091
6092 /* Do we need to create a new group, or can we use an existing one? */
6093
6094 if (stmt_list)
6095 {
6096 line_offset = DW_UNSND (stmt_list);
6097 ++tu_stats->nr_symtab_sharers;
6098 }
6099 else
6100 {
6101 /* Ugh, no stmt_list. Rare, but we have to handle it.
6102 We can do various things here like create one group per TU or
6103 spread them over multiple groups to split up the expansion work.
6104 To avoid worst case scenarios (too many groups or too large groups)
6105 we, umm, group them in bunches. */
6106 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6107 | (tu_stats->nr_stmt_less_type_units
6108 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6109 ++tu_stats->nr_stmt_less_type_units;
6110 }
6111
094b34ac 6112 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 6113 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
6114 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6115 &type_unit_group_for_lookup, INSERT);
6116 if (*slot != NULL)
6117 {
9a3c8263 6118 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
6119 gdb_assert (tu_group != NULL);
6120 }
6121 else
6122 {
9c541725 6123 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 6124 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
6125 *slot = tu_group;
6126 ++tu_stats->nr_symtabs;
6127 }
6128
6129 return tu_group;
6130}
0018ea6f
DE
6131\f
6132/* Partial symbol tables. */
6133
6134/* Create a psymtab named NAME and assign it to PER_CU.
6135
6136 The caller must fill in the following details:
6137 dirname, textlow, texthigh. */
6138
6139static struct partial_symtab *
6140create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6141{
6142 struct objfile *objfile = per_cu->objfile;
6143 struct partial_symtab *pst;
6144
18a94d75 6145 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
6146 objfile->global_psymbols.next,
6147 objfile->static_psymbols.next);
6148
6149 pst->psymtabs_addrmap_supported = 1;
6150
6151 /* This is the glue that links PST into GDB's symbol API. */
6152 pst->read_symtab_private = per_cu;
6153 pst->read_symtab = dwarf2_read_symtab;
6154 per_cu->v.psymtab = pst;
6155
6156 return pst;
6157}
6158
b93601f3
TT
6159/* The DATA object passed to process_psymtab_comp_unit_reader has this
6160 type. */
6161
6162struct process_psymtab_comp_unit_data
6163{
6164 /* True if we are reading a DW_TAG_partial_unit. */
6165
6166 int want_partial_unit;
6167
6168 /* The "pretend" language that is used if the CU doesn't declare a
6169 language. */
6170
6171 enum language pretend_language;
6172};
6173
0018ea6f
DE
6174/* die_reader_func for process_psymtab_comp_unit. */
6175
6176static void
6177process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6178 const gdb_byte *info_ptr,
0018ea6f
DE
6179 struct die_info *comp_unit_die,
6180 int has_children,
6181 void *data)
6182{
6183 struct dwarf2_cu *cu = reader->cu;
6184 struct objfile *objfile = cu->objfile;
3e29f34a 6185 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 6186 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
6187 CORE_ADDR baseaddr;
6188 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6189 struct partial_symtab *pst;
3a2b436a 6190 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 6191 const char *filename;
9a3c8263
SM
6192 struct process_psymtab_comp_unit_data *info
6193 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 6194
b93601f3 6195 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
6196 return;
6197
6198 gdb_assert (! per_cu->is_debug_types);
6199
b93601f3 6200 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
6201
6202 cu->list_in_scope = &file_symbols;
6203
6204 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
6205 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6206 if (filename == NULL)
0018ea6f 6207 filename = "";
0018ea6f
DE
6208
6209 pst = create_partial_symtab (per_cu, filename);
6210
6211 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 6212 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
6213
6214 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6215
6216 dwarf2_find_base_address (comp_unit_die, cu);
6217
6218 /* Possibly set the default values of LOWPC and HIGHPC from
6219 `DW_AT_ranges'. */
3a2b436a
JK
6220 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6221 &best_highpc, cu, pst);
6222 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6223 /* Store the contiguous range if it is not empty; it can be empty for
6224 CUs with no code. */
6225 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6226 gdbarch_adjust_dwarf2_addr (gdbarch,
6227 best_lowpc + baseaddr),
6228 gdbarch_adjust_dwarf2_addr (gdbarch,
6229 best_highpc + baseaddr) - 1,
6230 pst);
0018ea6f
DE
6231
6232 /* Check if comp unit has_children.
6233 If so, read the rest of the partial symbols from this comp unit.
6234 If not, there's no more debug_info for this comp unit. */
6235 if (has_children)
6236 {
6237 struct partial_die_info *first_die;
6238 CORE_ADDR lowpc, highpc;
6239
6240 lowpc = ((CORE_ADDR) -1);
6241 highpc = ((CORE_ADDR) 0);
6242
6243 first_die = load_partial_dies (reader, info_ptr, 1);
6244
6245 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6246 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6247
6248 /* If we didn't find a lowpc, set it to highpc to avoid
6249 complaints from `maint check'. */
6250 if (lowpc == ((CORE_ADDR) -1))
6251 lowpc = highpc;
6252
6253 /* If the compilation unit didn't have an explicit address range,
6254 then use the information extracted from its child dies. */
e385593e 6255 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6256 {
6257 best_lowpc = lowpc;
6258 best_highpc = highpc;
6259 }
6260 }
3e29f34a
MR
6261 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6262 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6263
8763cede 6264 end_psymtab_common (objfile, pst);
0018ea6f
DE
6265
6266 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6267 {
6268 int i;
6269 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6270 struct dwarf2_per_cu_data *iter;
6271
6272 /* Fill in 'dependencies' here; we fill in 'users' in a
6273 post-pass. */
6274 pst->number_of_dependencies = len;
8d749320
SM
6275 pst->dependencies =
6276 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6277 for (i = 0;
6278 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6279 i, iter);
6280 ++i)
6281 pst->dependencies[i] = iter->v.psymtab;
6282
6283 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6284 }
6285
6286 /* Get the list of files included in the current compilation unit,
6287 and build a psymtab for each of them. */
6288 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6289
b4f54984 6290 if (dwarf_read_debug)
0018ea6f
DE
6291 {
6292 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6293
6294 fprintf_unfiltered (gdb_stdlog,
6295 "Psymtab for %s unit @0x%x: %s - %s"
6296 ", %d global, %d static syms\n",
6297 per_cu->is_debug_types ? "type" : "comp",
9c541725 6298 to_underlying (per_cu->sect_off),
0018ea6f
DE
6299 paddress (gdbarch, pst->textlow),
6300 paddress (gdbarch, pst->texthigh),
6301 pst->n_global_syms, pst->n_static_syms);
6302 }
6303}
6304
6305/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6306 Process compilation unit THIS_CU for a psymtab. */
6307
6308static void
6309process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6310 int want_partial_unit,
6311 enum language pretend_language)
0018ea6f
DE
6312{
6313 /* If this compilation unit was already read in, free the
6314 cached copy in order to read it in again. This is
6315 necessary because we skipped some symbols when we first
6316 read in the compilation unit (see load_partial_dies).
6317 This problem could be avoided, but the benefit is unclear. */
6318 if (this_cu->cu != NULL)
6319 free_one_cached_comp_unit (this_cu);
6320
f1902523
JK
6321 if (this_cu->is_debug_types)
6322 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6323 NULL);
6324 else
6325 {
6326 process_psymtab_comp_unit_data info;
6327 info.want_partial_unit = want_partial_unit;
6328 info.pretend_language = pretend_language;
6329 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6330 process_psymtab_comp_unit_reader, &info);
6331 }
0018ea6f
DE
6332
6333 /* Age out any secondary CUs. */
6334 age_cached_comp_units ();
6335}
f4dc4d17
DE
6336
6337/* Reader function for build_type_psymtabs. */
6338
6339static void
6340build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6341 const gdb_byte *info_ptr,
f4dc4d17
DE
6342 struct die_info *type_unit_die,
6343 int has_children,
6344 void *data)
6345{
6346 struct objfile *objfile = dwarf2_per_objfile->objfile;
6347 struct dwarf2_cu *cu = reader->cu;
6348 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6349 struct signatured_type *sig_type;
f4dc4d17
DE
6350 struct type_unit_group *tu_group;
6351 struct attribute *attr;
6352 struct partial_die_info *first_die;
6353 CORE_ADDR lowpc, highpc;
6354 struct partial_symtab *pst;
6355
6356 gdb_assert (data == NULL);
0186c6a7
DE
6357 gdb_assert (per_cu->is_debug_types);
6358 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6359
6360 if (! has_children)
6361 return;
6362
6363 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6364 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6365
0186c6a7 6366 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6367
6368 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6369 cu->list_in_scope = &file_symbols;
6370 pst = create_partial_symtab (per_cu, "");
6371 pst->anonymous = 1;
6372
6373 first_die = load_partial_dies (reader, info_ptr, 1);
6374
6375 lowpc = (CORE_ADDR) -1;
6376 highpc = (CORE_ADDR) 0;
6377 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6378
8763cede 6379 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6380}
6381
73051182
DE
6382/* Struct used to sort TUs by their abbreviation table offset. */
6383
6384struct tu_abbrev_offset
6385{
6386 struct signatured_type *sig_type;
6387 sect_offset abbrev_offset;
6388};
6389
6390/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6391
6392static int
6393sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6394{
9a3c8263
SM
6395 const struct tu_abbrev_offset * const *a
6396 = (const struct tu_abbrev_offset * const*) ap;
6397 const struct tu_abbrev_offset * const *b
6398 = (const struct tu_abbrev_offset * const*) bp;
9c541725
PA
6399 sect_offset aoff = (*a)->abbrev_offset;
6400 sect_offset boff = (*b)->abbrev_offset;
73051182
DE
6401
6402 return (aoff > boff) - (aoff < boff);
6403}
6404
6405/* Efficiently read all the type units.
6406 This does the bulk of the work for build_type_psymtabs.
6407
6408 The efficiency is because we sort TUs by the abbrev table they use and
6409 only read each abbrev table once. In one program there are 200K TUs
6410 sharing 8K abbrev tables.
6411
6412 The main purpose of this function is to support building the
6413 dwarf2_per_objfile->type_unit_groups table.
6414 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6415 can collapse the search space by grouping them by stmt_list.
6416 The savings can be significant, in the same program from above the 200K TUs
6417 share 8K stmt_list tables.
6418
6419 FUNC is expected to call get_type_unit_group, which will create the
6420 struct type_unit_group if necessary and add it to
6421 dwarf2_per_objfile->type_unit_groups. */
6422
6423static void
6424build_type_psymtabs_1 (void)
6425{
73051182
DE
6426 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6427 struct cleanup *cleanups;
6428 struct abbrev_table *abbrev_table;
6429 sect_offset abbrev_offset;
6430 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6431 int i;
6432
6433 /* It's up to the caller to not call us multiple times. */
6434 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6435
6436 if (dwarf2_per_objfile->n_type_units == 0)
6437 return;
6438
6439 /* TUs typically share abbrev tables, and there can be way more TUs than
6440 abbrev tables. Sort by abbrev table to reduce the number of times we
6441 read each abbrev table in.
6442 Alternatives are to punt or to maintain a cache of abbrev tables.
6443 This is simpler and efficient enough for now.
6444
6445 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6446 symtab to use). Typically TUs with the same abbrev offset have the same
6447 stmt_list value too so in practice this should work well.
6448
6449 The basic algorithm here is:
6450
6451 sort TUs by abbrev table
6452 for each TU with same abbrev table:
6453 read abbrev table if first user
6454 read TU top level DIE
6455 [IWBN if DWO skeletons had DW_AT_stmt_list]
6456 call FUNC */
6457
b4f54984 6458 if (dwarf_read_debug)
73051182
DE
6459 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6460
6461 /* Sort in a separate table to maintain the order of all_type_units
6462 for .gdb_index: TU indices directly index all_type_units. */
6463 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6464 dwarf2_per_objfile->n_type_units);
6465 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6466 {
6467 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6468
6469 sorted_by_abbrev[i].sig_type = sig_type;
6470 sorted_by_abbrev[i].abbrev_offset =
6471 read_abbrev_offset (sig_type->per_cu.section,
9c541725 6472 sig_type->per_cu.sect_off);
73051182
DE
6473 }
6474 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6475 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6476 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6477
9c541725 6478 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182
DE
6479 abbrev_table = NULL;
6480 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6481
6482 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6483 {
6484 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6485
6486 /* Switch to the next abbrev table if necessary. */
6487 if (abbrev_table == NULL
9c541725 6488 || tu->abbrev_offset != abbrev_offset)
73051182
DE
6489 {
6490 if (abbrev_table != NULL)
6491 {
6492 abbrev_table_free (abbrev_table);
6493 /* Reset to NULL in case abbrev_table_read_table throws
6494 an error: abbrev_table_free_cleanup will get called. */
6495 abbrev_table = NULL;
6496 }
6497 abbrev_offset = tu->abbrev_offset;
6498 abbrev_table =
6499 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6500 abbrev_offset);
6501 ++tu_stats->nr_uniq_abbrev_tables;
6502 }
6503
6504 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6505 build_type_psymtabs_reader, NULL);
6506 }
6507
73051182 6508 do_cleanups (cleanups);
6aa5f3a6 6509}
73051182 6510
6aa5f3a6
DE
6511/* Print collected type unit statistics. */
6512
6513static void
6514print_tu_stats (void)
6515{
6516 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6517
6518 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6519 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6520 dwarf2_per_objfile->n_type_units);
6521 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6522 tu_stats->nr_uniq_abbrev_tables);
6523 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6524 tu_stats->nr_symtabs);
6525 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6526 tu_stats->nr_symtab_sharers);
6527 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6528 tu_stats->nr_stmt_less_type_units);
6529 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6530 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6531}
6532
f4dc4d17
DE
6533/* Traversal function for build_type_psymtabs. */
6534
6535static int
6536build_type_psymtab_dependencies (void **slot, void *info)
6537{
6538 struct objfile *objfile = dwarf2_per_objfile->objfile;
6539 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6540 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6541 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6542 int len = VEC_length (sig_type_ptr, tu_group->tus);
6543 struct signatured_type *iter;
f4dc4d17
DE
6544 int i;
6545
6546 gdb_assert (len > 0);
0186c6a7 6547 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6548
6549 pst->number_of_dependencies = len;
8d749320
SM
6550 pst->dependencies =
6551 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6552 for (i = 0;
0186c6a7 6553 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6554 ++i)
6555 {
0186c6a7
DE
6556 gdb_assert (iter->per_cu.is_debug_types);
6557 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6558 iter->type_unit_group = tu_group;
f4dc4d17
DE
6559 }
6560
0186c6a7 6561 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6562
6563 return 1;
6564}
6565
6566/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6567 Build partial symbol tables for the .debug_types comp-units. */
6568
6569static void
6570build_type_psymtabs (struct objfile *objfile)
6571{
0e50663e 6572 if (! create_all_type_units (objfile))
348e048f
DE
6573 return;
6574
73051182 6575 build_type_psymtabs_1 ();
6aa5f3a6 6576}
f4dc4d17 6577
6aa5f3a6
DE
6578/* Traversal function for process_skeletonless_type_unit.
6579 Read a TU in a DWO file and build partial symbols for it. */
6580
6581static int
6582process_skeletonless_type_unit (void **slot, void *info)
6583{
6584 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6585 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6586 struct signatured_type find_entry, *entry;
6587
6588 /* If this TU doesn't exist in the global table, add it and read it in. */
6589
6590 if (dwarf2_per_objfile->signatured_types == NULL)
6591 {
6592 dwarf2_per_objfile->signatured_types
6593 = allocate_signatured_type_table (objfile);
6594 }
6595
6596 find_entry.signature = dwo_unit->signature;
6597 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6598 INSERT);
6599 /* If we've already seen this type there's nothing to do. What's happening
6600 is we're doing our own version of comdat-folding here. */
6601 if (*slot != NULL)
6602 return 1;
6603
6604 /* This does the job that create_all_type_units would have done for
6605 this TU. */
6606 entry = add_type_unit (dwo_unit->signature, slot);
6607 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6608 *slot = entry;
6609
6610 /* This does the job that build_type_psymtabs_1 would have done. */
6611 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6612 build_type_psymtabs_reader, NULL);
6613
6614 return 1;
6615}
6616
6617/* Traversal function for process_skeletonless_type_units. */
6618
6619static int
6620process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6621{
6622 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6623
6624 if (dwo_file->tus != NULL)
6625 {
6626 htab_traverse_noresize (dwo_file->tus,
6627 process_skeletonless_type_unit, info);
6628 }
6629
6630 return 1;
6631}
6632
6633/* Scan all TUs of DWO files, verifying we've processed them.
6634 This is needed in case a TU was emitted without its skeleton.
6635 Note: This can't be done until we know what all the DWO files are. */
6636
6637static void
6638process_skeletonless_type_units (struct objfile *objfile)
6639{
6640 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6641 if (get_dwp_file () == NULL
6642 && dwarf2_per_objfile->dwo_files != NULL)
6643 {
6644 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6645 process_dwo_file_for_skeletonless_type_units,
6646 objfile);
6647 }
348e048f
DE
6648}
6649
95554aad
TT
6650/* Compute the 'user' field for each psymtab in OBJFILE. */
6651
6652static void
6653set_partial_user (struct objfile *objfile)
6654{
6655 int i;
6656
6657 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6658 {
8832e7e3 6659 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6660 struct partial_symtab *pst = per_cu->v.psymtab;
6661 int j;
6662
36586728
TT
6663 if (pst == NULL)
6664 continue;
6665
95554aad
TT
6666 for (j = 0; j < pst->number_of_dependencies; ++j)
6667 {
6668 /* Set the 'user' field only if it is not already set. */
6669 if (pst->dependencies[j]->user == NULL)
6670 pst->dependencies[j]->user = pst;
6671 }
6672 }
6673}
6674
93311388
DE
6675/* Build the partial symbol table by doing a quick pass through the
6676 .debug_info and .debug_abbrev sections. */
72bf9492 6677
93311388 6678static void
c67a9c90 6679dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6680{
791afaa2 6681 struct cleanup *back_to;
21b2bd31 6682 int i;
93311388 6683
b4f54984 6684 if (dwarf_read_debug)
45cfd468
DE
6685 {
6686 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6687 objfile_name (objfile));
45cfd468
DE
6688 }
6689
98bfdba5
PA
6690 dwarf2_per_objfile->reading_partial_symbols = 1;
6691
be391dca 6692 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6693
93311388
DE
6694 /* Any cached compilation units will be linked by the per-objfile
6695 read_in_chain. Make sure to free them when we're done. */
6696 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6697
348e048f
DE
6698 build_type_psymtabs (objfile);
6699
93311388 6700 create_all_comp_units (objfile);
c906108c 6701
60606b2c
TT
6702 /* Create a temporary address map on a temporary obstack. We later
6703 copy this to the final obstack. */
8268c778 6704 auto_obstack temp_obstack;
791afaa2
TT
6705
6706 scoped_restore save_psymtabs_addrmap
6707 = make_scoped_restore (&objfile->psymtabs_addrmap,
6708 addrmap_create_mutable (&temp_obstack));
72bf9492 6709
21b2bd31 6710 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6711 {
8832e7e3 6712 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6713
b93601f3 6714 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6715 }
ff013f42 6716
6aa5f3a6
DE
6717 /* This has to wait until we read the CUs, we need the list of DWOs. */
6718 process_skeletonless_type_units (objfile);
6719
6720 /* Now that all TUs have been processed we can fill in the dependencies. */
6721 if (dwarf2_per_objfile->type_unit_groups != NULL)
6722 {
6723 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6724 build_type_psymtab_dependencies, NULL);
6725 }
6726
b4f54984 6727 if (dwarf_read_debug)
6aa5f3a6
DE
6728 print_tu_stats ();
6729
95554aad
TT
6730 set_partial_user (objfile);
6731
ff013f42
JK
6732 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6733 &objfile->objfile_obstack);
791afaa2
TT
6734 /* At this point we want to keep the address map. */
6735 save_psymtabs_addrmap.release ();
ff013f42 6736
ae038cb0 6737 do_cleanups (back_to);
45cfd468 6738
b4f54984 6739 if (dwarf_read_debug)
45cfd468 6740 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6741 objfile_name (objfile));
ae038cb0
DJ
6742}
6743
3019eac3 6744/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6745
6746static void
dee91e82 6747load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6748 const gdb_byte *info_ptr,
dee91e82
DE
6749 struct die_info *comp_unit_die,
6750 int has_children,
6751 void *data)
ae038cb0 6752{
dee91e82 6753 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6754
95554aad 6755 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6756
ae038cb0
DJ
6757 /* Check if comp unit has_children.
6758 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6759 If not, there's no more debug_info for this comp unit. */
d85a05f0 6760 if (has_children)
dee91e82
DE
6761 load_partial_dies (reader, info_ptr, 0);
6762}
98bfdba5 6763
dee91e82
DE
6764/* Load the partial DIEs for a secondary CU into memory.
6765 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6766
dee91e82
DE
6767static void
6768load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6769{
f4dc4d17
DE
6770 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6771 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6772}
6773
ae038cb0 6774static void
36586728
TT
6775read_comp_units_from_section (struct objfile *objfile,
6776 struct dwarf2_section_info *section,
f1902523 6777 struct dwarf2_section_info *abbrev_section,
36586728
TT
6778 unsigned int is_dwz,
6779 int *n_allocated,
6780 int *n_comp_units,
6781 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6782{
d521ce57 6783 const gdb_byte *info_ptr;
a32a8923 6784 bfd *abfd = get_section_bfd_owner (section);
be391dca 6785
b4f54984 6786 if (dwarf_read_debug)
bf6af496 6787 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6788 get_section_name (section),
6789 get_section_file_name (section));
bf6af496 6790
36586728 6791 dwarf2_read_section (objfile, section);
ae038cb0 6792
36586728 6793 info_ptr = section->buffer;
6e70227d 6794
36586728 6795 while (info_ptr < section->buffer + section->size)
ae038cb0 6796 {
ae038cb0 6797 struct dwarf2_per_cu_data *this_cu;
ae038cb0 6798
9c541725 6799 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0 6800
f1902523
JK
6801 comp_unit_head cu_header;
6802 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
6803 info_ptr, rcuh_kind::COMPILE);
ae038cb0
DJ
6804
6805 /* Save the compilation unit for later lookup. */
f1902523
JK
6806 if (cu_header.unit_type != DW_UT_type)
6807 {
6808 this_cu = XOBNEW (&objfile->objfile_obstack,
6809 struct dwarf2_per_cu_data);
6810 memset (this_cu, 0, sizeof (*this_cu));
6811 }
6812 else
6813 {
6814 auto sig_type = XOBNEW (&objfile->objfile_obstack,
6815 struct signatured_type);
6816 memset (sig_type, 0, sizeof (*sig_type));
6817 sig_type->signature = cu_header.signature;
6818 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
6819 this_cu = &sig_type->per_cu;
6820 }
6821 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9c541725 6822 this_cu->sect_off = sect_off;
f1902523 6823 this_cu->length = cu_header.length + cu_header.initial_length_size;
36586728 6824 this_cu->is_dwz = is_dwz;
9291a0cd 6825 this_cu->objfile = objfile;
8a0459fd 6826 this_cu->section = section;
ae038cb0 6827
36586728 6828 if (*n_comp_units == *n_allocated)
ae038cb0 6829 {
36586728 6830 *n_allocated *= 2;
224c3ddb
SM
6831 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6832 *all_comp_units, *n_allocated);
ae038cb0 6833 }
36586728
TT
6834 (*all_comp_units)[*n_comp_units] = this_cu;
6835 ++*n_comp_units;
ae038cb0
DJ
6836
6837 info_ptr = info_ptr + this_cu->length;
6838 }
36586728
TT
6839}
6840
6841/* Create a list of all compilation units in OBJFILE.
6842 This is only done for -readnow and building partial symtabs. */
6843
6844static void
6845create_all_comp_units (struct objfile *objfile)
6846{
6847 int n_allocated;
6848 int n_comp_units;
6849 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6850 struct dwz_file *dwz;
36586728
TT
6851
6852 n_comp_units = 0;
6853 n_allocated = 10;
8d749320 6854 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728 6855
f1902523
JK
6856 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
6857 &dwarf2_per_objfile->abbrev, 0,
36586728
TT
6858 &n_allocated, &n_comp_units, &all_comp_units);
6859
4db1a1dc
TT
6860 dwz = dwarf2_get_dwz_file ();
6861 if (dwz != NULL)
f1902523 6862 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
4db1a1dc
TT
6863 &n_allocated, &n_comp_units,
6864 &all_comp_units);
ae038cb0 6865
8d749320
SM
6866 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6867 struct dwarf2_per_cu_data *,
6868 n_comp_units);
ae038cb0
DJ
6869 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6870 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6871 xfree (all_comp_units);
6872 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6873}
6874
5734ee8b 6875/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6876 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6877 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6878 DW_AT_ranges). See the comments of add_partial_subprogram on how
6879 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6880
72bf9492
DJ
6881static void
6882scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6883 CORE_ADDR *highpc, int set_addrmap,
6884 struct dwarf2_cu *cu)
c906108c 6885{
72bf9492 6886 struct partial_die_info *pdi;
c906108c 6887
91c24f0a
DC
6888 /* Now, march along the PDI's, descending into ones which have
6889 interesting children but skipping the children of the other ones,
6890 until we reach the end of the compilation unit. */
c906108c 6891
72bf9492 6892 pdi = first_die;
91c24f0a 6893
72bf9492
DJ
6894 while (pdi != NULL)
6895 {
6896 fixup_partial_die (pdi, cu);
c906108c 6897
f55ee35c 6898 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6899 children, so we need to look at them. Ditto for anonymous
6900 enums. */
933c6fe4 6901
72bf9492 6902 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6903 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6904 || pdi->tag == DW_TAG_imported_unit)
c906108c 6905 {
72bf9492 6906 switch (pdi->tag)
c906108c
SS
6907 {
6908 case DW_TAG_subprogram:
cdc07690 6909 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6910 break;
72929c62 6911 case DW_TAG_constant:
c906108c
SS
6912 case DW_TAG_variable:
6913 case DW_TAG_typedef:
91c24f0a 6914 case DW_TAG_union_type:
72bf9492 6915 if (!pdi->is_declaration)
63d06c5c 6916 {
72bf9492 6917 add_partial_symbol (pdi, cu);
63d06c5c
DC
6918 }
6919 break;
c906108c 6920 case DW_TAG_class_type:
680b30c7 6921 case DW_TAG_interface_type:
c906108c 6922 case DW_TAG_structure_type:
72bf9492 6923 if (!pdi->is_declaration)
c906108c 6924 {
72bf9492 6925 add_partial_symbol (pdi, cu);
c906108c 6926 }
e98c9e7c
TT
6927 if (cu->language == language_rust && pdi->has_children)
6928 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6929 set_addrmap, cu);
c906108c 6930 break;
91c24f0a 6931 case DW_TAG_enumeration_type:
72bf9492
DJ
6932 if (!pdi->is_declaration)
6933 add_partial_enumeration (pdi, cu);
c906108c
SS
6934 break;
6935 case DW_TAG_base_type:
a02abb62 6936 case DW_TAG_subrange_type:
c906108c 6937 /* File scope base type definitions are added to the partial
c5aa993b 6938 symbol table. */
72bf9492 6939 add_partial_symbol (pdi, cu);
c906108c 6940 break;
d9fa45fe 6941 case DW_TAG_namespace:
cdc07690 6942 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6943 break;
5d7cb8df 6944 case DW_TAG_module:
cdc07690 6945 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6946 break;
95554aad
TT
6947 case DW_TAG_imported_unit:
6948 {
6949 struct dwarf2_per_cu_data *per_cu;
6950
f4dc4d17
DE
6951 /* For now we don't handle imported units in type units. */
6952 if (cu->per_cu->is_debug_types)
6953 {
6954 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6955 " supported in type units [in module %s]"),
4262abfb 6956 objfile_name (cu->objfile));
f4dc4d17
DE
6957 }
6958
9c541725 6959 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
36586728 6960 pdi->is_dwz,
95554aad
TT
6961 cu->objfile);
6962
6963 /* Go read the partial unit, if needed. */
6964 if (per_cu->v.psymtab == NULL)
b93601f3 6965 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6966
f4dc4d17 6967 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6968 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6969 }
6970 break;
74921315
KS
6971 case DW_TAG_imported_declaration:
6972 add_partial_symbol (pdi, cu);
6973 break;
c906108c
SS
6974 default:
6975 break;
6976 }
6977 }
6978
72bf9492
DJ
6979 /* If the die has a sibling, skip to the sibling. */
6980
6981 pdi = pdi->die_sibling;
6982 }
6983}
6984
6985/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6986
72bf9492 6987 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 6988 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
6989 Enumerators are an exception; they use the scope of their parent
6990 enumeration type, i.e. the name of the enumeration type is not
6991 prepended to the enumerator.
91c24f0a 6992
72bf9492
DJ
6993 There are two complexities. One is DW_AT_specification; in this
6994 case "parent" means the parent of the target of the specification,
6995 instead of the direct parent of the DIE. The other is compilers
6996 which do not emit DW_TAG_namespace; in this case we try to guess
6997 the fully qualified name of structure types from their members'
6998 linkage names. This must be done using the DIE's children rather
6999 than the children of any DW_AT_specification target. We only need
7000 to do this for structures at the top level, i.e. if the target of
7001 any DW_AT_specification (if any; otherwise the DIE itself) does not
7002 have a parent. */
7003
7004/* Compute the scope prefix associated with PDI's parent, in
7005 compilation unit CU. The result will be allocated on CU's
7006 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7007 field. NULL is returned if no prefix is necessary. */
15d034d0 7008static const char *
72bf9492
DJ
7009partial_die_parent_scope (struct partial_die_info *pdi,
7010 struct dwarf2_cu *cu)
7011{
15d034d0 7012 const char *grandparent_scope;
72bf9492 7013 struct partial_die_info *parent, *real_pdi;
91c24f0a 7014
72bf9492
DJ
7015 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7016 then this means the parent of the specification DIE. */
7017
7018 real_pdi = pdi;
72bf9492 7019 while (real_pdi->has_specification)
36586728
TT
7020 real_pdi = find_partial_die (real_pdi->spec_offset,
7021 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
7022
7023 parent = real_pdi->die_parent;
7024 if (parent == NULL)
7025 return NULL;
7026
7027 if (parent->scope_set)
7028 return parent->scope;
7029
7030 fixup_partial_die (parent, cu);
7031
10b3939b 7032 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 7033
acebe513
UW
7034 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7035 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7036 Work around this problem here. */
7037 if (cu->language == language_cplus
6e70227d 7038 && parent->tag == DW_TAG_namespace
acebe513
UW
7039 && strcmp (parent->name, "::") == 0
7040 && grandparent_scope == NULL)
7041 {
7042 parent->scope = NULL;
7043 parent->scope_set = 1;
7044 return NULL;
7045 }
7046
9c6c53f7
SA
7047 if (pdi->tag == DW_TAG_enumerator)
7048 /* Enumerators should not get the name of the enumeration as a prefix. */
7049 parent->scope = grandparent_scope;
7050 else if (parent->tag == DW_TAG_namespace
f55ee35c 7051 || parent->tag == DW_TAG_module
72bf9492
DJ
7052 || parent->tag == DW_TAG_structure_type
7053 || parent->tag == DW_TAG_class_type
680b30c7 7054 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
7055 || parent->tag == DW_TAG_union_type
7056 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
7057 {
7058 if (grandparent_scope == NULL)
7059 parent->scope = parent->name;
7060 else
3e43a32a
MS
7061 parent->scope = typename_concat (&cu->comp_unit_obstack,
7062 grandparent_scope,
f55ee35c 7063 parent->name, 0, cu);
72bf9492 7064 }
72bf9492
DJ
7065 else
7066 {
7067 /* FIXME drow/2004-04-01: What should we be doing with
7068 function-local names? For partial symbols, we should probably be
7069 ignoring them. */
7070 complaint (&symfile_complaints,
e2e0b3e5 7071 _("unhandled containing DIE tag %d for DIE at %d"),
9c541725 7072 parent->tag, to_underlying (pdi->sect_off));
72bf9492 7073 parent->scope = grandparent_scope;
c906108c
SS
7074 }
7075
72bf9492
DJ
7076 parent->scope_set = 1;
7077 return parent->scope;
7078}
7079
7080/* Return the fully scoped name associated with PDI, from compilation unit
7081 CU. The result will be allocated with malloc. */
4568ecf9 7082
72bf9492
DJ
7083static char *
7084partial_die_full_name (struct partial_die_info *pdi,
7085 struct dwarf2_cu *cu)
7086{
15d034d0 7087 const char *parent_scope;
72bf9492 7088
98bfdba5
PA
7089 /* If this is a template instantiation, we can not work out the
7090 template arguments from partial DIEs. So, unfortunately, we have
7091 to go through the full DIEs. At least any work we do building
7092 types here will be reused if full symbols are loaded later. */
7093 if (pdi->has_template_arguments)
7094 {
7095 fixup_partial_die (pdi, cu);
7096
7097 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7098 {
7099 struct die_info *die;
7100 struct attribute attr;
7101 struct dwarf2_cu *ref_cu = cu;
7102
b64f50a1 7103 /* DW_FORM_ref_addr is using section offset. */
b4069958 7104 attr.name = (enum dwarf_attribute) 0;
98bfdba5 7105 attr.form = DW_FORM_ref_addr;
9c541725 7106 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
7107 die = follow_die_ref (NULL, &attr, &ref_cu);
7108
7109 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7110 }
7111 }
7112
72bf9492
DJ
7113 parent_scope = partial_die_parent_scope (pdi, cu);
7114 if (parent_scope == NULL)
7115 return NULL;
7116 else
f55ee35c 7117 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
7118}
7119
7120static void
72bf9492 7121add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 7122{
e7c27a73 7123 struct objfile *objfile = cu->objfile;
3e29f34a 7124 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 7125 CORE_ADDR addr = 0;
15d034d0 7126 const char *actual_name = NULL;
e142c38c 7127 CORE_ADDR baseaddr;
15d034d0 7128 char *built_actual_name;
e142c38c
DJ
7129
7130 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7131
15d034d0
TT
7132 built_actual_name = partial_die_full_name (pdi, cu);
7133 if (built_actual_name != NULL)
7134 actual_name = built_actual_name;
63d06c5c 7135
72bf9492
DJ
7136 if (actual_name == NULL)
7137 actual_name = pdi->name;
7138
c906108c
SS
7139 switch (pdi->tag)
7140 {
7141 case DW_TAG_subprogram:
3e29f34a 7142 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 7143 if (pdi->is_external || cu->language == language_ada)
c906108c 7144 {
2cfa0c8d
JB
7145 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7146 of the global scope. But in Ada, we want to be able to access
7147 nested procedures globally. So all Ada subprograms are stored
7148 in the global scope. */
f47fb265 7149 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7150 built_actual_name != NULL,
f47fb265
MS
7151 VAR_DOMAIN, LOC_BLOCK,
7152 &objfile->global_psymbols,
1762568f 7153 addr, cu->language, objfile);
c906108c
SS
7154 }
7155 else
7156 {
f47fb265 7157 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7158 built_actual_name != NULL,
f47fb265
MS
7159 VAR_DOMAIN, LOC_BLOCK,
7160 &objfile->static_psymbols,
1762568f 7161 addr, cu->language, objfile);
c906108c 7162 }
0c1b455e
TT
7163
7164 if (pdi->main_subprogram && actual_name != NULL)
7165 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 7166 break;
72929c62
JB
7167 case DW_TAG_constant:
7168 {
7169 struct psymbol_allocation_list *list;
7170
7171 if (pdi->is_external)
7172 list = &objfile->global_psymbols;
7173 else
7174 list = &objfile->static_psymbols;
f47fb265 7175 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7176 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 7177 list, 0, cu->language, objfile);
72929c62
JB
7178 }
7179 break;
c906108c 7180 case DW_TAG_variable:
95554aad
TT
7181 if (pdi->d.locdesc)
7182 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 7183
95554aad 7184 if (pdi->d.locdesc
caac4577
JG
7185 && addr == 0
7186 && !dwarf2_per_objfile->has_section_at_zero)
7187 {
7188 /* A global or static variable may also have been stripped
7189 out by the linker if unused, in which case its address
7190 will be nullified; do not add such variables into partial
7191 symbol table then. */
7192 }
7193 else if (pdi->is_external)
c906108c
SS
7194 {
7195 /* Global Variable.
7196 Don't enter into the minimal symbol tables as there is
7197 a minimal symbol table entry from the ELF symbols already.
7198 Enter into partial symbol table if it has a location
7199 descriptor or a type.
7200 If the location descriptor is missing, new_symbol will create
7201 a LOC_UNRESOLVED symbol, the address of the variable will then
7202 be determined from the minimal symbol table whenever the variable
7203 is referenced.
7204 The address for the partial symbol table entry is not
7205 used by GDB, but it comes in handy for debugging partial symbol
7206 table building. */
7207
95554aad 7208 if (pdi->d.locdesc || pdi->has_type)
f47fb265 7209 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7210 built_actual_name != NULL,
f47fb265
MS
7211 VAR_DOMAIN, LOC_STATIC,
7212 &objfile->global_psymbols,
1762568f 7213 addr + baseaddr,
f47fb265 7214 cu->language, objfile);
c906108c
SS
7215 }
7216 else
7217 {
ff908ebf
AW
7218 int has_loc = pdi->d.locdesc != NULL;
7219
7220 /* Static Variable. Skip symbols whose value we cannot know (those
7221 without location descriptors or constant values). */
7222 if (!has_loc && !pdi->has_const_value)
decbce07 7223 {
15d034d0 7224 xfree (built_actual_name);
decbce07
MS
7225 return;
7226 }
ff908ebf 7227
f47fb265 7228 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7229 built_actual_name != NULL,
f47fb265
MS
7230 VAR_DOMAIN, LOC_STATIC,
7231 &objfile->static_psymbols,
ff908ebf 7232 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7233 cu->language, objfile);
c906108c
SS
7234 }
7235 break;
7236 case DW_TAG_typedef:
7237 case DW_TAG_base_type:
a02abb62 7238 case DW_TAG_subrange_type:
38d518c9 7239 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7240 built_actual_name != NULL,
176620f1 7241 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7242 &objfile->static_psymbols,
1762568f 7243 0, cu->language, objfile);
c906108c 7244 break;
74921315 7245 case DW_TAG_imported_declaration:
72bf9492
DJ
7246 case DW_TAG_namespace:
7247 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7248 built_actual_name != NULL,
72bf9492
DJ
7249 VAR_DOMAIN, LOC_TYPEDEF,
7250 &objfile->global_psymbols,
1762568f 7251 0, cu->language, objfile);
72bf9492 7252 break;
530e8392
KB
7253 case DW_TAG_module:
7254 add_psymbol_to_list (actual_name, strlen (actual_name),
7255 built_actual_name != NULL,
7256 MODULE_DOMAIN, LOC_TYPEDEF,
7257 &objfile->global_psymbols,
1762568f 7258 0, cu->language, objfile);
530e8392 7259 break;
c906108c 7260 case DW_TAG_class_type:
680b30c7 7261 case DW_TAG_interface_type:
c906108c
SS
7262 case DW_TAG_structure_type:
7263 case DW_TAG_union_type:
7264 case DW_TAG_enumeration_type:
fa4028e9
JB
7265 /* Skip external references. The DWARF standard says in the section
7266 about "Structure, Union, and Class Type Entries": "An incomplete
7267 structure, union or class type is represented by a structure,
7268 union or class entry that does not have a byte size attribute
7269 and that has a DW_AT_declaration attribute." */
7270 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7271 {
15d034d0 7272 xfree (built_actual_name);
decbce07
MS
7273 return;
7274 }
fa4028e9 7275
63d06c5c
DC
7276 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7277 static vs. global. */
38d518c9 7278 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7279 built_actual_name != NULL,
176620f1 7280 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 7281 cu->language == language_cplus
63d06c5c
DC
7282 ? &objfile->global_psymbols
7283 : &objfile->static_psymbols,
1762568f 7284 0, cu->language, objfile);
c906108c 7285
c906108c
SS
7286 break;
7287 case DW_TAG_enumerator:
38d518c9 7288 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7289 built_actual_name != NULL,
176620f1 7290 VAR_DOMAIN, LOC_CONST,
9c37b5ae 7291 cu->language == language_cplus
f6fe98ef
DJ
7292 ? &objfile->global_psymbols
7293 : &objfile->static_psymbols,
1762568f 7294 0, cu->language, objfile);
c906108c
SS
7295 break;
7296 default:
7297 break;
7298 }
5c4e30ca 7299
15d034d0 7300 xfree (built_actual_name);
c906108c
SS
7301}
7302
5c4e30ca
DC
7303/* Read a partial die corresponding to a namespace; also, add a symbol
7304 corresponding to that namespace to the symbol table. NAMESPACE is
7305 the name of the enclosing namespace. */
91c24f0a 7306
72bf9492
DJ
7307static void
7308add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7309 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7310 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7311{
72bf9492 7312 /* Add a symbol for the namespace. */
e7c27a73 7313
72bf9492 7314 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7315
7316 /* Now scan partial symbols in that namespace. */
7317
91c24f0a 7318 if (pdi->has_children)
cdc07690 7319 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7320}
7321
5d7cb8df
JK
7322/* Read a partial die corresponding to a Fortran module. */
7323
7324static void
7325add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7326 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7327{
530e8392
KB
7328 /* Add a symbol for the namespace. */
7329
7330 add_partial_symbol (pdi, cu);
7331
f55ee35c 7332 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7333
7334 if (pdi->has_children)
cdc07690 7335 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7336}
7337
bc30ff58
JB
7338/* Read a partial die corresponding to a subprogram and create a partial
7339 symbol for that subprogram. When the CU language allows it, this
7340 routine also defines a partial symbol for each nested subprogram
cdc07690 7341 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7342 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7343 and highest PC values found in PDI.
6e70227d 7344
cdc07690
YQ
7345 PDI may also be a lexical block, in which case we simply search
7346 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7347 Again, this is only performed when the CU language allows this
7348 type of definitions. */
7349
7350static void
7351add_partial_subprogram (struct partial_die_info *pdi,
7352 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7353 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7354{
7355 if (pdi->tag == DW_TAG_subprogram)
7356 {
7357 if (pdi->has_pc_info)
7358 {
7359 if (pdi->lowpc < *lowpc)
7360 *lowpc = pdi->lowpc;
7361 if (pdi->highpc > *highpc)
7362 *highpc = pdi->highpc;
cdc07690 7363 if (set_addrmap)
5734ee8b 7364 {
5734ee8b 7365 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7366 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7367 CORE_ADDR baseaddr;
7368 CORE_ADDR highpc;
7369 CORE_ADDR lowpc;
5734ee8b
DJ
7370
7371 baseaddr = ANOFFSET (objfile->section_offsets,
7372 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7373 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7374 pdi->lowpc + baseaddr);
7375 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7376 pdi->highpc + baseaddr);
7377 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7378 cu->per_cu->v.psymtab);
5734ee8b 7379 }
481860b3
GB
7380 }
7381
7382 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7383 {
bc30ff58 7384 if (!pdi->is_declaration)
e8d05480
JB
7385 /* Ignore subprogram DIEs that do not have a name, they are
7386 illegal. Do not emit a complaint at this point, we will
7387 do so when we convert this psymtab into a symtab. */
7388 if (pdi->name)
7389 add_partial_symbol (pdi, cu);
bc30ff58
JB
7390 }
7391 }
6e70227d 7392
bc30ff58
JB
7393 if (! pdi->has_children)
7394 return;
7395
7396 if (cu->language == language_ada)
7397 {
7398 pdi = pdi->die_child;
7399 while (pdi != NULL)
7400 {
7401 fixup_partial_die (pdi, cu);
7402 if (pdi->tag == DW_TAG_subprogram
7403 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7404 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7405 pdi = pdi->die_sibling;
7406 }
7407 }
7408}
7409
91c24f0a
DC
7410/* Read a partial die corresponding to an enumeration type. */
7411
72bf9492
DJ
7412static void
7413add_partial_enumeration (struct partial_die_info *enum_pdi,
7414 struct dwarf2_cu *cu)
91c24f0a 7415{
72bf9492 7416 struct partial_die_info *pdi;
91c24f0a
DC
7417
7418 if (enum_pdi->name != NULL)
72bf9492
DJ
7419 add_partial_symbol (enum_pdi, cu);
7420
7421 pdi = enum_pdi->die_child;
7422 while (pdi)
91c24f0a 7423 {
72bf9492 7424 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7425 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7426 else
72bf9492
DJ
7427 add_partial_symbol (pdi, cu);
7428 pdi = pdi->die_sibling;
91c24f0a 7429 }
91c24f0a
DC
7430}
7431
6caca83c
CC
7432/* Return the initial uleb128 in the die at INFO_PTR. */
7433
7434static unsigned int
d521ce57 7435peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7436{
7437 unsigned int bytes_read;
7438
7439 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7440}
7441
4bb7a0a7
DJ
7442/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7443 Return the corresponding abbrev, or NULL if the number is zero (indicating
7444 an empty DIE). In either case *BYTES_READ will be set to the length of
7445 the initial number. */
7446
7447static struct abbrev_info *
d521ce57 7448peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7449 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7450{
7451 bfd *abfd = cu->objfile->obfd;
7452 unsigned int abbrev_number;
7453 struct abbrev_info *abbrev;
7454
7455 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7456
7457 if (abbrev_number == 0)
7458 return NULL;
7459
433df2d4 7460 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7461 if (!abbrev)
7462 {
422b9917
DE
7463 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7464 " at offset 0x%x [in module %s]"),
7465 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9c541725 7466 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
7467 }
7468
7469 return abbrev;
7470}
7471
93311388
DE
7472/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7473 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7474 DIE. Any children of the skipped DIEs will also be skipped. */
7475
d521ce57
TT
7476static const gdb_byte *
7477skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7478{
dee91e82 7479 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7480 struct abbrev_info *abbrev;
7481 unsigned int bytes_read;
7482
7483 while (1)
7484 {
7485 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7486 if (abbrev == NULL)
7487 return info_ptr + bytes_read;
7488 else
dee91e82 7489 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7490 }
7491}
7492
93311388
DE
7493/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7494 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7495 abbrev corresponding to that skipped uleb128 should be passed in
7496 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7497 children. */
7498
d521ce57
TT
7499static const gdb_byte *
7500skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7501 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7502{
7503 unsigned int bytes_read;
7504 struct attribute attr;
dee91e82
DE
7505 bfd *abfd = reader->abfd;
7506 struct dwarf2_cu *cu = reader->cu;
d521ce57 7507 const gdb_byte *buffer = reader->buffer;
f664829e 7508 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7509 unsigned int form, i;
7510
7511 for (i = 0; i < abbrev->num_attrs; i++)
7512 {
7513 /* The only abbrev we care about is DW_AT_sibling. */
7514 if (abbrev->attrs[i].name == DW_AT_sibling)
7515 {
dee91e82 7516 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7517 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7518 complaint (&symfile_complaints,
7519 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7520 else
b9502d3f 7521 {
9c541725
PA
7522 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7523 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
7524
7525 if (sibling_ptr < info_ptr)
7526 complaint (&symfile_complaints,
7527 _("DW_AT_sibling points backwards"));
22869d73
KS
7528 else if (sibling_ptr > reader->buffer_end)
7529 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7530 else
7531 return sibling_ptr;
7532 }
4bb7a0a7
DJ
7533 }
7534
7535 /* If it isn't DW_AT_sibling, skip this attribute. */
7536 form = abbrev->attrs[i].form;
7537 skip_attribute:
7538 switch (form)
7539 {
4bb7a0a7 7540 case DW_FORM_ref_addr:
ae411497
TT
7541 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7542 and later it is offset sized. */
7543 if (cu->header.version == 2)
7544 info_ptr += cu->header.addr_size;
7545 else
7546 info_ptr += cu->header.offset_size;
7547 break;
36586728
TT
7548 case DW_FORM_GNU_ref_alt:
7549 info_ptr += cu->header.offset_size;
7550 break;
ae411497 7551 case DW_FORM_addr:
4bb7a0a7
DJ
7552 info_ptr += cu->header.addr_size;
7553 break;
7554 case DW_FORM_data1:
7555 case DW_FORM_ref1:
7556 case DW_FORM_flag:
7557 info_ptr += 1;
7558 break;
2dc7f7b3 7559 case DW_FORM_flag_present:
43988095 7560 case DW_FORM_implicit_const:
2dc7f7b3 7561 break;
4bb7a0a7
DJ
7562 case DW_FORM_data2:
7563 case DW_FORM_ref2:
7564 info_ptr += 2;
7565 break;
7566 case DW_FORM_data4:
7567 case DW_FORM_ref4:
7568 info_ptr += 4;
7569 break;
7570 case DW_FORM_data8:
7571 case DW_FORM_ref8:
55f1336d 7572 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7573 info_ptr += 8;
7574 break;
0224619f
JK
7575 case DW_FORM_data16:
7576 info_ptr += 16;
7577 break;
4bb7a0a7 7578 case DW_FORM_string:
9b1c24c8 7579 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7580 info_ptr += bytes_read;
7581 break;
2dc7f7b3 7582 case DW_FORM_sec_offset:
4bb7a0a7 7583 case DW_FORM_strp:
36586728 7584 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7585 info_ptr += cu->header.offset_size;
7586 break;
2dc7f7b3 7587 case DW_FORM_exprloc:
4bb7a0a7
DJ
7588 case DW_FORM_block:
7589 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7590 info_ptr += bytes_read;
7591 break;
7592 case DW_FORM_block1:
7593 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7594 break;
7595 case DW_FORM_block2:
7596 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7597 break;
7598 case DW_FORM_block4:
7599 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7600 break;
7601 case DW_FORM_sdata:
7602 case DW_FORM_udata:
7603 case DW_FORM_ref_udata:
3019eac3
DE
7604 case DW_FORM_GNU_addr_index:
7605 case DW_FORM_GNU_str_index:
d521ce57 7606 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7607 break;
7608 case DW_FORM_indirect:
7609 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7610 info_ptr += bytes_read;
7611 /* We need to continue parsing from here, so just go back to
7612 the top. */
7613 goto skip_attribute;
7614
7615 default:
3e43a32a
MS
7616 error (_("Dwarf Error: Cannot handle %s "
7617 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7618 dwarf_form_name (form),
7619 bfd_get_filename (abfd));
7620 }
7621 }
7622
7623 if (abbrev->has_children)
dee91e82 7624 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7625 else
7626 return info_ptr;
7627}
7628
93311388 7629/* Locate ORIG_PDI's sibling.
dee91e82 7630 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7631
d521ce57 7632static const gdb_byte *
dee91e82
DE
7633locate_pdi_sibling (const struct die_reader_specs *reader,
7634 struct partial_die_info *orig_pdi,
d521ce57 7635 const gdb_byte *info_ptr)
91c24f0a
DC
7636{
7637 /* Do we know the sibling already? */
72bf9492 7638
91c24f0a
DC
7639 if (orig_pdi->sibling)
7640 return orig_pdi->sibling;
7641
7642 /* Are there any children to deal with? */
7643
7644 if (!orig_pdi->has_children)
7645 return info_ptr;
7646
4bb7a0a7 7647 /* Skip the children the long way. */
91c24f0a 7648
dee91e82 7649 return skip_children (reader, info_ptr);
91c24f0a
DC
7650}
7651
257e7a09 7652/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7653 not NULL. */
c906108c
SS
7654
7655static void
257e7a09
YQ
7656dwarf2_read_symtab (struct partial_symtab *self,
7657 struct objfile *objfile)
c906108c 7658{
257e7a09 7659 if (self->readin)
c906108c 7660 {
442e4d9c 7661 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7662 self->filename);
442e4d9c
YQ
7663 }
7664 else
7665 {
7666 if (info_verbose)
c906108c 7667 {
442e4d9c 7668 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7669 self->filename);
442e4d9c 7670 gdb_flush (gdb_stdout);
c906108c 7671 }
c906108c 7672
442e4d9c 7673 /* Restore our global data. */
9a3c8263
SM
7674 dwarf2_per_objfile
7675 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7676 dwarf2_objfile_data_key);
10b3939b 7677
442e4d9c
YQ
7678 /* If this psymtab is constructed from a debug-only objfile, the
7679 has_section_at_zero flag will not necessarily be correct. We
7680 can get the correct value for this flag by looking at the data
7681 associated with the (presumably stripped) associated objfile. */
7682 if (objfile->separate_debug_objfile_backlink)
7683 {
7684 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7685 = ((struct dwarf2_per_objfile *)
7686 objfile_data (objfile->separate_debug_objfile_backlink,
7687 dwarf2_objfile_data_key));
9a619af0 7688
442e4d9c
YQ
7689 dwarf2_per_objfile->has_section_at_zero
7690 = dpo_backlink->has_section_at_zero;
7691 }
b2ab525c 7692
442e4d9c 7693 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7694
257e7a09 7695 psymtab_to_symtab_1 (self);
c906108c 7696
442e4d9c
YQ
7697 /* Finish up the debug error message. */
7698 if (info_verbose)
7699 printf_filtered (_("done.\n"));
c906108c 7700 }
95554aad
TT
7701
7702 process_cu_includes ();
c906108c 7703}
9cdd5dbd
DE
7704\f
7705/* Reading in full CUs. */
c906108c 7706
10b3939b
DJ
7707/* Add PER_CU to the queue. */
7708
7709static void
95554aad
TT
7710queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7711 enum language pretend_language)
10b3939b
DJ
7712{
7713 struct dwarf2_queue_item *item;
7714
7715 per_cu->queued = 1;
8d749320 7716 item = XNEW (struct dwarf2_queue_item);
10b3939b 7717 item->per_cu = per_cu;
95554aad 7718 item->pretend_language = pretend_language;
10b3939b
DJ
7719 item->next = NULL;
7720
7721 if (dwarf2_queue == NULL)
7722 dwarf2_queue = item;
7723 else
7724 dwarf2_queue_tail->next = item;
7725
7726 dwarf2_queue_tail = item;
7727}
7728
89e63ee4
DE
7729/* If PER_CU is not yet queued, add it to the queue.
7730 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7731 dependency.
0907af0c 7732 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7733 meaning either PER_CU is already queued or it is already loaded.
7734
7735 N.B. There is an invariant here that if a CU is queued then it is loaded.
7736 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7737
7738static int
89e63ee4 7739maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7740 struct dwarf2_per_cu_data *per_cu,
7741 enum language pretend_language)
7742{
7743 /* We may arrive here during partial symbol reading, if we need full
7744 DIEs to process an unusual case (e.g. template arguments). Do
7745 not queue PER_CU, just tell our caller to load its DIEs. */
7746 if (dwarf2_per_objfile->reading_partial_symbols)
7747 {
7748 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7749 return 1;
7750 return 0;
7751 }
7752
7753 /* Mark the dependence relation so that we don't flush PER_CU
7754 too early. */
89e63ee4
DE
7755 if (dependent_cu != NULL)
7756 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7757
7758 /* If it's already on the queue, we have nothing to do. */
7759 if (per_cu->queued)
7760 return 0;
7761
7762 /* If the compilation unit is already loaded, just mark it as
7763 used. */
7764 if (per_cu->cu != NULL)
7765 {
7766 per_cu->cu->last_used = 0;
7767 return 0;
7768 }
7769
7770 /* Add it to the queue. */
7771 queue_comp_unit (per_cu, pretend_language);
7772
7773 return 1;
7774}
7775
10b3939b
DJ
7776/* Process the queue. */
7777
7778static void
a0f42c21 7779process_queue (void)
10b3939b
DJ
7780{
7781 struct dwarf2_queue_item *item, *next_item;
7782
b4f54984 7783 if (dwarf_read_debug)
45cfd468
DE
7784 {
7785 fprintf_unfiltered (gdb_stdlog,
7786 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7787 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7788 }
7789
03dd20cc
DJ
7790 /* The queue starts out with one item, but following a DIE reference
7791 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7792 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7793 {
cc12ce38
DE
7794 if ((dwarf2_per_objfile->using_index
7795 ? !item->per_cu->v.quick->compunit_symtab
7796 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7797 /* Skip dummy CUs. */
7798 && item->per_cu->cu != NULL)
f4dc4d17
DE
7799 {
7800 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7801 unsigned int debug_print_threshold;
247f5c4f 7802 char buf[100];
f4dc4d17 7803
247f5c4f 7804 if (per_cu->is_debug_types)
f4dc4d17 7805 {
247f5c4f
DE
7806 struct signatured_type *sig_type =
7807 (struct signatured_type *) per_cu;
7808
7809 sprintf (buf, "TU %s at offset 0x%x",
73be47f5 7810 hex_string (sig_type->signature),
9c541725 7811 to_underlying (per_cu->sect_off));
73be47f5
DE
7812 /* There can be 100s of TUs.
7813 Only print them in verbose mode. */
7814 debug_print_threshold = 2;
f4dc4d17 7815 }
247f5c4f 7816 else
73be47f5 7817 {
9c541725
PA
7818 sprintf (buf, "CU at offset 0x%x",
7819 to_underlying (per_cu->sect_off));
73be47f5
DE
7820 debug_print_threshold = 1;
7821 }
247f5c4f 7822
b4f54984 7823 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7824 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7825
7826 if (per_cu->is_debug_types)
7827 process_full_type_unit (per_cu, item->pretend_language);
7828 else
7829 process_full_comp_unit (per_cu, item->pretend_language);
7830
b4f54984 7831 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7832 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7833 }
10b3939b
DJ
7834
7835 item->per_cu->queued = 0;
7836 next_item = item->next;
7837 xfree (item);
7838 }
7839
7840 dwarf2_queue_tail = NULL;
45cfd468 7841
b4f54984 7842 if (dwarf_read_debug)
45cfd468
DE
7843 {
7844 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7845 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7846 }
10b3939b
DJ
7847}
7848
7849/* Free all allocated queue entries. This function only releases anything if
7850 an error was thrown; if the queue was processed then it would have been
7851 freed as we went along. */
7852
7853static void
7854dwarf2_release_queue (void *dummy)
7855{
7856 struct dwarf2_queue_item *item, *last;
7857
7858 item = dwarf2_queue;
7859 while (item)
7860 {
7861 /* Anything still marked queued is likely to be in an
7862 inconsistent state, so discard it. */
7863 if (item->per_cu->queued)
7864 {
7865 if (item->per_cu->cu != NULL)
dee91e82 7866 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7867 item->per_cu->queued = 0;
7868 }
7869
7870 last = item;
7871 item = item->next;
7872 xfree (last);
7873 }
7874
7875 dwarf2_queue = dwarf2_queue_tail = NULL;
7876}
7877
7878/* Read in full symbols for PST, and anything it depends on. */
7879
c906108c 7880static void
fba45db2 7881psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7882{
10b3939b 7883 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7884 int i;
7885
95554aad
TT
7886 if (pst->readin)
7887 return;
7888
aaa75496 7889 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7890 if (!pst->dependencies[i]->readin
7891 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7892 {
7893 /* Inform about additional files that need to be read in. */
7894 if (info_verbose)
7895 {
a3f17187 7896 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7897 fputs_filtered (" ", gdb_stdout);
7898 wrap_here ("");
7899 fputs_filtered ("and ", gdb_stdout);
7900 wrap_here ("");
7901 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7902 wrap_here (""); /* Flush output. */
aaa75496
JB
7903 gdb_flush (gdb_stdout);
7904 }
7905 psymtab_to_symtab_1 (pst->dependencies[i]);
7906 }
7907
9a3c8263 7908 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7909
7910 if (per_cu == NULL)
aaa75496
JB
7911 {
7912 /* It's an include file, no symbols to read for it.
7913 Everything is in the parent symtab. */
7914 pst->readin = 1;
7915 return;
7916 }
c906108c 7917
a0f42c21 7918 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7919}
7920
dee91e82
DE
7921/* Trivial hash function for die_info: the hash value of a DIE
7922 is its offset in .debug_info for this objfile. */
10b3939b 7923
dee91e82
DE
7924static hashval_t
7925die_hash (const void *item)
10b3939b 7926{
9a3c8263 7927 const struct die_info *die = (const struct die_info *) item;
6502dd73 7928
9c541725 7929 return to_underlying (die->sect_off);
dee91e82 7930}
63d06c5c 7931
dee91e82
DE
7932/* Trivial comparison function for die_info structures: two DIEs
7933 are equal if they have the same offset. */
98bfdba5 7934
dee91e82
DE
7935static int
7936die_eq (const void *item_lhs, const void *item_rhs)
7937{
9a3c8263
SM
7938 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7939 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7940
9c541725 7941 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 7942}
c906108c 7943
dee91e82
DE
7944/* die_reader_func for load_full_comp_unit.
7945 This is identical to read_signatured_type_reader,
7946 but is kept separate for now. */
c906108c 7947
dee91e82
DE
7948static void
7949load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7950 const gdb_byte *info_ptr,
dee91e82
DE
7951 struct die_info *comp_unit_die,
7952 int has_children,
7953 void *data)
7954{
7955 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7956 enum language *language_ptr = (enum language *) data;
6caca83c 7957
dee91e82
DE
7958 gdb_assert (cu->die_hash == NULL);
7959 cu->die_hash =
7960 htab_create_alloc_ex (cu->header.length / 12,
7961 die_hash,
7962 die_eq,
7963 NULL,
7964 &cu->comp_unit_obstack,
7965 hashtab_obstack_allocate,
7966 dummy_obstack_deallocate);
e142c38c 7967
dee91e82
DE
7968 if (has_children)
7969 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7970 &info_ptr, comp_unit_die);
7971 cu->dies = comp_unit_die;
7972 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7973
7974 /* We try not to read any attributes in this function, because not
9cdd5dbd 7975 all CUs needed for references have been loaded yet, and symbol
10b3939b 7976 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7977 or we won't be able to build types correctly.
7978 Similarly, if we do not read the producer, we can not apply
7979 producer-specific interpretation. */
95554aad 7980 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7981}
10b3939b 7982
dee91e82 7983/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7984
dee91e82 7985static void
95554aad
TT
7986load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7987 enum language pretend_language)
dee91e82 7988{
3019eac3 7989 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7990
f4dc4d17
DE
7991 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7992 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7993}
7994
3da10d80
KS
7995/* Add a DIE to the delayed physname list. */
7996
7997static void
7998add_to_method_list (struct type *type, int fnfield_index, int index,
7999 const char *name, struct die_info *die,
8000 struct dwarf2_cu *cu)
8001{
8002 struct delayed_method_info mi;
8003 mi.type = type;
8004 mi.fnfield_index = fnfield_index;
8005 mi.index = index;
8006 mi.name = name;
8007 mi.die = die;
8008 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8009}
8010
8011/* A cleanup for freeing the delayed method list. */
8012
8013static void
8014free_delayed_list (void *ptr)
8015{
8016 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8017 if (cu->method_list != NULL)
8018 {
8019 VEC_free (delayed_method_info, cu->method_list);
8020 cu->method_list = NULL;
8021 }
8022}
8023
3693fdb3
PA
8024/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8025 "const" / "volatile". If so, decrements LEN by the length of the
8026 modifier and return true. Otherwise return false. */
8027
8028template<size_t N>
8029static bool
8030check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8031{
8032 size_t mod_len = sizeof (mod) - 1;
8033 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8034 {
8035 len -= mod_len;
8036 return true;
8037 }
8038 return false;
8039}
8040
3da10d80
KS
8041/* Compute the physnames of any methods on the CU's method list.
8042
8043 The computation of method physnames is delayed in order to avoid the
8044 (bad) condition that one of the method's formal parameters is of an as yet
8045 incomplete type. */
8046
8047static void
8048compute_delayed_physnames (struct dwarf2_cu *cu)
8049{
8050 int i;
8051 struct delayed_method_info *mi;
3693fdb3
PA
8052
8053 /* Only C++ delays computing physnames. */
8054 if (VEC_empty (delayed_method_info, cu->method_list))
8055 return;
8056 gdb_assert (cu->language == language_cplus);
8057
3da10d80
KS
8058 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8059 {
1d06ead6 8060 const char *physname;
3da10d80
KS
8061 struct fn_fieldlist *fn_flp
8062 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 8063 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
8064 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8065 = physname ? physname : "";
3693fdb3
PA
8066
8067 /* Since there's no tag to indicate whether a method is a
8068 const/volatile overload, extract that information out of the
8069 demangled name. */
8070 if (physname != NULL)
8071 {
8072 size_t len = strlen (physname);
8073
8074 while (1)
8075 {
8076 if (physname[len] == ')') /* shortcut */
8077 break;
8078 else if (check_modifier (physname, len, " const"))
8079 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8080 else if (check_modifier (physname, len, " volatile"))
8081 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8082 else
8083 break;
8084 }
8085 }
3da10d80
KS
8086 }
8087}
8088
a766d390
DE
8089/* Go objects should be embedded in a DW_TAG_module DIE,
8090 and it's not clear if/how imported objects will appear.
8091 To keep Go support simple until that's worked out,
8092 go back through what we've read and create something usable.
8093 We could do this while processing each DIE, and feels kinda cleaner,
8094 but that way is more invasive.
8095 This is to, for example, allow the user to type "p var" or "b main"
8096 without having to specify the package name, and allow lookups
8097 of module.object to work in contexts that use the expression
8098 parser. */
8099
8100static void
8101fixup_go_packaging (struct dwarf2_cu *cu)
8102{
8103 char *package_name = NULL;
8104 struct pending *list;
8105 int i;
8106
8107 for (list = global_symbols; list != NULL; list = list->next)
8108 {
8109 for (i = 0; i < list->nsyms; ++i)
8110 {
8111 struct symbol *sym = list->symbol[i];
8112
8113 if (SYMBOL_LANGUAGE (sym) == language_go
8114 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8115 {
8116 char *this_package_name = go_symbol_package_name (sym);
8117
8118 if (this_package_name == NULL)
8119 continue;
8120 if (package_name == NULL)
8121 package_name = this_package_name;
8122 else
8123 {
8124 if (strcmp (package_name, this_package_name) != 0)
8125 complaint (&symfile_complaints,
8126 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
8127 (symbol_symtab (sym) != NULL
8128 ? symtab_to_filename_for_display
8129 (symbol_symtab (sym))
4262abfb 8130 : objfile_name (cu->objfile)),
a766d390
DE
8131 this_package_name, package_name);
8132 xfree (this_package_name);
8133 }
8134 }
8135 }
8136 }
8137
8138 if (package_name != NULL)
8139 {
8140 struct objfile *objfile = cu->objfile;
34a68019 8141 const char *saved_package_name
224c3ddb
SM
8142 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8143 package_name,
8144 strlen (package_name));
19f392bc
UW
8145 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8146 saved_package_name);
a766d390
DE
8147 struct symbol *sym;
8148
8149 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8150
e623cf5d 8151 sym = allocate_symbol (objfile);
f85f34ed 8152 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
8153 SYMBOL_SET_NAMES (sym, saved_package_name,
8154 strlen (saved_package_name), 0, objfile);
a766d390
DE
8155 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8156 e.g., "main" finds the "main" module and not C's main(). */
8157 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 8158 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
8159 SYMBOL_TYPE (sym) = type;
8160
8161 add_symbol_to_list (sym, &global_symbols);
8162
8163 xfree (package_name);
8164 }
8165}
8166
95554aad
TT
8167/* Return the symtab for PER_CU. This works properly regardless of
8168 whether we're using the index or psymtabs. */
8169
43f3e411
DE
8170static struct compunit_symtab *
8171get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
8172{
8173 return (dwarf2_per_objfile->using_index
43f3e411
DE
8174 ? per_cu->v.quick->compunit_symtab
8175 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
8176}
8177
8178/* A helper function for computing the list of all symbol tables
8179 included by PER_CU. */
8180
8181static void
43f3e411 8182recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 8183 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 8184 struct dwarf2_per_cu_data *per_cu,
43f3e411 8185 struct compunit_symtab *immediate_parent)
95554aad
TT
8186{
8187 void **slot;
8188 int ix;
43f3e411 8189 struct compunit_symtab *cust;
95554aad
TT
8190 struct dwarf2_per_cu_data *iter;
8191
8192 slot = htab_find_slot (all_children, per_cu, INSERT);
8193 if (*slot != NULL)
8194 {
8195 /* This inclusion and its children have been processed. */
8196 return;
8197 }
8198
8199 *slot = per_cu;
8200 /* Only add a CU if it has a symbol table. */
43f3e411
DE
8201 cust = get_compunit_symtab (per_cu);
8202 if (cust != NULL)
ec94af83
DE
8203 {
8204 /* If this is a type unit only add its symbol table if we haven't
8205 seen it yet (type unit per_cu's can share symtabs). */
8206 if (per_cu->is_debug_types)
8207 {
43f3e411 8208 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
8209 if (*slot == NULL)
8210 {
43f3e411
DE
8211 *slot = cust;
8212 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8213 if (cust->user == NULL)
8214 cust->user = immediate_parent;
ec94af83
DE
8215 }
8216 }
8217 else
f9125b6c 8218 {
43f3e411
DE
8219 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8220 if (cust->user == NULL)
8221 cust->user = immediate_parent;
f9125b6c 8222 }
ec94af83 8223 }
95554aad
TT
8224
8225 for (ix = 0;
796a7ff8 8226 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 8227 ++ix)
ec94af83
DE
8228 {
8229 recursively_compute_inclusions (result, all_children,
43f3e411 8230 all_type_symtabs, iter, cust);
ec94af83 8231 }
95554aad
TT
8232}
8233
43f3e411 8234/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
8235 PER_CU. */
8236
8237static void
43f3e411 8238compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 8239{
f4dc4d17
DE
8240 gdb_assert (! per_cu->is_debug_types);
8241
796a7ff8 8242 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
8243 {
8244 int ix, len;
ec94af83 8245 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
8246 struct compunit_symtab *compunit_symtab_iter;
8247 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 8248 htab_t all_children, all_type_symtabs;
43f3e411 8249 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
8250
8251 /* If we don't have a symtab, we can just skip this case. */
43f3e411 8252 if (cust == NULL)
95554aad
TT
8253 return;
8254
8255 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8256 NULL, xcalloc, xfree);
ec94af83
DE
8257 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8258 NULL, xcalloc, xfree);
95554aad
TT
8259
8260 for (ix = 0;
796a7ff8 8261 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 8262 ix, per_cu_iter);
95554aad 8263 ++ix)
ec94af83
DE
8264 {
8265 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 8266 all_type_symtabs, per_cu_iter,
43f3e411 8267 cust);
ec94af83 8268 }
95554aad 8269
ec94af83 8270 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
8271 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8272 cust->includes
8d749320
SM
8273 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8274 struct compunit_symtab *, len + 1);
95554aad 8275 for (ix = 0;
43f3e411
DE
8276 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8277 compunit_symtab_iter);
95554aad 8278 ++ix)
43f3e411
DE
8279 cust->includes[ix] = compunit_symtab_iter;
8280 cust->includes[len] = NULL;
95554aad 8281
43f3e411 8282 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8283 htab_delete (all_children);
ec94af83 8284 htab_delete (all_type_symtabs);
95554aad
TT
8285 }
8286}
8287
8288/* Compute the 'includes' field for the symtabs of all the CUs we just
8289 read. */
8290
8291static void
8292process_cu_includes (void)
8293{
8294 int ix;
8295 struct dwarf2_per_cu_data *iter;
8296
8297 for (ix = 0;
8298 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8299 ix, iter);
8300 ++ix)
f4dc4d17
DE
8301 {
8302 if (! iter->is_debug_types)
43f3e411 8303 compute_compunit_symtab_includes (iter);
f4dc4d17 8304 }
95554aad
TT
8305
8306 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8307}
8308
9cdd5dbd 8309/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8310 already been loaded into memory. */
8311
8312static void
95554aad
TT
8313process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8314 enum language pretend_language)
10b3939b 8315{
10b3939b 8316 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8317 struct objfile *objfile = per_cu->objfile;
3e29f34a 8318 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8319 CORE_ADDR lowpc, highpc;
43f3e411 8320 struct compunit_symtab *cust;
3da10d80 8321 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8322 CORE_ADDR baseaddr;
4359dff1 8323 struct block *static_block;
3e29f34a 8324 CORE_ADDR addr;
10b3939b
DJ
8325
8326 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8327
10b3939b
DJ
8328 buildsym_init ();
8329 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8330 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8331
8332 cu->list_in_scope = &file_symbols;
c906108c 8333
95554aad
TT
8334 cu->language = pretend_language;
8335 cu->language_defn = language_def (cu->language);
8336
c906108c 8337 /* Do line number decoding in read_file_scope () */
10b3939b 8338 process_die (cu->dies, cu);
c906108c 8339
a766d390
DE
8340 /* For now fudge the Go package. */
8341 if (cu->language == language_go)
8342 fixup_go_packaging (cu);
8343
3da10d80
KS
8344 /* Now that we have processed all the DIEs in the CU, all the types
8345 should be complete, and it should now be safe to compute all of the
8346 physnames. */
8347 compute_delayed_physnames (cu);
8348 do_cleanups (delayed_list_cleanup);
8349
fae299cd
DC
8350 /* Some compilers don't define a DW_AT_high_pc attribute for the
8351 compilation unit. If the DW_AT_high_pc is missing, synthesize
8352 it, by scanning the DIE's below the compilation unit. */
10b3939b 8353 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8354
3e29f34a
MR
8355 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8356 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8357
8358 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8359 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8360 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8361 addrmap to help ensure it has an accurate map of pc values belonging to
8362 this comp unit. */
8363 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8364
43f3e411
DE
8365 cust = end_symtab_from_static_block (static_block,
8366 SECT_OFF_TEXT (objfile), 0);
c906108c 8367
43f3e411 8368 if (cust != NULL)
c906108c 8369 {
df15bd07 8370 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8371
8be455d7
JK
8372 /* Set symtab language to language from DW_AT_language. If the
8373 compilation is from a C file generated by language preprocessors, do
8374 not set the language if it was already deduced by start_subfile. */
43f3e411 8375 if (!(cu->language == language_c
40e3ad0e 8376 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8377 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8378
8379 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8380 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8381 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8382 there were bugs in prologue debug info, fixed later in GCC-4.5
8383 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8384
8385 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8386 needed, it would be wrong due to missing DW_AT_producer there.
8387
8388 Still one can confuse GDB by using non-standard GCC compilation
8389 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8390 */
ab260dad 8391 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8392 cust->locations_valid = 1;
e0d00bc7
JK
8393
8394 if (gcc_4_minor >= 5)
43f3e411 8395 cust->epilogue_unwind_valid = 1;
96408a79 8396
43f3e411 8397 cust->call_site_htab = cu->call_site_htab;
c906108c 8398 }
9291a0cd
TT
8399
8400 if (dwarf2_per_objfile->using_index)
43f3e411 8401 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8402 else
8403 {
8404 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8405 pst->compunit_symtab = cust;
9291a0cd
TT
8406 pst->readin = 1;
8407 }
c906108c 8408
95554aad
TT
8409 /* Push it for inclusion processing later. */
8410 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8411
c906108c 8412 do_cleanups (back_to);
f4dc4d17 8413}
45cfd468 8414
f4dc4d17
DE
8415/* Generate full symbol information for type unit PER_CU, whose DIEs have
8416 already been loaded into memory. */
8417
8418static void
8419process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8420 enum language pretend_language)
8421{
8422 struct dwarf2_cu *cu = per_cu->cu;
8423 struct objfile *objfile = per_cu->objfile;
43f3e411 8424 struct compunit_symtab *cust;
f4dc4d17 8425 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8426 struct signatured_type *sig_type;
8427
8428 gdb_assert (per_cu->is_debug_types);
8429 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8430
8431 buildsym_init ();
8432 back_to = make_cleanup (really_free_pendings, NULL);
8433 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8434
8435 cu->list_in_scope = &file_symbols;
8436
8437 cu->language = pretend_language;
8438 cu->language_defn = language_def (cu->language);
8439
8440 /* The symbol tables are set up in read_type_unit_scope. */
8441 process_die (cu->dies, cu);
8442
8443 /* For now fudge the Go package. */
8444 if (cu->language == language_go)
8445 fixup_go_packaging (cu);
8446
8447 /* Now that we have processed all the DIEs in the CU, all the types
8448 should be complete, and it should now be safe to compute all of the
8449 physnames. */
8450 compute_delayed_physnames (cu);
8451 do_cleanups (delayed_list_cleanup);
8452
8453 /* TUs share symbol tables.
8454 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8455 of it with end_expandable_symtab. Otherwise, complete the addition of
8456 this TU's symbols to the existing symtab. */
43f3e411 8457 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8458 {
43f3e411
DE
8459 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8460 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8461
43f3e411 8462 if (cust != NULL)
f4dc4d17
DE
8463 {
8464 /* Set symtab language to language from DW_AT_language. If the
8465 compilation is from a C file generated by language preprocessors,
8466 do not set the language if it was already deduced by
8467 start_subfile. */
43f3e411
DE
8468 if (!(cu->language == language_c
8469 && COMPUNIT_FILETABS (cust)->language != language_c))
8470 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8471 }
8472 }
8473 else
8474 {
0ab9ce85 8475 augment_type_symtab ();
43f3e411 8476 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8477 }
8478
8479 if (dwarf2_per_objfile->using_index)
43f3e411 8480 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8481 else
8482 {
8483 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8484 pst->compunit_symtab = cust;
f4dc4d17 8485 pst->readin = 1;
45cfd468 8486 }
f4dc4d17
DE
8487
8488 do_cleanups (back_to);
c906108c
SS
8489}
8490
95554aad
TT
8491/* Process an imported unit DIE. */
8492
8493static void
8494process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8495{
8496 struct attribute *attr;
8497
f4dc4d17
DE
8498 /* For now we don't handle imported units in type units. */
8499 if (cu->per_cu->is_debug_types)
8500 {
8501 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8502 " supported in type units [in module %s]"),
4262abfb 8503 objfile_name (cu->objfile));
f4dc4d17
DE
8504 }
8505
95554aad
TT
8506 attr = dwarf2_attr (die, DW_AT_import, cu);
8507 if (attr != NULL)
8508 {
9c541725
PA
8509 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8510 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8511 dwarf2_per_cu_data *per_cu
8512 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
95554aad 8513
69d751e3 8514 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8515 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8516 load_full_comp_unit (per_cu, cu->language);
8517
796a7ff8 8518 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8519 per_cu);
8520 }
8521}
8522
4c8aa72d
PA
8523/* RAII object that represents a process_die scope: i.e.,
8524 starts/finishes processing a DIE. */
8525class process_die_scope
adde2bff 8526{
4c8aa72d
PA
8527public:
8528 process_die_scope (die_info *die, dwarf2_cu *cu)
8529 : m_die (die), m_cu (cu)
8530 {
8531 /* We should only be processing DIEs not already in process. */
8532 gdb_assert (!m_die->in_process);
8533 m_die->in_process = true;
8534 }
8c3cb9fa 8535
4c8aa72d
PA
8536 ~process_die_scope ()
8537 {
8538 m_die->in_process = false;
8539
8540 /* If we're done processing the DIE for the CU that owns the line
8541 header, we don't need the line header anymore. */
8542 if (m_cu->line_header_die_owner == m_die)
8543 {
8544 delete m_cu->line_header;
8545 m_cu->line_header = NULL;
8546 m_cu->line_header_die_owner = NULL;
8547 }
8548 }
8549
8550private:
8551 die_info *m_die;
8552 dwarf2_cu *m_cu;
8553};
adde2bff 8554
c906108c
SS
8555/* Process a die and its children. */
8556
8557static void
e7c27a73 8558process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8559{
4c8aa72d 8560 process_die_scope scope (die, cu);
adde2bff 8561
c906108c
SS
8562 switch (die->tag)
8563 {
8564 case DW_TAG_padding:
8565 break;
8566 case DW_TAG_compile_unit:
95554aad 8567 case DW_TAG_partial_unit:
e7c27a73 8568 read_file_scope (die, cu);
c906108c 8569 break;
348e048f
DE
8570 case DW_TAG_type_unit:
8571 read_type_unit_scope (die, cu);
8572 break;
c906108c 8573 case DW_TAG_subprogram:
c906108c 8574 case DW_TAG_inlined_subroutine:
edb3359d 8575 read_func_scope (die, cu);
c906108c
SS
8576 break;
8577 case DW_TAG_lexical_block:
14898363
L
8578 case DW_TAG_try_block:
8579 case DW_TAG_catch_block:
e7c27a73 8580 read_lexical_block_scope (die, cu);
c906108c 8581 break;
216f72a1 8582 case DW_TAG_call_site:
96408a79
SA
8583 case DW_TAG_GNU_call_site:
8584 read_call_site_scope (die, cu);
8585 break;
c906108c 8586 case DW_TAG_class_type:
680b30c7 8587 case DW_TAG_interface_type:
c906108c
SS
8588 case DW_TAG_structure_type:
8589 case DW_TAG_union_type:
134d01f1 8590 process_structure_scope (die, cu);
c906108c
SS
8591 break;
8592 case DW_TAG_enumeration_type:
134d01f1 8593 process_enumeration_scope (die, cu);
c906108c 8594 break;
134d01f1 8595
f792889a
DJ
8596 /* These dies have a type, but processing them does not create
8597 a symbol or recurse to process the children. Therefore we can
8598 read them on-demand through read_type_die. */
c906108c 8599 case DW_TAG_subroutine_type:
72019c9c 8600 case DW_TAG_set_type:
c906108c 8601 case DW_TAG_array_type:
c906108c 8602 case DW_TAG_pointer_type:
c906108c 8603 case DW_TAG_ptr_to_member_type:
c906108c 8604 case DW_TAG_reference_type:
4297a3f0 8605 case DW_TAG_rvalue_reference_type:
c906108c 8606 case DW_TAG_string_type:
c906108c 8607 break;
134d01f1 8608
c906108c 8609 case DW_TAG_base_type:
a02abb62 8610 case DW_TAG_subrange_type:
cb249c71 8611 case DW_TAG_typedef:
134d01f1
DJ
8612 /* Add a typedef symbol for the type definition, if it has a
8613 DW_AT_name. */
f792889a 8614 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8615 break;
c906108c 8616 case DW_TAG_common_block:
e7c27a73 8617 read_common_block (die, cu);
c906108c
SS
8618 break;
8619 case DW_TAG_common_inclusion:
8620 break;
d9fa45fe 8621 case DW_TAG_namespace:
4d4ec4e5 8622 cu->processing_has_namespace_info = 1;
e7c27a73 8623 read_namespace (die, cu);
d9fa45fe 8624 break;
5d7cb8df 8625 case DW_TAG_module:
4d4ec4e5 8626 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8627 read_module (die, cu);
8628 break;
d9fa45fe 8629 case DW_TAG_imported_declaration:
74921315
KS
8630 cu->processing_has_namespace_info = 1;
8631 if (read_namespace_alias (die, cu))
8632 break;
8633 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8634 case DW_TAG_imported_module:
4d4ec4e5 8635 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8636 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8637 || cu->language != language_fortran))
8638 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8639 dwarf_tag_name (die->tag));
8640 read_import_statement (die, cu);
d9fa45fe 8641 break;
95554aad
TT
8642
8643 case DW_TAG_imported_unit:
8644 process_imported_unit_die (die, cu);
8645 break;
8646
c906108c 8647 default:
e7c27a73 8648 new_symbol (die, NULL, cu);
c906108c
SS
8649 break;
8650 }
8651}
ca69b9e6
DE
8652\f
8653/* DWARF name computation. */
c906108c 8654
94af9270
KS
8655/* A helper function for dwarf2_compute_name which determines whether DIE
8656 needs to have the name of the scope prepended to the name listed in the
8657 die. */
8658
8659static int
8660die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8661{
1c809c68
TT
8662 struct attribute *attr;
8663
94af9270
KS
8664 switch (die->tag)
8665 {
8666 case DW_TAG_namespace:
8667 case DW_TAG_typedef:
8668 case DW_TAG_class_type:
8669 case DW_TAG_interface_type:
8670 case DW_TAG_structure_type:
8671 case DW_TAG_union_type:
8672 case DW_TAG_enumeration_type:
8673 case DW_TAG_enumerator:
8674 case DW_TAG_subprogram:
08a76f8a 8675 case DW_TAG_inlined_subroutine:
94af9270 8676 case DW_TAG_member:
74921315 8677 case DW_TAG_imported_declaration:
94af9270
KS
8678 return 1;
8679
8680 case DW_TAG_variable:
c2b0a229 8681 case DW_TAG_constant:
94af9270
KS
8682 /* We only need to prefix "globally" visible variables. These include
8683 any variable marked with DW_AT_external or any variable that
8684 lives in a namespace. [Variables in anonymous namespaces
8685 require prefixing, but they are not DW_AT_external.] */
8686
8687 if (dwarf2_attr (die, DW_AT_specification, cu))
8688 {
8689 struct dwarf2_cu *spec_cu = cu;
9a619af0 8690
94af9270
KS
8691 return die_needs_namespace (die_specification (die, &spec_cu),
8692 spec_cu);
8693 }
8694
1c809c68 8695 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8696 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8697 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8698 return 0;
8699 /* A variable in a lexical block of some kind does not need a
8700 namespace, even though in C++ such variables may be external
8701 and have a mangled name. */
8702 if (die->parent->tag == DW_TAG_lexical_block
8703 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8704 || die->parent->tag == DW_TAG_catch_block
8705 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8706 return 0;
8707 return 1;
94af9270
KS
8708
8709 default:
8710 return 0;
8711 }
8712}
8713
73b9be8b
KS
8714/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
8715 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8716 defined for the given DIE. */
8717
8718static struct attribute *
8719dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
8720{
8721 struct attribute *attr;
8722
8723 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8724 if (attr == NULL)
8725 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8726
8727 return attr;
8728}
8729
8730/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
8731 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8732 defined for the given DIE. */
8733
8734static const char *
8735dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
8736{
8737 const char *linkage_name;
8738
8739 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8740 if (linkage_name == NULL)
8741 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8742
8743 return linkage_name;
8744}
8745
94af9270 8746/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 8747 compute the physname for the object, which include a method's:
9c37b5ae 8748 - formal parameters (C++),
a766d390 8749 - receiver type (Go),
a766d390
DE
8750
8751 The term "physname" is a bit confusing.
8752 For C++, for example, it is the demangled name.
8753 For Go, for example, it's the mangled name.
94af9270 8754
af6b7be1
JB
8755 For Ada, return the DIE's linkage name rather than the fully qualified
8756 name. PHYSNAME is ignored..
8757
94af9270
KS
8758 The result is allocated on the objfile_obstack and canonicalized. */
8759
8760static const char *
15d034d0
TT
8761dwarf2_compute_name (const char *name,
8762 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8763 int physname)
8764{
bb5ed363
DE
8765 struct objfile *objfile = cu->objfile;
8766
94af9270
KS
8767 if (name == NULL)
8768 name = dwarf2_name (die, cu);
8769
2ee7123e
DE
8770 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8771 but otherwise compute it by typename_concat inside GDB.
8772 FIXME: Actually this is not really true, or at least not always true.
8773 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8774 Fortran names because there is no mangling standard. So new_symbol_full
8775 will set the demangled name to the result of dwarf2_full_name, and it is
8776 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8777 if (cu->language == language_ada
8778 || (cu->language == language_fortran && physname))
8779 {
8780 /* For Ada unit, we prefer the linkage name over the name, as
8781 the former contains the exported name, which the user expects
8782 to be able to reference. Ideally, we want the user to be able
8783 to reference this entity using either natural or linkage name,
8784 but we haven't started looking at this enhancement yet. */
73b9be8b 8785 const char *linkage_name = dw2_linkage_name (die, cu);
f55ee35c 8786
2ee7123e
DE
8787 if (linkage_name != NULL)
8788 return linkage_name;
f55ee35c
JK
8789 }
8790
94af9270
KS
8791 /* These are the only languages we know how to qualify names in. */
8792 if (name != NULL
9c37b5ae 8793 && (cu->language == language_cplus
c44af4eb
TT
8794 || cu->language == language_fortran || cu->language == language_d
8795 || cu->language == language_rust))
94af9270
KS
8796 {
8797 if (die_needs_namespace (die, cu))
8798 {
8799 long length;
0d5cff50 8800 const char *prefix;
34a68019 8801 const char *canonical_name = NULL;
94af9270 8802
d7e74731
PA
8803 string_file buf;
8804
94af9270 8805 prefix = determine_prefix (die, cu);
94af9270
KS
8806 if (*prefix != '\0')
8807 {
f55ee35c
JK
8808 char *prefixed_name = typename_concat (NULL, prefix, name,
8809 physname, cu);
9a619af0 8810
d7e74731 8811 buf.puts (prefixed_name);
94af9270
KS
8812 xfree (prefixed_name);
8813 }
8814 else
d7e74731 8815 buf.puts (name);
94af9270 8816
98bfdba5
PA
8817 /* Template parameters may be specified in the DIE's DW_AT_name, or
8818 as children with DW_TAG_template_type_param or
8819 DW_TAG_value_type_param. If the latter, add them to the name
8820 here. If the name already has template parameters, then
8821 skip this step; some versions of GCC emit both, and
8822 it is more efficient to use the pre-computed name.
8823
8824 Something to keep in mind about this process: it is very
8825 unlikely, or in some cases downright impossible, to produce
8826 something that will match the mangled name of a function.
8827 If the definition of the function has the same debug info,
8828 we should be able to match up with it anyway. But fallbacks
8829 using the minimal symbol, for instance to find a method
8830 implemented in a stripped copy of libstdc++, will not work.
8831 If we do not have debug info for the definition, we will have to
8832 match them up some other way.
8833
8834 When we do name matching there is a related problem with function
8835 templates; two instantiated function templates are allowed to
8836 differ only by their return types, which we do not add here. */
8837
8838 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8839 {
8840 struct attribute *attr;
8841 struct die_info *child;
8842 int first = 1;
8843
8844 die->building_fullname = 1;
8845
8846 for (child = die->child; child != NULL; child = child->sibling)
8847 {
8848 struct type *type;
12df843f 8849 LONGEST value;
d521ce57 8850 const gdb_byte *bytes;
98bfdba5
PA
8851 struct dwarf2_locexpr_baton *baton;
8852 struct value *v;
8853
8854 if (child->tag != DW_TAG_template_type_param
8855 && child->tag != DW_TAG_template_value_param)
8856 continue;
8857
8858 if (first)
8859 {
d7e74731 8860 buf.puts ("<");
98bfdba5
PA
8861 first = 0;
8862 }
8863 else
d7e74731 8864 buf.puts (", ");
98bfdba5
PA
8865
8866 attr = dwarf2_attr (child, DW_AT_type, cu);
8867 if (attr == NULL)
8868 {
8869 complaint (&symfile_complaints,
8870 _("template parameter missing DW_AT_type"));
d7e74731 8871 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
8872 continue;
8873 }
8874 type = die_type (child, cu);
8875
8876 if (child->tag == DW_TAG_template_type_param)
8877 {
d7e74731 8878 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8879 continue;
8880 }
8881
8882 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8883 if (attr == NULL)
8884 {
8885 complaint (&symfile_complaints,
3e43a32a
MS
8886 _("template parameter missing "
8887 "DW_AT_const_value"));
d7e74731 8888 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
8889 continue;
8890 }
8891
8892 dwarf2_const_value_attr (attr, type, name,
8893 &cu->comp_unit_obstack, cu,
8894 &value, &bytes, &baton);
8895
8896 if (TYPE_NOSIGN (type))
8897 /* GDB prints characters as NUMBER 'CHAR'. If that's
8898 changed, this can use value_print instead. */
d7e74731 8899 c_printchar (value, type, &buf);
98bfdba5
PA
8900 else
8901 {
8902 struct value_print_options opts;
8903
8904 if (baton != NULL)
8905 v = dwarf2_evaluate_loc_desc (type, NULL,
8906 baton->data,
8907 baton->size,
8908 baton->per_cu);
8909 else if (bytes != NULL)
8910 {
8911 v = allocate_value (type);
8912 memcpy (value_contents_writeable (v), bytes,
8913 TYPE_LENGTH (type));
8914 }
8915 else
8916 v = value_from_longest (type, value);
8917
3e43a32a
MS
8918 /* Specify decimal so that we do not depend on
8919 the radix. */
98bfdba5
PA
8920 get_formatted_print_options (&opts, 'd');
8921 opts.raw = 1;
d7e74731 8922 value_print (v, &buf, &opts);
98bfdba5
PA
8923 release_value (v);
8924 value_free (v);
8925 }
8926 }
8927
8928 die->building_fullname = 0;
8929
8930 if (!first)
8931 {
8932 /* Close the argument list, with a space if necessary
8933 (nested templates). */
d7e74731
PA
8934 if (!buf.empty () && buf.string ().back () == '>')
8935 buf.puts (" >");
98bfdba5 8936 else
d7e74731 8937 buf.puts (">");
98bfdba5
PA
8938 }
8939 }
8940
9c37b5ae 8941 /* For C++ methods, append formal parameter type
94af9270 8942 information, if PHYSNAME. */
6e70227d 8943
94af9270 8944 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 8945 && cu->language == language_cplus)
94af9270
KS
8946 {
8947 struct type *type = read_type_die (die, cu);
8948
d7e74731 8949 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 8950 &type_print_raw_options);
94af9270 8951
9c37b5ae 8952 if (cu->language == language_cplus)
94af9270 8953 {
60430eff
DJ
8954 /* Assume that an artificial first parameter is
8955 "this", but do not crash if it is not. RealView
8956 marks unnamed (and thus unused) parameters as
8957 artificial; there is no way to differentiate
8958 the two cases. */
94af9270
KS
8959 if (TYPE_NFIELDS (type) > 0
8960 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8961 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8962 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8963 0))))
d7e74731 8964 buf.puts (" const");
94af9270
KS
8965 }
8966 }
8967
d7e74731 8968 const std::string &intermediate_name = buf.string ();
94af9270
KS
8969
8970 if (cu->language == language_cplus)
34a68019 8971 canonical_name
322a8516 8972 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
8973 &objfile->per_bfd->storage_obstack);
8974
8975 /* If we only computed INTERMEDIATE_NAME, or if
8976 INTERMEDIATE_NAME is already canonical, then we need to
8977 copy it to the appropriate obstack. */
322a8516 8978 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
8979 name = ((const char *)
8980 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
8981 intermediate_name.c_str (),
8982 intermediate_name.length ()));
34a68019
TT
8983 else
8984 name = canonical_name;
94af9270
KS
8985 }
8986 }
8987
8988 return name;
8989}
8990
0114d602
DJ
8991/* Return the fully qualified name of DIE, based on its DW_AT_name.
8992 If scope qualifiers are appropriate they will be added. The result
34a68019 8993 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8994 not have a name. NAME may either be from a previous call to
8995 dwarf2_name or NULL.
8996
9c37b5ae 8997 The output string will be canonicalized (if C++). */
0114d602
DJ
8998
8999static const char *
15d034d0 9000dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 9001{
94af9270
KS
9002 return dwarf2_compute_name (name, die, cu, 0);
9003}
0114d602 9004
94af9270
KS
9005/* Construct a physname for the given DIE in CU. NAME may either be
9006 from a previous call to dwarf2_name or NULL. The result will be
9007 allocated on the objfile_objstack or NULL if the DIE does not have a
9008 name.
0114d602 9009
9c37b5ae 9010 The output string will be canonicalized (if C++). */
0114d602 9011
94af9270 9012static const char *
15d034d0 9013dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 9014{
bb5ed363 9015 struct objfile *objfile = cu->objfile;
900e11f9 9016 const char *retval, *mangled = NULL, *canon = NULL;
900e11f9
JK
9017 int need_copy = 1;
9018
9019 /* In this case dwarf2_compute_name is just a shortcut not building anything
9020 on its own. */
9021 if (!die_needs_namespace (die, cu))
9022 return dwarf2_compute_name (name, die, cu, 1);
9023
73b9be8b 9024 mangled = dw2_linkage_name (die, cu);
900e11f9 9025
e98c9e7c
TT
9026 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9027 See https://github.com/rust-lang/rust/issues/32925. */
9028 if (cu->language == language_rust && mangled != NULL
9029 && strchr (mangled, '{') != NULL)
9030 mangled = NULL;
9031
900e11f9
JK
9032 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9033 has computed. */
791afaa2 9034 gdb::unique_xmalloc_ptr<char> demangled;
7d45c7c3 9035 if (mangled != NULL)
900e11f9 9036 {
900e11f9
JK
9037 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9038 type. It is easier for GDB users to search for such functions as
9039 `name(params)' than `long name(params)'. In such case the minimal
9040 symbol names do not match the full symbol names but for template
9041 functions there is never a need to look up their definition from their
9042 declaration so the only disadvantage remains the minimal symbol
9043 variant `long name(params)' does not have the proper inferior type.
9044 */
9045
a766d390
DE
9046 if (cu->language == language_go)
9047 {
9048 /* This is a lie, but we already lie to the caller new_symbol_full.
9049 new_symbol_full assumes we return the mangled name.
9050 This just undoes that lie until things are cleaned up. */
a766d390
DE
9051 }
9052 else
9053 {
791afaa2
TT
9054 demangled.reset (gdb_demangle (mangled,
9055 (DMGL_PARAMS | DMGL_ANSI
9056 | DMGL_RET_DROP)));
a766d390 9057 }
900e11f9 9058 if (demangled)
791afaa2 9059 canon = demangled.get ();
900e11f9
JK
9060 else
9061 {
9062 canon = mangled;
9063 need_copy = 0;
9064 }
9065 }
9066
9067 if (canon == NULL || check_physname)
9068 {
9069 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9070
9071 if (canon != NULL && strcmp (physname, canon) != 0)
9072 {
9073 /* It may not mean a bug in GDB. The compiler could also
9074 compute DW_AT_linkage_name incorrectly. But in such case
9075 GDB would need to be bug-to-bug compatible. */
9076
9077 complaint (&symfile_complaints,
9078 _("Computed physname <%s> does not match demangled <%s> "
9079 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9c541725 9080 physname, canon, mangled, to_underlying (die->sect_off),
4262abfb 9081 objfile_name (objfile));
900e11f9
JK
9082
9083 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9084 is available here - over computed PHYSNAME. It is safer
9085 against both buggy GDB and buggy compilers. */
9086
9087 retval = canon;
9088 }
9089 else
9090 {
9091 retval = physname;
9092 need_copy = 0;
9093 }
9094 }
9095 else
9096 retval = canon;
9097
9098 if (need_copy)
224c3ddb
SM
9099 retval = ((const char *)
9100 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9101 retval, strlen (retval)));
900e11f9 9102
900e11f9 9103 return retval;
0114d602
DJ
9104}
9105
74921315
KS
9106/* Inspect DIE in CU for a namespace alias. If one exists, record
9107 a new symbol for it.
9108
9109 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9110
9111static int
9112read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9113{
9114 struct attribute *attr;
9115
9116 /* If the die does not have a name, this is not a namespace
9117 alias. */
9118 attr = dwarf2_attr (die, DW_AT_name, cu);
9119 if (attr != NULL)
9120 {
9121 int num;
9122 struct die_info *d = die;
9123 struct dwarf2_cu *imported_cu = cu;
9124
9125 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9126 keep inspecting DIEs until we hit the underlying import. */
9127#define MAX_NESTED_IMPORTED_DECLARATIONS 100
9128 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9129 {
9130 attr = dwarf2_attr (d, DW_AT_import, cu);
9131 if (attr == NULL)
9132 break;
9133
9134 d = follow_die_ref (d, attr, &imported_cu);
9135 if (d->tag != DW_TAG_imported_declaration)
9136 break;
9137 }
9138
9139 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9140 {
9141 complaint (&symfile_complaints,
9142 _("DIE at 0x%x has too many recursively imported "
9c541725 9143 "declarations"), to_underlying (d->sect_off));
74921315
KS
9144 return 0;
9145 }
9146
9147 if (attr != NULL)
9148 {
9149 struct type *type;
9c541725 9150 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 9151
9c541725 9152 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
9153 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9154 {
9155 /* This declaration is a global namespace alias. Add
9156 a symbol for it whose type is the aliased namespace. */
9157 new_symbol (die, type, cu);
9158 return 1;
9159 }
9160 }
9161 }
9162
9163 return 0;
9164}
9165
22cee43f
PMR
9166/* Return the using directives repository (global or local?) to use in the
9167 current context for LANGUAGE.
9168
9169 For Ada, imported declarations can materialize renamings, which *may* be
9170 global. However it is impossible (for now?) in DWARF to distinguish
9171 "external" imported declarations and "static" ones. As all imported
9172 declarations seem to be static in all other languages, make them all CU-wide
9173 global only in Ada. */
9174
9175static struct using_direct **
9176using_directives (enum language language)
9177{
9178 if (language == language_ada && context_stack_depth == 0)
9179 return &global_using_directives;
9180 else
9181 return &local_using_directives;
9182}
9183
27aa8d6a
SW
9184/* Read the import statement specified by the given die and record it. */
9185
9186static void
9187read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9188{
bb5ed363 9189 struct objfile *objfile = cu->objfile;
27aa8d6a 9190 struct attribute *import_attr;
32019081 9191 struct die_info *imported_die, *child_die;
de4affc9 9192 struct dwarf2_cu *imported_cu;
27aa8d6a 9193 const char *imported_name;
794684b6 9194 const char *imported_name_prefix;
13387711
SW
9195 const char *canonical_name;
9196 const char *import_alias;
9197 const char *imported_declaration = NULL;
794684b6 9198 const char *import_prefix;
eb1e02fd 9199 std::vector<const char *> excludes;
13387711 9200
27aa8d6a
SW
9201 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9202 if (import_attr == NULL)
9203 {
9204 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9205 dwarf_tag_name (die->tag));
9206 return;
9207 }
9208
de4affc9
CC
9209 imported_cu = cu;
9210 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9211 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
9212 if (imported_name == NULL)
9213 {
9214 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9215
9216 The import in the following code:
9217 namespace A
9218 {
9219 typedef int B;
9220 }
9221
9222 int main ()
9223 {
9224 using A::B;
9225 B b;
9226 return b;
9227 }
9228
9229 ...
9230 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9231 <52> DW_AT_decl_file : 1
9232 <53> DW_AT_decl_line : 6
9233 <54> DW_AT_import : <0x75>
9234 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9235 <59> DW_AT_name : B
9236 <5b> DW_AT_decl_file : 1
9237 <5c> DW_AT_decl_line : 2
9238 <5d> DW_AT_type : <0x6e>
9239 ...
9240 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9241 <76> DW_AT_byte_size : 4
9242 <77> DW_AT_encoding : 5 (signed)
9243
9244 imports the wrong die ( 0x75 instead of 0x58 ).
9245 This case will be ignored until the gcc bug is fixed. */
9246 return;
9247 }
9248
82856980
SW
9249 /* Figure out the local name after import. */
9250 import_alias = dwarf2_name (die, cu);
27aa8d6a 9251
794684b6
SW
9252 /* Figure out where the statement is being imported to. */
9253 import_prefix = determine_prefix (die, cu);
9254
9255 /* Figure out what the scope of the imported die is and prepend it
9256 to the name of the imported die. */
de4affc9 9257 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 9258
f55ee35c
JK
9259 if (imported_die->tag != DW_TAG_namespace
9260 && imported_die->tag != DW_TAG_module)
794684b6 9261 {
13387711
SW
9262 imported_declaration = imported_name;
9263 canonical_name = imported_name_prefix;
794684b6 9264 }
13387711 9265 else if (strlen (imported_name_prefix) > 0)
12aaed36 9266 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
9267 imported_name_prefix,
9268 (cu->language == language_d ? "." : "::"),
9269 imported_name, (char *) NULL);
13387711
SW
9270 else
9271 canonical_name = imported_name;
794684b6 9272
32019081
JK
9273 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9274 for (child_die = die->child; child_die && child_die->tag;
9275 child_die = sibling_die (child_die))
9276 {
9277 /* DWARF-4: A Fortran use statement with a “rename list” may be
9278 represented by an imported module entry with an import attribute
9279 referring to the module and owned entries corresponding to those
9280 entities that are renamed as part of being imported. */
9281
9282 if (child_die->tag != DW_TAG_imported_declaration)
9283 {
9284 complaint (&symfile_complaints,
9285 _("child DW_TAG_imported_declaration expected "
9286 "- DIE at 0x%x [in module %s]"),
9c541725 9287 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9288 continue;
9289 }
9290
9291 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9292 if (import_attr == NULL)
9293 {
9294 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9295 dwarf_tag_name (child_die->tag));
9296 continue;
9297 }
9298
9299 imported_cu = cu;
9300 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9301 &imported_cu);
9302 imported_name = dwarf2_name (imported_die, imported_cu);
9303 if (imported_name == NULL)
9304 {
9305 complaint (&symfile_complaints,
9306 _("child DW_TAG_imported_declaration has unknown "
9307 "imported name - DIE at 0x%x [in module %s]"),
9c541725 9308 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9309 continue;
9310 }
9311
eb1e02fd 9312 excludes.push_back (imported_name);
32019081
JK
9313
9314 process_die (child_die, cu);
9315 }
9316
22cee43f
PMR
9317 add_using_directive (using_directives (cu->language),
9318 import_prefix,
9319 canonical_name,
9320 import_alias,
9321 imported_declaration,
9322 excludes,
9323 0,
9324 &objfile->objfile_obstack);
27aa8d6a
SW
9325}
9326
5230b05a
WT
9327/* ICC<14 does not output the required DW_AT_declaration on incomplete
9328 types, but gives them a size of zero. Starting with version 14,
9329 ICC is compatible with GCC. */
9330
9331static int
9332producer_is_icc_lt_14 (struct dwarf2_cu *cu)
9333{
9334 if (!cu->checked_producer)
9335 check_producer (cu);
9336
9337 return cu->producer_is_icc_lt_14;
9338}
9339
1b80a9fa
JK
9340/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9341 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9342 this, it was first present in GCC release 4.3.0. */
9343
9344static int
9345producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9346{
9347 if (!cu->checked_producer)
9348 check_producer (cu);
9349
9350 return cu->producer_is_gcc_lt_4_3;
9351}
9352
d721ba37
PA
9353static file_and_directory
9354find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 9355{
d721ba37
PA
9356 file_and_directory res;
9357
9291a0cd
TT
9358 /* Find the filename. Do not use dwarf2_name here, since the filename
9359 is not a source language identifier. */
d721ba37
PA
9360 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9361 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9362
d721ba37
PA
9363 if (res.comp_dir == NULL
9364 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9365 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 9366 {
d721ba37
PA
9367 res.comp_dir_storage = ldirname (res.name);
9368 if (!res.comp_dir_storage.empty ())
9369 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 9370 }
d721ba37 9371 if (res.comp_dir != NULL)
9291a0cd
TT
9372 {
9373 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9374 directory, get rid of it. */
d721ba37 9375 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 9376
d721ba37
PA
9377 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9378 res.comp_dir = cp + 1;
9291a0cd
TT
9379 }
9380
d721ba37
PA
9381 if (res.name == NULL)
9382 res.name = "<unknown>";
9383
9384 return res;
9291a0cd
TT
9385}
9386
f4dc4d17
DE
9387/* Handle DW_AT_stmt_list for a compilation unit.
9388 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9389 COMP_DIR is the compilation directory. LOWPC is passed to
9390 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9391
9392static void
9393handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9394 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9395{
527f3840 9396 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9397 struct attribute *attr;
527f3840
JK
9398 struct line_header line_header_local;
9399 hashval_t line_header_local_hash;
9400 unsigned u;
9401 void **slot;
9402 int decode_mapping;
2ab95328 9403
f4dc4d17
DE
9404 gdb_assert (! cu->per_cu->is_debug_types);
9405
2ab95328 9406 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9407 if (attr == NULL)
9408 return;
9409
9c541725 9410 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
9411
9412 /* The line header hash table is only created if needed (it exists to
9413 prevent redundant reading of the line table for partial_units).
9414 If we're given a partial_unit, we'll need it. If we're given a
9415 compile_unit, then use the line header hash table if it's already
9416 created, but don't create one just yet. */
9417
9418 if (dwarf2_per_objfile->line_header_hash == NULL
9419 && die->tag == DW_TAG_partial_unit)
2ab95328 9420 {
527f3840
JK
9421 dwarf2_per_objfile->line_header_hash
9422 = htab_create_alloc_ex (127, line_header_hash_voidp,
9423 line_header_eq_voidp,
9424 free_line_header_voidp,
9425 &objfile->objfile_obstack,
9426 hashtab_obstack_allocate,
9427 dummy_obstack_deallocate);
9428 }
2ab95328 9429
9c541725 9430 line_header_local.sect_off = line_offset;
527f3840
JK
9431 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9432 line_header_local_hash = line_header_hash (&line_header_local);
9433 if (dwarf2_per_objfile->line_header_hash != NULL)
9434 {
9435 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9436 &line_header_local,
9437 line_header_local_hash, NO_INSERT);
9438
9439 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9440 is not present in *SLOT (since if there is something in *SLOT then
9441 it will be for a partial_unit). */
9442 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9443 {
527f3840 9444 gdb_assert (*slot != NULL);
9a3c8263 9445 cu->line_header = (struct line_header *) *slot;
527f3840 9446 return;
dee91e82 9447 }
2ab95328 9448 }
527f3840
JK
9449
9450 /* dwarf_decode_line_header does not yet provide sufficient information.
9451 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
9452 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9453 if (lh == NULL)
527f3840 9454 return;
4c8aa72d
PA
9455
9456 cu->line_header = lh.release ();
9457 cu->line_header_die_owner = die;
527f3840
JK
9458
9459 if (dwarf2_per_objfile->line_header_hash == NULL)
9460 slot = NULL;
9461 else
9462 {
9463 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9464 &line_header_local,
9465 line_header_local_hash, INSERT);
9466 gdb_assert (slot != NULL);
9467 }
9468 if (slot != NULL && *slot == NULL)
9469 {
9470 /* This newly decoded line number information unit will be owned
9471 by line_header_hash hash table. */
9472 *slot = cu->line_header;
4c8aa72d 9473 cu->line_header_die_owner = NULL;
527f3840
JK
9474 }
9475 else
9476 {
9477 /* We cannot free any current entry in (*slot) as that struct line_header
9478 may be already used by multiple CUs. Create only temporary decoded
9479 line_header for this CU - it may happen at most once for each line
9480 number information unit. And if we're not using line_header_hash
9481 then this is what we want as well. */
9482 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
9483 }
9484 decode_mapping = (die->tag != DW_TAG_partial_unit);
9485 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9486 decode_mapping);
fff8551c 9487
2ab95328
TT
9488}
9489
95554aad 9490/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9491
c906108c 9492static void
e7c27a73 9493read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9494{
dee91e82 9495 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9496 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 9497 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9498 CORE_ADDR highpc = ((CORE_ADDR) 0);
9499 struct attribute *attr;
c906108c 9500 struct die_info *child_die;
e142c38c 9501 CORE_ADDR baseaddr;
6e70227d 9502
e142c38c 9503 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9504
fae299cd 9505 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9506
9507 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9508 from finish_block. */
2acceee2 9509 if (lowpc == ((CORE_ADDR) -1))
c906108c 9510 lowpc = highpc;
3e29f34a 9511 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9512
d721ba37 9513 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 9514
95554aad 9515 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9516
f4b8a18d
KW
9517 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9518 standardised yet. As a workaround for the language detection we fall
9519 back to the DW_AT_producer string. */
9520 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9521 cu->language = language_opencl;
9522
3019eac3
DE
9523 /* Similar hack for Go. */
9524 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9525 set_cu_language (DW_LANG_Go, cu);
9526
d721ba37 9527 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
9528
9529 /* Decode line number information if present. We do this before
9530 processing child DIEs, so that the line header table is available
9531 for DW_AT_decl_file. */
d721ba37 9532 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
9533
9534 /* Process all dies in compilation unit. */
9535 if (die->child != NULL)
9536 {
9537 child_die = die->child;
9538 while (child_die && child_die->tag)
9539 {
9540 process_die (child_die, cu);
9541 child_die = sibling_die (child_die);
9542 }
9543 }
9544
9545 /* Decode macro information, if present. Dwarf 2 macro information
9546 refers to information in the line number info statement program
9547 header, so we can only read it if we've read the header
9548 successfully. */
0af92d60
JK
9549 attr = dwarf2_attr (die, DW_AT_macros, cu);
9550 if (attr == NULL)
9551 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
9552 if (attr && cu->line_header)
9553 {
9554 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9555 complaint (&symfile_complaints,
0af92d60 9556 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 9557
43f3e411 9558 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9559 }
9560 else
9561 {
9562 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9563 if (attr && cu->line_header)
9564 {
9565 unsigned int macro_offset = DW_UNSND (attr);
9566
43f3e411 9567 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9568 }
9569 }
3019eac3
DE
9570}
9571
f4dc4d17
DE
9572/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9573 Create the set of symtabs used by this TU, or if this TU is sharing
9574 symtabs with another TU and the symtabs have already been created
9575 then restore those symtabs in the line header.
9576 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9577
9578static void
f4dc4d17 9579setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9580{
f4dc4d17
DE
9581 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9582 struct type_unit_group *tu_group;
9583 int first_time;
3019eac3 9584 struct attribute *attr;
9c541725 9585 unsigned int i;
0186c6a7 9586 struct signatured_type *sig_type;
3019eac3 9587
f4dc4d17 9588 gdb_assert (per_cu->is_debug_types);
0186c6a7 9589 sig_type = (struct signatured_type *) per_cu;
3019eac3 9590
f4dc4d17 9591 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9592
f4dc4d17 9593 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9594 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9595 if (sig_type->type_unit_group == NULL)
9596 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9597 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9598
9599 /* If we've already processed this stmt_list there's no real need to
9600 do it again, we could fake it and just recreate the part we need
9601 (file name,index -> symtab mapping). If data shows this optimization
9602 is useful we can do it then. */
43f3e411 9603 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9604
9605 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9606 debug info. */
fff8551c 9607 line_header_up lh;
f4dc4d17 9608 if (attr != NULL)
3019eac3 9609 {
9c541725 9610 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
f4dc4d17
DE
9611 lh = dwarf_decode_line_header (line_offset, cu);
9612 }
9613 if (lh == NULL)
9614 {
9615 if (first_time)
9616 dwarf2_start_symtab (cu, "", NULL, 0);
9617 else
9618 {
9619 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9620 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9621 }
f4dc4d17 9622 return;
3019eac3
DE
9623 }
9624
4c8aa72d
PA
9625 cu->line_header = lh.release ();
9626 cu->line_header_die_owner = die;
3019eac3 9627
f4dc4d17
DE
9628 if (first_time)
9629 {
43f3e411 9630 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9631
1fd60fc0
DE
9632 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9633 still initializing it, and our caller (a few levels up)
9634 process_full_type_unit still needs to know if this is the first
9635 time. */
9636
4c8aa72d
PA
9637 tu_group->num_symtabs = cu->line_header->file_names.size ();
9638 tu_group->symtabs = XNEWVEC (struct symtab *,
9639 cu->line_header->file_names.size ());
3019eac3 9640
4c8aa72d 9641 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 9642 {
4c8aa72d 9643 file_entry &fe = cu->line_header->file_names[i];
3019eac3 9644
4c8aa72d 9645 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
3019eac3 9646
f4dc4d17
DE
9647 if (current_subfile->symtab == NULL)
9648 {
4c8aa72d
PA
9649 /* NOTE: start_subfile will recognize when it's been
9650 passed a file it has already seen. So we can't
9651 assume there's a simple mapping from
9652 cu->line_header->file_names to subfiles, plus
9653 cu->line_header->file_names may contain dups. */
43f3e411
DE
9654 current_subfile->symtab
9655 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9656 }
9657
8c43009f
PA
9658 fe.symtab = current_subfile->symtab;
9659 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
9660 }
9661 }
9662 else
3019eac3 9663 {
0ab9ce85 9664 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9665
4c8aa72d 9666 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 9667 {
4c8aa72d 9668 file_entry &fe = cu->line_header->file_names[i];
f4dc4d17 9669
4c8aa72d 9670 fe.symtab = tu_group->symtabs[i];
f4dc4d17 9671 }
3019eac3
DE
9672 }
9673
f4dc4d17
DE
9674 /* The main symtab is allocated last. Type units don't have DW_AT_name
9675 so they don't have a "real" (so to speak) symtab anyway.
9676 There is later code that will assign the main symtab to all symbols
9677 that don't have one. We need to handle the case of a symbol with a
9678 missing symtab (DW_AT_decl_file) anyway. */
9679}
3019eac3 9680
f4dc4d17
DE
9681/* Process DW_TAG_type_unit.
9682 For TUs we want to skip the first top level sibling if it's not the
9683 actual type being defined by this TU. In this case the first top
9684 level sibling is there to provide context only. */
3019eac3 9685
f4dc4d17
DE
9686static void
9687read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9688{
9689 struct die_info *child_die;
3019eac3 9690
f4dc4d17
DE
9691 prepare_one_comp_unit (cu, die, language_minimal);
9692
9693 /* Initialize (or reinitialize) the machinery for building symtabs.
9694 We do this before processing child DIEs, so that the line header table
9695 is available for DW_AT_decl_file. */
9696 setup_type_unit_groups (die, cu);
9697
9698 if (die->child != NULL)
9699 {
9700 child_die = die->child;
9701 while (child_die && child_die->tag)
9702 {
9703 process_die (child_die, cu);
9704 child_die = sibling_die (child_die);
9705 }
9706 }
3019eac3
DE
9707}
9708\f
80626a55
DE
9709/* DWO/DWP files.
9710
9711 http://gcc.gnu.org/wiki/DebugFission
9712 http://gcc.gnu.org/wiki/DebugFissionDWP
9713
9714 To simplify handling of both DWO files ("object" files with the DWARF info)
9715 and DWP files (a file with the DWOs packaged up into one file), we treat
9716 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9717
9718static hashval_t
9719hash_dwo_file (const void *item)
9720{
9a3c8263 9721 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9722 hashval_t hash;
3019eac3 9723
a2ce51a0
DE
9724 hash = htab_hash_string (dwo_file->dwo_name);
9725 if (dwo_file->comp_dir != NULL)
9726 hash += htab_hash_string (dwo_file->comp_dir);
9727 return hash;
3019eac3
DE
9728}
9729
9730static int
9731eq_dwo_file (const void *item_lhs, const void *item_rhs)
9732{
9a3c8263
SM
9733 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9734 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9735
a2ce51a0
DE
9736 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9737 return 0;
9738 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9739 return lhs->comp_dir == rhs->comp_dir;
9740 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9741}
9742
9743/* Allocate a hash table for DWO files. */
9744
9745static htab_t
9746allocate_dwo_file_hash_table (void)
9747{
9748 struct objfile *objfile = dwarf2_per_objfile->objfile;
9749
9750 return htab_create_alloc_ex (41,
9751 hash_dwo_file,
9752 eq_dwo_file,
9753 NULL,
9754 &objfile->objfile_obstack,
9755 hashtab_obstack_allocate,
9756 dummy_obstack_deallocate);
9757}
9758
80626a55
DE
9759/* Lookup DWO file DWO_NAME. */
9760
9761static void **
0ac5b59e 9762lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9763{
9764 struct dwo_file find_entry;
9765 void **slot;
9766
9767 if (dwarf2_per_objfile->dwo_files == NULL)
9768 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9769
9770 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9771 find_entry.dwo_name = dwo_name;
9772 find_entry.comp_dir = comp_dir;
80626a55
DE
9773 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9774
9775 return slot;
9776}
9777
3019eac3
DE
9778static hashval_t
9779hash_dwo_unit (const void *item)
9780{
9a3c8263 9781 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9782
9783 /* This drops the top 32 bits of the id, but is ok for a hash. */
9784 return dwo_unit->signature;
9785}
9786
9787static int
9788eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9789{
9a3c8263
SM
9790 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9791 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9792
9793 /* The signature is assumed to be unique within the DWO file.
9794 So while object file CU dwo_id's always have the value zero,
9795 that's OK, assuming each object file DWO file has only one CU,
9796 and that's the rule for now. */
9797 return lhs->signature == rhs->signature;
9798}
9799
9800/* Allocate a hash table for DWO CUs,TUs.
9801 There is one of these tables for each of CUs,TUs for each DWO file. */
9802
9803static htab_t
9804allocate_dwo_unit_table (struct objfile *objfile)
9805{
9806 /* Start out with a pretty small number.
9807 Generally DWO files contain only one CU and maybe some TUs. */
9808 return htab_create_alloc_ex (3,
9809 hash_dwo_unit,
9810 eq_dwo_unit,
9811 NULL,
9812 &objfile->objfile_obstack,
9813 hashtab_obstack_allocate,
9814 dummy_obstack_deallocate);
9815}
9816
80626a55 9817/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9818
19c3d4c9 9819struct create_dwo_cu_data
3019eac3
DE
9820{
9821 struct dwo_file *dwo_file;
19c3d4c9 9822 struct dwo_unit dwo_unit;
3019eac3
DE
9823};
9824
19c3d4c9 9825/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9826
9827static void
19c3d4c9
DE
9828create_dwo_cu_reader (const struct die_reader_specs *reader,
9829 const gdb_byte *info_ptr,
9830 struct die_info *comp_unit_die,
9831 int has_children,
9832 void *datap)
3019eac3
DE
9833{
9834 struct dwarf2_cu *cu = reader->cu;
9c541725 9835 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 9836 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9837 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9838 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9839 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9840 struct attribute *attr;
3019eac3
DE
9841
9842 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9843 if (attr == NULL)
9844 {
19c3d4c9
DE
9845 complaint (&symfile_complaints,
9846 _("Dwarf Error: debug entry at offset 0x%x is missing"
9847 " its dwo_id [in module %s]"),
9c541725 9848 to_underlying (sect_off), dwo_file->dwo_name);
3019eac3
DE
9849 return;
9850 }
9851
3019eac3
DE
9852 dwo_unit->dwo_file = dwo_file;
9853 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9854 dwo_unit->section = section;
9c541725 9855 dwo_unit->sect_off = sect_off;
3019eac3
DE
9856 dwo_unit->length = cu->per_cu->length;
9857
b4f54984 9858 if (dwarf_read_debug)
4031ecc5 9859 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9c541725
PA
9860 to_underlying (sect_off),
9861 hex_string (dwo_unit->signature));
3019eac3
DE
9862}
9863
33c5cd75 9864/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 9865 Note: This function processes DWO files only, not DWP files. */
3019eac3 9866
33c5cd75
DB
9867static void
9868create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9869 htab_t &cus_htab)
3019eac3
DE
9870{
9871 struct objfile *objfile = dwarf2_per_objfile->objfile;
33c5cd75 9872 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
d521ce57 9873 const gdb_byte *info_ptr, *end_ptr;
3019eac3 9874
33c5cd75
DB
9875 dwarf2_read_section (objfile, &section);
9876 info_ptr = section.buffer;
3019eac3
DE
9877
9878 if (info_ptr == NULL)
33c5cd75 9879 return;
3019eac3 9880
b4f54984 9881 if (dwarf_read_debug)
19c3d4c9
DE
9882 {
9883 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
9884 get_section_name (&section),
9885 get_section_file_name (&section));
19c3d4c9 9886 }
3019eac3 9887
33c5cd75 9888 end_ptr = info_ptr + section.size;
3019eac3
DE
9889 while (info_ptr < end_ptr)
9890 {
9891 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
9892 struct create_dwo_cu_data create_dwo_cu_data;
9893 struct dwo_unit *dwo_unit;
9894 void **slot;
9895 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 9896
19c3d4c9
DE
9897 memset (&create_dwo_cu_data.dwo_unit, 0,
9898 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9899 memset (&per_cu, 0, sizeof (per_cu));
9900 per_cu.objfile = objfile;
9901 per_cu.is_debug_types = 0;
33c5cd75
DB
9902 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9903 per_cu.section = &section;
c5ed0576 9904 create_dwo_cu_data.dwo_file = &dwo_file;
33c5cd75
DB
9905
9906 init_cutu_and_read_dies_no_follow (
9907 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9908 info_ptr += per_cu.length;
9909
9910 // If the unit could not be parsed, skip it.
9911 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9912 continue;
3019eac3 9913
33c5cd75
DB
9914 if (cus_htab == NULL)
9915 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 9916
33c5cd75
DB
9917 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9918 *dwo_unit = create_dwo_cu_data.dwo_unit;
9919 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9920 gdb_assert (slot != NULL);
9921 if (*slot != NULL)
19c3d4c9 9922 {
33c5cd75
DB
9923 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9924 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 9925
33c5cd75
DB
9926 complaint (&symfile_complaints,
9927 _("debug cu entry at offset 0x%x is duplicate to"
9928 " the entry at offset 0x%x, signature %s"),
9929 to_underlying (sect_off), to_underlying (dup_sect_off),
9930 hex_string (dwo_unit->signature));
19c3d4c9 9931 }
33c5cd75 9932 *slot = (void *)dwo_unit;
3019eac3 9933 }
3019eac3
DE
9934}
9935
80626a55
DE
9936/* DWP file .debug_{cu,tu}_index section format:
9937 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9938
d2415c6c
DE
9939 DWP Version 1:
9940
80626a55
DE
9941 Both index sections have the same format, and serve to map a 64-bit
9942 signature to a set of section numbers. Each section begins with a header,
9943 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9944 indexes, and a pool of 32-bit section numbers. The index sections will be
9945 aligned at 8-byte boundaries in the file.
9946
d2415c6c
DE
9947 The index section header consists of:
9948
9949 V, 32 bit version number
9950 -, 32 bits unused
9951 N, 32 bit number of compilation units or type units in the index
9952 M, 32 bit number of slots in the hash table
80626a55 9953
d2415c6c 9954 Numbers are recorded using the byte order of the application binary.
80626a55 9955
d2415c6c
DE
9956 The hash table begins at offset 16 in the section, and consists of an array
9957 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9958 order of the application binary). Unused slots in the hash table are 0.
9959 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9960
d2415c6c
DE
9961 The parallel table begins immediately after the hash table
9962 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9963 array of 32-bit indexes (using the byte order of the application binary),
9964 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9965 table contains a 32-bit index into the pool of section numbers. For unused
9966 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9967
73869dc2
DE
9968 The pool of section numbers begins immediately following the hash table
9969 (at offset 16 + 12 * M from the beginning of the section). The pool of
9970 section numbers consists of an array of 32-bit words (using the byte order
9971 of the application binary). Each item in the array is indexed starting
9972 from 0. The hash table entry provides the index of the first section
9973 number in the set. Additional section numbers in the set follow, and the
9974 set is terminated by a 0 entry (section number 0 is not used in ELF).
9975
9976 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9977 section must be the first entry in the set, and the .debug_abbrev.dwo must
9978 be the second entry. Other members of the set may follow in any order.
9979
9980 ---
9981
9982 DWP Version 2:
9983
9984 DWP Version 2 combines all the .debug_info, etc. sections into one,
9985 and the entries in the index tables are now offsets into these sections.
9986 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9987 section.
9988
9989 Index Section Contents:
9990 Header
9991 Hash Table of Signatures dwp_hash_table.hash_table
9992 Parallel Table of Indices dwp_hash_table.unit_table
9993 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9994 Table of Section Sizes dwp_hash_table.v2.sizes
9995
9996 The index section header consists of:
9997
9998 V, 32 bit version number
9999 L, 32 bit number of columns in the table of section offsets
10000 N, 32 bit number of compilation units or type units in the index
10001 M, 32 bit number of slots in the hash table
10002
10003 Numbers are recorded using the byte order of the application binary.
10004
10005 The hash table has the same format as version 1.
10006 The parallel table of indices has the same format as version 1,
10007 except that the entries are origin-1 indices into the table of sections
10008 offsets and the table of section sizes.
10009
10010 The table of offsets begins immediately following the parallel table
10011 (at offset 16 + 12 * M from the beginning of the section). The table is
10012 a two-dimensional array of 32-bit words (using the byte order of the
10013 application binary), with L columns and N+1 rows, in row-major order.
10014 Each row in the array is indexed starting from 0. The first row provides
10015 a key to the remaining rows: each column in this row provides an identifier
10016 for a debug section, and the offsets in the same column of subsequent rows
10017 refer to that section. The section identifiers are:
10018
10019 DW_SECT_INFO 1 .debug_info.dwo
10020 DW_SECT_TYPES 2 .debug_types.dwo
10021 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10022 DW_SECT_LINE 4 .debug_line.dwo
10023 DW_SECT_LOC 5 .debug_loc.dwo
10024 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10025 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10026 DW_SECT_MACRO 8 .debug_macro.dwo
10027
10028 The offsets provided by the CU and TU index sections are the base offsets
10029 for the contributions made by each CU or TU to the corresponding section
10030 in the package file. Each CU and TU header contains an abbrev_offset
10031 field, used to find the abbreviations table for that CU or TU within the
10032 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10033 be interpreted as relative to the base offset given in the index section.
10034 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10035 should be interpreted as relative to the base offset for .debug_line.dwo,
10036 and offsets into other debug sections obtained from DWARF attributes should
10037 also be interpreted as relative to the corresponding base offset.
10038
10039 The table of sizes begins immediately following the table of offsets.
10040 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10041 with L columns and N rows, in row-major order. Each row in the array is
10042 indexed starting from 1 (row 0 is shared by the two tables).
10043
10044 ---
10045
10046 Hash table lookup is handled the same in version 1 and 2:
10047
10048 We assume that N and M will not exceed 2^32 - 1.
10049 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10050
d2415c6c
DE
10051 Given a 64-bit compilation unit signature or a type signature S, an entry
10052 in the hash table is located as follows:
80626a55 10053
d2415c6c
DE
10054 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10055 the low-order k bits all set to 1.
80626a55 10056
d2415c6c 10057 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 10058
d2415c6c
DE
10059 3) If the hash table entry at index H matches the signature, use that
10060 entry. If the hash table entry at index H is unused (all zeroes),
10061 terminate the search: the signature is not present in the table.
80626a55 10062
d2415c6c 10063 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 10064
d2415c6c 10065 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 10066 to stop at an unused slot or find the match. */
80626a55
DE
10067
10068/* Create a hash table to map DWO IDs to their CU/TU entry in
10069 .debug_{info,types}.dwo in DWP_FILE.
10070 Returns NULL if there isn't one.
10071 Note: This function processes DWP files only, not DWO files. */
10072
10073static struct dwp_hash_table *
10074create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10075{
10076 struct objfile *objfile = dwarf2_per_objfile->objfile;
10077 bfd *dbfd = dwp_file->dbfd;
948f8e3d 10078 const gdb_byte *index_ptr, *index_end;
80626a55 10079 struct dwarf2_section_info *index;
73869dc2 10080 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
10081 struct dwp_hash_table *htab;
10082
10083 if (is_debug_types)
10084 index = &dwp_file->sections.tu_index;
10085 else
10086 index = &dwp_file->sections.cu_index;
10087
10088 if (dwarf2_section_empty_p (index))
10089 return NULL;
10090 dwarf2_read_section (objfile, index);
10091
10092 index_ptr = index->buffer;
10093 index_end = index_ptr + index->size;
10094
10095 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
10096 index_ptr += 4;
10097 if (version == 2)
10098 nr_columns = read_4_bytes (dbfd, index_ptr);
10099 else
10100 nr_columns = 0;
10101 index_ptr += 4;
80626a55
DE
10102 nr_units = read_4_bytes (dbfd, index_ptr);
10103 index_ptr += 4;
10104 nr_slots = read_4_bytes (dbfd, index_ptr);
10105 index_ptr += 4;
10106
73869dc2 10107 if (version != 1 && version != 2)
80626a55 10108 {
21aa081e 10109 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 10110 " [in module %s]"),
21aa081e 10111 pulongest (version), dwp_file->name);
80626a55
DE
10112 }
10113 if (nr_slots != (nr_slots & -nr_slots))
10114 {
21aa081e 10115 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 10116 " is not power of 2 [in module %s]"),
21aa081e 10117 pulongest (nr_slots), dwp_file->name);
80626a55
DE
10118 }
10119
10120 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
10121 htab->version = version;
10122 htab->nr_columns = nr_columns;
80626a55
DE
10123 htab->nr_units = nr_units;
10124 htab->nr_slots = nr_slots;
10125 htab->hash_table = index_ptr;
10126 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
10127
10128 /* Exit early if the table is empty. */
10129 if (nr_slots == 0 || nr_units == 0
10130 || (version == 2 && nr_columns == 0))
10131 {
10132 /* All must be zero. */
10133 if (nr_slots != 0 || nr_units != 0
10134 || (version == 2 && nr_columns != 0))
10135 {
10136 complaint (&symfile_complaints,
10137 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10138 " all zero [in modules %s]"),
10139 dwp_file->name);
10140 }
10141 return htab;
10142 }
10143
10144 if (version == 1)
10145 {
10146 htab->section_pool.v1.indices =
10147 htab->unit_table + sizeof (uint32_t) * nr_slots;
10148 /* It's harder to decide whether the section is too small in v1.
10149 V1 is deprecated anyway so we punt. */
10150 }
10151 else
10152 {
10153 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10154 int *ids = htab->section_pool.v2.section_ids;
10155 /* Reverse map for error checking. */
10156 int ids_seen[DW_SECT_MAX + 1];
10157 int i;
10158
10159 if (nr_columns < 2)
10160 {
10161 error (_("Dwarf Error: bad DWP hash table, too few columns"
10162 " in section table [in module %s]"),
10163 dwp_file->name);
10164 }
10165 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10166 {
10167 error (_("Dwarf Error: bad DWP hash table, too many columns"
10168 " in section table [in module %s]"),
10169 dwp_file->name);
10170 }
10171 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10172 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10173 for (i = 0; i < nr_columns; ++i)
10174 {
10175 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10176
10177 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10178 {
10179 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10180 " in section table [in module %s]"),
10181 id, dwp_file->name);
10182 }
10183 if (ids_seen[id] != -1)
10184 {
10185 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10186 " id %d in section table [in module %s]"),
10187 id, dwp_file->name);
10188 }
10189 ids_seen[id] = i;
10190 ids[i] = id;
10191 }
10192 /* Must have exactly one info or types section. */
10193 if (((ids_seen[DW_SECT_INFO] != -1)
10194 + (ids_seen[DW_SECT_TYPES] != -1))
10195 != 1)
10196 {
10197 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10198 " DWO info/types section [in module %s]"),
10199 dwp_file->name);
10200 }
10201 /* Must have an abbrev section. */
10202 if (ids_seen[DW_SECT_ABBREV] == -1)
10203 {
10204 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10205 " section [in module %s]"),
10206 dwp_file->name);
10207 }
10208 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10209 htab->section_pool.v2.sizes =
10210 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10211 * nr_units * nr_columns);
10212 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10213 * nr_units * nr_columns))
10214 > index_end)
10215 {
10216 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10217 " [in module %s]"),
10218 dwp_file->name);
10219 }
10220 }
80626a55
DE
10221
10222 return htab;
10223}
10224
10225/* Update SECTIONS with the data from SECTP.
10226
10227 This function is like the other "locate" section routines that are
10228 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 10229 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
10230
10231 The result is non-zero for success, or zero if an error was found. */
10232
10233static int
73869dc2
DE
10234locate_v1_virtual_dwo_sections (asection *sectp,
10235 struct virtual_v1_dwo_sections *sections)
80626a55
DE
10236{
10237 const struct dwop_section_names *names = &dwop_section_names;
10238
10239 if (section_is_p (sectp->name, &names->abbrev_dwo))
10240 {
10241 /* There can be only one. */
049412e3 10242 if (sections->abbrev.s.section != NULL)
80626a55 10243 return 0;
049412e3 10244 sections->abbrev.s.section = sectp;
80626a55
DE
10245 sections->abbrev.size = bfd_get_section_size (sectp);
10246 }
10247 else if (section_is_p (sectp->name, &names->info_dwo)
10248 || section_is_p (sectp->name, &names->types_dwo))
10249 {
10250 /* There can be only one. */
049412e3 10251 if (sections->info_or_types.s.section != NULL)
80626a55 10252 return 0;
049412e3 10253 sections->info_or_types.s.section = sectp;
80626a55
DE
10254 sections->info_or_types.size = bfd_get_section_size (sectp);
10255 }
10256 else if (section_is_p (sectp->name, &names->line_dwo))
10257 {
10258 /* There can be only one. */
049412e3 10259 if (sections->line.s.section != NULL)
80626a55 10260 return 0;
049412e3 10261 sections->line.s.section = sectp;
80626a55
DE
10262 sections->line.size = bfd_get_section_size (sectp);
10263 }
10264 else if (section_is_p (sectp->name, &names->loc_dwo))
10265 {
10266 /* There can be only one. */
049412e3 10267 if (sections->loc.s.section != NULL)
80626a55 10268 return 0;
049412e3 10269 sections->loc.s.section = sectp;
80626a55
DE
10270 sections->loc.size = bfd_get_section_size (sectp);
10271 }
10272 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10273 {
10274 /* There can be only one. */
049412e3 10275 if (sections->macinfo.s.section != NULL)
80626a55 10276 return 0;
049412e3 10277 sections->macinfo.s.section = sectp;
80626a55
DE
10278 sections->macinfo.size = bfd_get_section_size (sectp);
10279 }
10280 else if (section_is_p (sectp->name, &names->macro_dwo))
10281 {
10282 /* There can be only one. */
049412e3 10283 if (sections->macro.s.section != NULL)
80626a55 10284 return 0;
049412e3 10285 sections->macro.s.section = sectp;
80626a55
DE
10286 sections->macro.size = bfd_get_section_size (sectp);
10287 }
10288 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10289 {
10290 /* There can be only one. */
049412e3 10291 if (sections->str_offsets.s.section != NULL)
80626a55 10292 return 0;
049412e3 10293 sections->str_offsets.s.section = sectp;
80626a55
DE
10294 sections->str_offsets.size = bfd_get_section_size (sectp);
10295 }
10296 else
10297 {
10298 /* No other kind of section is valid. */
10299 return 0;
10300 }
10301
10302 return 1;
10303}
10304
73869dc2
DE
10305/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10306 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10307 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10308 This is for DWP version 1 files. */
80626a55
DE
10309
10310static struct dwo_unit *
73869dc2
DE
10311create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10312 uint32_t unit_index,
10313 const char *comp_dir,
10314 ULONGEST signature, int is_debug_types)
80626a55
DE
10315{
10316 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10317 const struct dwp_hash_table *dwp_htab =
10318 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10319 bfd *dbfd = dwp_file->dbfd;
10320 const char *kind = is_debug_types ? "TU" : "CU";
10321 struct dwo_file *dwo_file;
10322 struct dwo_unit *dwo_unit;
73869dc2 10323 struct virtual_v1_dwo_sections sections;
80626a55 10324 void **dwo_file_slot;
80626a55
DE
10325 int i;
10326
73869dc2
DE
10327 gdb_assert (dwp_file->version == 1);
10328
b4f54984 10329 if (dwarf_read_debug)
80626a55 10330 {
73869dc2 10331 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10332 kind,
73869dc2 10333 pulongest (unit_index), hex_string (signature),
80626a55
DE
10334 dwp_file->name);
10335 }
10336
19ac8c2e 10337 /* Fetch the sections of this DWO unit.
80626a55
DE
10338 Put a limit on the number of sections we look for so that bad data
10339 doesn't cause us to loop forever. */
10340
73869dc2 10341#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10342 (1 /* .debug_info or .debug_types */ \
10343 + 1 /* .debug_abbrev */ \
10344 + 1 /* .debug_line */ \
10345 + 1 /* .debug_loc */ \
10346 + 1 /* .debug_str_offsets */ \
19ac8c2e 10347 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10348 + 1 /* trailing zero */)
10349
10350 memset (&sections, 0, sizeof (sections));
80626a55 10351
73869dc2 10352 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10353 {
10354 asection *sectp;
10355 uint32_t section_nr =
10356 read_4_bytes (dbfd,
73869dc2
DE
10357 dwp_htab->section_pool.v1.indices
10358 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10359
10360 if (section_nr == 0)
10361 break;
10362 if (section_nr >= dwp_file->num_sections)
10363 {
10364 error (_("Dwarf Error: bad DWP hash table, section number too large"
10365 " [in module %s]"),
10366 dwp_file->name);
10367 }
10368
10369 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10370 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10371 {
10372 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10373 " [in module %s]"),
10374 dwp_file->name);
10375 }
10376 }
10377
10378 if (i < 2
a32a8923
DE
10379 || dwarf2_section_empty_p (&sections.info_or_types)
10380 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10381 {
10382 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10383 " [in module %s]"),
10384 dwp_file->name);
10385 }
73869dc2 10386 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10387 {
10388 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10389 " [in module %s]"),
10390 dwp_file->name);
10391 }
10392
10393 /* It's easier for the rest of the code if we fake a struct dwo_file and
10394 have dwo_unit "live" in that. At least for now.
10395
10396 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10397 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10398 file, we can combine them back into a virtual DWO file to save space
10399 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10400 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10401
791afaa2
TT
10402 std::string virtual_dwo_name =
10403 string_printf ("virtual-dwo/%d-%d-%d-%d",
10404 get_section_id (&sections.abbrev),
10405 get_section_id (&sections.line),
10406 get_section_id (&sections.loc),
10407 get_section_id (&sections.str_offsets));
80626a55 10408 /* Can we use an existing virtual DWO file? */
791afaa2 10409 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
80626a55
DE
10410 /* Create one if necessary. */
10411 if (*dwo_file_slot == NULL)
10412 {
b4f54984 10413 if (dwarf_read_debug)
80626a55
DE
10414 {
10415 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 10416 virtual_dwo_name.c_str ());
80626a55
DE
10417 }
10418 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10419 dwo_file->dwo_name
10420 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
791afaa2
TT
10421 virtual_dwo_name.c_str (),
10422 virtual_dwo_name.size ());
0ac5b59e 10423 dwo_file->comp_dir = comp_dir;
80626a55
DE
10424 dwo_file->sections.abbrev = sections.abbrev;
10425 dwo_file->sections.line = sections.line;
10426 dwo_file->sections.loc = sections.loc;
10427 dwo_file->sections.macinfo = sections.macinfo;
10428 dwo_file->sections.macro = sections.macro;
10429 dwo_file->sections.str_offsets = sections.str_offsets;
10430 /* The "str" section is global to the entire DWP file. */
10431 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10432 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10433 there's no need to record it in dwo_file.
10434 Also, we can't simply record type sections in dwo_file because
10435 we record a pointer into the vector in dwo_unit. As we collect more
10436 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10437 for it, invalidating all copies of pointers into the previous
10438 contents. */
80626a55
DE
10439 *dwo_file_slot = dwo_file;
10440 }
10441 else
10442 {
b4f54984 10443 if (dwarf_read_debug)
80626a55
DE
10444 {
10445 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 10446 virtual_dwo_name.c_str ());
80626a55 10447 }
9a3c8263 10448 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55 10449 }
80626a55
DE
10450
10451 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10452 dwo_unit->dwo_file = dwo_file;
10453 dwo_unit->signature = signature;
8d749320
SM
10454 dwo_unit->section =
10455 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10456 *dwo_unit->section = sections.info_or_types;
57d63ce2 10457 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10458
10459 return dwo_unit;
10460}
10461
73869dc2
DE
10462/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10463 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10464 piece within that section used by a TU/CU, return a virtual section
10465 of just that piece. */
10466
10467static struct dwarf2_section_info
10468create_dwp_v2_section (struct dwarf2_section_info *section,
10469 bfd_size_type offset, bfd_size_type size)
10470{
10471 struct dwarf2_section_info result;
10472 asection *sectp;
10473
10474 gdb_assert (section != NULL);
10475 gdb_assert (!section->is_virtual);
10476
10477 memset (&result, 0, sizeof (result));
10478 result.s.containing_section = section;
10479 result.is_virtual = 1;
10480
10481 if (size == 0)
10482 return result;
10483
10484 sectp = get_section_bfd_section (section);
10485
10486 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10487 bounds of the real section. This is a pretty-rare event, so just
10488 flag an error (easier) instead of a warning and trying to cope. */
10489 if (sectp == NULL
10490 || offset + size > bfd_get_section_size (sectp))
10491 {
10492 bfd *abfd = sectp->owner;
10493
10494 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10495 " in section %s [in module %s]"),
10496 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10497 objfile_name (dwarf2_per_objfile->objfile));
10498 }
10499
10500 result.virtual_offset = offset;
10501 result.size = size;
10502 return result;
10503}
10504
10505/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10506 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10507 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10508 This is for DWP version 2 files. */
10509
10510static struct dwo_unit *
10511create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10512 uint32_t unit_index,
10513 const char *comp_dir,
10514 ULONGEST signature, int is_debug_types)
10515{
10516 struct objfile *objfile = dwarf2_per_objfile->objfile;
10517 const struct dwp_hash_table *dwp_htab =
10518 is_debug_types ? dwp_file->tus : dwp_file->cus;
10519 bfd *dbfd = dwp_file->dbfd;
10520 const char *kind = is_debug_types ? "TU" : "CU";
10521 struct dwo_file *dwo_file;
10522 struct dwo_unit *dwo_unit;
10523 struct virtual_v2_dwo_sections sections;
10524 void **dwo_file_slot;
73869dc2
DE
10525 int i;
10526
10527 gdb_assert (dwp_file->version == 2);
10528
b4f54984 10529 if (dwarf_read_debug)
73869dc2
DE
10530 {
10531 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10532 kind,
10533 pulongest (unit_index), hex_string (signature),
10534 dwp_file->name);
10535 }
10536
10537 /* Fetch the section offsets of this DWO unit. */
10538
10539 memset (&sections, 0, sizeof (sections));
73869dc2
DE
10540
10541 for (i = 0; i < dwp_htab->nr_columns; ++i)
10542 {
10543 uint32_t offset = read_4_bytes (dbfd,
10544 dwp_htab->section_pool.v2.offsets
10545 + (((unit_index - 1) * dwp_htab->nr_columns
10546 + i)
10547 * sizeof (uint32_t)));
10548 uint32_t size = read_4_bytes (dbfd,
10549 dwp_htab->section_pool.v2.sizes
10550 + (((unit_index - 1) * dwp_htab->nr_columns
10551 + i)
10552 * sizeof (uint32_t)));
10553
10554 switch (dwp_htab->section_pool.v2.section_ids[i])
10555 {
10556 case DW_SECT_INFO:
10557 case DW_SECT_TYPES:
10558 sections.info_or_types_offset = offset;
10559 sections.info_or_types_size = size;
10560 break;
10561 case DW_SECT_ABBREV:
10562 sections.abbrev_offset = offset;
10563 sections.abbrev_size = size;
10564 break;
10565 case DW_SECT_LINE:
10566 sections.line_offset = offset;
10567 sections.line_size = size;
10568 break;
10569 case DW_SECT_LOC:
10570 sections.loc_offset = offset;
10571 sections.loc_size = size;
10572 break;
10573 case DW_SECT_STR_OFFSETS:
10574 sections.str_offsets_offset = offset;
10575 sections.str_offsets_size = size;
10576 break;
10577 case DW_SECT_MACINFO:
10578 sections.macinfo_offset = offset;
10579 sections.macinfo_size = size;
10580 break;
10581 case DW_SECT_MACRO:
10582 sections.macro_offset = offset;
10583 sections.macro_size = size;
10584 break;
10585 }
10586 }
10587
10588 /* It's easier for the rest of the code if we fake a struct dwo_file and
10589 have dwo_unit "live" in that. At least for now.
10590
10591 The DWP file can be made up of a random collection of CUs and TUs.
10592 However, for each CU + set of TUs that came from the same original DWO
10593 file, we can combine them back into a virtual DWO file to save space
10594 (fewer struct dwo_file objects to allocate). Remember that for really
10595 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10596
791afaa2
TT
10597 std::string virtual_dwo_name =
10598 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
10599 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10600 (long) (sections.line_size ? sections.line_offset : 0),
10601 (long) (sections.loc_size ? sections.loc_offset : 0),
10602 (long) (sections.str_offsets_size
10603 ? sections.str_offsets_offset : 0));
73869dc2 10604 /* Can we use an existing virtual DWO file? */
791afaa2 10605 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
73869dc2
DE
10606 /* Create one if necessary. */
10607 if (*dwo_file_slot == NULL)
10608 {
b4f54984 10609 if (dwarf_read_debug)
73869dc2
DE
10610 {
10611 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 10612 virtual_dwo_name.c_str ());
73869dc2
DE
10613 }
10614 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10615 dwo_file->dwo_name
10616 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
791afaa2
TT
10617 virtual_dwo_name.c_str (),
10618 virtual_dwo_name.size ());
73869dc2
DE
10619 dwo_file->comp_dir = comp_dir;
10620 dwo_file->sections.abbrev =
10621 create_dwp_v2_section (&dwp_file->sections.abbrev,
10622 sections.abbrev_offset, sections.abbrev_size);
10623 dwo_file->sections.line =
10624 create_dwp_v2_section (&dwp_file->sections.line,
10625 sections.line_offset, sections.line_size);
10626 dwo_file->sections.loc =
10627 create_dwp_v2_section (&dwp_file->sections.loc,
10628 sections.loc_offset, sections.loc_size);
10629 dwo_file->sections.macinfo =
10630 create_dwp_v2_section (&dwp_file->sections.macinfo,
10631 sections.macinfo_offset, sections.macinfo_size);
10632 dwo_file->sections.macro =
10633 create_dwp_v2_section (&dwp_file->sections.macro,
10634 sections.macro_offset, sections.macro_size);
10635 dwo_file->sections.str_offsets =
10636 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10637 sections.str_offsets_offset,
10638 sections.str_offsets_size);
10639 /* The "str" section is global to the entire DWP file. */
10640 dwo_file->sections.str = dwp_file->sections.str;
10641 /* The info or types section is assigned below to dwo_unit,
10642 there's no need to record it in dwo_file.
10643 Also, we can't simply record type sections in dwo_file because
10644 we record a pointer into the vector in dwo_unit. As we collect more
10645 types we'll grow the vector and eventually have to reallocate space
10646 for it, invalidating all copies of pointers into the previous
10647 contents. */
10648 *dwo_file_slot = dwo_file;
10649 }
10650 else
10651 {
b4f54984 10652 if (dwarf_read_debug)
73869dc2
DE
10653 {
10654 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 10655 virtual_dwo_name.c_str ());
73869dc2 10656 }
9a3c8263 10657 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2 10658 }
73869dc2
DE
10659
10660 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10661 dwo_unit->dwo_file = dwo_file;
10662 dwo_unit->signature = signature;
8d749320
SM
10663 dwo_unit->section =
10664 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10665 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10666 ? &dwp_file->sections.types
10667 : &dwp_file->sections.info,
10668 sections.info_or_types_offset,
10669 sections.info_or_types_size);
10670 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10671
10672 return dwo_unit;
10673}
10674
57d63ce2
DE
10675/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10676 Returns NULL if the signature isn't found. */
80626a55
DE
10677
10678static struct dwo_unit *
57d63ce2
DE
10679lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10680 ULONGEST signature, int is_debug_types)
80626a55 10681{
57d63ce2
DE
10682 const struct dwp_hash_table *dwp_htab =
10683 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10684 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10685 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10686 uint32_t hash = signature & mask;
10687 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10688 unsigned int i;
10689 void **slot;
870f88f7 10690 struct dwo_unit find_dwo_cu;
80626a55
DE
10691
10692 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10693 find_dwo_cu.signature = signature;
19ac8c2e
DE
10694 slot = htab_find_slot (is_debug_types
10695 ? dwp_file->loaded_tus
10696 : dwp_file->loaded_cus,
10697 &find_dwo_cu, INSERT);
80626a55
DE
10698
10699 if (*slot != NULL)
9a3c8263 10700 return (struct dwo_unit *) *slot;
80626a55
DE
10701
10702 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10703 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10704 {
10705 ULONGEST signature_in_table;
10706
10707 signature_in_table =
57d63ce2 10708 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10709 if (signature_in_table == signature)
10710 {
57d63ce2
DE
10711 uint32_t unit_index =
10712 read_4_bytes (dbfd,
10713 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10714
73869dc2
DE
10715 if (dwp_file->version == 1)
10716 {
10717 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10718 comp_dir, signature,
10719 is_debug_types);
10720 }
10721 else
10722 {
10723 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10724 comp_dir, signature,
10725 is_debug_types);
10726 }
9a3c8263 10727 return (struct dwo_unit *) *slot;
80626a55
DE
10728 }
10729 if (signature_in_table == 0)
10730 return NULL;
10731 hash = (hash + hash2) & mask;
10732 }
10733
10734 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10735 " [in module %s]"),
10736 dwp_file->name);
10737}
10738
ab5088bf 10739/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10740 Open the file specified by FILE_NAME and hand it off to BFD for
10741 preliminary analysis. Return a newly initialized bfd *, which
10742 includes a canonicalized copy of FILE_NAME.
80626a55 10743 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10744 SEARCH_CWD is true if the current directory is to be searched.
10745 It will be searched before debug-file-directory.
13aaf454
DE
10746 If successful, the file is added to the bfd include table of the
10747 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10748 If unable to find/open the file, return NULL.
3019eac3
DE
10749 NOTE: This function is derived from symfile_bfd_open. */
10750
192b62ce 10751static gdb_bfd_ref_ptr
6ac97d4c 10752try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3 10753{
80626a55 10754 int desc, flags;
3019eac3 10755 char *absolute_name;
9c02c129
DE
10756 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10757 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10758 to debug_file_directory. */
10759 char *search_path;
10760 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10761
6ac97d4c
DE
10762 if (search_cwd)
10763 {
10764 if (*debug_file_directory != '\0')
10765 search_path = concat (".", dirname_separator_string,
b36cec19 10766 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10767 else
10768 search_path = xstrdup (".");
10769 }
9c02c129 10770 else
6ac97d4c 10771 search_path = xstrdup (debug_file_directory);
3019eac3 10772
492c0ab7 10773 flags = OPF_RETURN_REALPATH;
80626a55
DE
10774 if (is_dwp)
10775 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10776 desc = openp (search_path, flags, file_name,
3019eac3 10777 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10778 xfree (search_path);
3019eac3
DE
10779 if (desc < 0)
10780 return NULL;
10781
192b62ce 10782 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
a4453b7e 10783 xfree (absolute_name);
9c02c129
DE
10784 if (sym_bfd == NULL)
10785 return NULL;
192b62ce 10786 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 10787
192b62ce
TT
10788 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10789 return NULL;
3019eac3 10790
13aaf454
DE
10791 /* Success. Record the bfd as having been included by the objfile's bfd.
10792 This is important because things like demangled_names_hash lives in the
10793 objfile's per_bfd space and may have references to things like symbol
10794 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 10795 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 10796
3019eac3
DE
10797 return sym_bfd;
10798}
10799
ab5088bf 10800/* Try to open DWO file FILE_NAME.
3019eac3
DE
10801 COMP_DIR is the DW_AT_comp_dir attribute.
10802 The result is the bfd handle of the file.
10803 If there is a problem finding or opening the file, return NULL.
10804 Upon success, the canonicalized path of the file is stored in the bfd,
10805 same as symfile_bfd_open. */
10806
192b62ce 10807static gdb_bfd_ref_ptr
ab5088bf 10808open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3 10809{
80626a55 10810 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10811 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10812
10813 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10814
10815 if (comp_dir != NULL)
10816 {
b36cec19
PA
10817 char *path_to_try = concat (comp_dir, SLASH_STRING,
10818 file_name, (char *) NULL);
3019eac3
DE
10819
10820 /* NOTE: If comp_dir is a relative path, this will also try the
10821 search path, which seems useful. */
192b62ce
TT
10822 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10823 1 /*search_cwd*/));
3019eac3
DE
10824 xfree (path_to_try);
10825 if (abfd != NULL)
10826 return abfd;
10827 }
10828
10829 /* That didn't work, try debug-file-directory, which, despite its name,
10830 is a list of paths. */
10831
10832 if (*debug_file_directory == '\0')
10833 return NULL;
10834
6ac97d4c 10835 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10836}
10837
80626a55
DE
10838/* This function is mapped across the sections and remembers the offset and
10839 size of each of the DWO debugging sections we are interested in. */
10840
10841static void
10842dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10843{
9a3c8263 10844 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10845 const struct dwop_section_names *names = &dwop_section_names;
10846
10847 if (section_is_p (sectp->name, &names->abbrev_dwo))
10848 {
049412e3 10849 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10850 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10851 }
10852 else if (section_is_p (sectp->name, &names->info_dwo))
10853 {
049412e3 10854 dwo_sections->info.s.section = sectp;
80626a55
DE
10855 dwo_sections->info.size = bfd_get_section_size (sectp);
10856 }
10857 else if (section_is_p (sectp->name, &names->line_dwo))
10858 {
049412e3 10859 dwo_sections->line.s.section = sectp;
80626a55
DE
10860 dwo_sections->line.size = bfd_get_section_size (sectp);
10861 }
10862 else if (section_is_p (sectp->name, &names->loc_dwo))
10863 {
049412e3 10864 dwo_sections->loc.s.section = sectp;
80626a55
DE
10865 dwo_sections->loc.size = bfd_get_section_size (sectp);
10866 }
10867 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10868 {
049412e3 10869 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10870 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10871 }
10872 else if (section_is_p (sectp->name, &names->macro_dwo))
10873 {
049412e3 10874 dwo_sections->macro.s.section = sectp;
80626a55
DE
10875 dwo_sections->macro.size = bfd_get_section_size (sectp);
10876 }
10877 else if (section_is_p (sectp->name, &names->str_dwo))
10878 {
049412e3 10879 dwo_sections->str.s.section = sectp;
80626a55
DE
10880 dwo_sections->str.size = bfd_get_section_size (sectp);
10881 }
10882 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10883 {
049412e3 10884 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10885 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10886 }
10887 else if (section_is_p (sectp->name, &names->types_dwo))
10888 {
10889 struct dwarf2_section_info type_section;
10890
10891 memset (&type_section, 0, sizeof (type_section));
049412e3 10892 type_section.s.section = sectp;
80626a55
DE
10893 type_section.size = bfd_get_section_size (sectp);
10894 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10895 &type_section);
10896 }
10897}
10898
ab5088bf 10899/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10900 by PER_CU. This is for the non-DWP case.
80626a55 10901 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10902
10903static struct dwo_file *
0ac5b59e
DE
10904open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10905 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10906{
10907 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 10908 struct dwo_file *dwo_file;
3019eac3
DE
10909 struct cleanup *cleanups;
10910
192b62ce 10911 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
80626a55
DE
10912 if (dbfd == NULL)
10913 {
b4f54984 10914 if (dwarf_read_debug)
80626a55
DE
10915 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10916 return NULL;
10917 }
10918 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10919 dwo_file->dwo_name = dwo_name;
10920 dwo_file->comp_dir = comp_dir;
192b62ce 10921 dwo_file->dbfd = dbfd.release ();
3019eac3
DE
10922
10923 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10924
192b62ce
TT
10925 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10926 &dwo_file->sections);
3019eac3 10927
33c5cd75 10928 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
3019eac3 10929
78d4d2c5
JK
10930 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10931 dwo_file->tus);
3019eac3
DE
10932
10933 discard_cleanups (cleanups);
10934
b4f54984 10935 if (dwarf_read_debug)
80626a55
DE
10936 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10937
3019eac3
DE
10938 return dwo_file;
10939}
10940
80626a55 10941/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10942 size of each of the DWP debugging sections common to version 1 and 2 that
10943 we are interested in. */
3019eac3 10944
80626a55 10945static void
73869dc2
DE
10946dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10947 void *dwp_file_ptr)
3019eac3 10948{
9a3c8263 10949 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10950 const struct dwop_section_names *names = &dwop_section_names;
10951 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10952
80626a55 10953 /* Record the ELF section number for later lookup: this is what the
73869dc2 10954 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10955 gdb_assert (elf_section_nr < dwp_file->num_sections);
10956 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10957
80626a55
DE
10958 /* Look for specific sections that we need. */
10959 if (section_is_p (sectp->name, &names->str_dwo))
10960 {
049412e3 10961 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10962 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10963 }
10964 else if (section_is_p (sectp->name, &names->cu_index))
10965 {
049412e3 10966 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10967 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10968 }
10969 else if (section_is_p (sectp->name, &names->tu_index))
10970 {
049412e3 10971 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10972 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10973 }
10974}
3019eac3 10975
73869dc2
DE
10976/* This function is mapped across the sections and remembers the offset and
10977 size of each of the DWP version 2 debugging sections that we are interested
10978 in. This is split into a separate function because we don't know if we
10979 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10980
10981static void
10982dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10983{
9a3c8263 10984 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10985 const struct dwop_section_names *names = &dwop_section_names;
10986 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10987
10988 /* Record the ELF section number for later lookup: this is what the
10989 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10990 gdb_assert (elf_section_nr < dwp_file->num_sections);
10991 dwp_file->elf_sections[elf_section_nr] = sectp;
10992
10993 /* Look for specific sections that we need. */
10994 if (section_is_p (sectp->name, &names->abbrev_dwo))
10995 {
049412e3 10996 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10997 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10998 }
10999 else if (section_is_p (sectp->name, &names->info_dwo))
11000 {
049412e3 11001 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
11002 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11003 }
11004 else if (section_is_p (sectp->name, &names->line_dwo))
11005 {
049412e3 11006 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
11007 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11008 }
11009 else if (section_is_p (sectp->name, &names->loc_dwo))
11010 {
049412e3 11011 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
11012 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11013 }
11014 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11015 {
049412e3 11016 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
11017 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11018 }
11019 else if (section_is_p (sectp->name, &names->macro_dwo))
11020 {
049412e3 11021 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
11022 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11023 }
11024 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11025 {
049412e3 11026 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
11027 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11028 }
11029 else if (section_is_p (sectp->name, &names->types_dwo))
11030 {
049412e3 11031 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
11032 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11033 }
11034}
11035
80626a55 11036/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 11037
80626a55
DE
11038static hashval_t
11039hash_dwp_loaded_cutus (const void *item)
11040{
9a3c8263 11041 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 11042
80626a55
DE
11043 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11044 return dwo_unit->signature;
3019eac3
DE
11045}
11046
80626a55 11047/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 11048
80626a55
DE
11049static int
11050eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 11051{
9a3c8263
SM
11052 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11053 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 11054
80626a55
DE
11055 return dua->signature == dub->signature;
11056}
3019eac3 11057
80626a55 11058/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 11059
80626a55
DE
11060static htab_t
11061allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11062{
11063 return htab_create_alloc_ex (3,
11064 hash_dwp_loaded_cutus,
11065 eq_dwp_loaded_cutus,
11066 NULL,
11067 &objfile->objfile_obstack,
11068 hashtab_obstack_allocate,
11069 dummy_obstack_deallocate);
11070}
3019eac3 11071
ab5088bf
DE
11072/* Try to open DWP file FILE_NAME.
11073 The result is the bfd handle of the file.
11074 If there is a problem finding or opening the file, return NULL.
11075 Upon success, the canonicalized path of the file is stored in the bfd,
11076 same as symfile_bfd_open. */
11077
192b62ce 11078static gdb_bfd_ref_ptr
ab5088bf
DE
11079open_dwp_file (const char *file_name)
11080{
192b62ce
TT
11081 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11082 1 /*search_cwd*/));
6ac97d4c
DE
11083 if (abfd != NULL)
11084 return abfd;
11085
11086 /* Work around upstream bug 15652.
11087 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11088 [Whether that's a "bug" is debatable, but it is getting in our way.]
11089 We have no real idea where the dwp file is, because gdb's realpath-ing
11090 of the executable's path may have discarded the needed info.
11091 [IWBN if the dwp file name was recorded in the executable, akin to
11092 .gnu_debuglink, but that doesn't exist yet.]
11093 Strip the directory from FILE_NAME and search again. */
11094 if (*debug_file_directory != '\0')
11095 {
11096 /* Don't implicitly search the current directory here.
11097 If the user wants to search "." to handle this case,
11098 it must be added to debug-file-directory. */
11099 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11100 0 /*search_cwd*/);
11101 }
11102
11103 return NULL;
ab5088bf
DE
11104}
11105
80626a55
DE
11106/* Initialize the use of the DWP file for the current objfile.
11107 By convention the name of the DWP file is ${objfile}.dwp.
11108 The result is NULL if it can't be found. */
a766d390 11109
80626a55 11110static struct dwp_file *
ab5088bf 11111open_and_init_dwp_file (void)
80626a55
DE
11112{
11113 struct objfile *objfile = dwarf2_per_objfile->objfile;
11114 struct dwp_file *dwp_file;
80626a55 11115
82bf32bc
JK
11116 /* Try to find first .dwp for the binary file before any symbolic links
11117 resolving. */
6c447423
DE
11118
11119 /* If the objfile is a debug file, find the name of the real binary
11120 file and get the name of dwp file from there. */
d721ba37 11121 std::string dwp_name;
6c447423
DE
11122 if (objfile->separate_debug_objfile_backlink != NULL)
11123 {
11124 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11125 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 11126
d721ba37 11127 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
11128 }
11129 else
d721ba37
PA
11130 dwp_name = objfile->original_name;
11131
11132 dwp_name += ".dwp";
80626a55 11133
d721ba37 11134 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
82bf32bc
JK
11135 if (dbfd == NULL
11136 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11137 {
11138 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
11139 dwp_name = objfile_name (objfile);
11140 dwp_name += ".dwp";
11141 dbfd = open_dwp_file (dwp_name.c_str ());
82bf32bc
JK
11142 }
11143
80626a55
DE
11144 if (dbfd == NULL)
11145 {
b4f54984 11146 if (dwarf_read_debug)
d721ba37 11147 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
80626a55 11148 return NULL;
3019eac3 11149 }
80626a55 11150 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
192b62ce
TT
11151 dwp_file->name = bfd_get_filename (dbfd.get ());
11152 dwp_file->dbfd = dbfd.release ();
c906108c 11153
80626a55 11154 /* +1: section 0 is unused */
192b62ce 11155 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
11156 dwp_file->elf_sections =
11157 OBSTACK_CALLOC (&objfile->objfile_obstack,
11158 dwp_file->num_sections, asection *);
11159
192b62ce
TT
11160 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11161 dwp_file);
80626a55
DE
11162
11163 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11164
11165 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11166
73869dc2 11167 /* The DWP file version is stored in the hash table. Oh well. */
08302ed2
DE
11168 if (dwp_file->cus && dwp_file->tus
11169 && dwp_file->cus->version != dwp_file->tus->version)
73869dc2
DE
11170 {
11171 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 11172 pretty bizarre. We use pulongest here because that's the established
4d65956b 11173 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
11174 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11175 " TU version %s [in DWP file %s]"),
11176 pulongest (dwp_file->cus->version),
d721ba37 11177 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2 11178 }
08302ed2
DE
11179
11180 if (dwp_file->cus)
11181 dwp_file->version = dwp_file->cus->version;
11182 else if (dwp_file->tus)
11183 dwp_file->version = dwp_file->tus->version;
11184 else
11185 dwp_file->version = 2;
73869dc2
DE
11186
11187 if (dwp_file->version == 2)
192b62ce
TT
11188 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11189 dwp_file);
73869dc2 11190
19ac8c2e
DE
11191 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11192 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 11193
b4f54984 11194 if (dwarf_read_debug)
80626a55
DE
11195 {
11196 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11197 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
11198 " %s CUs, %s TUs\n",
11199 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11200 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
11201 }
11202
11203 return dwp_file;
3019eac3 11204}
c906108c 11205
ab5088bf
DE
11206/* Wrapper around open_and_init_dwp_file, only open it once. */
11207
11208static struct dwp_file *
11209get_dwp_file (void)
11210{
11211 if (! dwarf2_per_objfile->dwp_checked)
11212 {
11213 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11214 dwarf2_per_objfile->dwp_checked = 1;
11215 }
11216 return dwarf2_per_objfile->dwp_file;
11217}
11218
80626a55
DE
11219/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11220 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11221 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 11222 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
11223 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11224
11225 This is called, for example, when wanting to read a variable with a
11226 complex location. Therefore we don't want to do file i/o for every call.
11227 Therefore we don't want to look for a DWO file on every call.
11228 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11229 then we check if we've already seen DWO_NAME, and only THEN do we check
11230 for a DWO file.
11231
1c658ad5 11232 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 11233 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 11234
3019eac3 11235static struct dwo_unit *
80626a55
DE
11236lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11237 const char *dwo_name, const char *comp_dir,
11238 ULONGEST signature, int is_debug_types)
3019eac3
DE
11239{
11240 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
11241 const char *kind = is_debug_types ? "TU" : "CU";
11242 void **dwo_file_slot;
3019eac3 11243 struct dwo_file *dwo_file;
80626a55 11244 struct dwp_file *dwp_file;
cb1df416 11245
6a506a2d
DE
11246 /* First see if there's a DWP file.
11247 If we have a DWP file but didn't find the DWO inside it, don't
11248 look for the original DWO file. It makes gdb behave differently
11249 depending on whether one is debugging in the build tree. */
cf2c3c16 11250
ab5088bf 11251 dwp_file = get_dwp_file ();
80626a55 11252 if (dwp_file != NULL)
cf2c3c16 11253 {
80626a55
DE
11254 const struct dwp_hash_table *dwp_htab =
11255 is_debug_types ? dwp_file->tus : dwp_file->cus;
11256
11257 if (dwp_htab != NULL)
11258 {
11259 struct dwo_unit *dwo_cutu =
57d63ce2
DE
11260 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11261 signature, is_debug_types);
80626a55
DE
11262
11263 if (dwo_cutu != NULL)
11264 {
b4f54984 11265 if (dwarf_read_debug)
80626a55
DE
11266 {
11267 fprintf_unfiltered (gdb_stdlog,
11268 "Virtual DWO %s %s found: @%s\n",
11269 kind, hex_string (signature),
11270 host_address_to_string (dwo_cutu));
11271 }
11272 return dwo_cutu;
11273 }
11274 }
11275 }
6a506a2d 11276 else
80626a55 11277 {
6a506a2d 11278 /* No DWP file, look for the DWO file. */
80626a55 11279
6a506a2d
DE
11280 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11281 if (*dwo_file_slot == NULL)
80626a55 11282 {
6a506a2d
DE
11283 /* Read in the file and build a table of the CUs/TUs it contains. */
11284 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11285 }
6a506a2d 11286 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11287 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11288
6a506a2d 11289 if (dwo_file != NULL)
19c3d4c9 11290 {
6a506a2d
DE
11291 struct dwo_unit *dwo_cutu = NULL;
11292
11293 if (is_debug_types && dwo_file->tus)
11294 {
11295 struct dwo_unit find_dwo_cutu;
11296
11297 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11298 find_dwo_cutu.signature = signature;
9a3c8263
SM
11299 dwo_cutu
11300 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 11301 }
33c5cd75 11302 else if (!is_debug_types && dwo_file->cus)
80626a55 11303 {
33c5cd75
DB
11304 struct dwo_unit find_dwo_cutu;
11305
11306 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11307 find_dwo_cutu.signature = signature;
11308 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11309 &find_dwo_cutu);
6a506a2d
DE
11310 }
11311
11312 if (dwo_cutu != NULL)
11313 {
b4f54984 11314 if (dwarf_read_debug)
6a506a2d
DE
11315 {
11316 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11317 kind, dwo_name, hex_string (signature),
11318 host_address_to_string (dwo_cutu));
11319 }
11320 return dwo_cutu;
80626a55
DE
11321 }
11322 }
2e276125 11323 }
9cdd5dbd 11324
80626a55
DE
11325 /* We didn't find it. This could mean a dwo_id mismatch, or
11326 someone deleted the DWO/DWP file, or the search path isn't set up
11327 correctly to find the file. */
11328
b4f54984 11329 if (dwarf_read_debug)
80626a55
DE
11330 {
11331 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11332 kind, dwo_name, hex_string (signature));
11333 }
3019eac3 11334
6656a72d
DE
11335 /* This is a warning and not a complaint because it can be caused by
11336 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11337 {
11338 /* Print the name of the DWP file if we looked there, helps the user
11339 better diagnose the problem. */
791afaa2 11340 std::string dwp_text;
43942612
DE
11341
11342 if (dwp_file != NULL)
791afaa2
TT
11343 dwp_text = string_printf (" [in DWP file %s]",
11344 lbasename (dwp_file->name));
43942612
DE
11345
11346 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11347 " [in module %s]"),
11348 kind, dwo_name, hex_string (signature),
791afaa2 11349 dwp_text.c_str (),
43942612 11350 this_unit->is_debug_types ? "TU" : "CU",
9c541725 11351 to_underlying (this_unit->sect_off), objfile_name (objfile));
43942612 11352 }
3019eac3 11353 return NULL;
5fb290d7
DJ
11354}
11355
80626a55
DE
11356/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11357 See lookup_dwo_cutu_unit for details. */
11358
11359static struct dwo_unit *
11360lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11361 const char *dwo_name, const char *comp_dir,
11362 ULONGEST signature)
11363{
11364 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11365}
11366
11367/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11368 See lookup_dwo_cutu_unit for details. */
11369
11370static struct dwo_unit *
11371lookup_dwo_type_unit (struct signatured_type *this_tu,
11372 const char *dwo_name, const char *comp_dir)
11373{
11374 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11375}
11376
89e63ee4
DE
11377/* Traversal function for queue_and_load_all_dwo_tus. */
11378
11379static int
11380queue_and_load_dwo_tu (void **slot, void *info)
11381{
11382 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11383 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11384 ULONGEST signature = dwo_unit->signature;
11385 struct signatured_type *sig_type =
11386 lookup_dwo_signatured_type (per_cu->cu, signature);
11387
11388 if (sig_type != NULL)
11389 {
11390 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11391
11392 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11393 a real dependency of PER_CU on SIG_TYPE. That is detected later
11394 while processing PER_CU. */
11395 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11396 load_full_type_unit (sig_cu);
11397 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11398 }
11399
11400 return 1;
11401}
11402
11403/* Queue all TUs contained in the DWO of PER_CU to be read in.
11404 The DWO may have the only definition of the type, though it may not be
11405 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11406 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11407
11408static void
11409queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11410{
11411 struct dwo_unit *dwo_unit;
11412 struct dwo_file *dwo_file;
11413
11414 gdb_assert (!per_cu->is_debug_types);
11415 gdb_assert (get_dwp_file () == NULL);
11416 gdb_assert (per_cu->cu != NULL);
11417
11418 dwo_unit = per_cu->cu->dwo_unit;
11419 gdb_assert (dwo_unit != NULL);
11420
11421 dwo_file = dwo_unit->dwo_file;
11422 if (dwo_file->tus != NULL)
11423 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11424}
11425
3019eac3
DE
11426/* Free all resources associated with DWO_FILE.
11427 Close the DWO file and munmap the sections.
11428 All memory should be on the objfile obstack. */
348e048f
DE
11429
11430static void
3019eac3 11431free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11432{
348e048f 11433
5c6fa7ab 11434 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11435 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11436
3019eac3
DE
11437 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11438}
348e048f 11439
3019eac3 11440/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11441
3019eac3
DE
11442static void
11443free_dwo_file_cleanup (void *arg)
11444{
11445 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11446 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11447
3019eac3
DE
11448 free_dwo_file (dwo_file, objfile);
11449}
348e048f 11450
3019eac3 11451/* Traversal function for free_dwo_files. */
2ab95328 11452
3019eac3
DE
11453static int
11454free_dwo_file_from_slot (void **slot, void *info)
11455{
11456 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11457 struct objfile *objfile = (struct objfile *) info;
348e048f 11458
3019eac3 11459 free_dwo_file (dwo_file, objfile);
348e048f 11460
3019eac3
DE
11461 return 1;
11462}
348e048f 11463
3019eac3 11464/* Free all resources associated with DWO_FILES. */
348e048f 11465
3019eac3
DE
11466static void
11467free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11468{
11469 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11470}
3019eac3
DE
11471\f
11472/* Read in various DIEs. */
348e048f 11473
d389af10 11474/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11475 Inherit only the children of the DW_AT_abstract_origin DIE not being
11476 already referenced by DW_AT_abstract_origin from the children of the
11477 current DIE. */
d389af10
JK
11478
11479static void
11480inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11481{
11482 struct die_info *child_die;
791afaa2 11483 sect_offset *offsetp;
d389af10
JK
11484 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11485 struct die_info *origin_die;
11486 /* Iterator of the ORIGIN_DIE children. */
11487 struct die_info *origin_child_die;
d389af10 11488 struct attribute *attr;
cd02d79d
PA
11489 struct dwarf2_cu *origin_cu;
11490 struct pending **origin_previous_list_in_scope;
d389af10
JK
11491
11492 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11493 if (!attr)
11494 return;
11495
cd02d79d
PA
11496 /* Note that following die references may follow to a die in a
11497 different cu. */
11498
11499 origin_cu = cu;
11500 origin_die = follow_die_ref (die, attr, &origin_cu);
11501
11502 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11503 symbols in. */
11504 origin_previous_list_in_scope = origin_cu->list_in_scope;
11505 origin_cu->list_in_scope = cu->list_in_scope;
11506
edb3359d
DJ
11507 if (die->tag != origin_die->tag
11508 && !(die->tag == DW_TAG_inlined_subroutine
11509 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11510 complaint (&symfile_complaints,
11511 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9c541725
PA
11512 to_underlying (die->sect_off),
11513 to_underlying (origin_die->sect_off));
d389af10 11514
791afaa2 11515 std::vector<sect_offset> offsets;
d389af10 11516
3ea89b92
PMR
11517 for (child_die = die->child;
11518 child_die && child_die->tag;
11519 child_die = sibling_die (child_die))
11520 {
11521 struct die_info *child_origin_die;
11522 struct dwarf2_cu *child_origin_cu;
11523
11524 /* We are trying to process concrete instance entries:
216f72a1 11525 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
11526 it's not relevant to our analysis here. i.e. detecting DIEs that are
11527 present in the abstract instance but not referenced in the concrete
11528 one. */
216f72a1
JK
11529 if (child_die->tag == DW_TAG_call_site
11530 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
11531 continue;
11532
c38f313d
DJ
11533 /* For each CHILD_DIE, find the corresponding child of
11534 ORIGIN_DIE. If there is more than one layer of
11535 DW_AT_abstract_origin, follow them all; there shouldn't be,
11536 but GCC versions at least through 4.4 generate this (GCC PR
11537 40573). */
3ea89b92
PMR
11538 child_origin_die = child_die;
11539 child_origin_cu = cu;
c38f313d
DJ
11540 while (1)
11541 {
cd02d79d
PA
11542 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11543 child_origin_cu);
c38f313d
DJ
11544 if (attr == NULL)
11545 break;
cd02d79d
PA
11546 child_origin_die = follow_die_ref (child_origin_die, attr,
11547 &child_origin_cu);
c38f313d
DJ
11548 }
11549
d389af10
JK
11550 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11551 counterpart may exist. */
c38f313d 11552 if (child_origin_die != child_die)
d389af10 11553 {
edb3359d
DJ
11554 if (child_die->tag != child_origin_die->tag
11555 && !(child_die->tag == DW_TAG_inlined_subroutine
11556 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11557 complaint (&symfile_complaints,
11558 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11559 "different tags"),
11560 to_underlying (child_die->sect_off),
11561 to_underlying (child_origin_die->sect_off));
c38f313d
DJ
11562 if (child_origin_die->parent != origin_die)
11563 complaint (&symfile_complaints,
11564 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11565 "different parents"),
11566 to_underlying (child_die->sect_off),
11567 to_underlying (child_origin_die->sect_off));
c38f313d 11568 else
791afaa2 11569 offsets.push_back (child_origin_die->sect_off);
d389af10 11570 }
d389af10 11571 }
791afaa2
TT
11572 std::sort (offsets.begin (), offsets.end ());
11573 sect_offset *offsets_end = offsets.data () + offsets.size ();
11574 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
9c541725 11575 if (offsetp[-1] == *offsetp)
3e43a32a
MS
11576 complaint (&symfile_complaints,
11577 _("Multiple children of DIE 0x%x refer "
11578 "to DIE 0x%x as their abstract origin"),
9c541725 11579 to_underlying (die->sect_off), to_underlying (*offsetp));
d389af10 11580
791afaa2 11581 offsetp = offsets.data ();
d389af10
JK
11582 origin_child_die = origin_die->child;
11583 while (origin_child_die && origin_child_die->tag)
11584 {
11585 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 11586 while (offsetp < offsets_end
9c541725 11587 && *offsetp < origin_child_die->sect_off)
d389af10 11588 offsetp++;
b64f50a1 11589 if (offsetp >= offsets_end
9c541725 11590 || *offsetp > origin_child_die->sect_off)
d389af10 11591 {
adde2bff
DE
11592 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11593 Check whether we're already processing ORIGIN_CHILD_DIE.
11594 This can happen with mutually referenced abstract_origins.
11595 PR 16581. */
11596 if (!origin_child_die->in_process)
11597 process_die (origin_child_die, origin_cu);
d389af10
JK
11598 }
11599 origin_child_die = sibling_die (origin_child_die);
11600 }
cd02d79d 11601 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11602}
11603
c906108c 11604static void
e7c27a73 11605read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11606{
e7c27a73 11607 struct objfile *objfile = cu->objfile;
3e29f34a 11608 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11609 struct context_stack *newobj;
c906108c
SS
11610 CORE_ADDR lowpc;
11611 CORE_ADDR highpc;
11612 struct die_info *child_die;
edb3359d 11613 struct attribute *attr, *call_line, *call_file;
15d034d0 11614 const char *name;
e142c38c 11615 CORE_ADDR baseaddr;
801e3a5b 11616 struct block *block;
edb3359d 11617 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11618 VEC (symbolp) *template_args = NULL;
11619 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11620
11621 if (inlined_func)
11622 {
11623 /* If we do not have call site information, we can't show the
11624 caller of this inlined function. That's too confusing, so
11625 only use the scope for local variables. */
11626 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11627 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11628 if (call_line == NULL || call_file == NULL)
11629 {
11630 read_lexical_block_scope (die, cu);
11631 return;
11632 }
11633 }
c906108c 11634
e142c38c
DJ
11635 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11636
94af9270 11637 name = dwarf2_name (die, cu);
c906108c 11638
e8d05480
JB
11639 /* Ignore functions with missing or empty names. These are actually
11640 illegal according to the DWARF standard. */
11641 if (name == NULL)
11642 {
11643 complaint (&symfile_complaints,
b64f50a1 11644 _("missing name for subprogram DIE at %d"),
9c541725 11645 to_underlying (die->sect_off));
e8d05480
JB
11646 return;
11647 }
11648
11649 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11650 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11651 <= PC_BOUNDS_INVALID)
e8d05480 11652 {
ae4d0c03
PM
11653 attr = dwarf2_attr (die, DW_AT_external, cu);
11654 if (!attr || !DW_UNSND (attr))
11655 complaint (&symfile_complaints,
3e43a32a
MS
11656 _("cannot get low and high bounds "
11657 "for subprogram DIE at %d"),
9c541725 11658 to_underlying (die->sect_off));
e8d05480
JB
11659 return;
11660 }
c906108c 11661
3e29f34a
MR
11662 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11663 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11664
34eaf542
TT
11665 /* If we have any template arguments, then we must allocate a
11666 different sort of symbol. */
11667 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11668 {
11669 if (child_die->tag == DW_TAG_template_type_param
11670 || child_die->tag == DW_TAG_template_value_param)
11671 {
e623cf5d 11672 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11673 templ_func->base.is_cplus_template_function = 1;
11674 break;
11675 }
11676 }
11677
fe978cb0
PA
11678 newobj = push_context (0, lowpc);
11679 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11680 (struct symbol *) templ_func);
4c2df51b 11681
4cecd739
DJ
11682 /* If there is a location expression for DW_AT_frame_base, record
11683 it. */
e142c38c 11684 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11685 if (attr)
fe978cb0 11686 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11687
63e43d3a
PMR
11688 /* If there is a location for the static link, record it. */
11689 newobj->static_link = NULL;
11690 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11691 if (attr)
11692 {
224c3ddb
SM
11693 newobj->static_link
11694 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11695 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11696 }
11697
e142c38c 11698 cu->list_in_scope = &local_symbols;
c906108c 11699
639d11d3 11700 if (die->child != NULL)
c906108c 11701 {
639d11d3 11702 child_die = die->child;
c906108c
SS
11703 while (child_die && child_die->tag)
11704 {
34eaf542
TT
11705 if (child_die->tag == DW_TAG_template_type_param
11706 || child_die->tag == DW_TAG_template_value_param)
11707 {
11708 struct symbol *arg = new_symbol (child_die, NULL, cu);
11709
f1078f66
DJ
11710 if (arg != NULL)
11711 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11712 }
11713 else
11714 process_die (child_die, cu);
c906108c
SS
11715 child_die = sibling_die (child_die);
11716 }
11717 }
11718
d389af10
JK
11719 inherit_abstract_dies (die, cu);
11720
4a811a97
UW
11721 /* If we have a DW_AT_specification, we might need to import using
11722 directives from the context of the specification DIE. See the
11723 comment in determine_prefix. */
11724 if (cu->language == language_cplus
11725 && dwarf2_attr (die, DW_AT_specification, cu))
11726 {
11727 struct dwarf2_cu *spec_cu = cu;
11728 struct die_info *spec_die = die_specification (die, &spec_cu);
11729
11730 while (spec_die)
11731 {
11732 child_die = spec_die->child;
11733 while (child_die && child_die->tag)
11734 {
11735 if (child_die->tag == DW_TAG_imported_module)
11736 process_die (child_die, spec_cu);
11737 child_die = sibling_die (child_die);
11738 }
11739
11740 /* In some cases, GCC generates specification DIEs that
11741 themselves contain DW_AT_specification attributes. */
11742 spec_die = die_specification (spec_die, &spec_cu);
11743 }
11744 }
11745
fe978cb0 11746 newobj = pop_context ();
c906108c 11747 /* Make a block for the local symbols within. */
fe978cb0 11748 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11749 newobj->static_link, lowpc, highpc);
801e3a5b 11750
df8a16a1 11751 /* For C++, set the block's scope. */
45280282
IB
11752 if ((cu->language == language_cplus
11753 || cu->language == language_fortran
c44af4eb
TT
11754 || cu->language == language_d
11755 || cu->language == language_rust)
4d4ec4e5 11756 && cu->processing_has_namespace_info)
195a3f6c
TT
11757 block_set_scope (block, determine_prefix (die, cu),
11758 &objfile->objfile_obstack);
df8a16a1 11759
801e3a5b
JB
11760 /* If we have address ranges, record them. */
11761 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11762
fe978cb0 11763 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11764
34eaf542
TT
11765 /* Attach template arguments to function. */
11766 if (! VEC_empty (symbolp, template_args))
11767 {
11768 gdb_assert (templ_func != NULL);
11769
11770 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11771 templ_func->template_arguments
8d749320
SM
11772 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11773 templ_func->n_template_arguments);
34eaf542
TT
11774 memcpy (templ_func->template_arguments,
11775 VEC_address (symbolp, template_args),
11776 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11777 VEC_free (symbolp, template_args);
11778 }
11779
208d8187
JB
11780 /* In C++, we can have functions nested inside functions (e.g., when
11781 a function declares a class that has methods). This means that
11782 when we finish processing a function scope, we may need to go
11783 back to building a containing block's symbol lists. */
fe978cb0 11784 local_symbols = newobj->locals;
22cee43f 11785 local_using_directives = newobj->local_using_directives;
208d8187 11786
921e78cf
JB
11787 /* If we've finished processing a top-level function, subsequent
11788 symbols go in the file symbol list. */
11789 if (outermost_context_p ())
e142c38c 11790 cu->list_in_scope = &file_symbols;
c906108c
SS
11791}
11792
11793/* Process all the DIES contained within a lexical block scope. Start
11794 a new scope, process the dies, and then close the scope. */
11795
11796static void
e7c27a73 11797read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11798{
e7c27a73 11799 struct objfile *objfile = cu->objfile;
3e29f34a 11800 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11801 struct context_stack *newobj;
c906108c
SS
11802 CORE_ADDR lowpc, highpc;
11803 struct die_info *child_die;
e142c38c
DJ
11804 CORE_ADDR baseaddr;
11805
11806 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11807
11808 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11809 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11810 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11811 be nasty. Might be easier to properly extend generic blocks to
af34e669 11812 describe ranges. */
e385593e
JK
11813 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11814 {
11815 case PC_BOUNDS_NOT_PRESENT:
11816 /* DW_TAG_lexical_block has no attributes, process its children as if
11817 there was no wrapping by that DW_TAG_lexical_block.
11818 GCC does no longer produces such DWARF since GCC r224161. */
11819 for (child_die = die->child;
11820 child_die != NULL && child_die->tag;
11821 child_die = sibling_die (child_die))
11822 process_die (child_die, cu);
11823 return;
11824 case PC_BOUNDS_INVALID:
11825 return;
11826 }
3e29f34a
MR
11827 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11828 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11829
11830 push_context (0, lowpc);
639d11d3 11831 if (die->child != NULL)
c906108c 11832 {
639d11d3 11833 child_die = die->child;
c906108c
SS
11834 while (child_die && child_die->tag)
11835 {
e7c27a73 11836 process_die (child_die, cu);
c906108c
SS
11837 child_die = sibling_die (child_die);
11838 }
11839 }
3ea89b92 11840 inherit_abstract_dies (die, cu);
fe978cb0 11841 newobj = pop_context ();
c906108c 11842
22cee43f 11843 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11844 {
801e3a5b 11845 struct block *block
63e43d3a 11846 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11847 newobj->start_addr, highpc);
801e3a5b
JB
11848
11849 /* Note that recording ranges after traversing children, as we
11850 do here, means that recording a parent's ranges entails
11851 walking across all its children's ranges as they appear in
11852 the address map, which is quadratic behavior.
11853
11854 It would be nicer to record the parent's ranges before
11855 traversing its children, simply overriding whatever you find
11856 there. But since we don't even decide whether to create a
11857 block until after we've traversed its children, that's hard
11858 to do. */
11859 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11860 }
fe978cb0 11861 local_symbols = newobj->locals;
22cee43f 11862 local_using_directives = newobj->local_using_directives;
c906108c
SS
11863}
11864
216f72a1 11865/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
11866
11867static void
11868read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11869{
11870 struct objfile *objfile = cu->objfile;
11871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11872 CORE_ADDR pc, baseaddr;
11873 struct attribute *attr;
11874 struct call_site *call_site, call_site_local;
11875 void **slot;
11876 int nparams;
11877 struct die_info *child_die;
11878
11879 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11880
216f72a1
JK
11881 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11882 if (attr == NULL)
11883 {
11884 /* This was a pre-DWARF-5 GNU extension alias
11885 for DW_AT_call_return_pc. */
11886 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11887 }
96408a79
SA
11888 if (!attr)
11889 {
11890 complaint (&symfile_complaints,
216f72a1 11891 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
96408a79 11892 "DIE 0x%x [in module %s]"),
9c541725 11893 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
11894 return;
11895 }
31aa7e4e 11896 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11897 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11898
11899 if (cu->call_site_htab == NULL)
11900 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11901 NULL, &objfile->objfile_obstack,
11902 hashtab_obstack_allocate, NULL);
11903 call_site_local.pc = pc;
11904 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11905 if (*slot != NULL)
11906 {
11907 complaint (&symfile_complaints,
216f72a1 11908 _("Duplicate PC %s for DW_TAG_call_site "
96408a79 11909 "DIE 0x%x [in module %s]"),
9c541725 11910 paddress (gdbarch, pc), to_underlying (die->sect_off),
4262abfb 11911 objfile_name (objfile));
96408a79
SA
11912 return;
11913 }
11914
11915 /* Count parameters at the caller. */
11916
11917 nparams = 0;
11918 for (child_die = die->child; child_die && child_die->tag;
11919 child_die = sibling_die (child_die))
11920 {
216f72a1
JK
11921 if (child_die->tag != DW_TAG_call_site_parameter
11922 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
11923 {
11924 complaint (&symfile_complaints,
216f72a1
JK
11925 _("Tag %d is not DW_TAG_call_site_parameter in "
11926 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 11927 child_die->tag, to_underlying (child_die->sect_off),
4262abfb 11928 objfile_name (objfile));
96408a79
SA
11929 continue;
11930 }
11931
11932 nparams++;
11933 }
11934
224c3ddb
SM
11935 call_site
11936 = ((struct call_site *)
11937 obstack_alloc (&objfile->objfile_obstack,
11938 sizeof (*call_site)
11939 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11940 *slot = call_site;
11941 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11942 call_site->pc = pc;
11943
216f72a1
JK
11944 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11945 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
11946 {
11947 struct die_info *func_die;
11948
11949 /* Skip also over DW_TAG_inlined_subroutine. */
11950 for (func_die = die->parent;
11951 func_die && func_die->tag != DW_TAG_subprogram
11952 && func_die->tag != DW_TAG_subroutine_type;
11953 func_die = func_die->parent);
11954
216f72a1
JK
11955 /* DW_AT_call_all_calls is a superset
11956 of DW_AT_call_all_tail_calls. */
96408a79 11957 if (func_die
216f72a1 11958 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 11959 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 11960 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
11961 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11962 {
11963 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11964 not complete. But keep CALL_SITE for look ups via call_site_htab,
11965 both the initial caller containing the real return address PC and
11966 the final callee containing the current PC of a chain of tail
11967 calls do not need to have the tail call list complete. But any
11968 function candidate for a virtual tail call frame searched via
11969 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11970 determined unambiguously. */
11971 }
11972 else
11973 {
11974 struct type *func_type = NULL;
11975
11976 if (func_die)
11977 func_type = get_die_type (func_die, cu);
11978 if (func_type != NULL)
11979 {
11980 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11981
11982 /* Enlist this call site to the function. */
11983 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11984 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11985 }
11986 else
11987 complaint (&symfile_complaints,
216f72a1 11988 _("Cannot find function owning DW_TAG_call_site "
96408a79 11989 "DIE 0x%x [in module %s]"),
9c541725 11990 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
11991 }
11992 }
11993
216f72a1
JK
11994 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11995 if (attr == NULL)
11996 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11997 if (attr == NULL)
11998 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 11999 if (attr == NULL)
216f72a1
JK
12000 {
12001 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12002 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12003 }
96408a79
SA
12004 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12005 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12006 /* Keep NULL DWARF_BLOCK. */;
12007 else if (attr_form_is_block (attr))
12008 {
12009 struct dwarf2_locexpr_baton *dlbaton;
12010
8d749320 12011 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
12012 dlbaton->data = DW_BLOCK (attr)->data;
12013 dlbaton->size = DW_BLOCK (attr)->size;
12014 dlbaton->per_cu = cu->per_cu;
12015
12016 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12017 }
7771576e 12018 else if (attr_form_is_ref (attr))
96408a79 12019 {
96408a79
SA
12020 struct dwarf2_cu *target_cu = cu;
12021 struct die_info *target_die;
12022
ac9ec31b 12023 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
12024 gdb_assert (target_cu->objfile == objfile);
12025 if (die_is_declaration (target_die, target_cu))
12026 {
7d45c7c3 12027 const char *target_physname;
9112db09
JK
12028
12029 /* Prefer the mangled name; otherwise compute the demangled one. */
73b9be8b 12030 target_physname = dw2_linkage_name (target_die, target_cu);
7d45c7c3 12031 if (target_physname == NULL)
9112db09 12032 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
12033 if (target_physname == NULL)
12034 complaint (&symfile_complaints,
216f72a1 12035 _("DW_AT_call_target target DIE has invalid "
96408a79 12036 "physname, for referencing DIE 0x%x [in module %s]"),
9c541725 12037 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 12038 else
7d455152 12039 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
12040 }
12041 else
12042 {
12043 CORE_ADDR lowpc;
12044
12045 /* DW_AT_entry_pc should be preferred. */
3a2b436a 12046 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 12047 <= PC_BOUNDS_INVALID)
96408a79 12048 complaint (&symfile_complaints,
216f72a1 12049 _("DW_AT_call_target target DIE has invalid "
96408a79 12050 "low pc, for referencing DIE 0x%x [in module %s]"),
9c541725 12051 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 12052 else
3e29f34a
MR
12053 {
12054 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12055 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12056 }
96408a79
SA
12057 }
12058 }
12059 else
12060 complaint (&symfile_complaints,
216f72a1 12061 _("DW_TAG_call_site DW_AT_call_target is neither "
96408a79 12062 "block nor reference, for DIE 0x%x [in module %s]"),
9c541725 12063 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
12064
12065 call_site->per_cu = cu->per_cu;
12066
12067 for (child_die = die->child;
12068 child_die && child_die->tag;
12069 child_die = sibling_die (child_die))
12070 {
96408a79 12071 struct call_site_parameter *parameter;
1788b2d3 12072 struct attribute *loc, *origin;
96408a79 12073
216f72a1
JK
12074 if (child_die->tag != DW_TAG_call_site_parameter
12075 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
12076 {
12077 /* Already printed the complaint above. */
12078 continue;
12079 }
12080
12081 gdb_assert (call_site->parameter_count < nparams);
12082 parameter = &call_site->parameter[call_site->parameter_count];
12083
1788b2d3
JK
12084 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12085 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 12086 register is contained in DW_AT_call_value. */
96408a79 12087
24c5c679 12088 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
12089 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12090 if (origin == NULL)
12091 {
12092 /* This was a pre-DWARF-5 GNU extension alias
12093 for DW_AT_call_parameter. */
12094 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12095 }
7771576e 12096 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 12097 {
1788b2d3 12098 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
12099
12100 sect_offset sect_off
12101 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12102 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
12103 {
12104 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12105 binding can be done only inside one CU. Such referenced DIE
12106 therefore cannot be even moved to DW_TAG_partial_unit. */
12107 complaint (&symfile_complaints,
216f72a1
JK
12108 _("DW_AT_call_parameter offset is not in CU for "
12109 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12110 to_underlying (child_die->sect_off),
12111 objfile_name (objfile));
d76b7dbc
JK
12112 continue;
12113 }
9c541725
PA
12114 parameter->u.param_cu_off
12115 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
12116 }
12117 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
12118 {
12119 complaint (&symfile_complaints,
12120 _("No DW_FORM_block* DW_AT_location for "
216f72a1 12121 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 12122 to_underlying (child_die->sect_off), objfile_name (objfile));
96408a79
SA
12123 continue;
12124 }
24c5c679 12125 else
96408a79 12126 {
24c5c679
JK
12127 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12128 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12129 if (parameter->u.dwarf_reg != -1)
12130 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12131 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12132 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12133 &parameter->u.fb_offset))
12134 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12135 else
12136 {
12137 complaint (&symfile_complaints,
12138 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12139 "for DW_FORM_block* DW_AT_location is supported for "
216f72a1 12140 "DW_TAG_call_site child DIE 0x%x "
24c5c679 12141 "[in module %s]"),
9c541725
PA
12142 to_underlying (child_die->sect_off),
12143 objfile_name (objfile));
24c5c679
JK
12144 continue;
12145 }
96408a79
SA
12146 }
12147
216f72a1
JK
12148 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12149 if (attr == NULL)
12150 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
12151 if (!attr_form_is_block (attr))
12152 {
12153 complaint (&symfile_complaints,
216f72a1
JK
12154 _("No DW_FORM_block* DW_AT_call_value for "
12155 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12156 to_underlying (child_die->sect_off),
12157 objfile_name (objfile));
96408a79
SA
12158 continue;
12159 }
12160 parameter->value = DW_BLOCK (attr)->data;
12161 parameter->value_size = DW_BLOCK (attr)->size;
12162
12163 /* Parameters are not pre-cleared by memset above. */
12164 parameter->data_value = NULL;
12165 parameter->data_value_size = 0;
12166 call_site->parameter_count++;
12167
216f72a1
JK
12168 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12169 if (attr == NULL)
12170 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
12171 if (attr)
12172 {
12173 if (!attr_form_is_block (attr))
12174 complaint (&symfile_complaints,
216f72a1
JK
12175 _("No DW_FORM_block* DW_AT_call_data_value for "
12176 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12177 to_underlying (child_die->sect_off),
12178 objfile_name (objfile));
96408a79
SA
12179 else
12180 {
12181 parameter->data_value = DW_BLOCK (attr)->data;
12182 parameter->data_value_size = DW_BLOCK (attr)->size;
12183 }
12184 }
12185 }
12186}
12187
43988095
JK
12188/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12189 reading .debug_rnglists.
12190 Callback's type should be:
12191 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12192 Return true if the attributes are present and valid, otherwise,
12193 return false. */
12194
12195template <typename Callback>
12196static bool
12197dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12198 Callback &&callback)
12199{
12200 struct objfile *objfile = cu->objfile;
12201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12202 struct comp_unit_head *cu_header = &cu->header;
12203 bfd *obfd = objfile->obfd;
12204 unsigned int addr_size = cu_header->addr_size;
12205 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12206 /* Base address selection entry. */
12207 CORE_ADDR base;
12208 int found_base;
12209 unsigned int dummy;
12210 const gdb_byte *buffer;
12211 CORE_ADDR low = 0;
12212 CORE_ADDR high = 0;
12213 CORE_ADDR baseaddr;
12214 bool overflow = false;
12215
12216 found_base = cu->base_known;
12217 base = cu->base_address;
12218
12219 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12220 if (offset >= dwarf2_per_objfile->rnglists.size)
12221 {
12222 complaint (&symfile_complaints,
12223 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12224 offset);
12225 return false;
12226 }
12227 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12228
12229 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12230
12231 while (1)
12232 {
7814882a
JK
12233 /* Initialize it due to a false compiler warning. */
12234 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
12235 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12236 + dwarf2_per_objfile->rnglists.size);
12237 unsigned int bytes_read;
12238
12239 if (buffer == buf_end)
12240 {
12241 overflow = true;
12242 break;
12243 }
12244 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12245 switch (rlet)
12246 {
12247 case DW_RLE_end_of_list:
12248 break;
12249 case DW_RLE_base_address:
12250 if (buffer + cu->header.addr_size > buf_end)
12251 {
12252 overflow = true;
12253 break;
12254 }
12255 base = read_address (obfd, buffer, cu, &bytes_read);
12256 found_base = 1;
12257 buffer += bytes_read;
12258 break;
12259 case DW_RLE_start_length:
12260 if (buffer + cu->header.addr_size > buf_end)
12261 {
12262 overflow = true;
12263 break;
12264 }
12265 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12266 buffer += bytes_read;
12267 range_end = (range_beginning
12268 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12269 buffer += bytes_read;
12270 if (buffer > buf_end)
12271 {
12272 overflow = true;
12273 break;
12274 }
12275 break;
12276 case DW_RLE_offset_pair:
12277 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12278 buffer += bytes_read;
12279 if (buffer > buf_end)
12280 {
12281 overflow = true;
12282 break;
12283 }
12284 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12285 buffer += bytes_read;
12286 if (buffer > buf_end)
12287 {
12288 overflow = true;
12289 break;
12290 }
12291 break;
12292 case DW_RLE_start_end:
12293 if (buffer + 2 * cu->header.addr_size > buf_end)
12294 {
12295 overflow = true;
12296 break;
12297 }
12298 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12299 buffer += bytes_read;
12300 range_end = read_address (obfd, buffer, cu, &bytes_read);
12301 buffer += bytes_read;
12302 break;
12303 default:
12304 complaint (&symfile_complaints,
12305 _("Invalid .debug_rnglists data (no base address)"));
12306 return false;
12307 }
12308 if (rlet == DW_RLE_end_of_list || overflow)
12309 break;
12310 if (rlet == DW_RLE_base_address)
12311 continue;
12312
12313 if (!found_base)
12314 {
12315 /* We have no valid base address for the ranges
12316 data. */
12317 complaint (&symfile_complaints,
12318 _("Invalid .debug_rnglists data (no base address)"));
12319 return false;
12320 }
12321
12322 if (range_beginning > range_end)
12323 {
12324 /* Inverted range entries are invalid. */
12325 complaint (&symfile_complaints,
12326 _("Invalid .debug_rnglists data (inverted range)"));
12327 return false;
12328 }
12329
12330 /* Empty range entries have no effect. */
12331 if (range_beginning == range_end)
12332 continue;
12333
12334 range_beginning += base;
12335 range_end += base;
12336
12337 /* A not-uncommon case of bad debug info.
12338 Don't pollute the addrmap with bad data. */
12339 if (range_beginning + baseaddr == 0
12340 && !dwarf2_per_objfile->has_section_at_zero)
12341 {
12342 complaint (&symfile_complaints,
12343 _(".debug_rnglists entry has start address of zero"
12344 " [in module %s]"), objfile_name (objfile));
12345 continue;
12346 }
12347
12348 callback (range_beginning, range_end);
12349 }
12350
12351 if (overflow)
12352 {
12353 complaint (&symfile_complaints,
12354 _("Offset %d is not terminated "
12355 "for DW_AT_ranges attribute"),
12356 offset);
12357 return false;
12358 }
12359
12360 return true;
12361}
12362
12363/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12364 Callback's type should be:
12365 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 12366 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 12367
43988095 12368template <typename Callback>
43039443 12369static int
5f46c5a5 12370dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 12371 Callback &&callback)
43039443
JK
12372{
12373 struct objfile *objfile = cu->objfile;
3e29f34a 12374 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
12375 struct comp_unit_head *cu_header = &cu->header;
12376 bfd *obfd = objfile->obfd;
12377 unsigned int addr_size = cu_header->addr_size;
12378 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12379 /* Base address selection entry. */
12380 CORE_ADDR base;
12381 int found_base;
12382 unsigned int dummy;
d521ce57 12383 const gdb_byte *buffer;
ff013f42 12384 CORE_ADDR baseaddr;
43039443 12385
43988095
JK
12386 if (cu_header->version >= 5)
12387 return dwarf2_rnglists_process (offset, cu, callback);
12388
d00adf39
DE
12389 found_base = cu->base_known;
12390 base = cu->base_address;
43039443 12391
be391dca 12392 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12393 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
12394 {
12395 complaint (&symfile_complaints,
12396 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12397 offset);
12398 return 0;
12399 }
dce234bc 12400 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 12401
e7030f15 12402 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 12403
43039443
JK
12404 while (1)
12405 {
12406 CORE_ADDR range_beginning, range_end;
12407
12408 range_beginning = read_address (obfd, buffer, cu, &dummy);
12409 buffer += addr_size;
12410 range_end = read_address (obfd, buffer, cu, &dummy);
12411 buffer += addr_size;
12412 offset += 2 * addr_size;
12413
12414 /* An end of list marker is a pair of zero addresses. */
12415 if (range_beginning == 0 && range_end == 0)
12416 /* Found the end of list entry. */
12417 break;
12418
12419 /* Each base address selection entry is a pair of 2 values.
12420 The first is the largest possible address, the second is
12421 the base address. Check for a base address here. */
12422 if ((range_beginning & mask) == mask)
12423 {
28d2bfb9
AB
12424 /* If we found the largest possible address, then we already
12425 have the base address in range_end. */
12426 base = range_end;
43039443
JK
12427 found_base = 1;
12428 continue;
12429 }
12430
12431 if (!found_base)
12432 {
12433 /* We have no valid base address for the ranges
12434 data. */
12435 complaint (&symfile_complaints,
12436 _("Invalid .debug_ranges data (no base address)"));
12437 return 0;
12438 }
12439
9277c30c
UW
12440 if (range_beginning > range_end)
12441 {
12442 /* Inverted range entries are invalid. */
12443 complaint (&symfile_complaints,
12444 _("Invalid .debug_ranges data (inverted range)"));
12445 return 0;
12446 }
12447
12448 /* Empty range entries have no effect. */
12449 if (range_beginning == range_end)
12450 continue;
12451
43039443
JK
12452 range_beginning += base;
12453 range_end += base;
12454
01093045
DE
12455 /* A not-uncommon case of bad debug info.
12456 Don't pollute the addrmap with bad data. */
12457 if (range_beginning + baseaddr == 0
12458 && !dwarf2_per_objfile->has_section_at_zero)
12459 {
12460 complaint (&symfile_complaints,
12461 _(".debug_ranges entry has start address of zero"
4262abfb 12462 " [in module %s]"), objfile_name (objfile));
01093045
DE
12463 continue;
12464 }
12465
5f46c5a5
JK
12466 callback (range_beginning, range_end);
12467 }
12468
12469 return 1;
12470}
12471
12472/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12473 Return 1 if the attributes are present and valid, otherwise, return 0.
12474 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12475
12476static int
12477dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12478 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12479 struct partial_symtab *ranges_pst)
12480{
12481 struct objfile *objfile = cu->objfile;
12482 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12483 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12484 SECT_OFF_TEXT (objfile));
12485 int low_set = 0;
12486 CORE_ADDR low = 0;
12487 CORE_ADDR high = 0;
12488 int retval;
12489
12490 retval = dwarf2_ranges_process (offset, cu,
12491 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12492 {
9277c30c 12493 if (ranges_pst != NULL)
3e29f34a
MR
12494 {
12495 CORE_ADDR lowpc;
12496 CORE_ADDR highpc;
12497
12498 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12499 range_beginning + baseaddr);
12500 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12501 range_end + baseaddr);
12502 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12503 ranges_pst);
12504 }
ff013f42 12505
43039443
JK
12506 /* FIXME: This is recording everything as a low-high
12507 segment of consecutive addresses. We should have a
12508 data structure for discontiguous block ranges
12509 instead. */
12510 if (! low_set)
12511 {
12512 low = range_beginning;
12513 high = range_end;
12514 low_set = 1;
12515 }
12516 else
12517 {
12518 if (range_beginning < low)
12519 low = range_beginning;
12520 if (range_end > high)
12521 high = range_end;
12522 }
5f46c5a5
JK
12523 });
12524 if (!retval)
12525 return 0;
43039443
JK
12526
12527 if (! low_set)
12528 /* If the first entry is an end-of-list marker, the range
12529 describes an empty scope, i.e. no instructions. */
12530 return 0;
12531
12532 if (low_return)
12533 *low_return = low;
12534 if (high_return)
12535 *high_return = high;
12536 return 1;
12537}
12538
3a2b436a
JK
12539/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12540 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12541 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12542
3a2b436a 12543static enum pc_bounds_kind
af34e669 12544dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12545 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12546 struct partial_symtab *pst)
c906108c
SS
12547{
12548 struct attribute *attr;
91da1414 12549 struct attribute *attr_high;
af34e669
DJ
12550 CORE_ADDR low = 0;
12551 CORE_ADDR high = 0;
e385593e 12552 enum pc_bounds_kind ret;
c906108c 12553
91da1414
MW
12554 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12555 if (attr_high)
af34e669 12556 {
e142c38c 12557 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12558 if (attr)
91da1414 12559 {
31aa7e4e
JB
12560 low = attr_value_as_address (attr);
12561 high = attr_value_as_address (attr_high);
12562 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12563 high += low;
91da1414 12564 }
af34e669
DJ
12565 else
12566 /* Found high w/o low attribute. */
e385593e 12567 return PC_BOUNDS_INVALID;
af34e669
DJ
12568
12569 /* Found consecutive range of addresses. */
3a2b436a 12570 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12571 }
c906108c 12572 else
af34e669 12573 {
e142c38c 12574 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12575 if (attr != NULL)
12576 {
ab435259
DE
12577 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12578 We take advantage of the fact that DW_AT_ranges does not appear
12579 in DW_TAG_compile_unit of DWO files. */
12580 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12581 unsigned int ranges_offset = (DW_UNSND (attr)
12582 + (need_ranges_base
12583 ? cu->ranges_base
12584 : 0));
2e3cf129 12585
af34e669 12586 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12587 .debug_ranges section. */
2e3cf129 12588 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12589 return PC_BOUNDS_INVALID;
43039443 12590 /* Found discontinuous range of addresses. */
3a2b436a 12591 ret = PC_BOUNDS_RANGES;
af34e669 12592 }
e385593e
JK
12593 else
12594 return PC_BOUNDS_NOT_PRESENT;
af34e669 12595 }
c906108c 12596
9373cf26
JK
12597 /* read_partial_die has also the strict LOW < HIGH requirement. */
12598 if (high <= low)
e385593e 12599 return PC_BOUNDS_INVALID;
c906108c
SS
12600
12601 /* When using the GNU linker, .gnu.linkonce. sections are used to
12602 eliminate duplicate copies of functions and vtables and such.
12603 The linker will arbitrarily choose one and discard the others.
12604 The AT_*_pc values for such functions refer to local labels in
12605 these sections. If the section from that file was discarded, the
12606 labels are not in the output, so the relocs get a value of 0.
12607 If this is a discarded function, mark the pc bounds as invalid,
12608 so that GDB will ignore it. */
72dca2f5 12609 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12610 return PC_BOUNDS_INVALID;
c906108c
SS
12611
12612 *lowpc = low;
96408a79
SA
12613 if (highpc)
12614 *highpc = high;
af34e669 12615 return ret;
c906108c
SS
12616}
12617
b084d499
JB
12618/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12619 its low and high PC addresses. Do nothing if these addresses could not
12620 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12621 and HIGHPC to the high address if greater than HIGHPC. */
12622
12623static void
12624dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12625 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12626 struct dwarf2_cu *cu)
12627{
12628 CORE_ADDR low, high;
12629 struct die_info *child = die->child;
12630
e385593e 12631 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 12632 {
325fac50
PA
12633 *lowpc = std::min (*lowpc, low);
12634 *highpc = std::max (*highpc, high);
b084d499
JB
12635 }
12636
12637 /* If the language does not allow nested subprograms (either inside
12638 subprograms or lexical blocks), we're done. */
12639 if (cu->language != language_ada)
12640 return;
6e70227d 12641
b084d499
JB
12642 /* Check all the children of the given DIE. If it contains nested
12643 subprograms, then check their pc bounds. Likewise, we need to
12644 check lexical blocks as well, as they may also contain subprogram
12645 definitions. */
12646 while (child && child->tag)
12647 {
12648 if (child->tag == DW_TAG_subprogram
12649 || child->tag == DW_TAG_lexical_block)
12650 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12651 child = sibling_die (child);
12652 }
12653}
12654
fae299cd
DC
12655/* Get the low and high pc's represented by the scope DIE, and store
12656 them in *LOWPC and *HIGHPC. If the correct values can't be
12657 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12658
12659static void
12660get_scope_pc_bounds (struct die_info *die,
12661 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12662 struct dwarf2_cu *cu)
12663{
12664 CORE_ADDR best_low = (CORE_ADDR) -1;
12665 CORE_ADDR best_high = (CORE_ADDR) 0;
12666 CORE_ADDR current_low, current_high;
12667
3a2b436a 12668 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12669 >= PC_BOUNDS_RANGES)
fae299cd
DC
12670 {
12671 best_low = current_low;
12672 best_high = current_high;
12673 }
12674 else
12675 {
12676 struct die_info *child = die->child;
12677
12678 while (child && child->tag)
12679 {
12680 switch (child->tag) {
12681 case DW_TAG_subprogram:
b084d499 12682 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12683 break;
12684 case DW_TAG_namespace:
f55ee35c 12685 case DW_TAG_module:
fae299cd
DC
12686 /* FIXME: carlton/2004-01-16: Should we do this for
12687 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12688 that current GCC's always emit the DIEs corresponding
12689 to definitions of methods of classes as children of a
12690 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12691 the DIEs giving the declarations, which could be
12692 anywhere). But I don't see any reason why the
12693 standards says that they have to be there. */
12694 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12695
12696 if (current_low != ((CORE_ADDR) -1))
12697 {
325fac50
PA
12698 best_low = std::min (best_low, current_low);
12699 best_high = std::max (best_high, current_high);
fae299cd
DC
12700 }
12701 break;
12702 default:
0963b4bd 12703 /* Ignore. */
fae299cd
DC
12704 break;
12705 }
12706
12707 child = sibling_die (child);
12708 }
12709 }
12710
12711 *lowpc = best_low;
12712 *highpc = best_high;
12713}
12714
801e3a5b
JB
12715/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12716 in DIE. */
380bca97 12717
801e3a5b
JB
12718static void
12719dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12720 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12721{
bb5ed363 12722 struct objfile *objfile = cu->objfile;
3e29f34a 12723 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12724 struct attribute *attr;
91da1414 12725 struct attribute *attr_high;
801e3a5b 12726
91da1414
MW
12727 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12728 if (attr_high)
801e3a5b 12729 {
801e3a5b
JB
12730 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12731 if (attr)
12732 {
31aa7e4e
JB
12733 CORE_ADDR low = attr_value_as_address (attr);
12734 CORE_ADDR high = attr_value_as_address (attr_high);
12735
12736 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12737 high += low;
9a619af0 12738
3e29f34a
MR
12739 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12740 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12741 record_block_range (block, low, high - 1);
801e3a5b
JB
12742 }
12743 }
12744
12745 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12746 if (attr)
12747 {
bb5ed363 12748 bfd *obfd = objfile->obfd;
ab435259
DE
12749 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12750 We take advantage of the fact that DW_AT_ranges does not appear
12751 in DW_TAG_compile_unit of DWO files. */
12752 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12753
12754 /* The value of the DW_AT_ranges attribute is the offset of the
12755 address range list in the .debug_ranges section. */
ab435259
DE
12756 unsigned long offset = (DW_UNSND (attr)
12757 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12758 const gdb_byte *buffer;
801e3a5b
JB
12759
12760 /* For some target architectures, but not others, the
12761 read_address function sign-extends the addresses it returns.
12762 To recognize base address selection entries, we need a
12763 mask. */
12764 unsigned int addr_size = cu->header.addr_size;
12765 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12766
12767 /* The base address, to which the next pair is relative. Note
12768 that this 'base' is a DWARF concept: most entries in a range
12769 list are relative, to reduce the number of relocs against the
12770 debugging information. This is separate from this function's
12771 'baseaddr' argument, which GDB uses to relocate debugging
12772 information from a shared library based on the address at
12773 which the library was loaded. */
d00adf39
DE
12774 CORE_ADDR base = cu->base_address;
12775 int base_known = cu->base_known;
801e3a5b 12776
5f46c5a5
JK
12777 dwarf2_ranges_process (offset, cu,
12778 [&] (CORE_ADDR start, CORE_ADDR end)
12779 {
58fdfd2c
JK
12780 start += baseaddr;
12781 end += baseaddr;
5f46c5a5
JK
12782 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12783 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12784 record_block_range (block, start, end - 1);
12785 });
801e3a5b
JB
12786 }
12787}
12788
685b1105
JK
12789/* Check whether the producer field indicates either of GCC < 4.6, or the
12790 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12791
685b1105
JK
12792static void
12793check_producer (struct dwarf2_cu *cu)
60d5a603 12794{
38360086 12795 int major, minor;
60d5a603
JK
12796
12797 if (cu->producer == NULL)
12798 {
12799 /* For unknown compilers expect their behavior is DWARF version
12800 compliant.
12801
12802 GCC started to support .debug_types sections by -gdwarf-4 since
12803 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12804 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12805 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12806 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12807 }
b1ffba5a 12808 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12809 {
38360086
MW
12810 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12811 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12812 }
5230b05a
WT
12813 else if (producer_is_icc (cu->producer, &major, &minor))
12814 cu->producer_is_icc_lt_14 = major < 14;
685b1105
JK
12815 else
12816 {
12817 /* For other non-GCC compilers, expect their behavior is DWARF version
12818 compliant. */
60d5a603
JK
12819 }
12820
ba919b58 12821 cu->checked_producer = 1;
685b1105 12822}
ba919b58 12823
685b1105
JK
12824/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12825 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12826 during 4.6.0 experimental. */
12827
12828static int
12829producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12830{
12831 if (!cu->checked_producer)
12832 check_producer (cu);
12833
12834 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12835}
12836
12837/* Return the default accessibility type if it is not overriden by
12838 DW_AT_accessibility. */
12839
12840static enum dwarf_access_attribute
12841dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12842{
12843 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12844 {
12845 /* The default DWARF 2 accessibility for members is public, the default
12846 accessibility for inheritance is private. */
12847
12848 if (die->tag != DW_TAG_inheritance)
12849 return DW_ACCESS_public;
12850 else
12851 return DW_ACCESS_private;
12852 }
12853 else
12854 {
12855 /* DWARF 3+ defines the default accessibility a different way. The same
12856 rules apply now for DW_TAG_inheritance as for the members and it only
12857 depends on the container kind. */
12858
12859 if (die->parent->tag == DW_TAG_class_type)
12860 return DW_ACCESS_private;
12861 else
12862 return DW_ACCESS_public;
12863 }
12864}
12865
74ac6d43
TT
12866/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12867 offset. If the attribute was not found return 0, otherwise return
12868 1. If it was found but could not properly be handled, set *OFFSET
12869 to 0. */
12870
12871static int
12872handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12873 LONGEST *offset)
12874{
12875 struct attribute *attr;
12876
12877 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12878 if (attr != NULL)
12879 {
12880 *offset = 0;
12881
12882 /* Note that we do not check for a section offset first here.
12883 This is because DW_AT_data_member_location is new in DWARF 4,
12884 so if we see it, we can assume that a constant form is really
12885 a constant and not a section offset. */
12886 if (attr_form_is_constant (attr))
12887 *offset = dwarf2_get_attr_constant_value (attr, 0);
12888 else if (attr_form_is_section_offset (attr))
12889 dwarf2_complex_location_expr_complaint ();
12890 else if (attr_form_is_block (attr))
12891 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12892 else
12893 dwarf2_complex_location_expr_complaint ();
12894
12895 return 1;
12896 }
12897
12898 return 0;
12899}
12900
c906108c
SS
12901/* Add an aggregate field to the field list. */
12902
12903static void
107d2387 12904dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12905 struct dwarf2_cu *cu)
6e70227d 12906{
e7c27a73 12907 struct objfile *objfile = cu->objfile;
5e2b427d 12908 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12909 struct nextfield *new_field;
12910 struct attribute *attr;
12911 struct field *fp;
15d034d0 12912 const char *fieldname = "";
c906108c
SS
12913
12914 /* Allocate a new field list entry and link it in. */
8d749320 12915 new_field = XNEW (struct nextfield);
b8c9b27d 12916 make_cleanup (xfree, new_field);
c906108c 12917 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12918
12919 if (die->tag == DW_TAG_inheritance)
12920 {
12921 new_field->next = fip->baseclasses;
12922 fip->baseclasses = new_field;
12923 }
12924 else
12925 {
12926 new_field->next = fip->fields;
12927 fip->fields = new_field;
12928 }
c906108c
SS
12929 fip->nfields++;
12930
e142c38c 12931 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12932 if (attr)
12933 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12934 else
12935 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12936 if (new_field->accessibility != DW_ACCESS_public)
12937 fip->non_public_fields = 1;
60d5a603 12938
e142c38c 12939 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12940 if (attr)
12941 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12942 else
12943 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12944
12945 fp = &new_field->field;
a9a9bd0f 12946
e142c38c 12947 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12948 {
74ac6d43
TT
12949 LONGEST offset;
12950
a9a9bd0f 12951 /* Data member other than a C++ static data member. */
6e70227d 12952
c906108c 12953 /* Get type of field. */
e7c27a73 12954 fp->type = die_type (die, cu);
c906108c 12955
d6a843b5 12956 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12957
c906108c 12958 /* Get bit size of field (zero if none). */
e142c38c 12959 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12960 if (attr)
12961 {
12962 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12963 }
12964 else
12965 {
12966 FIELD_BITSIZE (*fp) = 0;
12967 }
12968
12969 /* Get bit offset of field. */
74ac6d43
TT
12970 if (handle_data_member_location (die, cu, &offset))
12971 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12972 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12973 if (attr)
12974 {
5e2b427d 12975 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12976 {
12977 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12978 additional bit offset from the MSB of the containing
12979 anonymous object to the MSB of the field. We don't
12980 have to do anything special since we don't need to
12981 know the size of the anonymous object. */
f41f5e61 12982 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12983 }
12984 else
12985 {
12986 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12987 MSB of the anonymous object, subtract off the number of
12988 bits from the MSB of the field to the MSB of the
12989 object, and then subtract off the number of bits of
12990 the field itself. The result is the bit offset of
12991 the LSB of the field. */
c906108c
SS
12992 int anonymous_size;
12993 int bit_offset = DW_UNSND (attr);
12994
e142c38c 12995 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12996 if (attr)
12997 {
12998 /* The size of the anonymous object containing
12999 the bit field is explicit, so use the
13000 indicated size (in bytes). */
13001 anonymous_size = DW_UNSND (attr);
13002 }
13003 else
13004 {
13005 /* The size of the anonymous object containing
13006 the bit field must be inferred from the type
13007 attribute of the data member containing the
13008 bit field. */
13009 anonymous_size = TYPE_LENGTH (fp->type);
13010 }
f41f5e61
PA
13011 SET_FIELD_BITPOS (*fp,
13012 (FIELD_BITPOS (*fp)
13013 + anonymous_size * bits_per_byte
13014 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
13015 }
13016 }
da5b30da
AA
13017 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13018 if (attr != NULL)
13019 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13020 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
13021
13022 /* Get name of field. */
39cbfefa
DJ
13023 fieldname = dwarf2_name (die, cu);
13024 if (fieldname == NULL)
13025 fieldname = "";
d8151005
DJ
13026
13027 /* The name is already allocated along with this objfile, so we don't
13028 need to duplicate it for the type. */
13029 fp->name = fieldname;
c906108c
SS
13030
13031 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 13032 pointer or virtual base class pointer) to private. */
e142c38c 13033 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 13034 {
d48cc9dd 13035 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
13036 new_field->accessibility = DW_ACCESS_private;
13037 fip->non_public_fields = 1;
13038 }
13039 }
a9a9bd0f 13040 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 13041 {
a9a9bd0f
DC
13042 /* C++ static member. */
13043
13044 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13045 is a declaration, but all versions of G++ as of this writing
13046 (so through at least 3.2.1) incorrectly generate
13047 DW_TAG_variable tags. */
6e70227d 13048
ff355380 13049 const char *physname;
c906108c 13050
a9a9bd0f 13051 /* Get name of field. */
39cbfefa
DJ
13052 fieldname = dwarf2_name (die, cu);
13053 if (fieldname == NULL)
c906108c
SS
13054 return;
13055
254e6b9e 13056 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
13057 if (attr
13058 /* Only create a symbol if this is an external value.
13059 new_symbol checks this and puts the value in the global symbol
13060 table, which we want. If it is not external, new_symbol
13061 will try to put the value in cu->list_in_scope which is wrong. */
13062 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
13063 {
13064 /* A static const member, not much different than an enum as far as
13065 we're concerned, except that we can support more types. */
13066 new_symbol (die, NULL, cu);
13067 }
13068
2df3850c 13069 /* Get physical name. */
ff355380 13070 physname = dwarf2_physname (fieldname, die, cu);
c906108c 13071
d8151005
DJ
13072 /* The name is already allocated along with this objfile, so we don't
13073 need to duplicate it for the type. */
13074 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 13075 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 13076 FIELD_NAME (*fp) = fieldname;
c906108c
SS
13077 }
13078 else if (die->tag == DW_TAG_inheritance)
13079 {
74ac6d43 13080 LONGEST offset;
d4b96c9a 13081
74ac6d43
TT
13082 /* C++ base class field. */
13083 if (handle_data_member_location (die, cu, &offset))
13084 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 13085 FIELD_BITSIZE (*fp) = 0;
e7c27a73 13086 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
13087 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13088 fip->nbaseclasses++;
13089 }
13090}
13091
98751a41
JK
13092/* Add a typedef defined in the scope of the FIP's class. */
13093
13094static void
13095dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13096 struct dwarf2_cu *cu)
6e70227d 13097{
98751a41 13098 struct typedef_field_list *new_field;
98751a41 13099 struct typedef_field *fp;
98751a41
JK
13100
13101 /* Allocate a new field list entry and link it in. */
8d749320 13102 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
13103 make_cleanup (xfree, new_field);
13104
13105 gdb_assert (die->tag == DW_TAG_typedef);
13106
13107 fp = &new_field->field;
13108
13109 /* Get name of field. */
13110 fp->name = dwarf2_name (die, cu);
13111 if (fp->name == NULL)
13112 return;
13113
13114 fp->type = read_type_die (die, cu);
13115
13116 new_field->next = fip->typedef_field_list;
13117 fip->typedef_field_list = new_field;
13118 fip->typedef_field_list_count++;
13119}
13120
c906108c
SS
13121/* Create the vector of fields, and attach it to the type. */
13122
13123static void
fba45db2 13124dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13125 struct dwarf2_cu *cu)
c906108c
SS
13126{
13127 int nfields = fip->nfields;
13128
13129 /* Record the field count, allocate space for the array of fields,
13130 and create blank accessibility bitfields if necessary. */
13131 TYPE_NFIELDS (type) = nfields;
13132 TYPE_FIELDS (type) = (struct field *)
13133 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13134 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13135
b4ba55a1 13136 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
13137 {
13138 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13139
13140 TYPE_FIELD_PRIVATE_BITS (type) =
13141 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13142 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13143
13144 TYPE_FIELD_PROTECTED_BITS (type) =
13145 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13146 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13147
774b6a14
TT
13148 TYPE_FIELD_IGNORE_BITS (type) =
13149 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13150 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
13151 }
13152
13153 /* If the type has baseclasses, allocate and clear a bit vector for
13154 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 13155 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
13156 {
13157 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 13158 unsigned char *pointer;
c906108c
SS
13159
13160 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 13161 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 13162 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
13163 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13164 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13165 }
13166
3e43a32a
MS
13167 /* Copy the saved-up fields into the field vector. Start from the head of
13168 the list, adding to the tail of the field array, so that they end up in
13169 the same order in the array in which they were added to the list. */
c906108c
SS
13170 while (nfields-- > 0)
13171 {
7d0ccb61
DJ
13172 struct nextfield *fieldp;
13173
13174 if (fip->fields)
13175 {
13176 fieldp = fip->fields;
13177 fip->fields = fieldp->next;
13178 }
13179 else
13180 {
13181 fieldp = fip->baseclasses;
13182 fip->baseclasses = fieldp->next;
13183 }
13184
13185 TYPE_FIELD (type, nfields) = fieldp->field;
13186 switch (fieldp->accessibility)
c906108c 13187 {
c5aa993b 13188 case DW_ACCESS_private:
b4ba55a1
JB
13189 if (cu->language != language_ada)
13190 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 13191 break;
c906108c 13192
c5aa993b 13193 case DW_ACCESS_protected:
b4ba55a1
JB
13194 if (cu->language != language_ada)
13195 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 13196 break;
c906108c 13197
c5aa993b
JM
13198 case DW_ACCESS_public:
13199 break;
c906108c 13200
c5aa993b
JM
13201 default:
13202 /* Unknown accessibility. Complain and treat it as public. */
13203 {
e2e0b3e5 13204 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 13205 fieldp->accessibility);
c5aa993b
JM
13206 }
13207 break;
c906108c
SS
13208 }
13209 if (nfields < fip->nbaseclasses)
13210 {
7d0ccb61 13211 switch (fieldp->virtuality)
c906108c 13212 {
c5aa993b
JM
13213 case DW_VIRTUALITY_virtual:
13214 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 13215 if (cu->language == language_ada)
a73c6dcd 13216 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
13217 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13218 break;
c906108c
SS
13219 }
13220 }
c906108c
SS
13221 }
13222}
13223
7d27a96d
TT
13224/* Return true if this member function is a constructor, false
13225 otherwise. */
13226
13227static int
13228dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13229{
13230 const char *fieldname;
fe978cb0 13231 const char *type_name;
7d27a96d
TT
13232 int len;
13233
13234 if (die->parent == NULL)
13235 return 0;
13236
13237 if (die->parent->tag != DW_TAG_structure_type
13238 && die->parent->tag != DW_TAG_union_type
13239 && die->parent->tag != DW_TAG_class_type)
13240 return 0;
13241
13242 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
13243 type_name = dwarf2_name (die->parent, cu);
13244 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
13245 return 0;
13246
13247 len = strlen (fieldname);
fe978cb0
PA
13248 return (strncmp (fieldname, type_name, len) == 0
13249 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
13250}
13251
c906108c
SS
13252/* Add a member function to the proper fieldlist. */
13253
13254static void
107d2387 13255dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 13256 struct type *type, struct dwarf2_cu *cu)
c906108c 13257{
e7c27a73 13258 struct objfile *objfile = cu->objfile;
c906108c
SS
13259 struct attribute *attr;
13260 struct fnfieldlist *flp;
13261 int i;
13262 struct fn_field *fnp;
15d034d0 13263 const char *fieldname;
c906108c 13264 struct nextfnfield *new_fnfield;
f792889a 13265 struct type *this_type;
60d5a603 13266 enum dwarf_access_attribute accessibility;
c906108c 13267
b4ba55a1 13268 if (cu->language == language_ada)
a73c6dcd 13269 error (_("unexpected member function in Ada type"));
b4ba55a1 13270
2df3850c 13271 /* Get name of member function. */
39cbfefa
DJ
13272 fieldname = dwarf2_name (die, cu);
13273 if (fieldname == NULL)
2df3850c 13274 return;
c906108c 13275
c906108c
SS
13276 /* Look up member function name in fieldlist. */
13277 for (i = 0; i < fip->nfnfields; i++)
13278 {
27bfe10e 13279 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
13280 break;
13281 }
13282
13283 /* Create new list element if necessary. */
13284 if (i < fip->nfnfields)
13285 flp = &fip->fnfieldlists[i];
13286 else
13287 {
13288 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13289 {
13290 fip->fnfieldlists = (struct fnfieldlist *)
13291 xrealloc (fip->fnfieldlists,
13292 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13293 * sizeof (struct fnfieldlist));
c906108c 13294 if (fip->nfnfields == 0)
c13c43fd 13295 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
13296 }
13297 flp = &fip->fnfieldlists[fip->nfnfields];
13298 flp->name = fieldname;
13299 flp->length = 0;
13300 flp->head = NULL;
3da10d80 13301 i = fip->nfnfields++;
c906108c
SS
13302 }
13303
13304 /* Create a new member function field and chain it to the field list
0963b4bd 13305 entry. */
8d749320 13306 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 13307 make_cleanup (xfree, new_fnfield);
c906108c
SS
13308 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13309 new_fnfield->next = flp->head;
13310 flp->head = new_fnfield;
13311 flp->length++;
13312
13313 /* Fill in the member function field info. */
13314 fnp = &new_fnfield->fnfield;
3da10d80
KS
13315
13316 /* Delay processing of the physname until later. */
9c37b5ae 13317 if (cu->language == language_cplus)
3da10d80
KS
13318 {
13319 add_to_method_list (type, i, flp->length - 1, fieldname,
13320 die, cu);
13321 }
13322 else
13323 {
1d06ead6 13324 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
13325 fnp->physname = physname ? physname : "";
13326 }
13327
c906108c 13328 fnp->type = alloc_type (objfile);
f792889a
DJ
13329 this_type = read_type_die (die, cu);
13330 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 13331 {
f792889a 13332 int nparams = TYPE_NFIELDS (this_type);
c906108c 13333
f792889a 13334 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
13335 of the method itself (TYPE_CODE_METHOD). */
13336 smash_to_method_type (fnp->type, type,
f792889a
DJ
13337 TYPE_TARGET_TYPE (this_type),
13338 TYPE_FIELDS (this_type),
13339 TYPE_NFIELDS (this_type),
13340 TYPE_VARARGS (this_type));
c906108c
SS
13341
13342 /* Handle static member functions.
c5aa993b 13343 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
13344 member functions. G++ helps GDB by marking the first
13345 parameter for non-static member functions (which is the this
13346 pointer) as artificial. We obtain this information from
13347 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 13348 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
13349 fnp->voffset = VOFFSET_STATIC;
13350 }
13351 else
e2e0b3e5 13352 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 13353 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
13354
13355 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 13356 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 13357 fnp->fcontext = die_containing_type (die, cu);
c906108c 13358
3e43a32a
MS
13359 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13360 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
13361
13362 /* Get accessibility. */
e142c38c 13363 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 13364 if (attr)
aead7601 13365 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
13366 else
13367 accessibility = dwarf2_default_access_attribute (die, cu);
13368 switch (accessibility)
c906108c 13369 {
60d5a603
JK
13370 case DW_ACCESS_private:
13371 fnp->is_private = 1;
13372 break;
13373 case DW_ACCESS_protected:
13374 fnp->is_protected = 1;
13375 break;
c906108c
SS
13376 }
13377
b02dede2 13378 /* Check for artificial methods. */
e142c38c 13379 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
13380 if (attr && DW_UNSND (attr) != 0)
13381 fnp->is_artificial = 1;
13382
7d27a96d
TT
13383 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13384
0d564a31 13385 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
13386 function. For older versions of GCC, this is an offset in the
13387 appropriate virtual table, as specified by DW_AT_containing_type.
13388 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
13389 to the object address. */
13390
e142c38c 13391 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 13392 if (attr)
8e19ed76 13393 {
aec5aa8b 13394 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 13395 {
aec5aa8b
TT
13396 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13397 {
13398 /* Old-style GCC. */
13399 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13400 }
13401 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13402 || (DW_BLOCK (attr)->size > 1
13403 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13404 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13405 {
aec5aa8b
TT
13406 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13407 if ((fnp->voffset % cu->header.addr_size) != 0)
13408 dwarf2_complex_location_expr_complaint ();
13409 else
13410 fnp->voffset /= cu->header.addr_size;
13411 fnp->voffset += 2;
13412 }
13413 else
13414 dwarf2_complex_location_expr_complaint ();
13415
13416 if (!fnp->fcontext)
7e993ebf
KS
13417 {
13418 /* If there is no `this' field and no DW_AT_containing_type,
13419 we cannot actually find a base class context for the
13420 vtable! */
13421 if (TYPE_NFIELDS (this_type) == 0
13422 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13423 {
13424 complaint (&symfile_complaints,
13425 _("cannot determine context for virtual member "
13426 "function \"%s\" (offset %d)"),
9c541725 13427 fieldname, to_underlying (die->sect_off));
7e993ebf
KS
13428 }
13429 else
13430 {
13431 fnp->fcontext
13432 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13433 }
13434 }
aec5aa8b 13435 }
3690dd37 13436 else if (attr_form_is_section_offset (attr))
8e19ed76 13437 {
4d3c2250 13438 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13439 }
13440 else
13441 {
4d3c2250
KB
13442 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13443 fieldname);
8e19ed76 13444 }
0d564a31 13445 }
d48cc9dd
DJ
13446 else
13447 {
13448 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13449 if (attr && DW_UNSND (attr))
13450 {
13451 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13452 complaint (&symfile_complaints,
3e43a32a
MS
13453 _("Member function \"%s\" (offset %d) is virtual "
13454 "but the vtable offset is not specified"),
9c541725 13455 fieldname, to_underlying (die->sect_off));
9655fd1a 13456 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13457 TYPE_CPLUS_DYNAMIC (type) = 1;
13458 }
13459 }
c906108c
SS
13460}
13461
13462/* Create the vector of member function fields, and attach it to the type. */
13463
13464static void
fba45db2 13465dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13466 struct dwarf2_cu *cu)
c906108c
SS
13467{
13468 struct fnfieldlist *flp;
c906108c
SS
13469 int i;
13470
b4ba55a1 13471 if (cu->language == language_ada)
a73c6dcd 13472 error (_("unexpected member functions in Ada type"));
b4ba55a1 13473
c906108c
SS
13474 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13475 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13476 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13477
13478 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13479 {
13480 struct nextfnfield *nfp = flp->head;
13481 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13482 int k;
13483
13484 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13485 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13486 fn_flp->fn_fields = (struct fn_field *)
13487 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13488 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13489 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13490 }
13491
13492 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13493}
13494
1168df01
JB
13495/* Returns non-zero if NAME is the name of a vtable member in CU's
13496 language, zero otherwise. */
13497static int
13498is_vtable_name (const char *name, struct dwarf2_cu *cu)
13499{
13500 static const char vptr[] = "_vptr";
987504bb 13501 static const char vtable[] = "vtable";
1168df01 13502
9c37b5ae
TT
13503 /* Look for the C++ form of the vtable. */
13504 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
13505 return 1;
13506
13507 return 0;
13508}
13509
c0dd20ea 13510/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13511 functions, with the ABI-specified layout. If TYPE describes
13512 such a structure, smash it into a member function type.
61049d3b
DJ
13513
13514 GCC shouldn't do this; it should just output pointer to member DIEs.
13515 This is GCC PR debug/28767. */
c0dd20ea 13516
0b92b5bb
TT
13517static void
13518quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13519{
09e2d7c7 13520 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13521
13522 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13523 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13524 return;
c0dd20ea
DJ
13525
13526 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13527 if (TYPE_FIELD_NAME (type, 0) == NULL
13528 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13529 || TYPE_FIELD_NAME (type, 1) == NULL
13530 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13531 return;
c0dd20ea
DJ
13532
13533 /* Find the type of the method. */
0b92b5bb 13534 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13535 if (pfn_type == NULL
13536 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13537 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13538 return;
c0dd20ea
DJ
13539
13540 /* Look for the "this" argument. */
13541 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13542 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13543 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13544 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13545 return;
c0dd20ea 13546
09e2d7c7 13547 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13548 new_type = alloc_type (objfile);
09e2d7c7 13549 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13550 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13551 TYPE_VARARGS (pfn_type));
0b92b5bb 13552 smash_to_methodptr_type (type, new_type);
c0dd20ea 13553}
1168df01 13554
685b1105 13555
c906108c 13556/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13557 (definition) to create a type for the structure or union. Fill in
13558 the type's name and general properties; the members will not be
83655187
DE
13559 processed until process_structure_scope. A symbol table entry for
13560 the type will also not be done until process_structure_scope (assuming
13561 the type has a name).
c906108c 13562
c767944b
DJ
13563 NOTE: we need to call these functions regardless of whether or not the
13564 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13565 structure or union. This gets the type entered into our set of
83655187 13566 user defined types. */
c906108c 13567
f792889a 13568static struct type *
134d01f1 13569read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13570{
e7c27a73 13571 struct objfile *objfile = cu->objfile;
c906108c
SS
13572 struct type *type;
13573 struct attribute *attr;
15d034d0 13574 const char *name;
c906108c 13575
348e048f
DE
13576 /* If the definition of this type lives in .debug_types, read that type.
13577 Don't follow DW_AT_specification though, that will take us back up
13578 the chain and we want to go down. */
45e58e77 13579 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13580 if (attr)
13581 {
ac9ec31b 13582 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13583
ac9ec31b 13584 /* The type's CU may not be the same as CU.
02142a6c 13585 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13586 return set_die_type (die, type, cu);
13587 }
13588
c0dd20ea 13589 type = alloc_type (objfile);
c906108c 13590 INIT_CPLUS_SPECIFIC (type);
93311388 13591
39cbfefa
DJ
13592 name = dwarf2_name (die, cu);
13593 if (name != NULL)
c906108c 13594 {
987504bb 13595 if (cu->language == language_cplus
c44af4eb
TT
13596 || cu->language == language_d
13597 || cu->language == language_rust)
63d06c5c 13598 {
15d034d0 13599 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13600
13601 /* dwarf2_full_name might have already finished building the DIE's
13602 type. If so, there is no need to continue. */
13603 if (get_die_type (die, cu) != NULL)
13604 return get_die_type (die, cu);
13605
13606 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13607 if (die->tag == DW_TAG_structure_type
13608 || die->tag == DW_TAG_class_type)
13609 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13610 }
13611 else
13612 {
d8151005
DJ
13613 /* The name is already allocated along with this objfile, so
13614 we don't need to duplicate it for the type. */
7d455152 13615 TYPE_TAG_NAME (type) = name;
94af9270
KS
13616 if (die->tag == DW_TAG_class_type)
13617 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13618 }
c906108c
SS
13619 }
13620
13621 if (die->tag == DW_TAG_structure_type)
13622 {
13623 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13624 }
13625 else if (die->tag == DW_TAG_union_type)
13626 {
13627 TYPE_CODE (type) = TYPE_CODE_UNION;
13628 }
13629 else
13630 {
4753d33b 13631 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13632 }
13633
0cc2414c
TT
13634 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13635 TYPE_DECLARED_CLASS (type) = 1;
13636
e142c38c 13637 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13638 if (attr)
13639 {
155bfbd3
JB
13640 if (attr_form_is_constant (attr))
13641 TYPE_LENGTH (type) = DW_UNSND (attr);
13642 else
13643 {
13644 /* For the moment, dynamic type sizes are not supported
13645 by GDB's struct type. The actual size is determined
13646 on-demand when resolving the type of a given object,
13647 so set the type's length to zero for now. Otherwise,
13648 we record an expression as the length, and that expression
13649 could lead to a very large value, which could eventually
13650 lead to us trying to allocate that much memory when creating
13651 a value of that type. */
13652 TYPE_LENGTH (type) = 0;
13653 }
c906108c
SS
13654 }
13655 else
13656 {
13657 TYPE_LENGTH (type) = 0;
13658 }
13659
5230b05a 13660 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
685b1105 13661 {
5230b05a
WT
13662 /* ICC<14 does not output the required DW_AT_declaration on
13663 incomplete types, but gives them a size of zero. */
422b1cb0 13664 TYPE_STUB (type) = 1;
685b1105
JK
13665 }
13666 else
13667 TYPE_STUB_SUPPORTED (type) = 1;
13668
dc718098 13669 if (die_is_declaration (die, cu))
876cecd0 13670 TYPE_STUB (type) = 1;
a6c727b2
DJ
13671 else if (attr == NULL && die->child == NULL
13672 && producer_is_realview (cu->producer))
13673 /* RealView does not output the required DW_AT_declaration
13674 on incomplete types. */
13675 TYPE_STUB (type) = 1;
dc718098 13676
c906108c
SS
13677 /* We need to add the type field to the die immediately so we don't
13678 infinitely recurse when dealing with pointers to the structure
0963b4bd 13679 type within the structure itself. */
1c379e20 13680 set_die_type (die, type, cu);
c906108c 13681
7e314c57
JK
13682 /* set_die_type should be already done. */
13683 set_descriptive_type (type, die, cu);
13684
c767944b
DJ
13685 return type;
13686}
13687
13688/* Finish creating a structure or union type, including filling in
13689 its members and creating a symbol for it. */
13690
13691static void
13692process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13693{
13694 struct objfile *objfile = cu->objfile;
ca040673 13695 struct die_info *child_die;
c767944b
DJ
13696 struct type *type;
13697
13698 type = get_die_type (die, cu);
13699 if (type == NULL)
13700 type = read_structure_type (die, cu);
13701
e142c38c 13702 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13703 {
13704 struct field_info fi;
34eaf542 13705 VEC (symbolp) *template_args = NULL;
c767944b 13706 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13707
13708 memset (&fi, 0, sizeof (struct field_info));
13709
639d11d3 13710 child_die = die->child;
c906108c
SS
13711
13712 while (child_die && child_die->tag)
13713 {
a9a9bd0f
DC
13714 if (child_die->tag == DW_TAG_member
13715 || child_die->tag == DW_TAG_variable)
c906108c 13716 {
a9a9bd0f
DC
13717 /* NOTE: carlton/2002-11-05: A C++ static data member
13718 should be a DW_TAG_member that is a declaration, but
13719 all versions of G++ as of this writing (so through at
13720 least 3.2.1) incorrectly generate DW_TAG_variable
13721 tags for them instead. */
e7c27a73 13722 dwarf2_add_field (&fi, child_die, cu);
c906108c 13723 }
8713b1b1 13724 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13725 {
e98c9e7c
TT
13726 /* Rust doesn't have member functions in the C++ sense.
13727 However, it does emit ordinary functions as children
13728 of a struct DIE. */
13729 if (cu->language == language_rust)
13730 read_func_scope (child_die, cu);
13731 else
13732 {
13733 /* C++ member function. */
13734 dwarf2_add_member_fn (&fi, child_die, type, cu);
13735 }
c906108c
SS
13736 }
13737 else if (child_die->tag == DW_TAG_inheritance)
13738 {
13739 /* C++ base class field. */
e7c27a73 13740 dwarf2_add_field (&fi, child_die, cu);
c906108c 13741 }
98751a41
JK
13742 else if (child_die->tag == DW_TAG_typedef)
13743 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13744 else if (child_die->tag == DW_TAG_template_type_param
13745 || child_die->tag == DW_TAG_template_value_param)
13746 {
13747 struct symbol *arg = new_symbol (child_die, NULL, cu);
13748
f1078f66
DJ
13749 if (arg != NULL)
13750 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13751 }
13752
c906108c
SS
13753 child_die = sibling_die (child_die);
13754 }
13755
34eaf542
TT
13756 /* Attach template arguments to type. */
13757 if (! VEC_empty (symbolp, template_args))
13758 {
13759 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13760 TYPE_N_TEMPLATE_ARGUMENTS (type)
13761 = VEC_length (symbolp, template_args);
13762 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13763 = XOBNEWVEC (&objfile->objfile_obstack,
13764 struct symbol *,
13765 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13766 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13767 VEC_address (symbolp, template_args),
13768 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13769 * sizeof (struct symbol *)));
13770 VEC_free (symbolp, template_args);
13771 }
13772
c906108c
SS
13773 /* Attach fields and member functions to the type. */
13774 if (fi.nfields)
e7c27a73 13775 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13776 if (fi.nfnfields)
13777 {
e7c27a73 13778 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13779
c5aa993b 13780 /* Get the type which refers to the base class (possibly this
c906108c 13781 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13782 class from the DW_AT_containing_type attribute. This use of
13783 DW_AT_containing_type is a GNU extension. */
c906108c 13784
e142c38c 13785 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13786 {
e7c27a73 13787 struct type *t = die_containing_type (die, cu);
c906108c 13788
ae6ae975 13789 set_type_vptr_basetype (type, t);
c906108c
SS
13790 if (type == t)
13791 {
c906108c
SS
13792 int i;
13793
13794 /* Our own class provides vtbl ptr. */
13795 for (i = TYPE_NFIELDS (t) - 1;
13796 i >= TYPE_N_BASECLASSES (t);
13797 --i)
13798 {
0d5cff50 13799 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13800
1168df01 13801 if (is_vtable_name (fieldname, cu))
c906108c 13802 {
ae6ae975 13803 set_type_vptr_fieldno (type, i);
c906108c
SS
13804 break;
13805 }
13806 }
13807
13808 /* Complain if virtual function table field not found. */
13809 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13810 complaint (&symfile_complaints,
3e43a32a
MS
13811 _("virtual function table pointer "
13812 "not found when defining class '%s'"),
4d3c2250
KB
13813 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13814 "");
c906108c
SS
13815 }
13816 else
13817 {
ae6ae975 13818 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13819 }
13820 }
f6235d4c 13821 else if (cu->producer
61012eef 13822 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13823 {
13824 /* The IBM XLC compiler does not provide direct indication
13825 of the containing type, but the vtable pointer is
13826 always named __vfp. */
13827
13828 int i;
13829
13830 for (i = TYPE_NFIELDS (type) - 1;
13831 i >= TYPE_N_BASECLASSES (type);
13832 --i)
13833 {
13834 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13835 {
ae6ae975
DE
13836 set_type_vptr_fieldno (type, i);
13837 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13838 break;
13839 }
13840 }
13841 }
c906108c 13842 }
98751a41
JK
13843
13844 /* Copy fi.typedef_field_list linked list elements content into the
13845 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13846 if (fi.typedef_field_list)
13847 {
13848 int i = fi.typedef_field_list_count;
13849
a0d7a4ff 13850 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13851 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13852 = ((struct typedef_field *)
13853 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13854 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13855
13856 /* Reverse the list order to keep the debug info elements order. */
13857 while (--i >= 0)
13858 {
13859 struct typedef_field *dest, *src;
6e70227d 13860
98751a41
JK
13861 dest = &TYPE_TYPEDEF_FIELD (type, i);
13862 src = &fi.typedef_field_list->field;
13863 fi.typedef_field_list = fi.typedef_field_list->next;
13864 *dest = *src;
13865 }
13866 }
c767944b
DJ
13867
13868 do_cleanups (back_to);
c906108c 13869 }
63d06c5c 13870
bb5ed363 13871 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13872
90aeadfc
DC
13873 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13874 snapshots) has been known to create a die giving a declaration
13875 for a class that has, as a child, a die giving a definition for a
13876 nested class. So we have to process our children even if the
13877 current die is a declaration. Normally, of course, a declaration
13878 won't have any children at all. */
134d01f1 13879
ca040673
DE
13880 child_die = die->child;
13881
90aeadfc
DC
13882 while (child_die != NULL && child_die->tag)
13883 {
13884 if (child_die->tag == DW_TAG_member
13885 || child_die->tag == DW_TAG_variable
34eaf542
TT
13886 || child_die->tag == DW_TAG_inheritance
13887 || child_die->tag == DW_TAG_template_value_param
13888 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13889 {
90aeadfc 13890 /* Do nothing. */
134d01f1 13891 }
90aeadfc
DC
13892 else
13893 process_die (child_die, cu);
134d01f1 13894
90aeadfc 13895 child_die = sibling_die (child_die);
134d01f1
DJ
13896 }
13897
fa4028e9
JB
13898 /* Do not consider external references. According to the DWARF standard,
13899 these DIEs are identified by the fact that they have no byte_size
13900 attribute, and a declaration attribute. */
13901 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13902 || !die_is_declaration (die, cu))
c767944b 13903 new_symbol (die, type, cu);
134d01f1
DJ
13904}
13905
55426c9d
JB
13906/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13907 update TYPE using some information only available in DIE's children. */
13908
13909static void
13910update_enumeration_type_from_children (struct die_info *die,
13911 struct type *type,
13912 struct dwarf2_cu *cu)
13913{
60f7655a 13914 struct die_info *child_die;
55426c9d
JB
13915 int unsigned_enum = 1;
13916 int flag_enum = 1;
13917 ULONGEST mask = 0;
55426c9d 13918
8268c778 13919 auto_obstack obstack;
55426c9d 13920
60f7655a
DE
13921 for (child_die = die->child;
13922 child_die != NULL && child_die->tag;
13923 child_die = sibling_die (child_die))
55426c9d
JB
13924 {
13925 struct attribute *attr;
13926 LONGEST value;
13927 const gdb_byte *bytes;
13928 struct dwarf2_locexpr_baton *baton;
13929 const char *name;
60f7655a 13930
55426c9d
JB
13931 if (child_die->tag != DW_TAG_enumerator)
13932 continue;
13933
13934 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13935 if (attr == NULL)
13936 continue;
13937
13938 name = dwarf2_name (child_die, cu);
13939 if (name == NULL)
13940 name = "<anonymous enumerator>";
13941
13942 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13943 &value, &bytes, &baton);
13944 if (value < 0)
13945 {
13946 unsigned_enum = 0;
13947 flag_enum = 0;
13948 }
13949 else if ((mask & value) != 0)
13950 flag_enum = 0;
13951 else
13952 mask |= value;
13953
13954 /* If we already know that the enum type is neither unsigned, nor
13955 a flag type, no need to look at the rest of the enumerates. */
13956 if (!unsigned_enum && !flag_enum)
13957 break;
55426c9d
JB
13958 }
13959
13960 if (unsigned_enum)
13961 TYPE_UNSIGNED (type) = 1;
13962 if (flag_enum)
13963 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
13964}
13965
134d01f1
DJ
13966/* Given a DW_AT_enumeration_type die, set its type. We do not
13967 complete the type's fields yet, or create any symbols. */
c906108c 13968
f792889a 13969static struct type *
134d01f1 13970read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13971{
e7c27a73 13972 struct objfile *objfile = cu->objfile;
c906108c 13973 struct type *type;
c906108c 13974 struct attribute *attr;
0114d602 13975 const char *name;
134d01f1 13976
348e048f
DE
13977 /* If the definition of this type lives in .debug_types, read that type.
13978 Don't follow DW_AT_specification though, that will take us back up
13979 the chain and we want to go down. */
45e58e77 13980 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13981 if (attr)
13982 {
ac9ec31b 13983 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13984
ac9ec31b 13985 /* The type's CU may not be the same as CU.
02142a6c 13986 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13987 return set_die_type (die, type, cu);
13988 }
13989
c906108c
SS
13990 type = alloc_type (objfile);
13991
13992 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13993 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13994 if (name != NULL)
7d455152 13995 TYPE_TAG_NAME (type) = name;
c906108c 13996
0626fc76
TT
13997 attr = dwarf2_attr (die, DW_AT_type, cu);
13998 if (attr != NULL)
13999 {
14000 struct type *underlying_type = die_type (die, cu);
14001
14002 TYPE_TARGET_TYPE (type) = underlying_type;
14003 }
14004
e142c38c 14005 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14006 if (attr)
14007 {
14008 TYPE_LENGTH (type) = DW_UNSND (attr);
14009 }
14010 else
14011 {
14012 TYPE_LENGTH (type) = 0;
14013 }
14014
137033e9
JB
14015 /* The enumeration DIE can be incomplete. In Ada, any type can be
14016 declared as private in the package spec, and then defined only
14017 inside the package body. Such types are known as Taft Amendment
14018 Types. When another package uses such a type, an incomplete DIE
14019 may be generated by the compiler. */
02eb380e 14020 if (die_is_declaration (die, cu))
876cecd0 14021 TYPE_STUB (type) = 1;
02eb380e 14022
0626fc76
TT
14023 /* Finish the creation of this type by using the enum's children.
14024 We must call this even when the underlying type has been provided
14025 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
14026 update_enumeration_type_from_children (die, type, cu);
14027
0626fc76
TT
14028 /* If this type has an underlying type that is not a stub, then we
14029 may use its attributes. We always use the "unsigned" attribute
14030 in this situation, because ordinarily we guess whether the type
14031 is unsigned -- but the guess can be wrong and the underlying type
14032 can tell us the reality. However, we defer to a local size
14033 attribute if one exists, because this lets the compiler override
14034 the underlying type if needed. */
14035 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14036 {
14037 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14038 if (TYPE_LENGTH (type) == 0)
14039 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14040 }
14041
3d567982
TT
14042 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14043
f792889a 14044 return set_die_type (die, type, cu);
134d01f1
DJ
14045}
14046
14047/* Given a pointer to a die which begins an enumeration, process all
14048 the dies that define the members of the enumeration, and create the
14049 symbol for the enumeration type.
14050
14051 NOTE: We reverse the order of the element list. */
14052
14053static void
14054process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14055{
f792889a 14056 struct type *this_type;
134d01f1 14057
f792889a
DJ
14058 this_type = get_die_type (die, cu);
14059 if (this_type == NULL)
14060 this_type = read_enumeration_type (die, cu);
9dc481d3 14061
639d11d3 14062 if (die->child != NULL)
c906108c 14063 {
9dc481d3
DE
14064 struct die_info *child_die;
14065 struct symbol *sym;
14066 struct field *fields = NULL;
14067 int num_fields = 0;
15d034d0 14068 const char *name;
9dc481d3 14069
639d11d3 14070 child_die = die->child;
c906108c
SS
14071 while (child_die && child_die->tag)
14072 {
14073 if (child_die->tag != DW_TAG_enumerator)
14074 {
e7c27a73 14075 process_die (child_die, cu);
c906108c
SS
14076 }
14077 else
14078 {
39cbfefa
DJ
14079 name = dwarf2_name (child_die, cu);
14080 if (name)
c906108c 14081 {
f792889a 14082 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
14083
14084 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14085 {
14086 fields = (struct field *)
14087 xrealloc (fields,
14088 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 14089 * sizeof (struct field));
c906108c
SS
14090 }
14091
3567439c 14092 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 14093 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 14094 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
14095 FIELD_BITSIZE (fields[num_fields]) = 0;
14096
14097 num_fields++;
14098 }
14099 }
14100
14101 child_die = sibling_die (child_die);
14102 }
14103
14104 if (num_fields)
14105 {
f792889a
DJ
14106 TYPE_NFIELDS (this_type) = num_fields;
14107 TYPE_FIELDS (this_type) = (struct field *)
14108 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14109 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 14110 sizeof (struct field) * num_fields);
b8c9b27d 14111 xfree (fields);
c906108c 14112 }
c906108c 14113 }
134d01f1 14114
6c83ed52
TT
14115 /* If we are reading an enum from a .debug_types unit, and the enum
14116 is a declaration, and the enum is not the signatured type in the
14117 unit, then we do not want to add a symbol for it. Adding a
14118 symbol would in some cases obscure the true definition of the
14119 enum, giving users an incomplete type when the definition is
14120 actually available. Note that we do not want to do this for all
14121 enums which are just declarations, because C++0x allows forward
14122 enum declarations. */
3019eac3 14123 if (cu->per_cu->is_debug_types
6c83ed52
TT
14124 && die_is_declaration (die, cu))
14125 {
52dc124a 14126 struct signatured_type *sig_type;
6c83ed52 14127
c0f78cd4 14128 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
14129 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14130 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
14131 return;
14132 }
14133
f792889a 14134 new_symbol (die, this_type, cu);
c906108c
SS
14135}
14136
14137/* Extract all information from a DW_TAG_array_type DIE and put it in
14138 the DIE's type field. For now, this only handles one dimensional
14139 arrays. */
14140
f792889a 14141static struct type *
e7c27a73 14142read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14143{
e7c27a73 14144 struct objfile *objfile = cu->objfile;
c906108c 14145 struct die_info *child_die;
7e314c57 14146 struct type *type;
c906108c 14147 struct type *element_type, *range_type, *index_type;
c906108c 14148 struct attribute *attr;
15d034d0 14149 const char *name;
dc53a7ad 14150 unsigned int bit_stride = 0;
c906108c 14151
e7c27a73 14152 element_type = die_type (die, cu);
c906108c 14153
7e314c57
JK
14154 /* The die_type call above may have already set the type for this DIE. */
14155 type = get_die_type (die, cu);
14156 if (type)
14157 return type;
14158
dc53a7ad
JB
14159 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14160 if (attr != NULL)
14161 bit_stride = DW_UNSND (attr) * 8;
14162
14163 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14164 if (attr != NULL)
14165 bit_stride = DW_UNSND (attr);
14166
c906108c
SS
14167 /* Irix 6.2 native cc creates array types without children for
14168 arrays with unspecified length. */
639d11d3 14169 if (die->child == NULL)
c906108c 14170 {
46bf5051 14171 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14172 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
14173 type = create_array_type_with_stride (NULL, element_type, range_type,
14174 bit_stride);
f792889a 14175 return set_die_type (die, type, cu);
c906108c
SS
14176 }
14177
791afaa2 14178 std::vector<struct type *> range_types;
639d11d3 14179 child_die = die->child;
c906108c
SS
14180 while (child_die && child_die->tag)
14181 {
14182 if (child_die->tag == DW_TAG_subrange_type)
14183 {
f792889a 14184 struct type *child_type = read_type_die (child_die, cu);
9a619af0 14185
f792889a 14186 if (child_type != NULL)
a02abb62 14187 {
0963b4bd
MS
14188 /* The range type was succesfully read. Save it for the
14189 array type creation. */
791afaa2 14190 range_types.push_back (child_type);
a02abb62 14191 }
c906108c
SS
14192 }
14193 child_die = sibling_die (child_die);
14194 }
14195
14196 /* Dwarf2 dimensions are output from left to right, create the
14197 necessary array types in backwards order. */
7ca2d3a3 14198
c906108c 14199 type = element_type;
7ca2d3a3
DL
14200
14201 if (read_array_order (die, cu) == DW_ORD_col_major)
14202 {
14203 int i = 0;
9a619af0 14204
791afaa2 14205 while (i < range_types.size ())
dc53a7ad
JB
14206 type = create_array_type_with_stride (NULL, type, range_types[i++],
14207 bit_stride);
7ca2d3a3
DL
14208 }
14209 else
14210 {
791afaa2 14211 size_t ndim = range_types.size ();
7ca2d3a3 14212 while (ndim-- > 0)
dc53a7ad
JB
14213 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14214 bit_stride);
7ca2d3a3 14215 }
c906108c 14216
f5f8a009
EZ
14217 /* Understand Dwarf2 support for vector types (like they occur on
14218 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14219 array type. This is not part of the Dwarf2/3 standard yet, but a
14220 custom vendor extension. The main difference between a regular
14221 array and the vector variant is that vectors are passed by value
14222 to functions. */
e142c38c 14223 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 14224 if (attr)
ea37ba09 14225 make_vector_type (type);
f5f8a009 14226
dbc98a8b
KW
14227 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14228 implementation may choose to implement triple vectors using this
14229 attribute. */
14230 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14231 if (attr)
14232 {
14233 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14234 TYPE_LENGTH (type) = DW_UNSND (attr);
14235 else
3e43a32a
MS
14236 complaint (&symfile_complaints,
14237 _("DW_AT_byte_size for array type smaller "
14238 "than the total size of elements"));
dbc98a8b
KW
14239 }
14240
39cbfefa
DJ
14241 name = dwarf2_name (die, cu);
14242 if (name)
14243 TYPE_NAME (type) = name;
6e70227d 14244
0963b4bd 14245 /* Install the type in the die. */
7e314c57
JK
14246 set_die_type (die, type, cu);
14247
14248 /* set_die_type should be already done. */
b4ba55a1
JB
14249 set_descriptive_type (type, die, cu);
14250
7e314c57 14251 return type;
c906108c
SS
14252}
14253
7ca2d3a3 14254static enum dwarf_array_dim_ordering
6e70227d 14255read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
14256{
14257 struct attribute *attr;
14258
14259 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14260
aead7601
SM
14261 if (attr)
14262 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 14263
0963b4bd
MS
14264 /* GNU F77 is a special case, as at 08/2004 array type info is the
14265 opposite order to the dwarf2 specification, but data is still
14266 laid out as per normal fortran.
7ca2d3a3 14267
0963b4bd
MS
14268 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14269 version checking. */
7ca2d3a3 14270
905e0470
PM
14271 if (cu->language == language_fortran
14272 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
14273 {
14274 return DW_ORD_row_major;
14275 }
14276
6e70227d 14277 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
14278 {
14279 case array_column_major:
14280 return DW_ORD_col_major;
14281 case array_row_major:
14282 default:
14283 return DW_ORD_row_major;
14284 };
14285}
14286
72019c9c 14287/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 14288 the DIE's type field. */
72019c9c 14289
f792889a 14290static struct type *
72019c9c
GM
14291read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14292{
7e314c57
JK
14293 struct type *domain_type, *set_type;
14294 struct attribute *attr;
f792889a 14295
7e314c57
JK
14296 domain_type = die_type (die, cu);
14297
14298 /* The die_type call above may have already set the type for this DIE. */
14299 set_type = get_die_type (die, cu);
14300 if (set_type)
14301 return set_type;
14302
14303 set_type = create_set_type (NULL, domain_type);
14304
14305 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
14306 if (attr)
14307 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 14308
f792889a 14309 return set_die_type (die, set_type, cu);
72019c9c 14310}
7ca2d3a3 14311
0971de02
TT
14312/* A helper for read_common_block that creates a locexpr baton.
14313 SYM is the symbol which we are marking as computed.
14314 COMMON_DIE is the DIE for the common block.
14315 COMMON_LOC is the location expression attribute for the common
14316 block itself.
14317 MEMBER_LOC is the location expression attribute for the particular
14318 member of the common block that we are processing.
14319 CU is the CU from which the above come. */
14320
14321static void
14322mark_common_block_symbol_computed (struct symbol *sym,
14323 struct die_info *common_die,
14324 struct attribute *common_loc,
14325 struct attribute *member_loc,
14326 struct dwarf2_cu *cu)
14327{
14328 struct objfile *objfile = dwarf2_per_objfile->objfile;
14329 struct dwarf2_locexpr_baton *baton;
14330 gdb_byte *ptr;
14331 unsigned int cu_off;
14332 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14333 LONGEST offset = 0;
14334
14335 gdb_assert (common_loc && member_loc);
14336 gdb_assert (attr_form_is_block (common_loc));
14337 gdb_assert (attr_form_is_block (member_loc)
14338 || attr_form_is_constant (member_loc));
14339
8d749320 14340 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
14341 baton->per_cu = cu->per_cu;
14342 gdb_assert (baton->per_cu);
14343
14344 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14345
14346 if (attr_form_is_constant (member_loc))
14347 {
14348 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14349 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14350 }
14351 else
14352 baton->size += DW_BLOCK (member_loc)->size;
14353
224c3ddb 14354 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
14355 baton->data = ptr;
14356
14357 *ptr++ = DW_OP_call4;
9c541725 14358 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
14359 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14360 ptr += 4;
14361
14362 if (attr_form_is_constant (member_loc))
14363 {
14364 *ptr++ = DW_OP_addr;
14365 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14366 ptr += cu->header.addr_size;
14367 }
14368 else
14369 {
14370 /* We have to copy the data here, because DW_OP_call4 will only
14371 use a DW_AT_location attribute. */
14372 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14373 ptr += DW_BLOCK (member_loc)->size;
14374 }
14375
14376 *ptr++ = DW_OP_plus;
14377 gdb_assert (ptr - baton->data == baton->size);
14378
0971de02 14379 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 14380 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
14381}
14382
4357ac6c
TT
14383/* Create appropriate locally-scoped variables for all the
14384 DW_TAG_common_block entries. Also create a struct common_block
14385 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14386 is used to sepate the common blocks name namespace from regular
14387 variable names. */
c906108c
SS
14388
14389static void
e7c27a73 14390read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14391{
0971de02
TT
14392 struct attribute *attr;
14393
14394 attr = dwarf2_attr (die, DW_AT_location, cu);
14395 if (attr)
14396 {
14397 /* Support the .debug_loc offsets. */
14398 if (attr_form_is_block (attr))
14399 {
14400 /* Ok. */
14401 }
14402 else if (attr_form_is_section_offset (attr))
14403 {
14404 dwarf2_complex_location_expr_complaint ();
14405 attr = NULL;
14406 }
14407 else
14408 {
14409 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14410 "common block member");
14411 attr = NULL;
14412 }
14413 }
14414
639d11d3 14415 if (die->child != NULL)
c906108c 14416 {
4357ac6c
TT
14417 struct objfile *objfile = cu->objfile;
14418 struct die_info *child_die;
14419 size_t n_entries = 0, size;
14420 struct common_block *common_block;
14421 struct symbol *sym;
74ac6d43 14422
4357ac6c
TT
14423 for (child_die = die->child;
14424 child_die && child_die->tag;
14425 child_die = sibling_die (child_die))
14426 ++n_entries;
14427
14428 size = (sizeof (struct common_block)
14429 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14430 common_block
14431 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14432 size);
4357ac6c
TT
14433 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14434 common_block->n_entries = 0;
14435
14436 for (child_die = die->child;
14437 child_die && child_die->tag;
14438 child_die = sibling_die (child_die))
14439 {
14440 /* Create the symbol in the DW_TAG_common_block block in the current
14441 symbol scope. */
e7c27a73 14442 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14443 if (sym != NULL)
14444 {
14445 struct attribute *member_loc;
14446
14447 common_block->contents[common_block->n_entries++] = sym;
14448
14449 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14450 cu);
14451 if (member_loc)
14452 {
14453 /* GDB has handled this for a long time, but it is
14454 not specified by DWARF. It seems to have been
14455 emitted by gfortran at least as recently as:
14456 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14457 complaint (&symfile_complaints,
14458 _("Variable in common block has "
14459 "DW_AT_data_member_location "
14460 "- DIE at 0x%x [in module %s]"),
9c541725 14461 to_underlying (child_die->sect_off),
4262abfb 14462 objfile_name (cu->objfile));
0971de02
TT
14463
14464 if (attr_form_is_section_offset (member_loc))
14465 dwarf2_complex_location_expr_complaint ();
14466 else if (attr_form_is_constant (member_loc)
14467 || attr_form_is_block (member_loc))
14468 {
14469 if (attr)
14470 mark_common_block_symbol_computed (sym, die, attr,
14471 member_loc, cu);
14472 }
14473 else
14474 dwarf2_complex_location_expr_complaint ();
14475 }
14476 }
c906108c 14477 }
4357ac6c
TT
14478
14479 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14480 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14481 }
14482}
14483
0114d602 14484/* Create a type for a C++ namespace. */
d9fa45fe 14485
0114d602
DJ
14486static struct type *
14487read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14488{
e7c27a73 14489 struct objfile *objfile = cu->objfile;
0114d602 14490 const char *previous_prefix, *name;
9219021c 14491 int is_anonymous;
0114d602
DJ
14492 struct type *type;
14493
14494 /* For extensions, reuse the type of the original namespace. */
14495 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14496 {
14497 struct die_info *ext_die;
14498 struct dwarf2_cu *ext_cu = cu;
9a619af0 14499
0114d602
DJ
14500 ext_die = dwarf2_extension (die, &ext_cu);
14501 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14502
14503 /* EXT_CU may not be the same as CU.
02142a6c 14504 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14505 return set_die_type (die, type, cu);
14506 }
9219021c 14507
e142c38c 14508 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14509
14510 /* Now build the name of the current namespace. */
14511
0114d602
DJ
14512 previous_prefix = determine_prefix (die, cu);
14513 if (previous_prefix[0] != '\0')
14514 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14515 previous_prefix, name, 0, cu);
0114d602
DJ
14516
14517 /* Create the type. */
19f392bc 14518 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14519 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14520
60531b24 14521 return set_die_type (die, type, cu);
0114d602
DJ
14522}
14523
22cee43f 14524/* Read a namespace scope. */
0114d602
DJ
14525
14526static void
14527read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14528{
14529 struct objfile *objfile = cu->objfile;
0114d602 14530 int is_anonymous;
9219021c 14531
5c4e30ca
DC
14532 /* Add a symbol associated to this if we haven't seen the namespace
14533 before. Also, add a using directive if it's an anonymous
14534 namespace. */
9219021c 14535
f2f0e013 14536 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14537 {
14538 struct type *type;
14539
0114d602 14540 type = read_type_die (die, cu);
e7c27a73 14541 new_symbol (die, type, cu);
5c4e30ca 14542
e8e80198 14543 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14544 if (is_anonymous)
0114d602
DJ
14545 {
14546 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14547
eb1e02fd 14548 std::vector<const char *> excludes;
22cee43f
PMR
14549 add_using_directive (using_directives (cu->language),
14550 previous_prefix, TYPE_NAME (type), NULL,
eb1e02fd 14551 NULL, excludes, 0, &objfile->objfile_obstack);
0114d602 14552 }
5c4e30ca 14553 }
9219021c 14554
639d11d3 14555 if (die->child != NULL)
d9fa45fe 14556 {
639d11d3 14557 struct die_info *child_die = die->child;
6e70227d 14558
d9fa45fe
DC
14559 while (child_die && child_die->tag)
14560 {
e7c27a73 14561 process_die (child_die, cu);
d9fa45fe
DC
14562 child_die = sibling_die (child_die);
14563 }
14564 }
38d518c9
EZ
14565}
14566
f55ee35c
JK
14567/* Read a Fortran module as type. This DIE can be only a declaration used for
14568 imported module. Still we need that type as local Fortran "use ... only"
14569 declaration imports depend on the created type in determine_prefix. */
14570
14571static struct type *
14572read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14573{
14574 struct objfile *objfile = cu->objfile;
15d034d0 14575 const char *module_name;
f55ee35c
JK
14576 struct type *type;
14577
14578 module_name = dwarf2_name (die, cu);
14579 if (!module_name)
3e43a32a
MS
14580 complaint (&symfile_complaints,
14581 _("DW_TAG_module has no name, offset 0x%x"),
9c541725 14582 to_underlying (die->sect_off));
19f392bc 14583 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14584
14585 /* determine_prefix uses TYPE_TAG_NAME. */
14586 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14587
14588 return set_die_type (die, type, cu);
14589}
14590
5d7cb8df
JK
14591/* Read a Fortran module. */
14592
14593static void
14594read_module (struct die_info *die, struct dwarf2_cu *cu)
14595{
14596 struct die_info *child_die = die->child;
530e8392
KB
14597 struct type *type;
14598
14599 type = read_type_die (die, cu);
14600 new_symbol (die, type, cu);
5d7cb8df 14601
5d7cb8df
JK
14602 while (child_die && child_die->tag)
14603 {
14604 process_die (child_die, cu);
14605 child_die = sibling_die (child_die);
14606 }
14607}
14608
38d518c9
EZ
14609/* Return the name of the namespace represented by DIE. Set
14610 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14611 namespace. */
14612
14613static const char *
e142c38c 14614namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14615{
14616 struct die_info *current_die;
14617 const char *name = NULL;
14618
14619 /* Loop through the extensions until we find a name. */
14620
14621 for (current_die = die;
14622 current_die != NULL;
f2f0e013 14623 current_die = dwarf2_extension (die, &cu))
38d518c9 14624 {
96553a0c
DE
14625 /* We don't use dwarf2_name here so that we can detect the absence
14626 of a name -> anonymous namespace. */
7d45c7c3 14627 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14628
38d518c9
EZ
14629 if (name != NULL)
14630 break;
14631 }
14632
14633 /* Is it an anonymous namespace? */
14634
14635 *is_anonymous = (name == NULL);
14636 if (*is_anonymous)
2b1dbab0 14637 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14638
14639 return name;
d9fa45fe
DC
14640}
14641
c906108c
SS
14642/* Extract all information from a DW_TAG_pointer_type DIE and add to
14643 the user defined type vector. */
14644
f792889a 14645static struct type *
e7c27a73 14646read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14647{
5e2b427d 14648 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14649 struct comp_unit_head *cu_header = &cu->header;
c906108c 14650 struct type *type;
8b2dbe47
KB
14651 struct attribute *attr_byte_size;
14652 struct attribute *attr_address_class;
14653 int byte_size, addr_class;
7e314c57
JK
14654 struct type *target_type;
14655
14656 target_type = die_type (die, cu);
c906108c 14657
7e314c57
JK
14658 /* The die_type call above may have already set the type for this DIE. */
14659 type = get_die_type (die, cu);
14660 if (type)
14661 return type;
14662
14663 type = lookup_pointer_type (target_type);
8b2dbe47 14664
e142c38c 14665 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14666 if (attr_byte_size)
14667 byte_size = DW_UNSND (attr_byte_size);
c906108c 14668 else
8b2dbe47
KB
14669 byte_size = cu_header->addr_size;
14670
e142c38c 14671 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14672 if (attr_address_class)
14673 addr_class = DW_UNSND (attr_address_class);
14674 else
14675 addr_class = DW_ADDR_none;
14676
14677 /* If the pointer size or address class is different than the
14678 default, create a type variant marked as such and set the
14679 length accordingly. */
14680 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14681 {
5e2b427d 14682 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14683 {
14684 int type_flags;
14685
849957d9 14686 type_flags = gdbarch_address_class_type_flags
5e2b427d 14687 (gdbarch, byte_size, addr_class);
876cecd0
TT
14688 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14689 == 0);
8b2dbe47
KB
14690 type = make_type_with_address_space (type, type_flags);
14691 }
14692 else if (TYPE_LENGTH (type) != byte_size)
14693 {
3e43a32a
MS
14694 complaint (&symfile_complaints,
14695 _("invalid pointer size %d"), byte_size);
8b2dbe47 14696 }
6e70227d 14697 else
9a619af0
MS
14698 {
14699 /* Should we also complain about unhandled address classes? */
14700 }
c906108c 14701 }
8b2dbe47
KB
14702
14703 TYPE_LENGTH (type) = byte_size;
f792889a 14704 return set_die_type (die, type, cu);
c906108c
SS
14705}
14706
14707/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14708 the user defined type vector. */
14709
f792889a 14710static struct type *
e7c27a73 14711read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14712{
14713 struct type *type;
14714 struct type *to_type;
14715 struct type *domain;
14716
e7c27a73
DJ
14717 to_type = die_type (die, cu);
14718 domain = die_containing_type (die, cu);
0d5de010 14719
7e314c57
JK
14720 /* The calls above may have already set the type for this DIE. */
14721 type = get_die_type (die, cu);
14722 if (type)
14723 return type;
14724
0d5de010
DJ
14725 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14726 type = lookup_methodptr_type (to_type);
7078baeb
TT
14727 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14728 {
14729 struct type *new_type = alloc_type (cu->objfile);
14730
14731 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14732 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14733 TYPE_VARARGS (to_type));
14734 type = lookup_methodptr_type (new_type);
14735 }
0d5de010
DJ
14736 else
14737 type = lookup_memberptr_type (to_type, domain);
c906108c 14738
f792889a 14739 return set_die_type (die, type, cu);
c906108c
SS
14740}
14741
4297a3f0 14742/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
14743 the user defined type vector. */
14744
f792889a 14745static struct type *
4297a3f0
AV
14746read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14747 enum type_code refcode)
c906108c 14748{
e7c27a73 14749 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14750 struct type *type, *target_type;
c906108c
SS
14751 struct attribute *attr;
14752
4297a3f0
AV
14753 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14754
7e314c57
JK
14755 target_type = die_type (die, cu);
14756
14757 /* The die_type call above may have already set the type for this DIE. */
14758 type = get_die_type (die, cu);
14759 if (type)
14760 return type;
14761
4297a3f0 14762 type = lookup_reference_type (target_type, refcode);
e142c38c 14763 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14764 if (attr)
14765 {
14766 TYPE_LENGTH (type) = DW_UNSND (attr);
14767 }
14768 else
14769 {
107d2387 14770 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14771 }
f792889a 14772 return set_die_type (die, type, cu);
c906108c
SS
14773}
14774
cf363f18
MW
14775/* Add the given cv-qualifiers to the element type of the array. GCC
14776 outputs DWARF type qualifiers that apply to an array, not the
14777 element type. But GDB relies on the array element type to carry
14778 the cv-qualifiers. This mimics section 6.7.3 of the C99
14779 specification. */
14780
14781static struct type *
14782add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14783 struct type *base_type, int cnst, int voltl)
14784{
14785 struct type *el_type, *inner_array;
14786
14787 base_type = copy_type (base_type);
14788 inner_array = base_type;
14789
14790 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14791 {
14792 TYPE_TARGET_TYPE (inner_array) =
14793 copy_type (TYPE_TARGET_TYPE (inner_array));
14794 inner_array = TYPE_TARGET_TYPE (inner_array);
14795 }
14796
14797 el_type = TYPE_TARGET_TYPE (inner_array);
14798 cnst |= TYPE_CONST (el_type);
14799 voltl |= TYPE_VOLATILE (el_type);
14800 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14801
14802 return set_die_type (die, base_type, cu);
14803}
14804
f792889a 14805static struct type *
e7c27a73 14806read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14807{
f792889a 14808 struct type *base_type, *cv_type;
c906108c 14809
e7c27a73 14810 base_type = die_type (die, cu);
7e314c57
JK
14811
14812 /* The die_type call above may have already set the type for this DIE. */
14813 cv_type = get_die_type (die, cu);
14814 if (cv_type)
14815 return cv_type;
14816
2f608a3a
KW
14817 /* In case the const qualifier is applied to an array type, the element type
14818 is so qualified, not the array type (section 6.7.3 of C99). */
14819 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14820 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14821
f792889a
DJ
14822 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14823 return set_die_type (die, cv_type, cu);
c906108c
SS
14824}
14825
f792889a 14826static struct type *
e7c27a73 14827read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14828{
f792889a 14829 struct type *base_type, *cv_type;
c906108c 14830
e7c27a73 14831 base_type = die_type (die, cu);
7e314c57
JK
14832
14833 /* The die_type call above may have already set the type for this DIE. */
14834 cv_type = get_die_type (die, cu);
14835 if (cv_type)
14836 return cv_type;
14837
cf363f18
MW
14838 /* In case the volatile qualifier is applied to an array type, the
14839 element type is so qualified, not the array type (section 6.7.3
14840 of C99). */
14841 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14842 return add_array_cv_type (die, cu, base_type, 0, 1);
14843
f792889a
DJ
14844 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14845 return set_die_type (die, cv_type, cu);
c906108c
SS
14846}
14847
06d66ee9
TT
14848/* Handle DW_TAG_restrict_type. */
14849
14850static struct type *
14851read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14852{
14853 struct type *base_type, *cv_type;
14854
14855 base_type = die_type (die, cu);
14856
14857 /* The die_type call above may have already set the type for this DIE. */
14858 cv_type = get_die_type (die, cu);
14859 if (cv_type)
14860 return cv_type;
14861
14862 cv_type = make_restrict_type (base_type);
14863 return set_die_type (die, cv_type, cu);
14864}
14865
a2c2acaf
MW
14866/* Handle DW_TAG_atomic_type. */
14867
14868static struct type *
14869read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14870{
14871 struct type *base_type, *cv_type;
14872
14873 base_type = die_type (die, cu);
14874
14875 /* The die_type call above may have already set the type for this DIE. */
14876 cv_type = get_die_type (die, cu);
14877 if (cv_type)
14878 return cv_type;
14879
14880 cv_type = make_atomic_type (base_type);
14881 return set_die_type (die, cv_type, cu);
14882}
14883
c906108c
SS
14884/* Extract all information from a DW_TAG_string_type DIE and add to
14885 the user defined type vector. It isn't really a user defined type,
14886 but it behaves like one, with other DIE's using an AT_user_def_type
14887 attribute to reference it. */
14888
f792889a 14889static struct type *
e7c27a73 14890read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14891{
e7c27a73 14892 struct objfile *objfile = cu->objfile;
3b7538c0 14893 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14894 struct type *type, *range_type, *index_type, *char_type;
14895 struct attribute *attr;
14896 unsigned int length;
14897
e142c38c 14898 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14899 if (attr)
14900 {
14901 length = DW_UNSND (attr);
14902 }
14903 else
14904 {
0963b4bd 14905 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14906 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14907 if (attr)
14908 {
14909 length = DW_UNSND (attr);
14910 }
14911 else
14912 {
14913 length = 1;
14914 }
c906108c 14915 }
6ccb9162 14916
46bf5051 14917 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14918 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14919 char_type = language_string_char_type (cu->language_defn, gdbarch);
14920 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14921
f792889a 14922 return set_die_type (die, type, cu);
c906108c
SS
14923}
14924
4d804846
JB
14925/* Assuming that DIE corresponds to a function, returns nonzero
14926 if the function is prototyped. */
14927
14928static int
14929prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14930{
14931 struct attribute *attr;
14932
14933 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14934 if (attr && (DW_UNSND (attr) != 0))
14935 return 1;
14936
14937 /* The DWARF standard implies that the DW_AT_prototyped attribute
14938 is only meaninful for C, but the concept also extends to other
14939 languages that allow unprototyped functions (Eg: Objective C).
14940 For all other languages, assume that functions are always
14941 prototyped. */
14942 if (cu->language != language_c
14943 && cu->language != language_objc
14944 && cu->language != language_opencl)
14945 return 1;
14946
14947 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14948 prototyped and unprototyped functions; default to prototyped,
14949 since that is more common in modern code (and RealView warns
14950 about unprototyped functions). */
14951 if (producer_is_realview (cu->producer))
14952 return 1;
14953
14954 return 0;
14955}
14956
c906108c
SS
14957/* Handle DIES due to C code like:
14958
14959 struct foo
c5aa993b
JM
14960 {
14961 int (*funcp)(int a, long l);
14962 int b;
14963 };
c906108c 14964
0963b4bd 14965 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14966
f792889a 14967static struct type *
e7c27a73 14968read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14969{
bb5ed363 14970 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14971 struct type *type; /* Type that this function returns. */
14972 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14973 struct attribute *attr;
14974
e7c27a73 14975 type = die_type (die, cu);
7e314c57
JK
14976
14977 /* The die_type call above may have already set the type for this DIE. */
14978 ftype = get_die_type (die, cu);
14979 if (ftype)
14980 return ftype;
14981
0c8b41f1 14982 ftype = lookup_function_type (type);
c906108c 14983
4d804846 14984 if (prototyped_function_p (die, cu))
a6c727b2 14985 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14986
c055b101
CV
14987 /* Store the calling convention in the type if it's available in
14988 the subroutine die. Otherwise set the calling convention to
14989 the default value DW_CC_normal. */
14990 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14991 if (attr)
14992 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14993 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14994 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14995 else
14996 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14997
743649fd
MW
14998 /* Record whether the function returns normally to its caller or not
14999 if the DWARF producer set that information. */
15000 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15001 if (attr && (DW_UNSND (attr) != 0))
15002 TYPE_NO_RETURN (ftype) = 1;
15003
76c10ea2
GM
15004 /* We need to add the subroutine type to the die immediately so
15005 we don't infinitely recurse when dealing with parameters
0963b4bd 15006 declared as the same subroutine type. */
76c10ea2 15007 set_die_type (die, ftype, cu);
6e70227d 15008
639d11d3 15009 if (die->child != NULL)
c906108c 15010 {
bb5ed363 15011 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 15012 struct die_info *child_die;
8072405b 15013 int nparams, iparams;
c906108c
SS
15014
15015 /* Count the number of parameters.
15016 FIXME: GDB currently ignores vararg functions, but knows about
15017 vararg member functions. */
8072405b 15018 nparams = 0;
639d11d3 15019 child_die = die->child;
c906108c
SS
15020 while (child_die && child_die->tag)
15021 {
15022 if (child_die->tag == DW_TAG_formal_parameter)
15023 nparams++;
15024 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 15025 TYPE_VARARGS (ftype) = 1;
c906108c
SS
15026 child_die = sibling_die (child_die);
15027 }
15028
15029 /* Allocate storage for parameters and fill them in. */
15030 TYPE_NFIELDS (ftype) = nparams;
15031 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 15032 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 15033
8072405b
JK
15034 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15035 even if we error out during the parameters reading below. */
15036 for (iparams = 0; iparams < nparams; iparams++)
15037 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15038
15039 iparams = 0;
639d11d3 15040 child_die = die->child;
c906108c
SS
15041 while (child_die && child_die->tag)
15042 {
15043 if (child_die->tag == DW_TAG_formal_parameter)
15044 {
3ce3b1ba
PA
15045 struct type *arg_type;
15046
15047 /* DWARF version 2 has no clean way to discern C++
15048 static and non-static member functions. G++ helps
15049 GDB by marking the first parameter for non-static
15050 member functions (which is the this pointer) as
15051 artificial. We pass this information to
15052 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15053
15054 DWARF version 3 added DW_AT_object_pointer, which GCC
15055 4.5 does not yet generate. */
e142c38c 15056 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
15057 if (attr)
15058 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15059 else
9c37b5ae 15060 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
15061 arg_type = die_type (child_die, cu);
15062
15063 /* RealView does not mark THIS as const, which the testsuite
15064 expects. GCC marks THIS as const in method definitions,
15065 but not in the class specifications (GCC PR 43053). */
15066 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15067 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15068 {
15069 int is_this = 0;
15070 struct dwarf2_cu *arg_cu = cu;
15071 const char *name = dwarf2_name (child_die, cu);
15072
15073 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15074 if (attr)
15075 {
15076 /* If the compiler emits this, use it. */
15077 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15078 is_this = 1;
15079 }
15080 else if (name && strcmp (name, "this") == 0)
15081 /* Function definitions will have the argument names. */
15082 is_this = 1;
15083 else if (name == NULL && iparams == 0)
15084 /* Declarations may not have the names, so like
15085 elsewhere in GDB, assume an artificial first
15086 argument is "this". */
15087 is_this = 1;
15088
15089 if (is_this)
15090 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15091 arg_type, 0);
15092 }
15093
15094 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
15095 iparams++;
15096 }
15097 child_die = sibling_die (child_die);
15098 }
15099 }
15100
76c10ea2 15101 return ftype;
c906108c
SS
15102}
15103
f792889a 15104static struct type *
e7c27a73 15105read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15106{
e7c27a73 15107 struct objfile *objfile = cu->objfile;
0114d602 15108 const char *name = NULL;
3c8e0968 15109 struct type *this_type, *target_type;
c906108c 15110
94af9270 15111 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
15112 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15113 TYPE_TARGET_STUB (this_type) = 1;
f792889a 15114 set_die_type (die, this_type, cu);
3c8e0968
DE
15115 target_type = die_type (die, cu);
15116 if (target_type != this_type)
15117 TYPE_TARGET_TYPE (this_type) = target_type;
15118 else
15119 {
15120 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15121 spec and cause infinite loops in GDB. */
15122 complaint (&symfile_complaints,
15123 _("Self-referential DW_TAG_typedef "
15124 "- DIE at 0x%x [in module %s]"),
9c541725 15125 to_underlying (die->sect_off), objfile_name (objfile));
3c8e0968
DE
15126 TYPE_TARGET_TYPE (this_type) = NULL;
15127 }
f792889a 15128 return this_type;
c906108c
SS
15129}
15130
9b790ce7
UW
15131/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15132 (which may be different from NAME) to the architecture back-end to allow
15133 it to guess the correct format if necessary. */
15134
15135static struct type *
15136dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15137 const char *name_hint)
15138{
15139 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15140 const struct floatformat **format;
15141 struct type *type;
15142
15143 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15144 if (format)
15145 type = init_float_type (objfile, bits, name, format);
15146 else
77b7c781 15147 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
9b790ce7
UW
15148
15149 return type;
15150}
15151
c906108c
SS
15152/* Find a representation of a given base type and install
15153 it in the TYPE field of the die. */
15154
f792889a 15155static struct type *
e7c27a73 15156read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15157{
e7c27a73 15158 struct objfile *objfile = cu->objfile;
c906108c
SS
15159 struct type *type;
15160 struct attribute *attr;
19f392bc 15161 int encoding = 0, bits = 0;
15d034d0 15162 const char *name;
c906108c 15163
e142c38c 15164 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
15165 if (attr)
15166 {
15167 encoding = DW_UNSND (attr);
15168 }
e142c38c 15169 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15170 if (attr)
15171 {
19f392bc 15172 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 15173 }
39cbfefa 15174 name = dwarf2_name (die, cu);
6ccb9162 15175 if (!name)
c906108c 15176 {
6ccb9162
UW
15177 complaint (&symfile_complaints,
15178 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 15179 }
6ccb9162
UW
15180
15181 switch (encoding)
c906108c 15182 {
6ccb9162
UW
15183 case DW_ATE_address:
15184 /* Turn DW_ATE_address into a void * pointer. */
77b7c781 15185 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
19f392bc 15186 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
15187 break;
15188 case DW_ATE_boolean:
19f392bc 15189 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
15190 break;
15191 case DW_ATE_complex_float:
9b790ce7 15192 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 15193 type = init_complex_type (objfile, name, type);
6ccb9162
UW
15194 break;
15195 case DW_ATE_decimal_float:
19f392bc 15196 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
15197 break;
15198 case DW_ATE_float:
9b790ce7 15199 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
15200 break;
15201 case DW_ATE_signed:
19f392bc 15202 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15203 break;
15204 case DW_ATE_unsigned:
3b2b8fea
TT
15205 if (cu->language == language_fortran
15206 && name
61012eef 15207 && startswith (name, "character("))
19f392bc
UW
15208 type = init_character_type (objfile, bits, 1, name);
15209 else
15210 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
15211 break;
15212 case DW_ATE_signed_char:
6e70227d 15213 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
15214 || cu->language == language_pascal
15215 || cu->language == language_fortran)
19f392bc
UW
15216 type = init_character_type (objfile, bits, 0, name);
15217 else
15218 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15219 break;
15220 case DW_ATE_unsigned_char:
868a0084 15221 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 15222 || cu->language == language_pascal
c44af4eb
TT
15223 || cu->language == language_fortran
15224 || cu->language == language_rust)
19f392bc
UW
15225 type = init_character_type (objfile, bits, 1, name);
15226 else
15227 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 15228 break;
75079b2b 15229 case DW_ATE_UTF:
53e710ac
PA
15230 {
15231 gdbarch *arch = get_objfile_arch (objfile);
15232
15233 if (bits == 16)
15234 type = builtin_type (arch)->builtin_char16;
15235 else if (bits == 32)
15236 type = builtin_type (arch)->builtin_char32;
15237 else
15238 {
15239 complaint (&symfile_complaints,
15240 _("unsupported DW_ATE_UTF bit size: '%d'"),
15241 bits);
15242 type = init_integer_type (objfile, bits, 1, name);
15243 }
15244 return set_die_type (die, type, cu);
15245 }
75079b2b
TT
15246 break;
15247
6ccb9162
UW
15248 default:
15249 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15250 dwarf_type_encoding_name (encoding));
77b7c781 15251 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
6ccb9162 15252 break;
c906108c 15253 }
6ccb9162 15254
0114d602 15255 if (name && strcmp (name, "char") == 0)
876cecd0 15256 TYPE_NOSIGN (type) = 1;
0114d602 15257
f792889a 15258 return set_die_type (die, type, cu);
c906108c
SS
15259}
15260
80180f79
SA
15261/* Parse dwarf attribute if it's a block, reference or constant and put the
15262 resulting value of the attribute into struct bound_prop.
15263 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15264
15265static int
15266attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15267 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15268{
15269 struct dwarf2_property_baton *baton;
15270 struct obstack *obstack = &cu->objfile->objfile_obstack;
15271
15272 if (attr == NULL || prop == NULL)
15273 return 0;
15274
15275 if (attr_form_is_block (attr))
15276 {
8d749320 15277 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
15278 baton->referenced_type = NULL;
15279 baton->locexpr.per_cu = cu->per_cu;
15280 baton->locexpr.size = DW_BLOCK (attr)->size;
15281 baton->locexpr.data = DW_BLOCK (attr)->data;
15282 prop->data.baton = baton;
15283 prop->kind = PROP_LOCEXPR;
15284 gdb_assert (prop->data.baton != NULL);
15285 }
15286 else if (attr_form_is_ref (attr))
15287 {
15288 struct dwarf2_cu *target_cu = cu;
15289 struct die_info *target_die;
15290 struct attribute *target_attr;
15291
15292 target_die = follow_die_ref (die, attr, &target_cu);
15293 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
15294 if (target_attr == NULL)
15295 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15296 target_cu);
80180f79
SA
15297 if (target_attr == NULL)
15298 return 0;
15299
df25ebbd 15300 switch (target_attr->name)
80180f79 15301 {
df25ebbd
JB
15302 case DW_AT_location:
15303 if (attr_form_is_section_offset (target_attr))
15304 {
8d749320 15305 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15306 baton->referenced_type = die_type (target_die, target_cu);
15307 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15308 prop->data.baton = baton;
15309 prop->kind = PROP_LOCLIST;
15310 gdb_assert (prop->data.baton != NULL);
15311 }
15312 else if (attr_form_is_block (target_attr))
15313 {
8d749320 15314 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15315 baton->referenced_type = die_type (target_die, target_cu);
15316 baton->locexpr.per_cu = cu->per_cu;
15317 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15318 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15319 prop->data.baton = baton;
15320 prop->kind = PROP_LOCEXPR;
15321 gdb_assert (prop->data.baton != NULL);
15322 }
15323 else
15324 {
15325 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15326 "dynamic property");
15327 return 0;
15328 }
15329 break;
15330 case DW_AT_data_member_location:
15331 {
15332 LONGEST offset;
15333
15334 if (!handle_data_member_location (target_die, target_cu,
15335 &offset))
15336 return 0;
15337
8d749320 15338 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
15339 baton->referenced_type = read_type_die (target_die->parent,
15340 target_cu);
df25ebbd
JB
15341 baton->offset_info.offset = offset;
15342 baton->offset_info.type = die_type (target_die, target_cu);
15343 prop->data.baton = baton;
15344 prop->kind = PROP_ADDR_OFFSET;
15345 break;
15346 }
80180f79
SA
15347 }
15348 }
15349 else if (attr_form_is_constant (attr))
15350 {
15351 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15352 prop->kind = PROP_CONST;
15353 }
15354 else
15355 {
15356 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15357 dwarf2_name (die, cu));
15358 return 0;
15359 }
15360
15361 return 1;
15362}
15363
a02abb62
JB
15364/* Read the given DW_AT_subrange DIE. */
15365
f792889a 15366static struct type *
a02abb62
JB
15367read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15368{
4c9ad8c2 15369 struct type *base_type, *orig_base_type;
a02abb62
JB
15370 struct type *range_type;
15371 struct attribute *attr;
729efb13 15372 struct dynamic_prop low, high;
4fae6e18 15373 int low_default_is_valid;
c451ebe5 15374 int high_bound_is_count = 0;
15d034d0 15375 const char *name;
43bbcdc2 15376 LONGEST negative_mask;
e77813c8 15377
4c9ad8c2
TT
15378 orig_base_type = die_type (die, cu);
15379 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15380 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15381 creating the range type, but we use the result of check_typedef
15382 when examining properties of the type. */
15383 base_type = check_typedef (orig_base_type);
a02abb62 15384
7e314c57
JK
15385 /* The die_type call above may have already set the type for this DIE. */
15386 range_type = get_die_type (die, cu);
15387 if (range_type)
15388 return range_type;
15389
729efb13
SA
15390 low.kind = PROP_CONST;
15391 high.kind = PROP_CONST;
15392 high.data.const_val = 0;
15393
4fae6e18
JK
15394 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15395 omitting DW_AT_lower_bound. */
15396 switch (cu->language)
6e70227d 15397 {
4fae6e18
JK
15398 case language_c:
15399 case language_cplus:
729efb13 15400 low.data.const_val = 0;
4fae6e18
JK
15401 low_default_is_valid = 1;
15402 break;
15403 case language_fortran:
729efb13 15404 low.data.const_val = 1;
4fae6e18
JK
15405 low_default_is_valid = 1;
15406 break;
15407 case language_d:
4fae6e18 15408 case language_objc:
c44af4eb 15409 case language_rust:
729efb13 15410 low.data.const_val = 0;
4fae6e18
JK
15411 low_default_is_valid = (cu->header.version >= 4);
15412 break;
15413 case language_ada:
15414 case language_m2:
15415 case language_pascal:
729efb13 15416 low.data.const_val = 1;
4fae6e18
JK
15417 low_default_is_valid = (cu->header.version >= 4);
15418 break;
15419 default:
729efb13 15420 low.data.const_val = 0;
4fae6e18
JK
15421 low_default_is_valid = 0;
15422 break;
a02abb62
JB
15423 }
15424
e142c38c 15425 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15426 if (attr)
11c1ba78 15427 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15428 else if (!low_default_is_valid)
15429 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15430 "- DIE at 0x%x [in module %s]"),
9c541725 15431 to_underlying (die->sect_off), objfile_name (cu->objfile));
a02abb62 15432
e142c38c 15433 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15434 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15435 {
15436 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15437 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15438 {
c451ebe5
SA
15439 /* If bounds are constant do the final calculation here. */
15440 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15441 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15442 else
15443 high_bound_is_count = 1;
c2ff108b 15444 }
e77813c8
PM
15445 }
15446
15447 /* Dwarf-2 specifications explicitly allows to create subrange types
15448 without specifying a base type.
15449 In that case, the base type must be set to the type of
15450 the lower bound, upper bound or count, in that order, if any of these
15451 three attributes references an object that has a type.
15452 If no base type is found, the Dwarf-2 specifications say that
15453 a signed integer type of size equal to the size of an address should
15454 be used.
15455 For the following C code: `extern char gdb_int [];'
15456 GCC produces an empty range DIE.
15457 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15458 high bound or count are not yet handled by this code. */
e77813c8
PM
15459 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15460 {
15461 struct objfile *objfile = cu->objfile;
15462 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15463 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15464 struct type *int_type = objfile_type (objfile)->builtin_int;
15465
15466 /* Test "int", "long int", and "long long int" objfile types,
15467 and select the first one having a size above or equal to the
15468 architecture address size. */
15469 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15470 base_type = int_type;
15471 else
15472 {
15473 int_type = objfile_type (objfile)->builtin_long;
15474 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15475 base_type = int_type;
15476 else
15477 {
15478 int_type = objfile_type (objfile)->builtin_long_long;
15479 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15480 base_type = int_type;
15481 }
15482 }
15483 }
a02abb62 15484
dbb9c2b1
JB
15485 /* Normally, the DWARF producers are expected to use a signed
15486 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15487 But this is unfortunately not always the case, as witnessed
15488 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15489 is used instead. To work around that ambiguity, we treat
15490 the bounds as signed, and thus sign-extend their values, when
15491 the base type is signed. */
6e70227d 15492 negative_mask =
66c6502d 15493 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15494 if (low.kind == PROP_CONST
15495 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15496 low.data.const_val |= negative_mask;
15497 if (high.kind == PROP_CONST
15498 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15499 high.data.const_val |= negative_mask;
43bbcdc2 15500
729efb13 15501 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15502
c451ebe5
SA
15503 if (high_bound_is_count)
15504 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15505
c2ff108b
JK
15506 /* Ada expects an empty array on no boundary attributes. */
15507 if (attr == NULL && cu->language != language_ada)
729efb13 15508 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15509
39cbfefa
DJ
15510 name = dwarf2_name (die, cu);
15511 if (name)
15512 TYPE_NAME (range_type) = name;
6e70227d 15513
e142c38c 15514 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15515 if (attr)
15516 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15517
7e314c57
JK
15518 set_die_type (die, range_type, cu);
15519
15520 /* set_die_type should be already done. */
b4ba55a1
JB
15521 set_descriptive_type (range_type, die, cu);
15522
7e314c57 15523 return range_type;
a02abb62 15524}
6e70227d 15525
f792889a 15526static struct type *
81a17f79
JB
15527read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15528{
15529 struct type *type;
81a17f79 15530
81a17f79
JB
15531 /* For now, we only support the C meaning of an unspecified type: void. */
15532
19f392bc 15533 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15534 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15535
f792889a 15536 return set_die_type (die, type, cu);
81a17f79 15537}
a02abb62 15538
639d11d3
DC
15539/* Read a single die and all its descendents. Set the die's sibling
15540 field to NULL; set other fields in the die correctly, and set all
15541 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15542 location of the info_ptr after reading all of those dies. PARENT
15543 is the parent of the die in question. */
15544
15545static struct die_info *
dee91e82 15546read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15547 const gdb_byte *info_ptr,
15548 const gdb_byte **new_info_ptr,
dee91e82 15549 struct die_info *parent)
639d11d3
DC
15550{
15551 struct die_info *die;
d521ce57 15552 const gdb_byte *cur_ptr;
639d11d3
DC
15553 int has_children;
15554
bf6af496 15555 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15556 if (die == NULL)
15557 {
15558 *new_info_ptr = cur_ptr;
15559 return NULL;
15560 }
93311388 15561 store_in_ref_table (die, reader->cu);
639d11d3
DC
15562
15563 if (has_children)
bf6af496 15564 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15565 else
15566 {
15567 die->child = NULL;
15568 *new_info_ptr = cur_ptr;
15569 }
15570
15571 die->sibling = NULL;
15572 die->parent = parent;
15573 return die;
15574}
15575
15576/* Read a die, all of its descendents, and all of its siblings; set
15577 all of the fields of all of the dies correctly. Arguments are as
15578 in read_die_and_children. */
15579
15580static struct die_info *
bf6af496 15581read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15582 const gdb_byte *info_ptr,
15583 const gdb_byte **new_info_ptr,
bf6af496 15584 struct die_info *parent)
639d11d3
DC
15585{
15586 struct die_info *first_die, *last_sibling;
d521ce57 15587 const gdb_byte *cur_ptr;
639d11d3 15588
c906108c 15589 cur_ptr = info_ptr;
639d11d3
DC
15590 first_die = last_sibling = NULL;
15591
15592 while (1)
c906108c 15593 {
639d11d3 15594 struct die_info *die
dee91e82 15595 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15596
1d325ec1 15597 if (die == NULL)
c906108c 15598 {
639d11d3
DC
15599 *new_info_ptr = cur_ptr;
15600 return first_die;
c906108c 15601 }
1d325ec1
DJ
15602
15603 if (!first_die)
15604 first_die = die;
c906108c 15605 else
1d325ec1
DJ
15606 last_sibling->sibling = die;
15607
15608 last_sibling = die;
c906108c 15609 }
c906108c
SS
15610}
15611
bf6af496
DE
15612/* Read a die, all of its descendents, and all of its siblings; set
15613 all of the fields of all of the dies correctly. Arguments are as
15614 in read_die_and_children.
15615 This the main entry point for reading a DIE and all its children. */
15616
15617static struct die_info *
15618read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15619 const gdb_byte *info_ptr,
15620 const gdb_byte **new_info_ptr,
bf6af496
DE
15621 struct die_info *parent)
15622{
15623 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15624 new_info_ptr, parent);
15625
b4f54984 15626 if (dwarf_die_debug)
bf6af496
DE
15627 {
15628 fprintf_unfiltered (gdb_stdlog,
15629 "Read die from %s@0x%x of %s:\n",
a32a8923 15630 get_section_name (reader->die_section),
bf6af496
DE
15631 (unsigned) (info_ptr - reader->die_section->buffer),
15632 bfd_get_filename (reader->abfd));
b4f54984 15633 dump_die (die, dwarf_die_debug);
bf6af496
DE
15634 }
15635
15636 return die;
15637}
15638
3019eac3
DE
15639/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15640 attributes.
15641 The caller is responsible for filling in the extra attributes
15642 and updating (*DIEP)->num_attrs.
15643 Set DIEP to point to a newly allocated die with its information,
15644 except for its child, sibling, and parent fields.
15645 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15646
d521ce57 15647static const gdb_byte *
3019eac3 15648read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15649 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15650 int *has_children, int num_extra_attrs)
93311388 15651{
b64f50a1 15652 unsigned int abbrev_number, bytes_read, i;
93311388
DE
15653 struct abbrev_info *abbrev;
15654 struct die_info *die;
15655 struct dwarf2_cu *cu = reader->cu;
15656 bfd *abfd = reader->abfd;
15657
9c541725 15658 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
15659 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15660 info_ptr += bytes_read;
15661 if (!abbrev_number)
15662 {
15663 *diep = NULL;
15664 *has_children = 0;
15665 return info_ptr;
15666 }
15667
433df2d4 15668 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15669 if (!abbrev)
348e048f
DE
15670 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15671 abbrev_number,
15672 bfd_get_filename (abfd));
15673
3019eac3 15674 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 15675 die->sect_off = sect_off;
93311388
DE
15676 die->tag = abbrev->tag;
15677 die->abbrev = abbrev_number;
15678
3019eac3
DE
15679 /* Make the result usable.
15680 The caller needs to update num_attrs after adding the extra
15681 attributes. */
93311388
DE
15682 die->num_attrs = abbrev->num_attrs;
15683
15684 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15685 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15686 info_ptr);
93311388
DE
15687
15688 *diep = die;
15689 *has_children = abbrev->has_children;
15690 return info_ptr;
15691}
15692
3019eac3
DE
15693/* Read a die and all its attributes.
15694 Set DIEP to point to a newly allocated die with its information,
15695 except for its child, sibling, and parent fields.
15696 Set HAS_CHILDREN to tell whether the die has children or not. */
15697
d521ce57 15698static const gdb_byte *
3019eac3 15699read_full_die (const struct die_reader_specs *reader,
d521ce57 15700 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15701 int *has_children)
15702{
d521ce57 15703 const gdb_byte *result;
bf6af496
DE
15704
15705 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15706
b4f54984 15707 if (dwarf_die_debug)
bf6af496
DE
15708 {
15709 fprintf_unfiltered (gdb_stdlog,
15710 "Read die from %s@0x%x of %s:\n",
a32a8923 15711 get_section_name (reader->die_section),
bf6af496
DE
15712 (unsigned) (info_ptr - reader->die_section->buffer),
15713 bfd_get_filename (reader->abfd));
b4f54984 15714 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15715 }
15716
15717 return result;
3019eac3 15718}
433df2d4
DE
15719\f
15720/* Abbreviation tables.
3019eac3 15721
433df2d4 15722 In DWARF version 2, the description of the debugging information is
c906108c
SS
15723 stored in a separate .debug_abbrev section. Before we read any
15724 dies from a section we read in all abbreviations and install them
433df2d4
DE
15725 in a hash table. */
15726
15727/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15728
15729static struct abbrev_info *
15730abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15731{
15732 struct abbrev_info *abbrev;
15733
8d749320 15734 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15735 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15736
433df2d4
DE
15737 return abbrev;
15738}
15739
15740/* Add an abbreviation to the table. */
c906108c
SS
15741
15742static void
433df2d4
DE
15743abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15744 unsigned int abbrev_number,
15745 struct abbrev_info *abbrev)
15746{
15747 unsigned int hash_number;
15748
15749 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15750 abbrev->next = abbrev_table->abbrevs[hash_number];
15751 abbrev_table->abbrevs[hash_number] = abbrev;
15752}
dee91e82 15753
433df2d4
DE
15754/* Look up an abbrev in the table.
15755 Returns NULL if the abbrev is not found. */
15756
15757static struct abbrev_info *
15758abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15759 unsigned int abbrev_number)
c906108c 15760{
433df2d4
DE
15761 unsigned int hash_number;
15762 struct abbrev_info *abbrev;
15763
15764 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15765 abbrev = abbrev_table->abbrevs[hash_number];
15766
15767 while (abbrev)
15768 {
15769 if (abbrev->number == abbrev_number)
15770 return abbrev;
15771 abbrev = abbrev->next;
15772 }
15773 return NULL;
15774}
15775
15776/* Read in an abbrev table. */
15777
15778static struct abbrev_table *
15779abbrev_table_read_table (struct dwarf2_section_info *section,
9c541725 15780 sect_offset sect_off)
433df2d4
DE
15781{
15782 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15783 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15784 struct abbrev_table *abbrev_table;
d521ce57 15785 const gdb_byte *abbrev_ptr;
c906108c
SS
15786 struct abbrev_info *cur_abbrev;
15787 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15788 unsigned int abbrev_form;
f3dd6933
DJ
15789 struct attr_abbrev *cur_attrs;
15790 unsigned int allocated_attrs;
c906108c 15791
70ba0933 15792 abbrev_table = XNEW (struct abbrev_table);
9c541725 15793 abbrev_table->sect_off = sect_off;
433df2d4 15794 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15795 abbrev_table->abbrevs =
15796 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15797 ABBREV_HASH_SIZE);
433df2d4
DE
15798 memset (abbrev_table->abbrevs, 0,
15799 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15800
433df2d4 15801 dwarf2_read_section (objfile, section);
9c541725 15802 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
15803 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15804 abbrev_ptr += bytes_read;
15805
f3dd6933 15806 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15807 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15808
0963b4bd 15809 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15810 while (abbrev_number)
15811 {
433df2d4 15812 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15813
15814 /* read in abbrev header */
15815 cur_abbrev->number = abbrev_number;
aead7601
SM
15816 cur_abbrev->tag
15817 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15818 abbrev_ptr += bytes_read;
15819 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15820 abbrev_ptr += 1;
15821
15822 /* now read in declarations */
22d2f3ab 15823 for (;;)
c906108c 15824 {
43988095
JK
15825 LONGEST implicit_const;
15826
22d2f3ab
JK
15827 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15828 abbrev_ptr += bytes_read;
15829 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15830 abbrev_ptr += bytes_read;
43988095
JK
15831 if (abbrev_form == DW_FORM_implicit_const)
15832 {
15833 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15834 &bytes_read);
15835 abbrev_ptr += bytes_read;
15836 }
15837 else
15838 {
15839 /* Initialize it due to a false compiler warning. */
15840 implicit_const = -1;
15841 }
22d2f3ab
JK
15842
15843 if (abbrev_name == 0)
15844 break;
15845
f3dd6933 15846 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15847 {
f3dd6933
DJ
15848 allocated_attrs += ATTR_ALLOC_CHUNK;
15849 cur_attrs
224c3ddb 15850 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15851 }
ae038cb0 15852
aead7601
SM
15853 cur_attrs[cur_abbrev->num_attrs].name
15854 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 15855 cur_attrs[cur_abbrev->num_attrs].form
aead7601 15856 = (enum dwarf_form) abbrev_form;
43988095 15857 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 15858 ++cur_abbrev->num_attrs;
c906108c
SS
15859 }
15860
8d749320
SM
15861 cur_abbrev->attrs =
15862 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15863 cur_abbrev->num_attrs);
f3dd6933
DJ
15864 memcpy (cur_abbrev->attrs, cur_attrs,
15865 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15866
433df2d4 15867 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15868
15869 /* Get next abbreviation.
15870 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15871 always properly terminated with an abbrev number of 0.
15872 Exit loop if we encounter an abbreviation which we have
15873 already read (which means we are about to read the abbreviations
15874 for the next compile unit) or if the end of the abbreviation
15875 table is reached. */
433df2d4 15876 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15877 break;
15878 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15879 abbrev_ptr += bytes_read;
433df2d4 15880 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15881 break;
15882 }
f3dd6933
DJ
15883
15884 xfree (cur_attrs);
433df2d4 15885 return abbrev_table;
c906108c
SS
15886}
15887
433df2d4 15888/* Free the resources held by ABBREV_TABLE. */
c906108c 15889
c906108c 15890static void
433df2d4 15891abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15892{
433df2d4
DE
15893 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15894 xfree (abbrev_table);
c906108c
SS
15895}
15896
f4dc4d17
DE
15897/* Same as abbrev_table_free but as a cleanup.
15898 We pass in a pointer to the pointer to the table so that we can
15899 set the pointer to NULL when we're done. It also simplifies
73051182 15900 build_type_psymtabs_1. */
f4dc4d17
DE
15901
15902static void
15903abbrev_table_free_cleanup (void *table_ptr)
15904{
9a3c8263 15905 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15906
15907 if (*abbrev_table_ptr != NULL)
15908 abbrev_table_free (*abbrev_table_ptr);
15909 *abbrev_table_ptr = NULL;
15910}
15911
433df2d4
DE
15912/* Read the abbrev table for CU from ABBREV_SECTION. */
15913
15914static void
15915dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15916 struct dwarf2_section_info *abbrev_section)
c906108c 15917{
433df2d4 15918 cu->abbrev_table =
9c541725 15919 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
433df2d4 15920}
c906108c 15921
433df2d4 15922/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15923
433df2d4
DE
15924static void
15925dwarf2_free_abbrev_table (void *ptr_to_cu)
15926{
9a3c8263 15927 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15928
a2ce51a0
DE
15929 if (cu->abbrev_table != NULL)
15930 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15931 /* Set this to NULL so that we SEGV if we try to read it later,
15932 and also because free_comp_unit verifies this is NULL. */
15933 cu->abbrev_table = NULL;
15934}
15935\f
72bf9492
DJ
15936/* Returns nonzero if TAG represents a type that we might generate a partial
15937 symbol for. */
15938
15939static int
15940is_type_tag_for_partial (int tag)
15941{
15942 switch (tag)
15943 {
15944#if 0
15945 /* Some types that would be reasonable to generate partial symbols for,
15946 that we don't at present. */
15947 case DW_TAG_array_type:
15948 case DW_TAG_file_type:
15949 case DW_TAG_ptr_to_member_type:
15950 case DW_TAG_set_type:
15951 case DW_TAG_string_type:
15952 case DW_TAG_subroutine_type:
15953#endif
15954 case DW_TAG_base_type:
15955 case DW_TAG_class_type:
680b30c7 15956 case DW_TAG_interface_type:
72bf9492
DJ
15957 case DW_TAG_enumeration_type:
15958 case DW_TAG_structure_type:
15959 case DW_TAG_subrange_type:
15960 case DW_TAG_typedef:
15961 case DW_TAG_union_type:
15962 return 1;
15963 default:
15964 return 0;
15965 }
15966}
15967
15968/* Load all DIEs that are interesting for partial symbols into memory. */
15969
15970static struct partial_die_info *
dee91e82 15971load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15972 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15973{
dee91e82 15974 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15975 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15976 struct partial_die_info *part_die;
15977 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15978 struct abbrev_info *abbrev;
15979 unsigned int bytes_read;
5afb4e99 15980 unsigned int load_all = 0;
72bf9492
DJ
15981 int nesting_level = 1;
15982
15983 parent_die = NULL;
15984 last_die = NULL;
15985
7adf1e79
DE
15986 gdb_assert (cu->per_cu != NULL);
15987 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15988 load_all = 1;
15989
72bf9492
DJ
15990 cu->partial_dies
15991 = htab_create_alloc_ex (cu->header.length / 12,
15992 partial_die_hash,
15993 partial_die_eq,
15994 NULL,
15995 &cu->comp_unit_obstack,
15996 hashtab_obstack_allocate,
15997 dummy_obstack_deallocate);
15998
8d749320 15999 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16000
16001 while (1)
16002 {
16003 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16004
16005 /* A NULL abbrev means the end of a series of children. */
16006 if (abbrev == NULL)
16007 {
16008 if (--nesting_level == 0)
16009 {
16010 /* PART_DIE was probably the last thing allocated on the
16011 comp_unit_obstack, so we could call obstack_free
16012 here. We don't do that because the waste is small,
16013 and will be cleaned up when we're done with this
16014 compilation unit. This way, we're also more robust
16015 against other users of the comp_unit_obstack. */
16016 return first_die;
16017 }
16018 info_ptr += bytes_read;
16019 last_die = parent_die;
16020 parent_die = parent_die->die_parent;
16021 continue;
16022 }
16023
98bfdba5
PA
16024 /* Check for template arguments. We never save these; if
16025 they're seen, we just mark the parent, and go on our way. */
16026 if (parent_die != NULL
16027 && cu->language == language_cplus
16028 && (abbrev->tag == DW_TAG_template_type_param
16029 || abbrev->tag == DW_TAG_template_value_param))
16030 {
16031 parent_die->has_template_arguments = 1;
16032
16033 if (!load_all)
16034 {
16035 /* We don't need a partial DIE for the template argument. */
dee91e82 16036 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16037 continue;
16038 }
16039 }
16040
0d99eb77 16041 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
16042 Skip their other children. */
16043 if (!load_all
16044 && cu->language == language_cplus
16045 && parent_die != NULL
16046 && parent_die->tag == DW_TAG_subprogram)
16047 {
dee91e82 16048 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16049 continue;
16050 }
16051
5afb4e99
DJ
16052 /* Check whether this DIE is interesting enough to save. Normally
16053 we would not be interested in members here, but there may be
16054 later variables referencing them via DW_AT_specification (for
16055 static members). */
16056 if (!load_all
16057 && !is_type_tag_for_partial (abbrev->tag)
72929c62 16058 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
16059 && abbrev->tag != DW_TAG_enumerator
16060 && abbrev->tag != DW_TAG_subprogram
bc30ff58 16061 && abbrev->tag != DW_TAG_lexical_block
72bf9492 16062 && abbrev->tag != DW_TAG_variable
5afb4e99 16063 && abbrev->tag != DW_TAG_namespace
f55ee35c 16064 && abbrev->tag != DW_TAG_module
95554aad 16065 && abbrev->tag != DW_TAG_member
74921315
KS
16066 && abbrev->tag != DW_TAG_imported_unit
16067 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
16068 {
16069 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16070 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
16071 continue;
16072 }
16073
dee91e82
DE
16074 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16075 info_ptr);
72bf9492
DJ
16076
16077 /* This two-pass algorithm for processing partial symbols has a
16078 high cost in cache pressure. Thus, handle some simple cases
16079 here which cover the majority of C partial symbols. DIEs
16080 which neither have specification tags in them, nor could have
16081 specification tags elsewhere pointing at them, can simply be
16082 processed and discarded.
16083
16084 This segment is also optional; scan_partial_symbols and
16085 add_partial_symbol will handle these DIEs if we chain
16086 them in normally. When compilers which do not emit large
16087 quantities of duplicate debug information are more common,
16088 this code can probably be removed. */
16089
16090 /* Any complete simple types at the top level (pretty much all
16091 of them, for a language without namespaces), can be processed
16092 directly. */
16093 if (parent_die == NULL
16094 && part_die->has_specification == 0
16095 && part_die->is_declaration == 0
d8228535 16096 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
16097 || part_die->tag == DW_TAG_base_type
16098 || part_die->tag == DW_TAG_subrange_type))
16099 {
16100 if (building_psymtab && part_die->name != NULL)
04a679b8 16101 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16102 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 16103 &objfile->static_psymbols,
1762568f 16104 0, cu->language, objfile);
dee91e82 16105 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16106 continue;
16107 }
16108
d8228535
JK
16109 /* The exception for DW_TAG_typedef with has_children above is
16110 a workaround of GCC PR debug/47510. In the case of this complaint
16111 type_name_no_tag_or_error will error on such types later.
16112
16113 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16114 it could not find the child DIEs referenced later, this is checked
16115 above. In correct DWARF DW_TAG_typedef should have no children. */
16116
16117 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16118 complaint (&symfile_complaints,
16119 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16120 "- DIE at 0x%x [in module %s]"),
9c541725 16121 to_underlying (part_die->sect_off), objfile_name (objfile));
d8228535 16122
72bf9492
DJ
16123 /* If we're at the second level, and we're an enumerator, and
16124 our parent has no specification (meaning possibly lives in a
16125 namespace elsewhere), then we can add the partial symbol now
16126 instead of queueing it. */
16127 if (part_die->tag == DW_TAG_enumerator
16128 && parent_die != NULL
16129 && parent_die->die_parent == NULL
16130 && parent_die->tag == DW_TAG_enumeration_type
16131 && parent_die->has_specification == 0)
16132 {
16133 if (part_die->name == NULL)
3e43a32a
MS
16134 complaint (&symfile_complaints,
16135 _("malformed enumerator DIE ignored"));
72bf9492 16136 else if (building_psymtab)
04a679b8 16137 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16138 VAR_DOMAIN, LOC_CONST,
9c37b5ae 16139 cu->language == language_cplus
bb5ed363
DE
16140 ? &objfile->global_psymbols
16141 : &objfile->static_psymbols,
1762568f 16142 0, cu->language, objfile);
72bf9492 16143
dee91e82 16144 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16145 continue;
16146 }
16147
16148 /* We'll save this DIE so link it in. */
16149 part_die->die_parent = parent_die;
16150 part_die->die_sibling = NULL;
16151 part_die->die_child = NULL;
16152
16153 if (last_die && last_die == parent_die)
16154 last_die->die_child = part_die;
16155 else if (last_die)
16156 last_die->die_sibling = part_die;
16157
16158 last_die = part_die;
16159
16160 if (first_die == NULL)
16161 first_die = part_die;
16162
16163 /* Maybe add the DIE to the hash table. Not all DIEs that we
16164 find interesting need to be in the hash table, because we
16165 also have the parent/sibling/child chains; only those that we
16166 might refer to by offset later during partial symbol reading.
16167
16168 For now this means things that might have be the target of a
16169 DW_AT_specification, DW_AT_abstract_origin, or
16170 DW_AT_extension. DW_AT_extension will refer only to
16171 namespaces; DW_AT_abstract_origin refers to functions (and
16172 many things under the function DIE, but we do not recurse
16173 into function DIEs during partial symbol reading) and
16174 possibly variables as well; DW_AT_specification refers to
16175 declarations. Declarations ought to have the DW_AT_declaration
16176 flag. It happens that GCC forgets to put it in sometimes, but
16177 only for functions, not for types.
16178
16179 Adding more things than necessary to the hash table is harmless
16180 except for the performance cost. Adding too few will result in
5afb4e99
DJ
16181 wasted time in find_partial_die, when we reread the compilation
16182 unit with load_all_dies set. */
72bf9492 16183
5afb4e99 16184 if (load_all
72929c62 16185 || abbrev->tag == DW_TAG_constant
5afb4e99 16186 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
16187 || abbrev->tag == DW_TAG_variable
16188 || abbrev->tag == DW_TAG_namespace
16189 || part_die->is_declaration)
16190 {
16191 void **slot;
16192
16193 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
16194 to_underlying (part_die->sect_off),
16195 INSERT);
72bf9492
DJ
16196 *slot = part_die;
16197 }
16198
8d749320 16199 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16200
16201 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 16202 we have no reason to follow the children of structures; for other
98bfdba5
PA
16203 languages we have to, so that we can get at method physnames
16204 to infer fully qualified class names, for DW_AT_specification,
16205 and for C++ template arguments. For C++, we also look one level
16206 inside functions to find template arguments (if the name of the
16207 function does not already contain the template arguments).
bc30ff58
JB
16208
16209 For Ada, we need to scan the children of subprograms and lexical
16210 blocks as well because Ada allows the definition of nested
16211 entities that could be interesting for the debugger, such as
16212 nested subprograms for instance. */
72bf9492 16213 if (last_die->has_children
5afb4e99
DJ
16214 && (load_all
16215 || last_die->tag == DW_TAG_namespace
f55ee35c 16216 || last_die->tag == DW_TAG_module
72bf9492 16217 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
16218 || (cu->language == language_cplus
16219 && last_die->tag == DW_TAG_subprogram
16220 && (last_die->name == NULL
16221 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
16222 || (cu->language != language_c
16223 && (last_die->tag == DW_TAG_class_type
680b30c7 16224 || last_die->tag == DW_TAG_interface_type
72bf9492 16225 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
16226 || last_die->tag == DW_TAG_union_type))
16227 || (cu->language == language_ada
16228 && (last_die->tag == DW_TAG_subprogram
16229 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
16230 {
16231 nesting_level++;
16232 parent_die = last_die;
16233 continue;
16234 }
16235
16236 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16237 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
16238
16239 /* Back to the top, do it again. */
16240 }
16241}
16242
c906108c
SS
16243/* Read a minimal amount of information into the minimal die structure. */
16244
d521ce57 16245static const gdb_byte *
dee91e82
DE
16246read_partial_die (const struct die_reader_specs *reader,
16247 struct partial_die_info *part_die,
16248 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 16249 const gdb_byte *info_ptr)
c906108c 16250{
dee91e82 16251 struct dwarf2_cu *cu = reader->cu;
bb5ed363 16252 struct objfile *objfile = cu->objfile;
d521ce57 16253 const gdb_byte *buffer = reader->buffer;
fa238c03 16254 unsigned int i;
c906108c 16255 struct attribute attr;
c5aa993b 16256 int has_low_pc_attr = 0;
c906108c 16257 int has_high_pc_attr = 0;
91da1414 16258 int high_pc_relative = 0;
c906108c 16259
72bf9492 16260 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 16261
9c541725 16262 part_die->sect_off = (sect_offset) (info_ptr - buffer);
72bf9492
DJ
16263
16264 info_ptr += abbrev_len;
16265
16266 if (abbrev == NULL)
16267 return info_ptr;
16268
c906108c
SS
16269 part_die->tag = abbrev->tag;
16270 part_die->has_children = abbrev->has_children;
c906108c
SS
16271
16272 for (i = 0; i < abbrev->num_attrs; ++i)
16273 {
dee91e82 16274 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
16275
16276 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 16277 partial symbol table. */
c906108c
SS
16278 switch (attr.name)
16279 {
16280 case DW_AT_name:
71c25dea
TT
16281 switch (part_die->tag)
16282 {
16283 case DW_TAG_compile_unit:
95554aad 16284 case DW_TAG_partial_unit:
348e048f 16285 case DW_TAG_type_unit:
71c25dea
TT
16286 /* Compilation units have a DW_AT_name that is a filename, not
16287 a source language identifier. */
16288 case DW_TAG_enumeration_type:
16289 case DW_TAG_enumerator:
16290 /* These tags always have simple identifiers already; no need
16291 to canonicalize them. */
16292 part_die->name = DW_STRING (&attr);
16293 break;
16294 default:
16295 part_die->name
16296 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 16297 &objfile->per_bfd->storage_obstack);
71c25dea
TT
16298 break;
16299 }
c906108c 16300 break;
31ef98ae 16301 case DW_AT_linkage_name:
c906108c 16302 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
16303 /* Note that both forms of linkage name might appear. We
16304 assume they will be the same, and we only store the last
16305 one we see. */
94af9270
KS
16306 if (cu->language == language_ada)
16307 part_die->name = DW_STRING (&attr);
abc72ce4 16308 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
16309 break;
16310 case DW_AT_low_pc:
16311 has_low_pc_attr = 1;
31aa7e4e 16312 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
16313 break;
16314 case DW_AT_high_pc:
16315 has_high_pc_attr = 1;
31aa7e4e
JB
16316 part_die->highpc = attr_value_as_address (&attr);
16317 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16318 high_pc_relative = 1;
c906108c
SS
16319 break;
16320 case DW_AT_location:
0963b4bd 16321 /* Support the .debug_loc offsets. */
8e19ed76
PS
16322 if (attr_form_is_block (&attr))
16323 {
95554aad 16324 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 16325 }
3690dd37 16326 else if (attr_form_is_section_offset (&attr))
8e19ed76 16327 {
4d3c2250 16328 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
16329 }
16330 else
16331 {
4d3c2250
KB
16332 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16333 "partial symbol information");
8e19ed76 16334 }
c906108c 16335 break;
c906108c
SS
16336 case DW_AT_external:
16337 part_die->is_external = DW_UNSND (&attr);
16338 break;
16339 case DW_AT_declaration:
16340 part_die->is_declaration = DW_UNSND (&attr);
16341 break;
16342 case DW_AT_type:
16343 part_die->has_type = 1;
16344 break;
16345 case DW_AT_abstract_origin:
16346 case DW_AT_specification:
72bf9492
DJ
16347 case DW_AT_extension:
16348 part_die->has_specification = 1;
c764a876 16349 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16350 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16351 || cu->per_cu->is_dwz);
c906108c
SS
16352 break;
16353 case DW_AT_sibling:
16354 /* Ignore absolute siblings, they might point outside of
16355 the current compile unit. */
16356 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
16357 complaint (&symfile_complaints,
16358 _("ignoring absolute DW_AT_sibling"));
c906108c 16359 else
b9502d3f 16360 {
9c541725
PA
16361 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16362 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
16363
16364 if (sibling_ptr < info_ptr)
16365 complaint (&symfile_complaints,
16366 _("DW_AT_sibling points backwards"));
22869d73
KS
16367 else if (sibling_ptr > reader->buffer_end)
16368 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
16369 else
16370 part_die->sibling = sibling_ptr;
16371 }
c906108c 16372 break;
fa4028e9
JB
16373 case DW_AT_byte_size:
16374 part_die->has_byte_size = 1;
16375 break;
ff908ebf
AW
16376 case DW_AT_const_value:
16377 part_die->has_const_value = 1;
16378 break;
68511cec
CES
16379 case DW_AT_calling_convention:
16380 /* DWARF doesn't provide a way to identify a program's source-level
16381 entry point. DW_AT_calling_convention attributes are only meant
16382 to describe functions' calling conventions.
16383
16384 However, because it's a necessary piece of information in
0c1b455e
TT
16385 Fortran, and before DWARF 4 DW_CC_program was the only
16386 piece of debugging information whose definition refers to
16387 a 'main program' at all, several compilers marked Fortran
16388 main programs with DW_CC_program --- even when those
16389 functions use the standard calling conventions.
16390
16391 Although DWARF now specifies a way to provide this
16392 information, we support this practice for backward
16393 compatibility. */
68511cec 16394 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e
TT
16395 && cu->language == language_fortran)
16396 part_die->main_subprogram = 1;
68511cec 16397 break;
481860b3
GB
16398 case DW_AT_inline:
16399 if (DW_UNSND (&attr) == DW_INL_inlined
16400 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16401 part_die->may_be_inlined = 1;
16402 break;
95554aad
TT
16403
16404 case DW_AT_import:
16405 if (part_die->tag == DW_TAG_imported_unit)
36586728 16406 {
9c541725 16407 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16408 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16409 || cu->per_cu->is_dwz);
16410 }
95554aad
TT
16411 break;
16412
0c1b455e
TT
16413 case DW_AT_main_subprogram:
16414 part_die->main_subprogram = DW_UNSND (&attr);
16415 break;
16416
c906108c
SS
16417 default:
16418 break;
16419 }
16420 }
16421
91da1414
MW
16422 if (high_pc_relative)
16423 part_die->highpc += part_die->lowpc;
16424
9373cf26
JK
16425 if (has_low_pc_attr && has_high_pc_attr)
16426 {
16427 /* When using the GNU linker, .gnu.linkonce. sections are used to
16428 eliminate duplicate copies of functions and vtables and such.
16429 The linker will arbitrarily choose one and discard the others.
16430 The AT_*_pc values for such functions refer to local labels in
16431 these sections. If the section from that file was discarded, the
16432 labels are not in the output, so the relocs get a value of 0.
16433 If this is a discarded function, mark the pc bounds as invalid,
16434 so that GDB will ignore it. */
16435 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16436 {
bb5ed363 16437 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16438
16439 complaint (&symfile_complaints,
16440 _("DW_AT_low_pc %s is zero "
16441 "for DIE at 0x%x [in module %s]"),
16442 paddress (gdbarch, part_die->lowpc),
9c541725 16443 to_underlying (part_die->sect_off), objfile_name (objfile));
9373cf26
JK
16444 }
16445 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16446 else if (part_die->lowpc >= part_die->highpc)
16447 {
bb5ed363 16448 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16449
16450 complaint (&symfile_complaints,
16451 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16452 "for DIE at 0x%x [in module %s]"),
16453 paddress (gdbarch, part_die->lowpc),
16454 paddress (gdbarch, part_die->highpc),
9c541725
PA
16455 to_underlying (part_die->sect_off),
16456 objfile_name (objfile));
9373cf26
JK
16457 }
16458 else
16459 part_die->has_pc_info = 1;
16460 }
85cbf3d3 16461
c906108c
SS
16462 return info_ptr;
16463}
16464
72bf9492
DJ
16465/* Find a cached partial DIE at OFFSET in CU. */
16466
16467static struct partial_die_info *
9c541725 16468find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
72bf9492
DJ
16469{
16470 struct partial_die_info *lookup_die = NULL;
16471 struct partial_die_info part_die;
16472
9c541725 16473 part_die.sect_off = sect_off;
9a3c8263
SM
16474 lookup_die = ((struct partial_die_info *)
16475 htab_find_with_hash (cu->partial_dies, &part_die,
9c541725 16476 to_underlying (sect_off)));
72bf9492 16477
72bf9492
DJ
16478 return lookup_die;
16479}
16480
348e048f
DE
16481/* Find a partial DIE at OFFSET, which may or may not be in CU,
16482 except in the case of .debug_types DIEs which do not reference
16483 outside their CU (they do however referencing other types via
55f1336d 16484 DW_FORM_ref_sig8). */
72bf9492
DJ
16485
16486static struct partial_die_info *
9c541725 16487find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16488{
bb5ed363 16489 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16490 struct dwarf2_per_cu_data *per_cu = NULL;
16491 struct partial_die_info *pd = NULL;
72bf9492 16492
36586728 16493 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 16494 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 16495 {
9c541725 16496 pd = find_partial_die_in_comp_unit (sect_off, cu);
5afb4e99
DJ
16497 if (pd != NULL)
16498 return pd;
0d99eb77
DE
16499 /* We missed recording what we needed.
16500 Load all dies and try again. */
16501 per_cu = cu->per_cu;
5afb4e99 16502 }
0d99eb77
DE
16503 else
16504 {
16505 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16506 if (cu->per_cu->is_debug_types)
0d99eb77 16507 {
9c541725
PA
16508 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16509 " external reference to offset 0x%x [in module %s].\n"),
16510 to_underlying (cu->header.sect_off), to_underlying (sect_off),
0d99eb77
DE
16511 bfd_get_filename (objfile->obfd));
16512 }
9c541725 16513 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 16514 objfile);
72bf9492 16515
0d99eb77
DE
16516 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16517 load_partial_comp_unit (per_cu);
ae038cb0 16518
0d99eb77 16519 per_cu->cu->last_used = 0;
9c541725 16520 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
0d99eb77 16521 }
5afb4e99 16522
dee91e82
DE
16523 /* If we didn't find it, and not all dies have been loaded,
16524 load them all and try again. */
16525
5afb4e99
DJ
16526 if (pd == NULL && per_cu->load_all_dies == 0)
16527 {
5afb4e99 16528 per_cu->load_all_dies = 1;
fd820528
DE
16529
16530 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16531 THIS_CU->cu may already be in use. So we can't just free it and
16532 replace its DIEs with the ones we read in. Instead, we leave those
16533 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16534 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16535 set. */
dee91e82 16536 load_partial_comp_unit (per_cu);
5afb4e99 16537
9c541725 16538 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
5afb4e99
DJ
16539 }
16540
16541 if (pd == NULL)
16542 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16543 _("could not find partial DIE 0x%x "
16544 "in cache [from module %s]\n"),
9c541725 16545 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
5afb4e99 16546 return pd;
72bf9492
DJ
16547}
16548
abc72ce4
DE
16549/* See if we can figure out if the class lives in a namespace. We do
16550 this by looking for a member function; its demangled name will
16551 contain namespace info, if there is any. */
16552
16553static void
16554guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16555 struct dwarf2_cu *cu)
16556{
16557 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16558 what template types look like, because the demangler
16559 frequently doesn't give the same name as the debug info. We
16560 could fix this by only using the demangled name to get the
16561 prefix (but see comment in read_structure_type). */
16562
16563 struct partial_die_info *real_pdi;
16564 struct partial_die_info *child_pdi;
16565
16566 /* If this DIE (this DIE's specification, if any) has a parent, then
16567 we should not do this. We'll prepend the parent's fully qualified
16568 name when we create the partial symbol. */
16569
16570 real_pdi = struct_pdi;
16571 while (real_pdi->has_specification)
36586728
TT
16572 real_pdi = find_partial_die (real_pdi->spec_offset,
16573 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16574
16575 if (real_pdi->die_parent != NULL)
16576 return;
16577
16578 for (child_pdi = struct_pdi->die_child;
16579 child_pdi != NULL;
16580 child_pdi = child_pdi->die_sibling)
16581 {
16582 if (child_pdi->tag == DW_TAG_subprogram
16583 && child_pdi->linkage_name != NULL)
16584 {
16585 char *actual_class_name
16586 = language_class_name_from_physname (cu->language_defn,
16587 child_pdi->linkage_name);
16588 if (actual_class_name != NULL)
16589 {
16590 struct_pdi->name
224c3ddb
SM
16591 = ((const char *)
16592 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16593 actual_class_name,
16594 strlen (actual_class_name)));
abc72ce4
DE
16595 xfree (actual_class_name);
16596 }
16597 break;
16598 }
16599 }
16600}
16601
72bf9492
DJ
16602/* Adjust PART_DIE before generating a symbol for it. This function
16603 may set the is_external flag or change the DIE's name. */
16604
16605static void
16606fixup_partial_die (struct partial_die_info *part_die,
16607 struct dwarf2_cu *cu)
16608{
abc72ce4
DE
16609 /* Once we've fixed up a die, there's no point in doing so again.
16610 This also avoids a memory leak if we were to call
16611 guess_partial_die_structure_name multiple times. */
16612 if (part_die->fixup_called)
16613 return;
16614
72bf9492
DJ
16615 /* If we found a reference attribute and the DIE has no name, try
16616 to find a name in the referred to DIE. */
16617
16618 if (part_die->name == NULL && part_die->has_specification)
16619 {
16620 struct partial_die_info *spec_die;
72bf9492 16621
36586728
TT
16622 spec_die = find_partial_die (part_die->spec_offset,
16623 part_die->spec_is_dwz, cu);
72bf9492 16624
10b3939b 16625 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16626
16627 if (spec_die->name)
16628 {
16629 part_die->name = spec_die->name;
16630
16631 /* Copy DW_AT_external attribute if it is set. */
16632 if (spec_die->is_external)
16633 part_die->is_external = spec_die->is_external;
16634 }
16635 }
16636
16637 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16638
16639 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16640 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16641
abc72ce4
DE
16642 /* If there is no parent die to provide a namespace, and there are
16643 children, see if we can determine the namespace from their linkage
122d1940 16644 name. */
abc72ce4 16645 if (cu->language == language_cplus
8b70b953 16646 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16647 && part_die->die_parent == NULL
16648 && part_die->has_children
16649 && (part_die->tag == DW_TAG_class_type
16650 || part_die->tag == DW_TAG_structure_type
16651 || part_die->tag == DW_TAG_union_type))
16652 guess_partial_die_structure_name (part_die, cu);
16653
53832f31
TT
16654 /* GCC might emit a nameless struct or union that has a linkage
16655 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16656 if (part_die->name == NULL
96408a79
SA
16657 && (part_die->tag == DW_TAG_class_type
16658 || part_die->tag == DW_TAG_interface_type
16659 || part_die->tag == DW_TAG_structure_type
16660 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16661 && part_die->linkage_name != NULL)
16662 {
16663 char *demangled;
16664
8de20a37 16665 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16666 if (demangled)
16667 {
96408a79
SA
16668 const char *base;
16669
16670 /* Strip any leading namespaces/classes, keep only the base name.
16671 DW_AT_name for named DIEs does not contain the prefixes. */
16672 base = strrchr (demangled, ':');
16673 if (base && base > demangled && base[-1] == ':')
16674 base++;
16675 else
16676 base = demangled;
16677
34a68019 16678 part_die->name
224c3ddb
SM
16679 = ((const char *)
16680 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16681 base, strlen (base)));
53832f31
TT
16682 xfree (demangled);
16683 }
16684 }
16685
abc72ce4 16686 part_die->fixup_called = 1;
72bf9492
DJ
16687}
16688
a8329558 16689/* Read an attribute value described by an attribute form. */
c906108c 16690
d521ce57 16691static const gdb_byte *
dee91e82
DE
16692read_attribute_value (const struct die_reader_specs *reader,
16693 struct attribute *attr, unsigned form,
43988095 16694 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 16695{
dee91e82 16696 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16697 struct objfile *objfile = cu->objfile;
16698 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16699 bfd *abfd = reader->abfd;
e7c27a73 16700 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16701 unsigned int bytes_read;
16702 struct dwarf_block *blk;
16703
aead7601 16704 attr->form = (enum dwarf_form) form;
a8329558 16705 switch (form)
c906108c 16706 {
c906108c 16707 case DW_FORM_ref_addr:
ae411497 16708 if (cu->header.version == 2)
4568ecf9 16709 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16710 else
4568ecf9
DE
16711 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16712 &cu->header, &bytes_read);
ae411497
TT
16713 info_ptr += bytes_read;
16714 break;
36586728
TT
16715 case DW_FORM_GNU_ref_alt:
16716 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16717 info_ptr += bytes_read;
16718 break;
ae411497 16719 case DW_FORM_addr:
e7c27a73 16720 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16721 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16722 info_ptr += bytes_read;
c906108c
SS
16723 break;
16724 case DW_FORM_block2:
7b5a2f43 16725 blk = dwarf_alloc_block (cu);
c906108c
SS
16726 blk->size = read_2_bytes (abfd, info_ptr);
16727 info_ptr += 2;
16728 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16729 info_ptr += blk->size;
16730 DW_BLOCK (attr) = blk;
16731 break;
16732 case DW_FORM_block4:
7b5a2f43 16733 blk = dwarf_alloc_block (cu);
c906108c
SS
16734 blk->size = read_4_bytes (abfd, info_ptr);
16735 info_ptr += 4;
16736 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16737 info_ptr += blk->size;
16738 DW_BLOCK (attr) = blk;
16739 break;
16740 case DW_FORM_data2:
16741 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16742 info_ptr += 2;
16743 break;
16744 case DW_FORM_data4:
16745 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16746 info_ptr += 4;
16747 break;
16748 case DW_FORM_data8:
16749 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16750 info_ptr += 8;
16751 break;
0224619f
JK
16752 case DW_FORM_data16:
16753 blk = dwarf_alloc_block (cu);
16754 blk->size = 16;
16755 blk->data = read_n_bytes (abfd, info_ptr, 16);
16756 info_ptr += 16;
16757 DW_BLOCK (attr) = blk;
16758 break;
2dc7f7b3
TT
16759 case DW_FORM_sec_offset:
16760 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16761 info_ptr += bytes_read;
16762 break;
c906108c 16763 case DW_FORM_string:
9b1c24c8 16764 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16765 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16766 info_ptr += bytes_read;
16767 break;
4bdf3d34 16768 case DW_FORM_strp:
36586728
TT
16769 if (!cu->per_cu->is_dwz)
16770 {
16771 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16772 &bytes_read);
16773 DW_STRING_IS_CANONICAL (attr) = 0;
16774 info_ptr += bytes_read;
16775 break;
16776 }
16777 /* FALLTHROUGH */
43988095
JK
16778 case DW_FORM_line_strp:
16779 if (!cu->per_cu->is_dwz)
16780 {
16781 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16782 cu_header, &bytes_read);
16783 DW_STRING_IS_CANONICAL (attr) = 0;
16784 info_ptr += bytes_read;
16785 break;
16786 }
16787 /* FALLTHROUGH */
36586728
TT
16788 case DW_FORM_GNU_strp_alt:
16789 {
16790 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16791 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16792 &bytes_read);
16793
16794 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16795 DW_STRING_IS_CANONICAL (attr) = 0;
16796 info_ptr += bytes_read;
16797 }
4bdf3d34 16798 break;
2dc7f7b3 16799 case DW_FORM_exprloc:
c906108c 16800 case DW_FORM_block:
7b5a2f43 16801 blk = dwarf_alloc_block (cu);
c906108c
SS
16802 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16803 info_ptr += bytes_read;
16804 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16805 info_ptr += blk->size;
16806 DW_BLOCK (attr) = blk;
16807 break;
16808 case DW_FORM_block1:
7b5a2f43 16809 blk = dwarf_alloc_block (cu);
c906108c
SS
16810 blk->size = read_1_byte (abfd, info_ptr);
16811 info_ptr += 1;
16812 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16813 info_ptr += blk->size;
16814 DW_BLOCK (attr) = blk;
16815 break;
16816 case DW_FORM_data1:
16817 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16818 info_ptr += 1;
16819 break;
16820 case DW_FORM_flag:
16821 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16822 info_ptr += 1;
16823 break;
2dc7f7b3
TT
16824 case DW_FORM_flag_present:
16825 DW_UNSND (attr) = 1;
16826 break;
c906108c
SS
16827 case DW_FORM_sdata:
16828 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16829 info_ptr += bytes_read;
16830 break;
16831 case DW_FORM_udata:
16832 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16833 info_ptr += bytes_read;
16834 break;
16835 case DW_FORM_ref1:
9c541725 16836 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16837 + read_1_byte (abfd, info_ptr));
c906108c
SS
16838 info_ptr += 1;
16839 break;
16840 case DW_FORM_ref2:
9c541725 16841 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16842 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16843 info_ptr += 2;
16844 break;
16845 case DW_FORM_ref4:
9c541725 16846 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16847 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16848 info_ptr += 4;
16849 break;
613e1657 16850 case DW_FORM_ref8:
9c541725 16851 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16852 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16853 info_ptr += 8;
16854 break;
55f1336d 16855 case DW_FORM_ref_sig8:
ac9ec31b 16856 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16857 info_ptr += 8;
16858 break;
c906108c 16859 case DW_FORM_ref_udata:
9c541725 16860 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16861 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16862 info_ptr += bytes_read;
16863 break;
c906108c 16864 case DW_FORM_indirect:
a8329558
KW
16865 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16866 info_ptr += bytes_read;
43988095
JK
16867 if (form == DW_FORM_implicit_const)
16868 {
16869 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16870 info_ptr += bytes_read;
16871 }
16872 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16873 info_ptr);
16874 break;
16875 case DW_FORM_implicit_const:
16876 DW_SND (attr) = implicit_const;
a8329558 16877 break;
3019eac3
DE
16878 case DW_FORM_GNU_addr_index:
16879 if (reader->dwo_file == NULL)
16880 {
16881 /* For now flag a hard error.
16882 Later we can turn this into a complaint. */
16883 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16884 dwarf_form_name (form),
16885 bfd_get_filename (abfd));
16886 }
16887 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16888 info_ptr += bytes_read;
16889 break;
16890 case DW_FORM_GNU_str_index:
16891 if (reader->dwo_file == NULL)
16892 {
16893 /* For now flag a hard error.
16894 Later we can turn this into a complaint if warranted. */
16895 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16896 dwarf_form_name (form),
16897 bfd_get_filename (abfd));
16898 }
16899 {
16900 ULONGEST str_index =
16901 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16902
342587c4 16903 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16904 DW_STRING_IS_CANONICAL (attr) = 0;
16905 info_ptr += bytes_read;
16906 }
16907 break;
c906108c 16908 default:
8a3fe4f8 16909 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16910 dwarf_form_name (form),
16911 bfd_get_filename (abfd));
c906108c 16912 }
28e94949 16913
36586728 16914 /* Super hack. */
7771576e 16915 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16916 attr->form = DW_FORM_GNU_ref_alt;
16917
28e94949
JB
16918 /* We have seen instances where the compiler tried to emit a byte
16919 size attribute of -1 which ended up being encoded as an unsigned
16920 0xffffffff. Although 0xffffffff is technically a valid size value,
16921 an object of this size seems pretty unlikely so we can relatively
16922 safely treat these cases as if the size attribute was invalid and
16923 treat them as zero by default. */
16924 if (attr->name == DW_AT_byte_size
16925 && form == DW_FORM_data4
16926 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16927 {
16928 complaint
16929 (&symfile_complaints,
43bbcdc2
PH
16930 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16931 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16932 DW_UNSND (attr) = 0;
16933 }
28e94949 16934
c906108c
SS
16935 return info_ptr;
16936}
16937
a8329558
KW
16938/* Read an attribute described by an abbreviated attribute. */
16939
d521ce57 16940static const gdb_byte *
dee91e82
DE
16941read_attribute (const struct die_reader_specs *reader,
16942 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16943 const gdb_byte *info_ptr)
a8329558
KW
16944{
16945 attr->name = abbrev->name;
43988095
JK
16946 return read_attribute_value (reader, attr, abbrev->form,
16947 abbrev->implicit_const, info_ptr);
a8329558
KW
16948}
16949
0963b4bd 16950/* Read dwarf information from a buffer. */
c906108c
SS
16951
16952static unsigned int
a1855c1d 16953read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16954{
fe1b8b76 16955 return bfd_get_8 (abfd, buf);
c906108c
SS
16956}
16957
16958static int
a1855c1d 16959read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16960{
fe1b8b76 16961 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16962}
16963
16964static unsigned int
a1855c1d 16965read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16966{
fe1b8b76 16967 return bfd_get_16 (abfd, buf);
c906108c
SS
16968}
16969
21ae7a4d 16970static int
a1855c1d 16971read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16972{
16973 return bfd_get_signed_16 (abfd, buf);
16974}
16975
c906108c 16976static unsigned int
a1855c1d 16977read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16978{
fe1b8b76 16979 return bfd_get_32 (abfd, buf);
c906108c
SS
16980}
16981
21ae7a4d 16982static int
a1855c1d 16983read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16984{
16985 return bfd_get_signed_32 (abfd, buf);
16986}
16987
93311388 16988static ULONGEST
a1855c1d 16989read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16990{
fe1b8b76 16991 return bfd_get_64 (abfd, buf);
c906108c
SS
16992}
16993
16994static CORE_ADDR
d521ce57 16995read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16996 unsigned int *bytes_read)
c906108c 16997{
e7c27a73 16998 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16999 CORE_ADDR retval = 0;
17000
107d2387 17001 if (cu_header->signed_addr_p)
c906108c 17002 {
107d2387
AC
17003 switch (cu_header->addr_size)
17004 {
17005 case 2:
fe1b8b76 17006 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
17007 break;
17008 case 4:
fe1b8b76 17009 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
17010 break;
17011 case 8:
fe1b8b76 17012 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
17013 break;
17014 default:
8e65ff28 17015 internal_error (__FILE__, __LINE__,
e2e0b3e5 17016 _("read_address: bad switch, signed [in module %s]"),
659b0389 17017 bfd_get_filename (abfd));
107d2387
AC
17018 }
17019 }
17020 else
17021 {
17022 switch (cu_header->addr_size)
17023 {
17024 case 2:
fe1b8b76 17025 retval = bfd_get_16 (abfd, buf);
107d2387
AC
17026 break;
17027 case 4:
fe1b8b76 17028 retval = bfd_get_32 (abfd, buf);
107d2387
AC
17029 break;
17030 case 8:
fe1b8b76 17031 retval = bfd_get_64 (abfd, buf);
107d2387
AC
17032 break;
17033 default:
8e65ff28 17034 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
17035 _("read_address: bad switch, "
17036 "unsigned [in module %s]"),
659b0389 17037 bfd_get_filename (abfd));
107d2387 17038 }
c906108c 17039 }
64367e0a 17040
107d2387
AC
17041 *bytes_read = cu_header->addr_size;
17042 return retval;
c906108c
SS
17043}
17044
f7ef9339 17045/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
17046 specification allows the initial length to take up either 4 bytes
17047 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17048 bytes describe the length and all offsets will be 8 bytes in length
17049 instead of 4.
17050
f7ef9339
KB
17051 An older, non-standard 64-bit format is also handled by this
17052 function. The older format in question stores the initial length
17053 as an 8-byte quantity without an escape value. Lengths greater
17054 than 2^32 aren't very common which means that the initial 4 bytes
17055 is almost always zero. Since a length value of zero doesn't make
17056 sense for the 32-bit format, this initial zero can be considered to
17057 be an escape value which indicates the presence of the older 64-bit
17058 format. As written, the code can't detect (old format) lengths
917c78fc
MK
17059 greater than 4GB. If it becomes necessary to handle lengths
17060 somewhat larger than 4GB, we could allow other small values (such
17061 as the non-sensical values of 1, 2, and 3) to also be used as
17062 escape values indicating the presence of the old format.
f7ef9339 17063
917c78fc
MK
17064 The value returned via bytes_read should be used to increment the
17065 relevant pointer after calling read_initial_length().
c764a876 17066
613e1657
KB
17067 [ Note: read_initial_length() and read_offset() are based on the
17068 document entitled "DWARF Debugging Information Format", revision
f7ef9339 17069 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
17070 from:
17071
f7ef9339 17072 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 17073
613e1657
KB
17074 This document is only a draft and is subject to change. (So beware.)
17075
f7ef9339 17076 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
17077 determined empirically by examining 64-bit ELF files produced by
17078 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
17079
17080 - Kevin, July 16, 2002
613e1657
KB
17081 ] */
17082
17083static LONGEST
d521ce57 17084read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 17085{
fe1b8b76 17086 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 17087
dd373385 17088 if (length == 0xffffffff)
613e1657 17089 {
fe1b8b76 17090 length = bfd_get_64 (abfd, buf + 4);
613e1657 17091 *bytes_read = 12;
613e1657 17092 }
dd373385 17093 else if (length == 0)
f7ef9339 17094 {
dd373385 17095 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 17096 length = bfd_get_64 (abfd, buf);
f7ef9339 17097 *bytes_read = 8;
f7ef9339 17098 }
613e1657
KB
17099 else
17100 {
17101 *bytes_read = 4;
613e1657
KB
17102 }
17103
c764a876
DE
17104 return length;
17105}
dd373385 17106
c764a876
DE
17107/* Cover function for read_initial_length.
17108 Returns the length of the object at BUF, and stores the size of the
17109 initial length in *BYTES_READ and stores the size that offsets will be in
17110 *OFFSET_SIZE.
17111 If the initial length size is not equivalent to that specified in
17112 CU_HEADER then issue a complaint.
17113 This is useful when reading non-comp-unit headers. */
dd373385 17114
c764a876 17115static LONGEST
d521ce57 17116read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
17117 const struct comp_unit_head *cu_header,
17118 unsigned int *bytes_read,
17119 unsigned int *offset_size)
17120{
17121 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17122
17123 gdb_assert (cu_header->initial_length_size == 4
17124 || cu_header->initial_length_size == 8
17125 || cu_header->initial_length_size == 12);
17126
17127 if (cu_header->initial_length_size != *bytes_read)
17128 complaint (&symfile_complaints,
17129 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 17130
c764a876 17131 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 17132 return length;
613e1657
KB
17133}
17134
17135/* Read an offset from the data stream. The size of the offset is
917c78fc 17136 given by cu_header->offset_size. */
613e1657
KB
17137
17138static LONGEST
d521ce57
TT
17139read_offset (bfd *abfd, const gdb_byte *buf,
17140 const struct comp_unit_head *cu_header,
891d2f0b 17141 unsigned int *bytes_read)
c764a876
DE
17142{
17143 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 17144
c764a876
DE
17145 *bytes_read = cu_header->offset_size;
17146 return offset;
17147}
17148
17149/* Read an offset from the data stream. */
17150
17151static LONGEST
d521ce57 17152read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
17153{
17154 LONGEST retval = 0;
17155
c764a876 17156 switch (offset_size)
613e1657
KB
17157 {
17158 case 4:
fe1b8b76 17159 retval = bfd_get_32 (abfd, buf);
613e1657
KB
17160 break;
17161 case 8:
fe1b8b76 17162 retval = bfd_get_64 (abfd, buf);
613e1657
KB
17163 break;
17164 default:
8e65ff28 17165 internal_error (__FILE__, __LINE__,
c764a876 17166 _("read_offset_1: bad switch [in module %s]"),
659b0389 17167 bfd_get_filename (abfd));
613e1657
KB
17168 }
17169
917c78fc 17170 return retval;
613e1657
KB
17171}
17172
d521ce57
TT
17173static const gdb_byte *
17174read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
17175{
17176 /* If the size of a host char is 8 bits, we can return a pointer
17177 to the buffer, otherwise we have to copy the data to a buffer
17178 allocated on the temporary obstack. */
4bdf3d34 17179 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 17180 return buf;
c906108c
SS
17181}
17182
d521ce57
TT
17183static const char *
17184read_direct_string (bfd *abfd, const gdb_byte *buf,
17185 unsigned int *bytes_read_ptr)
c906108c
SS
17186{
17187 /* If the size of a host char is 8 bits, we can return a pointer
17188 to the string, otherwise we have to copy the string to a buffer
17189 allocated on the temporary obstack. */
4bdf3d34 17190 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
17191 if (*buf == '\0')
17192 {
17193 *bytes_read_ptr = 1;
17194 return NULL;
17195 }
d521ce57
TT
17196 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17197 return (const char *) buf;
4bdf3d34
JJ
17198}
17199
43988095
JK
17200/* Return pointer to string at section SECT offset STR_OFFSET with error
17201 reporting strings FORM_NAME and SECT_NAME. */
17202
d521ce57 17203static const char *
43988095
JK
17204read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17205 struct dwarf2_section_info *sect,
17206 const char *form_name,
17207 const char *sect_name)
17208{
17209 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17210 if (sect->buffer == NULL)
17211 error (_("%s used without %s section [in module %s]"),
17212 form_name, sect_name, bfd_get_filename (abfd));
17213 if (str_offset >= sect->size)
17214 error (_("%s pointing outside of %s section [in module %s]"),
17215 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 17216 gdb_assert (HOST_CHAR_BIT == 8);
43988095 17217 if (sect->buffer[str_offset] == '\0')
4bdf3d34 17218 return NULL;
43988095
JK
17219 return (const char *) (sect->buffer + str_offset);
17220}
17221
17222/* Return pointer to string at .debug_str offset STR_OFFSET. */
17223
17224static const char *
17225read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17226{
17227 return read_indirect_string_at_offset_from (abfd, str_offset,
17228 &dwarf2_per_objfile->str,
17229 "DW_FORM_strp", ".debug_str");
17230}
17231
17232/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17233
17234static const char *
17235read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17236{
17237 return read_indirect_string_at_offset_from (abfd, str_offset,
17238 &dwarf2_per_objfile->line_str,
17239 "DW_FORM_line_strp",
17240 ".debug_line_str");
c906108c
SS
17241}
17242
36586728
TT
17243/* Read a string at offset STR_OFFSET in the .debug_str section from
17244 the .dwz file DWZ. Throw an error if the offset is too large. If
17245 the string consists of a single NUL byte, return NULL; otherwise
17246 return a pointer to the string. */
17247
d521ce57 17248static const char *
36586728
TT
17249read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17250{
17251 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17252
17253 if (dwz->str.buffer == NULL)
17254 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17255 "section [in module %s]"),
17256 bfd_get_filename (dwz->dwz_bfd));
17257 if (str_offset >= dwz->str.size)
17258 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17259 ".debug_str section [in module %s]"),
17260 bfd_get_filename (dwz->dwz_bfd));
17261 gdb_assert (HOST_CHAR_BIT == 8);
17262 if (dwz->str.buffer[str_offset] == '\0')
17263 return NULL;
d521ce57 17264 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
17265}
17266
43988095
JK
17267/* Return pointer to string at .debug_str offset as read from BUF.
17268 BUF is assumed to be in a compilation unit described by CU_HEADER.
17269 Return *BYTES_READ_PTR count of bytes read from BUF. */
17270
d521ce57
TT
17271static const char *
17272read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
17273 const struct comp_unit_head *cu_header,
17274 unsigned int *bytes_read_ptr)
17275{
17276 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17277
17278 return read_indirect_string_at_offset (abfd, str_offset);
17279}
17280
43988095
JK
17281/* Return pointer to string at .debug_line_str offset as read from BUF.
17282 BUF is assumed to be in a compilation unit described by CU_HEADER.
17283 Return *BYTES_READ_PTR count of bytes read from BUF. */
17284
17285static const char *
17286read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17287 const struct comp_unit_head *cu_header,
17288 unsigned int *bytes_read_ptr)
17289{
17290 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17291
17292 return read_indirect_line_string_at_offset (abfd, str_offset);
17293}
17294
17295ULONGEST
d521ce57 17296read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 17297 unsigned int *bytes_read_ptr)
c906108c 17298{
12df843f 17299 ULONGEST result;
ce5d95e1 17300 unsigned int num_read;
870f88f7 17301 int shift;
c906108c
SS
17302 unsigned char byte;
17303
17304 result = 0;
17305 shift = 0;
17306 num_read = 0;
c906108c
SS
17307 while (1)
17308 {
fe1b8b76 17309 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17310 buf++;
17311 num_read++;
12df843f 17312 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
17313 if ((byte & 128) == 0)
17314 {
17315 break;
17316 }
17317 shift += 7;
17318 }
17319 *bytes_read_ptr = num_read;
17320 return result;
17321}
17322
12df843f 17323static LONGEST
d521ce57
TT
17324read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17325 unsigned int *bytes_read_ptr)
c906108c 17326{
12df843f 17327 LONGEST result;
870f88f7 17328 int shift, num_read;
c906108c
SS
17329 unsigned char byte;
17330
17331 result = 0;
17332 shift = 0;
c906108c 17333 num_read = 0;
c906108c
SS
17334 while (1)
17335 {
fe1b8b76 17336 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17337 buf++;
17338 num_read++;
12df843f 17339 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
17340 shift += 7;
17341 if ((byte & 128) == 0)
17342 {
17343 break;
17344 }
17345 }
77e0b926 17346 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 17347 result |= -(((LONGEST) 1) << shift);
c906108c
SS
17348 *bytes_read_ptr = num_read;
17349 return result;
17350}
17351
3019eac3
DE
17352/* Given index ADDR_INDEX in .debug_addr, fetch the value.
17353 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17354 ADDR_SIZE is the size of addresses from the CU header. */
17355
17356static CORE_ADDR
17357read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17358{
17359 struct objfile *objfile = dwarf2_per_objfile->objfile;
17360 bfd *abfd = objfile->obfd;
17361 const gdb_byte *info_ptr;
17362
17363 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17364 if (dwarf2_per_objfile->addr.buffer == NULL)
17365 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 17366 objfile_name (objfile));
3019eac3
DE
17367 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17368 error (_("DW_FORM_addr_index pointing outside of "
17369 ".debug_addr section [in module %s]"),
4262abfb 17370 objfile_name (objfile));
3019eac3
DE
17371 info_ptr = (dwarf2_per_objfile->addr.buffer
17372 + addr_base + addr_index * addr_size);
17373 if (addr_size == 4)
17374 return bfd_get_32 (abfd, info_ptr);
17375 else
17376 return bfd_get_64 (abfd, info_ptr);
17377}
17378
17379/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17380
17381static CORE_ADDR
17382read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17383{
17384 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17385}
17386
17387/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17388
17389static CORE_ADDR
d521ce57 17390read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
17391 unsigned int *bytes_read)
17392{
17393 bfd *abfd = cu->objfile->obfd;
17394 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17395
17396 return read_addr_index (cu, addr_index);
17397}
17398
17399/* Data structure to pass results from dwarf2_read_addr_index_reader
17400 back to dwarf2_read_addr_index. */
17401
17402struct dwarf2_read_addr_index_data
17403{
17404 ULONGEST addr_base;
17405 int addr_size;
17406};
17407
17408/* die_reader_func for dwarf2_read_addr_index. */
17409
17410static void
17411dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 17412 const gdb_byte *info_ptr,
3019eac3
DE
17413 struct die_info *comp_unit_die,
17414 int has_children,
17415 void *data)
17416{
17417 struct dwarf2_cu *cu = reader->cu;
17418 struct dwarf2_read_addr_index_data *aidata =
17419 (struct dwarf2_read_addr_index_data *) data;
17420
17421 aidata->addr_base = cu->addr_base;
17422 aidata->addr_size = cu->header.addr_size;
17423}
17424
17425/* Given an index in .debug_addr, fetch the value.
17426 NOTE: This can be called during dwarf expression evaluation,
17427 long after the debug information has been read, and thus per_cu->cu
17428 may no longer exist. */
17429
17430CORE_ADDR
17431dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17432 unsigned int addr_index)
17433{
17434 struct objfile *objfile = per_cu->objfile;
17435 struct dwarf2_cu *cu = per_cu->cu;
17436 ULONGEST addr_base;
17437 int addr_size;
17438
17439 /* This is intended to be called from outside this file. */
17440 dw2_setup (objfile);
17441
17442 /* We need addr_base and addr_size.
17443 If we don't have PER_CU->cu, we have to get it.
17444 Nasty, but the alternative is storing the needed info in PER_CU,
17445 which at this point doesn't seem justified: it's not clear how frequently
17446 it would get used and it would increase the size of every PER_CU.
17447 Entry points like dwarf2_per_cu_addr_size do a similar thing
17448 so we're not in uncharted territory here.
17449 Alas we need to be a bit more complicated as addr_base is contained
17450 in the DIE.
17451
17452 We don't need to read the entire CU(/TU).
17453 We just need the header and top level die.
a1b64ce1 17454
3019eac3 17455 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 17456 For now we skip this optimization. */
3019eac3
DE
17457
17458 if (cu != NULL)
17459 {
17460 addr_base = cu->addr_base;
17461 addr_size = cu->header.addr_size;
17462 }
17463 else
17464 {
17465 struct dwarf2_read_addr_index_data aidata;
17466
a1b64ce1
DE
17467 /* Note: We can't use init_cutu_and_read_dies_simple here,
17468 we need addr_base. */
17469 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17470 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
17471 addr_base = aidata.addr_base;
17472 addr_size = aidata.addr_size;
17473 }
17474
17475 return read_addr_index_1 (addr_index, addr_base, addr_size);
17476}
17477
57d63ce2
DE
17478/* Given a DW_FORM_GNU_str_index, fetch the string.
17479 This is only used by the Fission support. */
3019eac3 17480
d521ce57 17481static const char *
342587c4 17482read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
17483{
17484 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 17485 const char *objf_name = objfile_name (objfile);
3019eac3 17486 bfd *abfd = objfile->obfd;
342587c4 17487 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
17488 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17489 struct dwarf2_section_info *str_offsets_section =
17490 &reader->dwo_file->sections.str_offsets;
d521ce57 17491 const gdb_byte *info_ptr;
3019eac3 17492 ULONGEST str_offset;
57d63ce2 17493 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 17494
73869dc2
DE
17495 dwarf2_read_section (objfile, str_section);
17496 dwarf2_read_section (objfile, str_offsets_section);
17497 if (str_section->buffer == NULL)
57d63ce2 17498 error (_("%s used without .debug_str.dwo section"
9c541725
PA
17499 " in CU at offset 0x%x [in module %s]"),
17500 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17501 if (str_offsets_section->buffer == NULL)
57d63ce2 17502 error (_("%s used without .debug_str_offsets.dwo section"
9c541725
PA
17503 " in CU at offset 0x%x [in module %s]"),
17504 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17505 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17506 error (_("%s pointing outside of .debug_str_offsets.dwo"
9c541725
PA
17507 " section in CU at offset 0x%x [in module %s]"),
17508 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17509 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17510 + str_index * cu->header.offset_size);
17511 if (cu->header.offset_size == 4)
17512 str_offset = bfd_get_32 (abfd, info_ptr);
17513 else
17514 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17515 if (str_offset >= str_section->size)
57d63ce2 17516 error (_("Offset from %s pointing outside of"
9c541725
PA
17517 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17518 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17519 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17520}
17521
3019eac3
DE
17522/* Return the length of an LEB128 number in BUF. */
17523
17524static int
17525leb128_size (const gdb_byte *buf)
17526{
17527 const gdb_byte *begin = buf;
17528 gdb_byte byte;
17529
17530 while (1)
17531 {
17532 byte = *buf++;
17533 if ((byte & 128) == 0)
17534 return buf - begin;
17535 }
17536}
17537
c906108c 17538static void
e142c38c 17539set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17540{
17541 switch (lang)
17542 {
17543 case DW_LANG_C89:
76bee0cc 17544 case DW_LANG_C99:
0cfd832f 17545 case DW_LANG_C11:
c906108c 17546 case DW_LANG_C:
d1be3247 17547 case DW_LANG_UPC:
e142c38c 17548 cu->language = language_c;
c906108c 17549 break;
9c37b5ae 17550 case DW_LANG_Java:
c906108c 17551 case DW_LANG_C_plus_plus:
0cfd832f
MW
17552 case DW_LANG_C_plus_plus_11:
17553 case DW_LANG_C_plus_plus_14:
e142c38c 17554 cu->language = language_cplus;
c906108c 17555 break;
6aecb9c2
JB
17556 case DW_LANG_D:
17557 cu->language = language_d;
17558 break;
c906108c
SS
17559 case DW_LANG_Fortran77:
17560 case DW_LANG_Fortran90:
b21b22e0 17561 case DW_LANG_Fortran95:
f7de9aab
MW
17562 case DW_LANG_Fortran03:
17563 case DW_LANG_Fortran08:
e142c38c 17564 cu->language = language_fortran;
c906108c 17565 break;
a766d390
DE
17566 case DW_LANG_Go:
17567 cu->language = language_go;
17568 break;
c906108c 17569 case DW_LANG_Mips_Assembler:
e142c38c 17570 cu->language = language_asm;
c906108c
SS
17571 break;
17572 case DW_LANG_Ada83:
8aaf0b47 17573 case DW_LANG_Ada95:
bc5f45f8
JB
17574 cu->language = language_ada;
17575 break;
72019c9c
GM
17576 case DW_LANG_Modula2:
17577 cu->language = language_m2;
17578 break;
fe8e67fd
PM
17579 case DW_LANG_Pascal83:
17580 cu->language = language_pascal;
17581 break;
22566fbd
DJ
17582 case DW_LANG_ObjC:
17583 cu->language = language_objc;
17584 break;
c44af4eb
TT
17585 case DW_LANG_Rust:
17586 case DW_LANG_Rust_old:
17587 cu->language = language_rust;
17588 break;
c906108c
SS
17589 case DW_LANG_Cobol74:
17590 case DW_LANG_Cobol85:
c906108c 17591 default:
e142c38c 17592 cu->language = language_minimal;
c906108c
SS
17593 break;
17594 }
e142c38c 17595 cu->language_defn = language_def (cu->language);
c906108c
SS
17596}
17597
17598/* Return the named attribute or NULL if not there. */
17599
17600static struct attribute *
e142c38c 17601dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17602{
a48e046c 17603 for (;;)
c906108c 17604 {
a48e046c
TT
17605 unsigned int i;
17606 struct attribute *spec = NULL;
17607
17608 for (i = 0; i < die->num_attrs; ++i)
17609 {
17610 if (die->attrs[i].name == name)
17611 return &die->attrs[i];
17612 if (die->attrs[i].name == DW_AT_specification
17613 || die->attrs[i].name == DW_AT_abstract_origin)
17614 spec = &die->attrs[i];
17615 }
17616
17617 if (!spec)
17618 break;
c906108c 17619
f2f0e013 17620 die = follow_die_ref (die, spec, &cu);
f2f0e013 17621 }
c5aa993b 17622
c906108c
SS
17623 return NULL;
17624}
17625
348e048f
DE
17626/* Return the named attribute or NULL if not there,
17627 but do not follow DW_AT_specification, etc.
17628 This is for use in contexts where we're reading .debug_types dies.
17629 Following DW_AT_specification, DW_AT_abstract_origin will take us
17630 back up the chain, and we want to go down. */
17631
17632static struct attribute *
45e58e77 17633dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17634{
17635 unsigned int i;
17636
17637 for (i = 0; i < die->num_attrs; ++i)
17638 if (die->attrs[i].name == name)
17639 return &die->attrs[i];
17640
17641 return NULL;
17642}
17643
7d45c7c3
KB
17644/* Return the string associated with a string-typed attribute, or NULL if it
17645 is either not found or is of an incorrect type. */
17646
17647static const char *
17648dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17649{
17650 struct attribute *attr;
17651 const char *str = NULL;
17652
17653 attr = dwarf2_attr (die, name, cu);
17654
17655 if (attr != NULL)
17656 {
43988095 17657 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
b3340438
L
17658 || attr->form == DW_FORM_string
17659 || attr->form == DW_FORM_GNU_str_index
16eb6b2d 17660 || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
17661 str = DW_STRING (attr);
17662 else
17663 complaint (&symfile_complaints,
17664 _("string type expected for attribute %s for "
17665 "DIE at 0x%x in module %s"),
9c541725 17666 dwarf_attr_name (name), to_underlying (die->sect_off),
7d45c7c3
KB
17667 objfile_name (cu->objfile));
17668 }
17669
17670 return str;
17671}
17672
05cf31d1
JB
17673/* Return non-zero iff the attribute NAME is defined for the given DIE,
17674 and holds a non-zero value. This function should only be used for
2dc7f7b3 17675 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17676
17677static int
17678dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17679{
17680 struct attribute *attr = dwarf2_attr (die, name, cu);
17681
17682 return (attr && DW_UNSND (attr));
17683}
17684
3ca72b44 17685static int
e142c38c 17686die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17687{
05cf31d1
JB
17688 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17689 which value is non-zero. However, we have to be careful with
17690 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17691 (via dwarf2_flag_true_p) follows this attribute. So we may
17692 end up accidently finding a declaration attribute that belongs
17693 to a different DIE referenced by the specification attribute,
17694 even though the given DIE does not have a declaration attribute. */
17695 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17696 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17697}
17698
63d06c5c 17699/* Return the die giving the specification for DIE, if there is
f2f0e013 17700 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17701 containing the return value on output. If there is no
17702 specification, but there is an abstract origin, that is
17703 returned. */
63d06c5c
DC
17704
17705static struct die_info *
f2f0e013 17706die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17707{
f2f0e013
DJ
17708 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17709 *spec_cu);
63d06c5c 17710
edb3359d
DJ
17711 if (spec_attr == NULL)
17712 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17713
63d06c5c
DC
17714 if (spec_attr == NULL)
17715 return NULL;
17716 else
f2f0e013 17717 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17718}
c906108c 17719
527f3840
JK
17720/* Stub for free_line_header to match void * callback types. */
17721
17722static void
17723free_line_header_voidp (void *arg)
17724{
9a3c8263 17725 struct line_header *lh = (struct line_header *) arg;
527f3840 17726
fff8551c 17727 delete lh;
527f3840
JK
17728}
17729
fff8551c
PA
17730void
17731line_header::add_include_dir (const char *include_dir)
c906108c 17732{
27e0867f 17733 if (dwarf_line_debug >= 2)
fff8551c
PA
17734 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17735 include_dirs.size () + 1, include_dir);
27e0867f 17736
fff8551c 17737 include_dirs.push_back (include_dir);
debd256d 17738}
6e70227d 17739
fff8551c
PA
17740void
17741line_header::add_file_name (const char *name,
ecfb656c 17742 dir_index d_index,
fff8551c
PA
17743 unsigned int mod_time,
17744 unsigned int length)
debd256d 17745{
27e0867f
DE
17746 if (dwarf_line_debug >= 2)
17747 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
fff8551c 17748 (unsigned) file_names.size () + 1, name);
27e0867f 17749
ecfb656c 17750 file_names.emplace_back (name, d_index, mod_time, length);
debd256d 17751}
6e70227d 17752
83769d0b 17753/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17754
17755static struct dwarf2_section_info *
17756get_debug_line_section (struct dwarf2_cu *cu)
17757{
17758 struct dwarf2_section_info *section;
17759
17760 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17761 DWO file. */
17762 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17763 section = &cu->dwo_unit->dwo_file->sections.line;
17764 else if (cu->per_cu->is_dwz)
17765 {
17766 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17767
17768 section = &dwz->line;
17769 }
17770 else
17771 section = &dwarf2_per_objfile->line;
17772
17773 return section;
17774}
17775
43988095
JK
17776/* Read directory or file name entry format, starting with byte of
17777 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17778 entries count and the entries themselves in the described entry
17779 format. */
17780
17781static void
17782read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17783 struct line_header *lh,
17784 const struct comp_unit_head *cu_header,
17785 void (*callback) (struct line_header *lh,
17786 const char *name,
ecfb656c 17787 dir_index d_index,
43988095
JK
17788 unsigned int mod_time,
17789 unsigned int length))
17790{
17791 gdb_byte format_count, formati;
17792 ULONGEST data_count, datai;
17793 const gdb_byte *buf = *bufp;
17794 const gdb_byte *format_header_data;
17795 int i;
17796 unsigned int bytes_read;
17797
17798 format_count = read_1_byte (abfd, buf);
17799 buf += 1;
17800 format_header_data = buf;
17801 for (formati = 0; formati < format_count; formati++)
17802 {
17803 read_unsigned_leb128 (abfd, buf, &bytes_read);
17804 buf += bytes_read;
17805 read_unsigned_leb128 (abfd, buf, &bytes_read);
17806 buf += bytes_read;
17807 }
17808
17809 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17810 buf += bytes_read;
17811 for (datai = 0; datai < data_count; datai++)
17812 {
17813 const gdb_byte *format = format_header_data;
17814 struct file_entry fe;
17815
43988095
JK
17816 for (formati = 0; formati < format_count; formati++)
17817 {
ecfb656c 17818 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17819 format += bytes_read;
43988095 17820
ecfb656c 17821 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17822 format += bytes_read;
ecfb656c
PA
17823
17824 gdb::optional<const char *> string;
17825 gdb::optional<unsigned int> uint;
17826
43988095
JK
17827 switch (form)
17828 {
17829 case DW_FORM_string:
ecfb656c 17830 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
17831 buf += bytes_read;
17832 break;
17833
17834 case DW_FORM_line_strp:
ecfb656c
PA
17835 string.emplace (read_indirect_line_string (abfd, buf,
17836 cu_header,
17837 &bytes_read));
43988095
JK
17838 buf += bytes_read;
17839 break;
17840
17841 case DW_FORM_data1:
ecfb656c 17842 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
17843 buf += 1;
17844 break;
17845
17846 case DW_FORM_data2:
ecfb656c 17847 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
17848 buf += 2;
17849 break;
17850
17851 case DW_FORM_data4:
ecfb656c 17852 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
17853 buf += 4;
17854 break;
17855
17856 case DW_FORM_data8:
ecfb656c 17857 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
17858 buf += 8;
17859 break;
17860
17861 case DW_FORM_udata:
ecfb656c 17862 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
17863 buf += bytes_read;
17864 break;
17865
17866 case DW_FORM_block:
17867 /* It is valid only for DW_LNCT_timestamp which is ignored by
17868 current GDB. */
17869 break;
17870 }
ecfb656c
PA
17871
17872 switch (content_type)
17873 {
17874 case DW_LNCT_path:
17875 if (string.has_value ())
17876 fe.name = *string;
17877 break;
17878 case DW_LNCT_directory_index:
17879 if (uint.has_value ())
17880 fe.d_index = (dir_index) *uint;
17881 break;
17882 case DW_LNCT_timestamp:
17883 if (uint.has_value ())
17884 fe.mod_time = *uint;
17885 break;
17886 case DW_LNCT_size:
17887 if (uint.has_value ())
17888 fe.length = *uint;
17889 break;
17890 case DW_LNCT_MD5:
17891 break;
17892 default:
17893 complaint (&symfile_complaints,
17894 _("Unknown format content type %s"),
17895 pulongest (content_type));
17896 }
43988095
JK
17897 }
17898
ecfb656c 17899 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
17900 }
17901
17902 *bufp = buf;
17903}
17904
debd256d 17905/* Read the statement program header starting at OFFSET in
3019eac3 17906 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17907 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17908 Returns NULL if there is a problem reading the header, e.g., if it
17909 has a version we don't understand.
debd256d
JB
17910
17911 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17912 the returned object point into the dwarf line section buffer,
17913 and must not be freed. */
ae2de4f8 17914
fff8551c 17915static line_header_up
9c541725 17916dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 17917{
d521ce57 17918 const gdb_byte *line_ptr;
c764a876 17919 unsigned int bytes_read, offset_size;
debd256d 17920 int i;
d521ce57 17921 const char *cur_dir, *cur_file;
3019eac3
DE
17922 struct dwarf2_section_info *section;
17923 bfd *abfd;
17924
36586728 17925 section = get_debug_line_section (cu);
3019eac3
DE
17926 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17927 if (section->buffer == NULL)
debd256d 17928 {
3019eac3
DE
17929 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17930 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17931 else
17932 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17933 return 0;
17934 }
17935
fceca515
DE
17936 /* We can't do this until we know the section is non-empty.
17937 Only then do we know we have such a section. */
a32a8923 17938 abfd = get_section_bfd_owner (section);
fceca515 17939
a738430d
MK
17940 /* Make sure that at least there's room for the total_length field.
17941 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 17942 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 17943 {
4d3c2250 17944 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17945 return 0;
17946 }
17947
fff8551c 17948 line_header_up lh (new line_header ());
debd256d 17949
9c541725 17950 lh->sect_off = sect_off;
527f3840
JK
17951 lh->offset_in_dwz = cu->per_cu->is_dwz;
17952
9c541725 17953 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 17954
a738430d 17955 /* Read in the header. */
6e70227d 17956 lh->total_length =
c764a876
DE
17957 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17958 &bytes_read, &offset_size);
debd256d 17959 line_ptr += bytes_read;
3019eac3 17960 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17961 {
4d3c2250 17962 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17963 return 0;
17964 }
17965 lh->statement_program_end = line_ptr + lh->total_length;
17966 lh->version = read_2_bytes (abfd, line_ptr);
17967 line_ptr += 2;
43988095 17968 if (lh->version > 5)
cd366ee8
DE
17969 {
17970 /* This is a version we don't understand. The format could have
17971 changed in ways we don't handle properly so just punt. */
17972 complaint (&symfile_complaints,
17973 _("unsupported version in .debug_line section"));
17974 return NULL;
17975 }
43988095
JK
17976 if (lh->version >= 5)
17977 {
17978 gdb_byte segment_selector_size;
17979
17980 /* Skip address size. */
17981 read_1_byte (abfd, line_ptr);
17982 line_ptr += 1;
17983
17984 segment_selector_size = read_1_byte (abfd, line_ptr);
17985 line_ptr += 1;
17986 if (segment_selector_size != 0)
17987 {
17988 complaint (&symfile_complaints,
17989 _("unsupported segment selector size %u "
17990 "in .debug_line section"),
17991 segment_selector_size);
17992 return NULL;
17993 }
17994 }
c764a876
DE
17995 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17996 line_ptr += offset_size;
debd256d
JB
17997 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17998 line_ptr += 1;
2dc7f7b3
TT
17999 if (lh->version >= 4)
18000 {
18001 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18002 line_ptr += 1;
18003 }
18004 else
18005 lh->maximum_ops_per_instruction = 1;
18006
18007 if (lh->maximum_ops_per_instruction == 0)
18008 {
18009 lh->maximum_ops_per_instruction = 1;
18010 complaint (&symfile_complaints,
3e43a32a
MS
18011 _("invalid maximum_ops_per_instruction "
18012 "in `.debug_line' section"));
2dc7f7b3
TT
18013 }
18014
debd256d
JB
18015 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18016 line_ptr += 1;
18017 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18018 line_ptr += 1;
18019 lh->line_range = read_1_byte (abfd, line_ptr);
18020 line_ptr += 1;
18021 lh->opcode_base = read_1_byte (abfd, line_ptr);
18022 line_ptr += 1;
fff8551c 18023 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
18024
18025 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18026 for (i = 1; i < lh->opcode_base; ++i)
18027 {
18028 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18029 line_ptr += 1;
18030 }
18031
43988095 18032 if (lh->version >= 5)
debd256d 18033 {
43988095 18034 /* Read directory table. */
fff8551c
PA
18035 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18036 [] (struct line_header *lh, const char *name,
ecfb656c 18037 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18038 unsigned int length)
18039 {
18040 lh->add_include_dir (name);
18041 });
debd256d 18042
43988095 18043 /* Read file name table. */
fff8551c
PA
18044 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18045 [] (struct line_header *lh, const char *name,
ecfb656c 18046 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18047 unsigned int length)
18048 {
ecfb656c 18049 lh->add_file_name (name, d_index, mod_time, length);
fff8551c 18050 });
43988095
JK
18051 }
18052 else
debd256d 18053 {
43988095
JK
18054 /* Read directory table. */
18055 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18056 {
18057 line_ptr += bytes_read;
fff8551c 18058 lh->add_include_dir (cur_dir);
43988095 18059 }
debd256d
JB
18060 line_ptr += bytes_read;
18061
43988095
JK
18062 /* Read file name table. */
18063 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18064 {
ecfb656c
PA
18065 unsigned int mod_time, length;
18066 dir_index d_index;
43988095
JK
18067
18068 line_ptr += bytes_read;
ecfb656c 18069 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
18070 line_ptr += bytes_read;
18071 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18072 line_ptr += bytes_read;
18073 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18074 line_ptr += bytes_read;
18075
ecfb656c 18076 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
18077 }
18078 line_ptr += bytes_read;
debd256d 18079 }
6e70227d 18080 lh->statement_program_start = line_ptr;
debd256d 18081
3019eac3 18082 if (line_ptr > (section->buffer + section->size))
4d3c2250 18083 complaint (&symfile_complaints,
3e43a32a
MS
18084 _("line number info header doesn't "
18085 "fit in `.debug_line' section"));
debd256d 18086
debd256d
JB
18087 return lh;
18088}
c906108c 18089
c6da4cef
DE
18090/* Subroutine of dwarf_decode_lines to simplify it.
18091 Return the file name of the psymtab for included file FILE_INDEX
18092 in line header LH of PST.
18093 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18094 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
18095 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18096
18097 The function creates dangling cleanup registration. */
c6da4cef 18098
d521ce57 18099static const char *
c6da4cef
DE
18100psymtab_include_file_name (const struct line_header *lh, int file_index,
18101 const struct partial_symtab *pst,
18102 const char *comp_dir)
18103{
8c43009f 18104 const file_entry &fe = lh->file_names[file_index];
d521ce57
TT
18105 const char *include_name = fe.name;
18106 const char *include_name_to_compare = include_name;
72b9f47f
TT
18107 const char *pst_filename;
18108 char *copied_name = NULL;
c6da4cef
DE
18109 int file_is_pst;
18110
8c43009f 18111 const char *dir_name = fe.include_dir (lh);
c6da4cef
DE
18112
18113 if (!IS_ABSOLUTE_PATH (include_name)
18114 && (dir_name != NULL || comp_dir != NULL))
18115 {
18116 /* Avoid creating a duplicate psymtab for PST.
18117 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18118 Before we do the comparison, however, we need to account
18119 for DIR_NAME and COMP_DIR.
18120 First prepend dir_name (if non-NULL). If we still don't
18121 have an absolute path prepend comp_dir (if non-NULL).
18122 However, the directory we record in the include-file's
18123 psymtab does not contain COMP_DIR (to match the
18124 corresponding symtab(s)).
18125
18126 Example:
18127
18128 bash$ cd /tmp
18129 bash$ gcc -g ./hello.c
18130 include_name = "hello.c"
18131 dir_name = "."
18132 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
18133 DW_AT_name = "./hello.c"
18134
18135 */
c6da4cef
DE
18136
18137 if (dir_name != NULL)
18138 {
d521ce57
TT
18139 char *tem = concat (dir_name, SLASH_STRING,
18140 include_name, (char *)NULL);
18141
18142 make_cleanup (xfree, tem);
18143 include_name = tem;
c6da4cef 18144 include_name_to_compare = include_name;
c6da4cef
DE
18145 }
18146 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18147 {
d521ce57
TT
18148 char *tem = concat (comp_dir, SLASH_STRING,
18149 include_name, (char *)NULL);
18150
18151 make_cleanup (xfree, tem);
18152 include_name_to_compare = tem;
c6da4cef
DE
18153 }
18154 }
18155
18156 pst_filename = pst->filename;
18157 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18158 {
72b9f47f
TT
18159 copied_name = concat (pst->dirname, SLASH_STRING,
18160 pst_filename, (char *)NULL);
18161 pst_filename = copied_name;
c6da4cef
DE
18162 }
18163
1e3fad37 18164 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 18165
72b9f47f
TT
18166 if (copied_name != NULL)
18167 xfree (copied_name);
c6da4cef
DE
18168
18169 if (file_is_pst)
18170 return NULL;
18171 return include_name;
18172}
18173
d9b3de22
DE
18174/* State machine to track the state of the line number program. */
18175
6f77053d 18176class lnp_state_machine
d9b3de22 18177{
6f77053d
PA
18178public:
18179 /* Initialize a machine state for the start of a line number
18180 program. */
18181 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18182
8c43009f
PA
18183 file_entry *current_file ()
18184 {
18185 /* lh->file_names is 0-based, but the file name numbers in the
18186 statement program are 1-based. */
6f77053d
PA
18187 return m_line_header->file_name_at (m_file);
18188 }
18189
18190 /* Record the line in the state machine. END_SEQUENCE is true if
18191 we're processing the end of a sequence. */
18192 void record_line (bool end_sequence);
18193
18194 /* Check address and if invalid nop-out the rest of the lines in this
18195 sequence. */
18196 void check_line_address (struct dwarf2_cu *cu,
18197 const gdb_byte *line_ptr,
18198 CORE_ADDR lowpc, CORE_ADDR address);
18199
18200 void handle_set_discriminator (unsigned int discriminator)
18201 {
18202 m_discriminator = discriminator;
18203 m_line_has_non_zero_discriminator |= discriminator != 0;
18204 }
18205
18206 /* Handle DW_LNE_set_address. */
18207 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18208 {
18209 m_op_index = 0;
18210 address += baseaddr;
18211 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18212 }
18213
18214 /* Handle DW_LNS_advance_pc. */
18215 void handle_advance_pc (CORE_ADDR adjust);
18216
18217 /* Handle a special opcode. */
18218 void handle_special_opcode (unsigned char op_code);
18219
18220 /* Handle DW_LNS_advance_line. */
18221 void handle_advance_line (int line_delta)
18222 {
18223 advance_line (line_delta);
18224 }
18225
18226 /* Handle DW_LNS_set_file. */
18227 void handle_set_file (file_name_index file);
18228
18229 /* Handle DW_LNS_negate_stmt. */
18230 void handle_negate_stmt ()
18231 {
18232 m_is_stmt = !m_is_stmt;
18233 }
18234
18235 /* Handle DW_LNS_const_add_pc. */
18236 void handle_const_add_pc ();
18237
18238 /* Handle DW_LNS_fixed_advance_pc. */
18239 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18240 {
18241 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18242 m_op_index = 0;
18243 }
18244
18245 /* Handle DW_LNS_copy. */
18246 void handle_copy ()
18247 {
18248 record_line (false);
18249 m_discriminator = 0;
18250 }
18251
18252 /* Handle DW_LNE_end_sequence. */
18253 void handle_end_sequence ()
18254 {
18255 m_record_line_callback = ::record_line;
18256 }
18257
18258private:
18259 /* Advance the line by LINE_DELTA. */
18260 void advance_line (int line_delta)
18261 {
18262 m_line += line_delta;
18263
18264 if (line_delta != 0)
18265 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
18266 }
18267
6f77053d
PA
18268 gdbarch *m_gdbarch;
18269
18270 /* True if we're recording lines.
18271 Otherwise we're building partial symtabs and are just interested in
18272 finding include files mentioned by the line number program. */
18273 bool m_record_lines_p;
18274
8c43009f 18275 /* The line number header. */
6f77053d 18276 line_header *m_line_header;
8c43009f 18277
6f77053d
PA
18278 /* These are part of the standard DWARF line number state machine,
18279 and initialized according to the DWARF spec. */
d9b3de22 18280
6f77053d 18281 unsigned char m_op_index = 0;
8c43009f 18282 /* The line table index (1-based) of the current file. */
6f77053d
PA
18283 file_name_index m_file = (file_name_index) 1;
18284 unsigned int m_line = 1;
18285
18286 /* These are initialized in the constructor. */
18287
18288 CORE_ADDR m_address;
18289 bool m_is_stmt;
18290 unsigned int m_discriminator;
d9b3de22
DE
18291
18292 /* Additional bits of state we need to track. */
18293
18294 /* The last file that we called dwarf2_start_subfile for.
18295 This is only used for TLLs. */
6f77053d 18296 unsigned int m_last_file = 0;
d9b3de22 18297 /* The last file a line number was recorded for. */
6f77053d 18298 struct subfile *m_last_subfile = NULL;
d9b3de22
DE
18299
18300 /* The function to call to record a line. */
6f77053d 18301 record_line_ftype *m_record_line_callback = NULL;
d9b3de22
DE
18302
18303 /* The last line number that was recorded, used to coalesce
18304 consecutive entries for the same line. This can happen, for
18305 example, when discriminators are present. PR 17276. */
6f77053d
PA
18306 unsigned int m_last_line = 0;
18307 bool m_line_has_non_zero_discriminator = false;
8c43009f 18308};
d9b3de22 18309
6f77053d
PA
18310void
18311lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18312{
18313 CORE_ADDR addr_adj = (((m_op_index + adjust)
18314 / m_line_header->maximum_ops_per_instruction)
18315 * m_line_header->minimum_instruction_length);
18316 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18317 m_op_index = ((m_op_index + adjust)
18318 % m_line_header->maximum_ops_per_instruction);
18319}
d9b3de22 18320
6f77053d
PA
18321void
18322lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 18323{
6f77053d
PA
18324 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18325 CORE_ADDR addr_adj = (((m_op_index
18326 + (adj_opcode / m_line_header->line_range))
18327 / m_line_header->maximum_ops_per_instruction)
18328 * m_line_header->minimum_instruction_length);
18329 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18330 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18331 % m_line_header->maximum_ops_per_instruction);
d9b3de22 18332
6f77053d
PA
18333 int line_delta = (m_line_header->line_base
18334 + (adj_opcode % m_line_header->line_range));
18335 advance_line (line_delta);
18336 record_line (false);
18337 m_discriminator = 0;
18338}
d9b3de22 18339
6f77053d
PA
18340void
18341lnp_state_machine::handle_set_file (file_name_index file)
18342{
18343 m_file = file;
18344
18345 const file_entry *fe = current_file ();
18346 if (fe == NULL)
18347 dwarf2_debug_line_missing_file_complaint ();
18348 else if (m_record_lines_p)
18349 {
18350 const char *dir = fe->include_dir (m_line_header);
18351
18352 m_last_subfile = current_subfile;
18353 m_line_has_non_zero_discriminator = m_discriminator != 0;
18354 dwarf2_start_subfile (fe->name, dir);
18355 }
18356}
18357
18358void
18359lnp_state_machine::handle_const_add_pc ()
18360{
18361 CORE_ADDR adjust
18362 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18363
18364 CORE_ADDR addr_adj
18365 = (((m_op_index + adjust)
18366 / m_line_header->maximum_ops_per_instruction)
18367 * m_line_header->minimum_instruction_length);
18368
18369 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18370 m_op_index = ((m_op_index + adjust)
18371 % m_line_header->maximum_ops_per_instruction);
18372}
d9b3de22 18373
c91513d8
PP
18374/* Ignore this record_line request. */
18375
18376static void
18377noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18378{
18379 return;
18380}
18381
a05a36a5
DE
18382/* Return non-zero if we should add LINE to the line number table.
18383 LINE is the line to add, LAST_LINE is the last line that was added,
18384 LAST_SUBFILE is the subfile for LAST_LINE.
18385 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18386 had a non-zero discriminator.
18387
18388 We have to be careful in the presence of discriminators.
18389 E.g., for this line:
18390
18391 for (i = 0; i < 100000; i++);
18392
18393 clang can emit four line number entries for that one line,
18394 each with a different discriminator.
18395 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18396
18397 However, we want gdb to coalesce all four entries into one.
18398 Otherwise the user could stepi into the middle of the line and
18399 gdb would get confused about whether the pc really was in the
18400 middle of the line.
18401
18402 Things are further complicated by the fact that two consecutive
18403 line number entries for the same line is a heuristic used by gcc
18404 to denote the end of the prologue. So we can't just discard duplicate
18405 entries, we have to be selective about it. The heuristic we use is
18406 that we only collapse consecutive entries for the same line if at least
18407 one of those entries has a non-zero discriminator. PR 17276.
18408
18409 Note: Addresses in the line number state machine can never go backwards
18410 within one sequence, thus this coalescing is ok. */
18411
18412static int
18413dwarf_record_line_p (unsigned int line, unsigned int last_line,
18414 int line_has_non_zero_discriminator,
18415 struct subfile *last_subfile)
18416{
18417 if (current_subfile != last_subfile)
18418 return 1;
18419 if (line != last_line)
18420 return 1;
18421 /* Same line for the same file that we've seen already.
18422 As a last check, for pr 17276, only record the line if the line
18423 has never had a non-zero discriminator. */
18424 if (!line_has_non_zero_discriminator)
18425 return 1;
18426 return 0;
18427}
18428
252a6764
DE
18429/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18430 in the line table of subfile SUBFILE. */
18431
18432static void
d9b3de22
DE
18433dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18434 unsigned int line, CORE_ADDR address,
18435 record_line_ftype p_record_line)
252a6764
DE
18436{
18437 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18438
27e0867f
DE
18439 if (dwarf_line_debug)
18440 {
18441 fprintf_unfiltered (gdb_stdlog,
18442 "Recording line %u, file %s, address %s\n",
18443 line, lbasename (subfile->name),
18444 paddress (gdbarch, address));
18445 }
18446
d5962de5 18447 (*p_record_line) (subfile, line, addr);
252a6764
DE
18448}
18449
18450/* Subroutine of dwarf_decode_lines_1 to simplify it.
18451 Mark the end of a set of line number records.
d9b3de22 18452 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
18453 If SUBFILE is NULL the request is ignored. */
18454
18455static void
18456dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18457 CORE_ADDR address, record_line_ftype p_record_line)
18458{
27e0867f
DE
18459 if (subfile == NULL)
18460 return;
18461
18462 if (dwarf_line_debug)
18463 {
18464 fprintf_unfiltered (gdb_stdlog,
18465 "Finishing current line, file %s, address %s\n",
18466 lbasename (subfile->name),
18467 paddress (gdbarch, address));
18468 }
18469
d9b3de22
DE
18470 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18471}
18472
6f77053d
PA
18473void
18474lnp_state_machine::record_line (bool end_sequence)
d9b3de22 18475{
d9b3de22
DE
18476 if (dwarf_line_debug)
18477 {
18478 fprintf_unfiltered (gdb_stdlog,
18479 "Processing actual line %u: file %u,"
18480 " address %s, is_stmt %u, discrim %u\n",
6f77053d
PA
18481 m_line, to_underlying (m_file),
18482 paddress (m_gdbarch, m_address),
18483 m_is_stmt, m_discriminator);
d9b3de22
DE
18484 }
18485
6f77053d 18486 file_entry *fe = current_file ();
8c43009f
PA
18487
18488 if (fe == NULL)
d9b3de22
DE
18489 dwarf2_debug_line_missing_file_complaint ();
18490 /* For now we ignore lines not starting on an instruction boundary.
18491 But not when processing end_sequence for compatibility with the
18492 previous version of the code. */
6f77053d 18493 else if (m_op_index == 0 || end_sequence)
d9b3de22 18494 {
8c43009f 18495 fe->included_p = 1;
6f77053d 18496 if (m_record_lines_p && m_is_stmt)
d9b3de22 18497 {
6f77053d 18498 if (m_last_subfile != current_subfile || end_sequence)
d9b3de22 18499 {
6f77053d
PA
18500 dwarf_finish_line (m_gdbarch, m_last_subfile,
18501 m_address, m_record_line_callback);
d9b3de22
DE
18502 }
18503
18504 if (!end_sequence)
18505 {
6f77053d
PA
18506 if (dwarf_record_line_p (m_line, m_last_line,
18507 m_line_has_non_zero_discriminator,
18508 m_last_subfile))
d9b3de22 18509 {
6f77053d
PA
18510 dwarf_record_line_1 (m_gdbarch, current_subfile,
18511 m_line, m_address,
18512 m_record_line_callback);
d9b3de22 18513 }
6f77053d
PA
18514 m_last_subfile = current_subfile;
18515 m_last_line = m_line;
d9b3de22
DE
18516 }
18517 }
18518 }
18519}
18520
6f77053d
PA
18521lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18522 bool record_lines_p)
d9b3de22 18523{
6f77053d
PA
18524 m_gdbarch = arch;
18525 m_record_lines_p = record_lines_p;
18526 m_line_header = lh;
d9b3de22 18527
6f77053d 18528 m_record_line_callback = ::record_line;
d9b3de22 18529
d9b3de22
DE
18530 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18531 was a line entry for it so that the backend has a chance to adjust it
18532 and also record it in case it needs it. This is currently used by MIPS
18533 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
18534 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18535 m_is_stmt = lh->default_is_stmt;
18536 m_discriminator = 0;
252a6764
DE
18537}
18538
6f77053d
PA
18539void
18540lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18541 const gdb_byte *line_ptr,
18542 CORE_ADDR lowpc, CORE_ADDR address)
924c2928
DE
18543{
18544 /* If address < lowpc then it's not a usable value, it's outside the
18545 pc range of the CU. However, we restrict the test to only address
18546 values of zero to preserve GDB's previous behaviour which is to
18547 handle the specific case of a function being GC'd by the linker. */
18548
18549 if (address == 0 && address < lowpc)
18550 {
18551 /* This line table is for a function which has been
18552 GCd by the linker. Ignore it. PR gdb/12528 */
18553
18554 struct objfile *objfile = cu->objfile;
18555 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18556
18557 complaint (&symfile_complaints,
18558 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18559 line_offset, objfile_name (objfile));
6f77053d
PA
18560 m_record_line_callback = noop_record_line;
18561 /* Note: record_line_callback is left as noop_record_line until
18562 we see DW_LNE_end_sequence. */
924c2928
DE
18563 }
18564}
18565
f3f5162e 18566/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
18567 Process the line number information in LH.
18568 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18569 program in order to set included_p for every referenced header. */
debd256d 18570
c906108c 18571static void
43f3e411
DE
18572dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18573 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 18574{
d521ce57
TT
18575 const gdb_byte *line_ptr, *extended_end;
18576 const gdb_byte *line_end;
a8c50c1f 18577 unsigned int bytes_read, extended_len;
699ca60a 18578 unsigned char op_code, extended_op;
e142c38c
DJ
18579 CORE_ADDR baseaddr;
18580 struct objfile *objfile = cu->objfile;
f3f5162e 18581 bfd *abfd = objfile->obfd;
fbf65064 18582 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
18583 /* True if we're recording line info (as opposed to building partial
18584 symtabs and just interested in finding include files mentioned by
18585 the line number program). */
18586 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
18587
18588 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18589
debd256d
JB
18590 line_ptr = lh->statement_program_start;
18591 line_end = lh->statement_program_end;
c906108c
SS
18592
18593 /* Read the statement sequences until there's nothing left. */
18594 while (line_ptr < line_end)
18595 {
6f77053d
PA
18596 /* The DWARF line number program state machine. Reset the state
18597 machine at the start of each sequence. */
18598 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18599 bool end_sequence = false;
d9b3de22 18600
8c43009f 18601 if (record_lines_p)
c906108c 18602 {
8c43009f
PA
18603 /* Start a subfile for the current file of the state
18604 machine. */
18605 const file_entry *fe = state_machine.current_file ();
18606
18607 if (fe != NULL)
18608 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
c906108c
SS
18609 }
18610
a738430d 18611 /* Decode the table. */
d9b3de22 18612 while (line_ptr < line_end && !end_sequence)
c906108c
SS
18613 {
18614 op_code = read_1_byte (abfd, line_ptr);
18615 line_ptr += 1;
9aa1fe7e 18616
debd256d 18617 if (op_code >= lh->opcode_base)
6e70227d 18618 {
8e07a239 18619 /* Special opcode. */
6f77053d 18620 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
18621 }
18622 else switch (op_code)
c906108c
SS
18623 {
18624 case DW_LNS_extended_op:
3e43a32a
MS
18625 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18626 &bytes_read);
473b7be6 18627 line_ptr += bytes_read;
a8c50c1f 18628 extended_end = line_ptr + extended_len;
c906108c
SS
18629 extended_op = read_1_byte (abfd, line_ptr);
18630 line_ptr += 1;
18631 switch (extended_op)
18632 {
18633 case DW_LNE_end_sequence:
6f77053d
PA
18634 state_machine.handle_end_sequence ();
18635 end_sequence = true;
c906108c
SS
18636 break;
18637 case DW_LNE_set_address:
d9b3de22
DE
18638 {
18639 CORE_ADDR address
18640 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 18641 line_ptr += bytes_read;
6f77053d
PA
18642
18643 state_machine.check_line_address (cu, line_ptr,
18644 lowpc, address);
18645 state_machine.handle_set_address (baseaddr, address);
d9b3de22 18646 }
c906108c
SS
18647 break;
18648 case DW_LNE_define_file:
debd256d 18649 {
d521ce57 18650 const char *cur_file;
ecfb656c
PA
18651 unsigned int mod_time, length;
18652 dir_index dindex;
6e70227d 18653
3e43a32a
MS
18654 cur_file = read_direct_string (abfd, line_ptr,
18655 &bytes_read);
debd256d 18656 line_ptr += bytes_read;
ecfb656c 18657 dindex = (dir_index)
debd256d
JB
18658 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18659 line_ptr += bytes_read;
18660 mod_time =
18661 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18662 line_ptr += bytes_read;
18663 length =
18664 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18665 line_ptr += bytes_read;
ecfb656c 18666 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 18667 }
c906108c 18668 break;
d0c6ba3d 18669 case DW_LNE_set_discriminator:
6f77053d
PA
18670 {
18671 /* The discriminator is not interesting to the
18672 debugger; just ignore it. We still need to
18673 check its value though:
18674 if there are consecutive entries for the same
18675 (non-prologue) line we want to coalesce them.
18676 PR 17276. */
18677 unsigned int discr
18678 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18679 line_ptr += bytes_read;
18680
18681 state_machine.handle_set_discriminator (discr);
18682 }
d0c6ba3d 18683 break;
c906108c 18684 default:
4d3c2250 18685 complaint (&symfile_complaints,
e2e0b3e5 18686 _("mangled .debug_line section"));
debd256d 18687 return;
c906108c 18688 }
a8c50c1f
DJ
18689 /* Make sure that we parsed the extended op correctly. If e.g.
18690 we expected a different address size than the producer used,
18691 we may have read the wrong number of bytes. */
18692 if (line_ptr != extended_end)
18693 {
18694 complaint (&symfile_complaints,
18695 _("mangled .debug_line section"));
18696 return;
18697 }
c906108c
SS
18698 break;
18699 case DW_LNS_copy:
6f77053d 18700 state_machine.handle_copy ();
c906108c
SS
18701 break;
18702 case DW_LNS_advance_pc:
2dc7f7b3
TT
18703 {
18704 CORE_ADDR adjust
18705 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 18706 line_ptr += bytes_read;
6f77053d
PA
18707
18708 state_machine.handle_advance_pc (adjust);
2dc7f7b3 18709 }
c906108c
SS
18710 break;
18711 case DW_LNS_advance_line:
a05a36a5
DE
18712 {
18713 int line_delta
18714 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 18715 line_ptr += bytes_read;
6f77053d
PA
18716
18717 state_machine.handle_advance_line (line_delta);
a05a36a5 18718 }
c906108c
SS
18719 break;
18720 case DW_LNS_set_file:
d9b3de22 18721 {
6f77053d 18722 file_name_index file
ecfb656c
PA
18723 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18724 &bytes_read);
d9b3de22 18725 line_ptr += bytes_read;
8c43009f 18726
6f77053d 18727 state_machine.handle_set_file (file);
d9b3de22 18728 }
c906108c
SS
18729 break;
18730 case DW_LNS_set_column:
0ad93d4f 18731 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18732 line_ptr += bytes_read;
18733 break;
18734 case DW_LNS_negate_stmt:
6f77053d 18735 state_machine.handle_negate_stmt ();
c906108c
SS
18736 break;
18737 case DW_LNS_set_basic_block:
c906108c 18738 break;
c2c6d25f
JM
18739 /* Add to the address register of the state machine the
18740 address increment value corresponding to special opcode
a738430d
MK
18741 255. I.e., this value is scaled by the minimum
18742 instruction length since special opcode 255 would have
b021a221 18743 scaled the increment. */
c906108c 18744 case DW_LNS_const_add_pc:
6f77053d 18745 state_machine.handle_const_add_pc ();
c906108c
SS
18746 break;
18747 case DW_LNS_fixed_advance_pc:
3e29f34a 18748 {
6f77053d 18749 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 18750 line_ptr += 2;
6f77053d
PA
18751
18752 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 18753 }
c906108c 18754 break;
9aa1fe7e 18755 default:
a738430d
MK
18756 {
18757 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18758 int i;
a738430d 18759
debd256d 18760 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18761 {
18762 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18763 line_ptr += bytes_read;
18764 }
18765 }
c906108c
SS
18766 }
18767 }
d9b3de22
DE
18768
18769 if (!end_sequence)
18770 dwarf2_debug_line_missing_end_sequence_complaint ();
18771
18772 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18773 in which case we still finish recording the last line). */
6f77053d 18774 state_machine.record_line (true);
c906108c 18775 }
f3f5162e
DE
18776}
18777
18778/* Decode the Line Number Program (LNP) for the given line_header
18779 structure and CU. The actual information extracted and the type
18780 of structures created from the LNP depends on the value of PST.
18781
18782 1. If PST is NULL, then this procedure uses the data from the program
18783 to create all necessary symbol tables, and their linetables.
18784
18785 2. If PST is not NULL, this procedure reads the program to determine
18786 the list of files included by the unit represented by PST, and
18787 builds all the associated partial symbol tables.
18788
18789 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18790 It is used for relative paths in the line table.
18791 NOTE: When processing partial symtabs (pst != NULL),
18792 comp_dir == pst->dirname.
18793
18794 NOTE: It is important that psymtabs have the same file name (via strcmp)
18795 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18796 symtab we don't use it in the name of the psymtabs we create.
18797 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18798 A good testcase for this is mb-inline.exp.
18799
527f3840
JK
18800 LOWPC is the lowest address in CU (or 0 if not known).
18801
18802 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18803 for its PC<->lines mapping information. Otherwise only the filename
18804 table is read in. */
f3f5162e
DE
18805
18806static void
18807dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18808 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18809 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18810{
18811 struct objfile *objfile = cu->objfile;
18812 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18813
527f3840
JK
18814 if (decode_mapping)
18815 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18816
18817 if (decode_for_pst_p)
18818 {
18819 int file_index;
18820
18821 /* Now that we're done scanning the Line Header Program, we can
18822 create the psymtab of each included file. */
fff8551c 18823 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
aaa75496
JB
18824 if (lh->file_names[file_index].included_p == 1)
18825 {
d521ce57 18826 const char *include_name =
c6da4cef
DE
18827 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18828 if (include_name != NULL)
aaa75496
JB
18829 dwarf2_create_include_psymtab (include_name, pst, objfile);
18830 }
18831 }
cb1df416
DJ
18832 else
18833 {
18834 /* Make sure a symtab is created for every file, even files
18835 which contain only variables (i.e. no code with associated
18836 line numbers). */
43f3e411 18837 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18838 int i;
cb1df416 18839
fff8551c 18840 for (i = 0; i < lh->file_names.size (); i++)
cb1df416 18841 {
8c43009f 18842 file_entry &fe = lh->file_names[i];
9a619af0 18843
8c43009f 18844 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
cb1df416 18845
cb1df416 18846 if (current_subfile->symtab == NULL)
43f3e411
DE
18847 {
18848 current_subfile->symtab
18849 = allocate_symtab (cust, current_subfile->name);
18850 }
8c43009f 18851 fe.symtab = current_subfile->symtab;
cb1df416
DJ
18852 }
18853 }
c906108c
SS
18854}
18855
18856/* Start a subfile for DWARF. FILENAME is the name of the file and
18857 DIRNAME the name of the source directory which contains FILENAME
4d663531 18858 or NULL if not known.
c906108c
SS
18859 This routine tries to keep line numbers from identical absolute and
18860 relative file names in a common subfile.
18861
18862 Using the `list' example from the GDB testsuite, which resides in
18863 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18864 of /srcdir/list0.c yields the following debugging information for list0.c:
18865
c5aa993b 18866 DW_AT_name: /srcdir/list0.c
4d663531 18867 DW_AT_comp_dir: /compdir
357e46e7 18868 files.files[0].name: list0.h
c5aa993b 18869 files.files[0].dir: /srcdir
357e46e7 18870 files.files[1].name: list0.c
c5aa993b 18871 files.files[1].dir: /srcdir
c906108c
SS
18872
18873 The line number information for list0.c has to end up in a single
4f1520fb
FR
18874 subfile, so that `break /srcdir/list0.c:1' works as expected.
18875 start_subfile will ensure that this happens provided that we pass the
18876 concatenation of files.files[1].dir and files.files[1].name as the
18877 subfile's name. */
c906108c
SS
18878
18879static void
4d663531 18880dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18881{
d521ce57 18882 char *copy = NULL;
4f1520fb 18883
4d663531 18884 /* In order not to lose the line information directory,
4f1520fb
FR
18885 we concatenate it to the filename when it makes sense.
18886 Note that the Dwarf3 standard says (speaking of filenames in line
18887 information): ``The directory index is ignored for file names
18888 that represent full path names''. Thus ignoring dirname in the
18889 `else' branch below isn't an issue. */
c906108c 18890
d5166ae1 18891 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18892 {
18893 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18894 filename = copy;
18895 }
c906108c 18896
4d663531 18897 start_subfile (filename);
4f1520fb 18898
d521ce57
TT
18899 if (copy != NULL)
18900 xfree (copy);
c906108c
SS
18901}
18902
f4dc4d17
DE
18903/* Start a symtab for DWARF.
18904 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18905
43f3e411 18906static struct compunit_symtab *
f4dc4d17 18907dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18908 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18909{
43f3e411
DE
18910 struct compunit_symtab *cust
18911 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18912
f4dc4d17
DE
18913 record_debugformat ("DWARF 2");
18914 record_producer (cu->producer);
18915
18916 /* We assume that we're processing GCC output. */
18917 processing_gcc_compilation = 2;
18918
4d4ec4e5 18919 cu->processing_has_namespace_info = 0;
43f3e411
DE
18920
18921 return cust;
f4dc4d17
DE
18922}
18923
4c2df51b
DJ
18924static void
18925var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18926 struct dwarf2_cu *cu)
4c2df51b 18927{
e7c27a73
DJ
18928 struct objfile *objfile = cu->objfile;
18929 struct comp_unit_head *cu_header = &cu->header;
18930
4c2df51b
DJ
18931 /* NOTE drow/2003-01-30: There used to be a comment and some special
18932 code here to turn a symbol with DW_AT_external and a
18933 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18934 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18935 with some versions of binutils) where shared libraries could have
18936 relocations against symbols in their debug information - the
18937 minimal symbol would have the right address, but the debug info
18938 would not. It's no longer necessary, because we will explicitly
18939 apply relocations when we read in the debug information now. */
18940
18941 /* A DW_AT_location attribute with no contents indicates that a
18942 variable has been optimized away. */
18943 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18944 {
f1e6e072 18945 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18946 return;
18947 }
18948
18949 /* Handle one degenerate form of location expression specially, to
18950 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18951 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18952 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18953
18954 if (attr_form_is_block (attr)
3019eac3
DE
18955 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18956 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18957 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18958 && (DW_BLOCK (attr)->size
18959 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18960 {
891d2f0b 18961 unsigned int dummy;
4c2df51b 18962
3019eac3
DE
18963 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18964 SYMBOL_VALUE_ADDRESS (sym) =
18965 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18966 else
18967 SYMBOL_VALUE_ADDRESS (sym) =
18968 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18969 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18970 fixup_symbol_section (sym, objfile);
18971 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18972 SYMBOL_SECTION (sym));
4c2df51b
DJ
18973 return;
18974 }
18975
18976 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18977 expression evaluator, and use LOC_COMPUTED only when necessary
18978 (i.e. when the value of a register or memory location is
18979 referenced, or a thread-local block, etc.). Then again, it might
18980 not be worthwhile. I'm assuming that it isn't unless performance
18981 or memory numbers show me otherwise. */
18982
f1e6e072 18983 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18984
f1e6e072 18985 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18986 cu->has_loclist = 1;
4c2df51b
DJ
18987}
18988
c906108c
SS
18989/* Given a pointer to a DWARF information entry, figure out if we need
18990 to make a symbol table entry for it, and if so, create a new entry
18991 and return a pointer to it.
18992 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18993 used the passed type.
18994 If SPACE is not NULL, use it to hold the new symbol. If it is
18995 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18996
18997static struct symbol *
34eaf542
TT
18998new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18999 struct symbol *space)
c906108c 19000{
e7c27a73 19001 struct objfile *objfile = cu->objfile;
3e29f34a 19002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 19003 struct symbol *sym = NULL;
15d034d0 19004 const char *name;
c906108c
SS
19005 struct attribute *attr = NULL;
19006 struct attribute *attr2 = NULL;
e142c38c 19007 CORE_ADDR baseaddr;
e37fd15a
SW
19008 struct pending **list_to_add = NULL;
19009
edb3359d 19010 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
19011
19012 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 19013
94af9270 19014 name = dwarf2_name (die, cu);
c906108c
SS
19015 if (name)
19016 {
94af9270 19017 const char *linkagename;
34eaf542 19018 int suppress_add = 0;
94af9270 19019
34eaf542
TT
19020 if (space)
19021 sym = space;
19022 else
e623cf5d 19023 sym = allocate_symbol (objfile);
c906108c 19024 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
19025
19026 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 19027 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
19028 linkagename = dwarf2_physname (name, die, cu);
19029 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 19030
f55ee35c
JK
19031 /* Fortran does not have mangling standard and the mangling does differ
19032 between gfortran, iFort etc. */
19033 if (cu->language == language_fortran
b250c185 19034 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 19035 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 19036 dwarf2_full_name (name, die, cu),
29df156d 19037 NULL);
f55ee35c 19038
c906108c 19039 /* Default assumptions.
c5aa993b 19040 Use the passed type or decode it from the die. */
176620f1 19041 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 19042 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
19043 if (type != NULL)
19044 SYMBOL_TYPE (sym) = type;
19045 else
e7c27a73 19046 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
19047 attr = dwarf2_attr (die,
19048 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19049 cu);
c906108c
SS
19050 if (attr)
19051 {
19052 SYMBOL_LINE (sym) = DW_UNSND (attr);
19053 }
cb1df416 19054
edb3359d
DJ
19055 attr = dwarf2_attr (die,
19056 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19057 cu);
cb1df416
DJ
19058 if (attr)
19059 {
ecfb656c 19060 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 19061 struct file_entry *fe;
9a619af0 19062
ecfb656c
PA
19063 if (cu->line_header != NULL)
19064 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
19065 else
19066 fe = NULL;
19067
19068 if (fe == NULL)
cb1df416
DJ
19069 complaint (&symfile_complaints,
19070 _("file index out of range"));
8c43009f
PA
19071 else
19072 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
19073 }
19074
c906108c
SS
19075 switch (die->tag)
19076 {
19077 case DW_TAG_label:
e142c38c 19078 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 19079 if (attr)
3e29f34a
MR
19080 {
19081 CORE_ADDR addr;
19082
19083 addr = attr_value_as_address (attr);
19084 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19085 SYMBOL_VALUE_ADDRESS (sym) = addr;
19086 }
0f5238ed
TT
19087 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19088 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 19089 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 19090 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
19091 break;
19092 case DW_TAG_subprogram:
19093 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19094 finish_block. */
f1e6e072 19095 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 19096 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
19097 if ((attr2 && (DW_UNSND (attr2) != 0))
19098 || cu->language == language_ada)
c906108c 19099 {
2cfa0c8d
JB
19100 /* Subprograms marked external are stored as a global symbol.
19101 Ada subprograms, whether marked external or not, are always
19102 stored as a global symbol, because we want to be able to
19103 access them globally. For instance, we want to be able
19104 to break on a nested subprogram without having to
19105 specify the context. */
e37fd15a 19106 list_to_add = &global_symbols;
c906108c
SS
19107 }
19108 else
19109 {
e37fd15a 19110 list_to_add = cu->list_in_scope;
c906108c
SS
19111 }
19112 break;
edb3359d
DJ
19113 case DW_TAG_inlined_subroutine:
19114 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19115 finish_block. */
f1e6e072 19116 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 19117 SYMBOL_INLINED (sym) = 1;
481860b3 19118 list_to_add = cu->list_in_scope;
edb3359d 19119 break;
34eaf542
TT
19120 case DW_TAG_template_value_param:
19121 suppress_add = 1;
19122 /* Fall through. */
72929c62 19123 case DW_TAG_constant:
c906108c 19124 case DW_TAG_variable:
254e6b9e 19125 case DW_TAG_member:
0963b4bd
MS
19126 /* Compilation with minimal debug info may result in
19127 variables with missing type entries. Change the
19128 misleading `void' type to something sensible. */
c906108c 19129 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
46a4882b 19130 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
64c50499 19131
e142c38c 19132 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
19133 /* In the case of DW_TAG_member, we should only be called for
19134 static const members. */
19135 if (die->tag == DW_TAG_member)
19136 {
3863f96c
DE
19137 /* dwarf2_add_field uses die_is_declaration,
19138 so we do the same. */
254e6b9e
DE
19139 gdb_assert (die_is_declaration (die, cu));
19140 gdb_assert (attr);
19141 }
c906108c
SS
19142 if (attr)
19143 {
e7c27a73 19144 dwarf2_const_value (attr, sym, cu);
e142c38c 19145 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 19146 if (!suppress_add)
34eaf542
TT
19147 {
19148 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 19149 list_to_add = &global_symbols;
34eaf542 19150 else
e37fd15a 19151 list_to_add = cu->list_in_scope;
34eaf542 19152 }
c906108c
SS
19153 break;
19154 }
e142c38c 19155 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19156 if (attr)
19157 {
e7c27a73 19158 var_decode_location (attr, sym, cu);
e142c38c 19159 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
19160
19161 /* Fortran explicitly imports any global symbols to the local
19162 scope by DW_TAG_common_block. */
19163 if (cu->language == language_fortran && die->parent
19164 && die->parent->tag == DW_TAG_common_block)
19165 attr2 = NULL;
19166
caac4577
JG
19167 if (SYMBOL_CLASS (sym) == LOC_STATIC
19168 && SYMBOL_VALUE_ADDRESS (sym) == 0
19169 && !dwarf2_per_objfile->has_section_at_zero)
19170 {
19171 /* When a static variable is eliminated by the linker,
19172 the corresponding debug information is not stripped
19173 out, but the variable address is set to null;
19174 do not add such variables into symbol table. */
19175 }
19176 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 19177 {
f55ee35c
JK
19178 /* Workaround gfortran PR debug/40040 - it uses
19179 DW_AT_location for variables in -fPIC libraries which may
19180 get overriden by other libraries/executable and get
19181 a different address. Resolve it by the minimal symbol
19182 which may come from inferior's executable using copy
19183 relocation. Make this workaround only for gfortran as for
19184 other compilers GDB cannot guess the minimal symbol
19185 Fortran mangling kind. */
19186 if (cu->language == language_fortran && die->parent
19187 && die->parent->tag == DW_TAG_module
19188 && cu->producer
28586665 19189 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 19190 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 19191
1c809c68
TT
19192 /* A variable with DW_AT_external is never static,
19193 but it may be block-scoped. */
19194 list_to_add = (cu->list_in_scope == &file_symbols
19195 ? &global_symbols : cu->list_in_scope);
1c809c68 19196 }
c906108c 19197 else
e37fd15a 19198 list_to_add = cu->list_in_scope;
c906108c
SS
19199 }
19200 else
19201 {
19202 /* We do not know the address of this symbol.
c5aa993b
JM
19203 If it is an external symbol and we have type information
19204 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19205 The address of the variable will then be determined from
19206 the minimal symbol table whenever the variable is
19207 referenced. */
e142c38c 19208 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
19209
19210 /* Fortran explicitly imports any global symbols to the local
19211 scope by DW_TAG_common_block. */
19212 if (cu->language == language_fortran && die->parent
19213 && die->parent->tag == DW_TAG_common_block)
19214 {
19215 /* SYMBOL_CLASS doesn't matter here because
19216 read_common_block is going to reset it. */
19217 if (!suppress_add)
19218 list_to_add = cu->list_in_scope;
19219 }
19220 else if (attr2 && (DW_UNSND (attr2) != 0)
19221 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 19222 {
0fe7935b
DJ
19223 /* A variable with DW_AT_external is never static, but it
19224 may be block-scoped. */
19225 list_to_add = (cu->list_in_scope == &file_symbols
19226 ? &global_symbols : cu->list_in_scope);
19227
f1e6e072 19228 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 19229 }
442ddf59
JK
19230 else if (!die_is_declaration (die, cu))
19231 {
19232 /* Use the default LOC_OPTIMIZED_OUT class. */
19233 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
19234 if (!suppress_add)
19235 list_to_add = cu->list_in_scope;
442ddf59 19236 }
c906108c
SS
19237 }
19238 break;
19239 case DW_TAG_formal_parameter:
edb3359d
DJ
19240 /* If we are inside a function, mark this as an argument. If
19241 not, we might be looking at an argument to an inlined function
19242 when we do not have enough information to show inlined frames;
19243 pretend it's a local variable in that case so that the user can
19244 still see it. */
19245 if (context_stack_depth > 0
19246 && context_stack[context_stack_depth - 1].name != NULL)
19247 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 19248 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19249 if (attr)
19250 {
e7c27a73 19251 var_decode_location (attr, sym, cu);
c906108c 19252 }
e142c38c 19253 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19254 if (attr)
19255 {
e7c27a73 19256 dwarf2_const_value (attr, sym, cu);
c906108c 19257 }
f346a30d 19258
e37fd15a 19259 list_to_add = cu->list_in_scope;
c906108c
SS
19260 break;
19261 case DW_TAG_unspecified_parameters:
19262 /* From varargs functions; gdb doesn't seem to have any
19263 interest in this information, so just ignore it for now.
19264 (FIXME?) */
19265 break;
34eaf542
TT
19266 case DW_TAG_template_type_param:
19267 suppress_add = 1;
19268 /* Fall through. */
c906108c 19269 case DW_TAG_class_type:
680b30c7 19270 case DW_TAG_interface_type:
c906108c
SS
19271 case DW_TAG_structure_type:
19272 case DW_TAG_union_type:
72019c9c 19273 case DW_TAG_set_type:
c906108c 19274 case DW_TAG_enumeration_type:
f1e6e072 19275 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19276 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 19277
63d06c5c 19278 {
9c37b5ae 19279 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
19280 really ever be static objects: otherwise, if you try
19281 to, say, break of a class's method and you're in a file
19282 which doesn't mention that class, it won't work unless
19283 the check for all static symbols in lookup_symbol_aux
19284 saves you. See the OtherFileClass tests in
19285 gdb.c++/namespace.exp. */
19286
e37fd15a 19287 if (!suppress_add)
34eaf542 19288 {
34eaf542 19289 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19290 && cu->language == language_cplus
34eaf542 19291 ? &global_symbols : cu->list_in_scope);
63d06c5c 19292
64382290 19293 /* The semantics of C++ state that "struct foo {
9c37b5ae 19294 ... }" also defines a typedef for "foo". */
64382290 19295 if (cu->language == language_cplus
45280282 19296 || cu->language == language_ada
c44af4eb
TT
19297 || cu->language == language_d
19298 || cu->language == language_rust)
64382290
TT
19299 {
19300 /* The symbol's name is already allocated along
19301 with this objfile, so we don't need to
19302 duplicate it for the type. */
19303 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19304 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19305 }
63d06c5c
DC
19306 }
19307 }
c906108c
SS
19308 break;
19309 case DW_TAG_typedef:
f1e6e072 19310 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 19311 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19312 list_to_add = cu->list_in_scope;
63d06c5c 19313 break;
c906108c 19314 case DW_TAG_base_type:
a02abb62 19315 case DW_TAG_subrange_type:
f1e6e072 19316 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19317 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19318 list_to_add = cu->list_in_scope;
c906108c
SS
19319 break;
19320 case DW_TAG_enumerator:
e142c38c 19321 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19322 if (attr)
19323 {
e7c27a73 19324 dwarf2_const_value (attr, sym, cu);
c906108c 19325 }
63d06c5c
DC
19326 {
19327 /* NOTE: carlton/2003-11-10: See comment above in the
19328 DW_TAG_class_type, etc. block. */
19329
e142c38c 19330 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19331 && cu->language == language_cplus
e142c38c 19332 ? &global_symbols : cu->list_in_scope);
63d06c5c 19333 }
c906108c 19334 break;
74921315 19335 case DW_TAG_imported_declaration:
5c4e30ca 19336 case DW_TAG_namespace:
f1e6e072 19337 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 19338 list_to_add = &global_symbols;
5c4e30ca 19339 break;
530e8392
KB
19340 case DW_TAG_module:
19341 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19342 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19343 list_to_add = &global_symbols;
19344 break;
4357ac6c 19345 case DW_TAG_common_block:
f1e6e072 19346 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
19347 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19348 add_symbol_to_list (sym, cu->list_in_scope);
19349 break;
c906108c
SS
19350 default:
19351 /* Not a tag we recognize. Hopefully we aren't processing
19352 trash data, but since we must specifically ignore things
19353 we don't recognize, there is nothing else we should do at
0963b4bd 19354 this point. */
e2e0b3e5 19355 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 19356 dwarf_tag_name (die->tag));
c906108c
SS
19357 break;
19358 }
df8a16a1 19359
e37fd15a
SW
19360 if (suppress_add)
19361 {
19362 sym->hash_next = objfile->template_symbols;
19363 objfile->template_symbols = sym;
19364 list_to_add = NULL;
19365 }
19366
19367 if (list_to_add != NULL)
19368 add_symbol_to_list (sym, list_to_add);
19369
df8a16a1
DJ
19370 /* For the benefit of old versions of GCC, check for anonymous
19371 namespaces based on the demangled name. */
4d4ec4e5 19372 if (!cu->processing_has_namespace_info
94af9270 19373 && cu->language == language_cplus)
a10964d1 19374 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
19375 }
19376 return (sym);
19377}
19378
34eaf542
TT
19379/* A wrapper for new_symbol_full that always allocates a new symbol. */
19380
19381static struct symbol *
19382new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19383{
19384 return new_symbol_full (die, type, cu, NULL);
19385}
19386
98bfdba5
PA
19387/* Given an attr with a DW_FORM_dataN value in host byte order,
19388 zero-extend it as appropriate for the symbol's type. The DWARF
19389 standard (v4) is not entirely clear about the meaning of using
19390 DW_FORM_dataN for a constant with a signed type, where the type is
19391 wider than the data. The conclusion of a discussion on the DWARF
19392 list was that this is unspecified. We choose to always zero-extend
19393 because that is the interpretation long in use by GCC. */
c906108c 19394
98bfdba5 19395static gdb_byte *
ff39bb5e 19396dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 19397 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 19398{
e7c27a73 19399 struct objfile *objfile = cu->objfile;
e17a4113
UW
19400 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19401 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
19402 LONGEST l = DW_UNSND (attr);
19403
19404 if (bits < sizeof (*value) * 8)
19405 {
19406 l &= ((LONGEST) 1 << bits) - 1;
19407 *value = l;
19408 }
19409 else if (bits == sizeof (*value) * 8)
19410 *value = l;
19411 else
19412 {
224c3ddb 19413 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
19414 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19415 return bytes;
19416 }
19417
19418 return NULL;
19419}
19420
19421/* Read a constant value from an attribute. Either set *VALUE, or if
19422 the value does not fit in *VALUE, set *BYTES - either already
19423 allocated on the objfile obstack, or newly allocated on OBSTACK,
19424 or, set *BATON, if we translated the constant to a location
19425 expression. */
19426
19427static void
ff39bb5e 19428dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
19429 const char *name, struct obstack *obstack,
19430 struct dwarf2_cu *cu,
d521ce57 19431 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
19432 struct dwarf2_locexpr_baton **baton)
19433{
19434 struct objfile *objfile = cu->objfile;
19435 struct comp_unit_head *cu_header = &cu->header;
c906108c 19436 struct dwarf_block *blk;
98bfdba5
PA
19437 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19438 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19439
19440 *value = 0;
19441 *bytes = NULL;
19442 *baton = NULL;
c906108c
SS
19443
19444 switch (attr->form)
19445 {
19446 case DW_FORM_addr:
3019eac3 19447 case DW_FORM_GNU_addr_index:
ac56253d 19448 {
ac56253d
TT
19449 gdb_byte *data;
19450
98bfdba5
PA
19451 if (TYPE_LENGTH (type) != cu_header->addr_size)
19452 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 19453 cu_header->addr_size,
98bfdba5 19454 TYPE_LENGTH (type));
ac56253d
TT
19455 /* Symbols of this form are reasonably rare, so we just
19456 piggyback on the existing location code rather than writing
19457 a new implementation of symbol_computed_ops. */
8d749320 19458 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
19459 (*baton)->per_cu = cu->per_cu;
19460 gdb_assert ((*baton)->per_cu);
ac56253d 19461
98bfdba5 19462 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 19463 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 19464 (*baton)->data = data;
ac56253d
TT
19465
19466 data[0] = DW_OP_addr;
19467 store_unsigned_integer (&data[1], cu_header->addr_size,
19468 byte_order, DW_ADDR (attr));
19469 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 19470 }
c906108c 19471 break;
4ac36638 19472 case DW_FORM_string:
93b5768b 19473 case DW_FORM_strp:
3019eac3 19474 case DW_FORM_GNU_str_index:
36586728 19475 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
19476 /* DW_STRING is already allocated on the objfile obstack, point
19477 directly to it. */
d521ce57 19478 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 19479 break;
c906108c
SS
19480 case DW_FORM_block1:
19481 case DW_FORM_block2:
19482 case DW_FORM_block4:
19483 case DW_FORM_block:
2dc7f7b3 19484 case DW_FORM_exprloc:
0224619f 19485 case DW_FORM_data16:
c906108c 19486 blk = DW_BLOCK (attr);
98bfdba5
PA
19487 if (TYPE_LENGTH (type) != blk->size)
19488 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19489 TYPE_LENGTH (type));
19490 *bytes = blk->data;
c906108c 19491 break;
2df3850c
JM
19492
19493 /* The DW_AT_const_value attributes are supposed to carry the
19494 symbol's value "represented as it would be on the target
19495 architecture." By the time we get here, it's already been
19496 converted to host endianness, so we just need to sign- or
19497 zero-extend it as appropriate. */
19498 case DW_FORM_data1:
3aef2284 19499 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 19500 break;
c906108c 19501 case DW_FORM_data2:
3aef2284 19502 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 19503 break;
c906108c 19504 case DW_FORM_data4:
3aef2284 19505 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 19506 break;
c906108c 19507 case DW_FORM_data8:
3aef2284 19508 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
19509 break;
19510
c906108c 19511 case DW_FORM_sdata:
663c44ac 19512 case DW_FORM_implicit_const:
98bfdba5 19513 *value = DW_SND (attr);
2df3850c
JM
19514 break;
19515
c906108c 19516 case DW_FORM_udata:
98bfdba5 19517 *value = DW_UNSND (attr);
c906108c 19518 break;
2df3850c 19519
c906108c 19520 default:
4d3c2250 19521 complaint (&symfile_complaints,
e2e0b3e5 19522 _("unsupported const value attribute form: '%s'"),
4d3c2250 19523 dwarf_form_name (attr->form));
98bfdba5 19524 *value = 0;
c906108c
SS
19525 break;
19526 }
19527}
19528
2df3850c 19529
98bfdba5
PA
19530/* Copy constant value from an attribute to a symbol. */
19531
2df3850c 19532static void
ff39bb5e 19533dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 19534 struct dwarf2_cu *cu)
2df3850c 19535{
98bfdba5 19536 struct objfile *objfile = cu->objfile;
12df843f 19537 LONGEST value;
d521ce57 19538 const gdb_byte *bytes;
98bfdba5 19539 struct dwarf2_locexpr_baton *baton;
2df3850c 19540
98bfdba5
PA
19541 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19542 SYMBOL_PRINT_NAME (sym),
19543 &objfile->objfile_obstack, cu,
19544 &value, &bytes, &baton);
2df3850c 19545
98bfdba5
PA
19546 if (baton != NULL)
19547 {
98bfdba5 19548 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 19549 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
19550 }
19551 else if (bytes != NULL)
19552 {
19553 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 19554 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
19555 }
19556 else
19557 {
19558 SYMBOL_VALUE (sym) = value;
f1e6e072 19559 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 19560 }
2df3850c
JM
19561}
19562
c906108c
SS
19563/* Return the type of the die in question using its DW_AT_type attribute. */
19564
19565static struct type *
e7c27a73 19566die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19567{
c906108c 19568 struct attribute *type_attr;
c906108c 19569
e142c38c 19570 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
19571 if (!type_attr)
19572 {
19573 /* A missing DW_AT_type represents a void type. */
46bf5051 19574 return objfile_type (cu->objfile)->builtin_void;
c906108c 19575 }
348e048f 19576
673bfd45 19577 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19578}
19579
b4ba55a1
JB
19580/* True iff CU's producer generates GNAT Ada auxiliary information
19581 that allows to find parallel types through that information instead
19582 of having to do expensive parallel lookups by type name. */
19583
19584static int
19585need_gnat_info (struct dwarf2_cu *cu)
19586{
19587 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19588 of GNAT produces this auxiliary information, without any indication
19589 that it is produced. Part of enhancing the FSF version of GNAT
19590 to produce that information will be to put in place an indicator
19591 that we can use in order to determine whether the descriptive type
19592 info is available or not. One suggestion that has been made is
19593 to use a new attribute, attached to the CU die. For now, assume
19594 that the descriptive type info is not available. */
19595 return 0;
19596}
19597
b4ba55a1
JB
19598/* Return the auxiliary type of the die in question using its
19599 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19600 attribute is not present. */
19601
19602static struct type *
19603die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19604{
b4ba55a1 19605 struct attribute *type_attr;
b4ba55a1
JB
19606
19607 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19608 if (!type_attr)
19609 return NULL;
19610
673bfd45 19611 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
19612}
19613
19614/* If DIE has a descriptive_type attribute, then set the TYPE's
19615 descriptive type accordingly. */
19616
19617static void
19618set_descriptive_type (struct type *type, struct die_info *die,
19619 struct dwarf2_cu *cu)
19620{
19621 struct type *descriptive_type = die_descriptive_type (die, cu);
19622
19623 if (descriptive_type)
19624 {
19625 ALLOCATE_GNAT_AUX_TYPE (type);
19626 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19627 }
19628}
19629
c906108c
SS
19630/* Return the containing type of the die in question using its
19631 DW_AT_containing_type attribute. */
19632
19633static struct type *
e7c27a73 19634die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19635{
c906108c 19636 struct attribute *type_attr;
c906108c 19637
e142c38c 19638 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
19639 if (!type_attr)
19640 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 19641 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 19642
673bfd45 19643 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19644}
19645
ac9ec31b
DE
19646/* Return an error marker type to use for the ill formed type in DIE/CU. */
19647
19648static struct type *
19649build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19650{
19651 struct objfile *objfile = dwarf2_per_objfile->objfile;
19652 char *message, *saved;
19653
19654 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19655 objfile_name (objfile),
9c541725
PA
19656 to_underlying (cu->header.sect_off),
19657 to_underlying (die->sect_off));
224c3ddb
SM
19658 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19659 message, strlen (message));
ac9ec31b
DE
19660 xfree (message);
19661
19f392bc 19662 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19663}
19664
673bfd45 19665/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19666 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19667 DW_AT_containing_type.
673bfd45
DE
19668 If there is no type substitute an error marker. */
19669
c906108c 19670static struct type *
ff39bb5e 19671lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19672 struct dwarf2_cu *cu)
c906108c 19673{
bb5ed363 19674 struct objfile *objfile = cu->objfile;
f792889a
DJ
19675 struct type *this_type;
19676
ac9ec31b
DE
19677 gdb_assert (attr->name == DW_AT_type
19678 || attr->name == DW_AT_GNAT_descriptive_type
19679 || attr->name == DW_AT_containing_type);
19680
673bfd45
DE
19681 /* First see if we have it cached. */
19682
36586728
TT
19683 if (attr->form == DW_FORM_GNU_ref_alt)
19684 {
19685 struct dwarf2_per_cu_data *per_cu;
9c541725 19686 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 19687
9c541725
PA
19688 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19689 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 19690 }
7771576e 19691 else if (attr_form_is_ref (attr))
673bfd45 19692 {
9c541725 19693 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 19694
9c541725 19695 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 19696 }
55f1336d 19697 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19698 {
ac9ec31b 19699 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19700
ac9ec31b 19701 return get_signatured_type (die, signature, cu);
673bfd45
DE
19702 }
19703 else
19704 {
ac9ec31b
DE
19705 complaint (&symfile_complaints,
19706 _("Dwarf Error: Bad type attribute %s in DIE"
19707 " at 0x%x [in module %s]"),
9c541725 19708 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
4262abfb 19709 objfile_name (objfile));
ac9ec31b 19710 return build_error_marker_type (cu, die);
673bfd45
DE
19711 }
19712
19713 /* If not cached we need to read it in. */
19714
19715 if (this_type == NULL)
19716 {
ac9ec31b 19717 struct die_info *type_die = NULL;
673bfd45
DE
19718 struct dwarf2_cu *type_cu = cu;
19719
7771576e 19720 if (attr_form_is_ref (attr))
ac9ec31b
DE
19721 type_die = follow_die_ref (die, attr, &type_cu);
19722 if (type_die == NULL)
19723 return build_error_marker_type (cu, die);
19724 /* If we find the type now, it's probably because the type came
3019eac3
DE
19725 from an inter-CU reference and the type's CU got expanded before
19726 ours. */
ac9ec31b 19727 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19728 }
19729
19730 /* If we still don't have a type use an error marker. */
19731
19732 if (this_type == NULL)
ac9ec31b 19733 return build_error_marker_type (cu, die);
673bfd45 19734
f792889a 19735 return this_type;
c906108c
SS
19736}
19737
673bfd45
DE
19738/* Return the type in DIE, CU.
19739 Returns NULL for invalid types.
19740
02142a6c 19741 This first does a lookup in die_type_hash,
673bfd45
DE
19742 and only reads the die in if necessary.
19743
19744 NOTE: This can be called when reading in partial or full symbols. */
19745
f792889a 19746static struct type *
e7c27a73 19747read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19748{
f792889a
DJ
19749 struct type *this_type;
19750
19751 this_type = get_die_type (die, cu);
19752 if (this_type)
19753 return this_type;
19754
673bfd45
DE
19755 return read_type_die_1 (die, cu);
19756}
19757
19758/* Read the type in DIE, CU.
19759 Returns NULL for invalid types. */
19760
19761static struct type *
19762read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19763{
19764 struct type *this_type = NULL;
19765
c906108c
SS
19766 switch (die->tag)
19767 {
19768 case DW_TAG_class_type:
680b30c7 19769 case DW_TAG_interface_type:
c906108c
SS
19770 case DW_TAG_structure_type:
19771 case DW_TAG_union_type:
f792889a 19772 this_type = read_structure_type (die, cu);
c906108c
SS
19773 break;
19774 case DW_TAG_enumeration_type:
f792889a 19775 this_type = read_enumeration_type (die, cu);
c906108c
SS
19776 break;
19777 case DW_TAG_subprogram:
19778 case DW_TAG_subroutine_type:
edb3359d 19779 case DW_TAG_inlined_subroutine:
f792889a 19780 this_type = read_subroutine_type (die, cu);
c906108c
SS
19781 break;
19782 case DW_TAG_array_type:
f792889a 19783 this_type = read_array_type (die, cu);
c906108c 19784 break;
72019c9c 19785 case DW_TAG_set_type:
f792889a 19786 this_type = read_set_type (die, cu);
72019c9c 19787 break;
c906108c 19788 case DW_TAG_pointer_type:
f792889a 19789 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19790 break;
19791 case DW_TAG_ptr_to_member_type:
f792889a 19792 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19793 break;
19794 case DW_TAG_reference_type:
4297a3f0
AV
19795 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19796 break;
19797 case DW_TAG_rvalue_reference_type:
19798 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
19799 break;
19800 case DW_TAG_const_type:
f792889a 19801 this_type = read_tag_const_type (die, cu);
c906108c
SS
19802 break;
19803 case DW_TAG_volatile_type:
f792889a 19804 this_type = read_tag_volatile_type (die, cu);
c906108c 19805 break;
06d66ee9
TT
19806 case DW_TAG_restrict_type:
19807 this_type = read_tag_restrict_type (die, cu);
19808 break;
c906108c 19809 case DW_TAG_string_type:
f792889a 19810 this_type = read_tag_string_type (die, cu);
c906108c
SS
19811 break;
19812 case DW_TAG_typedef:
f792889a 19813 this_type = read_typedef (die, cu);
c906108c 19814 break;
a02abb62 19815 case DW_TAG_subrange_type:
f792889a 19816 this_type = read_subrange_type (die, cu);
a02abb62 19817 break;
c906108c 19818 case DW_TAG_base_type:
f792889a 19819 this_type = read_base_type (die, cu);
c906108c 19820 break;
81a17f79 19821 case DW_TAG_unspecified_type:
f792889a 19822 this_type = read_unspecified_type (die, cu);
81a17f79 19823 break;
0114d602
DJ
19824 case DW_TAG_namespace:
19825 this_type = read_namespace_type (die, cu);
19826 break;
f55ee35c
JK
19827 case DW_TAG_module:
19828 this_type = read_module_type (die, cu);
19829 break;
a2c2acaf
MW
19830 case DW_TAG_atomic_type:
19831 this_type = read_tag_atomic_type (die, cu);
19832 break;
c906108c 19833 default:
3e43a32a
MS
19834 complaint (&symfile_complaints,
19835 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19836 dwarf_tag_name (die->tag));
c906108c
SS
19837 break;
19838 }
63d06c5c 19839
f792889a 19840 return this_type;
63d06c5c
DC
19841}
19842
abc72ce4
DE
19843/* See if we can figure out if the class lives in a namespace. We do
19844 this by looking for a member function; its demangled name will
19845 contain namespace info, if there is any.
19846 Return the computed name or NULL.
19847 Space for the result is allocated on the objfile's obstack.
19848 This is the full-die version of guess_partial_die_structure_name.
19849 In this case we know DIE has no useful parent. */
19850
19851static char *
19852guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19853{
19854 struct die_info *spec_die;
19855 struct dwarf2_cu *spec_cu;
19856 struct die_info *child;
19857
19858 spec_cu = cu;
19859 spec_die = die_specification (die, &spec_cu);
19860 if (spec_die != NULL)
19861 {
19862 die = spec_die;
19863 cu = spec_cu;
19864 }
19865
19866 for (child = die->child;
19867 child != NULL;
19868 child = child->sibling)
19869 {
19870 if (child->tag == DW_TAG_subprogram)
19871 {
73b9be8b 19872 const char *linkage_name = dw2_linkage_name (child, cu);
abc72ce4 19873
7d45c7c3 19874 if (linkage_name != NULL)
abc72ce4
DE
19875 {
19876 char *actual_name
19877 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19878 linkage_name);
abc72ce4
DE
19879 char *name = NULL;
19880
19881 if (actual_name != NULL)
19882 {
15d034d0 19883 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19884
19885 if (die_name != NULL
19886 && strcmp (die_name, actual_name) != 0)
19887 {
19888 /* Strip off the class name from the full name.
19889 We want the prefix. */
19890 int die_name_len = strlen (die_name);
19891 int actual_name_len = strlen (actual_name);
19892
19893 /* Test for '::' as a sanity check. */
19894 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19895 && actual_name[actual_name_len
19896 - die_name_len - 1] == ':')
224c3ddb
SM
19897 name = (char *) obstack_copy0 (
19898 &cu->objfile->per_bfd->storage_obstack,
19899 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19900 }
19901 }
19902 xfree (actual_name);
19903 return name;
19904 }
19905 }
19906 }
19907
19908 return NULL;
19909}
19910
96408a79
SA
19911/* GCC might emit a nameless typedef that has a linkage name. Determine the
19912 prefix part in such case. See
19913 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19914
a121b7c1 19915static const char *
96408a79
SA
19916anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19917{
19918 struct attribute *attr;
e6a959d6 19919 const char *base;
96408a79
SA
19920
19921 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19922 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19923 return NULL;
19924
7d45c7c3 19925 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19926 return NULL;
19927
73b9be8b 19928 attr = dw2_linkage_name_attr (die, cu);
96408a79
SA
19929 if (attr == NULL || DW_STRING (attr) == NULL)
19930 return NULL;
19931
19932 /* dwarf2_name had to be already called. */
19933 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19934
19935 /* Strip the base name, keep any leading namespaces/classes. */
19936 base = strrchr (DW_STRING (attr), ':');
19937 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19938 return "";
19939
224c3ddb
SM
19940 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19941 DW_STRING (attr),
19942 &base[-1] - DW_STRING (attr));
96408a79
SA
19943}
19944
fdde2d81 19945/* Return the name of the namespace/class that DIE is defined within,
0114d602 19946 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19947
0114d602
DJ
19948 For example, if we're within the method foo() in the following
19949 code:
19950
19951 namespace N {
19952 class C {
19953 void foo () {
19954 }
19955 };
19956 }
19957
19958 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19959
0d5cff50 19960static const char *
e142c38c 19961determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19962{
0114d602
DJ
19963 struct die_info *parent, *spec_die;
19964 struct dwarf2_cu *spec_cu;
19965 struct type *parent_type;
a121b7c1 19966 const char *retval;
63d06c5c 19967
9c37b5ae 19968 if (cu->language != language_cplus
c44af4eb
TT
19969 && cu->language != language_fortran && cu->language != language_d
19970 && cu->language != language_rust)
0114d602
DJ
19971 return "";
19972
96408a79
SA
19973 retval = anonymous_struct_prefix (die, cu);
19974 if (retval)
19975 return retval;
19976
0114d602
DJ
19977 /* We have to be careful in the presence of DW_AT_specification.
19978 For example, with GCC 3.4, given the code
19979
19980 namespace N {
19981 void foo() {
19982 // Definition of N::foo.
19983 }
19984 }
19985
19986 then we'll have a tree of DIEs like this:
19987
19988 1: DW_TAG_compile_unit
19989 2: DW_TAG_namespace // N
19990 3: DW_TAG_subprogram // declaration of N::foo
19991 4: DW_TAG_subprogram // definition of N::foo
19992 DW_AT_specification // refers to die #3
19993
19994 Thus, when processing die #4, we have to pretend that we're in
19995 the context of its DW_AT_specification, namely the contex of die
19996 #3. */
19997 spec_cu = cu;
19998 spec_die = die_specification (die, &spec_cu);
19999 if (spec_die == NULL)
20000 parent = die->parent;
20001 else
63d06c5c 20002 {
0114d602
DJ
20003 parent = spec_die->parent;
20004 cu = spec_cu;
63d06c5c 20005 }
0114d602
DJ
20006
20007 if (parent == NULL)
20008 return "";
98bfdba5
PA
20009 else if (parent->building_fullname)
20010 {
20011 const char *name;
20012 const char *parent_name;
20013
20014 /* It has been seen on RealView 2.2 built binaries,
20015 DW_TAG_template_type_param types actually _defined_ as
20016 children of the parent class:
20017
20018 enum E {};
20019 template class <class Enum> Class{};
20020 Class<enum E> class_e;
20021
20022 1: DW_TAG_class_type (Class)
20023 2: DW_TAG_enumeration_type (E)
20024 3: DW_TAG_enumerator (enum1:0)
20025 3: DW_TAG_enumerator (enum2:1)
20026 ...
20027 2: DW_TAG_template_type_param
20028 DW_AT_type DW_FORM_ref_udata (E)
20029
20030 Besides being broken debug info, it can put GDB into an
20031 infinite loop. Consider:
20032
20033 When we're building the full name for Class<E>, we'll start
20034 at Class, and go look over its template type parameters,
20035 finding E. We'll then try to build the full name of E, and
20036 reach here. We're now trying to build the full name of E,
20037 and look over the parent DIE for containing scope. In the
20038 broken case, if we followed the parent DIE of E, we'd again
20039 find Class, and once again go look at its template type
20040 arguments, etc., etc. Simply don't consider such parent die
20041 as source-level parent of this die (it can't be, the language
20042 doesn't allow it), and break the loop here. */
20043 name = dwarf2_name (die, cu);
20044 parent_name = dwarf2_name (parent, cu);
20045 complaint (&symfile_complaints,
20046 _("template param type '%s' defined within parent '%s'"),
20047 name ? name : "<unknown>",
20048 parent_name ? parent_name : "<unknown>");
20049 return "";
20050 }
63d06c5c 20051 else
0114d602
DJ
20052 switch (parent->tag)
20053 {
63d06c5c 20054 case DW_TAG_namespace:
0114d602 20055 parent_type = read_type_die (parent, cu);
acebe513
UW
20056 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20057 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20058 Work around this problem here. */
20059 if (cu->language == language_cplus
20060 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20061 return "";
0114d602
DJ
20062 /* We give a name to even anonymous namespaces. */
20063 return TYPE_TAG_NAME (parent_type);
63d06c5c 20064 case DW_TAG_class_type:
680b30c7 20065 case DW_TAG_interface_type:
63d06c5c 20066 case DW_TAG_structure_type:
0114d602 20067 case DW_TAG_union_type:
f55ee35c 20068 case DW_TAG_module:
0114d602
DJ
20069 parent_type = read_type_die (parent, cu);
20070 if (TYPE_TAG_NAME (parent_type) != NULL)
20071 return TYPE_TAG_NAME (parent_type);
20072 else
20073 /* An anonymous structure is only allowed non-static data
20074 members; no typedefs, no member functions, et cetera.
20075 So it does not need a prefix. */
20076 return "";
abc72ce4 20077 case DW_TAG_compile_unit:
95554aad 20078 case DW_TAG_partial_unit:
abc72ce4
DE
20079 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20080 if (cu->language == language_cplus
8b70b953 20081 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
20082 && die->child != NULL
20083 && (die->tag == DW_TAG_class_type
20084 || die->tag == DW_TAG_structure_type
20085 || die->tag == DW_TAG_union_type))
20086 {
20087 char *name = guess_full_die_structure_name (die, cu);
20088 if (name != NULL)
20089 return name;
20090 }
20091 return "";
3d567982
TT
20092 case DW_TAG_enumeration_type:
20093 parent_type = read_type_die (parent, cu);
20094 if (TYPE_DECLARED_CLASS (parent_type))
20095 {
20096 if (TYPE_TAG_NAME (parent_type) != NULL)
20097 return TYPE_TAG_NAME (parent_type);
20098 return "";
20099 }
20100 /* Fall through. */
63d06c5c 20101 default:
8176b9b8 20102 return determine_prefix (parent, cu);
63d06c5c 20103 }
63d06c5c
DC
20104}
20105
3e43a32a
MS
20106/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20107 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20108 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20109 an obconcat, otherwise allocate storage for the result. The CU argument is
20110 used to determine the language and hence, the appropriate separator. */
987504bb 20111
f55ee35c 20112#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
20113
20114static char *
f55ee35c
JK
20115typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20116 int physname, struct dwarf2_cu *cu)
63d06c5c 20117{
f55ee35c 20118 const char *lead = "";
5c315b68 20119 const char *sep;
63d06c5c 20120
3e43a32a
MS
20121 if (suffix == NULL || suffix[0] == '\0'
20122 || prefix == NULL || prefix[0] == '\0')
987504bb 20123 sep = "";
45280282
IB
20124 else if (cu->language == language_d)
20125 {
20126 /* For D, the 'main' function could be defined in any module, but it
20127 should never be prefixed. */
20128 if (strcmp (suffix, "D main") == 0)
20129 {
20130 prefix = "";
20131 sep = "";
20132 }
20133 else
20134 sep = ".";
20135 }
f55ee35c
JK
20136 else if (cu->language == language_fortran && physname)
20137 {
20138 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20139 DW_AT_MIPS_linkage_name is preferred and used instead. */
20140
20141 lead = "__";
20142 sep = "_MOD_";
20143 }
987504bb
JJ
20144 else
20145 sep = "::";
63d06c5c 20146
6dd47d34
DE
20147 if (prefix == NULL)
20148 prefix = "";
20149 if (suffix == NULL)
20150 suffix = "";
20151
987504bb
JJ
20152 if (obs == NULL)
20153 {
3e43a32a 20154 char *retval
224c3ddb
SM
20155 = ((char *)
20156 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 20157
f55ee35c
JK
20158 strcpy (retval, lead);
20159 strcat (retval, prefix);
6dd47d34
DE
20160 strcat (retval, sep);
20161 strcat (retval, suffix);
63d06c5c
DC
20162 return retval;
20163 }
987504bb
JJ
20164 else
20165 {
20166 /* We have an obstack. */
f55ee35c 20167 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 20168 }
63d06c5c
DC
20169}
20170
c906108c
SS
20171/* Return sibling of die, NULL if no sibling. */
20172
f9aca02d 20173static struct die_info *
fba45db2 20174sibling_die (struct die_info *die)
c906108c 20175{
639d11d3 20176 return die->sibling;
c906108c
SS
20177}
20178
71c25dea
TT
20179/* Get name of a die, return NULL if not found. */
20180
15d034d0
TT
20181static const char *
20182dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
20183 struct obstack *obstack)
20184{
20185 if (name && cu->language == language_cplus)
20186 {
2f408ecb 20187 std::string canon_name = cp_canonicalize_string (name);
71c25dea 20188
2f408ecb 20189 if (!canon_name.empty ())
71c25dea 20190 {
2f408ecb
PA
20191 if (canon_name != name)
20192 name = (const char *) obstack_copy0 (obstack,
20193 canon_name.c_str (),
20194 canon_name.length ());
71c25dea
TT
20195 }
20196 }
20197
20198 return name;
c906108c
SS
20199}
20200
96553a0c
DE
20201/* Get name of a die, return NULL if not found.
20202 Anonymous namespaces are converted to their magic string. */
9219021c 20203
15d034d0 20204static const char *
e142c38c 20205dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
20206{
20207 struct attribute *attr;
20208
e142c38c 20209 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 20210 if ((!attr || !DW_STRING (attr))
96553a0c 20211 && die->tag != DW_TAG_namespace
53832f31
TT
20212 && die->tag != DW_TAG_class_type
20213 && die->tag != DW_TAG_interface_type
20214 && die->tag != DW_TAG_structure_type
20215 && die->tag != DW_TAG_union_type)
71c25dea
TT
20216 return NULL;
20217
20218 switch (die->tag)
20219 {
20220 case DW_TAG_compile_unit:
95554aad 20221 case DW_TAG_partial_unit:
71c25dea
TT
20222 /* Compilation units have a DW_AT_name that is a filename, not
20223 a source language identifier. */
20224 case DW_TAG_enumeration_type:
20225 case DW_TAG_enumerator:
20226 /* These tags always have simple identifiers already; no need
20227 to canonicalize them. */
20228 return DW_STRING (attr);
907af001 20229
96553a0c
DE
20230 case DW_TAG_namespace:
20231 if (attr != NULL && DW_STRING (attr) != NULL)
20232 return DW_STRING (attr);
20233 return CP_ANONYMOUS_NAMESPACE_STR;
20234
907af001
UW
20235 case DW_TAG_class_type:
20236 case DW_TAG_interface_type:
20237 case DW_TAG_structure_type:
20238 case DW_TAG_union_type:
20239 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20240 structures or unions. These were of the form "._%d" in GCC 4.1,
20241 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20242 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 20243 if (attr && DW_STRING (attr)
61012eef
GB
20244 && (startswith (DW_STRING (attr), "._")
20245 || startswith (DW_STRING (attr), "<anonymous")))
907af001 20246 return NULL;
53832f31
TT
20247
20248 /* GCC might emit a nameless typedef that has a linkage name. See
20249 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20250 if (!attr || DW_STRING (attr) == NULL)
20251 {
df5c6c50 20252 char *demangled = NULL;
53832f31 20253
73b9be8b 20254 attr = dw2_linkage_name_attr (die, cu);
53832f31
TT
20255 if (attr == NULL || DW_STRING (attr) == NULL)
20256 return NULL;
20257
df5c6c50
JK
20258 /* Avoid demangling DW_STRING (attr) the second time on a second
20259 call for the same DIE. */
20260 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 20261 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
20262
20263 if (demangled)
20264 {
e6a959d6 20265 const char *base;
96408a79 20266
53832f31 20267 /* FIXME: we already did this for the partial symbol... */
34a68019 20268 DW_STRING (attr)
224c3ddb
SM
20269 = ((const char *)
20270 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20271 demangled, strlen (demangled)));
53832f31
TT
20272 DW_STRING_IS_CANONICAL (attr) = 1;
20273 xfree (demangled);
96408a79
SA
20274
20275 /* Strip any leading namespaces/classes, keep only the base name.
20276 DW_AT_name for named DIEs does not contain the prefixes. */
20277 base = strrchr (DW_STRING (attr), ':');
20278 if (base && base > DW_STRING (attr) && base[-1] == ':')
20279 return &base[1];
20280 else
20281 return DW_STRING (attr);
53832f31
TT
20282 }
20283 }
907af001
UW
20284 break;
20285
71c25dea 20286 default:
907af001
UW
20287 break;
20288 }
20289
20290 if (!DW_STRING_IS_CANONICAL (attr))
20291 {
20292 DW_STRING (attr)
20293 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 20294 &cu->objfile->per_bfd->storage_obstack);
907af001 20295 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 20296 }
907af001 20297 return DW_STRING (attr);
9219021c
DC
20298}
20299
20300/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
20301 is none. *EXT_CU is the CU containing DIE on input, and the CU
20302 containing the return value on output. */
9219021c
DC
20303
20304static struct die_info *
f2f0e013 20305dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
20306{
20307 struct attribute *attr;
9219021c 20308
f2f0e013 20309 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
20310 if (attr == NULL)
20311 return NULL;
20312
f2f0e013 20313 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
20314}
20315
c906108c
SS
20316/* Convert a DIE tag into its string name. */
20317
f39c6ffd 20318static const char *
aa1ee363 20319dwarf_tag_name (unsigned tag)
c906108c 20320{
f39c6ffd
TT
20321 const char *name = get_DW_TAG_name (tag);
20322
20323 if (name == NULL)
20324 return "DW_TAG_<unknown>";
20325
20326 return name;
c906108c
SS
20327}
20328
20329/* Convert a DWARF attribute code into its string name. */
20330
f39c6ffd 20331static const char *
aa1ee363 20332dwarf_attr_name (unsigned attr)
c906108c 20333{
f39c6ffd
TT
20334 const char *name;
20335
c764a876 20336#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
20337 if (attr == DW_AT_MIPS_fde)
20338 return "DW_AT_MIPS_fde";
20339#else
20340 if (attr == DW_AT_HP_block_index)
20341 return "DW_AT_HP_block_index";
c764a876 20342#endif
f39c6ffd
TT
20343
20344 name = get_DW_AT_name (attr);
20345
20346 if (name == NULL)
20347 return "DW_AT_<unknown>";
20348
20349 return name;
c906108c
SS
20350}
20351
20352/* Convert a DWARF value form code into its string name. */
20353
f39c6ffd 20354static const char *
aa1ee363 20355dwarf_form_name (unsigned form)
c906108c 20356{
f39c6ffd
TT
20357 const char *name = get_DW_FORM_name (form);
20358
20359 if (name == NULL)
20360 return "DW_FORM_<unknown>";
20361
20362 return name;
c906108c
SS
20363}
20364
a121b7c1 20365static const char *
fba45db2 20366dwarf_bool_name (unsigned mybool)
c906108c
SS
20367{
20368 if (mybool)
20369 return "TRUE";
20370 else
20371 return "FALSE";
20372}
20373
20374/* Convert a DWARF type code into its string name. */
20375
f39c6ffd 20376static const char *
aa1ee363 20377dwarf_type_encoding_name (unsigned enc)
c906108c 20378{
f39c6ffd 20379 const char *name = get_DW_ATE_name (enc);
c906108c 20380
f39c6ffd
TT
20381 if (name == NULL)
20382 return "DW_ATE_<unknown>";
c906108c 20383
f39c6ffd 20384 return name;
c906108c 20385}
c906108c 20386
f9aca02d 20387static void
d97bc12b 20388dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
20389{
20390 unsigned int i;
20391
d97bc12b
DE
20392 print_spaces (indent, f);
20393 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
9c541725
PA
20394 dwarf_tag_name (die->tag), die->abbrev,
20395 to_underlying (die->sect_off));
d97bc12b
DE
20396
20397 if (die->parent != NULL)
20398 {
20399 print_spaces (indent, f);
20400 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
9c541725 20401 to_underlying (die->parent->sect_off));
d97bc12b
DE
20402 }
20403
20404 print_spaces (indent, f);
20405 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 20406 dwarf_bool_name (die->child != NULL));
c906108c 20407
d97bc12b
DE
20408 print_spaces (indent, f);
20409 fprintf_unfiltered (f, " attributes:\n");
20410
c906108c
SS
20411 for (i = 0; i < die->num_attrs; ++i)
20412 {
d97bc12b
DE
20413 print_spaces (indent, f);
20414 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
20415 dwarf_attr_name (die->attrs[i].name),
20416 dwarf_form_name (die->attrs[i].form));
d97bc12b 20417
c906108c
SS
20418 switch (die->attrs[i].form)
20419 {
c906108c 20420 case DW_FORM_addr:
3019eac3 20421 case DW_FORM_GNU_addr_index:
d97bc12b 20422 fprintf_unfiltered (f, "address: ");
5af949e3 20423 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
20424 break;
20425 case DW_FORM_block2:
20426 case DW_FORM_block4:
20427 case DW_FORM_block:
20428 case DW_FORM_block1:
56eb65bd
SP
20429 fprintf_unfiltered (f, "block: size %s",
20430 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 20431 break;
2dc7f7b3 20432 case DW_FORM_exprloc:
56eb65bd
SP
20433 fprintf_unfiltered (f, "expression: size %s",
20434 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 20435 break;
0224619f
JK
20436 case DW_FORM_data16:
20437 fprintf_unfiltered (f, "constant of 16 bytes");
20438 break;
4568ecf9
DE
20439 case DW_FORM_ref_addr:
20440 fprintf_unfiltered (f, "ref address: ");
20441 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20442 break;
36586728
TT
20443 case DW_FORM_GNU_ref_alt:
20444 fprintf_unfiltered (f, "alt ref address: ");
20445 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20446 break;
10b3939b
DJ
20447 case DW_FORM_ref1:
20448 case DW_FORM_ref2:
20449 case DW_FORM_ref4:
4568ecf9
DE
20450 case DW_FORM_ref8:
20451 case DW_FORM_ref_udata:
d97bc12b 20452 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 20453 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 20454 break;
c906108c
SS
20455 case DW_FORM_data1:
20456 case DW_FORM_data2:
20457 case DW_FORM_data4:
ce5d95e1 20458 case DW_FORM_data8:
c906108c
SS
20459 case DW_FORM_udata:
20460 case DW_FORM_sdata:
43bbcdc2
PH
20461 fprintf_unfiltered (f, "constant: %s",
20462 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 20463 break;
2dc7f7b3
TT
20464 case DW_FORM_sec_offset:
20465 fprintf_unfiltered (f, "section offset: %s",
20466 pulongest (DW_UNSND (&die->attrs[i])));
20467 break;
55f1336d 20468 case DW_FORM_ref_sig8:
ac9ec31b
DE
20469 fprintf_unfiltered (f, "signature: %s",
20470 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 20471 break;
c906108c 20472 case DW_FORM_string:
4bdf3d34 20473 case DW_FORM_strp:
43988095 20474 case DW_FORM_line_strp:
3019eac3 20475 case DW_FORM_GNU_str_index:
36586728 20476 case DW_FORM_GNU_strp_alt:
8285870a 20477 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 20478 DW_STRING (&die->attrs[i])
8285870a
JK
20479 ? DW_STRING (&die->attrs[i]) : "",
20480 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
20481 break;
20482 case DW_FORM_flag:
20483 if (DW_UNSND (&die->attrs[i]))
d97bc12b 20484 fprintf_unfiltered (f, "flag: TRUE");
c906108c 20485 else
d97bc12b 20486 fprintf_unfiltered (f, "flag: FALSE");
c906108c 20487 break;
2dc7f7b3
TT
20488 case DW_FORM_flag_present:
20489 fprintf_unfiltered (f, "flag: TRUE");
20490 break;
a8329558 20491 case DW_FORM_indirect:
0963b4bd
MS
20492 /* The reader will have reduced the indirect form to
20493 the "base form" so this form should not occur. */
3e43a32a
MS
20494 fprintf_unfiltered (f,
20495 "unexpected attribute form: DW_FORM_indirect");
a8329558 20496 break;
663c44ac
JK
20497 case DW_FORM_implicit_const:
20498 fprintf_unfiltered (f, "constant: %s",
20499 plongest (DW_SND (&die->attrs[i])));
20500 break;
c906108c 20501 default:
d97bc12b 20502 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 20503 die->attrs[i].form);
d97bc12b 20504 break;
c906108c 20505 }
d97bc12b 20506 fprintf_unfiltered (f, "\n");
c906108c
SS
20507 }
20508}
20509
f9aca02d 20510static void
d97bc12b 20511dump_die_for_error (struct die_info *die)
c906108c 20512{
d97bc12b
DE
20513 dump_die_shallow (gdb_stderr, 0, die);
20514}
20515
20516static void
20517dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20518{
20519 int indent = level * 4;
20520
20521 gdb_assert (die != NULL);
20522
20523 if (level >= max_level)
20524 return;
20525
20526 dump_die_shallow (f, indent, die);
20527
20528 if (die->child != NULL)
c906108c 20529 {
d97bc12b
DE
20530 print_spaces (indent, f);
20531 fprintf_unfiltered (f, " Children:");
20532 if (level + 1 < max_level)
20533 {
20534 fprintf_unfiltered (f, "\n");
20535 dump_die_1 (f, level + 1, max_level, die->child);
20536 }
20537 else
20538 {
3e43a32a
MS
20539 fprintf_unfiltered (f,
20540 " [not printed, max nesting level reached]\n");
d97bc12b
DE
20541 }
20542 }
20543
20544 if (die->sibling != NULL && level > 0)
20545 {
20546 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
20547 }
20548}
20549
d97bc12b
DE
20550/* This is called from the pdie macro in gdbinit.in.
20551 It's not static so gcc will keep a copy callable from gdb. */
20552
20553void
20554dump_die (struct die_info *die, int max_level)
20555{
20556 dump_die_1 (gdb_stdlog, 0, max_level, die);
20557}
20558
f9aca02d 20559static void
51545339 20560store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 20561{
51545339 20562 void **slot;
c906108c 20563
9c541725
PA
20564 slot = htab_find_slot_with_hash (cu->die_hash, die,
20565 to_underlying (die->sect_off),
b64f50a1 20566 INSERT);
51545339
DJ
20567
20568 *slot = die;
c906108c
SS
20569}
20570
b64f50a1
JK
20571/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20572 required kind. */
20573
20574static sect_offset
ff39bb5e 20575dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 20576{
7771576e 20577 if (attr_form_is_ref (attr))
9c541725 20578 return (sect_offset) DW_UNSND (attr);
93311388
DE
20579
20580 complaint (&symfile_complaints,
20581 _("unsupported die ref attribute form: '%s'"),
20582 dwarf_form_name (attr->form));
9c541725 20583 return {};
c906108c
SS
20584}
20585
43bbcdc2
PH
20586/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20587 * the value held by the attribute is not constant. */
a02abb62 20588
43bbcdc2 20589static LONGEST
ff39bb5e 20590dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62 20591{
663c44ac 20592 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
a02abb62
JB
20593 return DW_SND (attr);
20594 else if (attr->form == DW_FORM_udata
20595 || attr->form == DW_FORM_data1
20596 || attr->form == DW_FORM_data2
20597 || attr->form == DW_FORM_data4
20598 || attr->form == DW_FORM_data8)
20599 return DW_UNSND (attr);
20600 else
20601 {
0224619f 20602 /* For DW_FORM_data16 see attr_form_is_constant. */
3e43a32a
MS
20603 complaint (&symfile_complaints,
20604 _("Attribute value is not a constant (%s)"),
a02abb62
JB
20605 dwarf_form_name (attr->form));
20606 return default_value;
20607 }
20608}
20609
348e048f
DE
20610/* Follow reference or signature attribute ATTR of SRC_DIE.
20611 On entry *REF_CU is the CU of SRC_DIE.
20612 On exit *REF_CU is the CU of the result. */
20613
20614static struct die_info *
ff39bb5e 20615follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
20616 struct dwarf2_cu **ref_cu)
20617{
20618 struct die_info *die;
20619
7771576e 20620 if (attr_form_is_ref (attr))
348e048f 20621 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20622 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20623 die = follow_die_sig (src_die, attr, ref_cu);
20624 else
20625 {
20626 dump_die_for_error (src_die);
20627 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20628 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20629 }
20630
20631 return die;
03dd20cc
DJ
20632}
20633
5c631832 20634/* Follow reference OFFSET.
673bfd45
DE
20635 On entry *REF_CU is the CU of the source die referencing OFFSET.
20636 On exit *REF_CU is the CU of the result.
20637 Returns NULL if OFFSET is invalid. */
f504f079 20638
f9aca02d 20639static struct die_info *
9c541725 20640follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 20641 struct dwarf2_cu **ref_cu)
c906108c 20642{
10b3939b 20643 struct die_info temp_die;
f2f0e013 20644 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20645
348e048f
DE
20646 gdb_assert (cu->per_cu != NULL);
20647
98bfdba5
PA
20648 target_cu = cu;
20649
3019eac3 20650 if (cu->per_cu->is_debug_types)
348e048f
DE
20651 {
20652 /* .debug_types CUs cannot reference anything outside their CU.
20653 If they need to, they have to reference a signatured type via
55f1336d 20654 DW_FORM_ref_sig8. */
9c541725 20655 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 20656 return NULL;
348e048f 20657 }
36586728 20658 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 20659 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
20660 {
20661 struct dwarf2_per_cu_data *per_cu;
9a619af0 20662
9c541725 20663 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 20664 cu->objfile);
03dd20cc
DJ
20665
20666 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20667 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20668 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20669
10b3939b
DJ
20670 target_cu = per_cu->cu;
20671 }
98bfdba5
PA
20672 else if (cu->dies == NULL)
20673 {
20674 /* We're loading full DIEs during partial symbol reading. */
20675 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20676 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20677 }
c906108c 20678
f2f0e013 20679 *ref_cu = target_cu;
9c541725 20680 temp_die.sect_off = sect_off;
9a3c8263 20681 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
20682 &temp_die,
20683 to_underlying (sect_off));
5c631832 20684}
10b3939b 20685
5c631832
JK
20686/* Follow reference attribute ATTR of SRC_DIE.
20687 On entry *REF_CU is the CU of SRC_DIE.
20688 On exit *REF_CU is the CU of the result. */
20689
20690static struct die_info *
ff39bb5e 20691follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20692 struct dwarf2_cu **ref_cu)
20693{
9c541725 20694 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20695 struct dwarf2_cu *cu = *ref_cu;
20696 struct die_info *die;
20697
9c541725 20698 die = follow_die_offset (sect_off,
36586728
TT
20699 (attr->form == DW_FORM_GNU_ref_alt
20700 || cu->per_cu->is_dwz),
20701 ref_cu);
5c631832
JK
20702 if (!die)
20703 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20704 "at 0x%x [in module %s]"),
9c541725 20705 to_underlying (sect_off), to_underlying (src_die->sect_off),
4262abfb 20706 objfile_name (cu->objfile));
348e048f 20707
5c631832
JK
20708 return die;
20709}
20710
9c541725 20711/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b
JK
20712 Returned value is intended for DW_OP_call*. Returned
20713 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20714
20715struct dwarf2_locexpr_baton
9c541725 20716dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
20717 struct dwarf2_per_cu_data *per_cu,
20718 CORE_ADDR (*get_frame_pc) (void *baton),
20719 void *baton)
5c631832 20720{
918dd910 20721 struct dwarf2_cu *cu;
5c631832
JK
20722 struct die_info *die;
20723 struct attribute *attr;
20724 struct dwarf2_locexpr_baton retval;
20725
8cf6f0b1
TT
20726 dw2_setup (per_cu->objfile);
20727
918dd910
JK
20728 if (per_cu->cu == NULL)
20729 load_cu (per_cu);
20730 cu = per_cu->cu;
cc12ce38
DE
20731 if (cu == NULL)
20732 {
20733 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20734 Instead just throw an error, not much else we can do. */
20735 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20736 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20737 }
918dd910 20738
9c541725 20739 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832
JK
20740 if (!die)
20741 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20742 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20743
20744 attr = dwarf2_attr (die, DW_AT_location, cu);
20745 if (!attr)
20746 {
e103e986
JK
20747 /* DWARF: "If there is no such attribute, then there is no effect.".
20748 DATA is ignored if SIZE is 0. */
5c631832 20749
e103e986 20750 retval.data = NULL;
5c631832
JK
20751 retval.size = 0;
20752 }
8cf6f0b1
TT
20753 else if (attr_form_is_section_offset (attr))
20754 {
20755 struct dwarf2_loclist_baton loclist_baton;
20756 CORE_ADDR pc = (*get_frame_pc) (baton);
20757 size_t size;
20758
20759 fill_in_loclist_baton (cu, &loclist_baton, attr);
20760
20761 retval.data = dwarf2_find_location_expression (&loclist_baton,
20762 &size, pc);
20763 retval.size = size;
20764 }
5c631832
JK
20765 else
20766 {
20767 if (!attr_form_is_block (attr))
20768 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20769 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9c541725 20770 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20771
20772 retval.data = DW_BLOCK (attr)->data;
20773 retval.size = DW_BLOCK (attr)->size;
20774 }
20775 retval.per_cu = cu->per_cu;
918dd910 20776
918dd910
JK
20777 age_cached_comp_units ();
20778
5c631832 20779 return retval;
348e048f
DE
20780}
20781
8b9737bf
TT
20782/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20783 offset. */
20784
20785struct dwarf2_locexpr_baton
20786dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20787 struct dwarf2_per_cu_data *per_cu,
20788 CORE_ADDR (*get_frame_pc) (void *baton),
20789 void *baton)
20790{
9c541725 20791 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 20792
9c541725 20793 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
20794}
20795
b6807d98
TT
20796/* Write a constant of a given type as target-ordered bytes into
20797 OBSTACK. */
20798
20799static const gdb_byte *
20800write_constant_as_bytes (struct obstack *obstack,
20801 enum bfd_endian byte_order,
20802 struct type *type,
20803 ULONGEST value,
20804 LONGEST *len)
20805{
20806 gdb_byte *result;
20807
20808 *len = TYPE_LENGTH (type);
224c3ddb 20809 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20810 store_unsigned_integer (result, *len, byte_order, value);
20811
20812 return result;
20813}
20814
20815/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20816 pointer to the constant bytes and set LEN to the length of the
20817 data. If memory is needed, allocate it on OBSTACK. If the DIE
20818 does not have a DW_AT_const_value, return NULL. */
20819
20820const gdb_byte *
9c541725 20821dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
20822 struct dwarf2_per_cu_data *per_cu,
20823 struct obstack *obstack,
20824 LONGEST *len)
20825{
20826 struct dwarf2_cu *cu;
20827 struct die_info *die;
20828 struct attribute *attr;
20829 const gdb_byte *result = NULL;
20830 struct type *type;
20831 LONGEST value;
20832 enum bfd_endian byte_order;
20833
20834 dw2_setup (per_cu->objfile);
20835
20836 if (per_cu->cu == NULL)
20837 load_cu (per_cu);
20838 cu = per_cu->cu;
cc12ce38
DE
20839 if (cu == NULL)
20840 {
20841 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20842 Instead just throw an error, not much else we can do. */
20843 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20844 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20845 }
b6807d98 20846
9c541725 20847 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98
TT
20848 if (!die)
20849 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20850 to_underlying (sect_off), objfile_name (per_cu->objfile));
b6807d98
TT
20851
20852
20853 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20854 if (attr == NULL)
20855 return NULL;
20856
20857 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20858 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20859
20860 switch (attr->form)
20861 {
20862 case DW_FORM_addr:
20863 case DW_FORM_GNU_addr_index:
20864 {
20865 gdb_byte *tem;
20866
20867 *len = cu->header.addr_size;
224c3ddb 20868 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20869 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20870 result = tem;
20871 }
20872 break;
20873 case DW_FORM_string:
20874 case DW_FORM_strp:
20875 case DW_FORM_GNU_str_index:
20876 case DW_FORM_GNU_strp_alt:
20877 /* DW_STRING is already allocated on the objfile obstack, point
20878 directly to it. */
20879 result = (const gdb_byte *) DW_STRING (attr);
20880 *len = strlen (DW_STRING (attr));
20881 break;
20882 case DW_FORM_block1:
20883 case DW_FORM_block2:
20884 case DW_FORM_block4:
20885 case DW_FORM_block:
20886 case DW_FORM_exprloc:
0224619f 20887 case DW_FORM_data16:
b6807d98
TT
20888 result = DW_BLOCK (attr)->data;
20889 *len = DW_BLOCK (attr)->size;
20890 break;
20891
20892 /* The DW_AT_const_value attributes are supposed to carry the
20893 symbol's value "represented as it would be on the target
20894 architecture." By the time we get here, it's already been
20895 converted to host endianness, so we just need to sign- or
20896 zero-extend it as appropriate. */
20897 case DW_FORM_data1:
20898 type = die_type (die, cu);
20899 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20900 if (result == NULL)
20901 result = write_constant_as_bytes (obstack, byte_order,
20902 type, value, len);
20903 break;
20904 case DW_FORM_data2:
20905 type = die_type (die, cu);
20906 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20907 if (result == NULL)
20908 result = write_constant_as_bytes (obstack, byte_order,
20909 type, value, len);
20910 break;
20911 case DW_FORM_data4:
20912 type = die_type (die, cu);
20913 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20914 if (result == NULL)
20915 result = write_constant_as_bytes (obstack, byte_order,
20916 type, value, len);
20917 break;
20918 case DW_FORM_data8:
20919 type = die_type (die, cu);
20920 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20921 if (result == NULL)
20922 result = write_constant_as_bytes (obstack, byte_order,
20923 type, value, len);
20924 break;
20925
20926 case DW_FORM_sdata:
663c44ac 20927 case DW_FORM_implicit_const:
b6807d98
TT
20928 type = die_type (die, cu);
20929 result = write_constant_as_bytes (obstack, byte_order,
20930 type, DW_SND (attr), len);
20931 break;
20932
20933 case DW_FORM_udata:
20934 type = die_type (die, cu);
20935 result = write_constant_as_bytes (obstack, byte_order,
20936 type, DW_UNSND (attr), len);
20937 break;
20938
20939 default:
20940 complaint (&symfile_complaints,
20941 _("unsupported const value attribute form: '%s'"),
20942 dwarf_form_name (attr->form));
20943 break;
20944 }
20945
20946 return result;
20947}
20948
7942e96e
AA
20949/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20950 valid type for this die is found. */
20951
20952struct type *
9c541725 20953dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
20954 struct dwarf2_per_cu_data *per_cu)
20955{
20956 struct dwarf2_cu *cu;
20957 struct die_info *die;
20958
20959 dw2_setup (per_cu->objfile);
20960
20961 if (per_cu->cu == NULL)
20962 load_cu (per_cu);
20963 cu = per_cu->cu;
20964 if (!cu)
20965 return NULL;
20966
9c541725 20967 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
20968 if (!die)
20969 return NULL;
20970
20971 return die_type (die, cu);
20972}
20973
8a9b8146
TT
20974/* Return the type of the DIE at DIE_OFFSET in the CU named by
20975 PER_CU. */
20976
20977struct type *
b64f50a1 20978dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20979 struct dwarf2_per_cu_data *per_cu)
20980{
8a9b8146 20981 dw2_setup (per_cu->objfile);
b64f50a1 20982
9c541725 20983 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 20984 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20985}
20986
ac9ec31b 20987/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20988 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20989 On exit *REF_CU is the CU of the result.
20990 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20991
20992static struct die_info *
ac9ec31b
DE
20993follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20994 struct dwarf2_cu **ref_cu)
348e048f 20995{
348e048f 20996 struct die_info temp_die;
348e048f
DE
20997 struct dwarf2_cu *sig_cu;
20998 struct die_info *die;
20999
ac9ec31b
DE
21000 /* While it might be nice to assert sig_type->type == NULL here,
21001 we can get here for DW_AT_imported_declaration where we need
21002 the DIE not the type. */
348e048f
DE
21003
21004 /* If necessary, add it to the queue and load its DIEs. */
21005
95554aad 21006 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 21007 read_signatured_type (sig_type);
348e048f 21008
348e048f 21009 sig_cu = sig_type->per_cu.cu;
69d751e3 21010 gdb_assert (sig_cu != NULL);
9c541725
PA
21011 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21012 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 21013 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 21014 to_underlying (temp_die.sect_off));
348e048f
DE
21015 if (die)
21016 {
796a7ff8
DE
21017 /* For .gdb_index version 7 keep track of included TUs.
21018 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21019 if (dwarf2_per_objfile->index_table != NULL
21020 && dwarf2_per_objfile->index_table->version <= 7)
21021 {
21022 VEC_safe_push (dwarf2_per_cu_ptr,
21023 (*ref_cu)->per_cu->imported_symtabs,
21024 sig_cu->per_cu);
21025 }
21026
348e048f
DE
21027 *ref_cu = sig_cu;
21028 return die;
21029 }
21030
ac9ec31b
DE
21031 return NULL;
21032}
21033
21034/* Follow signatured type referenced by ATTR in SRC_DIE.
21035 On entry *REF_CU is the CU of SRC_DIE.
21036 On exit *REF_CU is the CU of the result.
21037 The result is the DIE of the type.
21038 If the referenced type cannot be found an error is thrown. */
21039
21040static struct die_info *
ff39bb5e 21041follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
21042 struct dwarf2_cu **ref_cu)
21043{
21044 ULONGEST signature = DW_SIGNATURE (attr);
21045 struct signatured_type *sig_type;
21046 struct die_info *die;
21047
21048 gdb_assert (attr->form == DW_FORM_ref_sig8);
21049
a2ce51a0 21050 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
21051 /* sig_type will be NULL if the signatured type is missing from
21052 the debug info. */
21053 if (sig_type == NULL)
21054 {
21055 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21056 " from DIE at 0x%x [in module %s]"),
9c541725 21057 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21058 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21059 }
21060
21061 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21062 if (die == NULL)
21063 {
21064 dump_die_for_error (src_die);
21065 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21066 " from DIE at 0x%x [in module %s]"),
9c541725 21067 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21068 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21069 }
21070
21071 return die;
21072}
21073
21074/* Get the type specified by SIGNATURE referenced in DIE/CU,
21075 reading in and processing the type unit if necessary. */
21076
21077static struct type *
21078get_signatured_type (struct die_info *die, ULONGEST signature,
21079 struct dwarf2_cu *cu)
21080{
21081 struct signatured_type *sig_type;
21082 struct dwarf2_cu *type_cu;
21083 struct die_info *type_die;
21084 struct type *type;
21085
a2ce51a0 21086 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
21087 /* sig_type will be NULL if the signatured type is missing from
21088 the debug info. */
21089 if (sig_type == NULL)
21090 {
21091 complaint (&symfile_complaints,
21092 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21093 " from DIE at 0x%x [in module %s]"),
9c541725 21094 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21095 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21096 return build_error_marker_type (cu, die);
21097 }
21098
21099 /* If we already know the type we're done. */
21100 if (sig_type->type != NULL)
21101 return sig_type->type;
21102
21103 type_cu = cu;
21104 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21105 if (type_die != NULL)
21106 {
21107 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21108 is created. This is important, for example, because for c++ classes
21109 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21110 type = read_type_die (type_die, type_cu);
21111 if (type == NULL)
21112 {
21113 complaint (&symfile_complaints,
21114 _("Dwarf Error: Cannot build signatured type %s"
21115 " referenced from DIE at 0x%x [in module %s]"),
9c541725 21116 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21117 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21118 type = build_error_marker_type (cu, die);
21119 }
21120 }
21121 else
21122 {
21123 complaint (&symfile_complaints,
21124 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21125 " from DIE at 0x%x [in module %s]"),
9c541725 21126 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21127 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21128 type = build_error_marker_type (cu, die);
21129 }
21130 sig_type->type = type;
21131
21132 return type;
21133}
21134
21135/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21136 reading in and processing the type unit if necessary. */
21137
21138static struct type *
ff39bb5e 21139get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 21140 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
21141{
21142 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 21143 if (attr_form_is_ref (attr))
ac9ec31b
DE
21144 {
21145 struct dwarf2_cu *type_cu = cu;
21146 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21147
21148 return read_type_die (type_die, type_cu);
21149 }
21150 else if (attr->form == DW_FORM_ref_sig8)
21151 {
21152 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21153 }
21154 else
21155 {
21156 complaint (&symfile_complaints,
21157 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21158 " at 0x%x [in module %s]"),
9c541725 21159 dwarf_form_name (attr->form), to_underlying (die->sect_off),
4262abfb 21160 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21161 return build_error_marker_type (cu, die);
21162 }
348e048f
DE
21163}
21164
e5fe5e75 21165/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
21166
21167static void
e5fe5e75 21168load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 21169{
52dc124a 21170 struct signatured_type *sig_type;
348e048f 21171
f4dc4d17
DE
21172 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21173 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21174
6721b2ec
DE
21175 /* We have the per_cu, but we need the signatured_type.
21176 Fortunately this is an easy translation. */
21177 gdb_assert (per_cu->is_debug_types);
21178 sig_type = (struct signatured_type *) per_cu;
348e048f 21179
6721b2ec 21180 gdb_assert (per_cu->cu == NULL);
348e048f 21181
52dc124a 21182 read_signatured_type (sig_type);
348e048f 21183
6721b2ec 21184 gdb_assert (per_cu->cu != NULL);
348e048f
DE
21185}
21186
dee91e82
DE
21187/* die_reader_func for read_signatured_type.
21188 This is identical to load_full_comp_unit_reader,
21189 but is kept separate for now. */
348e048f
DE
21190
21191static void
dee91e82 21192read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 21193 const gdb_byte *info_ptr,
dee91e82
DE
21194 struct die_info *comp_unit_die,
21195 int has_children,
21196 void *data)
348e048f 21197{
dee91e82 21198 struct dwarf2_cu *cu = reader->cu;
348e048f 21199
dee91e82
DE
21200 gdb_assert (cu->die_hash == NULL);
21201 cu->die_hash =
21202 htab_create_alloc_ex (cu->header.length / 12,
21203 die_hash,
21204 die_eq,
21205 NULL,
21206 &cu->comp_unit_obstack,
21207 hashtab_obstack_allocate,
21208 dummy_obstack_deallocate);
348e048f 21209
dee91e82
DE
21210 if (has_children)
21211 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21212 &info_ptr, comp_unit_die);
21213 cu->dies = comp_unit_die;
21214 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
21215
21216 /* We try not to read any attributes in this function, because not
9cdd5dbd 21217 all CUs needed for references have been loaded yet, and symbol
348e048f 21218 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
21219 or we won't be able to build types correctly.
21220 Similarly, if we do not read the producer, we can not apply
21221 producer-specific interpretation. */
95554aad 21222 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 21223}
348e048f 21224
3019eac3
DE
21225/* Read in a signatured type and build its CU and DIEs.
21226 If the type is a stub for the real type in a DWO file,
21227 read in the real type from the DWO file as well. */
dee91e82
DE
21228
21229static void
21230read_signatured_type (struct signatured_type *sig_type)
21231{
21232 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 21233
3019eac3 21234 gdb_assert (per_cu->is_debug_types);
dee91e82 21235 gdb_assert (per_cu->cu == NULL);
348e048f 21236
f4dc4d17
DE
21237 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21238 read_signatured_type_reader, NULL);
7ee85ab1 21239 sig_type->per_cu.tu_read = 1;
c906108c
SS
21240}
21241
c906108c
SS
21242/* Decode simple location descriptions.
21243 Given a pointer to a dwarf block that defines a location, compute
21244 the location and return the value.
21245
4cecd739
DJ
21246 NOTE drow/2003-11-18: This function is called in two situations
21247 now: for the address of static or global variables (partial symbols
21248 only) and for offsets into structures which are expected to be
21249 (more or less) constant. The partial symbol case should go away,
21250 and only the constant case should remain. That will let this
21251 function complain more accurately. A few special modes are allowed
21252 without complaint for global variables (for instance, global
21253 register values and thread-local values).
c906108c
SS
21254
21255 A location description containing no operations indicates that the
4cecd739 21256 object is optimized out. The return value is 0 for that case.
6b992462
DJ
21257 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21258 callers will only want a very basic result and this can become a
21ae7a4d
JK
21259 complaint.
21260
21261 Note that stack[0] is unused except as a default error return. */
c906108c
SS
21262
21263static CORE_ADDR
e7c27a73 21264decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 21265{
e7c27a73 21266 struct objfile *objfile = cu->objfile;
56eb65bd
SP
21267 size_t i;
21268 size_t size = blk->size;
d521ce57 21269 const gdb_byte *data = blk->data;
21ae7a4d
JK
21270 CORE_ADDR stack[64];
21271 int stacki;
21272 unsigned int bytes_read, unsnd;
21273 gdb_byte op;
c906108c 21274
21ae7a4d
JK
21275 i = 0;
21276 stacki = 0;
21277 stack[stacki] = 0;
21278 stack[++stacki] = 0;
21279
21280 while (i < size)
21281 {
21282 op = data[i++];
21283 switch (op)
21284 {
21285 case DW_OP_lit0:
21286 case DW_OP_lit1:
21287 case DW_OP_lit2:
21288 case DW_OP_lit3:
21289 case DW_OP_lit4:
21290 case DW_OP_lit5:
21291 case DW_OP_lit6:
21292 case DW_OP_lit7:
21293 case DW_OP_lit8:
21294 case DW_OP_lit9:
21295 case DW_OP_lit10:
21296 case DW_OP_lit11:
21297 case DW_OP_lit12:
21298 case DW_OP_lit13:
21299 case DW_OP_lit14:
21300 case DW_OP_lit15:
21301 case DW_OP_lit16:
21302 case DW_OP_lit17:
21303 case DW_OP_lit18:
21304 case DW_OP_lit19:
21305 case DW_OP_lit20:
21306 case DW_OP_lit21:
21307 case DW_OP_lit22:
21308 case DW_OP_lit23:
21309 case DW_OP_lit24:
21310 case DW_OP_lit25:
21311 case DW_OP_lit26:
21312 case DW_OP_lit27:
21313 case DW_OP_lit28:
21314 case DW_OP_lit29:
21315 case DW_OP_lit30:
21316 case DW_OP_lit31:
21317 stack[++stacki] = op - DW_OP_lit0;
21318 break;
f1bea926 21319
21ae7a4d
JK
21320 case DW_OP_reg0:
21321 case DW_OP_reg1:
21322 case DW_OP_reg2:
21323 case DW_OP_reg3:
21324 case DW_OP_reg4:
21325 case DW_OP_reg5:
21326 case DW_OP_reg6:
21327 case DW_OP_reg7:
21328 case DW_OP_reg8:
21329 case DW_OP_reg9:
21330 case DW_OP_reg10:
21331 case DW_OP_reg11:
21332 case DW_OP_reg12:
21333 case DW_OP_reg13:
21334 case DW_OP_reg14:
21335 case DW_OP_reg15:
21336 case DW_OP_reg16:
21337 case DW_OP_reg17:
21338 case DW_OP_reg18:
21339 case DW_OP_reg19:
21340 case DW_OP_reg20:
21341 case DW_OP_reg21:
21342 case DW_OP_reg22:
21343 case DW_OP_reg23:
21344 case DW_OP_reg24:
21345 case DW_OP_reg25:
21346 case DW_OP_reg26:
21347 case DW_OP_reg27:
21348 case DW_OP_reg28:
21349 case DW_OP_reg29:
21350 case DW_OP_reg30:
21351 case DW_OP_reg31:
21352 stack[++stacki] = op - DW_OP_reg0;
21353 if (i < size)
21354 dwarf2_complex_location_expr_complaint ();
21355 break;
c906108c 21356
21ae7a4d
JK
21357 case DW_OP_regx:
21358 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21359 i += bytes_read;
21360 stack[++stacki] = unsnd;
21361 if (i < size)
21362 dwarf2_complex_location_expr_complaint ();
21363 break;
c906108c 21364
21ae7a4d
JK
21365 case DW_OP_addr:
21366 stack[++stacki] = read_address (objfile->obfd, &data[i],
21367 cu, &bytes_read);
21368 i += bytes_read;
21369 break;
d53d4ac5 21370
21ae7a4d
JK
21371 case DW_OP_const1u:
21372 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21373 i += 1;
21374 break;
21375
21376 case DW_OP_const1s:
21377 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21378 i += 1;
21379 break;
21380
21381 case DW_OP_const2u:
21382 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21383 i += 2;
21384 break;
21385
21386 case DW_OP_const2s:
21387 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21388 i += 2;
21389 break;
d53d4ac5 21390
21ae7a4d
JK
21391 case DW_OP_const4u:
21392 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21393 i += 4;
21394 break;
21395
21396 case DW_OP_const4s:
21397 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21398 i += 4;
21399 break;
21400
585861ea
JK
21401 case DW_OP_const8u:
21402 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21403 i += 8;
21404 break;
21405
21ae7a4d
JK
21406 case DW_OP_constu:
21407 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21408 &bytes_read);
21409 i += bytes_read;
21410 break;
21411
21412 case DW_OP_consts:
21413 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21414 i += bytes_read;
21415 break;
21416
21417 case DW_OP_dup:
21418 stack[stacki + 1] = stack[stacki];
21419 stacki++;
21420 break;
21421
21422 case DW_OP_plus:
21423 stack[stacki - 1] += stack[stacki];
21424 stacki--;
21425 break;
21426
21427 case DW_OP_plus_uconst:
21428 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21429 &bytes_read);
21430 i += bytes_read;
21431 break;
21432
21433 case DW_OP_minus:
21434 stack[stacki - 1] -= stack[stacki];
21435 stacki--;
21436 break;
21437
21438 case DW_OP_deref:
21439 /* If we're not the last op, then we definitely can't encode
21440 this using GDB's address_class enum. This is valid for partial
21441 global symbols, although the variable's address will be bogus
21442 in the psymtab. */
21443 if (i < size)
21444 dwarf2_complex_location_expr_complaint ();
21445 break;
21446
21447 case DW_OP_GNU_push_tls_address:
4aa4e28b 21448 case DW_OP_form_tls_address:
21ae7a4d
JK
21449 /* The top of the stack has the offset from the beginning
21450 of the thread control block at which the variable is located. */
21451 /* Nothing should follow this operator, so the top of stack would
21452 be returned. */
21453 /* This is valid for partial global symbols, but the variable's
585861ea
JK
21454 address will be bogus in the psymtab. Make it always at least
21455 non-zero to not look as a variable garbage collected by linker
21456 which have DW_OP_addr 0. */
21ae7a4d
JK
21457 if (i < size)
21458 dwarf2_complex_location_expr_complaint ();
585861ea 21459 stack[stacki]++;
21ae7a4d
JK
21460 break;
21461
21462 case DW_OP_GNU_uninit:
21463 break;
21464
3019eac3 21465 case DW_OP_GNU_addr_index:
49f6c839 21466 case DW_OP_GNU_const_index:
3019eac3
DE
21467 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21468 &bytes_read);
21469 i += bytes_read;
21470 break;
21471
21ae7a4d
JK
21472 default:
21473 {
f39c6ffd 21474 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
21475
21476 if (name)
21477 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21478 name);
21479 else
21480 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21481 op);
21482 }
21483
21484 return (stack[stacki]);
d53d4ac5 21485 }
3c6e0cb3 21486
21ae7a4d
JK
21487 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21488 outside of the allocated space. Also enforce minimum>0. */
21489 if (stacki >= ARRAY_SIZE (stack) - 1)
21490 {
21491 complaint (&symfile_complaints,
21492 _("location description stack overflow"));
21493 return 0;
21494 }
21495
21496 if (stacki <= 0)
21497 {
21498 complaint (&symfile_complaints,
21499 _("location description stack underflow"));
21500 return 0;
21501 }
21502 }
21503 return (stack[stacki]);
c906108c
SS
21504}
21505
21506/* memory allocation interface */
21507
c906108c 21508static struct dwarf_block *
7b5a2f43 21509dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 21510{
8d749320 21511 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
21512}
21513
c906108c 21514static struct die_info *
b60c80d6 21515dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
21516{
21517 struct die_info *die;
b60c80d6
DJ
21518 size_t size = sizeof (struct die_info);
21519
21520 if (num_attrs > 1)
21521 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 21522
b60c80d6 21523 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
21524 memset (die, 0, sizeof (struct die_info));
21525 return (die);
21526}
2e276125
JB
21527
21528\f
21529/* Macro support. */
21530
233d95b5
JK
21531/* Return file name relative to the compilation directory of file number I in
21532 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 21533 responsible for freeing it. */
233d95b5 21534
2e276125 21535static char *
233d95b5 21536file_file_name (int file, struct line_header *lh)
2e276125 21537{
6a83a1e6
EZ
21538 /* Is the file number a valid index into the line header's file name
21539 table? Remember that file numbers start with one, not zero. */
fff8551c 21540 if (1 <= file && file <= lh->file_names.size ())
6a83a1e6 21541 {
8c43009f 21542 const file_entry &fe = lh->file_names[file - 1];
6e70227d 21543
8c43009f
PA
21544 if (!IS_ABSOLUTE_PATH (fe.name))
21545 {
21546 const char *dir = fe.include_dir (lh);
21547 if (dir != NULL)
21548 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21549 }
21550 return xstrdup (fe.name);
6a83a1e6 21551 }
2e276125
JB
21552 else
21553 {
6a83a1e6
EZ
21554 /* The compiler produced a bogus file number. We can at least
21555 record the macro definitions made in the file, even if we
21556 won't be able to find the file by name. */
21557 char fake_name[80];
9a619af0 21558
8c042590
PM
21559 xsnprintf (fake_name, sizeof (fake_name),
21560 "<bad macro file number %d>", file);
2e276125 21561
6e70227d 21562 complaint (&symfile_complaints,
6a83a1e6
EZ
21563 _("bad file number in macro information (%d)"),
21564 file);
2e276125 21565
6a83a1e6 21566 return xstrdup (fake_name);
2e276125
JB
21567 }
21568}
21569
233d95b5
JK
21570/* Return the full name of file number I in *LH's file name table.
21571 Use COMP_DIR as the name of the current directory of the
21572 compilation. The result is allocated using xmalloc; the caller is
21573 responsible for freeing it. */
21574static char *
21575file_full_name (int file, struct line_header *lh, const char *comp_dir)
21576{
21577 /* Is the file number a valid index into the line header's file name
21578 table? Remember that file numbers start with one, not zero. */
fff8551c 21579 if (1 <= file && file <= lh->file_names.size ())
233d95b5
JK
21580 {
21581 char *relative = file_file_name (file, lh);
21582
21583 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21584 return relative;
b36cec19
PA
21585 return reconcat (relative, comp_dir, SLASH_STRING,
21586 relative, (char *) NULL);
233d95b5
JK
21587 }
21588 else
21589 return file_file_name (file, lh);
21590}
21591
2e276125
JB
21592
21593static struct macro_source_file *
21594macro_start_file (int file, int line,
21595 struct macro_source_file *current_file,
43f3e411 21596 struct line_header *lh)
2e276125 21597{
233d95b5
JK
21598 /* File name relative to the compilation directory of this source file. */
21599 char *file_name = file_file_name (file, lh);
2e276125 21600
2e276125 21601 if (! current_file)
abc9d0dc 21602 {
fc474241
DE
21603 /* Note: We don't create a macro table for this compilation unit
21604 at all until we actually get a filename. */
43f3e411 21605 struct macro_table *macro_table = get_macro_table ();
fc474241 21606
abc9d0dc
TT
21607 /* If we have no current file, then this must be the start_file
21608 directive for the compilation unit's main source file. */
fc474241
DE
21609 current_file = macro_set_main (macro_table, file_name);
21610 macro_define_special (macro_table);
abc9d0dc 21611 }
2e276125 21612 else
233d95b5 21613 current_file = macro_include (current_file, line, file_name);
2e276125 21614
233d95b5 21615 xfree (file_name);
6e70227d 21616
2e276125
JB
21617 return current_file;
21618}
21619
2e276125
JB
21620static const char *
21621consume_improper_spaces (const char *p, const char *body)
21622{
21623 if (*p == ' ')
21624 {
4d3c2250 21625 complaint (&symfile_complaints,
3e43a32a
MS
21626 _("macro definition contains spaces "
21627 "in formal argument list:\n`%s'"),
4d3c2250 21628 body);
2e276125
JB
21629
21630 while (*p == ' ')
21631 p++;
21632 }
21633
21634 return p;
21635}
21636
21637
21638static void
21639parse_macro_definition (struct macro_source_file *file, int line,
21640 const char *body)
21641{
21642 const char *p;
21643
21644 /* The body string takes one of two forms. For object-like macro
21645 definitions, it should be:
21646
21647 <macro name> " " <definition>
21648
21649 For function-like macro definitions, it should be:
21650
21651 <macro name> "() " <definition>
21652 or
21653 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21654
21655 Spaces may appear only where explicitly indicated, and in the
21656 <definition>.
21657
21658 The Dwarf 2 spec says that an object-like macro's name is always
21659 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21660 the space when the macro's definition is the empty string.
2e276125
JB
21661
21662 The Dwarf 2 spec says that there should be no spaces between the
21663 formal arguments in a function-like macro's formal argument list,
21664 but versions of GCC around March 2002 include spaces after the
21665 commas. */
21666
21667
21668 /* Find the extent of the macro name. The macro name is terminated
21669 by either a space or null character (for an object-like macro) or
21670 an opening paren (for a function-like macro). */
21671 for (p = body; *p; p++)
21672 if (*p == ' ' || *p == '(')
21673 break;
21674
21675 if (*p == ' ' || *p == '\0')
21676 {
21677 /* It's an object-like macro. */
21678 int name_len = p - body;
3f8a7804 21679 char *name = savestring (body, name_len);
2e276125
JB
21680 const char *replacement;
21681
21682 if (*p == ' ')
21683 replacement = body + name_len + 1;
21684 else
21685 {
4d3c2250 21686 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21687 replacement = body + name_len;
21688 }
6e70227d 21689
2e276125
JB
21690 macro_define_object (file, line, name, replacement);
21691
21692 xfree (name);
21693 }
21694 else if (*p == '(')
21695 {
21696 /* It's a function-like macro. */
3f8a7804 21697 char *name = savestring (body, p - body);
2e276125
JB
21698 int argc = 0;
21699 int argv_size = 1;
8d749320 21700 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21701
21702 p++;
21703
21704 p = consume_improper_spaces (p, body);
21705
21706 /* Parse the formal argument list. */
21707 while (*p && *p != ')')
21708 {
21709 /* Find the extent of the current argument name. */
21710 const char *arg_start = p;
21711
21712 while (*p && *p != ',' && *p != ')' && *p != ' ')
21713 p++;
21714
21715 if (! *p || p == arg_start)
4d3c2250 21716 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21717 else
21718 {
21719 /* Make sure argv has room for the new argument. */
21720 if (argc >= argv_size)
21721 {
21722 argv_size *= 2;
224c3ddb 21723 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21724 }
21725
3f8a7804 21726 argv[argc++] = savestring (arg_start, p - arg_start);
2e276125
JB
21727 }
21728
21729 p = consume_improper_spaces (p, body);
21730
21731 /* Consume the comma, if present. */
21732 if (*p == ',')
21733 {
21734 p++;
21735
21736 p = consume_improper_spaces (p, body);
21737 }
21738 }
21739
21740 if (*p == ')')
21741 {
21742 p++;
21743
21744 if (*p == ' ')
21745 /* Perfectly formed definition, no complaints. */
21746 macro_define_function (file, line, name,
6e70227d 21747 argc, (const char **) argv,
2e276125
JB
21748 p + 1);
21749 else if (*p == '\0')
21750 {
21751 /* Complain, but do define it. */
4d3c2250 21752 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21753 macro_define_function (file, line, name,
6e70227d 21754 argc, (const char **) argv,
2e276125
JB
21755 p);
21756 }
21757 else
21758 /* Just complain. */
4d3c2250 21759 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21760 }
21761 else
21762 /* Just complain. */
4d3c2250 21763 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21764
21765 xfree (name);
21766 {
21767 int i;
21768
21769 for (i = 0; i < argc; i++)
21770 xfree (argv[i]);
21771 }
21772 xfree (argv);
21773 }
21774 else
4d3c2250 21775 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21776}
21777
cf2c3c16
TT
21778/* Skip some bytes from BYTES according to the form given in FORM.
21779 Returns the new pointer. */
2e276125 21780
d521ce57
TT
21781static const gdb_byte *
21782skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21783 enum dwarf_form form,
21784 unsigned int offset_size,
21785 struct dwarf2_section_info *section)
2e276125 21786{
cf2c3c16 21787 unsigned int bytes_read;
2e276125 21788
cf2c3c16 21789 switch (form)
2e276125 21790 {
cf2c3c16
TT
21791 case DW_FORM_data1:
21792 case DW_FORM_flag:
21793 ++bytes;
21794 break;
21795
21796 case DW_FORM_data2:
21797 bytes += 2;
21798 break;
21799
21800 case DW_FORM_data4:
21801 bytes += 4;
21802 break;
21803
21804 case DW_FORM_data8:
21805 bytes += 8;
21806 break;
21807
0224619f
JK
21808 case DW_FORM_data16:
21809 bytes += 16;
21810 break;
21811
cf2c3c16
TT
21812 case DW_FORM_string:
21813 read_direct_string (abfd, bytes, &bytes_read);
21814 bytes += bytes_read;
21815 break;
21816
21817 case DW_FORM_sec_offset:
21818 case DW_FORM_strp:
36586728 21819 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21820 bytes += offset_size;
21821 break;
21822
21823 case DW_FORM_block:
21824 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21825 bytes += bytes_read;
21826 break;
21827
21828 case DW_FORM_block1:
21829 bytes += 1 + read_1_byte (abfd, bytes);
21830 break;
21831 case DW_FORM_block2:
21832 bytes += 2 + read_2_bytes (abfd, bytes);
21833 break;
21834 case DW_FORM_block4:
21835 bytes += 4 + read_4_bytes (abfd, bytes);
21836 break;
21837
21838 case DW_FORM_sdata:
21839 case DW_FORM_udata:
3019eac3
DE
21840 case DW_FORM_GNU_addr_index:
21841 case DW_FORM_GNU_str_index:
d521ce57 21842 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21843 if (bytes == NULL)
21844 {
21845 dwarf2_section_buffer_overflow_complaint (section);
21846 return NULL;
21847 }
cf2c3c16
TT
21848 break;
21849
663c44ac
JK
21850 case DW_FORM_implicit_const:
21851 break;
21852
cf2c3c16
TT
21853 default:
21854 {
21855 complain:
21856 complaint (&symfile_complaints,
21857 _("invalid form 0x%x in `%s'"),
a32a8923 21858 form, get_section_name (section));
cf2c3c16
TT
21859 return NULL;
21860 }
2e276125
JB
21861 }
21862
cf2c3c16
TT
21863 return bytes;
21864}
757a13d0 21865
cf2c3c16
TT
21866/* A helper for dwarf_decode_macros that handles skipping an unknown
21867 opcode. Returns an updated pointer to the macro data buffer; or,
21868 on error, issues a complaint and returns NULL. */
757a13d0 21869
d521ce57 21870static const gdb_byte *
cf2c3c16 21871skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21872 const gdb_byte **opcode_definitions,
21873 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21874 bfd *abfd,
21875 unsigned int offset_size,
21876 struct dwarf2_section_info *section)
21877{
21878 unsigned int bytes_read, i;
21879 unsigned long arg;
d521ce57 21880 const gdb_byte *defn;
2e276125 21881
cf2c3c16 21882 if (opcode_definitions[opcode] == NULL)
2e276125 21883 {
cf2c3c16
TT
21884 complaint (&symfile_complaints,
21885 _("unrecognized DW_MACFINO opcode 0x%x"),
21886 opcode);
21887 return NULL;
21888 }
2e276125 21889
cf2c3c16
TT
21890 defn = opcode_definitions[opcode];
21891 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21892 defn += bytes_read;
2e276125 21893
cf2c3c16
TT
21894 for (i = 0; i < arg; ++i)
21895 {
aead7601
SM
21896 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21897 (enum dwarf_form) defn[i], offset_size,
f664829e 21898 section);
cf2c3c16
TT
21899 if (mac_ptr == NULL)
21900 {
21901 /* skip_form_bytes already issued the complaint. */
21902 return NULL;
21903 }
21904 }
757a13d0 21905
cf2c3c16
TT
21906 return mac_ptr;
21907}
757a13d0 21908
cf2c3c16
TT
21909/* A helper function which parses the header of a macro section.
21910 If the macro section is the extended (for now called "GNU") type,
21911 then this updates *OFFSET_SIZE. Returns a pointer to just after
21912 the header, or issues a complaint and returns NULL on error. */
757a13d0 21913
d521ce57
TT
21914static const gdb_byte *
21915dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21916 bfd *abfd,
d521ce57 21917 const gdb_byte *mac_ptr,
cf2c3c16
TT
21918 unsigned int *offset_size,
21919 int section_is_gnu)
21920{
21921 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21922
cf2c3c16
TT
21923 if (section_is_gnu)
21924 {
21925 unsigned int version, flags;
757a13d0 21926
cf2c3c16 21927 version = read_2_bytes (abfd, mac_ptr);
0af92d60 21928 if (version != 4 && version != 5)
cf2c3c16
TT
21929 {
21930 complaint (&symfile_complaints,
21931 _("unrecognized version `%d' in .debug_macro section"),
21932 version);
21933 return NULL;
21934 }
21935 mac_ptr += 2;
757a13d0 21936
cf2c3c16
TT
21937 flags = read_1_byte (abfd, mac_ptr);
21938 ++mac_ptr;
21939 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21940
cf2c3c16
TT
21941 if ((flags & 2) != 0)
21942 /* We don't need the line table offset. */
21943 mac_ptr += *offset_size;
757a13d0 21944
cf2c3c16
TT
21945 /* Vendor opcode descriptions. */
21946 if ((flags & 4) != 0)
21947 {
21948 unsigned int i, count;
757a13d0 21949
cf2c3c16
TT
21950 count = read_1_byte (abfd, mac_ptr);
21951 ++mac_ptr;
21952 for (i = 0; i < count; ++i)
21953 {
21954 unsigned int opcode, bytes_read;
21955 unsigned long arg;
21956
21957 opcode = read_1_byte (abfd, mac_ptr);
21958 ++mac_ptr;
21959 opcode_definitions[opcode] = mac_ptr;
21960 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21961 mac_ptr += bytes_read;
21962 mac_ptr += arg;
21963 }
757a13d0 21964 }
cf2c3c16 21965 }
757a13d0 21966
cf2c3c16
TT
21967 return mac_ptr;
21968}
757a13d0 21969
cf2c3c16 21970/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 21971 including DW_MACRO_import. */
cf2c3c16
TT
21972
21973static void
d521ce57
TT
21974dwarf_decode_macro_bytes (bfd *abfd,
21975 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21976 struct macro_source_file *current_file,
43f3e411 21977 struct line_header *lh,
cf2c3c16 21978 struct dwarf2_section_info *section,
36586728 21979 int section_is_gnu, int section_is_dwz,
cf2c3c16 21980 unsigned int offset_size,
8fc3fc34 21981 htab_t include_hash)
cf2c3c16 21982{
4d663531 21983 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21984 enum dwarf_macro_record_type macinfo_type;
21985 int at_commandline;
d521ce57 21986 const gdb_byte *opcode_definitions[256];
757a13d0 21987
cf2c3c16
TT
21988 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21989 &offset_size, section_is_gnu);
21990 if (mac_ptr == NULL)
21991 {
21992 /* We already issued a complaint. */
21993 return;
21994 }
757a13d0
JK
21995
21996 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21997 GDB is still reading the definitions from command line. First
21998 DW_MACINFO_start_file will need to be ignored as it was already executed
21999 to create CURRENT_FILE for the main source holding also the command line
22000 definitions. On first met DW_MACINFO_start_file this flag is reset to
22001 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22002
22003 at_commandline = 1;
22004
22005 do
22006 {
22007 /* Do we at least have room for a macinfo type byte? */
22008 if (mac_ptr >= mac_end)
22009 {
f664829e 22010 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
22011 break;
22012 }
22013
aead7601 22014 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
22015 mac_ptr++;
22016
cf2c3c16
TT
22017 /* Note that we rely on the fact that the corresponding GNU and
22018 DWARF constants are the same. */
757a13d0
JK
22019 switch (macinfo_type)
22020 {
22021 /* A zero macinfo type indicates the end of the macro
22022 information. */
22023 case 0:
22024 break;
2e276125 22025
0af92d60
JK
22026 case DW_MACRO_define:
22027 case DW_MACRO_undef:
22028 case DW_MACRO_define_strp:
22029 case DW_MACRO_undef_strp:
22030 case DW_MACRO_define_sup:
22031 case DW_MACRO_undef_sup:
2e276125 22032 {
891d2f0b 22033 unsigned int bytes_read;
2e276125 22034 int line;
d521ce57 22035 const char *body;
cf2c3c16 22036 int is_define;
2e276125 22037
cf2c3c16
TT
22038 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22039 mac_ptr += bytes_read;
22040
0af92d60
JK
22041 if (macinfo_type == DW_MACRO_define
22042 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
22043 {
22044 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22045 mac_ptr += bytes_read;
22046 }
22047 else
22048 {
22049 LONGEST str_offset;
22050
22051 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22052 mac_ptr += offset_size;
2e276125 22053
0af92d60
JK
22054 if (macinfo_type == DW_MACRO_define_sup
22055 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 22056 || section_is_dwz)
36586728
TT
22057 {
22058 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22059
22060 body = read_indirect_string_from_dwz (dwz, str_offset);
22061 }
22062 else
22063 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
22064 }
22065
0af92d60
JK
22066 is_define = (macinfo_type == DW_MACRO_define
22067 || macinfo_type == DW_MACRO_define_strp
22068 || macinfo_type == DW_MACRO_define_sup);
2e276125 22069 if (! current_file)
757a13d0
JK
22070 {
22071 /* DWARF violation as no main source is present. */
22072 complaint (&symfile_complaints,
22073 _("debug info with no main source gives macro %s "
22074 "on line %d: %s"),
cf2c3c16
TT
22075 is_define ? _("definition") : _("undefinition"),
22076 line, body);
757a13d0
JK
22077 break;
22078 }
3e43a32a
MS
22079 if ((line == 0 && !at_commandline)
22080 || (line != 0 && at_commandline))
4d3c2250 22081 complaint (&symfile_complaints,
757a13d0
JK
22082 _("debug info gives %s macro %s with %s line %d: %s"),
22083 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 22084 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
22085 line == 0 ? _("zero") : _("non-zero"), line, body);
22086
cf2c3c16 22087 if (is_define)
757a13d0 22088 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
22089 else
22090 {
0af92d60
JK
22091 gdb_assert (macinfo_type == DW_MACRO_undef
22092 || macinfo_type == DW_MACRO_undef_strp
22093 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
22094 macro_undef (current_file, line, body);
22095 }
2e276125
JB
22096 }
22097 break;
22098
0af92d60 22099 case DW_MACRO_start_file:
2e276125 22100 {
891d2f0b 22101 unsigned int bytes_read;
2e276125
JB
22102 int line, file;
22103
22104 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22105 mac_ptr += bytes_read;
22106 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22107 mac_ptr += bytes_read;
22108
3e43a32a
MS
22109 if ((line == 0 && !at_commandline)
22110 || (line != 0 && at_commandline))
757a13d0
JK
22111 complaint (&symfile_complaints,
22112 _("debug info gives source %d included "
22113 "from %s at %s line %d"),
22114 file, at_commandline ? _("command-line") : _("file"),
22115 line == 0 ? _("zero") : _("non-zero"), line);
22116
22117 if (at_commandline)
22118 {
0af92d60 22119 /* This DW_MACRO_start_file was executed in the
cf2c3c16 22120 pass one. */
757a13d0
JK
22121 at_commandline = 0;
22122 }
22123 else
43f3e411 22124 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
22125 }
22126 break;
22127
0af92d60 22128 case DW_MACRO_end_file:
2e276125 22129 if (! current_file)
4d3c2250 22130 complaint (&symfile_complaints,
3e43a32a
MS
22131 _("macro debug info has an unmatched "
22132 "`close_file' directive"));
2e276125
JB
22133 else
22134 {
22135 current_file = current_file->included_by;
22136 if (! current_file)
22137 {
cf2c3c16 22138 enum dwarf_macro_record_type next_type;
2e276125
JB
22139
22140 /* GCC circa March 2002 doesn't produce the zero
22141 type byte marking the end of the compilation
22142 unit. Complain if it's not there, but exit no
22143 matter what. */
22144
22145 /* Do we at least have room for a macinfo type byte? */
22146 if (mac_ptr >= mac_end)
22147 {
f664829e 22148 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
22149 return;
22150 }
22151
22152 /* We don't increment mac_ptr here, so this is just
22153 a look-ahead. */
aead7601
SM
22154 next_type
22155 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22156 mac_ptr);
2e276125 22157 if (next_type != 0)
4d3c2250 22158 complaint (&symfile_complaints,
3e43a32a
MS
22159 _("no terminating 0-type entry for "
22160 "macros in `.debug_macinfo' section"));
2e276125
JB
22161
22162 return;
22163 }
22164 }
22165 break;
22166
0af92d60
JK
22167 case DW_MACRO_import:
22168 case DW_MACRO_import_sup:
cf2c3c16
TT
22169 {
22170 LONGEST offset;
8fc3fc34 22171 void **slot;
a036ba48
TT
22172 bfd *include_bfd = abfd;
22173 struct dwarf2_section_info *include_section = section;
d521ce57 22174 const gdb_byte *include_mac_end = mac_end;
a036ba48 22175 int is_dwz = section_is_dwz;
d521ce57 22176 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
22177
22178 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22179 mac_ptr += offset_size;
22180
0af92d60 22181 if (macinfo_type == DW_MACRO_import_sup)
a036ba48
TT
22182 {
22183 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22184
4d663531 22185 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 22186
a036ba48 22187 include_section = &dwz->macro;
a32a8923 22188 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
22189 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22190 is_dwz = 1;
22191 }
22192
22193 new_mac_ptr = include_section->buffer + offset;
22194 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22195
8fc3fc34
TT
22196 if (*slot != NULL)
22197 {
22198 /* This has actually happened; see
22199 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22200 complaint (&symfile_complaints,
0af92d60 22201 _("recursive DW_MACRO_import in "
8fc3fc34
TT
22202 ".debug_macro section"));
22203 }
22204 else
22205 {
d521ce57 22206 *slot = (void *) new_mac_ptr;
36586728 22207
a036ba48 22208 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 22209 include_mac_end, current_file, lh,
36586728 22210 section, section_is_gnu, is_dwz,
4d663531 22211 offset_size, include_hash);
8fc3fc34 22212
d521ce57 22213 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 22214 }
cf2c3c16
TT
22215 }
22216 break;
22217
2e276125 22218 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
22219 if (!section_is_gnu)
22220 {
22221 unsigned int bytes_read;
2e276125 22222
ac298888
TT
22223 /* This reads the constant, but since we don't recognize
22224 any vendor extensions, we ignore it. */
22225 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
22226 mac_ptr += bytes_read;
22227 read_direct_string (abfd, mac_ptr, &bytes_read);
22228 mac_ptr += bytes_read;
2e276125 22229
cf2c3c16
TT
22230 /* We don't recognize any vendor extensions. */
22231 break;
22232 }
22233 /* FALLTHROUGH */
22234
22235 default:
22236 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22237 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22238 section);
22239 if (mac_ptr == NULL)
22240 return;
22241 break;
2e276125 22242 }
757a13d0 22243 } while (macinfo_type != 0);
2e276125 22244}
8e19ed76 22245
cf2c3c16 22246static void
09262596 22247dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 22248 int section_is_gnu)
cf2c3c16 22249{
bb5ed363 22250 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
22251 struct line_header *lh = cu->line_header;
22252 bfd *abfd;
d521ce57 22253 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
22254 struct macro_source_file *current_file = 0;
22255 enum dwarf_macro_record_type macinfo_type;
22256 unsigned int offset_size = cu->header.offset_size;
d521ce57 22257 const gdb_byte *opcode_definitions[256];
8fc3fc34 22258 void **slot;
09262596
DE
22259 struct dwarf2_section_info *section;
22260 const char *section_name;
22261
22262 if (cu->dwo_unit != NULL)
22263 {
22264 if (section_is_gnu)
22265 {
22266 section = &cu->dwo_unit->dwo_file->sections.macro;
22267 section_name = ".debug_macro.dwo";
22268 }
22269 else
22270 {
22271 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22272 section_name = ".debug_macinfo.dwo";
22273 }
22274 }
22275 else
22276 {
22277 if (section_is_gnu)
22278 {
22279 section = &dwarf2_per_objfile->macro;
22280 section_name = ".debug_macro";
22281 }
22282 else
22283 {
22284 section = &dwarf2_per_objfile->macinfo;
22285 section_name = ".debug_macinfo";
22286 }
22287 }
cf2c3c16 22288
bb5ed363 22289 dwarf2_read_section (objfile, section);
cf2c3c16
TT
22290 if (section->buffer == NULL)
22291 {
fceca515 22292 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
22293 return;
22294 }
a32a8923 22295 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
22296
22297 /* First pass: Find the name of the base filename.
22298 This filename is needed in order to process all macros whose definition
22299 (or undefinition) comes from the command line. These macros are defined
22300 before the first DW_MACINFO_start_file entry, and yet still need to be
22301 associated to the base file.
22302
22303 To determine the base file name, we scan the macro definitions until we
22304 reach the first DW_MACINFO_start_file entry. We then initialize
22305 CURRENT_FILE accordingly so that any macro definition found before the
22306 first DW_MACINFO_start_file can still be associated to the base file. */
22307
22308 mac_ptr = section->buffer + offset;
22309 mac_end = section->buffer + section->size;
22310
22311 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22312 &offset_size, section_is_gnu);
22313 if (mac_ptr == NULL)
22314 {
22315 /* We already issued a complaint. */
22316 return;
22317 }
22318
22319 do
22320 {
22321 /* Do we at least have room for a macinfo type byte? */
22322 if (mac_ptr >= mac_end)
22323 {
22324 /* Complaint is printed during the second pass as GDB will probably
22325 stop the first pass earlier upon finding
22326 DW_MACINFO_start_file. */
22327 break;
22328 }
22329
aead7601 22330 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
22331 mac_ptr++;
22332
22333 /* Note that we rely on the fact that the corresponding GNU and
22334 DWARF constants are the same. */
22335 switch (macinfo_type)
22336 {
22337 /* A zero macinfo type indicates the end of the macro
22338 information. */
22339 case 0:
22340 break;
22341
0af92d60
JK
22342 case DW_MACRO_define:
22343 case DW_MACRO_undef:
cf2c3c16
TT
22344 /* Only skip the data by MAC_PTR. */
22345 {
22346 unsigned int bytes_read;
22347
22348 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22349 mac_ptr += bytes_read;
22350 read_direct_string (abfd, mac_ptr, &bytes_read);
22351 mac_ptr += bytes_read;
22352 }
22353 break;
22354
0af92d60 22355 case DW_MACRO_start_file:
cf2c3c16
TT
22356 {
22357 unsigned int bytes_read;
22358 int line, file;
22359
22360 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22361 mac_ptr += bytes_read;
22362 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22363 mac_ptr += bytes_read;
22364
43f3e411 22365 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
22366 }
22367 break;
22368
0af92d60 22369 case DW_MACRO_end_file:
cf2c3c16
TT
22370 /* No data to skip by MAC_PTR. */
22371 break;
22372
0af92d60
JK
22373 case DW_MACRO_define_strp:
22374 case DW_MACRO_undef_strp:
22375 case DW_MACRO_define_sup:
22376 case DW_MACRO_undef_sup:
cf2c3c16
TT
22377 {
22378 unsigned int bytes_read;
22379
22380 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22381 mac_ptr += bytes_read;
22382 mac_ptr += offset_size;
22383 }
22384 break;
22385
0af92d60
JK
22386 case DW_MACRO_import:
22387 case DW_MACRO_import_sup:
cf2c3c16 22388 /* Note that, according to the spec, a transparent include
0af92d60 22389 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
22390 skip this opcode. */
22391 mac_ptr += offset_size;
22392 break;
22393
22394 case DW_MACINFO_vendor_ext:
22395 /* Only skip the data by MAC_PTR. */
22396 if (!section_is_gnu)
22397 {
22398 unsigned int bytes_read;
22399
22400 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22401 mac_ptr += bytes_read;
22402 read_direct_string (abfd, mac_ptr, &bytes_read);
22403 mac_ptr += bytes_read;
22404 }
22405 /* FALLTHROUGH */
22406
22407 default:
22408 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22409 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22410 section);
22411 if (mac_ptr == NULL)
22412 return;
22413 break;
22414 }
22415 } while (macinfo_type != 0 && current_file == NULL);
22416
22417 /* Second pass: Process all entries.
22418
22419 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22420 command-line macro definitions/undefinitions. This flag is unset when we
22421 reach the first DW_MACINFO_start_file entry. */
22422
fc4007c9
TT
22423 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22424 htab_eq_pointer,
22425 NULL, xcalloc, xfree));
8fc3fc34 22426 mac_ptr = section->buffer + offset;
fc4007c9 22427 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 22428 *slot = (void *) mac_ptr;
8fc3fc34 22429 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 22430 current_file, lh, section,
fc4007c9
TT
22431 section_is_gnu, 0, offset_size,
22432 include_hash.get ());
cf2c3c16
TT
22433}
22434
8e19ed76 22435/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 22436 if so return true else false. */
380bca97 22437
8e19ed76 22438static int
6e5a29e1 22439attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
22440{
22441 return (attr == NULL ? 0 :
22442 attr->form == DW_FORM_block1
22443 || attr->form == DW_FORM_block2
22444 || attr->form == DW_FORM_block4
2dc7f7b3
TT
22445 || attr->form == DW_FORM_block
22446 || attr->form == DW_FORM_exprloc);
8e19ed76 22447}
4c2df51b 22448
c6a0999f
JB
22449/* Return non-zero if ATTR's value is a section offset --- classes
22450 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22451 You may use DW_UNSND (attr) to retrieve such offsets.
22452
22453 Section 7.5.4, "Attribute Encodings", explains that no attribute
22454 may have a value that belongs to more than one of these classes; it
22455 would be ambiguous if we did, because we use the same forms for all
22456 of them. */
380bca97 22457
3690dd37 22458static int
6e5a29e1 22459attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
22460{
22461 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
22462 || attr->form == DW_FORM_data8
22463 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
22464}
22465
3690dd37
JB
22466/* Return non-zero if ATTR's value falls in the 'constant' class, or
22467 zero otherwise. When this function returns true, you can apply
22468 dwarf2_get_attr_constant_value to it.
22469
22470 However, note that for some attributes you must check
22471 attr_form_is_section_offset before using this test. DW_FORM_data4
22472 and DW_FORM_data8 are members of both the constant class, and of
22473 the classes that contain offsets into other debug sections
22474 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22475 that, if an attribute's can be either a constant or one of the
22476 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
22477 taken as section offsets, not constants.
22478
22479 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22480 cannot handle that. */
380bca97 22481
3690dd37 22482static int
6e5a29e1 22483attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
22484{
22485 switch (attr->form)
22486 {
22487 case DW_FORM_sdata:
22488 case DW_FORM_udata:
22489 case DW_FORM_data1:
22490 case DW_FORM_data2:
22491 case DW_FORM_data4:
22492 case DW_FORM_data8:
663c44ac 22493 case DW_FORM_implicit_const:
3690dd37
JB
22494 return 1;
22495 default:
22496 return 0;
22497 }
22498}
22499
7771576e
SA
22500
22501/* DW_ADDR is always stored already as sect_offset; despite for the forms
22502 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22503
22504static int
6e5a29e1 22505attr_form_is_ref (const struct attribute *attr)
7771576e
SA
22506{
22507 switch (attr->form)
22508 {
22509 case DW_FORM_ref_addr:
22510 case DW_FORM_ref1:
22511 case DW_FORM_ref2:
22512 case DW_FORM_ref4:
22513 case DW_FORM_ref8:
22514 case DW_FORM_ref_udata:
22515 case DW_FORM_GNU_ref_alt:
22516 return 1;
22517 default:
22518 return 0;
22519 }
22520}
22521
3019eac3
DE
22522/* Return the .debug_loc section to use for CU.
22523 For DWO files use .debug_loc.dwo. */
22524
22525static struct dwarf2_section_info *
22526cu_debug_loc_section (struct dwarf2_cu *cu)
22527{
22528 if (cu->dwo_unit)
43988095
JK
22529 {
22530 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22531
22532 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22533 }
22534 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22535 : &dwarf2_per_objfile->loc);
3019eac3
DE
22536}
22537
8cf6f0b1
TT
22538/* A helper function that fills in a dwarf2_loclist_baton. */
22539
22540static void
22541fill_in_loclist_baton (struct dwarf2_cu *cu,
22542 struct dwarf2_loclist_baton *baton,
ff39bb5e 22543 const struct attribute *attr)
8cf6f0b1 22544{
3019eac3
DE
22545 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22546
22547 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
22548
22549 baton->per_cu = cu->per_cu;
22550 gdb_assert (baton->per_cu);
22551 /* We don't know how long the location list is, but make sure we
22552 don't run off the edge of the section. */
3019eac3
DE
22553 baton->size = section->size - DW_UNSND (attr);
22554 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 22555 baton->base_address = cu->base_address;
f664829e 22556 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
22557}
22558
4c2df51b 22559static void
ff39bb5e 22560dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 22561 struct dwarf2_cu *cu, int is_block)
4c2df51b 22562{
bb5ed363 22563 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 22564 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 22565
3690dd37 22566 if (attr_form_is_section_offset (attr)
3019eac3 22567 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
22568 the section. If so, fall through to the complaint in the
22569 other branch. */
3019eac3 22570 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 22571 {
0d53c4c4 22572 struct dwarf2_loclist_baton *baton;
4c2df51b 22573
8d749320 22574 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 22575
8cf6f0b1 22576 fill_in_loclist_baton (cu, baton, attr);
be391dca 22577
d00adf39 22578 if (cu->base_known == 0)
0d53c4c4 22579 complaint (&symfile_complaints,
3e43a32a
MS
22580 _("Location list used without "
22581 "specifying the CU base address."));
4c2df51b 22582
f1e6e072
TT
22583 SYMBOL_ACLASS_INDEX (sym) = (is_block
22584 ? dwarf2_loclist_block_index
22585 : dwarf2_loclist_index);
0d53c4c4
DJ
22586 SYMBOL_LOCATION_BATON (sym) = baton;
22587 }
22588 else
22589 {
22590 struct dwarf2_locexpr_baton *baton;
22591
8d749320 22592 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
22593 baton->per_cu = cu->per_cu;
22594 gdb_assert (baton->per_cu);
0d53c4c4
DJ
22595
22596 if (attr_form_is_block (attr))
22597 {
22598 /* Note that we're just copying the block's data pointer
22599 here, not the actual data. We're still pointing into the
6502dd73
DJ
22600 info_buffer for SYM's objfile; right now we never release
22601 that buffer, but when we do clean up properly this may
22602 need to change. */
0d53c4c4
DJ
22603 baton->size = DW_BLOCK (attr)->size;
22604 baton->data = DW_BLOCK (attr)->data;
22605 }
22606 else
22607 {
22608 dwarf2_invalid_attrib_class_complaint ("location description",
22609 SYMBOL_NATURAL_NAME (sym));
22610 baton->size = 0;
0d53c4c4 22611 }
6e70227d 22612
f1e6e072
TT
22613 SYMBOL_ACLASS_INDEX (sym) = (is_block
22614 ? dwarf2_locexpr_block_index
22615 : dwarf2_locexpr_index);
0d53c4c4
DJ
22616 SYMBOL_LOCATION_BATON (sym) = baton;
22617 }
4c2df51b 22618}
6502dd73 22619
9aa1f1e3
TT
22620/* Return the OBJFILE associated with the compilation unit CU. If CU
22621 came from a separate debuginfo file, then the master objfile is
22622 returned. */
ae0d2f24
UW
22623
22624struct objfile *
22625dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22626{
9291a0cd 22627 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
22628
22629 /* Return the master objfile, so that we can report and look up the
22630 correct file containing this variable. */
22631 if (objfile->separate_debug_objfile_backlink)
22632 objfile = objfile->separate_debug_objfile_backlink;
22633
22634 return objfile;
22635}
22636
96408a79
SA
22637/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22638 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22639 CU_HEADERP first. */
22640
22641static const struct comp_unit_head *
22642per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22643 struct dwarf2_per_cu_data *per_cu)
22644{
d521ce57 22645 const gdb_byte *info_ptr;
96408a79
SA
22646
22647 if (per_cu->cu)
22648 return &per_cu->cu->header;
22649
9c541725 22650 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
22651
22652 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
22653 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22654 rcuh_kind::COMPILE);
96408a79
SA
22655
22656 return cu_headerp;
22657}
22658
ae0d2f24
UW
22659/* Return the address size given in the compilation unit header for CU. */
22660
98714339 22661int
ae0d2f24
UW
22662dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22663{
96408a79
SA
22664 struct comp_unit_head cu_header_local;
22665 const struct comp_unit_head *cu_headerp;
c471e790 22666
96408a79
SA
22667 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22668
22669 return cu_headerp->addr_size;
ae0d2f24
UW
22670}
22671
9eae7c52
TT
22672/* Return the offset size given in the compilation unit header for CU. */
22673
22674int
22675dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22676{
96408a79
SA
22677 struct comp_unit_head cu_header_local;
22678 const struct comp_unit_head *cu_headerp;
9c6c53f7 22679
96408a79
SA
22680 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22681
22682 return cu_headerp->offset_size;
22683}
22684
22685/* See its dwarf2loc.h declaration. */
22686
22687int
22688dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22689{
22690 struct comp_unit_head cu_header_local;
22691 const struct comp_unit_head *cu_headerp;
22692
22693 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22694
22695 if (cu_headerp->version == 2)
22696 return cu_headerp->addr_size;
22697 else
22698 return cu_headerp->offset_size;
181cebd4
JK
22699}
22700
9aa1f1e3
TT
22701/* Return the text offset of the CU. The returned offset comes from
22702 this CU's objfile. If this objfile came from a separate debuginfo
22703 file, then the offset may be different from the corresponding
22704 offset in the parent objfile. */
22705
22706CORE_ADDR
22707dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22708{
bb3fa9d0 22709 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22710
22711 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22712}
22713
43988095
JK
22714/* Return DWARF version number of PER_CU. */
22715
22716short
22717dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22718{
22719 return per_cu->dwarf_version;
22720}
22721
348e048f
DE
22722/* Locate the .debug_info compilation unit from CU's objfile which contains
22723 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22724
22725static struct dwarf2_per_cu_data *
9c541725 22726dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 22727 unsigned int offset_in_dwz,
ae038cb0
DJ
22728 struct objfile *objfile)
22729{
22730 struct dwarf2_per_cu_data *this_cu;
22731 int low, high;
36586728 22732 const sect_offset *cu_off;
ae038cb0 22733
ae038cb0
DJ
22734 low = 0;
22735 high = dwarf2_per_objfile->n_comp_units - 1;
22736 while (high > low)
22737 {
36586728 22738 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22739 int mid = low + (high - low) / 2;
9a619af0 22740
36586728 22741 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
9c541725 22742 cu_off = &mid_cu->sect_off;
36586728 22743 if (mid_cu->is_dwz > offset_in_dwz
9c541725 22744 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
ae038cb0
DJ
22745 high = mid;
22746 else
22747 low = mid + 1;
22748 }
22749 gdb_assert (low == high);
36586728 22750 this_cu = dwarf2_per_objfile->all_comp_units[low];
9c541725
PA
22751 cu_off = &this_cu->sect_off;
22752 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
ae038cb0 22753 {
36586728 22754 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 22755 error (_("Dwarf Error: could not find partial DIE containing "
9c541725
PA
22756 "offset 0x%x [in module %s]"),
22757 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
10b3939b 22758
9c541725
PA
22759 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22760 <= sect_off);
ae038cb0
DJ
22761 return dwarf2_per_objfile->all_comp_units[low-1];
22762 }
22763 else
22764 {
22765 this_cu = dwarf2_per_objfile->all_comp_units[low];
22766 if (low == dwarf2_per_objfile->n_comp_units - 1
9c541725
PA
22767 && sect_off >= this_cu->sect_off + this_cu->length)
22768 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22769 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
22770 return this_cu;
22771 }
22772}
22773
23745b47 22774/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22775
9816fde3 22776static void
23745b47 22777init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22778{
9816fde3 22779 memset (cu, 0, sizeof (*cu));
23745b47
DE
22780 per_cu->cu = cu;
22781 cu->per_cu = per_cu;
22782 cu->objfile = per_cu->objfile;
93311388 22783 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22784}
22785
22786/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22787
22788static void
95554aad
TT
22789prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22790 enum language pretend_language)
9816fde3
JK
22791{
22792 struct attribute *attr;
22793
22794 /* Set the language we're debugging. */
22795 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22796 if (attr)
22797 set_cu_language (DW_UNSND (attr), cu);
22798 else
9cded63f 22799 {
95554aad 22800 cu->language = pretend_language;
9cded63f
TT
22801 cu->language_defn = language_def (cu->language);
22802 }
dee91e82 22803
7d45c7c3 22804 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22805}
22806
ae038cb0
DJ
22807/* Release one cached compilation unit, CU. We unlink it from the tree
22808 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22809 the caller is responsible for that.
22810 NOTE: DATA is a void * because this function is also used as a
22811 cleanup routine. */
ae038cb0
DJ
22812
22813static void
68dc6402 22814free_heap_comp_unit (void *data)
ae038cb0 22815{
9a3c8263 22816 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22817
23745b47
DE
22818 gdb_assert (cu->per_cu != NULL);
22819 cu->per_cu->cu = NULL;
ae038cb0
DJ
22820 cu->per_cu = NULL;
22821
22822 obstack_free (&cu->comp_unit_obstack, NULL);
22823
22824 xfree (cu);
22825}
22826
72bf9492 22827/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22828 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22829 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22830
22831static void
22832free_stack_comp_unit (void *data)
22833{
9a3c8263 22834 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22835
23745b47
DE
22836 gdb_assert (cu->per_cu != NULL);
22837 cu->per_cu->cu = NULL;
22838 cu->per_cu = NULL;
22839
72bf9492
DJ
22840 obstack_free (&cu->comp_unit_obstack, NULL);
22841 cu->partial_dies = NULL;
ae038cb0
DJ
22842}
22843
22844/* Free all cached compilation units. */
22845
22846static void
22847free_cached_comp_units (void *data)
22848{
330cdd98 22849 dwarf2_per_objfile->free_cached_comp_units ();
ae038cb0
DJ
22850}
22851
22852/* Increase the age counter on each cached compilation unit, and free
22853 any that are too old. */
22854
22855static void
22856age_cached_comp_units (void)
22857{
22858 struct dwarf2_per_cu_data *per_cu, **last_chain;
22859
22860 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22861 per_cu = dwarf2_per_objfile->read_in_chain;
22862 while (per_cu != NULL)
22863 {
22864 per_cu->cu->last_used ++;
b4f54984 22865 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22866 dwarf2_mark (per_cu->cu);
22867 per_cu = per_cu->cu->read_in_chain;
22868 }
22869
22870 per_cu = dwarf2_per_objfile->read_in_chain;
22871 last_chain = &dwarf2_per_objfile->read_in_chain;
22872 while (per_cu != NULL)
22873 {
22874 struct dwarf2_per_cu_data *next_cu;
22875
22876 next_cu = per_cu->cu->read_in_chain;
22877
22878 if (!per_cu->cu->mark)
22879 {
68dc6402 22880 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22881 *last_chain = next_cu;
22882 }
22883 else
22884 last_chain = &per_cu->cu->read_in_chain;
22885
22886 per_cu = next_cu;
22887 }
22888}
22889
22890/* Remove a single compilation unit from the cache. */
22891
22892static void
dee91e82 22893free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22894{
22895 struct dwarf2_per_cu_data *per_cu, **last_chain;
22896
22897 per_cu = dwarf2_per_objfile->read_in_chain;
22898 last_chain = &dwarf2_per_objfile->read_in_chain;
22899 while (per_cu != NULL)
22900 {
22901 struct dwarf2_per_cu_data *next_cu;
22902
22903 next_cu = per_cu->cu->read_in_chain;
22904
dee91e82 22905 if (per_cu == target_per_cu)
ae038cb0 22906 {
68dc6402 22907 free_heap_comp_unit (per_cu->cu);
dee91e82 22908 per_cu->cu = NULL;
ae038cb0
DJ
22909 *last_chain = next_cu;
22910 break;
22911 }
22912 else
22913 last_chain = &per_cu->cu->read_in_chain;
22914
22915 per_cu = next_cu;
22916 }
22917}
22918
fe3e1990
DJ
22919/* Release all extra memory associated with OBJFILE. */
22920
22921void
22922dwarf2_free_objfile (struct objfile *objfile)
22923{
9a3c8263
SM
22924 dwarf2_per_objfile
22925 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22926 dwarf2_objfile_data_key);
fe3e1990
DJ
22927
22928 if (dwarf2_per_objfile == NULL)
22929 return;
22930
330cdd98 22931 dwarf2_per_objfile->~dwarf2_per_objfile ();
fe3e1990
DJ
22932}
22933
dee91e82
DE
22934/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22935 We store these in a hash table separate from the DIEs, and preserve them
22936 when the DIEs are flushed out of cache.
22937
22938 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22939 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22940 or the type may come from a DWO file. Furthermore, while it's more logical
22941 to use per_cu->section+offset, with Fission the section with the data is in
22942 the DWO file but we don't know that section at the point we need it.
22943 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22944 because we can enter the lookup routine, get_die_type_at_offset, from
22945 outside this file, and thus won't necessarily have PER_CU->cu.
22946 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22947
dee91e82 22948struct dwarf2_per_cu_offset_and_type
1c379e20 22949{
dee91e82 22950 const struct dwarf2_per_cu_data *per_cu;
9c541725 22951 sect_offset sect_off;
1c379e20
DJ
22952 struct type *type;
22953};
22954
dee91e82 22955/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22956
22957static hashval_t
dee91e82 22958per_cu_offset_and_type_hash (const void *item)
1c379e20 22959{
9a3c8263
SM
22960 const struct dwarf2_per_cu_offset_and_type *ofs
22961 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22962
9c541725 22963 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
22964}
22965
dee91e82 22966/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22967
22968static int
dee91e82 22969per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22970{
9a3c8263
SM
22971 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22972 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22973 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22974 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22975
dee91e82 22976 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 22977 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
22978}
22979
22980/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22981 table if necessary. For convenience, return TYPE.
22982
22983 The DIEs reading must have careful ordering to:
22984 * Not cause infite loops trying to read in DIEs as a prerequisite for
22985 reading current DIE.
22986 * Not trying to dereference contents of still incompletely read in types
22987 while reading in other DIEs.
22988 * Enable referencing still incompletely read in types just by a pointer to
22989 the type without accessing its fields.
22990
22991 Therefore caller should follow these rules:
22992 * Try to fetch any prerequisite types we may need to build this DIE type
22993 before building the type and calling set_die_type.
e71ec853 22994 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22995 possible before fetching more types to complete the current type.
22996 * Make the type as complete as possible before fetching more types. */
1c379e20 22997
f792889a 22998static struct type *
1c379e20
DJ
22999set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23000{
dee91e82 23001 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 23002 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
23003 struct attribute *attr;
23004 struct dynamic_prop prop;
1c379e20 23005
b4ba55a1
JB
23006 /* For Ada types, make sure that the gnat-specific data is always
23007 initialized (if not already set). There are a few types where
23008 we should not be doing so, because the type-specific area is
23009 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23010 where the type-specific area is used to store the floatformat).
23011 But this is not a problem, because the gnat-specific information
23012 is actually not needed for these types. */
23013 if (need_gnat_info (cu)
23014 && TYPE_CODE (type) != TYPE_CODE_FUNC
23015 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
23016 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23017 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23018 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
23019 && !HAVE_GNAT_AUX_INFO (type))
23020 INIT_GNAT_SPECIFIC (type);
23021
3f2f83dd
KB
23022 /* Read DW_AT_allocated and set in type. */
23023 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23024 if (attr_form_is_block (attr))
23025 {
23026 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23027 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23028 }
23029 else if (attr != NULL)
23030 {
23031 complaint (&symfile_complaints,
9c541725
PA
23032 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23033 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23034 to_underlying (die->sect_off));
3f2f83dd
KB
23035 }
23036
23037 /* Read DW_AT_associated and set in type. */
23038 attr = dwarf2_attr (die, DW_AT_associated, cu);
23039 if (attr_form_is_block (attr))
23040 {
23041 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23042 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23043 }
23044 else if (attr != NULL)
23045 {
23046 complaint (&symfile_complaints,
9c541725
PA
23047 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23048 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23049 to_underlying (die->sect_off));
3f2f83dd
KB
23050 }
23051
3cdcd0ce
JB
23052 /* Read DW_AT_data_location and set in type. */
23053 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23054 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 23055 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 23056
dee91e82 23057 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23058 {
dee91e82
DE
23059 dwarf2_per_objfile->die_type_hash =
23060 htab_create_alloc_ex (127,
23061 per_cu_offset_and_type_hash,
23062 per_cu_offset_and_type_eq,
23063 NULL,
23064 &objfile->objfile_obstack,
23065 hashtab_obstack_allocate,
23066 dummy_obstack_deallocate);
f792889a 23067 }
1c379e20 23068
dee91e82 23069 ofs.per_cu = cu->per_cu;
9c541725 23070 ofs.sect_off = die->sect_off;
1c379e20 23071 ofs.type = type;
dee91e82
DE
23072 slot = (struct dwarf2_per_cu_offset_and_type **)
23073 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
23074 if (*slot)
23075 complaint (&symfile_complaints,
23076 _("A problem internal to GDB: DIE 0x%x has type already set"),
9c541725 23077 to_underlying (die->sect_off));
8d749320
SM
23078 *slot = XOBNEW (&objfile->objfile_obstack,
23079 struct dwarf2_per_cu_offset_and_type);
1c379e20 23080 **slot = ofs;
f792889a 23081 return type;
1c379e20
DJ
23082}
23083
9c541725 23084/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 23085 or return NULL if the die does not have a saved type. */
1c379e20
DJ
23086
23087static struct type *
9c541725 23088get_die_type_at_offset (sect_offset sect_off,
673bfd45 23089 struct dwarf2_per_cu_data *per_cu)
1c379e20 23090{
dee91e82 23091 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 23092
dee91e82 23093 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23094 return NULL;
1c379e20 23095
dee91e82 23096 ofs.per_cu = per_cu;
9c541725 23097 ofs.sect_off = sect_off;
9a3c8263
SM
23098 slot = ((struct dwarf2_per_cu_offset_and_type *)
23099 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
23100 if (slot)
23101 return slot->type;
23102 else
23103 return NULL;
23104}
23105
02142a6c 23106/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
23107 or return NULL if DIE does not have a saved type. */
23108
23109static struct type *
23110get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23111{
9c541725 23112 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
23113}
23114
10b3939b
DJ
23115/* Add a dependence relationship from CU to REF_PER_CU. */
23116
23117static void
23118dwarf2_add_dependence (struct dwarf2_cu *cu,
23119 struct dwarf2_per_cu_data *ref_per_cu)
23120{
23121 void **slot;
23122
23123 if (cu->dependencies == NULL)
23124 cu->dependencies
23125 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23126 NULL, &cu->comp_unit_obstack,
23127 hashtab_obstack_allocate,
23128 dummy_obstack_deallocate);
23129
23130 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23131 if (*slot == NULL)
23132 *slot = ref_per_cu;
23133}
1c379e20 23134
f504f079
DE
23135/* Subroutine of dwarf2_mark to pass to htab_traverse.
23136 Set the mark field in every compilation unit in the
ae038cb0
DJ
23137 cache that we must keep because we are keeping CU. */
23138
10b3939b
DJ
23139static int
23140dwarf2_mark_helper (void **slot, void *data)
23141{
23142 struct dwarf2_per_cu_data *per_cu;
23143
23144 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
23145
23146 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23147 reading of the chain. As such dependencies remain valid it is not much
23148 useful to track and undo them during QUIT cleanups. */
23149 if (per_cu->cu == NULL)
23150 return 1;
23151
10b3939b
DJ
23152 if (per_cu->cu->mark)
23153 return 1;
23154 per_cu->cu->mark = 1;
23155
23156 if (per_cu->cu->dependencies != NULL)
23157 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23158
23159 return 1;
23160}
23161
f504f079
DE
23162/* Set the mark field in CU and in every other compilation unit in the
23163 cache that we must keep because we are keeping CU. */
23164
ae038cb0
DJ
23165static void
23166dwarf2_mark (struct dwarf2_cu *cu)
23167{
23168 if (cu->mark)
23169 return;
23170 cu->mark = 1;
10b3939b
DJ
23171 if (cu->dependencies != NULL)
23172 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
23173}
23174
23175static void
23176dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23177{
23178 while (per_cu)
23179 {
23180 per_cu->cu->mark = 0;
23181 per_cu = per_cu->cu->read_in_chain;
23182 }
72bf9492
DJ
23183}
23184
72bf9492
DJ
23185/* Trivial hash function for partial_die_info: the hash value of a DIE
23186 is its offset in .debug_info for this objfile. */
23187
23188static hashval_t
23189partial_die_hash (const void *item)
23190{
9a3c8263
SM
23191 const struct partial_die_info *part_die
23192 = (const struct partial_die_info *) item;
9a619af0 23193
9c541725 23194 return to_underlying (part_die->sect_off);
72bf9492
DJ
23195}
23196
23197/* Trivial comparison function for partial_die_info structures: two DIEs
23198 are equal if they have the same offset. */
23199
23200static int
23201partial_die_eq (const void *item_lhs, const void *item_rhs)
23202{
9a3c8263
SM
23203 const struct partial_die_info *part_die_lhs
23204 = (const struct partial_die_info *) item_lhs;
23205 const struct partial_die_info *part_die_rhs
23206 = (const struct partial_die_info *) item_rhs;
9a619af0 23207
9c541725 23208 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
23209}
23210
b4f54984
DE
23211static struct cmd_list_element *set_dwarf_cmdlist;
23212static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
23213
23214static void
b4f54984 23215set_dwarf_cmd (char *args, int from_tty)
ae038cb0 23216{
b4f54984 23217 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 23218 gdb_stdout);
ae038cb0
DJ
23219}
23220
23221static void
b4f54984 23222show_dwarf_cmd (char *args, int from_tty)
6e70227d 23223{
b4f54984 23224 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
23225}
23226
4bf44c1c 23227/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
23228
23229static void
c1bd65d0 23230dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 23231{
9a3c8263 23232 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 23233 int ix;
8b70b953 23234
626f2d1c
TT
23235 /* Make sure we don't accidentally use dwarf2_per_objfile while
23236 cleaning up. */
23237 dwarf2_per_objfile = NULL;
23238
59b0c7c1
JB
23239 for (ix = 0; ix < data->n_comp_units; ++ix)
23240 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 23241
59b0c7c1 23242 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 23243 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
23244 data->all_type_units[ix]->per_cu.imported_symtabs);
23245 xfree (data->all_type_units);
95554aad 23246
8b70b953 23247 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
23248
23249 if (data->dwo_files)
23250 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
23251 if (data->dwp_file)
23252 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
23253
23254 if (data->dwz_file && data->dwz_file->dwz_bfd)
23255 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
23256}
23257
23258\f
ae2de4f8 23259/* The "save gdb-index" command. */
9291a0cd 23260
bc8f2430
JK
23261/* In-memory buffer to prepare data to be written later to a file. */
23262class data_buf
9291a0cd 23263{
bc8f2430 23264public:
bc8f2430
JK
23265 /* Copy DATA to the end of the buffer. */
23266 template<typename T>
23267 void append_data (const T &data)
23268 {
23269 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23270 reinterpret_cast<const gdb_byte *> (&data + 1),
c2f134ac 23271 grow (sizeof (data)));
bc8f2430 23272 }
b89be57b 23273
c2f134ac
PA
23274 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23275 terminating zero is appended too. */
bc8f2430
JK
23276 void append_cstr0 (const char *cstr)
23277 {
23278 const size_t size = strlen (cstr) + 1;
c2f134ac
PA
23279 std::copy (cstr, cstr + size, grow (size));
23280 }
23281
23282 /* Accept a host-format integer in VAL and append it to the buffer
23283 as a target-format integer which is LEN bytes long. */
23284 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23285 {
23286 ::store_unsigned_integer (grow (len), len, byte_order, val);
bc8f2430 23287 }
9291a0cd 23288
bc8f2430
JK
23289 /* Return the size of the buffer. */
23290 size_t size () const
23291 {
23292 return m_vec.size ();
23293 }
23294
23295 /* Write the buffer to FILE. */
23296 void file_write (FILE *file) const
23297 {
a81e6d4d
PA
23298 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23299 error (_("couldn't write data to file"));
bc8f2430
JK
23300 }
23301
23302private:
c2f134ac
PA
23303 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23304 the start of the new block. */
23305 gdb_byte *grow (size_t size)
23306 {
23307 m_vec.resize (m_vec.size () + size);
23308 return &*m_vec.end () - size;
23309 }
23310
d5722aa2 23311 gdb::byte_vector m_vec;
bc8f2430 23312};
9291a0cd
TT
23313
23314/* An entry in the symbol table. */
23315struct symtab_index_entry
23316{
23317 /* The name of the symbol. */
23318 const char *name;
23319 /* The offset of the name in the constant pool. */
23320 offset_type index_offset;
23321 /* A sorted vector of the indices of all the CUs that hold an object
23322 of this name. */
bc8f2430 23323 std::vector<offset_type> cu_indices;
9291a0cd
TT
23324};
23325
23326/* The symbol table. This is a power-of-2-sized hash table. */
23327struct mapped_symtab
23328{
bc8f2430
JK
23329 mapped_symtab ()
23330 {
23331 data.resize (1024);
23332 }
b89be57b 23333
bc8f2430 23334 offset_type n_elements = 0;
4b76cda9 23335 std::vector<symtab_index_entry> data;
bc8f2430 23336};
9291a0cd 23337
bc8f2430 23338/* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
559a7a62
JK
23339 the slot.
23340
23341 Function is used only during write_hash_table so no index format backward
23342 compatibility is needed. */
b89be57b 23343
4b76cda9 23344static symtab_index_entry &
9291a0cd
TT
23345find_slot (struct mapped_symtab *symtab, const char *name)
23346{
559a7a62 23347 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd 23348
bc8f2430
JK
23349 index = hash & (symtab->data.size () - 1);
23350 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
9291a0cd
TT
23351
23352 for (;;)
23353 {
4b76cda9
PA
23354 if (symtab->data[index].name == NULL
23355 || strcmp (name, symtab->data[index].name) == 0)
bc8f2430
JK
23356 return symtab->data[index];
23357 index = (index + step) & (symtab->data.size () - 1);
9291a0cd
TT
23358 }
23359}
23360
23361/* Expand SYMTAB's hash table. */
b89be57b 23362
9291a0cd
TT
23363static void
23364hash_expand (struct mapped_symtab *symtab)
23365{
bc8f2430 23366 auto old_entries = std::move (symtab->data);
9291a0cd 23367
bc8f2430
JK
23368 symtab->data.clear ();
23369 symtab->data.resize (old_entries.size () * 2);
9291a0cd 23370
bc8f2430 23371 for (auto &it : old_entries)
4b76cda9 23372 if (it.name != NULL)
bc8f2430 23373 {
4b76cda9 23374 auto &ref = find_slot (symtab, it.name);
bc8f2430
JK
23375 ref = std::move (it);
23376 }
9291a0cd
TT
23377}
23378
156942c7
DE
23379/* Add an entry to SYMTAB. NAME is the name of the symbol.
23380 CU_INDEX is the index of the CU in which the symbol appears.
23381 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 23382
9291a0cd
TT
23383static void
23384add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 23385 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
23386 offset_type cu_index)
23387{
156942c7 23388 offset_type cu_index_and_attrs;
9291a0cd
TT
23389
23390 ++symtab->n_elements;
bc8f2430 23391 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
9291a0cd
TT
23392 hash_expand (symtab);
23393
4b76cda9
PA
23394 symtab_index_entry &slot = find_slot (symtab, name);
23395 if (slot.name == NULL)
9291a0cd 23396 {
4b76cda9 23397 slot.name = name;
156942c7 23398 /* index_offset is set later. */
9291a0cd 23399 }
156942c7
DE
23400
23401 cu_index_and_attrs = 0;
23402 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23403 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23404 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23405
23406 /* We don't want to record an index value twice as we want to avoid the
23407 duplication.
23408 We process all global symbols and then all static symbols
23409 (which would allow us to avoid the duplication by only having to check
23410 the last entry pushed), but a symbol could have multiple kinds in one CU.
23411 To keep things simple we don't worry about the duplication here and
23412 sort and uniqufy the list after we've processed all symbols. */
4b76cda9 23413 slot.cu_indices.push_back (cu_index_and_attrs);
156942c7
DE
23414}
23415
23416/* Sort and remove duplicates of all symbols' cu_indices lists. */
23417
23418static void
23419uniquify_cu_indices (struct mapped_symtab *symtab)
23420{
4b76cda9 23421 for (auto &entry : symtab->data)
156942c7 23422 {
4b76cda9 23423 if (entry.name != NULL && !entry.cu_indices.empty ())
156942c7 23424 {
4b76cda9 23425 auto &cu_indices = entry.cu_indices;
6fd931f2
PA
23426 std::sort (cu_indices.begin (), cu_indices.end ());
23427 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23428 cu_indices.erase (from, cu_indices.end ());
156942c7
DE
23429 }
23430 }
9291a0cd
TT
23431}
23432
bc8f2430
JK
23433/* A form of 'const char *' suitable for container keys. Only the
23434 pointer is stored. The strings themselves are compared, not the
23435 pointers. */
23436class c_str_view
9291a0cd 23437{
bc8f2430
JK
23438public:
23439 c_str_view (const char *cstr)
23440 : m_cstr (cstr)
23441 {}
9291a0cd 23442
bc8f2430
JK
23443 bool operator== (const c_str_view &other) const
23444 {
23445 return strcmp (m_cstr, other.m_cstr) == 0;
23446 }
9291a0cd 23447
bc8f2430
JK
23448private:
23449 friend class c_str_view_hasher;
23450 const char *const m_cstr;
23451};
9291a0cd 23452
bc8f2430
JK
23453/* A std::unordered_map::hasher for c_str_view that uses the right
23454 hash function for strings in a mapped index. */
23455class c_str_view_hasher
23456{
23457public:
23458 size_t operator () (const c_str_view &x) const
23459 {
23460 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23461 }
23462};
b89be57b 23463
bc8f2430
JK
23464/* A std::unordered_map::hasher for std::vector<>. */
23465template<typename T>
23466class vector_hasher
9291a0cd 23467{
bc8f2430
JK
23468public:
23469 size_t operator () (const std::vector<T> &key) const
23470 {
23471 return iterative_hash (key.data (),
23472 sizeof (key.front ()) * key.size (), 0);
23473 }
23474};
9291a0cd 23475
bc8f2430
JK
23476/* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23477 constant pool entries going into the data buffer CPOOL. */
3876f04e 23478
bc8f2430
JK
23479static void
23480write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23481{
23482 {
23483 /* Elements are sorted vectors of the indices of all the CUs that
23484 hold an object of this name. */
23485 std::unordered_map<std::vector<offset_type>, offset_type,
23486 vector_hasher<offset_type>>
23487 symbol_hash_table;
23488
23489 /* We add all the index vectors to the constant pool first, to
23490 ensure alignment is ok. */
4b76cda9 23491 for (symtab_index_entry &entry : symtab->data)
bc8f2430 23492 {
4b76cda9 23493 if (entry.name == NULL)
bc8f2430 23494 continue;
4b76cda9 23495 gdb_assert (entry.index_offset == 0);
70a1152b
PA
23496
23497 /* Finding before inserting is faster than always trying to
23498 insert, because inserting always allocates a node, does the
23499 lookup, and then destroys the new node if another node
23500 already had the same key. C++17 try_emplace will avoid
23501 this. */
23502 const auto found
4b76cda9 23503 = symbol_hash_table.find (entry.cu_indices);
70a1152b
PA
23504 if (found != symbol_hash_table.end ())
23505 {
4b76cda9 23506 entry.index_offset = found->second;
70a1152b
PA
23507 continue;
23508 }
23509
4b76cda9
PA
23510 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23511 entry.index_offset = cpool.size ();
23512 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23513 for (const auto index : entry.cu_indices)
23514 cpool.append_data (MAYBE_SWAP (index));
bc8f2430
JK
23515 }
23516 }
9291a0cd
TT
23517
23518 /* Now write out the hash table. */
bc8f2430 23519 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
4b76cda9 23520 for (const auto &entry : symtab->data)
9291a0cd
TT
23521 {
23522 offset_type str_off, vec_off;
23523
4b76cda9 23524 if (entry.name != NULL)
9291a0cd 23525 {
4b76cda9 23526 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
bc8f2430 23527 if (insertpair.second)
4b76cda9 23528 cpool.append_cstr0 (entry.name);
bc8f2430 23529 str_off = insertpair.first->second;
4b76cda9 23530 vec_off = entry.index_offset;
9291a0cd
TT
23531 }
23532 else
23533 {
23534 /* While 0 is a valid constant pool index, it is not valid
23535 to have 0 for both offsets. */
23536 str_off = 0;
23537 vec_off = 0;
23538 }
23539
bc8f2430
JK
23540 output.append_data (MAYBE_SWAP (str_off));
23541 output.append_data (MAYBE_SWAP (vec_off));
9291a0cd 23542 }
9291a0cd
TT
23543}
23544
bc8f2430 23545typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
0a5429f6
DE
23546
23547/* Helper struct for building the address table. */
23548struct addrmap_index_data
23549{
bc8f2430
JK
23550 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23551 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23552 {}
23553
0a5429f6 23554 struct objfile *objfile;
bc8f2430
JK
23555 data_buf &addr_vec;
23556 psym_index_map &cu_index_htab;
0a5429f6
DE
23557
23558 /* Non-zero if the previous_* fields are valid.
23559 We can't write an entry until we see the next entry (since it is only then
23560 that we know the end of the entry). */
23561 int previous_valid;
23562 /* Index of the CU in the table of all CUs in the index file. */
23563 unsigned int previous_cu_index;
0963b4bd 23564 /* Start address of the CU. */
0a5429f6
DE
23565 CORE_ADDR previous_cu_start;
23566};
23567
bc8f2430 23568/* Write an address entry to ADDR_VEC. */
b89be57b 23569
9291a0cd 23570static void
bc8f2430 23571add_address_entry (struct objfile *objfile, data_buf &addr_vec,
0a5429f6 23572 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23573{
9291a0cd
TT
23574 CORE_ADDR baseaddr;
23575
23576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23577
c2f134ac
PA
23578 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23579 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
bc8f2430 23580 addr_vec.append_data (MAYBE_SWAP (cu_index));
0a5429f6
DE
23581}
23582
23583/* Worker function for traversing an addrmap to build the address table. */
23584
23585static int
23586add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23587{
9a3c8263
SM
23588 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23589 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23590
23591 if (data->previous_valid)
bc8f2430 23592 add_address_entry (data->objfile, data->addr_vec,
0a5429f6
DE
23593 data->previous_cu_start, start_addr,
23594 data->previous_cu_index);
23595
23596 data->previous_cu_start = start_addr;
23597 if (pst != NULL)
23598 {
bc8f2430
JK
23599 const auto it = data->cu_index_htab.find (pst);
23600 gdb_assert (it != data->cu_index_htab.cend ());
23601 data->previous_cu_index = it->second;
0a5429f6
DE
23602 data->previous_valid = 1;
23603 }
23604 else
bc8f2430 23605 data->previous_valid = 0;
0a5429f6
DE
23606
23607 return 0;
23608}
23609
bc8f2430 23610/* Write OBJFILE's address map to ADDR_VEC.
0a5429f6
DE
23611 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23612 in the index file. */
23613
23614static void
bc8f2430
JK
23615write_address_map (struct objfile *objfile, data_buf &addr_vec,
23616 psym_index_map &cu_index_htab)
0a5429f6 23617{
bc8f2430 23618 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
0a5429f6
DE
23619
23620 /* When writing the address table, we have to cope with the fact that
23621 the addrmap iterator only provides the start of a region; we have to
23622 wait until the next invocation to get the start of the next region. */
23623
23624 addrmap_index_data.objfile = objfile;
0a5429f6
DE
23625 addrmap_index_data.previous_valid = 0;
23626
23627 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23628 &addrmap_index_data);
23629
23630 /* It's highly unlikely the last entry (end address = 0xff...ff)
23631 is valid, but we should still handle it.
23632 The end address is recorded as the start of the next region, but that
23633 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23634 anyway. */
23635 if (addrmap_index_data.previous_valid)
bc8f2430 23636 add_address_entry (objfile, addr_vec,
0a5429f6
DE
23637 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23638 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23639}
23640
156942c7
DE
23641/* Return the symbol kind of PSYM. */
23642
23643static gdb_index_symbol_kind
23644symbol_kind (struct partial_symbol *psym)
23645{
23646 domain_enum domain = PSYMBOL_DOMAIN (psym);
23647 enum address_class aclass = PSYMBOL_CLASS (psym);
23648
23649 switch (domain)
23650 {
23651 case VAR_DOMAIN:
23652 switch (aclass)
23653 {
23654 case LOC_BLOCK:
23655 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23656 case LOC_TYPEDEF:
23657 return GDB_INDEX_SYMBOL_KIND_TYPE;
23658 case LOC_COMPUTED:
23659 case LOC_CONST_BYTES:
23660 case LOC_OPTIMIZED_OUT:
23661 case LOC_STATIC:
23662 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23663 case LOC_CONST:
23664 /* Note: It's currently impossible to recognize psyms as enum values
23665 short of reading the type info. For now punt. */
23666 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23667 default:
23668 /* There are other LOC_FOO values that one might want to classify
23669 as variables, but dwarf2read.c doesn't currently use them. */
23670 return GDB_INDEX_SYMBOL_KIND_OTHER;
23671 }
23672 case STRUCT_DOMAIN:
23673 return GDB_INDEX_SYMBOL_KIND_TYPE;
23674 default:
23675 return GDB_INDEX_SYMBOL_KIND_OTHER;
23676 }
23677}
23678
9291a0cd 23679/* Add a list of partial symbols to SYMTAB. */
b89be57b 23680
9291a0cd
TT
23681static void
23682write_psymbols (struct mapped_symtab *symtab,
bc8f2430 23683 std::unordered_set<partial_symbol *> &psyms_seen,
9291a0cd
TT
23684 struct partial_symbol **psymp,
23685 int count,
987d643c
TT
23686 offset_type cu_index,
23687 int is_static)
9291a0cd
TT
23688{
23689 for (; count-- > 0; ++psymp)
23690 {
156942c7 23691 struct partial_symbol *psym = *psymp;
987d643c 23692
156942c7 23693 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23694 error (_("Ada is not currently supported by the index"));
987d643c 23695
987d643c 23696 /* Only add a given psymbol once. */
bc8f2430 23697 if (psyms_seen.insert (psym).second)
987d643c 23698 {
156942c7
DE
23699 gdb_index_symbol_kind kind = symbol_kind (psym);
23700
156942c7
DE
23701 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23702 is_static, kind, cu_index);
987d643c 23703 }
9291a0cd
TT
23704 }
23705}
23706
1fd400ff
TT
23707/* A helper struct used when iterating over debug_types. */
23708struct signatured_type_index_data
23709{
bc8f2430
JK
23710 signatured_type_index_data (data_buf &types_list_,
23711 std::unordered_set<partial_symbol *> &psyms_seen_)
23712 : types_list (types_list_), psyms_seen (psyms_seen_)
23713 {}
23714
1fd400ff
TT
23715 struct objfile *objfile;
23716 struct mapped_symtab *symtab;
bc8f2430
JK
23717 data_buf &types_list;
23718 std::unordered_set<partial_symbol *> &psyms_seen;
1fd400ff
TT
23719 int cu_index;
23720};
23721
23722/* A helper function that writes a single signatured_type to an
23723 obstack. */
b89be57b 23724
1fd400ff
TT
23725static int
23726write_one_signatured_type (void **slot, void *d)
23727{
9a3c8263
SM
23728 struct signatured_type_index_data *info
23729 = (struct signatured_type_index_data *) d;
1fd400ff 23730 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23731 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23732
23733 write_psymbols (info->symtab,
987d643c 23734 info->psyms_seen,
3e43a32a
MS
23735 info->objfile->global_psymbols.list
23736 + psymtab->globals_offset,
987d643c
TT
23737 psymtab->n_global_syms, info->cu_index,
23738 0);
1fd400ff 23739 write_psymbols (info->symtab,
987d643c 23740 info->psyms_seen,
3e43a32a
MS
23741 info->objfile->static_psymbols.list
23742 + psymtab->statics_offset,
987d643c
TT
23743 psymtab->n_static_syms, info->cu_index,
23744 1);
1fd400ff 23745
c2f134ac
PA
23746 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23747 to_underlying (entry->per_cu.sect_off));
23748 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23749 to_underlying (entry->type_offset_in_tu));
23750 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
1fd400ff
TT
23751
23752 ++info->cu_index;
23753
23754 return 1;
23755}
23756
e8f8bcb3
PA
23757/* Recurse into all "included" dependencies and count their symbols as
23758 if they appeared in this psymtab. */
23759
23760static void
23761recursively_count_psymbols (struct partial_symtab *psymtab,
23762 size_t &psyms_seen)
23763{
23764 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23765 if (psymtab->dependencies[i]->user != NULL)
23766 recursively_count_psymbols (psymtab->dependencies[i],
23767 psyms_seen);
23768
23769 psyms_seen += psymtab->n_global_syms;
23770 psyms_seen += psymtab->n_static_syms;
23771}
23772
95554aad
TT
23773/* Recurse into all "included" dependencies and write their symbols as
23774 if they appeared in this psymtab. */
23775
23776static void
23777recursively_write_psymbols (struct objfile *objfile,
23778 struct partial_symtab *psymtab,
23779 struct mapped_symtab *symtab,
bc8f2430 23780 std::unordered_set<partial_symbol *> &psyms_seen,
95554aad
TT
23781 offset_type cu_index)
23782{
23783 int i;
23784
23785 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23786 if (psymtab->dependencies[i]->user != NULL)
23787 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23788 symtab, psyms_seen, cu_index);
23789
23790 write_psymbols (symtab,
23791 psyms_seen,
23792 objfile->global_psymbols.list + psymtab->globals_offset,
23793 psymtab->n_global_syms, cu_index,
23794 0);
23795 write_psymbols (symtab,
23796 psyms_seen,
23797 objfile->static_psymbols.list + psymtab->statics_offset,
23798 psymtab->n_static_syms, cu_index,
23799 1);
23800}
23801
9291a0cd 23802/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23803
9291a0cd
TT
23804static void
23805write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23806{
9291a0cd
TT
23807 if (dwarf2_per_objfile->using_index)
23808 error (_("Cannot use an index to create the index"));
23809
8b70b953
TT
23810 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23811 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23812
260b681b
DE
23813 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23814 return;
23815
bc8f2430 23816 struct stat st;
4262abfb
JK
23817 if (stat (objfile_name (objfile), &st) < 0)
23818 perror_with_name (objfile_name (objfile));
9291a0cd 23819
bc8f2430
JK
23820 std::string filename (std::string (dir) + SLASH_STRING
23821 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
9291a0cd 23822
d419f42d 23823 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
9291a0cd 23824 if (!out_file)
bc8f2430 23825 error (_("Can't open `%s' for writing"), filename.c_str ());
9291a0cd 23826
16b7a719
PA
23827 /* Order matters here; we want FILE to be closed before FILENAME is
23828 unlinked, because on MS-Windows one cannot delete a file that is
23829 still open. (Don't call anything here that might throw until
23830 file_closer is created.) */
bc8f2430 23831 gdb::unlinker unlink_file (filename.c_str ());
d419f42d 23832 gdb_file_up close_out_file (out_file);
9291a0cd 23833
bc8f2430
JK
23834 mapped_symtab symtab;
23835 data_buf cu_list;
987d643c 23836
0a5429f6
DE
23837 /* While we're scanning CU's create a table that maps a psymtab pointer
23838 (which is what addrmap records) to its index (which is what is recorded
23839 in the index file). This will later be needed to write the address
23840 table. */
bc8f2430
JK
23841 psym_index_map cu_index_htab;
23842 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23843
23844 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23845 work here. Also, the debug_types entries do not appear in
23846 all_comp_units, but only in their own hash table. */
e8f8bcb3
PA
23847
23848 /* The psyms_seen set is potentially going to be largish (~40k
23849 elements when indexing a -g3 build of GDB itself). Estimate the
23850 number of elements in order to avoid too many rehashes, which
23851 require rebuilding buckets and thus many trips to
23852 malloc/free. */
23853 size_t psyms_count = 0;
23854 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23855 {
23856 struct dwarf2_per_cu_data *per_cu
23857 = dwarf2_per_objfile->all_comp_units[i];
23858 struct partial_symtab *psymtab = per_cu->v.psymtab;
23859
23860 if (psymtab != NULL && psymtab->user == NULL)
23861 recursively_count_psymbols (psymtab, psyms_count);
23862 }
23863 /* Generating an index for gdb itself shows a ratio of
23864 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23865 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
bc8f2430 23866 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 23867 {
3e43a32a
MS
23868 struct dwarf2_per_cu_data *per_cu
23869 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23870 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23871
92fac807
JK
23872 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23873 It may be referenced from a local scope but in such case it does not
23874 need to be present in .gdb_index. */
23875 if (psymtab == NULL)
23876 continue;
23877
95554aad 23878 if (psymtab->user == NULL)
bc8f2430
JK
23879 recursively_write_psymbols (objfile, psymtab, &symtab,
23880 psyms_seen, i);
9291a0cd 23881
bc8f2430
JK
23882 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23883 gdb_assert (insertpair.second);
9291a0cd 23884
c2f134ac
PA
23885 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23886 to_underlying (per_cu->sect_off));
23887 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23888 }
23889
0a5429f6 23890 /* Dump the address map. */
bc8f2430
JK
23891 data_buf addr_vec;
23892 write_address_map (objfile, addr_vec, cu_index_htab);
0a5429f6 23893
1fd400ff 23894 /* Write out the .debug_type entries, if any. */
bc8f2430 23895 data_buf types_cu_list;
1fd400ff
TT
23896 if (dwarf2_per_objfile->signatured_types)
23897 {
bc8f2430
JK
23898 signatured_type_index_data sig_data (types_cu_list,
23899 psyms_seen);
1fd400ff
TT
23900
23901 sig_data.objfile = objfile;
bc8f2430 23902 sig_data.symtab = &symtab;
1fd400ff
TT
23903 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23904 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23905 write_one_signatured_type, &sig_data);
23906 }
23907
156942c7
DE
23908 /* Now that we've processed all symbols we can shrink their cu_indices
23909 lists. */
bc8f2430 23910 uniquify_cu_indices (&symtab);
156942c7 23911
bc8f2430
JK
23912 data_buf symtab_vec, constant_pool;
23913 write_hash_table (&symtab, symtab_vec, constant_pool);
9291a0cd 23914
bc8f2430
JK
23915 data_buf contents;
23916 const offset_type size_of_contents = 6 * sizeof (offset_type);
23917 offset_type total_len = size_of_contents;
9291a0cd
TT
23918
23919 /* The version number. */
bc8f2430 23920 contents.append_data (MAYBE_SWAP (8));
9291a0cd
TT
23921
23922 /* The offset of the CU list from the start of the file. */
bc8f2430
JK
23923 contents.append_data (MAYBE_SWAP (total_len));
23924 total_len += cu_list.size ();
9291a0cd 23925
1fd400ff 23926 /* The offset of the types CU list from the start of the file. */
bc8f2430
JK
23927 contents.append_data (MAYBE_SWAP (total_len));
23928 total_len += types_cu_list.size ();
1fd400ff 23929
9291a0cd 23930 /* The offset of the address table from the start of the file. */
bc8f2430
JK
23931 contents.append_data (MAYBE_SWAP (total_len));
23932 total_len += addr_vec.size ();
9291a0cd
TT
23933
23934 /* The offset of the symbol table from the start of the file. */
bc8f2430
JK
23935 contents.append_data (MAYBE_SWAP (total_len));
23936 total_len += symtab_vec.size ();
9291a0cd
TT
23937
23938 /* The offset of the constant pool from the start of the file. */
bc8f2430
JK
23939 contents.append_data (MAYBE_SWAP (total_len));
23940 total_len += constant_pool.size ();
9291a0cd 23941
bc8f2430 23942 gdb_assert (contents.size () == size_of_contents);
9291a0cd 23943
bc8f2430
JK
23944 contents.file_write (out_file);
23945 cu_list.file_write (out_file);
23946 types_cu_list.file_write (out_file);
23947 addr_vec.file_write (out_file);
23948 symtab_vec.file_write (out_file);
23949 constant_pool.file_write (out_file);
9291a0cd 23950
bef155c3
TT
23951 /* We want to keep the file. */
23952 unlink_file.keep ();
9291a0cd
TT
23953}
23954
90476074
TT
23955/* Implementation of the `save gdb-index' command.
23956
23957 Note that the file format used by this command is documented in the
23958 GDB manual. Any changes here must be documented there. */
11570e71 23959
9291a0cd 23960static void
8384c356 23961save_gdb_index_command (const char *arg, int from_tty)
9291a0cd
TT
23962{
23963 struct objfile *objfile;
23964
23965 if (!arg || !*arg)
96d19272 23966 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23967
23968 ALL_OBJFILES (objfile)
23969 {
23970 struct stat st;
23971
23972 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23973 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23974 continue;
23975
9a3c8263
SM
23976 dwarf2_per_objfile
23977 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23978 dwarf2_objfile_data_key);
9291a0cd
TT
23979 if (dwarf2_per_objfile)
23980 {
9291a0cd 23981
492d29ea 23982 TRY
9291a0cd
TT
23983 {
23984 write_psymtabs_to_index (objfile, arg);
23985 }
492d29ea
PA
23986 CATCH (except, RETURN_MASK_ERROR)
23987 {
23988 exception_fprintf (gdb_stderr, except,
23989 _("Error while writing index for `%s': "),
23990 objfile_name (objfile));
23991 }
23992 END_CATCH
9291a0cd
TT
23993 }
23994 }
dce234bc
PP
23995}
23996
9291a0cd
TT
23997\f
23998
b4f54984 23999int dwarf_always_disassemble;
9eae7c52
TT
24000
24001static void
b4f54984
DE
24002show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24003 struct cmd_list_element *c, const char *value)
9eae7c52 24004{
3e43a32a
MS
24005 fprintf_filtered (file,
24006 _("Whether to always disassemble "
24007 "DWARF expressions is %s.\n"),
9eae7c52
TT
24008 value);
24009}
24010
900e11f9
JK
24011static void
24012show_check_physname (struct ui_file *file, int from_tty,
24013 struct cmd_list_element *c, const char *value)
24014{
24015 fprintf_filtered (file,
24016 _("Whether to check \"physname\" is %s.\n"),
24017 value);
24018}
24019
6502dd73
DJ
24020void
24021_initialize_dwarf2_read (void)
24022{
96d19272
JK
24023 struct cmd_list_element *c;
24024
dce234bc 24025 dwarf2_objfile_data_key
c1bd65d0 24026 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 24027
b4f54984
DE
24028 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24029Set DWARF specific variables.\n\
24030Configure DWARF variables such as the cache size"),
24031 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
24032 0/*allow-unknown*/, &maintenance_set_cmdlist);
24033
b4f54984
DE
24034 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24035Show DWARF specific variables\n\
24036Show DWARF variables such as the cache size"),
24037 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
24038 0/*allow-unknown*/, &maintenance_show_cmdlist);
24039
24040 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
24041 &dwarf_max_cache_age, _("\
24042Set the upper bound on the age of cached DWARF compilation units."), _("\
24043Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
24044A higher limit means that cached compilation units will be stored\n\
24045in memory longer, and more total memory will be used. Zero disables\n\
24046caching, which can slow down startup."),
2c5b56ce 24047 NULL,
b4f54984
DE
24048 show_dwarf_max_cache_age,
24049 &set_dwarf_cmdlist,
24050 &show_dwarf_cmdlist);
d97bc12b 24051
9eae7c52 24052 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 24053 &dwarf_always_disassemble, _("\
9eae7c52
TT
24054Set whether `info address' always disassembles DWARF expressions."), _("\
24055Show whether `info address' always disassembles DWARF expressions."), _("\
24056When enabled, DWARF expressions are always printed in an assembly-like\n\
24057syntax. When disabled, expressions will be printed in a more\n\
24058conversational style, when possible."),
24059 NULL,
b4f54984
DE
24060 show_dwarf_always_disassemble,
24061 &set_dwarf_cmdlist,
24062 &show_dwarf_cmdlist);
24063
24064 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24065Set debugging of the DWARF reader."), _("\
24066Show debugging of the DWARF reader."), _("\
24067When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
24068reading and symtab expansion. A value of 1 (one) provides basic\n\
24069information. A value greater than 1 provides more verbose information."),
45cfd468
DE
24070 NULL,
24071 NULL,
24072 &setdebuglist, &showdebuglist);
24073
b4f54984
DE
24074 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24075Set debugging of the DWARF DIE reader."), _("\
24076Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
24077When enabled (non-zero), DIEs are dumped after they are read in.\n\
24078The value is the maximum depth to print."),
ccce17b0
YQ
24079 NULL,
24080 NULL,
24081 &setdebuglist, &showdebuglist);
9291a0cd 24082
27e0867f
DE
24083 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24084Set debugging of the dwarf line reader."), _("\
24085Show debugging of the dwarf line reader."), _("\
24086When enabled (non-zero), line number entries are dumped as they are read in.\n\
24087A value of 1 (one) provides basic information.\n\
24088A value greater than 1 provides more verbose information."),
24089 NULL,
24090 NULL,
24091 &setdebuglist, &showdebuglist);
24092
900e11f9
JK
24093 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24094Set cross-checking of \"physname\" code against demangler."), _("\
24095Show cross-checking of \"physname\" code against demangler."), _("\
24096When enabled, GDB's internal \"physname\" code is checked against\n\
24097the demangler."),
24098 NULL, show_check_physname,
24099 &setdebuglist, &showdebuglist);
24100
e615022a
DE
24101 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24102 no_class, &use_deprecated_index_sections, _("\
24103Set whether to use deprecated gdb_index sections."), _("\
24104Show whether to use deprecated gdb_index sections."), _("\
24105When enabled, deprecated .gdb_index sections are used anyway.\n\
24106Normally they are ignored either because of a missing feature or\n\
24107performance issue.\n\
24108Warning: This option must be enabled before gdb reads the file."),
24109 NULL,
24110 NULL,
24111 &setlist, &showlist);
24112
96d19272 24113 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 24114 _("\
fc1a9d6e 24115Save a gdb-index file.\n\
11570e71 24116Usage: save gdb-index DIRECTORY"),
96d19272
JK
24117 &save_cmdlist);
24118 set_cmd_completer (c, filename_completer);
f1e6e072
TT
24119
24120 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24121 &dwarf2_locexpr_funcs);
24122 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24123 &dwarf2_loclist_funcs);
24124
24125 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24126 &dwarf2_block_frame_base_locexpr_funcs);
24127 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24128 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 24129}
This page took 4.439798 seconds and 4 git commands to generate.