sim: unify hardware settings
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
3666a048 5# Copyright (C) 1998-2021 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532 26
59233f88 27# Format of the input table
97030eea 28read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
29
30do_read ()
31{
34620563
AC
32 comment=""
33 class=""
c9023fb3
PA
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
ffc2844e 37 # shellcheck disable=SC2162
c9023fb3 38 while IFS='' read line
34620563
AC
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 44 then
34620563
AC
45 continue
46 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 47 then
34620563
AC
48 comment="${comment}
49${line}"
f0d4cc9e 50 else
3d9a5942
AC
51
52 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
cb02ab24 55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 56
ea480a30 57 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 58 eval read "${read}" <<EOF
34620563
AC
59${line}
60EOF
61 IFS="${OFS}"
62
1207375d 63 if test -n "${garbage_at_eol:-}"
283354d8
AC
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
3d9a5942
AC
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
a6fc5ffc 74 if eval test "\"\${${r}}\" = ' '"
3d9a5942 75 then
a6fc5ffc 76 eval "${r}="
3d9a5942
AC
77 fi
78 done
79
a72293e2 80 case "${class}" in
1207375d 81 m ) staticdefault="${predefault:-}" ;;
a72293e2
AC
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
06b25f14 85
ae45cd16
AC
86 case "${class}" in
87 F | V | M )
1207375d 88 case "${invalid_p:-}" in
34620563 89 "" )
f7968451 90 if test -n "${predefault}"
34620563
AC
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
1207375d 93 predicate="gdbarch->${function:-} != ${predefault}"
f7968451
AC
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
34620563
AC
100 fi
101 ;;
ae45cd16 102 * )
1e9f55d0 103 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
104 kill $$
105 exit 1
106 ;;
107 esac
34620563
AC
108 esac
109
34620563
AC
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
f0d4cc9e 114 fi
34620563 115 done
72e74a21 116 if [ -n "${class}" ]
34620563
AC
117 then
118 true
c0e8c252
AC
119 else
120 false
121 fi
122}
123
104c1213 124
f0d4cc9e
AC
125fallback_default_p ()
126{
1207375d 127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
9fdb2916 128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
129}
130
131class_is_variable_p ()
132{
4a5c6a1d
AC
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
f0d4cc9e
AC
137}
138
139class_is_function_p ()
140{
4a5c6a1d
AC
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145}
146
147class_is_multiarch_p ()
148{
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
f0d4cc9e
AC
153}
154
155class_is_predicate_p ()
156{
4a5c6a1d
AC
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
f0d4cc9e
AC
161}
162
163class_is_info_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171
cff3e48b
JM
172# dump out/verify the doco
173for field in ${read}
174do
175 case ${field} in
176
177 class ) : ;;
c4093a6a 178
c0e8c252
AC
179 # # -> line disable
180 # f -> function
181 # hiding a function
2ada493a
AC
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
c0e8c252
AC
184 # v -> variable
185 # hiding a variable
2ada493a
AC
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
c0e8c252
AC
188 # i -> set from info
189 # hiding something from the ``struct info'' object
4a5c6a1d
AC
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
dda83cd7 192 # M -> multi-arch function + predicate
4a5c6a1d 193 # hiding a multi-arch function + predicate to test function validity
cff3e48b 194
cff3e48b
JM
195 returntype ) : ;;
196
c0e8c252 197 # For functions, the return type; for variables, the data type
cff3e48b
JM
198
199 function ) : ;;
200
c0e8c252
AC
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
204
205 formal ) : ;;
206
c0e8c252
AC
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
cff3e48b
JM
211
212 actual ) : ;;
213
c0e8c252
AC
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
cff3e48b 217
0b8f9e4d 218 staticdefault ) : ;;
c0e8c252
AC
219
220 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
cff3e48b 224
0b8f9e4d 225 # If STATICDEFAULT is empty, zero is used.
c0e8c252 226
0b8f9e4d 227 predefault ) : ;;
cff3e48b 228
10312cc4
AC
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
cff3e48b 233
0b8f9e4d
AC
234 # If PREDEFAULT is empty, zero is used.
235
10312cc4
AC
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
f0d4cc9e
AC
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
0b8f9e4d
AC
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
10312cc4
AC
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
f0d4cc9e
AC
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
be7811ad 265 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
266 # will contain the current architecture. Care should be
267 # taken.
cff3e48b 268
c4093a6a 269 invalid_p ) : ;;
cff3e48b 270
0b8f9e4d 271 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 272 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
f0d4cc9e
AC
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
283
284 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 285
cff3e48b
JM
286 print ) : ;;
287
2f9b146e
AC
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
c0e8c252 290
0b1553bc
UW
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
cff3e48b 293
283354d8 294 garbage_at_eol ) : ;;
0b8f9e4d 295
283354d8 296 # Catches stray fields.
cff3e48b 297
50248794
AC
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
cff3e48b
JM
301 esac
302done
303
cff3e48b 304
104c1213
JM
305function_list ()
306{
cff3e48b 307 # See below (DOCO) for description of each field
34620563 308 cat <<EOF
ea480a30 309i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 310#
ea480a30
SM
311i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 313#
ea480a30 314i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 315#
ea480a30 316i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 317
66b43ecb 318# Number of bits in a short or unsigned short for the target machine.
ea480a30 319v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 320# Number of bits in an int or unsigned int for the target machine.
ea480a30 321v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 322# Number of bits in a long or unsigned long for the target machine.
ea480a30 323v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
324# Number of bits in a long long or unsigned long long for the target
325# machine.
ea480a30 326v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 327
2a67f09d 328# The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
f9e9243a
UW
329# "long double". These bit/format pairs should eventually be combined
330# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
331# Each format describes both the big and little endian layouts (if
332# useful).
456fcf94 333
2a67f09d
FW
334v;int;bfloat16_bit;;;16;2*TARGET_CHAR_BIT;;0
335v;const struct floatformat **;bfloat16_format;;;;;floatformats_bfloat16;;pformat (gdbarch->bfloat16_format)
ea480a30
SM
336v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
337v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
338v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
339v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
340v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
341v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
342v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
343v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 344
53375380
PA
345# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
346# starting with C++11.
ea480a30 347v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 348# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 349v;int;wchar_signed;;;1;-1;1
53375380 350
9b790ce7
UW
351# Returns the floating-point format to be used for values of length LENGTH.
352# NAME, if non-NULL, is the type name, which may be used to distinguish
353# different target formats of the same length.
ea480a30 354m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 355
52204a0b
DT
356# For most targets, a pointer on the target and its representation as an
357# address in GDB have the same size and "look the same". For such a
17a912b6 358# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
359# / addr_bit will be set from it.
360#
17a912b6 361# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
362# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
363# gdbarch_address_to_pointer as well.
52204a0b
DT
364#
365# ptr_bit is the size of a pointer on the target
ea480a30 366v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 367# addr_bit is the size of a target address as represented in gdb
ea480a30 368v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 369#
8da614df
CV
370# dwarf2_addr_size is the target address size as used in the Dwarf debug
371# info. For .debug_frame FDEs, this is supposed to be the target address
372# size from the associated CU header, and which is equivalent to the
373# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
374# Unfortunately there is no good way to determine this value. Therefore
375# dwarf2_addr_size simply defaults to the target pointer size.
376#
377# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
378# defined using the target's pointer size so far.
379#
380# Note that dwarf2_addr_size only needs to be redefined by a target if the
381# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
382# and if Dwarf versions < 4 need to be supported.
ea480a30 383v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 384#
4e409299 385# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 386v;int;char_signed;;;1;-1;1
4e409299 387#
c113ed0c 388F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 389F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
390# Function for getting target's idea of a frame pointer. FIXME: GDB's
391# whole scheme for dealing with "frames" and "frame pointers" needs a
392# serious shakedown.
ea480a30 393m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 394#
849d0ba8 395M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
396# Read a register into a new struct value. If the register is wholly
397# or partly unavailable, this should call mark_value_bytes_unavailable
398# as appropriate. If this is defined, then pseudo_register_read will
399# never be called.
849d0ba8 400M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 401M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 402#
ea480a30 403v;int;num_regs;;;0;-1
0aba1244
EZ
404# This macro gives the number of pseudo-registers that live in the
405# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
406# These pseudo-registers may be aliases for other registers,
407# combinations of other registers, or they may be computed by GDB.
ea480a30 408v;int;num_pseudo_regs;;;0;0;;0
c2169756 409
175ff332
HZ
410# Assemble agent expression bytecode to collect pseudo-register REG.
411# Return -1 if something goes wrong, 0 otherwise.
ea480a30 412M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
413
414# Assemble agent expression bytecode to push the value of pseudo-register
415# REG on the interpreter stack.
416# Return -1 if something goes wrong, 0 otherwise.
ea480a30 417M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 418
272bb05c
JB
419# Some architectures can display additional information for specific
420# signals.
421# UIOUT is the output stream where the handler will place information.
422M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
423
c2169756
AC
424# GDB's standard (or well known) register numbers. These can map onto
425# a real register or a pseudo (computed) register or not be defined at
1200cd6e 426# all (-1).
3e8c568d 427# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
428v;int;sp_regnum;;;-1;-1;;0
429v;int;pc_regnum;;;-1;-1;;0
430v;int;ps_regnum;;;-1;-1;;0
431v;int;fp0_regnum;;;0;-1;;0
88c72b7d 432# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 433m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 434# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 435m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 436# Convert from an sdb register number to an internal gdb register number.
ea480a30 437m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 438# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 439# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
440m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
441m;const char *;register_name;int regnr;regnr;;0
9c04cab7 442
7b9ee6a8
DJ
443# Return the type of a register specified by the architecture. Only
444# the register cache should call this function directly; others should
445# use "register_type".
ea480a30 446M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 447
8bcb5208
AB
448# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
449# a dummy frame. A dummy frame is created before an inferior call,
450# the frame_id returned here must match the frame_id that was built
451# for the inferior call. Usually this means the returned frame_id's
452# stack address should match the address returned by
453# gdbarch_push_dummy_call, and the returned frame_id's code address
454# should match the address at which the breakpoint was set in the dummy
455# frame.
456m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 457# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 458# deprecated_fp_regnum.
ea480a30 459v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 460
cf84fa6b 461M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
462v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
463M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 464
7eb89530 465# Return true if the code of FRAME is writable.
ea480a30 466m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 467
ea480a30
SM
468m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
469m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
470M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
471# MAP a GDB RAW register number onto a simulator register number. See
472# also include/...-sim.h.
ea480a30
SM
473m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
474m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
475m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
476
477# Determine the address where a longjmp will land and save this address
478# in PC. Return nonzero on success.
479#
480# FRAME corresponds to the longjmp frame.
ea480a30 481F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 482
104c1213 483#
ea480a30 484v;int;believe_pcc_promotion;;;;;;;
104c1213 485#
ea480a30
SM
486m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
487f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
488f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 489# Construct a value representing the contents of register REGNUM in
2ed3c037 490# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
491# allocate and return a struct value with all value attributes
492# (but not the value contents) filled in.
ea480a30 493m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 494#
ea480a30
SM
495m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
496m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
497M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 498
6a3a010b
MR
499# Return the return-value convention that will be used by FUNCTION
500# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
501# case the return convention is computed based only on VALTYPE.
502#
503# If READBUF is not NULL, extract the return value and save it in this buffer.
504#
505# If WRITEBUF is not NULL, it contains a return value which will be
506# stored into the appropriate register. This can be used when we want
507# to force the value returned by a function (see the "return" command
508# for instance).
ea480a30 509M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 510
18648a37
YQ
511# Return true if the return value of function is stored in the first hidden
512# parameter. In theory, this feature should be language-dependent, specified
513# by language and its ABI, such as C++. Unfortunately, compiler may
514# implement it to a target-dependent feature. So that we need such hook here
515# to be aware of this in GDB.
ea480a30 516m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 517
ea480a30
SM
518m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
519M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
520# On some platforms, a single function may provide multiple entry points,
521# e.g. one that is used for function-pointer calls and a different one
522# that is used for direct function calls.
523# In order to ensure that breakpoints set on the function will trigger
524# no matter via which entry point the function is entered, a platform
525# may provide the skip_entrypoint callback. It is called with IP set
526# to the main entry point of a function (as determined by the symbol table),
527# and should return the address of the innermost entry point, where the
528# actual breakpoint needs to be set. Note that skip_entrypoint is used
529# by GDB common code even when debugging optimized code, where skip_prologue
530# is not used.
ea480a30 531M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 532
ea480a30
SM
533f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
534m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
535
536# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 537m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
538
539# Return the software breakpoint from KIND. KIND can have target
540# specific meaning like the Z0 kind parameter.
541# SIZE is set to the software breakpoint's length in memory.
ea480a30 542m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 543
833b7ab5
YQ
544# Return the breakpoint kind for this target based on the current
545# processor state (e.g. the current instruction mode on ARM) and the
546# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 547m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 548
ea480a30
SM
549M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
550m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
551m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
552v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
553
554# A function can be addressed by either it's "pointer" (possibly a
555# descriptor address) or "entry point" (first executable instruction).
556# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 557# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
558# a simplified subset of that functionality - the function's address
559# corresponds to the "function pointer" and the function's start
560# corresponds to the "function entry point" - and hence is redundant.
561
ea480a30 562v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 563
123dc839
DJ
564# Return the remote protocol register number associated with this
565# register. Normally the identity mapping.
ea480a30 566m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 567
b2756930 568# Fetch the target specific address used to represent a load module.
ea480a30 569F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
570
571# Return the thread-local address at OFFSET in the thread-local
572# storage for the thread PTID and the shared library or executable
573# file given by LM_ADDR. If that block of thread-local storage hasn't
574# been allocated yet, this function may throw an error. LM_ADDR may
575# be zero for statically linked multithreaded inferiors.
576
577M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 578#
ea480a30 579v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
580m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
581m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
582# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
583# frame-base. Enable frame-base before frame-unwind.
ea480a30 584F;int;frame_num_args;struct frame_info *frame;frame
104c1213 585#
ea480a30
SM
586M;CORE_ADDR;frame_align;CORE_ADDR address;address
587m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
588v;int;frame_red_zone_size
f0d4cc9e 589#
ea480a30 590m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
591# On some machines there are bits in addresses which are not really
592# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 593# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
594# we get a "real" address such as one would find in a symbol table.
595# This is used only for addresses of instructions, and even then I'm
596# not sure it's used in all contexts. It exists to deal with there
597# being a few stray bits in the PC which would mislead us, not as some
598# sort of generic thing to handle alignment or segmentation (it's
599# possible it should be in TARGET_READ_PC instead).
ea480a30 600m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 601
a738ea1d
YQ
602# On some machines, not all bits of an address word are significant.
603# For example, on AArch64, the top bits of an address known as the "tag"
604# are ignored by the kernel, the hardware, etc. and can be regarded as
605# additional data associated with the address.
5969f0db 606v;int;significant_addr_bit;;;;;;0
a738ea1d 607
c193949e
LM
608# Return a string representation of the memory tag TAG.
609m;std::string;memtag_to_string;struct value *tag;tag;;default_memtag_to_string;;0
610
611# Return true if ADDRESS contains a tag and false otherwise.
612m;bool;tagged_address_p;struct value *address;address;;default_tagged_address_p;;0
613
614# Return true if the tag from ADDRESS matches the memory tag for that
615# particular address. Return false otherwise.
616m;bool;memtag_matches_p;struct value *address;address;;default_memtag_matches_p;;0
617
618# Set the tags of type TAG_TYPE, for the memory address range
619# [ADDRESS, ADDRESS + LENGTH) to TAGS.
620# Return true if successful and false otherwise.
621m;bool;set_memtags;struct value *address, size_t length, const gdb::byte_vector \&tags, memtag_type tag_type;address, length, tags, tag_type;;default_set_memtags;;0
622
623# Return the tag of type TAG_TYPE associated with the memory address ADDRESS,
624# assuming ADDRESS is tagged.
625m;struct value *;get_memtag;struct value *address, memtag_type tag_type;address, tag_type;;default_get_memtag;;0
626
627# memtag_granule_size is the size of the allocation tag granule, for
628# architectures that support memory tagging.
629# This is 0 for architectures that do not support memory tagging.
630# For a non-zero value, this represents the number of bytes of memory per tag.
631v;CORE_ADDR;memtag_granule_size;;;;;;0
632
e6590a1b
UW
633# FIXME/cagney/2001-01-18: This should be split in two. A target method that
634# indicates if the target needs software single step. An ISA method to
635# implement it.
636#
e6590a1b
UW
637# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
638# target can single step. If not, then implement single step using breakpoints.
64c4637f 639#
93f9a11f
YQ
640# Return a vector of addresses on which the software single step
641# breakpoints should be inserted. NULL means software single step is
642# not used.
643# Multiple breakpoints may be inserted for some instructions such as
644# conditional branch. However, each implementation must always evaluate
645# the condition and only put the breakpoint at the branch destination if
646# the condition is true, so that we ensure forward progress when stepping
647# past a conditional branch to self.
a0ff9e1a 648F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 649
3352ef37
AC
650# Return non-zero if the processor is executing a delay slot and a
651# further single-step is needed before the instruction finishes.
ea480a30 652M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 653# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 654# disassembler. Perhaps objdump can handle it?
39503f82 655f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 656f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
657
658
cfd8ab24 659# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
660# evaluates non-zero, this is the address where the debugger will place
661# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 662m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 663# Some systems also have trampoline code for returning from shared libs.
ea480a30 664m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 665
1d509aa6
MM
666# Return true if PC lies inside an indirect branch thunk.
667m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
668
c12260ac
CV
669# A target might have problems with watchpoints as soon as the stack
670# frame of the current function has been destroyed. This mostly happens
c9cf6e20 671# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
672# is defined to return a non-zero value if either the given addr is one
673# instruction after the stack destroying instruction up to the trailing
674# return instruction or if we can figure out that the stack frame has
675# already been invalidated regardless of the value of addr. Targets
676# which don't suffer from that problem could just let this functionality
677# untouched.
ea480a30 678m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
679# Process an ELF symbol in the minimal symbol table in a backend-specific
680# way. Normally this hook is supposed to do nothing, however if required,
681# then this hook can be used to apply tranformations to symbols that are
682# considered special in some way. For example the MIPS backend uses it
683# to interpret \`st_other' information to mark compressed code symbols so
684# that they can be treated in the appropriate manner in the processing of
685# the main symbol table and DWARF-2 records.
ea480a30
SM
686F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
687f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
688# Process a symbol in the main symbol table in a backend-specific way.
689# Normally this hook is supposed to do nothing, however if required,
690# then this hook can be used to apply tranformations to symbols that
691# are considered special in some way. This is currently used by the
692# MIPS backend to make sure compressed code symbols have the ISA bit
693# set. This in turn is needed for symbol values seen in GDB to match
694# the values used at the runtime by the program itself, for function
695# and label references.
ea480a30 696f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
697# Adjust the address retrieved from a DWARF-2 record other than a line
698# entry in a backend-specific way. Normally this hook is supposed to
699# return the address passed unchanged, however if that is incorrect for
700# any reason, then this hook can be used to fix the address up in the
701# required manner. This is currently used by the MIPS backend to make
702# sure addresses in FDE, range records, etc. referring to compressed
703# code have the ISA bit set, matching line information and the symbol
704# table.
ea480a30 705f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
706# Adjust the address updated by a line entry in a backend-specific way.
707# Normally this hook is supposed to return the address passed unchanged,
708# however in the case of inconsistencies in these records, this hook can
709# be used to fix them up in the required manner. This is currently used
710# by the MIPS backend to make sure all line addresses in compressed code
711# are presented with the ISA bit set, which is not always the case. This
712# in turn ensures breakpoint addresses are correctly matched against the
713# stop PC.
ea480a30
SM
714f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
715v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
716# See comment in target.h about continuable, steppable and
717# non-steppable watchpoints.
ea480a30 718v;int;have_nonsteppable_watchpoint;;;0;0;;0
314ad88d
PA
719F;type_instance_flags;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
720M;const char *;address_class_type_flags_to_name;type_instance_flags type_flags;type_flags
b41c5a85
JW
721# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
722# FS are passed from the generic execute_cfa_program function.
ea480a30 723m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
724
725# Return the appropriate type_flags for the supplied address class.
314ad88d
PA
726# This function should return true if the address class was recognized and
727# type_flags was set, false otherwise.
728M;bool;address_class_name_to_type_flags;const char *name, type_instance_flags *type_flags_ptr;name, type_flags_ptr
b59ff9d5 729# Is a register in a group
ea480a30 730m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 731# Fetch the pointer to the ith function argument.
ea480a30 732F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 733
5aa82d05
AA
734# Iterate over all supported register notes in a core file. For each
735# supported register note section, the iterator must call CB and pass
736# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
737# the supported register note sections based on the current register
738# values. Otherwise it should enumerate all supported register note
739# sections.
ea480a30 740M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 741
6432734d 742# Create core file notes
c21f37a8 743M;gdb::unique_xmalloc_ptr<char>;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 744
35c2fab7 745# Find core file memory regions
ea480a30 746M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 747
de584861 748# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
749# core file into buffer READBUF with length LEN. Return the number of bytes read
750# (zero indicates failure).
751# failed, otherwise, return the red length of READBUF.
ea480a30 752M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 753
356a5233
JB
754# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
755# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 756# Return the number of bytes read (zero indicates failure).
ea480a30 757M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 758
c0edd9ed 759# How the core target converts a PTID from a core file to a string.
a068643d 760M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 761
4dfc5dbc 762# How the core target extracts the name of a thread from a core file.
ea480a30 763M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 764
382b69bb
JB
765# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
766# from core file into buffer READBUF with length LEN. Return the number
767# of bytes read (zero indicates EOF, a negative value indicates failure).
768M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
769
a78c2d62 770# BFD target to use when generating a core file.
ea480a30 771V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 772
0d5de010
DJ
773# If the elements of C++ vtables are in-place function descriptors rather
774# than normal function pointers (which may point to code or a descriptor),
775# set this to one.
ea480a30 776v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
777
778# Set if the least significant bit of the delta is used instead of the least
779# significant bit of the pfn for pointers to virtual member functions.
ea480a30 780v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
781
782# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 783f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 784
1668ae25 785# The maximum length of an instruction on this architecture in bytes.
ea480a30 786V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
787
788# Copy the instruction at FROM to TO, and make any adjustments
789# necessary to single-step it at that address.
790#
791# REGS holds the state the thread's registers will have before
792# executing the copied instruction; the PC in REGS will refer to FROM,
793# not the copy at TO. The caller should update it to point at TO later.
794#
795# Return a pointer to data of the architecture's choice to be passed
19b187a9 796# to gdbarch_displaced_step_fixup.
237fc4c9
PA
797#
798# For a general explanation of displaced stepping and how GDB uses it,
799# see the comments in infrun.c.
800#
801# The TO area is only guaranteed to have space for
802# gdbarch_max_insn_length (arch) bytes, so this function must not
803# write more bytes than that to that area.
804#
805# If you do not provide this function, GDB assumes that the
806# architecture does not support displaced stepping.
807#
7f03bd92
PA
808# If the instruction cannot execute out of line, return NULL. The
809# core falls back to stepping past the instruction in-line instead in
810# that case.
1152d984 811M;displaced_step_copy_insn_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 812
58103c33
SM
813# Return true if GDB should use hardware single-stepping to execute a displaced
814# step instruction. If false, GDB will simply restart execution at the
815# displaced instruction location, and it is up to the target to ensure GDB will
816# receive control again (e.g. by placing a software breakpoint instruction into
817# the displaced instruction buffer).
818#
819# The default implementation returns false on all targets that provide a
820# gdbarch_software_single_step routine, and true otherwise.
40a53766 821m;bool;displaced_step_hw_singlestep;void;;;default_displaced_step_hw_singlestep;;0
99e40580 822
237fc4c9
PA
823# Fix up the state resulting from successfully single-stepping a
824# displaced instruction, to give the result we would have gotten from
825# stepping the instruction in its original location.
826#
827# REGS is the register state resulting from single-stepping the
828# displaced instruction.
829#
830# CLOSURE is the result from the matching call to
831# gdbarch_displaced_step_copy_insn.
832#
833# If you provide gdbarch_displaced_step_copy_insn.but not this
834# function, then GDB assumes that no fixup is needed after
835# single-stepping the instruction.
836#
837# For a general explanation of displaced stepping and how GDB uses it,
838# see the comments in infrun.c.
1152d984 839M;void;displaced_step_fixup;struct displaced_step_copy_insn_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 840
187b041e 841# Prepare THREAD for it to displaced step the instruction at its current PC.
237fc4c9 842#
187b041e
SM
843# Throw an exception if any unexpected error happens.
844M;displaced_step_prepare_status;displaced_step_prepare;thread_info *thread, CORE_ADDR &displaced_pc;thread, displaced_pc
845
846# Clean up after a displaced step of THREAD.
847m;displaced_step_finish_status;displaced_step_finish;thread_info *thread, gdb_signal sig;thread, sig;;NULL;;(! gdbarch->displaced_step_finish) != (! gdbarch->displaced_step_prepare)
848
849# Return the closure associated to the displaced step buffer that is at ADDR.
850F;const displaced_step_copy_insn_closure *;displaced_step_copy_insn_closure_by_addr;inferior *inf, CORE_ADDR addr;inf, addr
851
852# PARENT_INF has forked and CHILD_PTID is the ptid of the child. Restore the
853# contents of all displaced step buffers in the child's address space.
854f;void;displaced_step_restore_all_in_ptid;inferior *parent_inf, ptid_t child_ptid;parent_inf, child_ptid
237fc4c9 855
dde08ee1
PA
856# Relocate an instruction to execute at a different address. OLDLOC
857# is the address in the inferior memory where the instruction to
858# relocate is currently at. On input, TO points to the destination
859# where we want the instruction to be copied (and possibly adjusted)
860# to. On output, it points to one past the end of the resulting
861# instruction(s). The effect of executing the instruction at TO shall
862# be the same as if executing it at FROM. For example, call
863# instructions that implicitly push the return address on the stack
864# should be adjusted to return to the instruction after OLDLOC;
865# relative branches, and other PC-relative instructions need the
866# offset adjusted; etc.
ea480a30 867M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 868
1c772458 869# Refresh overlay mapped state for section OSECT.
ea480a30 870F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 871
ea480a30 872M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273 873
203c3895 874# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 875v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 876
0508c3ec
HZ
877# Parse the instruction at ADDR storing in the record execution log
878# the registers REGCACHE and memory ranges that will be affected when
879# the instruction executes, along with their current values.
880# Return -1 if something goes wrong, 0 otherwise.
ea480a30 881M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 882
3846b520
HZ
883# Save process state after a signal.
884# Return -1 if something goes wrong, 0 otherwise.
ea480a30 885M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 886
22203bbf 887# Signal translation: translate inferior's signal (target's) number
86b49880
PA
888# into GDB's representation. The implementation of this method must
889# be host independent. IOW, don't rely on symbols of the NAT_FILE
890# header (the nm-*.h files), the host <signal.h> header, or similar
891# headers. This is mainly used when cross-debugging core files ---
892# "Live" targets hide the translation behind the target interface
1f8cf220 893# (target_wait, target_resume, etc.).
ea480a30 894M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 895
eb14d406
SDJ
896# Signal translation: translate the GDB's internal signal number into
897# the inferior's signal (target's) representation. The implementation
898# of this method must be host independent. IOW, don't rely on symbols
899# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
900# header, or similar headers.
901# Return the target signal number if found, or -1 if the GDB internal
902# signal number is invalid.
ea480a30 903M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 904
4aa995e1
PA
905# Extra signal info inspection.
906#
907# Return a type suitable to inspect extra signal information.
ea480a30 908M;struct type *;get_siginfo_type;void;
4aa995e1 909
60c5725c 910# Record architecture-specific information from the symbol table.
ea480a30 911M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 912
a96d9b2e
SDJ
913# Function for the 'catch syscall' feature.
914
915# Get architecture-specific system calls information from registers.
00431a78 916M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 917
458c8db8 918# The filename of the XML syscall for this architecture.
ea480a30 919v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
920
921# Information about system calls from this architecture
ea480a30 922v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 923
55aa24fb
SDJ
924# SystemTap related fields and functions.
925
05c0465e
SDJ
926# A NULL-terminated array of prefixes used to mark an integer constant
927# on the architecture's assembly.
55aa24fb
SDJ
928# For example, on x86 integer constants are written as:
929#
930# \$10 ;; integer constant 10
931#
932# in this case, this prefix would be the character \`\$\'.
ea480a30 933v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 934
05c0465e
SDJ
935# A NULL-terminated array of suffixes used to mark an integer constant
936# on the architecture's assembly.
ea480a30 937v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 938
05c0465e
SDJ
939# A NULL-terminated array of prefixes used to mark a register name on
940# the architecture's assembly.
55aa24fb
SDJ
941# For example, on x86 the register name is written as:
942#
943# \%eax ;; register eax
944#
945# in this case, this prefix would be the character \`\%\'.
ea480a30 946v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 947
05c0465e
SDJ
948# A NULL-terminated array of suffixes used to mark a register name on
949# the architecture's assembly.
ea480a30 950v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 951
05c0465e
SDJ
952# A NULL-terminated array of prefixes used to mark a register
953# indirection on the architecture's assembly.
55aa24fb
SDJ
954# For example, on x86 the register indirection is written as:
955#
956# \(\%eax\) ;; indirecting eax
957#
958# in this case, this prefix would be the charater \`\(\'.
959#
960# Please note that we use the indirection prefix also for register
961# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 962v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 963
05c0465e
SDJ
964# A NULL-terminated array of suffixes used to mark a register
965# indirection on the architecture's assembly.
55aa24fb
SDJ
966# For example, on x86 the register indirection is written as:
967#
968# \(\%eax\) ;; indirecting eax
969#
970# in this case, this prefix would be the charater \`\)\'.
971#
972# Please note that we use the indirection suffix also for register
973# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 974v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 975
05c0465e 976# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
977#
978# For example, on PPC a register is represented by a number in the assembly
979# language (e.g., \`10\' is the 10th general-purpose register). However,
980# inside GDB this same register has an \`r\' appended to its name, so the 10th
981# register would be represented as \`r10\' internally.
ea480a30 982v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
983
984# Suffix used to name a register using GDB's nomenclature.
ea480a30 985v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
986
987# Check if S is a single operand.
988#
989# Single operands can be:
990# \- Literal integers, e.g. \`\$10\' on x86
991# \- Register access, e.g. \`\%eax\' on x86
992# \- Register indirection, e.g. \`\(\%eax\)\' on x86
993# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
994#
995# This function should check for these patterns on the string
996# and return 1 if some were found, or zero otherwise. Please try to match
997# as much info as you can from the string, i.e., if you have to match
998# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 999M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
1000
1001# Function used to handle a "special case" in the parser.
1002#
1003# A "special case" is considered to be an unknown token, i.e., a token
1004# that the parser does not know how to parse. A good example of special
1005# case would be ARM's register displacement syntax:
1006#
1007# [R0, #4] ;; displacing R0 by 4
1008#
1009# Since the parser assumes that a register displacement is of the form:
1010#
1011# <number> <indirection_prefix> <register_name> <indirection_suffix>
1012#
1013# it means that it will not be able to recognize and parse this odd syntax.
1014# Therefore, we should add a special case function that will handle this token.
1015#
1016# This function should generate the proper expression form of the expression
1017# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1018# and so on). It should also return 1 if the parsing was successful, or zero
1019# if the token was not recognized as a special token (in this case, returning
1020# zero means that the special parser is deferring the parsing to the generic
1021# parser), and should advance the buffer pointer (p->arg).
4c5e7a93 1022M;expr::operation_up;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1023
7d7571f0
SDJ
1024# Perform arch-dependent adjustments to a register name.
1025#
1026# In very specific situations, it may be necessary for the register
1027# name present in a SystemTap probe's argument to be handled in a
1028# special way. For example, on i386, GCC may over-optimize the
1029# register allocation and use smaller registers than necessary. In
1030# such cases, the client that is reading and evaluating the SystemTap
1031# probe (ourselves) will need to actually fetch values from the wider
1032# version of the register in question.
1033#
1034# To illustrate the example, consider the following probe argument
1035# (i386):
1036#
1037# 4@%ax
1038#
1039# This argument says that its value can be found at the %ax register,
1040# which is a 16-bit register. However, the argument's prefix says
1041# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1042# this case, GDB should actually fetch the probe's value from register
1043# %eax, not %ax. In this scenario, this function would actually
1044# replace the register name from %ax to %eax.
1045#
1046# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1047M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1048
8b367e17
JM
1049# DTrace related functions.
1050
1051# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1052# NARG must be >= 0.
482ddd69 1053M;expr::operation_up;dtrace_parse_probe_argument;int narg;narg
8b367e17
JM
1054
1055# True if the given ADDR does not contain the instruction sequence
1056# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1057M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1058
1059# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1060M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1061
1062# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1063M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1064
50c71eaf
PA
1065# True if the list of shared libraries is one and only for all
1066# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1067# This usually means that all processes, although may or may not share
1068# an address space, will see the same set of symbols at the same
1069# addresses.
ea480a30 1070v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1071
1072# On some targets, even though each inferior has its own private
1073# address space, the debug interface takes care of making breakpoints
1074# visible to all address spaces automatically. For such cases,
1075# this property should be set to true.
ea480a30 1076v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1077
1078# True if inferiors share an address space (e.g., uClinux).
ea480a30 1079m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1080
1081# True if a fast tracepoint can be set at an address.
281d762b 1082m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1083
5f034a78
MK
1084# Guess register state based on tracepoint location. Used for tracepoints
1085# where no registers have been collected, but there's only one location,
1086# allowing us to guess the PC value, and perhaps some other registers.
1087# On entry, regcache has all registers marked as unavailable.
ea480a30 1088m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1089
f870a310 1090# Return the "auto" target charset.
ea480a30 1091f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1092# Return the "auto" target wide charset.
ea480a30 1093f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1094
1095# If non-empty, this is a file extension that will be opened in place
1096# of the file extension reported by the shared library list.
1097#
1098# This is most useful for toolchains that use a post-linker tool,
1099# where the names of the files run on the target differ in extension
1100# compared to the names of the files GDB should load for debug info.
ea480a30 1101v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1102
1103# If true, the target OS has DOS-based file system semantics. That
1104# is, absolute paths include a drive name, and the backslash is
1105# considered a directory separator.
ea480a30 1106v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1107
1108# Generate bytecodes to collect the return address in a frame.
1109# Since the bytecodes run on the target, possibly with GDB not even
1110# connected, the full unwinding machinery is not available, and
1111# typically this function will issue bytecodes for one or more likely
1112# places that the return address may be found.
ea480a30 1113m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1114
3030c96e 1115# Implement the "info proc" command.
ea480a30 1116M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1117
451b7c33
TT
1118# Implement the "info proc" command for core files. Noe that there
1119# are two "info_proc"-like methods on gdbarch -- one for core files,
1120# one for live targets.
ea480a30 1121M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1122
19630284
JB
1123# Iterate over all objfiles in the order that makes the most sense
1124# for the architecture to make global symbol searches.
1125#
1126# CB is a callback function where OBJFILE is the objfile to be searched,
1127# and CB_DATA a pointer to user-defined data (the same data that is passed
1128# when calling this gdbarch method). The iteration stops if this function
1129# returns nonzero.
1130#
1131# CB_DATA is a pointer to some user-defined data to be passed to
1132# the callback.
1133#
1134# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1135# inspected when the symbol search was requested.
ea480a30 1136m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1137
7e35103a 1138# Ravenscar arch-dependent ops.
ea480a30 1139v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1140
1141# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1142m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1143
1144# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1145m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1146
1147# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1148m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1149
5133a315
LM
1150# Return true if there's a program/permanent breakpoint planted in
1151# memory at ADDRESS, return false otherwise.
1152m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1153
27a48a92
MK
1154# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1155# Return 0 if *READPTR is already at the end of the buffer.
1156# Return -1 if there is insufficient buffer for a whole entry.
1157# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1158M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1159
2faa3447
JB
1160# Print the description of a single auxv entry described by TYPE and VAL
1161# to FILE.
ea480a30 1162m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1163
3437254d
PA
1164# Find the address range of the current inferior's vsyscall/vDSO, and
1165# write it to *RANGE. If the vsyscall's length can't be determined, a
1166# range with zero length is returned. Returns true if the vsyscall is
1167# found, false otherwise.
ea480a30 1168m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1169
1170# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1171# PROT has GDB_MMAP_PROT_* bitmask format.
1172# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1173f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1174
7f361056
JK
1175# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1176# Print a warning if it is not possible.
ea480a30 1177f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1178
f208eee0
JK
1179# Return string (caller has to use xfree for it) with options for GCC
1180# to produce code for this target, typically "-m64", "-m32" or "-m31".
1181# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1182# they can override it.
1183m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1184
1185# Return a regular expression that matches names used by this
1186# architecture in GNU configury triplets. The result is statically
1187# allocated and must not be freed. The default implementation simply
1188# returns the BFD architecture name, which is correct in nearly every
1189# case.
ea480a30 1190m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1191
1192# Return the size in 8-bit bytes of an addressable memory unit on this
1193# architecture. This corresponds to the number of 8-bit bytes associated to
1194# each address in memory.
ea480a30 1195m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1196
65b48a81 1197# Functions for allowing a target to modify its disassembler options.
471b9d15 1198v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1199v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1200v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1201
5561fc30
AB
1202# Type alignment override method. Return the architecture specific
1203# alignment required for TYPE. If there is no special handling
1204# required for TYPE then return the value 0, GDB will then apply the
1205# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1206m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1207
aa7ca1bb
AH
1208# Return a string containing any flags for the given PC in the given FRAME.
1209f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1210
7e183d27 1211# Read core file mappings
70125a45 1212m;void;read_core_file_mappings;struct bfd *cbfd, gdb::function_view<void (ULONGEST count)> pre_loop_cb, gdb::function_view<void (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, const char *filename)> loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
7e183d27 1213
104c1213 1214EOF
104c1213
JM
1215}
1216
0b8f9e4d
AC
1217#
1218# The .log file
1219#
41a77cba 1220exec > gdbarch.log
34620563 1221function_list | while do_read
0b8f9e4d
AC
1222do
1223 cat <<EOF
1207375d 1224${class} ${returntype:-} ${function} (${formal:-})
104c1213 1225EOF
3d9a5942
AC
1226 for r in ${read}
1227 do
a6fc5ffc 1228 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1229 done
f0d4cc9e 1230 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1231 then
66d659b1 1232 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1233 kill $$
1234 exit 1
1235 fi
759cea5e 1236 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1237 then
1238 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1239 kill $$
1240 exit 1
1241 fi
a72293e2
AC
1242 if class_is_multiarch_p
1243 then
1244 if class_is_predicate_p ; then :
1245 elif test "x${predefault}" = "x"
1246 then
2f9b146e 1247 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1248 kill $$
1249 exit 1
1250 fi
1251 fi
3d9a5942 1252 echo ""
0b8f9e4d
AC
1253done
1254
1255exec 1>&2
0b8f9e4d 1256
104c1213
JM
1257
1258copyright ()
1259{
1260cat <<EOF
c4bfde41
JK
1261/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1262/* vi:set ro: */
59233f88 1263
104c1213 1264/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1265
b5b5650a 1266 Copyright (C) 1998-2021 Free Software Foundation, Inc.
104c1213
JM
1267
1268 This file is part of GDB.
1269
1270 This program is free software; you can redistribute it and/or modify
1271 it under the terms of the GNU General Public License as published by
50efebf8 1272 the Free Software Foundation; either version 3 of the License, or
104c1213 1273 (at your option) any later version.
618f726f 1274
104c1213
JM
1275 This program is distributed in the hope that it will be useful,
1276 but WITHOUT ANY WARRANTY; without even the implied warranty of
1277 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1278 GNU General Public License for more details.
618f726f 1279
104c1213 1280 You should have received a copy of the GNU General Public License
50efebf8 1281 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1282
41a77cba 1283/* This file was created with the aid of \`\`gdbarch.sh''. */
104c1213
JM
1284
1285EOF
1286}
1287
1288#
1289# The .h file
1290#
1291
1292exec > new-gdbarch.h
1293copyright
1294cat <<EOF
1295#ifndef GDBARCH_H
1296#define GDBARCH_H
1297
a0ff9e1a 1298#include <vector>
eb7a547a 1299#include "frame.h"
65b48a81 1300#include "dis-asm.h"
284a0e3c 1301#include "gdb_obstack.h"
fdb61c6c 1302#include "infrun.h"
fe4b2ee6 1303#include "osabi.h"
c7acb87b 1304#include "displaced-stepping.h"
eb7a547a 1305
da3331ec
AC
1306struct floatformat;
1307struct ui_file;
104c1213 1308struct value;
b6af0555 1309struct objfile;
1c772458 1310struct obj_section;
a2cf933a 1311struct minimal_symbol;
049ee0e4 1312struct regcache;
b59ff9d5 1313struct reggroup;
6ce6d90f 1314struct regset;
a89aa300 1315struct disassemble_info;
e2d0e7eb 1316struct target_ops;
030f20e1 1317struct obstack;
8181d85f 1318struct bp_target_info;
424163ea 1319struct target_desc;
3e29f34a 1320struct symbol;
a96d9b2e 1321struct syscall;
175ff332 1322struct agent_expr;
6710bf39 1323struct axs_value;
55aa24fb 1324struct stap_parse_info;
37eedb39 1325struct expr_builder;
7e35103a 1326struct ravenscar_arch_ops;
3437254d 1327struct mem_range;
458c8db8 1328struct syscalls_info;
4dfc5dbc 1329struct thread_info;
012b3a21 1330struct ui_out;
187b041e 1331struct inferior;
104c1213 1332
8a526fa6
PA
1333#include "regcache.h"
1334
6ecd4729
PA
1335/* The architecture associated with the inferior through the
1336 connection to the target.
1337
1338 The architecture vector provides some information that is really a
1339 property of the inferior, accessed through a particular target:
1340 ptrace operations; the layout of certain RSP packets; the solib_ops
1341 vector; etc. To differentiate architecture accesses to
1342 per-inferior/target properties from
1343 per-thread/per-frame/per-objfile properties, accesses to
1344 per-inferior/target properties should be made through this
1345 gdbarch. */
1346
1347/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1348extern struct gdbarch *target_gdbarch (void);
6ecd4729 1349
19630284
JB
1350/* Callback type for the 'iterate_over_objfiles_in_search_order'
1351 gdbarch method. */
1352
1353typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1354 (struct objfile *objfile, void *cb_data);
5aa82d05 1355
1528345d
AA
1356/* Callback type for regset section iterators. The callback usually
1357 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1358 pass a buffer - for collects this buffer will need to be created using
1359 COLLECT_SIZE, for supply the existing buffer being read from should
1360 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1361 is used for diagnostic messages. CB_DATA should have been passed
1362 unchanged through the iterator. */
1528345d 1363
5aa82d05 1364typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1365 (const char *sect_name, int supply_size, int collect_size,
1366 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1367
1368/* For a function call, does the function return a value using a
1369 normal value return or a structure return - passing a hidden
1370 argument pointing to storage. For the latter, there are two
1371 cases: language-mandated structure return and target ABI
1372 structure return. */
1373
1374enum function_call_return_method
1375{
1376 /* Standard value return. */
1377 return_method_normal = 0,
1378
1379 /* Language ABI structure return. This is handled
1380 by passing the return location as the first parameter to
1381 the function, even preceding "this". */
1382 return_method_hidden_param,
1383
1384 /* Target ABI struct return. This is target-specific; for instance,
1385 on ia64 the first argument is passed in out0 but the hidden
1386 structure return pointer would normally be passed in r8. */
1387 return_method_struct,
1388};
1389
c193949e
LM
1390enum class memtag_type
1391{
1392 /* Logical tag, the tag that is stored in unused bits of a pointer to a
1393 virtual address. */
1394 logical = 0,
1395
1396 /* Allocation tag, the tag that is associated with every granule of memory in
1397 the physical address space. Allocation tags are used to validate memory
1398 accesses via pointers containing logical tags. */
1399 allocation,
1400};
1401
104c1213
JM
1402EOF
1403
1404# function typedef's
3d9a5942
AC
1405printf "\n"
1406printf "\n"
0963b4bd 1407printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1408function_list | while do_read
104c1213 1409do
2ada493a
AC
1410 if class_is_info_p
1411 then
3d9a5942 1412 printf "\n"
8d113d13
SM
1413 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1414 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1415 fi
104c1213
JM
1416done
1417
1418# function typedef's
3d9a5942
AC
1419printf "\n"
1420printf "\n"
0963b4bd 1421printf "/* The following are initialized by the target dependent code. */\n"
34620563 1422function_list | while do_read
104c1213 1423do
72e74a21 1424 if [ -n "${comment}" ]
34620563
AC
1425 then
1426 echo "${comment}" | sed \
1427 -e '2 s,#,/*,' \
1428 -e '3,$ s,#, ,' \
1429 -e '$ s,$, */,'
1430 fi
412d5987
AC
1431
1432 if class_is_predicate_p
2ada493a 1433 then
412d5987 1434 printf "\n"
39535193 1435 printf "extern bool gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1436 fi
2ada493a
AC
1437 if class_is_variable_p
1438 then
3d9a5942 1439 printf "\n"
8d113d13
SM
1440 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1441 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1442 fi
1443 if class_is_function_p
1444 then
3d9a5942 1445 printf "\n"
72e74a21 1446 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1447 then
8d113d13 1448 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1449 elif class_is_multiarch_p
1450 then
8d113d13 1451 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1452 else
8d113d13 1453 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1454 fi
72e74a21 1455 if [ "x${formal}" = "xvoid" ]
104c1213 1456 then
8d113d13 1457 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1458 else
8d113d13 1459 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1460 fi
8d113d13 1461 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1462 fi
104c1213
JM
1463done
1464
1465# close it off
1466cat <<EOF
1467
1468extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1469
1470
1471/* Mechanism for co-ordinating the selection of a specific
1472 architecture.
1473
1474 GDB targets (*-tdep.c) can register an interest in a specific
1475 architecture. Other GDB components can register a need to maintain
1476 per-architecture data.
1477
1478 The mechanisms below ensures that there is only a loose connection
1479 between the set-architecture command and the various GDB
0fa6923a 1480 components. Each component can independently register their need
104c1213
JM
1481 to maintain architecture specific data with gdbarch.
1482
1483 Pragmatics:
1484
1485 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1486 didn't scale.
1487
1488 The more traditional mega-struct containing architecture specific
1489 data for all the various GDB components was also considered. Since
0fa6923a 1490 GDB is built from a variable number of (fairly independent)
104c1213 1491 components it was determined that the global aproach was not
0963b4bd 1492 applicable. */
104c1213
JM
1493
1494
1495/* Register a new architectural family with GDB.
1496
1497 Register support for the specified ARCHITECTURE with GDB. When
1498 gdbarch determines that the specified architecture has been
1499 selected, the corresponding INIT function is called.
1500
1501 --
1502
1503 The INIT function takes two parameters: INFO which contains the
1504 information available to gdbarch about the (possibly new)
1505 architecture; ARCHES which is a list of the previously created
1506 \`\`struct gdbarch'' for this architecture.
1507
0f79675b 1508 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1509 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1510
1511 The ARCHES parameter is a linked list (sorted most recently used)
1512 of all the previously created architures for this architecture
1513 family. The (possibly NULL) ARCHES->gdbarch can used to access
1514 values from the previously selected architecture for this
59837fe0 1515 architecture family.
104c1213
JM
1516
1517 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1518 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1519 gdbarch'' from the ARCHES list - indicating that the new
1520 architecture is just a synonym for an earlier architecture (see
1521 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1522 - that describes the selected architecture (see gdbarch_alloc()).
1523
1524 The DUMP_TDEP function shall print out all target specific values.
1525 Care should be taken to ensure that the function works in both the
0963b4bd 1526 multi-arch and non- multi-arch cases. */
104c1213
JM
1527
1528struct gdbarch_list
1529{
1530 struct gdbarch *gdbarch;
1531 struct gdbarch_list *next;
1532};
1533
1534struct gdbarch_info
1535{
0963b4bd 1536 /* Use default: NULL (ZERO). */
104c1213
JM
1537 const struct bfd_arch_info *bfd_arch_info;
1538
428721aa 1539 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1540 enum bfd_endian byte_order;
104c1213 1541
94123b4f 1542 enum bfd_endian byte_order_for_code;
9d4fde75 1543
0963b4bd 1544 /* Use default: NULL (ZERO). */
104c1213
JM
1545 bfd *abfd;
1546
0963b4bd 1547 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1548 union
1549 {
1550 /* Architecture-specific information. The generic form for targets
1551 that have extra requirements. */
1552 struct gdbarch_tdep_info *tdep_info;
1553
1554 /* Architecture-specific target description data. Numerous targets
1555 need only this, so give them an easy way to hold it. */
1556 struct tdesc_arch_data *tdesc_data;
1557
1558 /* SPU file system ID. This is a single integer, so using the
1559 generic form would only complicate code. Other targets may
1560 reuse this member if suitable. */
1561 int *id;
1562 };
4be87837
DJ
1563
1564 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1565 enum gdb_osabi osabi;
424163ea
DJ
1566
1567 /* Use default: NULL (ZERO). */
1568 const struct target_desc *target_desc;
104c1213
JM
1569};
1570
1571typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1572typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1573
4b9b3959 1574/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1575extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1576
4b9b3959 1577extern void gdbarch_register (enum bfd_architecture architecture,
dda83cd7
SM
1578 gdbarch_init_ftype *,
1579 gdbarch_dump_tdep_ftype *);
4b9b3959 1580
104c1213 1581
b4a20239
AC
1582/* Return a freshly allocated, NULL terminated, array of the valid
1583 architecture names. Since architectures are registered during the
1584 _initialize phase this function only returns useful information
0963b4bd 1585 once initialization has been completed. */
b4a20239
AC
1586
1587extern const char **gdbarch_printable_names (void);
1588
1589
104c1213 1590/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1591 matches the information provided by INFO. */
104c1213 1592
424163ea 1593extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1594
1595
1596/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1597 basic initialization using values obtained from the INFO and TDEP
104c1213 1598 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1599 initialization of the object. */
104c1213
JM
1600
1601extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1602
1603
4b9b3959
AC
1604/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1605 It is assumed that the caller freeds the \`\`struct
0963b4bd 1606 gdbarch_tdep''. */
4b9b3959 1607
058f20d5
JB
1608extern void gdbarch_free (struct gdbarch *);
1609
284a0e3c
SM
1610/* Get the obstack owned by ARCH. */
1611
1612extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1613
aebd7893
AC
1614/* Helper function. Allocate memory from the \`\`struct gdbarch''
1615 obstack. The memory is freed when the corresponding architecture
1616 is also freed. */
1617
284a0e3c
SM
1618#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1619 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1620
1621#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1622 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1623
6c214e7c
PP
1624/* Duplicate STRING, returning an equivalent string that's allocated on the
1625 obstack associated with GDBARCH. The string is freed when the corresponding
1626 architecture is also freed. */
1627
1628extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1629
0963b4bd 1630/* Helper function. Force an update of the current architecture.
104c1213 1631
b732d07d
AC
1632 The actual architecture selected is determined by INFO, \`\`(gdb) set
1633 architecture'' et.al., the existing architecture and BFD's default
1634 architecture. INFO should be initialized to zero and then selected
1635 fields should be updated.
104c1213 1636
0963b4bd 1637 Returns non-zero if the update succeeds. */
16f33e29
AC
1638
1639extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1640
1641
ebdba546
AC
1642/* Helper function. Find an architecture matching info.
1643
1644 INFO should be initialized using gdbarch_info_init, relevant fields
1645 set, and then finished using gdbarch_info_fill.
1646
1647 Returns the corresponding architecture, or NULL if no matching
59837fe0 1648 architecture was found. */
ebdba546
AC
1649
1650extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1651
1652
aff68abb 1653/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1654
aff68abb 1655extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1656
104c1213
JM
1657
1658/* Register per-architecture data-pointer.
1659
1660 Reserve space for a per-architecture data-pointer. An identifier
1661 for the reserved data-pointer is returned. That identifer should
95160752 1662 be saved in a local static variable.
104c1213 1663
fcc1c85c
AC
1664 Memory for the per-architecture data shall be allocated using
1665 gdbarch_obstack_zalloc. That memory will be deleted when the
1666 corresponding architecture object is deleted.
104c1213 1667
95160752
AC
1668 When a previously created architecture is re-selected, the
1669 per-architecture data-pointer for that previous architecture is
76860b5f 1670 restored. INIT() is not re-called.
104c1213
JM
1671
1672 Multiple registrarants for any architecture are allowed (and
1673 strongly encouraged). */
1674
95160752 1675struct gdbarch_data;
104c1213 1676
030f20e1
AC
1677typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1678extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1679typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1680extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
104c1213 1681
451fbdda 1682extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1683
1684
0fa6923a 1685/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1686 byte-order, ...) using information found in the BFD. */
104c1213
JM
1687
1688extern void set_gdbarch_from_file (bfd *);
1689
1690
e514a9d6
JM
1691/* Initialize the current architecture to the "first" one we find on
1692 our list. */
1693
1694extern void initialize_current_architecture (void);
1695
104c1213 1696/* gdbarch trace variable */
ccce17b0 1697extern unsigned int gdbarch_debug;
104c1213 1698
4b9b3959 1699extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1700
f6efe3f8
SM
1701/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1702
1703static inline int
1704gdbarch_num_cooked_regs (gdbarch *arch)
1705{
1706 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1707}
1708
104c1213
JM
1709#endif
1710EOF
1711exec 1>&2
41a77cba
SM
1712../move-if-change new-gdbarch.h gdbarch.h
1713rm -f new-gdbarch.h
104c1213
JM
1714
1715
1716#
1717# C file
1718#
1719
1720exec > new-gdbarch.c
1721copyright
1722cat <<EOF
1723
1724#include "defs.h"
7355ddba 1725#include "arch-utils.h"
104c1213 1726
104c1213 1727#include "gdbcmd.h"
faaf634c 1728#include "inferior.h"
104c1213
JM
1729#include "symcat.h"
1730
f0d4cc9e 1731#include "floatformat.h"
b59ff9d5 1732#include "reggroups.h"
4be87837 1733#include "osabi.h"
aebd7893 1734#include "gdb_obstack.h"
0bee6dd4 1735#include "observable.h"
a3ecef73 1736#include "regcache.h"
19630284 1737#include "objfiles.h"
2faa3447 1738#include "auxv.h"
8bcb5208
AB
1739#include "frame-unwind.h"
1740#include "dummy-frame.h"
95160752 1741
104c1213
JM
1742/* Static function declarations */
1743
b3cc3077 1744static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1745
104c1213
JM
1746/* Non-zero if we want to trace architecture code. */
1747
1748#ifndef GDBARCH_DEBUG
1749#define GDBARCH_DEBUG 0
1750#endif
ccce17b0 1751unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1752static void
1753show_gdbarch_debug (struct ui_file *file, int from_tty,
dda83cd7 1754 struct cmd_list_element *c, const char *value)
920d2a44
AC
1755{
1756 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1757}
104c1213 1758
456fcf94 1759static const char *
8da61cc4 1760pformat (const struct floatformat **format)
456fcf94
AC
1761{
1762 if (format == NULL)
1763 return "(null)";
1764 else
8da61cc4
DJ
1765 /* Just print out one of them - this is only for diagnostics. */
1766 return format[0]->name;
456fcf94
AC
1767}
1768
08105857
PA
1769static const char *
1770pstring (const char *string)
1771{
1772 if (string == NULL)
1773 return "(null)";
1774 return string;
05c0465e
SDJ
1775}
1776
a121b7c1 1777static const char *
f7bb4e3a
PB
1778pstring_ptr (char **string)
1779{
1780 if (string == NULL || *string == NULL)
1781 return "(null)";
1782 return *string;
1783}
1784
05c0465e
SDJ
1785/* Helper function to print a list of strings, represented as "const
1786 char *const *". The list is printed comma-separated. */
1787
a121b7c1 1788static const char *
05c0465e
SDJ
1789pstring_list (const char *const *list)
1790{
1791 static char ret[100];
1792 const char *const *p;
1793 size_t offset = 0;
1794
1795 if (list == NULL)
1796 return "(null)";
1797
1798 ret[0] = '\0';
1799 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1800 {
1801 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1802 offset += 2 + s;
1803 }
1804
1805 if (offset > 0)
1806 {
1807 gdb_assert (offset - 2 < sizeof (ret));
1808 ret[offset - 2] = '\0';
1809 }
1810
1811 return ret;
08105857
PA
1812}
1813
104c1213
JM
1814EOF
1815
1816# gdbarch open the gdbarch object
3d9a5942 1817printf "\n"
0963b4bd 1818printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1819printf "\n"
1820printf "struct gdbarch\n"
1821printf "{\n"
76860b5f
AC
1822printf " /* Has this architecture been fully initialized? */\n"
1823printf " int initialized_p;\n"
aebd7893
AC
1824printf "\n"
1825printf " /* An obstack bound to the lifetime of the architecture. */\n"
1826printf " struct obstack *obstack;\n"
1827printf "\n"
0963b4bd 1828printf " /* basic architectural information. */\n"
34620563 1829function_list | while do_read
104c1213 1830do
2ada493a
AC
1831 if class_is_info_p
1832 then
8d113d13 1833 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1834 fi
104c1213 1835done
3d9a5942 1836printf "\n"
0963b4bd 1837printf " /* target specific vector. */\n"
3d9a5942
AC
1838printf " struct gdbarch_tdep *tdep;\n"
1839printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1840printf "\n"
0963b4bd 1841printf " /* per-architecture data-pointers. */\n"
95160752 1842printf " unsigned nr_data;\n"
3d9a5942
AC
1843printf " void **data;\n"
1844printf "\n"
104c1213
JM
1845cat <<EOF
1846 /* Multi-arch values.
1847
1848 When extending this structure you must:
1849
1850 Add the field below.
1851
1852 Declare set/get functions and define the corresponding
1853 macro in gdbarch.h.
1854
1855 gdbarch_alloc(): If zero/NULL is not a suitable default,
1856 initialize the new field.
1857
1858 verify_gdbarch(): Confirm that the target updated the field
1859 correctly.
1860
7e73cedf 1861 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1862 field is dumped out
1863
104c1213
JM
1864 get_gdbarch(): Implement the set/get functions (probably using
1865 the macro's as shortcuts).
1866
1867 */
1868
1869EOF
34620563 1870function_list | while do_read
104c1213 1871do
2ada493a
AC
1872 if class_is_variable_p
1873 then
8d113d13 1874 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1875 elif class_is_function_p
1876 then
8d113d13 1877 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1878 fi
104c1213 1879done
3d9a5942 1880printf "};\n"
104c1213 1881
104c1213 1882# Create a new gdbarch struct
104c1213 1883cat <<EOF
7de2341d 1884
66b43ecb 1885/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1886 \`\`struct gdbarch_info''. */
104c1213 1887EOF
3d9a5942 1888printf "\n"
104c1213
JM
1889cat <<EOF
1890struct gdbarch *
1891gdbarch_alloc (const struct gdbarch_info *info,
dda83cd7 1892 struct gdbarch_tdep *tdep)
104c1213 1893{
be7811ad 1894 struct gdbarch *gdbarch;
aebd7893
AC
1895
1896 /* Create an obstack for allocating all the per-architecture memory,
1897 then use that to allocate the architecture vector. */
70ba0933 1898 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1899 obstack_init (obstack);
8d749320 1900 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1901 memset (gdbarch, 0, sizeof (*gdbarch));
1902 gdbarch->obstack = obstack;
85de9627 1903
be7811ad 1904 alloc_gdbarch_data (gdbarch);
85de9627 1905
be7811ad 1906 gdbarch->tdep = tdep;
104c1213 1907EOF
3d9a5942 1908printf "\n"
34620563 1909function_list | while do_read
104c1213 1910do
2ada493a
AC
1911 if class_is_info_p
1912 then
8d113d13 1913 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1914 fi
104c1213 1915done
3d9a5942 1916printf "\n"
0963b4bd 1917printf " /* Force the explicit initialization of these. */\n"
34620563 1918function_list | while do_read
104c1213 1919do
2ada493a
AC
1920 if class_is_function_p || class_is_variable_p
1921 then
759cea5e 1922 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1923 then
8d113d13 1924 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1925 fi
2ada493a 1926 fi
104c1213
JM
1927done
1928cat <<EOF
1929 /* gdbarch_alloc() */
1930
be7811ad 1931 return gdbarch;
104c1213
JM
1932}
1933EOF
1934
058f20d5 1935# Free a gdbarch struct.
3d9a5942
AC
1936printf "\n"
1937printf "\n"
058f20d5 1938cat <<EOF
aebd7893 1939
284a0e3c 1940obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1941{
284a0e3c 1942 return arch->obstack;
aebd7893
AC
1943}
1944
6c214e7c
PP
1945/* See gdbarch.h. */
1946
1947char *
1948gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1949{
1950 return obstack_strdup (arch->obstack, string);
1951}
1952
aebd7893 1953
058f20d5
JB
1954/* Free a gdbarch struct. This should never happen in normal
1955 operation --- once you've created a gdbarch, you keep it around.
1956 However, if an architecture's init function encounters an error
1957 building the structure, it may need to clean up a partially
1958 constructed gdbarch. */
4b9b3959 1959
058f20d5
JB
1960void
1961gdbarch_free (struct gdbarch *arch)
1962{
aebd7893 1963 struct obstack *obstack;
05c547f6 1964
95160752 1965 gdb_assert (arch != NULL);
aebd7893
AC
1966 gdb_assert (!arch->initialized_p);
1967 obstack = arch->obstack;
1968 obstack_free (obstack, 0); /* Includes the ARCH. */
1969 xfree (obstack);
058f20d5
JB
1970}
1971EOF
1972
104c1213 1973# verify a new architecture
104c1213 1974cat <<EOF
db446970
AC
1975
1976
1977/* Ensure that all values in a GDBARCH are reasonable. */
1978
104c1213 1979static void
be7811ad 1980verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1981{
d7e74731 1982 string_file log;
05c547f6 1983
104c1213 1984 /* fundamental */
be7811ad 1985 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1986 log.puts ("\n\tbyte-order");
be7811ad 1987 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1988 log.puts ("\n\tbfd_arch_info");
0963b4bd 1989 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1990EOF
34620563 1991function_list | while do_read
104c1213 1992do
2ada493a
AC
1993 if class_is_function_p || class_is_variable_p
1994 then
72e74a21 1995 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1996 then
8d113d13 1997 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
1998 elif class_is_predicate_p
1999 then
8d113d13 2000 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 2001 # FIXME: See do_read for potential simplification
759cea5e 2002 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 2003 then
8d113d13
SM
2004 printf " if (%s)\n" "$invalid_p"
2005 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 2006 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 2007 then
8d113d13
SM
2008 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2009 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 2010 elif [ -n "${postdefault}" ]
f0d4cc9e 2011 then
8d113d13
SM
2012 printf " if (gdbarch->%s == 0)\n" "$function"
2013 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 2014 elif [ -n "${invalid_p}" ]
104c1213 2015 then
8d113d13
SM
2016 printf " if (%s)\n" "$invalid_p"
2017 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 2018 elif [ -n "${predefault}" ]
104c1213 2019 then
8d113d13
SM
2020 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2021 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 2022 fi
2ada493a 2023 fi
104c1213
JM
2024done
2025cat <<EOF
d7e74731 2026 if (!log.empty ())
f16a1923 2027 internal_error (__FILE__, __LINE__,
dda83cd7
SM
2028 _("verify_gdbarch: the following are invalid ...%s"),
2029 log.c_str ());
104c1213
JM
2030}
2031EOF
2032
2033# dump the structure
3d9a5942
AC
2034printf "\n"
2035printf "\n"
104c1213 2036cat <<EOF
0963b4bd 2037/* Print out the details of the current architecture. */
4b9b3959 2038
104c1213 2039void
be7811ad 2040gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 2041{
b78960be 2042 const char *gdb_nm_file = "<not-defined>";
05c547f6 2043
b78960be
AC
2044#if defined (GDB_NM_FILE)
2045 gdb_nm_file = GDB_NM_FILE;
2046#endif
2047 fprintf_unfiltered (file,
dda83cd7
SM
2048 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2049 gdb_nm_file);
104c1213 2050EOF
ea480a30 2051function_list | sort '-t;' -k 3 | while do_read
104c1213 2052do
1e9f55d0
AC
2053 # First the predicate
2054 if class_is_predicate_p
2055 then
7996bcec 2056 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2057 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2058 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2059 fi
48f7351b 2060 # Print the corresponding value.
283354d8 2061 if class_is_function_p
4b9b3959 2062 then
7996bcec 2063 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2064 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2065 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2066 else
48f7351b 2067 # It is a variable
2f9b146e
AC
2068 case "${print}:${returntype}" in
2069 :CORE_ADDR )
0b1553bc
UW
2070 fmt="%s"
2071 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2072 ;;
2f9b146e 2073 :* )
dda83cd7 2074 fmt="%s"
623d3eb1 2075 print="plongest (gdbarch->${function})"
48f7351b
AC
2076 ;;
2077 * )
dda83cd7 2078 fmt="%s"
48f7351b 2079 ;;
dda83cd7 2080 esac
3d9a5942 2081 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2082 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2083 printf " %s);\n" "$print"
2ada493a 2084 fi
104c1213 2085done
381323f4 2086cat <<EOF
be7811ad
MD
2087 if (gdbarch->dump_tdep != NULL)
2088 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2089}
2090EOF
104c1213
JM
2091
2092
2093# GET/SET
3d9a5942 2094printf "\n"
104c1213
JM
2095cat <<EOF
2096struct gdbarch_tdep *
2097gdbarch_tdep (struct gdbarch *gdbarch)
2098{
2099 if (gdbarch_debug >= 2)
3d9a5942 2100 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2101 return gdbarch->tdep;
2102}
2103EOF
3d9a5942 2104printf "\n"
34620563 2105function_list | while do_read
104c1213 2106do
2ada493a
AC
2107 if class_is_predicate_p
2108 then
3d9a5942 2109 printf "\n"
39535193 2110 printf "bool\n"
8d113d13 2111 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2112 printf "{\n"
dda83cd7 2113 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2114 printf " return %s;\n" "$predicate"
3d9a5942 2115 printf "}\n"
2ada493a
AC
2116 fi
2117 if class_is_function_p
2118 then
3d9a5942 2119 printf "\n"
8d113d13 2120 printf "%s\n" "$returntype"
72e74a21 2121 if [ "x${formal}" = "xvoid" ]
104c1213 2122 then
8d113d13 2123 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2124 else
8d113d13 2125 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2126 fi
3d9a5942 2127 printf "{\n"
dda83cd7 2128 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2129 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2130 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2131 then
2132 # Allow a call to a function with a predicate.
8d113d13 2133 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2134 fi
3d9a5942 2135 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2136 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
1207375d 2137 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
4a5c6a1d
AC
2138 then
2139 if class_is_multiarch_p
2140 then
2141 params="gdbarch"
2142 else
2143 params=""
2144 fi
2145 else
2146 if class_is_multiarch_p
2147 then
2148 params="gdbarch, ${actual}"
2149 else
2150 params="${actual}"
2151 fi
dda83cd7 2152 fi
72e74a21 2153 if [ "x${returntype}" = "xvoid" ]
104c1213 2154 then
8d113d13 2155 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2156 else
8d113d13 2157 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2158 fi
3d9a5942
AC
2159 printf "}\n"
2160 printf "\n"
2161 printf "void\n"
8d113d13 2162 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2163 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2164 printf "{\n"
8d113d13 2165 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2166 printf "}\n"
2ada493a
AC
2167 elif class_is_variable_p
2168 then
3d9a5942 2169 printf "\n"
8d113d13
SM
2170 printf "%s\n" "$returntype"
2171 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2172 printf "{\n"
dda83cd7 2173 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2174 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2175 then
8d113d13 2176 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2177 elif [ -n "${invalid_p}" ]
104c1213 2178 then
956ac328 2179 printf " /* Check variable is valid. */\n"
8d113d13 2180 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2181 elif [ -n "${predefault}" ]
104c1213 2182 then
956ac328 2183 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2184 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2185 fi
3d9a5942 2186 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2187 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2188 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2189 printf "}\n"
2190 printf "\n"
2191 printf "void\n"
8d113d13 2192 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2193 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2194 printf "{\n"
8d113d13 2195 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2196 printf "}\n"
2ada493a
AC
2197 elif class_is_info_p
2198 then
3d9a5942 2199 printf "\n"
8d113d13
SM
2200 printf "%s\n" "$returntype"
2201 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2202 printf "{\n"
dda83cd7 2203 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2204 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2205 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2206 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2207 printf "}\n"
2ada493a 2208 fi
104c1213
JM
2209done
2210
2211# All the trailing guff
2212cat <<EOF
2213
2214
f44c642f 2215/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2216 modules. */
104c1213
JM
2217
2218struct gdbarch_data
2219{
95160752 2220 unsigned index;
76860b5f 2221 int init_p;
030f20e1
AC
2222 gdbarch_data_pre_init_ftype *pre_init;
2223 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2224};
2225
2226struct gdbarch_data_registration
2227{
104c1213
JM
2228 struct gdbarch_data *data;
2229 struct gdbarch_data_registration *next;
2230};
2231
f44c642f 2232struct gdbarch_data_registry
104c1213 2233{
95160752 2234 unsigned nr;
104c1213
JM
2235 struct gdbarch_data_registration *registrations;
2236};
2237
41c0087b 2238static struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2239{
2240 0, NULL,
2241};
2242
030f20e1
AC
2243static struct gdbarch_data *
2244gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2245 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2246{
2247 struct gdbarch_data_registration **curr;
05c547f6
MS
2248
2249 /* Append the new registration. */
f44c642f 2250 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2251 (*curr) != NULL;
2252 curr = &(*curr)->next);
70ba0933 2253 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2254 (*curr)->next = NULL;
70ba0933 2255 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2256 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2257 (*curr)->data->pre_init = pre_init;
2258 (*curr)->data->post_init = post_init;
76860b5f 2259 (*curr)->data->init_p = 1;
104c1213
JM
2260 return (*curr)->data;
2261}
2262
030f20e1
AC
2263struct gdbarch_data *
2264gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2265{
2266 return gdbarch_data_register (pre_init, NULL);
2267}
2268
2269struct gdbarch_data *
2270gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2271{
2272 return gdbarch_data_register (NULL, post_init);
2273}
104c1213 2274
0963b4bd 2275/* Create/delete the gdbarch data vector. */
95160752
AC
2276
2277static void
b3cc3077 2278alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2279{
b3cc3077
JB
2280 gdb_assert (gdbarch->data == NULL);
2281 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2282 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2283}
3c875b6f 2284
104c1213 2285/* Return the current value of the specified per-architecture
0963b4bd 2286 data-pointer. */
104c1213
JM
2287
2288void *
451fbdda 2289gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2290{
451fbdda 2291 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2292 if (gdbarch->data[data->index] == NULL)
76860b5f 2293 {
030f20e1
AC
2294 /* The data-pointer isn't initialized, call init() to get a
2295 value. */
2296 if (data->pre_init != NULL)
2297 /* Mid architecture creation: pass just the obstack, and not
2298 the entire architecture, as that way it isn't possible for
2299 pre-init code to refer to undefined architecture
2300 fields. */
2301 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2302 else if (gdbarch->initialized_p
2303 && data->post_init != NULL)
2304 /* Post architecture creation: pass the entire architecture
2305 (as all fields are valid), but be careful to also detect
2306 recursive references. */
2307 {
2308 gdb_assert (data->init_p);
2309 data->init_p = 0;
2310 gdbarch->data[data->index] = data->post_init (gdbarch);
2311 data->init_p = 1;
2312 }
2313 else
3bc98c0c
AB
2314 internal_error (__FILE__, __LINE__,
2315 _("gdbarch post-init data field can only be used "
2316 "after gdbarch is fully initialised"));
76860b5f
AC
2317 gdb_assert (gdbarch->data[data->index] != NULL);
2318 }
451fbdda 2319 return gdbarch->data[data->index];
104c1213
JM
2320}
2321
2322
0963b4bd 2323/* Keep a registry of the architectures known by GDB. */
104c1213 2324
4b9b3959 2325struct gdbarch_registration
104c1213
JM
2326{
2327 enum bfd_architecture bfd_architecture;
2328 gdbarch_init_ftype *init;
4b9b3959 2329 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2330 struct gdbarch_list *arches;
4b9b3959 2331 struct gdbarch_registration *next;
104c1213
JM
2332};
2333
f44c642f 2334static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2335
b4a20239
AC
2336static void
2337append_name (const char ***buf, int *nr, const char *name)
2338{
1dc7a623 2339 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2340 (*buf)[*nr] = name;
2341 *nr += 1;
2342}
2343
2344const char **
2345gdbarch_printable_names (void)
2346{
7996bcec 2347 /* Accumulate a list of names based on the registed list of
0963b4bd 2348 architectures. */
7996bcec
AC
2349 int nr_arches = 0;
2350 const char **arches = NULL;
2351 struct gdbarch_registration *rego;
05c547f6 2352
7996bcec
AC
2353 for (rego = gdbarch_registry;
2354 rego != NULL;
2355 rego = rego->next)
b4a20239 2356 {
7996bcec
AC
2357 const struct bfd_arch_info *ap;
2358 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2359 if (ap == NULL)
dda83cd7
SM
2360 internal_error (__FILE__, __LINE__,
2361 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec 2362 do
dda83cd7
SM
2363 {
2364 append_name (&arches, &nr_arches, ap->printable_name);
2365 ap = ap->next;
2366 }
7996bcec 2367 while (ap != NULL);
b4a20239 2368 }
7996bcec
AC
2369 append_name (&arches, &nr_arches, NULL);
2370 return arches;
b4a20239
AC
2371}
2372
2373
104c1213 2374void
4b9b3959 2375gdbarch_register (enum bfd_architecture bfd_architecture,
dda83cd7 2376 gdbarch_init_ftype *init,
4b9b3959 2377 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2378{
4b9b3959 2379 struct gdbarch_registration **curr;
104c1213 2380 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2381
ec3d358c 2382 /* Check that BFD recognizes this architecture */
104c1213
JM
2383 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2384 if (bfd_arch_info == NULL)
2385 {
8e65ff28 2386 internal_error (__FILE__, __LINE__,
dda83cd7 2387 _("gdbarch: Attempt to register "
0963b4bd 2388 "unknown architecture (%d)"),
dda83cd7 2389 bfd_architecture);
104c1213 2390 }
0963b4bd 2391 /* Check that we haven't seen this architecture before. */
f44c642f 2392 for (curr = &gdbarch_registry;
104c1213
JM
2393 (*curr) != NULL;
2394 curr = &(*curr)->next)
2395 {
2396 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2397 internal_error (__FILE__, __LINE__,
dda83cd7 2398 _("gdbarch: Duplicate registration "
0963b4bd 2399 "of architecture (%s)"),
dda83cd7 2400 bfd_arch_info->printable_name);
104c1213
JM
2401 }
2402 /* log it */
2403 if (gdbarch_debug)
30737ed9 2404 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2405 bfd_arch_info->printable_name,
30737ed9 2406 host_address_to_string (init));
104c1213 2407 /* Append it */
70ba0933 2408 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2409 (*curr)->bfd_architecture = bfd_architecture;
2410 (*curr)->init = init;
4b9b3959 2411 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2412 (*curr)->arches = NULL;
2413 (*curr)->next = NULL;
4b9b3959
AC
2414}
2415
2416void
2417register_gdbarch_init (enum bfd_architecture bfd_architecture,
2418 gdbarch_init_ftype *init)
2419{
2420 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2421}
104c1213
JM
2422
2423
424163ea 2424/* Look for an architecture using gdbarch_info. */
104c1213
JM
2425
2426struct gdbarch_list *
2427gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
dda83cd7 2428 const struct gdbarch_info *info)
104c1213
JM
2429{
2430 for (; arches != NULL; arches = arches->next)
2431 {
2432 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2433 continue;
2434 if (info->byte_order != arches->gdbarch->byte_order)
2435 continue;
4be87837
DJ
2436 if (info->osabi != arches->gdbarch->osabi)
2437 continue;
424163ea
DJ
2438 if (info->target_desc != arches->gdbarch->target_desc)
2439 continue;
104c1213
JM
2440 return arches;
2441 }
2442 return NULL;
2443}
2444
2445
ebdba546 2446/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2447 architecture if needed. Return that new architecture. */
104c1213 2448
59837fe0
UW
2449struct gdbarch *
2450gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2451{
2452 struct gdbarch *new_gdbarch;
4b9b3959 2453 struct gdbarch_registration *rego;
104c1213 2454
b732d07d 2455 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2456 sources: "set ..."; INFOabfd supplied; and the global
2457 defaults. */
2458 gdbarch_info_fill (&info);
4be87837 2459
0963b4bd 2460 /* Must have found some sort of architecture. */
b732d07d 2461 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2462
2463 if (gdbarch_debug)
2464 {
2465 fprintf_unfiltered (gdb_stdlog,
59837fe0 2466 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2467 (info.bfd_arch_info != NULL
2468 ? info.bfd_arch_info->printable_name
2469 : "(null)"));
2470 fprintf_unfiltered (gdb_stdlog,
59837fe0 2471 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2472 info.byte_order,
d7449b42 2473 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2474 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2475 : "default"));
4be87837 2476 fprintf_unfiltered (gdb_stdlog,
59837fe0 2477 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2478 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2479 fprintf_unfiltered (gdb_stdlog,
59837fe0 2480 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2481 host_address_to_string (info.abfd));
104c1213 2482 fprintf_unfiltered (gdb_stdlog,
59837fe0 2483 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2484 host_address_to_string (info.tdep_info));
104c1213
JM
2485 }
2486
ebdba546 2487 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2488 for (rego = gdbarch_registry;
2489 rego != NULL;
2490 rego = rego->next)
2491 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2492 break;
2493 if (rego == NULL)
2494 {
2495 if (gdbarch_debug)
59837fe0 2496 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2497 "No matching architecture\n");
b732d07d
AC
2498 return 0;
2499 }
2500
ebdba546 2501 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2502 new_gdbarch = rego->init (info, rego->arches);
2503
ebdba546
AC
2504 /* Did the tdep code like it? No. Reject the change and revert to
2505 the old architecture. */
104c1213
JM
2506 if (new_gdbarch == NULL)
2507 {
2508 if (gdbarch_debug)
59837fe0 2509 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2510 "Target rejected architecture\n");
2511 return NULL;
104c1213
JM
2512 }
2513
ebdba546
AC
2514 /* Is this a pre-existing architecture (as determined by already
2515 being initialized)? Move it to the front of the architecture
2516 list (keeping the list sorted Most Recently Used). */
2517 if (new_gdbarch->initialized_p)
104c1213 2518 {
ebdba546 2519 struct gdbarch_list **list;
fe978cb0 2520 struct gdbarch_list *self;
104c1213 2521 if (gdbarch_debug)
59837fe0 2522 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2523 "Previous architecture %s (%s) selected\n",
2524 host_address_to_string (new_gdbarch),
104c1213 2525 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2526 /* Find the existing arch in the list. */
2527 for (list = &rego->arches;
2528 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2529 list = &(*list)->next);
2530 /* It had better be in the list of architectures. */
2531 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2532 /* Unlink SELF. */
2533 self = (*list);
2534 (*list) = self->next;
2535 /* Insert SELF at the front. */
2536 self->next = rego->arches;
2537 rego->arches = self;
ebdba546
AC
2538 /* Return it. */
2539 return new_gdbarch;
104c1213
JM
2540 }
2541
ebdba546
AC
2542 /* It's a new architecture. */
2543 if (gdbarch_debug)
59837fe0 2544 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2545 "New architecture %s (%s) selected\n",
2546 host_address_to_string (new_gdbarch),
ebdba546
AC
2547 new_gdbarch->bfd_arch_info->printable_name);
2548
2549 /* Insert the new architecture into the front of the architecture
2550 list (keep the list sorted Most Recently Used). */
0f79675b 2551 {
fe978cb0
PA
2552 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2553 self->next = rego->arches;
2554 self->gdbarch = new_gdbarch;
2555 rego->arches = self;
0f79675b 2556 }
104c1213 2557
4b9b3959
AC
2558 /* Check that the newly installed architecture is valid. Plug in
2559 any post init values. */
2560 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2561 verify_gdbarch (new_gdbarch);
ebdba546 2562 new_gdbarch->initialized_p = 1;
104c1213 2563
4b9b3959 2564 if (gdbarch_debug)
ebdba546
AC
2565 gdbarch_dump (new_gdbarch, gdb_stdlog);
2566
2567 return new_gdbarch;
2568}
2569
e487cc15 2570/* Make the specified architecture current. */
ebdba546
AC
2571
2572void
aff68abb 2573set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2574{
2575 gdb_assert (new_gdbarch != NULL);
ebdba546 2576 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2577 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2578 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2579 registers_changed ();
ebdba546 2580}
104c1213 2581
f5656ead 2582/* Return the current inferior's arch. */
6ecd4729
PA
2583
2584struct gdbarch *
f5656ead 2585target_gdbarch (void)
6ecd4729
PA
2586{
2587 return current_inferior ()->gdbarch;
2588}
2589
a1237872 2590void _initialize_gdbarch ();
104c1213 2591void
a1237872 2592_initialize_gdbarch ()
104c1213 2593{
ccce17b0 2594 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2595Set architecture debugging."), _("\\
2596Show architecture debugging."), _("\\
2597When non-zero, architecture debugging is enabled."),
dda83cd7
SM
2598 NULL,
2599 show_gdbarch_debug,
2600 &setdebuglist, &showdebuglist);
104c1213
JM
2601}
2602EOF
2603
2604# close things off
2605exec 1>&2
41a77cba
SM
2606../move-if-change new-gdbarch.c gdbarch.c
2607rm -f new-gdbarch.c
This page took 2.114949 seconds and 4 git commands to generate.