[gdb/testsuite] Add save_target_board_info
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
b811d2c2 3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
82ca8957 25#include "dwarf2/frame.h"
c906108c 26#include "frame.h"
acd5c798
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
c906108c 29#include "inferior.h"
45741a9c 30#include "infrun.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
3b2ca824 42#include "target-float.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
268a13a5 49#include "gdbsupport/x86-xstate.h"
1d509aa6 50#include "x86-tdep.h"
d2a7c97a 51
7ad10968 52#include "record.h"
d02ed0bb 53#include "record-full.h"
22916b07
YQ
54#include "target-descriptions.h"
55#include "arch/i386.h"
90884b2b 56
6710bf39
SS
57#include "ax.h"
58#include "ax-gdb.h"
59
55aa24fb
SDJ
60#include "stap-probe.h"
61#include "user-regs.h"
62#include "cli/cli-utils.h"
63#include "expression.h"
64#include "parser-defs.h"
65#include <ctype.h>
325fac50 66#include <algorithm>
7d7571f0 67#include <unordered_set>
c2fd7fae 68#include "producer.h"
55aa24fb 69
c4fc7f1b 70/* Register names. */
c40e1eab 71
27087b7f 72static const char * const i386_register_names[] =
fc633446
MK
73{
74 "eax", "ecx", "edx", "ebx",
75 "esp", "ebp", "esi", "edi",
76 "eip", "eflags", "cs", "ss",
77 "ds", "es", "fs", "gs",
78 "st0", "st1", "st2", "st3",
79 "st4", "st5", "st6", "st7",
80 "fctrl", "fstat", "ftag", "fiseg",
81 "fioff", "foseg", "fooff", "fop",
82 "xmm0", "xmm1", "xmm2", "xmm3",
83 "xmm4", "xmm5", "xmm6", "xmm7",
84 "mxcsr"
85};
86
27087b7f 87static const char * const i386_zmm_names[] =
01f9f808
MS
88{
89 "zmm0", "zmm1", "zmm2", "zmm3",
90 "zmm4", "zmm5", "zmm6", "zmm7"
91};
92
27087b7f 93static const char * const i386_zmmh_names[] =
01f9f808
MS
94{
95 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
96 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
97};
98
27087b7f 99static const char * const i386_k_names[] =
01f9f808
MS
100{
101 "k0", "k1", "k2", "k3",
102 "k4", "k5", "k6", "k7"
103};
104
27087b7f 105static const char * const i386_ymm_names[] =
c131fcee
L
106{
107 "ymm0", "ymm1", "ymm2", "ymm3",
108 "ymm4", "ymm5", "ymm6", "ymm7",
109};
110
27087b7f 111static const char * const i386_ymmh_names[] =
c131fcee
L
112{
113 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
114 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
115};
116
27087b7f 117static const char * const i386_mpx_names[] =
1dbcd68c
WT
118{
119 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
120};
121
27087b7f 122static const char * const i386_pkeys_names[] =
51547df6
MS
123{
124 "pkru"
125};
126
1dbcd68c
WT
127/* Register names for MPX pseudo-registers. */
128
27087b7f 129static const char * const i386_bnd_names[] =
1dbcd68c
WT
130{
131 "bnd0", "bnd1", "bnd2", "bnd3"
132};
133
c4fc7f1b 134/* Register names for MMX pseudo-registers. */
28fc6740 135
27087b7f 136static const char * const i386_mmx_names[] =
28fc6740
AC
137{
138 "mm0", "mm1", "mm2", "mm3",
139 "mm4", "mm5", "mm6", "mm7"
140};
c40e1eab 141
1ba53b71
L
142/* Register names for byte pseudo-registers. */
143
27087b7f 144static const char * const i386_byte_names[] =
1ba53b71
L
145{
146 "al", "cl", "dl", "bl",
147 "ah", "ch", "dh", "bh"
148};
149
150/* Register names for word pseudo-registers. */
151
27087b7f 152static const char * const i386_word_names[] =
1ba53b71
L
153{
154 "ax", "cx", "dx", "bx",
9cad29ac 155 "", "bp", "si", "di"
1ba53b71
L
156};
157
01f9f808
MS
158/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
159 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
160 we have 16 upper ZMM regs that have to be handled differently. */
161
162const int num_lower_zmm_regs = 16;
163
1ba53b71 164/* MMX register? */
c40e1eab 165
28fc6740 166static int
5716833c 167i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 168{
1ba53b71
L
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
171
172 if (mm0_regnum < 0)
173 return 0;
174
1ba53b71
L
175 regnum -= mm0_regnum;
176 return regnum >= 0 && regnum < tdep->num_mmx_regs;
177}
178
179/* Byte register? */
180
181int
182i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
183{
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185
186 regnum -= tdep->al_regnum;
187 return regnum >= 0 && regnum < tdep->num_byte_regs;
188}
189
190/* Word register? */
191
192int
193i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
194{
195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196
197 regnum -= tdep->ax_regnum;
198 return regnum >= 0 && regnum < tdep->num_word_regs;
199}
200
201/* Dword register? */
202
203int
204i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
205{
206 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
207 int eax_regnum = tdep->eax_regnum;
208
209 if (eax_regnum < 0)
210 return 0;
211
212 regnum -= eax_regnum;
213 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
214}
215
01f9f808
MS
216/* AVX512 register? */
217
218int
219i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
220{
221 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
222 int zmm0h_regnum = tdep->zmm0h_regnum;
223
224 if (zmm0h_regnum < 0)
225 return 0;
226
227 regnum -= zmm0h_regnum;
228 return regnum >= 0 && regnum < tdep->num_zmm_regs;
229}
230
231int
232i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
233{
234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
235 int zmm0_regnum = tdep->zmm0_regnum;
236
237 if (zmm0_regnum < 0)
238 return 0;
239
240 regnum -= zmm0_regnum;
241 return regnum >= 0 && regnum < tdep->num_zmm_regs;
242}
243
244int
245i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
246{
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248 int k0_regnum = tdep->k0_regnum;
249
250 if (k0_regnum < 0)
251 return 0;
252
253 regnum -= k0_regnum;
254 return regnum >= 0 && regnum < I387_NUM_K_REGS;
255}
256
9191d390 257static int
c131fcee
L
258i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
259{
260 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
261 int ymm0h_regnum = tdep->ymm0h_regnum;
262
263 if (ymm0h_regnum < 0)
264 return 0;
265
266 regnum -= ymm0h_regnum;
267 return regnum >= 0 && regnum < tdep->num_ymm_regs;
268}
269
270/* AVX register? */
271
272int
273i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
274{
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276 int ymm0_regnum = tdep->ymm0_regnum;
277
278 if (ymm0_regnum < 0)
279 return 0;
280
281 regnum -= ymm0_regnum;
282 return regnum >= 0 && regnum < tdep->num_ymm_regs;
283}
284
01f9f808
MS
285static int
286i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
287{
288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
289 int ymm16h_regnum = tdep->ymm16h_regnum;
290
291 if (ymm16h_regnum < 0)
292 return 0;
293
294 regnum -= ymm16h_regnum;
295 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
296}
297
298int
299i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
300{
301 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
302 int ymm16_regnum = tdep->ymm16_regnum;
303
304 if (ymm16_regnum < 0)
305 return 0;
306
307 regnum -= ymm16_regnum;
308 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
309}
310
1dbcd68c
WT
311/* BND register? */
312
313int
314i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
315{
316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
317 int bnd0_regnum = tdep->bnd0_regnum;
318
319 if (bnd0_regnum < 0)
320 return 0;
321
322 regnum -= bnd0_regnum;
323 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
324}
325
5716833c 326/* SSE register? */
23a34459 327
c131fcee
L
328int
329i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 330{
5716833c 331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 332 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 333
c131fcee 334 if (num_xmm_regs == 0)
5716833c
MK
335 return 0;
336
c131fcee
L
337 regnum -= I387_XMM0_REGNUM (tdep);
338 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
339}
340
01f9f808
MS
341/* XMM_512 register? */
342
343int
344i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
345{
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
347 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
348
349 if (num_xmm_avx512_regs == 0)
350 return 0;
351
352 regnum -= I387_XMM16_REGNUM (tdep);
353 return regnum >= 0 && regnum < num_xmm_avx512_regs;
354}
355
5716833c
MK
356static int
357i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 358{
5716833c
MK
359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
360
20a6ec49 361 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
362 return 0;
363
20a6ec49 364 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
365}
366
5716833c 367/* FP register? */
23a34459
AC
368
369int
20a6ec49 370i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 371{
20a6ec49
MD
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373
374 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
375 return 0;
376
20a6ec49
MD
377 return (I387_ST0_REGNUM (tdep) <= regnum
378 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
379}
380
381int
20a6ec49 382i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 383{
20a6ec49
MD
384 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
385
386 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
387 return 0;
388
20a6ec49
MD
389 return (I387_FCTRL_REGNUM (tdep) <= regnum
390 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
391}
392
1dbcd68c
WT
393/* BNDr (raw) register? */
394
395static int
396i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
397{
398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
399
400 if (I387_BND0R_REGNUM (tdep) < 0)
401 return 0;
402
403 regnum -= tdep->bnd0r_regnum;
404 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
405}
406
407/* BND control register? */
408
409static int
410i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
411{
412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413
414 if (I387_BNDCFGU_REGNUM (tdep) < 0)
415 return 0;
416
417 regnum -= I387_BNDCFGU_REGNUM (tdep);
418 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
419}
420
51547df6
MS
421/* PKRU register? */
422
423bool
424i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
425{
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
427 int pkru_regnum = tdep->pkru_regnum;
428
429 if (pkru_regnum < 0)
430 return false;
431
432 regnum -= pkru_regnum;
433 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
434}
435
c131fcee
L
436/* Return the name of register REGNUM, or the empty string if it is
437 an anonymous register. */
438
439static const char *
440i386_register_name (struct gdbarch *gdbarch, int regnum)
441{
442 /* Hide the upper YMM registers. */
443 if (i386_ymmh_regnum_p (gdbarch, regnum))
444 return "";
445
01f9f808
MS
446 /* Hide the upper YMM16-31 registers. */
447 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
448 return "";
449
450 /* Hide the upper ZMM registers. */
451 if (i386_zmmh_regnum_p (gdbarch, regnum))
452 return "";
453
c131fcee
L
454 return tdesc_register_name (gdbarch, regnum);
455}
456
30b0e2d8 457/* Return the name of register REGNUM. */
fc633446 458
1ba53b71 459const char *
90884b2b 460i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 461{
1ba53b71 462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
463 if (i386_bnd_regnum_p (gdbarch, regnum))
464 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
465 if (i386_mmx_regnum_p (gdbarch, regnum))
466 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
467 else if (i386_ymm_regnum_p (gdbarch, regnum))
468 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
469 else if (i386_zmm_regnum_p (gdbarch, regnum))
470 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
471 else if (i386_byte_regnum_p (gdbarch, regnum))
472 return i386_byte_names[regnum - tdep->al_regnum];
473 else if (i386_word_regnum_p (gdbarch, regnum))
474 return i386_word_names[regnum - tdep->ax_regnum];
475
476 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
477}
478
c4fc7f1b 479/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
480 number used by GDB. */
481
8201327c 482static int
d3f73121 483i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 484{
20a6ec49
MD
485 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
486
c4fc7f1b
MK
487 /* This implements what GCC calls the "default" register map
488 (dbx_register_map[]). */
489
85540d8c
MK
490 if (reg >= 0 && reg <= 7)
491 {
9872ad24 492 /* General-purpose registers. The debug info calls %ebp
dda83cd7 493 register 4, and %esp register 5. */
9872ad24 494 if (reg == 4)
dda83cd7 495 return 5;
9872ad24 496 else if (reg == 5)
dda83cd7 497 return 4;
9872ad24 498 else return reg;
85540d8c
MK
499 }
500 else if (reg >= 12 && reg <= 19)
501 {
502 /* Floating-point registers. */
20a6ec49 503 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
504 }
505 else if (reg >= 21 && reg <= 28)
506 {
507 /* SSE registers. */
c131fcee
L
508 int ymm0_regnum = tdep->ymm0_regnum;
509
510 if (ymm0_regnum >= 0
511 && i386_xmm_regnum_p (gdbarch, reg))
512 return reg - 21 + ymm0_regnum;
513 else
514 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
515 }
516 else if (reg >= 29 && reg <= 36)
517 {
518 /* MMX registers. */
20a6ec49 519 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
520 }
521
522 /* This will hopefully provoke a warning. */
f6efe3f8 523 return gdbarch_num_cooked_regs (gdbarch);
85540d8c
MK
524}
525
0fde2c53 526/* Convert SVR4 DWARF register number REG to the appropriate register number
c4fc7f1b 527 used by GDB. */
85540d8c 528
8201327c 529static int
0fde2c53 530i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 531{
20a6ec49
MD
532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
533
c4fc7f1b
MK
534 /* This implements the GCC register map that tries to be compatible
535 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
536
537 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
538 numbers the floating point registers differently. */
539 if (reg >= 0 && reg <= 9)
540 {
acd5c798 541 /* General-purpose registers. */
85540d8c
MK
542 return reg;
543 }
544 else if (reg >= 11 && reg <= 18)
545 {
546 /* Floating-point registers. */
20a6ec49 547 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 548 }
c6f4c129 549 else if (reg >= 21 && reg <= 36)
85540d8c 550 {
c4fc7f1b 551 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 552 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
553 }
554
c6f4c129
JB
555 switch (reg)
556 {
20a6ec49
MD
557 case 37: return I387_FCTRL_REGNUM (tdep);
558 case 38: return I387_FSTAT_REGNUM (tdep);
559 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
560 case 40: return I386_ES_REGNUM;
561 case 41: return I386_CS_REGNUM;
562 case 42: return I386_SS_REGNUM;
563 case 43: return I386_DS_REGNUM;
564 case 44: return I386_FS_REGNUM;
565 case 45: return I386_GS_REGNUM;
566 }
567
0fde2c53
DE
568 return -1;
569}
570
571/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
572 num_regs + num_pseudo_regs for other debug formats. */
573
8f10c932 574int
0fde2c53
DE
575i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
576{
577 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
578
579 if (regnum == -1)
f6efe3f8 580 return gdbarch_num_cooked_regs (gdbarch);
0fde2c53 581 return regnum;
85540d8c 582}
5716833c 583
fc338970 584\f
917317f4 585
fc338970
MK
586/* This is the variable that is set with "set disassembly-flavor", and
587 its legitimate values. */
53904c9e
AC
588static const char att_flavor[] = "att";
589static const char intel_flavor[] = "intel";
40478521 590static const char *const valid_flavors[] =
c5aa993b 591{
c906108c
SS
592 att_flavor,
593 intel_flavor,
594 NULL
595};
53904c9e 596static const char *disassembly_flavor = att_flavor;
acd5c798 597\f
c906108c 598
acd5c798
MK
599/* Use the program counter to determine the contents and size of a
600 breakpoint instruction. Return a pointer to a string of bytes that
601 encode a breakpoint instruction, store the length of the string in
602 *LEN and optionally adjust *PC to point to the correct memory
603 location for inserting the breakpoint.
c906108c 604
acd5c798
MK
605 On the i386 we have a single breakpoint that fits in a single byte
606 and can be inserted anywhere.
c906108c 607
acd5c798 608 This function is 64-bit safe. */
63c0089f 609
04180708
YQ
610constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
611
612typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
63c0089f 613
237fc4c9
PA
614\f
615/* Displaced instruction handling. */
616
1903f0e6
DE
617/* Skip the legacy instruction prefixes in INSN.
618 Not all prefixes are valid for any particular insn
619 but we needn't care, the insn will fault if it's invalid.
620 The result is a pointer to the first opcode byte,
621 or NULL if we run off the end of the buffer. */
622
623static gdb_byte *
624i386_skip_prefixes (gdb_byte *insn, size_t max_len)
625{
626 gdb_byte *end = insn + max_len;
627
628 while (insn < end)
629 {
630 switch (*insn)
631 {
632 case DATA_PREFIX_OPCODE:
633 case ADDR_PREFIX_OPCODE:
634 case CS_PREFIX_OPCODE:
635 case DS_PREFIX_OPCODE:
636 case ES_PREFIX_OPCODE:
637 case FS_PREFIX_OPCODE:
638 case GS_PREFIX_OPCODE:
639 case SS_PREFIX_OPCODE:
640 case LOCK_PREFIX_OPCODE:
641 case REPE_PREFIX_OPCODE:
642 case REPNE_PREFIX_OPCODE:
643 ++insn;
644 continue;
645 default:
646 return insn;
647 }
648 }
649
650 return NULL;
651}
237fc4c9
PA
652
653static int
1903f0e6 654i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 655{
1777feb0 656 /* jmp far (absolute address in operand). */
237fc4c9
PA
657 if (insn[0] == 0xea)
658 return 1;
659
660 if (insn[0] == 0xff)
661 {
1777feb0 662 /* jump near, absolute indirect (/4). */
237fc4c9 663 if ((insn[1] & 0x38) == 0x20)
dda83cd7 664 return 1;
237fc4c9 665
1777feb0 666 /* jump far, absolute indirect (/5). */
237fc4c9 667 if ((insn[1] & 0x38) == 0x28)
dda83cd7 668 return 1;
237fc4c9
PA
669 }
670
671 return 0;
672}
673
c2170eef
MM
674/* Return non-zero if INSN is a jump, zero otherwise. */
675
676static int
677i386_jmp_p (const gdb_byte *insn)
678{
679 /* jump short, relative. */
680 if (insn[0] == 0xeb)
681 return 1;
682
683 /* jump near, relative. */
684 if (insn[0] == 0xe9)
685 return 1;
686
687 return i386_absolute_jmp_p (insn);
688}
689
237fc4c9 690static int
1903f0e6 691i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 692{
1777feb0 693 /* call far, absolute. */
237fc4c9
PA
694 if (insn[0] == 0x9a)
695 return 1;
696
697 if (insn[0] == 0xff)
698 {
1777feb0 699 /* Call near, absolute indirect (/2). */
237fc4c9 700 if ((insn[1] & 0x38) == 0x10)
dda83cd7 701 return 1;
237fc4c9 702
1777feb0 703 /* Call far, absolute indirect (/3). */
237fc4c9 704 if ((insn[1] & 0x38) == 0x18)
dda83cd7 705 return 1;
237fc4c9
PA
706 }
707
708 return 0;
709}
710
711static int
1903f0e6 712i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
713{
714 switch (insn[0])
715 {
1777feb0 716 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 717 case 0xc3: /* ret near */
1777feb0 718 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
719 case 0xcb: /* ret far */
720 case 0xcf: /* iret */
721 return 1;
722
723 default:
724 return 0;
725 }
726}
727
728static int
1903f0e6 729i386_call_p (const gdb_byte *insn)
237fc4c9
PA
730{
731 if (i386_absolute_call_p (insn))
732 return 1;
733
1777feb0 734 /* call near, relative. */
237fc4c9
PA
735 if (insn[0] == 0xe8)
736 return 1;
737
738 return 0;
739}
740
237fc4c9
PA
741/* Return non-zero if INSN is a system call, and set *LENGTHP to its
742 length in bytes. Otherwise, return zero. */
1903f0e6 743
237fc4c9 744static int
b55078be 745i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 746{
9a7f938f
JK
747 /* Is it 'int $0x80'? */
748 if ((insn[0] == 0xcd && insn[1] == 0x80)
749 /* Or is it 'sysenter'? */
750 || (insn[0] == 0x0f && insn[1] == 0x34)
751 /* Or is it 'syscall'? */
752 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
753 {
754 *lengthp = 2;
755 return 1;
756 }
757
758 return 0;
759}
760
c2170eef
MM
761/* The gdbarch insn_is_call method. */
762
763static int
764i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
765{
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_call_p (insn);
772}
773
774/* The gdbarch insn_is_ret method. */
775
776static int
777i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
778{
779 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
780
781 read_code (addr, buf, I386_MAX_INSN_LEN);
782 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
783
784 return i386_ret_p (insn);
785}
786
787/* The gdbarch insn_is_jump method. */
788
789static int
790i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
791{
792 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
793
794 read_code (addr, buf, I386_MAX_INSN_LEN);
795 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
796
797 return i386_jmp_p (insn);
798}
799
c2508e90 800/* Some kernels may run one past a syscall insn, so we have to cope. */
b55078be 801
1152d984 802displaced_step_copy_insn_closure_up
b55078be
DE
803i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
804 CORE_ADDR from, CORE_ADDR to,
805 struct regcache *regs)
806{
807 size_t len = gdbarch_max_insn_length (gdbarch);
1152d984
SM
808 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
809 (new i386_displaced_step_copy_insn_closure (len));
cfba9872 810 gdb_byte *buf = closure->buf.data ();
b55078be
DE
811
812 read_memory (from, buf, len);
813
814 /* GDB may get control back after the insn after the syscall.
815 Presumably this is a kernel bug.
816 If this is a syscall, make sure there's a nop afterwards. */
817 {
818 int syscall_length;
819 gdb_byte *insn;
820
821 insn = i386_skip_prefixes (buf, len);
822 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
823 insn[syscall_length] = NOP_OPCODE;
824 }
825
826 write_memory (to, buf, len);
827
136821d9 828 displaced_debug_printf ("%s->%s: %s",
dda83cd7 829 paddress (gdbarch, from), paddress (gdbarch, to),
136821d9 830 displaced_step_dump_bytes (buf, len).c_str ());
b55078be 831
6d0cf446 832 /* This is a work around for a problem with g++ 4.8. */
1152d984 833 return displaced_step_copy_insn_closure_up (closure.release ());
b55078be
DE
834}
835
237fc4c9
PA
836/* Fix up the state of registers and memory after having single-stepped
837 a displaced instruction. */
1903f0e6 838
237fc4c9
PA
839void
840i386_displaced_step_fixup (struct gdbarch *gdbarch,
1152d984 841 struct displaced_step_copy_insn_closure *closure_,
dda83cd7
SM
842 CORE_ADDR from, CORE_ADDR to,
843 struct regcache *regs)
237fc4c9 844{
e17a4113
UW
845 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
846
237fc4c9
PA
847 /* The offset we applied to the instruction's address.
848 This could well be negative (when viewed as a signed 32-bit
849 value), but ULONGEST won't reflect that, so take care when
850 applying it. */
851 ULONGEST insn_offset = to - from;
852
1152d984
SM
853 i386_displaced_step_copy_insn_closure *closure
854 = (i386_displaced_step_copy_insn_closure *) closure_;
cfba9872 855 gdb_byte *insn = closure->buf.data ();
1903f0e6
DE
856 /* The start of the insn, needed in case we see some prefixes. */
857 gdb_byte *insn_start = insn;
237fc4c9 858
136821d9
SM
859 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
860 paddress (gdbarch, from), paddress (gdbarch, to),
861 insn[0], insn[1]);
237fc4c9
PA
862
863 /* The list of issues to contend with here is taken from
864 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
865 Yay for Free Software! */
866
867 /* Relocate the %eip, if necessary. */
868
1903f0e6
DE
869 /* The instruction recognizers we use assume any leading prefixes
870 have been skipped. */
871 {
872 /* This is the size of the buffer in closure. */
873 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
874 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
875 /* If there are too many prefixes, just ignore the insn.
876 It will fault when run. */
877 if (opcode != NULL)
878 insn = opcode;
879 }
880
237fc4c9
PA
881 /* Except in the case of absolute or indirect jump or call
882 instructions, or a return instruction, the new eip is relative to
883 the displaced instruction; make it relative. Well, signal
884 handler returns don't need relocation either, but we use the
885 value of %eip to recognize those; see below. */
886 if (! i386_absolute_jmp_p (insn)
887 && ! i386_absolute_call_p (insn)
888 && ! i386_ret_p (insn))
889 {
890 ULONGEST orig_eip;
b55078be 891 int insn_len;
237fc4c9
PA
892
893 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
894
895 /* A signal trampoline system call changes the %eip, resuming
dda83cd7
SM
896 execution of the main program after the signal handler has
897 returned. That makes them like 'return' instructions; we
898 shouldn't relocate %eip.
899
900 But most system calls don't, and we do need to relocate %eip.
901
902 Our heuristic for distinguishing these cases: if stepping
903 over the system call instruction left control directly after
904 the instruction, the we relocate --- control almost certainly
905 doesn't belong in the displaced copy. Otherwise, we assume
906 the instruction has put control where it belongs, and leave
907 it unrelocated. Goodness help us if there are PC-relative
908 system calls. */
237fc4c9 909 if (i386_syscall_p (insn, &insn_len)
dda83cd7 910 && orig_eip != to + (insn - insn_start) + insn_len
b55078be
DE
911 /* GDB can get control back after the insn after the syscall.
912 Presumably this is a kernel bug.
913 i386_displaced_step_copy_insn ensures its a nop,
914 we add one to the length for it. */
136821d9
SM
915 && orig_eip != to + (insn - insn_start) + insn_len + 1)
916 displaced_debug_printf ("syscall changed %%eip; not relocating");
237fc4c9 917 else
dda83cd7
SM
918 {
919 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
237fc4c9 920
1903f0e6
DE
921 /* If we just stepped over a breakpoint insn, we don't backup
922 the pc on purpose; this is to match behaviour without
923 stepping. */
237fc4c9 924
dda83cd7 925 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
237fc4c9 926
136821d9
SM
927 displaced_debug_printf ("relocated %%eip from %s to %s",
928 paddress (gdbarch, orig_eip),
929 paddress (gdbarch, eip));
dda83cd7 930 }
237fc4c9
PA
931 }
932
933 /* If the instruction was PUSHFL, then the TF bit will be set in the
934 pushed value, and should be cleared. We'll leave this for later,
935 since GDB already messes up the TF flag when stepping over a
936 pushfl. */
937
938 /* If the instruction was a call, the return address now atop the
939 stack is the address following the copied instruction. We need
940 to make it the address following the original instruction. */
941 if (i386_call_p (insn))
942 {
943 ULONGEST esp;
944 ULONGEST retaddr;
945 const ULONGEST retaddr_len = 4;
946
947 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 948 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 949 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 950 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9 951
136821d9
SM
952 displaced_debug_printf ("relocated return addr at %s to %s",
953 paddress (gdbarch, esp),
954 paddress (gdbarch, retaddr));
237fc4c9
PA
955 }
956}
dde08ee1
PA
957
958static void
959append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
960{
961 target_write_memory (*to, buf, len);
962 *to += len;
963}
964
965static void
966i386_relocate_instruction (struct gdbarch *gdbarch,
967 CORE_ADDR *to, CORE_ADDR oldloc)
968{
969 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
970 gdb_byte buf[I386_MAX_INSN_LEN];
971 int offset = 0, rel32, newrel;
972 int insn_length;
973 gdb_byte *insn = buf;
974
975 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
976
977 insn_length = gdb_buffered_insn_length (gdbarch, insn,
978 I386_MAX_INSN_LEN, oldloc);
979
980 /* Get past the prefixes. */
981 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
982
983 /* Adjust calls with 32-bit relative addresses as push/jump, with
984 the address pushed being the location where the original call in
985 the user program would return to. */
986 if (insn[0] == 0xe8)
987 {
988 gdb_byte push_buf[16];
989 unsigned int ret_addr;
990
991 /* Where "ret" in the original code will return to. */
992 ret_addr = oldloc + insn_length;
1777feb0 993 push_buf[0] = 0x68; /* pushq $... */
144db827 994 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
995 /* Push the push. */
996 append_insns (to, 5, push_buf);
997
998 /* Convert the relative call to a relative jump. */
999 insn[0] = 0xe9;
1000
1001 /* Adjust the destination offset. */
1002 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1003 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1004 store_signed_integer (insn + 1, 4, byte_order, newrel);
1005
136821d9
SM
1006 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1007 hex_string (rel32), paddress (gdbarch, oldloc),
1008 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1009
1010 /* Write the adjusted jump into its displaced location. */
1011 append_insns (to, 5, insn);
1012 return;
1013 }
1014
1015 /* Adjust jumps with 32-bit relative addresses. Calls are already
1016 handled above. */
1017 if (insn[0] == 0xe9)
1018 offset = 1;
1019 /* Adjust conditional jumps. */
1020 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1021 offset = 2;
1022
1023 if (offset)
1024 {
1025 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1026 newrel = (oldloc - *to) + rel32;
f4a1794a 1027 store_signed_integer (insn + offset, 4, byte_order, newrel);
136821d9
SM
1028 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1029 hex_string (rel32), paddress (gdbarch, oldloc),
1030 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1031 }
1032
1033 /* Write the adjusted instructions into their displaced
1034 location. */
1035 append_insns (to, insn_length, buf);
1036}
1037
fc338970 1038\f
acd5c798
MK
1039#ifdef I386_REGNO_TO_SYMMETRY
1040#error "The Sequent Symmetry is no longer supported."
1041#endif
c906108c 1042
acd5c798
MK
1043/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1044 and %esp "belong" to the calling function. Therefore these
1045 registers should be saved if they're going to be modified. */
c906108c 1046
acd5c798
MK
1047/* The maximum number of saved registers. This should include all
1048 registers mentioned above, and %eip. */
a3386186 1049#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1050
1051struct i386_frame_cache
c906108c 1052{
acd5c798
MK
1053 /* Base address. */
1054 CORE_ADDR base;
8fbca658 1055 int base_p;
772562f8 1056 LONGEST sp_offset;
acd5c798
MK
1057 CORE_ADDR pc;
1058
fd13a04a
AC
1059 /* Saved registers. */
1060 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1061 CORE_ADDR saved_sp;
e0c62198 1062 int saved_sp_reg;
acd5c798
MK
1063 int pc_in_eax;
1064
1065 /* Stack space reserved for local variables. */
1066 long locals;
1067};
1068
1069/* Allocate and initialize a frame cache. */
1070
1071static struct i386_frame_cache *
fd13a04a 1072i386_alloc_frame_cache (void)
acd5c798
MK
1073{
1074 struct i386_frame_cache *cache;
1075 int i;
1076
1077 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1078
1079 /* Base address. */
8fbca658 1080 cache->base_p = 0;
acd5c798
MK
1081 cache->base = 0;
1082 cache->sp_offset = -4;
1083 cache->pc = 0;
1084
fd13a04a
AC
1085 /* Saved registers. We initialize these to -1 since zero is a valid
1086 offset (that's where %ebp is supposed to be stored). */
1087 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1088 cache->saved_regs[i] = -1;
acd5c798 1089 cache->saved_sp = 0;
e0c62198 1090 cache->saved_sp_reg = -1;
acd5c798
MK
1091 cache->pc_in_eax = 0;
1092
1093 /* Frameless until proven otherwise. */
1094 cache->locals = -1;
1095
1096 return cache;
1097}
c906108c 1098
acd5c798
MK
1099/* If the instruction at PC is a jump, return the address of its
1100 target. Otherwise, return PC. */
c906108c 1101
acd5c798 1102static CORE_ADDR
e17a4113 1103i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1104{
e17a4113 1105 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1106 gdb_byte op;
acd5c798
MK
1107 long delta = 0;
1108 int data16 = 0;
c906108c 1109
0865b04a 1110 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1111 return pc;
1112
acd5c798 1113 if (op == 0x66)
c906108c 1114 {
c906108c 1115 data16 = 1;
0865b04a
YQ
1116
1117 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1118 }
1119
acd5c798 1120 switch (op)
c906108c
SS
1121 {
1122 case 0xe9:
fc338970 1123 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1124 if (data16)
1125 {
e17a4113 1126 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1127
fc338970 1128 /* Include the size of the jmp instruction (including the
dda83cd7 1129 0x66 prefix). */
acd5c798 1130 delta += 4;
c906108c
SS
1131 }
1132 else
1133 {
e17a4113 1134 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1135
acd5c798
MK
1136 /* Include the size of the jmp instruction. */
1137 delta += 5;
c906108c
SS
1138 }
1139 break;
1140 case 0xeb:
fc338970 1141 /* Relative jump, disp8 (ignore data16). */
e17a4113 1142 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1143
acd5c798 1144 delta += data16 + 2;
c906108c
SS
1145 break;
1146 }
c906108c 1147
acd5c798
MK
1148 return pc + delta;
1149}
fc338970 1150
acd5c798
MK
1151/* Check whether PC points at a prologue for a function returning a
1152 structure or union. If so, it updates CACHE and returns the
1153 address of the first instruction after the code sequence that
1154 removes the "hidden" argument from the stack or CURRENT_PC,
1155 whichever is smaller. Otherwise, return PC. */
c906108c 1156
acd5c798
MK
1157static CORE_ADDR
1158i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1159 struct i386_frame_cache *cache)
c906108c 1160{
acd5c798
MK
1161 /* Functions that return a structure or union start with:
1162
dda83cd7
SM
1163 popl %eax 0x58
1164 xchgl %eax, (%esp) 0x87 0x04 0x24
acd5c798
MK
1165 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1166
1167 (the System V compiler puts out the second `xchg' instruction,
1168 and the assembler doesn't try to optimize it, so the 'sib' form
1169 gets generated). This sequence is used to get the address of the
1170 return buffer for a function that returns a structure. */
63c0089f
MK
1171 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1172 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1173 gdb_byte buf[4];
1174 gdb_byte op;
c906108c 1175
acd5c798
MK
1176 if (current_pc <= pc)
1177 return pc;
1178
0865b04a 1179 if (target_read_code (pc, &op, 1))
3dcabaa8 1180 return pc;
c906108c 1181
acd5c798
MK
1182 if (op != 0x58) /* popl %eax */
1183 return pc;
c906108c 1184
0865b04a 1185 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1186 return pc;
1187
acd5c798
MK
1188 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1189 return pc;
c906108c 1190
acd5c798 1191 if (current_pc == pc)
c906108c 1192 {
acd5c798
MK
1193 cache->sp_offset += 4;
1194 return current_pc;
c906108c
SS
1195 }
1196
acd5c798 1197 if (current_pc == pc + 1)
c906108c 1198 {
acd5c798
MK
1199 cache->pc_in_eax = 1;
1200 return current_pc;
1201 }
1202
1203 if (buf[1] == proto1[1])
1204 return pc + 4;
1205 else
1206 return pc + 5;
1207}
1208
1209static CORE_ADDR
1210i386_skip_probe (CORE_ADDR pc)
1211{
1212 /* A function may start with
fc338970 1213
dda83cd7
SM
1214 pushl constant
1215 call _probe
acd5c798 1216 addl $4, %esp
fc338970 1217
acd5c798
MK
1218 followed by
1219
dda83cd7 1220 pushl %ebp
fc338970 1221
acd5c798 1222 etc. */
63c0089f
MK
1223 gdb_byte buf[8];
1224 gdb_byte op;
fc338970 1225
0865b04a 1226 if (target_read_code (pc, &op, 1))
3dcabaa8 1227 return pc;
acd5c798
MK
1228
1229 if (op == 0x68 || op == 0x6a)
1230 {
1231 int delta;
c906108c 1232
acd5c798
MK
1233 /* Skip past the `pushl' instruction; it has either a one-byte or a
1234 four-byte operand, depending on the opcode. */
c906108c 1235 if (op == 0x68)
acd5c798 1236 delta = 5;
c906108c 1237 else
acd5c798 1238 delta = 2;
c906108c 1239
acd5c798
MK
1240 /* Read the following 8 bytes, which should be `call _probe' (6
1241 bytes) followed by `addl $4,%esp' (2 bytes). */
1242 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1243 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1244 pc += delta + sizeof (buf);
c906108c
SS
1245 }
1246
acd5c798
MK
1247 return pc;
1248}
1249
92dd43fa
MK
1250/* GCC 4.1 and later, can put code in the prologue to realign the
1251 stack pointer. Check whether PC points to such code, and update
1252 CACHE accordingly. Return the first instruction after the code
1253 sequence or CURRENT_PC, whichever is smaller. If we don't
1254 recognize the code, return PC. */
1255
1256static CORE_ADDR
1257i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1258 struct i386_frame_cache *cache)
1259{
e0c62198
L
1260 /* There are 2 code sequences to re-align stack before the frame
1261 gets set up:
1262
1263 1. Use a caller-saved saved register:
1264
1265 leal 4(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 2. Use a callee-saved saved register:
1270
1271 pushl %reg
1272 leal 8(%esp), %reg
1273 andl $-XXX, %esp
1274 pushl -4(%reg)
1275
1276 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1277
1278 0x83 0xe4 0xf0 andl $-16, %esp
1279 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1280 */
1281
1282 gdb_byte buf[14];
1283 int reg;
1284 int offset, offset_and;
1285 static int regnums[8] = {
1286 I386_EAX_REGNUM, /* %eax */
1287 I386_ECX_REGNUM, /* %ecx */
1288 I386_EDX_REGNUM, /* %edx */
1289 I386_EBX_REGNUM, /* %ebx */
1290 I386_ESP_REGNUM, /* %esp */
1291 I386_EBP_REGNUM, /* %ebp */
1292 I386_ESI_REGNUM, /* %esi */
1293 I386_EDI_REGNUM /* %edi */
92dd43fa 1294 };
92dd43fa 1295
0865b04a 1296 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1297 return pc;
1298
1299 /* Check caller-saved saved register. The first instruction has
1300 to be "leal 4(%esp), %reg". */
1301 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1302 {
1303 /* MOD must be binary 10 and R/M must be binary 100. */
1304 if ((buf[1] & 0xc7) != 0x44)
1305 return pc;
1306
1307 /* REG has register number. */
1308 reg = (buf[1] >> 3) & 7;
1309 offset = 4;
1310 }
1311 else
1312 {
1313 /* Check callee-saved saved register. The first instruction
1314 has to be "pushl %reg". */
1315 if ((buf[0] & 0xf8) != 0x50)
1316 return pc;
1317
1318 /* Get register. */
1319 reg = buf[0] & 0x7;
1320
1321 /* The next instruction has to be "leal 8(%esp), %reg". */
1322 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1323 return pc;
1324
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[2] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. Registers in pushl and leal have to
1330 be the same. */
1331 if (reg != ((buf[2] >> 3) & 7))
1332 return pc;
1333
1334 offset = 5;
1335 }
1336
1337 /* Rigister can't be %esp nor %ebp. */
1338 if (reg == 4 || reg == 5)
1339 return pc;
1340
1341 /* The next instruction has to be "andl $-XXX, %esp". */
1342 if (buf[offset + 1] != 0xe4
1343 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1344 return pc;
1345
1346 offset_and = offset;
1347 offset += buf[offset] == 0x81 ? 6 : 3;
1348
1349 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1350 0xfc. REG must be binary 110 and MOD must be binary 01. */
1351 if (buf[offset] != 0xff
1352 || buf[offset + 2] != 0xfc
1353 || (buf[offset + 1] & 0xf8) != 0x70)
1354 return pc;
1355
1356 /* R/M has register. Registers in leal and pushl have to be the
1357 same. */
1358 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1359 return pc;
1360
e0c62198
L
1361 if (current_pc > pc + offset_and)
1362 cache->saved_sp_reg = regnums[reg];
92dd43fa 1363
325fac50 1364 return std::min (pc + offset + 3, current_pc);
92dd43fa
MK
1365}
1366
37bdc87e 1367/* Maximum instruction length we need to handle. */
237fc4c9 1368#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1369
1370/* Instruction description. */
1371struct i386_insn
1372{
1373 size_t len;
237fc4c9
PA
1374 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1375 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1376};
1377
a3fcb948 1378/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1379
a3fcb948
JG
1380static int
1381i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1382{
63c0089f 1383 gdb_byte op;
37bdc87e 1384
0865b04a 1385 if (target_read_code (pc, &op, 1))
a3fcb948 1386 return 0;
37bdc87e 1387
a3fcb948 1388 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1389 {
a3fcb948
JG
1390 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1391 int insn_matched = 1;
1392 size_t i;
37bdc87e 1393
a3fcb948
JG
1394 gdb_assert (pattern.len > 1);
1395 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1396
0865b04a 1397 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1398 return 0;
613e8135 1399
a3fcb948
JG
1400 for (i = 1; i < pattern.len; i++)
1401 {
1402 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1403 insn_matched = 0;
37bdc87e 1404 }
a3fcb948
JG
1405 return insn_matched;
1406 }
1407 return 0;
1408}
1409
1410/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1411 the first instruction description that matches. Otherwise, return
1412 NULL. */
1413
1414static struct i386_insn *
1415i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1416{
1417 struct i386_insn *pattern;
1418
1419 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1420 {
1421 if (i386_match_pattern (pc, *pattern))
1422 return pattern;
37bdc87e
MK
1423 }
1424
1425 return NULL;
1426}
1427
a3fcb948
JG
1428/* Return whether PC points inside a sequence of instructions that
1429 matches INSN_PATTERNS. */
1430
1431static int
1432i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1433{
1434 CORE_ADDR current_pc;
1435 int ix, i;
a3fcb948
JG
1436 struct i386_insn *insn;
1437
1438 insn = i386_match_insn (pc, insn_patterns);
1439 if (insn == NULL)
1440 return 0;
1441
8bbdd3f4 1442 current_pc = pc;
a3fcb948
JG
1443 ix = insn - insn_patterns;
1444 for (i = ix - 1; i >= 0; i--)
1445 {
8bbdd3f4
MK
1446 current_pc -= insn_patterns[i].len;
1447
a3fcb948
JG
1448 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1449 return 0;
a3fcb948
JG
1450 }
1451
1452 current_pc = pc + insn->len;
1453 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1454 {
1455 if (!i386_match_pattern (current_pc, *insn))
1456 return 0;
1457
1458 current_pc += insn->len;
1459 }
1460
1461 return 1;
1462}
1463
37bdc87e
MK
1464/* Some special instructions that might be migrated by GCC into the
1465 part of the prologue that sets up the new stack frame. Because the
1466 stack frame hasn't been setup yet, no registers have been saved
1467 yet, and only the scratch registers %eax, %ecx and %edx can be
1468 touched. */
1469
1470struct i386_insn i386_frame_setup_skip_insns[] =
1471{
1777feb0 1472 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1473
1474 ??? Should we handle 16-bit operand-sizes here? */
1475
1476 /* `movb imm8, %al' and `movb imm8, %ah' */
1477 /* `movb imm8, %cl' and `movb imm8, %ch' */
1478 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1479 /* `movb imm8, %dl' and `movb imm8, %dh' */
1480 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1481 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1482 { 5, { 0xb8 }, { 0xfe } },
1483 /* `movl imm32, %edx' */
1484 { 5, { 0xba }, { 0xff } },
1485
1486 /* Check for `mov imm32, r32'. Note that there is an alternative
1487 encoding for `mov m32, %eax'.
1488
85102364 1489 ??? Should we handle SIB addressing here?
37bdc87e
MK
1490 ??? Should we handle 16-bit operand-sizes here? */
1491
1492 /* `movl m32, %eax' */
1493 { 5, { 0xa1 }, { 0xff } },
1494 /* `movl m32, %eax' and `mov; m32, %ecx' */
1495 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1496 /* `movl m32, %edx' */
1497 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1498
1499 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1500 Because of the symmetry, there are actually two ways to encode
1501 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1502 opcode bytes 0x31 and 0x33 for `xorl'. */
1503
1504 /* `subl %eax, %eax' */
1505 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1506 /* `subl %ecx, %ecx' */
1507 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1508 /* `subl %edx, %edx' */
1509 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1510 /* `xorl %eax, %eax' */
1511 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1512 /* `xorl %ecx, %ecx' */
1513 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1514 /* `xorl %edx, %edx' */
1515 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1516 { 0 }
1517};
1518
14f9473c
VC
1519/* Check whether PC points to an endbr32 instruction. */
1520static CORE_ADDR
1521i386_skip_endbr (CORE_ADDR pc)
1522{
1523 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1524
1525 gdb_byte buf[sizeof (endbr32)];
1526
1527 /* Stop there if we can't read the code */
1528 if (target_read_code (pc, buf, sizeof (endbr32)))
1529 return pc;
1530
1531 /* If the instruction isn't an endbr32, stop */
1532 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1533 return pc;
1534
1535 return pc + sizeof (endbr32);
1536}
e11481da
PM
1537
1538/* Check whether PC points to a no-op instruction. */
1539static CORE_ADDR
1540i386_skip_noop (CORE_ADDR pc)
1541{
1542 gdb_byte op;
1543 int check = 1;
1544
0865b04a 1545 if (target_read_code (pc, &op, 1))
3dcabaa8 1546 return pc;
e11481da
PM
1547
1548 while (check)
1549 {
1550 check = 0;
1551 /* Ignore `nop' instruction. */
1552 if (op == 0x90)
1553 {
1554 pc += 1;
0865b04a 1555 if (target_read_code (pc, &op, 1))
3dcabaa8 1556 return pc;
e11481da
PM
1557 check = 1;
1558 }
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1569
1570 else if (op == 0x8b)
1571 {
0865b04a 1572 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1573 return pc;
1574
e11481da
PM
1575 if (op == 0xff)
1576 {
1577 pc += 2;
0865b04a 1578 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1579 return pc;
1580
e11481da
PM
1581 check = 1;
1582 }
1583 }
1584 }
1585 return pc;
1586}
1587
acd5c798
MK
1588/* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1592
1593static CORE_ADDR
e17a4113
UW
1594i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1596 struct i386_frame_cache *cache)
1597{
e17a4113 1598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1599 struct i386_insn *insn;
63c0089f 1600 gdb_byte op;
26604a34 1601 int skip = 0;
acd5c798 1602
37bdc87e
MK
1603 if (limit <= pc)
1604 return limit;
acd5c798 1605
0865b04a 1606 if (target_read_code (pc, &op, 1))
3dcabaa8 1607 return pc;
acd5c798 1608
c906108c 1609 if (op == 0x55) /* pushl %ebp */
c5aa993b 1610 {
acd5c798
MK
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
fd13a04a 1613 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1614 cache->sp_offset += 4;
37bdc87e 1615 pc++;
acd5c798
MK
1616
1617 /* If that's all, return now. */
37bdc87e
MK
1618 if (limit <= pc)
1619 return limit;
26604a34 1620
b4632131 1621 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
30baf67b 1624 %ecx and %edx, so while the number of possibilities is sheer,
37bdc87e 1625 it is limited.
5daa5b4e 1626
26604a34
MK
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1629 while (pc + skip < limit)
26604a34 1630 {
37bdc87e
MK
1631 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1632 if (insn == NULL)
1633 break;
b4632131 1634
37bdc87e 1635 skip += insn->len;
26604a34
MK
1636 }
1637
37bdc87e
MK
1638 /* If that's all, return now. */
1639 if (limit <= pc + skip)
1640 return limit;
1641
0865b04a 1642 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1643 return pc + skip;
37bdc87e 1644
30f8135b
YQ
1645 /* The i386 prologue looks like
1646
1647 push %ebp
1648 mov %esp,%ebp
1649 sub $0x10,%esp
1650
1651 and a different prologue can be generated for atom.
1652
1653 push %ebp
1654 lea (%esp),%ebp
1655 lea -0x10(%esp),%esp
1656
1657 We handle both of them here. */
1658
acd5c798 1659 switch (op)
c906108c 1660 {
30f8135b 1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1662 case 0x8b:
0865b04a 1663 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1664 != 0xec)
37bdc87e 1665 return pc;
30f8135b 1666 pc += (skip + 2);
c906108c
SS
1667 break;
1668 case 0x89:
0865b04a 1669 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1670 != 0xe5)
37bdc87e 1671 return pc;
30f8135b
YQ
1672 pc += (skip + 2);
1673 break;
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1675 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1676 != 0x242c)
1677 return pc;
1678 pc += (skip + 3);
c906108c
SS
1679 break;
1680 default:
37bdc87e 1681 return pc;
c906108c 1682 }
acd5c798 1683
26604a34
MK
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
acd5c798
MK
1688 cache->locals = 0;
1689
1690 /* If that's all, return now. */
37bdc87e
MK
1691 if (limit <= pc)
1692 return limit;
acd5c798 1693
fc338970
MK
1694 /* Check for stack adjustment
1695
acd5c798 1696 subl $XXX, %esp
30f8135b
YQ
1697 or
1698 lea -XXX(%esp),%esp
fc338970 1699
fd35795f 1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1701 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1702 if (target_read_code (pc, &op, 1))
3dcabaa8 1703 return pc;
c906108c
SS
1704 if (op == 0x83)
1705 {
fd35795f 1706 /* `subl' with 8-bit immediate. */
0865b04a 1707 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1708 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1709 return pc;
acd5c798 1710
37bdc87e
MK
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
0865b04a 1713 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1714 return pc + 3;
c906108c
SS
1715 }
1716 else if (op == 0x81)
1717 {
fd35795f 1718 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1719 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1720 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1721 return pc;
acd5c798 1722
fd35795f 1723 /* It is `subl' with a 32-bit immediate. */
0865b04a 1724 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1725 return pc + 6;
c906108c 1726 }
30f8135b
YQ
1727 else if (op == 0x8d)
1728 {
1729 /* The ModR/M byte is 0x64. */
0865b04a 1730 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1731 return pc;
1732 /* 'lea' with 8-bit displacement. */
0865b04a 1733 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1734 return pc + 4;
1735 }
c906108c
SS
1736 else
1737 {
30f8135b 1738 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1739 return pc;
c906108c
SS
1740 }
1741 }
37bdc87e 1742 else if (op == 0xc8) /* enter */
c906108c 1743 {
0865b04a 1744 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1745 return pc + 4;
c906108c 1746 }
21d0e8a4 1747
acd5c798 1748 return pc;
21d0e8a4
MK
1749}
1750
acd5c798
MK
1751/* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
6bff26de
MK
1755
1756static CORE_ADDR
acd5c798
MK
1757i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 struct i386_frame_cache *cache)
6bff26de 1759{
99ab4326 1760 CORE_ADDR offset = 0;
63c0089f 1761 gdb_byte op;
99ab4326 1762 int i;
c0d1d883 1763
99ab4326
MK
1764 if (cache->locals > 0)
1765 offset -= cache->locals;
1766 for (i = 0; i < 8 && pc < current_pc; i++)
1767 {
0865b04a 1768 if (target_read_code (pc, &op, 1))
3dcabaa8 1769 return pc;
99ab4326
MK
1770 if (op < 0x50 || op > 0x57)
1771 break;
0d17c81d 1772
99ab4326
MK
1773 offset -= 4;
1774 cache->saved_regs[op - 0x50] = offset;
1775 cache->sp_offset += 4;
1776 pc++;
6bff26de
MK
1777 }
1778
acd5c798 1779 return pc;
22797942
AC
1780}
1781
acd5c798
MK
1782/* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
ed84f6c1 1785
fc338970
MK
1786 We handle these cases:
1787
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1790
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1794
1795 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1799
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1805
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
c906108c 1808
acd5c798 1809static CORE_ADDR
e17a4113
UW
1810i386_analyze_prologue (struct gdbarch *gdbarch,
1811 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1812 struct i386_frame_cache *cache)
c906108c 1813{
14f9473c 1814 pc = i386_skip_endbr (pc);
e11481da 1815 pc = i386_skip_noop (pc);
e17a4113 1816 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1817 pc = i386_analyze_struct_return (pc, current_pc, cache);
1818 pc = i386_skip_probe (pc);
92dd43fa 1819 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1820 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1821 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1822}
1823
fc338970 1824/* Return PC of first real instruction. */
c906108c 1825
3a1e71e3 1826static CORE_ADDR
6093d2eb 1827i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1828{
e17a4113
UW
1829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1830
63c0089f 1831 static gdb_byte pic_pat[6] =
acd5c798
MK
1832 {
1833 0xe8, 0, 0, 0, 0, /* call 0x0 */
1834 0x5b, /* popl %ebx */
c5aa993b 1835 };
acd5c798
MK
1836 struct i386_frame_cache cache;
1837 CORE_ADDR pc;
63c0089f 1838 gdb_byte op;
acd5c798 1839 int i;
56bf0743 1840 CORE_ADDR func_addr;
4e879fc2 1841
56bf0743
KB
1842 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1843 {
1844 CORE_ADDR post_prologue_pc
1845 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1846 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743 1847
c2fd7fae 1848 /* LLVM backend (Clang/Flang) always emits a line note before the
dda83cd7
SM
1849 prologue and another one after. We trust clang to emit usable
1850 line notes. */
56bf0743 1851 if (post_prologue_pc
43f3e411
DE
1852 && (cust != NULL
1853 && COMPUNIT_PRODUCER (cust) != NULL
c2fd7fae 1854 && producer_is_llvm (COMPUNIT_PRODUCER (cust))))
dda83cd7 1855 return std::max (start_pc, post_prologue_pc);
56bf0743
KB
1856 }
1857
e0f33b1f 1858 cache.locals = -1;
e17a4113 1859 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1860 if (cache.locals < 0)
1861 return start_pc;
c5aa993b 1862
acd5c798 1863 /* Found valid frame setup. */
c906108c 1864
fc338970
MK
1865 /* The native cc on SVR4 in -K PIC mode inserts the following code
1866 to get the address of the global offset table (GOT) into register
acd5c798
MK
1867 %ebx:
1868
dda83cd7 1869 call 0x0
fc338970 1870 popl %ebx
dda83cd7
SM
1871 movl %ebx,x(%ebp) (optional)
1872 addl y,%ebx
fc338970 1873
c906108c
SS
1874 This code is with the rest of the prologue (at the end of the
1875 function), so we have to skip it to get to the first real
1876 instruction at the start of the function. */
c5aa993b 1877
c906108c
SS
1878 for (i = 0; i < 6; i++)
1879 {
0865b04a 1880 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1881 return pc;
1882
c5aa993b 1883 if (pic_pat[i] != op)
c906108c
SS
1884 break;
1885 }
1886 if (i == 6)
1887 {
acd5c798
MK
1888 int delta = 6;
1889
0865b04a 1890 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1891 return pc;
c906108c 1892
c5aa993b 1893 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1894 {
0865b04a 1895 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1896
fc338970 1897 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1898 delta += 3;
fc338970 1899 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1900 delta += 6;
fc338970 1901 else /* Unexpected instruction. */
acd5c798
MK
1902 delta = 0;
1903
dda83cd7 1904 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1905 return pc;
c906108c 1906 }
acd5c798 1907
c5aa993b 1908 /* addl y,%ebx */
acd5c798 1909 if (delta > 0 && op == 0x81
0865b04a 1910 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1911 == 0xc3)
c906108c 1912 {
acd5c798 1913 pc += delta + 6;
c906108c
SS
1914 }
1915 }
c5aa993b 1916
e63bbc88
MK
1917 /* If the function starts with a branch (to startup code at the end)
1918 the last instruction should bring us back to the first
1919 instruction of the real code. */
e17a4113
UW
1920 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1921 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1922
1923 return pc;
c906108c
SS
1924}
1925
4309257c
PM
1926/* Check that the code pointed to by PC corresponds to a call to
1927 __main, skip it if so. Return PC otherwise. */
1928
1929CORE_ADDR
1930i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1931{
e17a4113 1932 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1933 gdb_byte op;
1934
0865b04a 1935 if (target_read_code (pc, &op, 1))
3dcabaa8 1936 return pc;
4309257c
PM
1937 if (op == 0xe8)
1938 {
1939 gdb_byte buf[4];
1940
0865b04a 1941 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1942 {
1943 /* Make sure address is computed correctly as a 32bit
1944 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1945 struct bound_minimal_symbol s;
e17a4113 1946 CORE_ADDR call_dest;
4309257c 1947
e17a4113 1948 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1949 call_dest = call_dest & 0xffffffffU;
1950 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1951 if (s.minsym != NULL
c9d95fa3
CB
1952 && s.minsym->linkage_name () != NULL
1953 && strcmp (s.minsym->linkage_name (), "__main") == 0)
4309257c
PM
1954 pc += 5;
1955 }
1956 }
1957
1958 return pc;
1959}
1960
acd5c798 1961/* This function is 64-bit safe. */
93924b6b 1962
acd5c798
MK
1963static CORE_ADDR
1964i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1965{
63c0089f 1966 gdb_byte buf[8];
acd5c798 1967
875f8d0e 1968 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1969 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1970}
acd5c798 1971\f
93924b6b 1972
acd5c798 1973/* Normal frames. */
c5aa993b 1974
8fbca658
PA
1975static void
1976i386_frame_cache_1 (struct frame_info *this_frame,
1977 struct i386_frame_cache *cache)
a7769679 1978{
e17a4113
UW
1979 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1980 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1981 gdb_byte buf[4];
acd5c798
MK
1982 int i;
1983
8fbca658 1984 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1985
1986 /* In principle, for normal frames, %ebp holds the frame pointer,
1987 which holds the base address for the current stack frame.
1988 However, for functions that don't need it, the frame pointer is
1989 optional. For these "frameless" functions the frame pointer is
1990 actually the frame pointer of the calling frame. Signal
1991 trampolines are just a special case of a "frameless" function.
1992 They (usually) share their frame pointer with the frame that was
1993 in progress when the signal occurred. */
1994
10458914 1995 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1996 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1997 if (cache->base == 0)
620fa63a
PA
1998 {
1999 cache->base_p = 1;
2000 return;
2001 }
acd5c798
MK
2002
2003 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 2004 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 2005
acd5c798 2006 if (cache->pc != 0)
e17a4113
UW
2007 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2008 cache);
acd5c798
MK
2009
2010 if (cache->locals < 0)
2011 {
2012 /* We didn't find a valid frame, which means that CACHE->base
2013 currently holds the frame pointer for our calling frame. If
2014 we're at the start of a function, or somewhere half-way its
2015 prologue, the function's frame probably hasn't been fully
2016 setup yet. Try to reconstruct the base address for the stack
2017 frame by looking at the stack pointer. For truly "frameless"
2018 functions this might work too. */
2019
e0c62198 2020 if (cache->saved_sp_reg != -1)
92dd43fa 2021 {
8fbca658
PA
2022 /* Saved stack pointer has been saved. */
2023 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2024 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2025
92dd43fa
MK
2026 /* We're halfway aligning the stack. */
2027 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2028 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2029
2030 /* This will be added back below. */
2031 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2032 }
7618e12b 2033 else if (cache->pc != 0
0865b04a 2034 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2035 {
7618e12b
DJ
2036 /* We're in a known function, but did not find a frame
2037 setup. Assume that the function does not use %ebp.
2038 Alternatively, we may have jumped to an invalid
2039 address; in that case there is definitely no new
2040 frame in %ebp. */
10458914 2041 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2042 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2043 + cache->sp_offset;
92dd43fa 2044 }
7618e12b
DJ
2045 else
2046 /* We're in an unknown function. We could not find the start
2047 of the function to analyze the prologue; our best option is
2048 to assume a typical frame layout with the caller's %ebp
2049 saved. */
2050 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2051 }
2052
8fbca658
PA
2053 if (cache->saved_sp_reg != -1)
2054 {
2055 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2056 register may be unavailable). */
2057 if (cache->saved_sp == 0
ca9d61b9
JB
2058 && deprecated_frame_register_read (this_frame,
2059 cache->saved_sp_reg, buf))
8fbca658
PA
2060 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2061 }
acd5c798
MK
2062 /* Now that we have the base address for the stack frame we can
2063 calculate the value of %esp in the calling frame. */
8fbca658 2064 else if (cache->saved_sp == 0)
92dd43fa 2065 cache->saved_sp = cache->base + 8;
a7769679 2066
acd5c798
MK
2067 /* Adjust all the saved registers such that they contain addresses
2068 instead of offsets. */
2069 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2070 if (cache->saved_regs[i] != -1)
2071 cache->saved_regs[i] += cache->base;
acd5c798 2072
8fbca658
PA
2073 cache->base_p = 1;
2074}
2075
2076static struct i386_frame_cache *
2077i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2078{
8fbca658
PA
2079 struct i386_frame_cache *cache;
2080
2081 if (*this_cache)
9a3c8263 2082 return (struct i386_frame_cache *) *this_cache;
8fbca658
PA
2083
2084 cache = i386_alloc_frame_cache ();
2085 *this_cache = cache;
2086
a70b8144 2087 try
8fbca658
PA
2088 {
2089 i386_frame_cache_1 (this_frame, cache);
2090 }
230d2906 2091 catch (const gdb_exception_error &ex)
7556d4a4
PA
2092 {
2093 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2094 throw;
7556d4a4 2095 }
8fbca658 2096
acd5c798 2097 return cache;
a7769679
MK
2098}
2099
3a1e71e3 2100static void
10458914 2101i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2102 struct frame_id *this_id)
c906108c 2103{
10458914 2104 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2105
5ce0145d
PA
2106 if (!cache->base_p)
2107 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2108 else if (cache->base == 0)
2109 {
2110 /* This marks the outermost frame. */
2111 }
2112 else
2113 {
2114 /* See the end of i386_push_dummy_call. */
2115 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2116 }
acd5c798
MK
2117}
2118
8fbca658
PA
2119static enum unwind_stop_reason
2120i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2121 void **this_cache)
2122{
2123 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2124
2125 if (!cache->base_p)
2126 return UNWIND_UNAVAILABLE;
2127
2128 /* This marks the outermost frame. */
2129 if (cache->base == 0)
2130 return UNWIND_OUTERMOST;
2131
2132 return UNWIND_NO_REASON;
2133}
2134
10458914
DJ
2135static struct value *
2136i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2137 int regnum)
acd5c798 2138{
10458914 2139 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2140
2141 gdb_assert (regnum >= 0);
2142
2143 /* The System V ABI says that:
2144
2145 "The flags register contains the system flags, such as the
2146 direction flag and the carry flag. The direction flag must be
2147 set to the forward (that is, zero) direction before entry and
2148 upon exit from a function. Other user flags have no specified
2149 role in the standard calling sequence and are not preserved."
2150
2151 To guarantee the "upon exit" part of that statement we fake a
2152 saved flags register that has its direction flag cleared.
2153
2154 Note that GCC doesn't seem to rely on the fact that the direction
2155 flag is cleared after a function return; it always explicitly
2156 clears the flag before operations where it matters.
2157
2158 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2159 right thing to do. The way we fake the flags register here makes
2160 it impossible to change it. */
2161
2162 if (regnum == I386_EFLAGS_REGNUM)
2163 {
10458914 2164 ULONGEST val;
c5aa993b 2165
10458914
DJ
2166 val = get_frame_register_unsigned (this_frame, regnum);
2167 val &= ~(1 << 10);
2168 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2169 }
1211c4e4 2170
acd5c798 2171 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2172 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2173
fcf250e2
UW
2174 if (regnum == I386_ESP_REGNUM
2175 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2176 {
2177 /* If the SP has been saved, but we don't know where, then this
2178 means that SAVED_SP_REG register was found unavailable back
2179 when we built the cache. */
fcf250e2 2180 if (cache->saved_sp == 0)
8fbca658
PA
2181 return frame_unwind_got_register (this_frame, regnum,
2182 cache->saved_sp_reg);
2183 else
2184 return frame_unwind_got_constant (this_frame, regnum,
2185 cache->saved_sp);
2186 }
acd5c798 2187
fd13a04a 2188 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2189 return frame_unwind_got_memory (this_frame, regnum,
2190 cache->saved_regs[regnum]);
fd13a04a 2191
10458914 2192 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2193}
2194
2195static const struct frame_unwind i386_frame_unwind =
2196{
2197 NORMAL_FRAME,
8fbca658 2198 i386_frame_unwind_stop_reason,
acd5c798 2199 i386_frame_this_id,
10458914
DJ
2200 i386_frame_prev_register,
2201 NULL,
2202 default_frame_sniffer
acd5c798 2203};
06da04c6
MS
2204
2205/* Normal frames, but in a function epilogue. */
2206
c9cf6e20
MG
2207/* Implement the stack_frame_destroyed_p gdbarch method.
2208
2209 The epilogue is defined here as the 'ret' instruction, which will
06da04c6
MS
2210 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2211 the function's stack frame. */
2212
2213static int
c9cf6e20 2214i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
06da04c6
MS
2215{
2216 gdb_byte insn;
43f3e411 2217 struct compunit_symtab *cust;
e0d00bc7 2218
43f3e411
DE
2219 cust = find_pc_compunit_symtab (pc);
2220 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2221 return 0;
06da04c6
MS
2222
2223 if (target_read_memory (pc, &insn, 1))
2224 return 0; /* Can't read memory at pc. */
2225
2226 if (insn != 0xc3) /* 'ret' instruction. */
2227 return 0;
2228
2229 return 1;
2230}
2231
2232static int
2233i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2234 struct frame_info *this_frame,
2235 void **this_prologue_cache)
2236{
2237 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2238 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2239 get_frame_pc (this_frame));
06da04c6
MS
2240 else
2241 return 0;
2242}
2243
2244static struct i386_frame_cache *
2245i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2246{
06da04c6 2247 struct i386_frame_cache *cache;
0d6c2135 2248 CORE_ADDR sp;
06da04c6
MS
2249
2250 if (*this_cache)
9a3c8263 2251 return (struct i386_frame_cache *) *this_cache;
06da04c6
MS
2252
2253 cache = i386_alloc_frame_cache ();
2254 *this_cache = cache;
2255
a70b8144 2256 try
8fbca658 2257 {
0d6c2135 2258 cache->pc = get_frame_func (this_frame);
06da04c6 2259
0d6c2135
MK
2260 /* At this point the stack looks as if we just entered the
2261 function, with the return address at the top of the
2262 stack. */
2263 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2264 cache->base = sp + cache->sp_offset;
8fbca658 2265 cache->saved_sp = cache->base + 8;
8fbca658 2266 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2267
8fbca658
PA
2268 cache->base_p = 1;
2269 }
230d2906 2270 catch (const gdb_exception_error &ex)
7556d4a4
PA
2271 {
2272 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2273 throw;
7556d4a4 2274 }
06da04c6
MS
2275
2276 return cache;
2277}
2278
8fbca658
PA
2279static enum unwind_stop_reason
2280i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2281 void **this_cache)
2282{
0d6c2135
MK
2283 struct i386_frame_cache *cache =
2284 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2285
2286 if (!cache->base_p)
2287 return UNWIND_UNAVAILABLE;
2288
2289 return UNWIND_NO_REASON;
2290}
2291
06da04c6
MS
2292static void
2293i386_epilogue_frame_this_id (struct frame_info *this_frame,
2294 void **this_cache,
2295 struct frame_id *this_id)
2296{
0d6c2135
MK
2297 struct i386_frame_cache *cache =
2298 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2299
8fbca658 2300 if (!cache->base_p)
5ce0145d
PA
2301 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2302 else
2303 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2304}
2305
0d6c2135
MK
2306static struct value *
2307i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2308 void **this_cache, int regnum)
2309{
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame, this_cache);
2312
2313 return i386_frame_prev_register (this_frame, this_cache, regnum);
2314}
2315
06da04c6
MS
2316static const struct frame_unwind i386_epilogue_frame_unwind =
2317{
2318 NORMAL_FRAME,
8fbca658 2319 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2320 i386_epilogue_frame_this_id,
0d6c2135 2321 i386_epilogue_frame_prev_register,
06da04c6
MS
2322 NULL,
2323 i386_epilogue_frame_sniffer
2324};
acd5c798
MK
2325\f
2326
a3fcb948
JG
2327/* Stack-based trampolines. */
2328
2329/* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2333
2334/* Static chain passed in register. */
2335
2336struct i386_insn i386_tramp_chain_in_reg_insns[] =
2337{
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2340
2341 /* `jmp imm32' */
2342 { 5, { 0xe9 }, { 0xff } },
2343
2344 {0}
2345};
2346
2347/* Static chain passed on stack (when regparm=3). */
2348
2349struct i386_insn i386_tramp_chain_on_stack_insns[] =
2350{
2351 /* `push imm32' */
2352 { 5, { 0x68 }, { 0xff } },
2353
2354 /* `jmp imm32' */
2355 { 5, { 0xe9 }, { 0xff } },
2356
2357 {0}
2358};
2359
2360/* Return whether PC points inside a stack trampoline. */
2361
2362static int
6df81a63 2363i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2364{
2365 gdb_byte insn;
2c02bd72 2366 const char *name;
a3fcb948
JG
2367
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2370 sequence. */
2371
2372 find_pc_partial_function (pc, &name, NULL, NULL);
2373 if (name)
2374 return 0;
2375
2376 if (target_read_memory (pc, &insn, 1))
2377 return 0;
2378
2379 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2380 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2381 return 0;
2382
2383 return 1;
2384}
2385
2386static int
2387i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2388 struct frame_info *this_frame,
2389 void **this_cache)
a3fcb948
JG
2390{
2391 if (frame_relative_level (this_frame) == 0)
6df81a63 2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2393 else
2394 return 0;
2395}
2396
2397static const struct frame_unwind i386_stack_tramp_frame_unwind =
2398{
2399 NORMAL_FRAME,
2400 i386_epilogue_frame_unwind_stop_reason,
2401 i386_epilogue_frame_this_id,
0d6c2135 2402 i386_epilogue_frame_prev_register,
a3fcb948
JG
2403 NULL,
2404 i386_stack_tramp_frame_sniffer
2405};
2406\f
6710bf39
SS
2407/* Generate a bytecode expression to get the value of the saved PC. */
2408
2409static void
2410i386_gen_return_address (struct gdbarch *gdbarch,
2411 struct agent_expr *ax, struct axs_value *value,
2412 CORE_ADDR scope)
2413{
2414 /* The following sequence assumes the traditional use of the base
2415 register. */
2416 ax_reg (ax, I386_EBP_REGNUM);
2417 ax_const_l (ax, 4);
2418 ax_simple (ax, aop_add);
2419 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2420 value->kind = axs_lvalue_memory;
2421}
2422\f
a3fcb948 2423
acd5c798
MK
2424/* Signal trampolines. */
2425
2426static struct i386_frame_cache *
10458914 2427i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2428{
e17a4113
UW
2429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 2432 struct i386_frame_cache *cache;
acd5c798 2433 CORE_ADDR addr;
63c0089f 2434 gdb_byte buf[4];
acd5c798
MK
2435
2436 if (*this_cache)
9a3c8263 2437 return (struct i386_frame_cache *) *this_cache;
acd5c798 2438
fd13a04a 2439 cache = i386_alloc_frame_cache ();
acd5c798 2440
a70b8144 2441 try
a3386186 2442 {
8fbca658
PA
2443 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2445
8fbca658
PA
2446 addr = tdep->sigcontext_addr (this_frame);
2447 if (tdep->sc_reg_offset)
2448 {
2449 int i;
a3386186 2450
8fbca658
PA
2451 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2452
2453 for (i = 0; i < tdep->sc_num_regs; i++)
2454 if (tdep->sc_reg_offset[i] != -1)
2455 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2456 }
2457 else
2458 {
2459 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2460 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2461 }
2462
2463 cache->base_p = 1;
a3386186 2464 }
230d2906 2465 catch (const gdb_exception_error &ex)
7556d4a4
PA
2466 {
2467 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2468 throw;
7556d4a4 2469 }
acd5c798
MK
2470
2471 *this_cache = cache;
2472 return cache;
2473}
2474
8fbca658
PA
2475static enum unwind_stop_reason
2476i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2477 void **this_cache)
2478{
2479 struct i386_frame_cache *cache =
2480 i386_sigtramp_frame_cache (this_frame, this_cache);
2481
2482 if (!cache->base_p)
2483 return UNWIND_UNAVAILABLE;
2484
2485 return UNWIND_NO_REASON;
2486}
2487
acd5c798 2488static void
10458914 2489i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2490 struct frame_id *this_id)
2491{
2492 struct i386_frame_cache *cache =
10458914 2493 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2494
8fbca658 2495 if (!cache->base_p)
5ce0145d
PA
2496 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2497 else
2498 {
2499 /* See the end of i386_push_dummy_call. */
2500 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2501 }
acd5c798
MK
2502}
2503
10458914
DJ
2504static struct value *
2505i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2506 void **this_cache, int regnum)
acd5c798
MK
2507{
2508 /* Make sure we've initialized the cache. */
10458914 2509 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2510
10458914 2511 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2512}
c0d1d883 2513
10458914
DJ
2514static int
2515i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2516 struct frame_info *this_frame,
2517 void **this_prologue_cache)
acd5c798 2518{
10458914 2519 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2520
911bc6ee
MK
2521 /* We shouldn't even bother if we don't have a sigcontext_addr
2522 handler. */
2523 if (tdep->sigcontext_addr == NULL)
10458914 2524 return 0;
1c3545ae 2525
911bc6ee
MK
2526 if (tdep->sigtramp_p != NULL)
2527 {
10458914
DJ
2528 if (tdep->sigtramp_p (this_frame))
2529 return 1;
911bc6ee
MK
2530 }
2531
2532 if (tdep->sigtramp_start != 0)
2533 {
10458914 2534 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2535
2536 gdb_assert (tdep->sigtramp_end != 0);
2537 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2538 return 1;
911bc6ee 2539 }
acd5c798 2540
10458914 2541 return 0;
acd5c798 2542}
10458914
DJ
2543
2544static const struct frame_unwind i386_sigtramp_frame_unwind =
2545{
2546 SIGTRAMP_FRAME,
8fbca658 2547 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2548 i386_sigtramp_frame_this_id,
2549 i386_sigtramp_frame_prev_register,
2550 NULL,
2551 i386_sigtramp_frame_sniffer
2552};
acd5c798
MK
2553\f
2554
2555static CORE_ADDR
10458914 2556i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2557{
10458914 2558 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2559
2560 return cache->base;
2561}
2562
2563static const struct frame_base i386_frame_base =
2564{
2565 &i386_frame_unwind,
2566 i386_frame_base_address,
2567 i386_frame_base_address,
2568 i386_frame_base_address
2569};
2570
acd5c798 2571static struct frame_id
10458914 2572i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2573{
acd5c798
MK
2574 CORE_ADDR fp;
2575
10458914 2576 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2577
3e210248 2578 /* See the end of i386_push_dummy_call. */
10458914 2579 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2580}
e04e5beb
JM
2581
2582/* _Decimal128 function return values need 16-byte alignment on the
2583 stack. */
2584
2585static CORE_ADDR
2586i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2587{
2588 return sp & -(CORE_ADDR)16;
2589}
fc338970 2590\f
c906108c 2591
fc338970
MK
2592/* Figure out where the longjmp will land. Slurp the args out of the
2593 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2594 structure from which we extract the address that we will land at.
28bcfd30 2595 This address is copied into PC. This routine returns non-zero on
436675d3 2596 success. */
c906108c 2597
8201327c 2598static int
60ade65d 2599i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2600{
436675d3 2601 gdb_byte buf[4];
c906108c 2602 CORE_ADDR sp, jb_addr;
20a6ec49 2603 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2605 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2606
8201327c
MK
2607 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2608 longjmp will land. */
2609 if (jb_pc_offset == -1)
c906108c
SS
2610 return 0;
2611
436675d3 2612 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2613 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2614 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2615 return 0;
2616
e17a4113 2617 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2618 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2619 return 0;
c906108c 2620
e17a4113 2621 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2622 return 1;
2623}
fc338970 2624\f
c906108c 2625
7ccc1c74
JM
2626/* Check whether TYPE must be 16-byte-aligned when passed as a
2627 function argument. 16-byte vectors, _Decimal128 and structures or
2628 unions containing such types must be 16-byte-aligned; other
2629 arguments are 4-byte-aligned. */
2630
2631static int
2632i386_16_byte_align_p (struct type *type)
2633{
2634 type = check_typedef (type);
78134374 2635 if ((type->code () == TYPE_CODE_DECFLOAT
bd63c870 2636 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
7ccc1c74
JM
2637 && TYPE_LENGTH (type) == 16)
2638 return 1;
78134374 2639 if (type->code () == TYPE_CODE_ARRAY)
7ccc1c74 2640 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
78134374
SM
2641 if (type->code () == TYPE_CODE_STRUCT
2642 || type->code () == TYPE_CODE_UNION)
7ccc1c74
JM
2643 {
2644 int i;
1f704f76 2645 for (i = 0; i < type->num_fields (); i++)
7ccc1c74 2646 {
b6a6aa07
TV
2647 if (field_is_static (&type->field (i)))
2648 continue;
940da03e 2649 if (i386_16_byte_align_p (type->field (i).type ()))
7ccc1c74
JM
2650 return 1;
2651 }
2652 }
2653 return 0;
2654}
2655
a9b8d892
JK
2656/* Implementation for set_gdbarch_push_dummy_code. */
2657
2658static CORE_ADDR
2659i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2660 struct value **args, int nargs, struct type *value_type,
2661 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2662 struct regcache *regcache)
2663{
2664 /* Use 0xcc breakpoint - 1 byte. */
2665 *bp_addr = sp - 1;
2666 *real_pc = funaddr;
2667
2668 /* Keep the stack aligned. */
2669 return sp - 16;
2670}
2671
627c7fb8
HD
2672/* The "push_dummy_call" gdbarch method, optionally with the thiscall
2673 calling convention. */
2674
2675CORE_ADDR
2676i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2677 struct regcache *regcache, CORE_ADDR bp_addr,
2678 int nargs, struct value **args, CORE_ADDR sp,
2679 function_call_return_method return_method,
2680 CORE_ADDR struct_addr, bool thiscall)
22f8ba57 2681{
e17a4113 2682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2683 gdb_byte buf[4];
acd5c798 2684 int i;
7ccc1c74
JM
2685 int write_pass;
2686 int args_space = 0;
acd5c798 2687
4a612d6f
WT
2688 /* BND registers can be in arbitrary values at the moment of the
2689 inferior call. This can cause boundary violations that are not
2690 due to a real bug or even desired by the user. The best to be done
2691 is set the BND registers to allow access to the whole memory, INIT
2692 state, before pushing the inferior call. */
2693 i387_reset_bnd_regs (gdbarch, regcache);
2694
7ccc1c74
JM
2695 /* Determine the total space required for arguments and struct
2696 return address in a first pass (allowing for 16-byte-aligned
2697 arguments), then push arguments in a second pass. */
2698
2699 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2700 {
7ccc1c74 2701 int args_space_used = 0;
7ccc1c74 2702
cf84fa6b 2703 if (return_method == return_method_struct)
7ccc1c74
JM
2704 {
2705 if (write_pass)
2706 {
2707 /* Push value address. */
e17a4113 2708 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2709 write_memory (sp, buf, 4);
2710 args_space_used += 4;
2711 }
2712 else
2713 args_space += 4;
2714 }
2715
627c7fb8 2716 for (i = thiscall ? 1 : 0; i < nargs; i++)
7ccc1c74
JM
2717 {
2718 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2719
7ccc1c74
JM
2720 if (write_pass)
2721 {
2722 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2723 args_space_used = align_up (args_space_used, 16);
acd5c798 2724
7ccc1c74
JM
2725 write_memory (sp + args_space_used,
2726 value_contents_all (args[i]), len);
2727 /* The System V ABI says that:
acd5c798 2728
7ccc1c74
JM
2729 "An argument's size is increased, if necessary, to make it a
2730 multiple of [32-bit] words. This may require tail padding,
2731 depending on the size of the argument."
22f8ba57 2732
7ccc1c74
JM
2733 This makes sure the stack stays word-aligned. */
2734 args_space_used += align_up (len, 4);
2735 }
2736 else
2737 {
2738 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2739 args_space = align_up (args_space, 16);
7ccc1c74
JM
2740 args_space += align_up (len, 4);
2741 }
2742 }
2743
2744 if (!write_pass)
2745 {
7ccc1c74 2746 sp -= args_space;
284c5a60
MK
2747
2748 /* The original System V ABI only requires word alignment,
2749 but modern incarnations need 16-byte alignment in order
2750 to support SSE. Since wasting a few bytes here isn't
2751 harmful we unconditionally enforce 16-byte alignment. */
2752 sp &= ~0xf;
7ccc1c74 2753 }
22f8ba57
MK
2754 }
2755
acd5c798
MK
2756 /* Store return address. */
2757 sp -= 4;
e17a4113 2758 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2759 write_memory (sp, buf, 4);
2760
2761 /* Finally, update the stack pointer... */
e17a4113 2762 store_unsigned_integer (buf, 4, byte_order, sp);
b66f5587 2763 regcache->cooked_write (I386_ESP_REGNUM, buf);
acd5c798
MK
2764
2765 /* ...and fake a frame pointer. */
b66f5587 2766 regcache->cooked_write (I386_EBP_REGNUM, buf);
acd5c798 2767
627c7fb8
HD
2768 /* The 'this' pointer needs to be in ECX. */
2769 if (thiscall)
2770 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2771
3e210248
AC
2772 /* MarkK wrote: This "+ 8" is all over the place:
2773 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2774 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2775 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2776 definition of the stack address of a frame. Otherwise frame id
2777 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2778 stack address *before* the function call as a frame's CFA. On
2779 the i386, when %ebp is used as a frame pointer, the offset
2780 between the contents %ebp and the CFA as defined by GCC. */
2781 return sp + 8;
22f8ba57
MK
2782}
2783
627c7fb8
HD
2784/* Implement the "push_dummy_call" gdbarch method. */
2785
2786static CORE_ADDR
2787i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2788 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2789 struct value **args, CORE_ADDR sp,
2790 function_call_return_method return_method,
2791 CORE_ADDR struct_addr)
2792{
2793 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2794 nargs, args, sp, return_method,
2795 struct_addr, false);
2796}
2797
1a309862
MK
2798/* These registers are used for returning integers (and on some
2799 targets also for returning `struct' and `union' values when their
ef9dff19 2800 size and alignment match an integer type). */
acd5c798
MK
2801#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2802#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2803
c5e656c1
MK
2804/* Read, for architecture GDBARCH, a function return value of TYPE
2805 from REGCACHE, and copy that into VALBUF. */
1a309862 2806
3a1e71e3 2807static void
c5e656c1 2808i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2809 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2810{
c5e656c1 2811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2812 int len = TYPE_LENGTH (type);
63c0089f 2813 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2814
78134374 2815 if (type->code () == TYPE_CODE_FLT)
c906108c 2816 {
5716833c 2817 if (tdep->st0_regnum < 0)
1a309862 2818 {
8a3fe4f8 2819 warning (_("Cannot find floating-point return value."));
1a309862 2820 memset (valbuf, 0, len);
ef9dff19 2821 return;
1a309862
MK
2822 }
2823
c6ba6f0d
MK
2824 /* Floating-point return values can be found in %st(0). Convert
2825 its contents to the desired type. This is probably not
2826 exactly how it would happen on the target itself, but it is
2827 the best we can do. */
0b883586 2828 regcache->raw_read (I386_ST0_REGNUM, buf);
3b2ca824 2829 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2830 }
2831 else
c5aa993b 2832 {
875f8d0e
UW
2833 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2834 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2835
2836 if (len <= low_size)
00f8375e 2837 {
0b883586 2838 regcache->raw_read (LOW_RETURN_REGNUM, buf);
00f8375e
MK
2839 memcpy (valbuf, buf, len);
2840 }
d4f3574e
SS
2841 else if (len <= (low_size + high_size))
2842 {
0b883586 2843 regcache->raw_read (LOW_RETURN_REGNUM, buf);
00f8375e 2844 memcpy (valbuf, buf, low_size);
0b883586 2845 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
63c0089f 2846 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2847 }
2848 else
8e65ff28 2849 internal_error (__FILE__, __LINE__,
1777feb0
MS
2850 _("Cannot extract return value of %d bytes long."),
2851 len);
c906108c
SS
2852 }
2853}
2854
c5e656c1
MK
2855/* Write, for architecture GDBARCH, a function return value of TYPE
2856 from VALBUF into REGCACHE. */
ef9dff19 2857
3a1e71e3 2858static void
c5e656c1 2859i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2860 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2861{
c5e656c1 2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2863 int len = TYPE_LENGTH (type);
2864
78134374 2865 if (type->code () == TYPE_CODE_FLT)
ef9dff19 2866 {
3d7f4f49 2867 ULONGEST fstat;
63c0089f 2868 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2869
5716833c 2870 if (tdep->st0_regnum < 0)
ef9dff19 2871 {
8a3fe4f8 2872 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2873 return;
2874 }
2875
635b0cc1 2876 /* Returning floating-point values is a bit tricky. Apart from
dda83cd7
SM
2877 storing the return value in %st(0), we have to simulate the
2878 state of the FPU at function return point. */
635b0cc1 2879
c6ba6f0d
MK
2880 /* Convert the value found in VALBUF to the extended
2881 floating-point format used by the FPU. This is probably
2882 not exactly how it would happen on the target itself, but
2883 it is the best we can do. */
3b2ca824 2884 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
10eaee5f 2885 regcache->raw_write (I386_ST0_REGNUM, buf);
ccb945b8 2886
635b0cc1 2887 /* Set the top of the floating-point register stack to 7. The
dda83cd7
SM
2888 actual value doesn't really matter, but 7 is what a normal
2889 function return would end up with if the program started out
2890 with a freshly initialized FPU. */
20a6ec49 2891 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2892 fstat |= (7 << 11);
20a6ec49 2893 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2894
635b0cc1 2895 /* Mark %st(1) through %st(7) as empty. Since we set the top of
dda83cd7
SM
2896 the floating-point register stack to 7, the appropriate value
2897 for the tag word is 0x3fff. */
20a6ec49 2898 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2899 }
2900 else
2901 {
875f8d0e
UW
2902 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2903 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2904
2905 if (len <= low_size)
4f0420fd 2906 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2907 else if (len <= (low_size + high_size))
2908 {
10eaee5f 2909 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
4f0420fd
SM
2910 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2911 valbuf + low_size);
ef9dff19
MK
2912 }
2913 else
8e65ff28 2914 internal_error (__FILE__, __LINE__,
e2e0b3e5 2915 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2916 }
2917}
fc338970 2918\f
ef9dff19 2919
8201327c
MK
2920/* This is the variable that is set with "set struct-convention", and
2921 its legitimate values. */
2922static const char default_struct_convention[] = "default";
2923static const char pcc_struct_convention[] = "pcc";
2924static const char reg_struct_convention[] = "reg";
40478521 2925static const char *const valid_conventions[] =
8201327c
MK
2926{
2927 default_struct_convention,
2928 pcc_struct_convention,
2929 reg_struct_convention,
2930 NULL
2931};
2932static const char *struct_convention = default_struct_convention;
2933
0e4377e1
JB
2934/* Return non-zero if TYPE, which is assumed to be a structure,
2935 a union type, or an array type, should be returned in registers
2936 for architecture GDBARCH. */
c5e656c1 2937
8201327c 2938static int
c5e656c1 2939i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2940{
c5e656c1 2941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
78134374 2942 enum type_code code = type->code ();
c5e656c1 2943 int len = TYPE_LENGTH (type);
8201327c 2944
0e4377e1 2945 gdb_assert (code == TYPE_CODE_STRUCT
dda83cd7
SM
2946 || code == TYPE_CODE_UNION
2947 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2948
2949 if (struct_convention == pcc_struct_convention
2950 || (struct_convention == default_struct_convention
2951 && tdep->struct_return == pcc_struct_return))
2952 return 0;
2953
9edde48e
MK
2954 /* Structures consisting of a single `float', `double' or 'long
2955 double' member are returned in %st(0). */
1f704f76 2956 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
9edde48e 2957 {
940da03e 2958 type = check_typedef (type->field (0).type ());
78134374 2959 if (type->code () == TYPE_CODE_FLT)
9edde48e
MK
2960 return (len == 4 || len == 8 || len == 12);
2961 }
2962
c5e656c1
MK
2963 return (len == 1 || len == 2 || len == 4 || len == 8);
2964}
2965
2966/* Determine, for architecture GDBARCH, how a return value of TYPE
2967 should be returned. If it is supposed to be returned in registers,
2968 and READBUF is non-zero, read the appropriate value from REGCACHE,
2969 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2970 from WRITEBUF into REGCACHE. */
2971
2972static enum return_value_convention
6a3a010b 2973i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2974 struct type *type, struct regcache *regcache,
2975 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1 2976{
78134374 2977 enum type_code code = type->code ();
c5e656c1 2978
5daa78cc
TJB
2979 if (((code == TYPE_CODE_STRUCT
2980 || code == TYPE_CODE_UNION
2981 || code == TYPE_CODE_ARRAY)
2982 && !i386_reg_struct_return_p (gdbarch, type))
405feb71 2983 /* Complex double and long double uses the struct return convention. */
2445fd7b
MK
2984 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2985 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2986 /* 128-bit decimal float uses the struct return convention. */
2987 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2988 {
2989 /* The System V ABI says that:
2990
2991 "A function that returns a structure or union also sets %eax
2992 to the value of the original address of the caller's area
2993 before it returns. Thus when the caller receives control
2994 again, the address of the returned object resides in register
2995 %eax and can be used to access the object."
2996
2997 So the ABI guarantees that we can always find the return
2998 value just after the function has returned. */
2999
0e4377e1 3000 /* Note that the ABI doesn't mention functions returning arrays,
dda83cd7
SM
3001 which is something possible in certain languages such as Ada.
3002 In this case, the value is returned as if it was wrapped in
3003 a record, so the convention applied to records also applies
3004 to arrays. */
0e4377e1 3005
31db7b6c
MK
3006 if (readbuf)
3007 {
3008 ULONGEST addr;
3009
3010 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3011 read_memory (addr, readbuf, TYPE_LENGTH (type));
3012 }
3013
3014 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3015 }
c5e656c1
MK
3016
3017 /* This special case is for structures consisting of a single
9edde48e
MK
3018 `float', `double' or 'long double' member. These structures are
3019 returned in %st(0). For these structures, we call ourselves
3020 recursively, changing TYPE into the type of the first member of
3021 the structure. Since that should work for all structures that
3022 have only one member, we don't bother to check the member's type
3023 here. */
1f704f76 3024 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
c5e656c1 3025 {
940da03e 3026 type = check_typedef (type->field (0).type ());
6a3a010b 3027 return i386_return_value (gdbarch, function, type, regcache,
c055b101 3028 readbuf, writebuf);
c5e656c1
MK
3029 }
3030
3031 if (readbuf)
3032 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3033 if (writebuf)
3034 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 3035
c5e656c1 3036 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
3037}
3038\f
3039
27067745
UW
3040struct type *
3041i387_ext_type (struct gdbarch *gdbarch)
3042{
3043 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3044
3045 if (!tdep->i387_ext_type)
90884b2b
L
3046 {
3047 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3048 gdb_assert (tdep->i387_ext_type != NULL);
3049 }
27067745
UW
3050
3051 return tdep->i387_ext_type;
3052}
3053
1dbcd68c
WT
3054/* Construct type for pseudo BND registers. We can't use
3055 tdesc_find_type since a complement of one value has to be used
3056 to describe the upper bound. */
3057
3058static struct type *
3059i386_bnd_type (struct gdbarch *gdbarch)
3060{
3061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3062
3063
3064 if (!tdep->i386_bnd_type)
3065 {
870f88f7 3066 struct type *t;
1dbcd68c
WT
3067 const struct builtin_type *bt = builtin_type (gdbarch);
3068
3069 /* The type we're building is described bellow: */
3070#if 0
3071 struct __bound128
3072 {
3073 void *lbound;
3074 void *ubound; /* One complement of raw ubound field. */
3075 };
3076#endif
3077
3078 t = arch_composite_type (gdbarch,
3079 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3080
3081 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3082 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3083
d0e39ea2 3084 t->set_name ("builtin_type_bound128");
1dbcd68c
WT
3085 tdep->i386_bnd_type = t;
3086 }
3087
3088 return tdep->i386_bnd_type;
3089}
3090
01f9f808
MS
3091/* Construct vector type for pseudo ZMM registers. We can't use
3092 tdesc_find_type since ZMM isn't described in target description. */
3093
3094static struct type *
3095i386_zmm_type (struct gdbarch *gdbarch)
3096{
3097 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3098
3099 if (!tdep->i386_zmm_type)
3100 {
3101 const struct builtin_type *bt = builtin_type (gdbarch);
3102
3103 /* The type we're building is this: */
3104#if 0
3105 union __gdb_builtin_type_vec512i
3106 {
1347d111
FW
3107 int128_t v4_int128[4];
3108 int64_t v8_int64[8];
3109 int32_t v16_int32[16];
3110 int16_t v32_int16[32];
3111 int8_t v64_int8[64];
3112 double v8_double[8];
3113 float v16_float[16];
2a67f09d 3114 bfloat16_t v32_bfloat16[32];
01f9f808
MS
3115 };
3116#endif
3117
3118 struct type *t;
3119
3120 t = arch_composite_type (gdbarch,
3121 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
2a67f09d
FW
3122 append_composite_type_field (t, "v32_bfloat16",
3123 init_vector_type (bt->builtin_bfloat16, 32));
01f9f808
MS
3124 append_composite_type_field (t, "v16_float",
3125 init_vector_type (bt->builtin_float, 16));
3126 append_composite_type_field (t, "v8_double",
3127 init_vector_type (bt->builtin_double, 8));
3128 append_composite_type_field (t, "v64_int8",
3129 init_vector_type (bt->builtin_int8, 64));
3130 append_composite_type_field (t, "v32_int16",
3131 init_vector_type (bt->builtin_int16, 32));
3132 append_composite_type_field (t, "v16_int32",
3133 init_vector_type (bt->builtin_int32, 16));
3134 append_composite_type_field (t, "v8_int64",
3135 init_vector_type (bt->builtin_int64, 8));
3136 append_composite_type_field (t, "v4_int128",
3137 init_vector_type (bt->builtin_int128, 4));
3138
2062087b 3139 t->set_is_vector (true);
d0e39ea2 3140 t->set_name ("builtin_type_vec512i");
01f9f808
MS
3141 tdep->i386_zmm_type = t;
3142 }
3143
3144 return tdep->i386_zmm_type;
3145}
3146
c131fcee
L
3147/* Construct vector type for pseudo YMM registers. We can't use
3148 tdesc_find_type since YMM isn't described in target description. */
3149
3150static struct type *
3151i386_ymm_type (struct gdbarch *gdbarch)
3152{
3153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3154
3155 if (!tdep->i386_ymm_type)
3156 {
3157 const struct builtin_type *bt = builtin_type (gdbarch);
3158
3159 /* The type we're building is this: */
3160#if 0
3161 union __gdb_builtin_type_vec256i
3162 {
dda83cd7
SM
3163 int128_t v2_int128[2];
3164 int64_t v4_int64[4];
3165 int32_t v8_int32[8];
3166 int16_t v16_int16[16];
3167 int8_t v32_int8[32];
3168 double v4_double[4];
3169 float v8_float[8];
3170 bfloat16_t v16_bfloat16[16];
c131fcee
L
3171 };
3172#endif
3173
3174 struct type *t;
3175
3176 t = arch_composite_type (gdbarch,
3177 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2a67f09d
FW
3178 append_composite_type_field (t, "v16_bfloat16",
3179 init_vector_type (bt->builtin_bfloat16, 16));
c131fcee
L
3180 append_composite_type_field (t, "v8_float",
3181 init_vector_type (bt->builtin_float, 8));
3182 append_composite_type_field (t, "v4_double",
3183 init_vector_type (bt->builtin_double, 4));
3184 append_composite_type_field (t, "v32_int8",
3185 init_vector_type (bt->builtin_int8, 32));
3186 append_composite_type_field (t, "v16_int16",
3187 init_vector_type (bt->builtin_int16, 16));
3188 append_composite_type_field (t, "v8_int32",
3189 init_vector_type (bt->builtin_int32, 8));
3190 append_composite_type_field (t, "v4_int64",
3191 init_vector_type (bt->builtin_int64, 4));
3192 append_composite_type_field (t, "v2_int128",
3193 init_vector_type (bt->builtin_int128, 2));
3194
2062087b 3195 t->set_is_vector (true);
d0e39ea2 3196 t->set_name ("builtin_type_vec256i");
c131fcee
L
3197 tdep->i386_ymm_type = t;
3198 }
3199
3200 return tdep->i386_ymm_type;
3201}
3202
794ac428 3203/* Construct vector type for MMX registers. */
90884b2b 3204static struct type *
794ac428
UW
3205i386_mmx_type (struct gdbarch *gdbarch)
3206{
3207 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3208
3209 if (!tdep->i386_mmx_type)
3210 {
df4df182
UW
3211 const struct builtin_type *bt = builtin_type (gdbarch);
3212
794ac428
UW
3213 /* The type we're building is this: */
3214#if 0
3215 union __gdb_builtin_type_vec64i
3216 {
dda83cd7
SM
3217 int64_t uint64;
3218 int32_t v2_int32[2];
3219 int16_t v4_int16[4];
3220 int8_t v8_int8[8];
794ac428
UW
3221 };
3222#endif
3223
3224 struct type *t;
3225
e9bb382b
UW
3226 t = arch_composite_type (gdbarch,
3227 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3228
3229 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3230 append_composite_type_field (t, "v2_int32",
df4df182 3231 init_vector_type (bt->builtin_int32, 2));
794ac428 3232 append_composite_type_field (t, "v4_int16",
df4df182 3233 init_vector_type (bt->builtin_int16, 4));
794ac428 3234 append_composite_type_field (t, "v8_int8",
df4df182 3235 init_vector_type (bt->builtin_int8, 8));
794ac428 3236
2062087b 3237 t->set_is_vector (true);
d0e39ea2 3238 t->set_name ("builtin_type_vec64i");
794ac428
UW
3239 tdep->i386_mmx_type = t;
3240 }
3241
3242 return tdep->i386_mmx_type;
3243}
3244
d7a0d72c 3245/* Return the GDB type object for the "standard" data type of data in
1777feb0 3246 register REGNUM. */
d7a0d72c 3247
fff4548b 3248struct type *
90884b2b 3249i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3250{
1dbcd68c
WT
3251 if (i386_bnd_regnum_p (gdbarch, regnum))
3252 return i386_bnd_type (gdbarch);
1ba53b71
L
3253 if (i386_mmx_regnum_p (gdbarch, regnum))
3254 return i386_mmx_type (gdbarch);
c131fcee
L
3255 else if (i386_ymm_regnum_p (gdbarch, regnum))
3256 return i386_ymm_type (gdbarch);
01f9f808
MS
3257 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3258 return i386_ymm_type (gdbarch);
3259 else if (i386_zmm_regnum_p (gdbarch, regnum))
3260 return i386_zmm_type (gdbarch);
1ba53b71
L
3261 else
3262 {
3263 const struct builtin_type *bt = builtin_type (gdbarch);
3264 if (i386_byte_regnum_p (gdbarch, regnum))
3265 return bt->builtin_int8;
3266 else if (i386_word_regnum_p (gdbarch, regnum))
3267 return bt->builtin_int16;
3268 else if (i386_dword_regnum_p (gdbarch, regnum))
3269 return bt->builtin_int32;
01f9f808
MS
3270 else if (i386_k_regnum_p (gdbarch, regnum))
3271 return bt->builtin_int64;
1ba53b71
L
3272 }
3273
3274 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3275}
3276
28fc6740 3277/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3278 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3279
3280static int
849d0ba8 3281i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
28fc6740 3282{
ac7936df 3283 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
5716833c 3284 int mmxreg, fpreg;
28fc6740
AC
3285 ULONGEST fstat;
3286 int tos;
c86c27af 3287
5716833c 3288 mmxreg = regnum - tdep->mm0_regnum;
03f50fc8 3289 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3290 tos = (fstat >> 11) & 0x7;
5716833c
MK
3291 fpreg = (mmxreg + tos) % 8;
3292
20a6ec49 3293 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3294}
3295
3543a589
TT
3296/* A helper function for us by i386_pseudo_register_read_value and
3297 amd64_pseudo_register_read_value. It does all the work but reads
3298 the data into an already-allocated value. */
3299
3300void
3301i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
849d0ba8 3302 readable_regcache *regcache,
3543a589
TT
3303 int regnum,
3304 struct value *result_value)
28fc6740 3305{
975c21ab 3306 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
05d1431c 3307 enum register_status status;
3543a589 3308 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3309
5716833c 3310 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3311 {
c86c27af
MK
3312 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3313
28fc6740 3314 /* Extract (always little endian). */
03f50fc8 3315 status = regcache->raw_read (fpnum, raw_buf);
05d1431c 3316 if (status != REG_VALID)
3543a589
TT
3317 mark_value_bytes_unavailable (result_value, 0,
3318 TYPE_LENGTH (value_type (result_value)));
3319 else
3320 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3321 }
3322 else
1ba53b71
L
3323 {
3324 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3325 if (i386_bnd_regnum_p (gdbarch, regnum))
3326 {
3327 regnum -= tdep->bnd0_regnum;
1ba53b71 3328
1dbcd68c 3329 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3330 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3331 raw_buf);
1dbcd68c
WT
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 16);
3334 else
3335 {
3336 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3337 LONGEST upper, lower;
3338 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3339
3340 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3341 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3342 upper = ~upper;
3343
3344 memcpy (buf, &lower, size);
3345 memcpy (buf + size, &upper, size);
3346 }
3347 }
01f9f808
MS
3348 else if (i386_k_regnum_p (gdbarch, regnum))
3349 {
3350 regnum -= tdep->k0_regnum;
3351
3352 /* Extract (always little endian). */
03f50fc8 3353 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
01f9f808
MS
3354 if (status != REG_VALID)
3355 mark_value_bytes_unavailable (result_value, 0, 8);
3356 else
3357 memcpy (buf, raw_buf, 8);
3358 }
3359 else if (i386_zmm_regnum_p (gdbarch, regnum))
3360 {
3361 regnum -= tdep->zmm0_regnum;
3362
3363 if (regnum < num_lower_zmm_regs)
3364 {
3365 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3366 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3367 raw_buf);
01f9f808
MS
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 0, 16);
3370 else
3371 memcpy (buf, raw_buf, 16);
3372
3373 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3374 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3375 raw_buf);
01f9f808
MS
3376 if (status != REG_VALID)
3377 mark_value_bytes_unavailable (result_value, 16, 16);
3378 else
3379 memcpy (buf + 16, raw_buf, 16);
3380 }
3381 else
3382 {
3383 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3384 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3385 - num_lower_zmm_regs,
3386 raw_buf);
01f9f808
MS
3387 if (status != REG_VALID)
3388 mark_value_bytes_unavailable (result_value, 0, 16);
3389 else
3390 memcpy (buf, raw_buf, 16);
3391
3392 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3393 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3394 - num_lower_zmm_regs,
3395 raw_buf);
01f9f808
MS
3396 if (status != REG_VALID)
3397 mark_value_bytes_unavailable (result_value, 16, 16);
3398 else
3399 memcpy (buf + 16, raw_buf, 16);
3400 }
3401
3402 /* Read upper 256bits. */
03f50fc8
YQ
3403 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3404 raw_buf);
01f9f808
MS
3405 if (status != REG_VALID)
3406 mark_value_bytes_unavailable (result_value, 32, 32);
3407 else
3408 memcpy (buf + 32, raw_buf, 32);
3409 }
1dbcd68c 3410 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3411 {
3412 regnum -= tdep->ymm0_regnum;
3413
1777feb0 3414 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3415 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3416 raw_buf);
05d1431c 3417 if (status != REG_VALID)
3543a589
TT
3418 mark_value_bytes_unavailable (result_value, 0, 16);
3419 else
3420 memcpy (buf, raw_buf, 16);
c131fcee 3421 /* Read upper 128bits. */
03f50fc8
YQ
3422 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3423 raw_buf);
05d1431c 3424 if (status != REG_VALID)
3543a589
TT
3425 mark_value_bytes_unavailable (result_value, 16, 32);
3426 else
3427 memcpy (buf + 16, raw_buf, 16);
c131fcee 3428 }
01f9f808
MS
3429 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3430 {
3431 regnum -= tdep->ymm16_regnum;
3432 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3433 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3434 raw_buf);
01f9f808
MS
3435 if (status != REG_VALID)
3436 mark_value_bytes_unavailable (result_value, 0, 16);
3437 else
3438 memcpy (buf, raw_buf, 16);
3439 /* Read upper 128bits. */
03f50fc8
YQ
3440 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3441 raw_buf);
01f9f808
MS
3442 if (status != REG_VALID)
3443 mark_value_bytes_unavailable (result_value, 16, 16);
3444 else
3445 memcpy (buf + 16, raw_buf, 16);
3446 }
c131fcee 3447 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3448 {
3449 int gpnum = regnum - tdep->ax_regnum;
3450
3451 /* Extract (always little endian). */
03f50fc8 3452 status = regcache->raw_read (gpnum, raw_buf);
05d1431c 3453 if (status != REG_VALID)
3543a589
TT
3454 mark_value_bytes_unavailable (result_value, 0,
3455 TYPE_LENGTH (value_type (result_value)));
3456 else
3457 memcpy (buf, raw_buf, 2);
1ba53b71
L
3458 }
3459 else if (i386_byte_regnum_p (gdbarch, regnum))
3460 {
1ba53b71
L
3461 int gpnum = regnum - tdep->al_regnum;
3462
3463 /* Extract (always little endian). We read both lower and
3464 upper registers. */
03f50fc8 3465 status = regcache->raw_read (gpnum % 4, raw_buf);
05d1431c 3466 if (status != REG_VALID)
3543a589
TT
3467 mark_value_bytes_unavailable (result_value, 0,
3468 TYPE_LENGTH (value_type (result_value)));
3469 else if (gpnum >= 4)
1ba53b71
L
3470 memcpy (buf, raw_buf + 1, 1);
3471 else
3472 memcpy (buf, raw_buf, 1);
3473 }
3474 else
3475 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3476 }
3543a589
TT
3477}
3478
3479static struct value *
3480i386_pseudo_register_read_value (struct gdbarch *gdbarch,
849d0ba8 3481 readable_regcache *regcache,
3543a589
TT
3482 int regnum)
3483{
3484 struct value *result;
3485
3486 result = allocate_value (register_type (gdbarch, regnum));
3487 VALUE_LVAL (result) = lval_register;
3488 VALUE_REGNUM (result) = regnum;
3489
3490 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3491
3543a589 3492 return result;
28fc6740
AC
3493}
3494
1ba53b71 3495void
28fc6740 3496i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3497 int regnum, const gdb_byte *buf)
28fc6740 3498{
975c21ab 3499 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
1ba53b71 3500
5716833c 3501 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3502 {
c86c27af
MK
3503 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3504
28fc6740 3505 /* Read ... */
0b883586 3506 regcache->raw_read (fpnum, raw_buf);
28fc6740 3507 /* ... Modify ... (always little endian). */
1ba53b71 3508 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3509 /* ... Write. */
10eaee5f 3510 regcache->raw_write (fpnum, raw_buf);
28fc6740
AC
3511 }
3512 else
1ba53b71
L
3513 {
3514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3515
1dbcd68c
WT
3516 if (i386_bnd_regnum_p (gdbarch, regnum))
3517 {
3518 ULONGEST upper, lower;
3519 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3520 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3521
3522 /* New values from input value. */
3523 regnum -= tdep->bnd0_regnum;
3524 lower = extract_unsigned_integer (buf, size, byte_order);
3525 upper = extract_unsigned_integer (buf + size, size, byte_order);
3526
3527 /* Fetching register buffer. */
0b883586
SM
3528 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3529 raw_buf);
1dbcd68c
WT
3530
3531 upper = ~upper;
3532
3533 /* Set register bits. */
3534 memcpy (raw_buf, &lower, 8);
3535 memcpy (raw_buf + 8, &upper, 8);
3536
10eaee5f 3537 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
1dbcd68c 3538 }
01f9f808
MS
3539 else if (i386_k_regnum_p (gdbarch, regnum))
3540 {
3541 regnum -= tdep->k0_regnum;
3542
10eaee5f 3543 regcache->raw_write (tdep->k0_regnum + regnum, buf);
01f9f808
MS
3544 }
3545 else if (i386_zmm_regnum_p (gdbarch, regnum))
3546 {
3547 regnum -= tdep->zmm0_regnum;
3548
3549 if (regnum < num_lower_zmm_regs)
3550 {
3551 /* Write lower 128bits. */
10eaee5f 3552 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
01f9f808 3553 /* Write upper 128bits. */
10eaee5f 3554 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
01f9f808
MS
3555 }
3556 else
3557 {
3558 /* Write lower 128bits. */
10eaee5f
SM
3559 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3560 - num_lower_zmm_regs, buf);
01f9f808 3561 /* Write upper 128bits. */
10eaee5f
SM
3562 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3563 - num_lower_zmm_regs, buf + 16);
01f9f808
MS
3564 }
3565 /* Write upper 256bits. */
10eaee5f 3566 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
01f9f808 3567 }
1dbcd68c 3568 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3569 {
3570 regnum -= tdep->ymm0_regnum;
3571
3572 /* ... Write lower 128bits. */
10eaee5f 3573 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
c131fcee 3574 /* ... Write upper 128bits. */
10eaee5f 3575 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
c131fcee 3576 }
01f9f808
MS
3577 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3578 {
3579 regnum -= tdep->ymm16_regnum;
3580
3581 /* ... Write lower 128bits. */
10eaee5f 3582 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
01f9f808 3583 /* ... Write upper 128bits. */
10eaee5f 3584 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
01f9f808 3585 }
c131fcee 3586 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3587 {
3588 int gpnum = regnum - tdep->ax_regnum;
3589
3590 /* Read ... */
0b883586 3591 regcache->raw_read (gpnum, raw_buf);
1ba53b71
L
3592 /* ... Modify ... (always little endian). */
3593 memcpy (raw_buf, buf, 2);
3594 /* ... Write. */
10eaee5f 3595 regcache->raw_write (gpnum, raw_buf);
1ba53b71
L
3596 }
3597 else if (i386_byte_regnum_p (gdbarch, regnum))
3598 {
1ba53b71
L
3599 int gpnum = regnum - tdep->al_regnum;
3600
3601 /* Read ... We read both lower and upper registers. */
0b883586 3602 regcache->raw_read (gpnum % 4, raw_buf);
1ba53b71
L
3603 /* ... Modify ... (always little endian). */
3604 if (gpnum >= 4)
3605 memcpy (raw_buf + 1, buf, 1);
3606 else
3607 memcpy (raw_buf, buf, 1);
3608 /* ... Write. */
10eaee5f 3609 regcache->raw_write (gpnum % 4, raw_buf);
1ba53b71
L
3610 }
3611 else
3612 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3613 }
28fc6740 3614}
62e5fd57
MK
3615
3616/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3617
3618int
3619i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3620 struct agent_expr *ax, int regnum)
3621{
3622 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3623
3624 if (i386_mmx_regnum_p (gdbarch, regnum))
3625 {
3626 /* MMX to FPU register mapping depends on current TOS. Let's just
3627 not care and collect everything... */
3628 int i;
3629
3630 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3631 for (i = 0; i < 8; i++)
3632 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3633 return 0;
3634 }
3635 else if (i386_bnd_regnum_p (gdbarch, regnum))
3636 {
3637 regnum -= tdep->bnd0_regnum;
3638 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3639 return 0;
3640 }
3641 else if (i386_k_regnum_p (gdbarch, regnum))
3642 {
3643 regnum -= tdep->k0_regnum;
3644 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3645 return 0;
3646 }
3647 else if (i386_zmm_regnum_p (gdbarch, regnum))
3648 {
3649 regnum -= tdep->zmm0_regnum;
3650 if (regnum < num_lower_zmm_regs)
3651 {
3652 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3653 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3654 }
3655 else
3656 {
3657 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3658 - num_lower_zmm_regs);
3659 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3660 - num_lower_zmm_regs);
3661 }
3662 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3663 return 0;
3664 }
3665 else if (i386_ymm_regnum_p (gdbarch, regnum))
3666 {
3667 regnum -= tdep->ymm0_regnum;
3668 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3669 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3670 return 0;
3671 }
3672 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3673 {
3674 regnum -= tdep->ymm16_regnum;
3675 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3676 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3677 return 0;
3678 }
3679 else if (i386_word_regnum_p (gdbarch, regnum))
3680 {
3681 int gpnum = regnum - tdep->ax_regnum;
3682
3683 ax_reg_mask (ax, gpnum);
3684 return 0;
3685 }
3686 else if (i386_byte_regnum_p (gdbarch, regnum))
3687 {
3688 int gpnum = regnum - tdep->al_regnum;
3689
3690 ax_reg_mask (ax, gpnum % 4);
3691 return 0;
3692 }
3693 else
3694 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3695 return 1;
3696}
ff2e87ac
AC
3697\f
3698
ff2e87ac
AC
3699/* Return the register number of the register allocated by GCC after
3700 REGNUM, or -1 if there is no such register. */
3701
3702static int
3703i386_next_regnum (int regnum)
3704{
3705 /* GCC allocates the registers in the order:
3706
3707 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3708
3709 Since storing a variable in %esp doesn't make any sense we return
3710 -1 for %ebp and for %esp itself. */
3711 static int next_regnum[] =
3712 {
3713 I386_EDX_REGNUM, /* Slot for %eax. */
3714 I386_EBX_REGNUM, /* Slot for %ecx. */
3715 I386_ECX_REGNUM, /* Slot for %edx. */
3716 I386_ESI_REGNUM, /* Slot for %ebx. */
3717 -1, -1, /* Slots for %esp and %ebp. */
3718 I386_EDI_REGNUM, /* Slot for %esi. */
3719 I386_EBP_REGNUM /* Slot for %edi. */
3720 };
3721
de5b9bb9 3722 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3723 return next_regnum[regnum];
28fc6740 3724
ff2e87ac
AC
3725 return -1;
3726}
3727
3728/* Return nonzero if a value of type TYPE stored in register REGNUM
3729 needs any special handling. */
d7a0d72c 3730
3a1e71e3 3731static int
1777feb0
MS
3732i386_convert_register_p (struct gdbarch *gdbarch,
3733 int regnum, struct type *type)
d7a0d72c 3734{
de5b9bb9
MK
3735 int len = TYPE_LENGTH (type);
3736
ff2e87ac
AC
3737 /* Values may be spread across multiple registers. Most debugging
3738 formats aren't expressive enough to specify the locations, so
3739 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3740 have a length that is a multiple of the word size, since GCC
3741 doesn't seem to put any other types into registers. */
3742 if (len > 4 && len % 4 == 0)
3743 {
3744 int last_regnum = regnum;
3745
3746 while (len > 4)
3747 {
3748 last_regnum = i386_next_regnum (last_regnum);
3749 len -= 4;
3750 }
3751
3752 if (last_regnum != -1)
3753 return 1;
3754 }
ff2e87ac 3755
0abe36f5 3756 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3757}
3758
ff2e87ac
AC
3759/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3760 return its contents in TO. */
ac27f131 3761
8dccd430 3762static int
ff2e87ac 3763i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3764 struct type *type, gdb_byte *to,
3765 int *optimizedp, int *unavailablep)
ac27f131 3766{
20a6ec49 3767 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3768 int len = TYPE_LENGTH (type);
de5b9bb9 3769
20a6ec49 3770 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3771 return i387_register_to_value (frame, regnum, type, to,
3772 optimizedp, unavailablep);
ff2e87ac 3773
fd35795f 3774 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3775
3776 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3777
de5b9bb9
MK
3778 while (len > 0)
3779 {
3780 gdb_assert (regnum != -1);
20a6ec49 3781 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3782
8dccd430
PA
3783 if (!get_frame_register_bytes (frame, regnum, 0,
3784 register_size (gdbarch, regnum),
3785 to, optimizedp, unavailablep))
3786 return 0;
3787
de5b9bb9
MK
3788 regnum = i386_next_regnum (regnum);
3789 len -= 4;
42835c2b 3790 to += 4;
de5b9bb9 3791 }
8dccd430
PA
3792
3793 *optimizedp = *unavailablep = 0;
3794 return 1;
ac27f131
MK
3795}
3796
ff2e87ac
AC
3797/* Write the contents FROM of a value of type TYPE into register
3798 REGNUM in frame FRAME. */
ac27f131 3799
3a1e71e3 3800static void
ff2e87ac 3801i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3802 struct type *type, const gdb_byte *from)
ac27f131 3803{
de5b9bb9 3804 int len = TYPE_LENGTH (type);
de5b9bb9 3805
20a6ec49 3806 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3807 {
d532c08f
MK
3808 i387_value_to_register (frame, regnum, type, from);
3809 return;
3810 }
3d261580 3811
fd35795f 3812 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3813
3814 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3815
de5b9bb9
MK
3816 while (len > 0)
3817 {
3818 gdb_assert (regnum != -1);
875f8d0e 3819 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3820
42835c2b 3821 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3822 regnum = i386_next_regnum (regnum);
3823 len -= 4;
42835c2b 3824 from += 4;
de5b9bb9 3825 }
ac27f131 3826}
ff2e87ac 3827\f
7fdafb5a
MK
3828/* Supply register REGNUM from the buffer specified by GREGS and LEN
3829 in the general-purpose register set REGSET to register cache
3830 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3831
20187ed5 3832void
473f17b0
MK
3833i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3834 int regnum, const void *gregs, size_t len)
3835{
ac7936df 3836 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3837 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3838 const gdb_byte *regs = (const gdb_byte *) gregs;
473f17b0
MK
3839 int i;
3840
1528345d 3841 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3842
3843 for (i = 0; i < tdep->gregset_num_regs; i++)
3844 {
3845 if ((regnum == i || regnum == -1)
3846 && tdep->gregset_reg_offset[i] != -1)
73e1c03f 3847 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
473f17b0
MK
3848 }
3849}
3850
7fdafb5a
MK
3851/* Collect register REGNUM from the register cache REGCACHE and store
3852 it in the buffer specified by GREGS and LEN as described by the
3853 general-purpose register set REGSET. If REGNUM is -1, do this for
3854 all registers in REGSET. */
3855
ecc37a5a 3856static void
7fdafb5a
MK
3857i386_collect_gregset (const struct regset *regset,
3858 const struct regcache *regcache,
3859 int regnum, void *gregs, size_t len)
3860{
ac7936df 3861 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3862 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3863 gdb_byte *regs = (gdb_byte *) gregs;
7fdafb5a
MK
3864 int i;
3865
1528345d 3866 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3867
3868 for (i = 0; i < tdep->gregset_num_regs; i++)
3869 {
3870 if ((regnum == i || regnum == -1)
3871 && tdep->gregset_reg_offset[i] != -1)
34a79281 3872 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
7fdafb5a
MK
3873 }
3874}
3875
3876/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3877 in the floating-point register set REGSET to register cache
3878 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3879
3880static void
3881i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3882 int regnum, const void *fpregs, size_t len)
3883{
ac7936df 3884 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3885 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3886
66a72d25
MK
3887 if (len == I387_SIZEOF_FXSAVE)
3888 {
3889 i387_supply_fxsave (regcache, regnum, fpregs);
3890 return;
3891 }
3892
1528345d 3893 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3894 i387_supply_fsave (regcache, regnum, fpregs);
3895}
8446b36a 3896
2f305df1
MK
3897/* Collect register REGNUM from the register cache REGCACHE and store
3898 it in the buffer specified by FPREGS and LEN as described by the
3899 floating-point register set REGSET. If REGNUM is -1, do this for
3900 all registers in REGSET. */
7fdafb5a
MK
3901
3902static void
3903i386_collect_fpregset (const struct regset *regset,
3904 const struct regcache *regcache,
3905 int regnum, void *fpregs, size_t len)
3906{
ac7936df 3907 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3908 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3909
3910 if (len == I387_SIZEOF_FXSAVE)
3911 {
3912 i387_collect_fxsave (regcache, regnum, fpregs);
3913 return;
3914 }
3915
1528345d 3916 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3917 i387_collect_fsave (regcache, regnum, fpregs);
3918}
3919
ecc37a5a
AA
3920/* Register set definitions. */
3921
3922const struct regset i386_gregset =
3923 {
3924 NULL, i386_supply_gregset, i386_collect_gregset
3925 };
3926
8f0435f7 3927const struct regset i386_fpregset =
ecc37a5a
AA
3928 {
3929 NULL, i386_supply_fpregset, i386_collect_fpregset
3930 };
3931
490496c3 3932/* Default iterator over core file register note sections. */
8446b36a 3933
490496c3
AA
3934void
3935i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3936 iterate_over_regset_sections_cb *cb,
3937 void *cb_data,
3938 const struct regcache *regcache)
8446b36a
MK
3939{
3940 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3941
a616bb94
AH
3942 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3943 cb_data);
490496c3 3944 if (tdep->sizeof_fpregset)
a616bb94
AH
3945 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3946 NULL, cb_data);
8446b36a 3947}
473f17b0 3948\f
fc338970 3949
fc338970 3950/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3951
3952CORE_ADDR
e17a4113
UW
3953i386_pe_skip_trampoline_code (struct frame_info *frame,
3954 CORE_ADDR pc, char *name)
c906108c 3955{
e17a4113
UW
3956 struct gdbarch *gdbarch = get_frame_arch (frame);
3957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3958
3959 /* jmp *(dest) */
3960 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3961 {
e17a4113
UW
3962 unsigned long indirect =
3963 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3964 struct minimal_symbol *indsym =
7cbd4a93 3965 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
c9d95fa3 3966 const char *symname = indsym ? indsym->linkage_name () : 0;
c906108c 3967
c5aa993b 3968 if (symname)
c906108c 3969 {
61012eef
GB
3970 if (startswith (symname, "__imp_")
3971 || startswith (symname, "_imp_"))
e17a4113
UW
3972 return name ? 1 :
3973 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3974 }
3975 }
fc338970 3976 return 0; /* Not a trampoline. */
c906108c 3977}
fc338970
MK
3978\f
3979
10458914
DJ
3980/* Return whether the THIS_FRAME corresponds to a sigtramp
3981 routine. */
8201327c 3982
4bd207ef 3983int
10458914 3984i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3985{
10458914 3986 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3987 const char *name;
911bc6ee
MK
3988
3989 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3990 return (name && strcmp ("_sigtramp", name) == 0);
3991}
3992\f
3993
fc338970
MK
3994/* We have two flavours of disassembly. The machinery on this page
3995 deals with switching between those. */
c906108c
SS
3996
3997static int
a89aa300 3998i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3999{
5e3397bb
MK
4000 gdb_assert (disassembly_flavor == att_flavor
4001 || disassembly_flavor == intel_flavor);
4002
f995bbe8 4003 info->disassembler_options = disassembly_flavor;
5e3397bb 4004
6394c606 4005 return default_print_insn (pc, info);
7a292a7a 4006}
fc338970 4007\f
3ce1502b 4008
8201327c
MK
4009/* There are a few i386 architecture variants that differ only
4010 slightly from the generic i386 target. For now, we don't give them
4011 their own source file, but include them here. As a consequence,
4012 they'll always be included. */
3ce1502b 4013
8201327c 4014/* System V Release 4 (SVR4). */
3ce1502b 4015
10458914
DJ
4016/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4017 routine. */
911bc6ee 4018
8201327c 4019static int
10458914 4020i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 4021{
10458914 4022 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 4023 const char *name;
911bc6ee 4024
05b4bd79 4025 /* The origin of these symbols is currently unknown. */
911bc6ee 4026 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 4027 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
4028 || strcmp ("sigvechandler", name) == 0));
4029}
d2a7c97a 4030
10458914
DJ
4031/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4032 address of the associated sigcontext (ucontext) structure. */
3ce1502b 4033
3a1e71e3 4034static CORE_ADDR
10458914 4035i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 4036{
e17a4113
UW
4037 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4038 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 4039 gdb_byte buf[4];
acd5c798 4040 CORE_ADDR sp;
3ce1502b 4041
10458914 4042 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 4043 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 4044
e17a4113 4045 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 4046}
55aa24fb
SDJ
4047
4048\f
4049
4050/* Implementation of `gdbarch_stap_is_single_operand', as defined in
4051 gdbarch.h. */
4052
4053int
4054i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4055{
4056 return (*s == '$' /* Literal number. */
4057 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4058 || (*s == '(' && s[1] == '%') /* Register indirection. */
4059 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4060}
4061
5acfdbae
SDJ
4062/* Helper function for i386_stap_parse_special_token.
4063
4064 This function parses operands of the form `-8+3+1(%rbp)', which
4065 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4066
af2d9bee 4067 Return true if the operand was parsed successfully, false
5acfdbae
SDJ
4068 otherwise. */
4069
af2d9bee 4070static bool
5acfdbae
SDJ
4071i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4072 struct stap_parse_info *p)
4073{
4074 const char *s = p->arg;
4075
4076 if (isdigit (*s) || *s == '-' || *s == '+')
4077 {
af2d9bee 4078 bool got_minus[3];
5acfdbae
SDJ
4079 int i;
4080 long displacements[3];
4081 const char *start;
4082 char *regname;
4083 int len;
4084 struct stoken str;
4085 char *endp;
4086
af2d9bee 4087 got_minus[0] = false;
5acfdbae
SDJ
4088 if (*s == '+')
4089 ++s;
4090 else if (*s == '-')
4091 {
4092 ++s;
af2d9bee 4093 got_minus[0] = true;
5acfdbae
SDJ
4094 }
4095
d7b30f67 4096 if (!isdigit ((unsigned char) *s))
af2d9bee 4097 return false;
d7b30f67 4098
5acfdbae
SDJ
4099 displacements[0] = strtol (s, &endp, 10);
4100 s = endp;
4101
4102 if (*s != '+' && *s != '-')
4103 {
4104 /* We are not dealing with a triplet. */
af2d9bee 4105 return false;
5acfdbae
SDJ
4106 }
4107
af2d9bee 4108 got_minus[1] = false;
5acfdbae
SDJ
4109 if (*s == '+')
4110 ++s;
4111 else
4112 {
4113 ++s;
af2d9bee 4114 got_minus[1] = true;
5acfdbae
SDJ
4115 }
4116
d7b30f67 4117 if (!isdigit ((unsigned char) *s))
af2d9bee 4118 return false;
d7b30f67 4119
5acfdbae
SDJ
4120 displacements[1] = strtol (s, &endp, 10);
4121 s = endp;
4122
4123 if (*s != '+' && *s != '-')
4124 {
4125 /* We are not dealing with a triplet. */
af2d9bee 4126 return false;
5acfdbae
SDJ
4127 }
4128
af2d9bee 4129 got_minus[2] = false;
5acfdbae
SDJ
4130 if (*s == '+')
4131 ++s;
4132 else
4133 {
4134 ++s;
af2d9bee 4135 got_minus[2] = true;
5acfdbae
SDJ
4136 }
4137
d7b30f67 4138 if (!isdigit ((unsigned char) *s))
af2d9bee 4139 return false;
d7b30f67 4140
5acfdbae
SDJ
4141 displacements[2] = strtol (s, &endp, 10);
4142 s = endp;
4143
4144 if (*s != '(' || s[1] != '%')
af2d9bee 4145 return false;
5acfdbae
SDJ
4146
4147 s += 2;
4148 start = s;
4149
4150 while (isalnum (*s))
4151 ++s;
4152
4153 if (*s++ != ')')
af2d9bee 4154 return false;
5acfdbae 4155
d7b30f67 4156 len = s - start - 1;
224c3ddb 4157 regname = (char *) alloca (len + 1);
5acfdbae
SDJ
4158
4159 strncpy (regname, start, len);
4160 regname[len] = '\0';
4161
4162 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4163 error (_("Invalid register name `%s' on expression `%s'."),
4164 regname, p->saved_arg);
4165
4166 for (i = 0; i < 3; i++)
4167 {
410a0ff2
SDJ
4168 write_exp_elt_opcode (&p->pstate, OP_LONG);
4169 write_exp_elt_type
4170 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4171 write_exp_elt_longcst (&p->pstate, displacements[i]);
4172 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4173 if (got_minus[i])
410a0ff2 4174 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4175 }
4176
410a0ff2 4177 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4178 str.ptr = regname;
4179 str.length = len;
410a0ff2
SDJ
4180 write_exp_string (&p->pstate, str);
4181 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4182
410a0ff2
SDJ
4183 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4184 write_exp_elt_type (&p->pstate,
4185 builtin_type (gdbarch)->builtin_data_ptr);
4186 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4187
410a0ff2
SDJ
4188 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4189 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4190 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4191
410a0ff2
SDJ
4192 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4193 write_exp_elt_type (&p->pstate,
4194 lookup_pointer_type (p->arg_type));
4195 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4196
410a0ff2 4197 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4198
4199 p->arg = s;
4200
af2d9bee 4201 return true;
5acfdbae
SDJ
4202 }
4203
af2d9bee 4204 return false;
5acfdbae
SDJ
4205}
4206
4207/* Helper function for i386_stap_parse_special_token.
4208
4209 This function parses operands of the form `register base +
4210 (register index * size) + offset', as represented in
4211 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4212
af2d9bee 4213 Return true if the operand was parsed successfully, false
5acfdbae
SDJ
4214 otherwise. */
4215
af2d9bee 4216static bool
5acfdbae
SDJ
4217i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4218 struct stap_parse_info *p)
4219{
4220 const char *s = p->arg;
4221
4222 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4223 {
af2d9bee 4224 bool offset_minus = false;
5acfdbae 4225 long offset = 0;
af2d9bee 4226 bool size_minus = false;
5acfdbae
SDJ
4227 long size = 0;
4228 const char *start;
4229 char *base;
4230 int len_base;
4231 char *index;
4232 int len_index;
4233 struct stoken base_token, index_token;
4234
4235 if (*s == '+')
4236 ++s;
4237 else if (*s == '-')
4238 {
4239 ++s;
af2d9bee 4240 offset_minus = true;
5acfdbae
SDJ
4241 }
4242
4243 if (offset_minus && !isdigit (*s))
af2d9bee 4244 return false;
5acfdbae
SDJ
4245
4246 if (isdigit (*s))
4247 {
4248 char *endp;
4249
4250 offset = strtol (s, &endp, 10);
4251 s = endp;
4252 }
4253
4254 if (*s != '(' || s[1] != '%')
af2d9bee 4255 return false;
5acfdbae
SDJ
4256
4257 s += 2;
4258 start = s;
4259
4260 while (isalnum (*s))
4261 ++s;
4262
4263 if (*s != ',' || s[1] != '%')
af2d9bee 4264 return false;
5acfdbae
SDJ
4265
4266 len_base = s - start;
224c3ddb 4267 base = (char *) alloca (len_base + 1);
5acfdbae
SDJ
4268 strncpy (base, start, len_base);
4269 base[len_base] = '\0';
4270
4271 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4272 error (_("Invalid register name `%s' on expression `%s'."),
4273 base, p->saved_arg);
4274
4275 s += 2;
4276 start = s;
4277
4278 while (isalnum (*s))
4279 ++s;
4280
4281 len_index = s - start;
224c3ddb 4282 index = (char *) alloca (len_index + 1);
5acfdbae
SDJ
4283 strncpy (index, start, len_index);
4284 index[len_index] = '\0';
4285
4286 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4287 error (_("Invalid register name `%s' on expression `%s'."),
4288 index, p->saved_arg);
4289
4290 if (*s != ',' && *s != ')')
af2d9bee 4291 return false;
5acfdbae
SDJ
4292
4293 if (*s == ',')
4294 {
4295 char *endp;
4296
4297 ++s;
4298 if (*s == '+')
4299 ++s;
4300 else if (*s == '-')
4301 {
4302 ++s;
af2d9bee 4303 size_minus = true;
5acfdbae
SDJ
4304 }
4305
4306 size = strtol (s, &endp, 10);
4307 s = endp;
4308
4309 if (*s != ')')
af2d9bee 4310 return false;
5acfdbae
SDJ
4311 }
4312
4313 ++s;
4314
4315 if (offset)
4316 {
410a0ff2
SDJ
4317 write_exp_elt_opcode (&p->pstate, OP_LONG);
4318 write_exp_elt_type (&p->pstate,
4319 builtin_type (gdbarch)->builtin_long);
4320 write_exp_elt_longcst (&p->pstate, offset);
4321 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4322 if (offset_minus)
410a0ff2 4323 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4324 }
4325
410a0ff2 4326 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4327 base_token.ptr = base;
4328 base_token.length = len_base;
410a0ff2
SDJ
4329 write_exp_string (&p->pstate, base_token);
4330 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4331
4332 if (offset)
410a0ff2 4333 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4334
410a0ff2 4335 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4336 index_token.ptr = index;
4337 index_token.length = len_index;
410a0ff2
SDJ
4338 write_exp_string (&p->pstate, index_token);
4339 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4340
4341 if (size)
4342 {
410a0ff2
SDJ
4343 write_exp_elt_opcode (&p->pstate, OP_LONG);
4344 write_exp_elt_type (&p->pstate,
4345 builtin_type (gdbarch)->builtin_long);
4346 write_exp_elt_longcst (&p->pstate, size);
4347 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4348 if (size_minus)
410a0ff2
SDJ
4349 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4350 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4351 }
4352
410a0ff2 4353 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4354
410a0ff2
SDJ
4355 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4356 write_exp_elt_type (&p->pstate,
4357 lookup_pointer_type (p->arg_type));
4358 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4359
410a0ff2 4360 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4361
4362 p->arg = s;
4363
af2d9bee 4364 return true;
5acfdbae
SDJ
4365 }
4366
af2d9bee 4367 return false;
5acfdbae
SDJ
4368}
4369
55aa24fb
SDJ
4370/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4371 gdbarch.h. */
4372
4373int
4374i386_stap_parse_special_token (struct gdbarch *gdbarch,
4375 struct stap_parse_info *p)
4376{
55aa24fb
SDJ
4377 /* In order to parse special tokens, we use a state-machine that go
4378 through every known token and try to get a match. */
4379 enum
4380 {
4381 TRIPLET,
4382 THREE_ARG_DISPLACEMENT,
4383 DONE
570dc176
TT
4384 };
4385 int current_state;
55aa24fb
SDJ
4386
4387 current_state = TRIPLET;
4388
4389 /* The special tokens to be parsed here are:
4390
4391 - `register base + (register index * size) + offset', as represented
4392 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4393
4394 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4395 `*(-8 + 3 - 1 + (void *) $eax)'. */
4396
4397 while (current_state != DONE)
4398 {
55aa24fb
SDJ
4399 switch (current_state)
4400 {
4401 case TRIPLET:
5acfdbae
SDJ
4402 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4403 return 1;
4404 break;
4405
55aa24fb 4406 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4407 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4408 return 1;
4409 break;
55aa24fb
SDJ
4410 }
4411
4412 /* Advancing to the next state. */
4413 ++current_state;
4414 }
4415
4416 return 0;
4417}
4418
7d7571f0
SDJ
4419/* Implementation of 'gdbarch_stap_adjust_register', as defined in
4420 gdbarch.h. */
4421
6b78c3f8 4422static std::string
7d7571f0 4423i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
6b78c3f8 4424 const std::string &regname, int regnum)
7d7571f0
SDJ
4425{
4426 static const std::unordered_set<std::string> reg_assoc
4427 = { "ax", "bx", "cx", "dx",
4428 "si", "di", "bp", "sp" };
4429
6b78c3f8
AB
4430 /* If we are dealing with a register whose size is less than the size
4431 specified by the "[-]N@" prefix, and it is one of the registers that
4432 we know has an extended variant available, then use the extended
4433 version of the register instead. */
4434 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4435 && reg_assoc.find (regname) != reg_assoc.end ())
4436 return "e" + regname;
7d7571f0 4437
6b78c3f8
AB
4438 /* Otherwise, just use the requested register. */
4439 return regname;
7d7571f0
SDJ
4440}
4441
8201327c 4442\f
3ce1502b 4443
ac04f72b
TT
4444/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4445 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4446
4447static const char *
4448i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4449{
4450 return "(x86_64|i.86)";
4451}
4452
4453\f
4454
1d509aa6
MM
4455/* Implement the "in_indirect_branch_thunk" gdbarch function. */
4456
4457static bool
4458i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4459{
4460 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4461 I386_EAX_REGNUM, I386_EIP_REGNUM);
4462}
4463
8201327c 4464/* Generic ELF. */
d2a7c97a 4465
8201327c
MK
4466void
4467i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4468{
05c0465e
SDJ
4469 static const char *const stap_integer_prefixes[] = { "$", NULL };
4470 static const char *const stap_register_prefixes[] = { "%", NULL };
4471 static const char *const stap_register_indirection_prefixes[] = { "(",
4472 NULL };
4473 static const char *const stap_register_indirection_suffixes[] = { ")",
4474 NULL };
4475
c4fc7f1b
MK
4476 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4477 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4478
4479 /* Registering SystemTap handlers. */
05c0465e
SDJ
4480 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4481 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4482 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4483 stap_register_indirection_prefixes);
4484 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4485 stap_register_indirection_suffixes);
55aa24fb
SDJ
4486 set_gdbarch_stap_is_single_operand (gdbarch,
4487 i386_stap_is_single_operand);
4488 set_gdbarch_stap_parse_special_token (gdbarch,
4489 i386_stap_parse_special_token);
7d7571f0
SDJ
4490 set_gdbarch_stap_adjust_register (gdbarch,
4491 i386_stap_adjust_register);
1d509aa6
MM
4492
4493 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4494 i386_in_indirect_branch_thunk);
8201327c 4495}
3ce1502b 4496
8201327c 4497/* System V Release 4 (SVR4). */
3ce1502b 4498
8201327c
MK
4499void
4500i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4501{
4502 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4503
8201327c
MK
4504 /* System V Release 4 uses ELF. */
4505 i386_elf_init_abi (info, gdbarch);
3ce1502b 4506
dfe01d39 4507 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4508 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4509
911bc6ee 4510 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4511 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4512 tdep->sc_pc_offset = 36 + 14 * 4;
4513 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4514
8201327c 4515 tdep->jb_pc_offset = 20;
3ce1502b
MK
4516}
4517
8201327c 4518\f
2acceee2 4519
38c968cf
AC
4520/* i386 register groups. In addition to the normal groups, add "mmx"
4521 and "sse". */
4522
4523static struct reggroup *i386_sse_reggroup;
4524static struct reggroup *i386_mmx_reggroup;
4525
4526static void
4527i386_init_reggroups (void)
4528{
4529 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4530 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4531}
4532
4533static void
4534i386_add_reggroups (struct gdbarch *gdbarch)
4535{
4536 reggroup_add (gdbarch, i386_sse_reggroup);
4537 reggroup_add (gdbarch, i386_mmx_reggroup);
4538 reggroup_add (gdbarch, general_reggroup);
4539 reggroup_add (gdbarch, float_reggroup);
4540 reggroup_add (gdbarch, all_reggroup);
4541 reggroup_add (gdbarch, save_reggroup);
4542 reggroup_add (gdbarch, restore_reggroup);
4543 reggroup_add (gdbarch, vector_reggroup);
4544 reggroup_add (gdbarch, system_reggroup);
4545}
4546
4547int
4548i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4549 struct reggroup *group)
4550{
c131fcee
L
4551 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4552 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808 4553 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
798a7429
SM
4554 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4555 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
51547df6 4556 avx512_p, avx_p, sse_p, pkru_regnum_p;
acd5c798 4557
1ba53b71
L
4558 /* Don't include pseudo registers, except for MMX, in any register
4559 groups. */
c131fcee 4560 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4561 return 0;
4562
c131fcee 4563 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4564 return 0;
4565
c131fcee 4566 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4567 return 0;
4568
4569 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4570 if (group == i386_mmx_reggroup)
4571 return mmx_regnum_p;
1ba53b71 4572
51547df6 4573 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
c131fcee 4574 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4575 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4576 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4577 if (group == i386_sse_reggroup)
01f9f808 4578 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4579
4580 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4581 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4582 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4583
22049425
MS
4584 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4585 == X86_XSTATE_AVX_AVX512_MASK);
4586 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4587 == X86_XSTATE_AVX_MASK) && !avx512_p;
22049425 4588 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4589 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4590
38c968cf 4591 if (group == vector_reggroup)
c131fcee 4592 return (mmx_regnum_p
01f9f808
MS
4593 || (zmm_regnum_p && avx512_p)
4594 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4595 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4596 || mxcsr_regnum_p);
1ba53b71
L
4597
4598 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4599 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4600 if (group == float_reggroup)
4601 return fp_regnum_p;
1ba53b71 4602
c131fcee
L
4603 /* For "info reg all", don't include upper YMM registers nor XMM
4604 registers when AVX is supported. */
4605 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4606 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4607 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4608 if (group == all_reggroup
01f9f808
MS
4609 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4610 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4611 || ymmh_regnum_p
4612 || ymmh_avx512_regnum_p
4613 || zmmh_regnum_p))
c131fcee
L
4614 return 0;
4615
1dbcd68c
WT
4616 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4617 if (group == all_reggroup
df7e5265 4618 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4619 return bnd_regnum_p;
4620
4621 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4622 if (group == all_reggroup
df7e5265 4623 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4624 return 0;
4625
4626 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4627 if (group == all_reggroup
df7e5265 4628 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4629 return mpx_ctrl_regnum_p;
4630
38c968cf 4631 if (group == general_reggroup)
1ba53b71
L
4632 return (!fp_regnum_p
4633 && !mmx_regnum_p
c131fcee
L
4634 && !mxcsr_regnum_p
4635 && !xmm_regnum_p
01f9f808 4636 && !xmm_avx512_regnum_p
c131fcee 4637 && !ymm_regnum_p
1dbcd68c 4638 && !ymmh_regnum_p
01f9f808
MS
4639 && !ymm_avx512_regnum_p
4640 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4641 && !bndr_regnum_p
4642 && !bnd_regnum_p
01f9f808
MS
4643 && !mpx_ctrl_regnum_p
4644 && !zmm_regnum_p
51547df6
MS
4645 && !zmmh_regnum_p
4646 && !pkru_regnum_p);
acd5c798 4647
38c968cf
AC
4648 return default_register_reggroup_p (gdbarch, regnum, group);
4649}
38c968cf 4650\f
acd5c798 4651
f837910f
MK
4652/* Get the ARGIth function argument for the current function. */
4653
42c466d7 4654static CORE_ADDR
143985b7
AF
4655i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4656 struct type *type)
4657{
e17a4113
UW
4658 struct gdbarch *gdbarch = get_frame_arch (frame);
4659 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4660 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4661 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4662}
4663
7ad10968
HZ
4664#define PREFIX_REPZ 0x01
4665#define PREFIX_REPNZ 0x02
4666#define PREFIX_LOCK 0x04
4667#define PREFIX_DATA 0x08
4668#define PREFIX_ADDR 0x10
473f17b0 4669
7ad10968
HZ
4670/* operand size */
4671enum
4672{
4673 OT_BYTE = 0,
4674 OT_WORD,
4675 OT_LONG,
cf648174 4676 OT_QUAD,
a3c4230a 4677 OT_DQUAD,
7ad10968 4678};
473f17b0 4679
7ad10968
HZ
4680/* i386 arith/logic operations */
4681enum
4682{
4683 OP_ADDL,
4684 OP_ORL,
4685 OP_ADCL,
4686 OP_SBBL,
4687 OP_ANDL,
4688 OP_SUBL,
4689 OP_XORL,
4690 OP_CMPL,
4691};
5716833c 4692
7ad10968
HZ
4693struct i386_record_s
4694{
cf648174 4695 struct gdbarch *gdbarch;
7ad10968 4696 struct regcache *regcache;
df61f520 4697 CORE_ADDR orig_addr;
7ad10968
HZ
4698 CORE_ADDR addr;
4699 int aflag;
4700 int dflag;
4701 int override;
4702 uint8_t modrm;
4703 uint8_t mod, reg, rm;
4704 int ot;
cf648174
HZ
4705 uint8_t rex_x;
4706 uint8_t rex_b;
4707 int rip_offset;
4708 int popl_esp_hack;
4709 const int *regmap;
7ad10968 4710};
5716833c 4711
99c1624c
PA
4712/* Parse the "modrm" part of the memory address irp->addr points at.
4713 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4714
7ad10968
HZ
4715static int
4716i386_record_modrm (struct i386_record_s *irp)
4717{
cf648174 4718 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4719
4ffa4fc7
PA
4720 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4721 return -1;
4722
7ad10968
HZ
4723 irp->addr++;
4724 irp->mod = (irp->modrm >> 6) & 3;
4725 irp->reg = (irp->modrm >> 3) & 7;
4726 irp->rm = irp->modrm & 7;
5716833c 4727
7ad10968
HZ
4728 return 0;
4729}
d2a7c97a 4730
99c1624c
PA
4731/* Extract the memory address that the current instruction writes to,
4732 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4733
7ad10968 4734static int
cf648174 4735i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4736{
cf648174 4737 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4738 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4739 gdb_byte buf[4];
4740 ULONGEST offset64;
21d0e8a4 4741
7ad10968 4742 *addr = 0;
1e87984a 4743 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4744 {
1e87984a 4745 /* 32/64 bits */
7ad10968
HZ
4746 int havesib = 0;
4747 uint8_t scale = 0;
648d0c8b 4748 uint8_t byte;
7ad10968
HZ
4749 uint8_t index = 0;
4750 uint8_t base = irp->rm;
896fb97d 4751
7ad10968
HZ
4752 if (base == 4)
4753 {
4754 havesib = 1;
4ffa4fc7
PA
4755 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4756 return -1;
7ad10968 4757 irp->addr++;
648d0c8b
MS
4758 scale = (byte >> 6) & 3;
4759 index = ((byte >> 3) & 7) | irp->rex_x;
4760 base = (byte & 7);
7ad10968 4761 }
cf648174 4762 base |= irp->rex_b;
21d0e8a4 4763
7ad10968
HZ
4764 switch (irp->mod)
4765 {
4766 case 0:
4767 if ((base & 7) == 5)
4768 {
4769 base = 0xff;
4ffa4fc7
PA
4770 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4771 return -1;
7ad10968 4772 irp->addr += 4;
60a1502a 4773 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4774 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4775 *addr += irp->addr + irp->rip_offset;
7ad10968 4776 }
7ad10968
HZ
4777 break;
4778 case 1:
4ffa4fc7
PA
4779 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4780 return -1;
7ad10968 4781 irp->addr++;
60a1502a 4782 *addr = (int8_t) buf[0];
7ad10968
HZ
4783 break;
4784 case 2:
4ffa4fc7
PA
4785 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4786 return -1;
60a1502a 4787 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4788 irp->addr += 4;
4789 break;
4790 }
356a6b3e 4791
60a1502a 4792 offset64 = 0;
7ad10968 4793 if (base != 0xff)
dda83cd7 4794 {
cf648174
HZ
4795 if (base == 4 && irp->popl_esp_hack)
4796 *addr += irp->popl_esp_hack;
4797 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
dda83cd7 4798 &offset64);
7ad10968 4799 }
cf648174 4800 if (irp->aflag == 2)
dda83cd7 4801 {
60a1502a 4802 *addr += offset64;
dda83cd7 4803 }
cf648174 4804 else
dda83cd7 4805 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4806
7ad10968
HZ
4807 if (havesib && (index != 4 || scale != 0))
4808 {
cf648174 4809 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
dda83cd7 4810 &offset64);
cf648174 4811 if (irp->aflag == 2)
60a1502a 4812 *addr += offset64 << scale;
cf648174 4813 else
60a1502a 4814 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4815 }
e85596e0
L
4816
4817 if (!irp->aflag)
4818 {
4819 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4820 address from 32-bit to 64-bit. */
4821 *addr = (uint32_t) *addr;
4822 }
7ad10968
HZ
4823 }
4824 else
4825 {
4826 /* 16 bits */
4827 switch (irp->mod)
4828 {
4829 case 0:
4830 if (irp->rm == 6)
4831 {
4ffa4fc7
PA
4832 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4833 return -1;
7ad10968 4834 irp->addr += 2;
60a1502a 4835 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4836 irp->rm = 0;
4837 goto no_rm;
4838 }
7ad10968
HZ
4839 break;
4840 case 1:
4ffa4fc7
PA
4841 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4842 return -1;
7ad10968 4843 irp->addr++;
60a1502a 4844 *addr = (int8_t) buf[0];
7ad10968
HZ
4845 break;
4846 case 2:
4ffa4fc7
PA
4847 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4848 return -1;
7ad10968 4849 irp->addr += 2;
60a1502a 4850 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4851 break;
4852 }
c4fc7f1b 4853
7ad10968
HZ
4854 switch (irp->rm)
4855 {
4856 case 0:
cf648174
HZ
4857 regcache_raw_read_unsigned (irp->regcache,
4858 irp->regmap[X86_RECORD_REBX_REGNUM],
dda83cd7 4859 &offset64);
60a1502a 4860 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4861 regcache_raw_read_unsigned (irp->regcache,
4862 irp->regmap[X86_RECORD_RESI_REGNUM],
dda83cd7 4863 &offset64);
60a1502a 4864 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4865 break;
4866 case 1:
cf648174
HZ
4867 regcache_raw_read_unsigned (irp->regcache,
4868 irp->regmap[X86_RECORD_REBX_REGNUM],
dda83cd7 4869 &offset64);
60a1502a 4870 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4871 regcache_raw_read_unsigned (irp->regcache,
4872 irp->regmap[X86_RECORD_REDI_REGNUM],
dda83cd7 4873 &offset64);
60a1502a 4874 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4875 break;
4876 case 2:
cf648174
HZ
4877 regcache_raw_read_unsigned (irp->regcache,
4878 irp->regmap[X86_RECORD_REBP_REGNUM],
dda83cd7 4879 &offset64);
60a1502a 4880 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4881 regcache_raw_read_unsigned (irp->regcache,
4882 irp->regmap[X86_RECORD_RESI_REGNUM],
dda83cd7 4883 &offset64);
60a1502a 4884 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4885 break;
4886 case 3:
cf648174
HZ
4887 regcache_raw_read_unsigned (irp->regcache,
4888 irp->regmap[X86_RECORD_REBP_REGNUM],
dda83cd7 4889 &offset64);
60a1502a 4890 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4891 regcache_raw_read_unsigned (irp->regcache,
4892 irp->regmap[X86_RECORD_REDI_REGNUM],
dda83cd7 4893 &offset64);
60a1502a 4894 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4895 break;
4896 case 4:
cf648174
HZ
4897 regcache_raw_read_unsigned (irp->regcache,
4898 irp->regmap[X86_RECORD_RESI_REGNUM],
dda83cd7 4899 &offset64);
60a1502a 4900 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4901 break;
4902 case 5:
cf648174
HZ
4903 regcache_raw_read_unsigned (irp->regcache,
4904 irp->regmap[X86_RECORD_REDI_REGNUM],
dda83cd7 4905 &offset64);
60a1502a 4906 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4907 break;
4908 case 6:
cf648174
HZ
4909 regcache_raw_read_unsigned (irp->regcache,
4910 irp->regmap[X86_RECORD_REBP_REGNUM],
dda83cd7 4911 &offset64);
60a1502a 4912 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4913 break;
4914 case 7:
cf648174
HZ
4915 regcache_raw_read_unsigned (irp->regcache,
4916 irp->regmap[X86_RECORD_REBX_REGNUM],
dda83cd7 4917 &offset64);
60a1502a 4918 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4919 break;
4920 }
4921 *addr &= 0xffff;
4922 }
c4fc7f1b 4923
01fe1b41 4924 no_rm:
7ad10968
HZ
4925 return 0;
4926}
c4fc7f1b 4927
99c1624c
PA
4928/* Record the address and contents of the memory that will be changed
4929 by the current instruction. Return -1 if something goes wrong, 0
4930 otherwise. */
356a6b3e 4931
7ad10968
HZ
4932static int
4933i386_record_lea_modrm (struct i386_record_s *irp)
4934{
cf648174
HZ
4935 struct gdbarch *gdbarch = irp->gdbarch;
4936 uint64_t addr;
356a6b3e 4937
d7877f7e 4938 if (irp->override >= 0)
7ad10968 4939 {
25ea693b 4940 if (record_full_memory_query)
dda83cd7
SM
4941 {
4942 if (yquery (_("\
bb08c432
HZ
4943Process record ignores the memory change of instruction at address %s\n\
4944because it can't get the value of the segment register.\n\
4945Do you want to stop the program?"),
dda83cd7 4946 paddress (gdbarch, irp->orig_addr)))
651ce16a 4947 return -1;
dda83cd7 4948 }
bb08c432 4949
7ad10968
HZ
4950 return 0;
4951 }
61113f8b 4952
7ad10968
HZ
4953 if (i386_record_lea_modrm_addr (irp, &addr))
4954 return -1;
96297dab 4955
25ea693b 4956 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4957 return -1;
a62cc96e 4958
7ad10968
HZ
4959 return 0;
4960}
b6197528 4961
99c1624c
PA
4962/* Record the effects of a push operation. Return -1 if something
4963 goes wrong, 0 otherwise. */
cf648174
HZ
4964
4965static int
4966i386_record_push (struct i386_record_s *irp, int size)
4967{
648d0c8b 4968 ULONGEST addr;
cf648174 4969
25ea693b
MM
4970 if (record_full_arch_list_add_reg (irp->regcache,
4971 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4972 return -1;
4973 regcache_raw_read_unsigned (irp->regcache,
4974 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4975 &addr);
25ea693b 4976 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4977 return -1;
4978
4979 return 0;
4980}
4981
0289bdd7
MS
4982
4983/* Defines contents to record. */
4984#define I386_SAVE_FPU_REGS 0xfffd
4985#define I386_SAVE_FPU_ENV 0xfffe
4986#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4987
99c1624c
PA
4988/* Record the values of the floating point registers which will be
4989 changed by the current instruction. Returns -1 if something is
4990 wrong, 0 otherwise. */
0289bdd7
MS
4991
4992static int i386_record_floats (struct gdbarch *gdbarch,
dda83cd7
SM
4993 struct i386_record_s *ir,
4994 uint32_t iregnum)
0289bdd7
MS
4995{
4996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4997 int i;
4998
4999 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5000 happen. Currently we store st0-st7 registers, but we need not store all
5001 registers all the time, in future we use ftag register and record only
5002 those who are not marked as an empty. */
5003
5004 if (I386_SAVE_FPU_REGS == iregnum)
5005 {
5006 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
dda83cd7
SM
5007 {
5008 if (record_full_arch_list_add_reg (ir->regcache, i))
5009 return -1;
5010 }
0289bdd7
MS
5011 }
5012 else if (I386_SAVE_FPU_ENV == iregnum)
5013 {
5014 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5015 {
25ea693b 5016 if (record_full_arch_list_add_reg (ir->regcache, i))
dda83cd7 5017 return -1;
0289bdd7
MS
5018 }
5019 }
5020 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5021 {
5022 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5023 {
dda83cd7
SM
5024 if (record_full_arch_list_add_reg (ir->regcache, i))
5025 return -1;
0289bdd7
MS
5026 }
5027 }
5028 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
dda83cd7 5029 (iregnum <= I387_FOP_REGNUM (tdep)))
0289bdd7 5030 {
25ea693b 5031 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
dda83cd7 5032 return -1;
0289bdd7
MS
5033 }
5034 else
5035 {
5036 /* Parameter error. */
5037 return -1;
5038 }
5039 if(I386_SAVE_FPU_ENV != iregnum)
5040 {
5041 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5042 {
25ea693b 5043 if (record_full_arch_list_add_reg (ir->regcache, i))
dda83cd7 5044 return -1;
0289bdd7
MS
5045 }
5046 }
5047 return 0;
5048}
5049
99c1624c
PA
5050/* Parse the current instruction, and record the values of the
5051 registers and memory that will be changed by the current
5052 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 5053
25ea693b
MM
5054#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5055 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 5056
a6b808b4 5057int
7ad10968 5058i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 5059 CORE_ADDR input_addr)
7ad10968 5060{
60a1502a 5061 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 5062 int prefixes = 0;
580879fc 5063 int regnum = 0;
425b824a 5064 uint32_t opcode;
f4644a3f 5065 uint8_t opcode8;
648d0c8b 5066 ULONGEST addr;
975c21ab 5067 gdb_byte buf[I386_MAX_REGISTER_SIZE];
7ad10968 5068 struct i386_record_s ir;
0289bdd7 5069 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
5070 uint8_t rex_w = -1;
5071 uint8_t rex_r = 0;
7ad10968 5072
8408d274 5073 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 5074 ir.regcache = regcache;
648d0c8b
MS
5075 ir.addr = input_addr;
5076 ir.orig_addr = input_addr;
7ad10968
HZ
5077 ir.aflag = 1;
5078 ir.dflag = 1;
cf648174
HZ
5079 ir.override = -1;
5080 ir.popl_esp_hack = 0;
a3c4230a 5081 ir.regmap = tdep->record_regmap;
cf648174 5082 ir.gdbarch = gdbarch;
7ad10968
HZ
5083
5084 if (record_debug > 1)
5085 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
dda83cd7 5086 "addr = %s\n",
5af949e3 5087 paddress (gdbarch, ir.addr));
7ad10968
HZ
5088
5089 /* prefixes */
5090 while (1)
5091 {
4ffa4fc7
PA
5092 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5093 return -1;
7ad10968 5094 ir.addr++;
425b824a 5095 switch (opcode8) /* Instruction prefixes */
7ad10968 5096 {
01fe1b41 5097 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5098 prefixes |= PREFIX_REPZ;
5099 break;
01fe1b41 5100 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5101 prefixes |= PREFIX_REPNZ;
5102 break;
01fe1b41 5103 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5104 prefixes |= PREFIX_LOCK;
5105 break;
01fe1b41 5106 case CS_PREFIX_OPCODE:
cf648174 5107 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5108 break;
01fe1b41 5109 case SS_PREFIX_OPCODE:
cf648174 5110 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5111 break;
01fe1b41 5112 case DS_PREFIX_OPCODE:
cf648174 5113 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5114 break;
01fe1b41 5115 case ES_PREFIX_OPCODE:
cf648174 5116 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5117 break;
01fe1b41 5118 case FS_PREFIX_OPCODE:
cf648174 5119 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5120 break;
01fe1b41 5121 case GS_PREFIX_OPCODE:
cf648174 5122 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5123 break;
01fe1b41 5124 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5125 prefixes |= PREFIX_DATA;
5126 break;
01fe1b41 5127 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5128 prefixes |= PREFIX_ADDR;
5129 break;
dda83cd7
SM
5130 case 0x40: /* i386 inc %eax */
5131 case 0x41: /* i386 inc %ecx */
5132 case 0x42: /* i386 inc %edx */
5133 case 0x43: /* i386 inc %ebx */
5134 case 0x44: /* i386 inc %esp */
5135 case 0x45: /* i386 inc %ebp */
5136 case 0x46: /* i386 inc %esi */
5137 case 0x47: /* i386 inc %edi */
5138 case 0x48: /* i386 dec %eax */
5139 case 0x49: /* i386 dec %ecx */
5140 case 0x4a: /* i386 dec %edx */
5141 case 0x4b: /* i386 dec %ebx */
5142 case 0x4c: /* i386 dec %esp */
5143 case 0x4d: /* i386 dec %ebp */
5144 case 0x4e: /* i386 dec %esi */
5145 case 0x4f: /* i386 dec %edi */
5146 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5147 {
5148 /* REX */
5149 rex_w = (opcode8 >> 3) & 1;
5150 rex_r = (opcode8 & 0x4) << 1;
5151 ir.rex_x = (opcode8 & 0x2) << 2;
5152 ir.rex_b = (opcode8 & 0x1) << 3;
5153 }
d691bec7
MS
5154 else /* 32 bit target */
5155 goto out_prefixes;
dda83cd7 5156 break;
7ad10968
HZ
5157 default:
5158 goto out_prefixes;
5159 break;
5160 }
5161 }
01fe1b41 5162 out_prefixes:
cf648174
HZ
5163 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5164 {
5165 ir.dflag = 2;
5166 }
5167 else
5168 {
5169 if (prefixes & PREFIX_DATA)
dda83cd7 5170 ir.dflag ^= 1;
cf648174 5171 }
7ad10968
HZ
5172 if (prefixes & PREFIX_ADDR)
5173 ir.aflag ^= 1;
cf648174
HZ
5174 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5175 ir.aflag = 2;
7ad10968 5176
1777feb0 5177 /* Now check op code. */
425b824a 5178 opcode = (uint32_t) opcode8;
01fe1b41 5179 reswitch:
7ad10968
HZ
5180 switch (opcode)
5181 {
5182 case 0x0f:
4ffa4fc7
PA
5183 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5184 return -1;
7ad10968 5185 ir.addr++;
a3c4230a 5186 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5187 goto reswitch;
5188 break;
93924b6b 5189
a38bba38 5190 case 0x00: /* arith & logic */
7ad10968
HZ
5191 case 0x01:
5192 case 0x02:
5193 case 0x03:
5194 case 0x04:
5195 case 0x05:
5196 case 0x08:
5197 case 0x09:
5198 case 0x0a:
5199 case 0x0b:
5200 case 0x0c:
5201 case 0x0d:
5202 case 0x10:
5203 case 0x11:
5204 case 0x12:
5205 case 0x13:
5206 case 0x14:
5207 case 0x15:
5208 case 0x18:
5209 case 0x19:
5210 case 0x1a:
5211 case 0x1b:
5212 case 0x1c:
5213 case 0x1d:
5214 case 0x20:
5215 case 0x21:
5216 case 0x22:
5217 case 0x23:
5218 case 0x24:
5219 case 0x25:
5220 case 0x28:
5221 case 0x29:
5222 case 0x2a:
5223 case 0x2b:
5224 case 0x2c:
5225 case 0x2d:
5226 case 0x30:
5227 case 0x31:
5228 case 0x32:
5229 case 0x33:
5230 case 0x34:
5231 case 0x35:
5232 case 0x38:
5233 case 0x39:
5234 case 0x3a:
5235 case 0x3b:
5236 case 0x3c:
5237 case 0x3d:
5238 if (((opcode >> 3) & 7) != OP_CMPL)
5239 {
5240 if ((opcode & 1) == 0)
5241 ir.ot = OT_BYTE;
5242 else
5243 ir.ot = ir.dflag + OT_WORD;
93924b6b 5244
7ad10968
HZ
5245 switch ((opcode >> 1) & 3)
5246 {
a38bba38 5247 case 0: /* OP Ev, Gv */
7ad10968
HZ
5248 if (i386_record_modrm (&ir))
5249 return -1;
5250 if (ir.mod != 3)
5251 {
5252 if (i386_record_lea_modrm (&ir))
5253 return -1;
5254 }
5255 else
5256 {
dda83cd7 5257 ir.rm |= ir.rex_b;
cf648174 5258 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5259 ir.rm &= 0x3;
25ea693b 5260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5261 }
5262 break;
a38bba38 5263 case 1: /* OP Gv, Ev */
7ad10968
HZ
5264 if (i386_record_modrm (&ir))
5265 return -1;
dda83cd7 5266 ir.reg |= rex_r;
cf648174 5267 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5268 ir.reg &= 0x3;
25ea693b 5269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5270 break;
a38bba38 5271 case 2: /* OP A, Iv */
25ea693b 5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5273 break;
5274 }
5275 }
25ea693b 5276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5277 break;
42fdc8df 5278
a38bba38 5279 case 0x80: /* GRP1 */
7ad10968
HZ
5280 case 0x81:
5281 case 0x82:
5282 case 0x83:
5283 if (i386_record_modrm (&ir))
5284 return -1;
8201327c 5285
7ad10968
HZ
5286 if (ir.reg != OP_CMPL)
5287 {
5288 if ((opcode & 1) == 0)
5289 ir.ot = OT_BYTE;
5290 else
5291 ir.ot = ir.dflag + OT_WORD;
28fc6740 5292
7ad10968
HZ
5293 if (ir.mod != 3)
5294 {
dda83cd7
SM
5295 if (opcode == 0x83)
5296 ir.rip_offset = 1;
5297 else
5298 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5299 if (i386_record_lea_modrm (&ir))
5300 return -1;
5301 }
5302 else
25ea693b 5303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5304 }
25ea693b 5305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5306 break;
5e3397bb 5307
a38bba38 5308 case 0x40: /* inc */
7ad10968
HZ
5309 case 0x41:
5310 case 0x42:
5311 case 0x43:
5312 case 0x44:
5313 case 0x45:
5314 case 0x46:
5315 case 0x47:
a38bba38
MS
5316
5317 case 0x48: /* dec */
7ad10968
HZ
5318 case 0x49:
5319 case 0x4a:
5320 case 0x4b:
5321 case 0x4c:
5322 case 0x4d:
5323 case 0x4e:
5324 case 0x4f:
a38bba38 5325
25ea693b
MM
5326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5328 break;
acd5c798 5329
a38bba38 5330 case 0xf6: /* GRP3 */
7ad10968
HZ
5331 case 0xf7:
5332 if ((opcode & 1) == 0)
5333 ir.ot = OT_BYTE;
5334 else
5335 ir.ot = ir.dflag + OT_WORD;
5336 if (i386_record_modrm (&ir))
5337 return -1;
acd5c798 5338
cf648174 5339 if (ir.mod != 3 && ir.reg == 0)
dda83cd7 5340 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
cf648174 5341
7ad10968
HZ
5342 switch (ir.reg)
5343 {
a38bba38 5344 case 0: /* test */
25ea693b 5345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5346 break;
a38bba38
MS
5347 case 2: /* not */
5348 case 3: /* neg */
7ad10968
HZ
5349 if (ir.mod != 3)
5350 {
5351 if (i386_record_lea_modrm (&ir))
5352 return -1;
5353 }
5354 else
5355 {
dda83cd7 5356 ir.rm |= ir.rex_b;
cf648174 5357 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5358 ir.rm &= 0x3;
25ea693b 5359 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5360 }
a38bba38 5361 if (ir.reg == 3) /* neg */
25ea693b 5362 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5363 break;
a38bba38
MS
5364 case 4: /* mul */
5365 case 5: /* imul */
5366 case 6: /* div */
5367 case 7: /* idiv */
25ea693b 5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5369 if (ir.ot != OT_BYTE)
25ea693b
MM
5370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5372 break;
5373 default:
5374 ir.addr -= 2;
5375 opcode = opcode << 8 | ir.modrm;
5376 goto no_support;
5377 break;
5378 }
5379 break;
5380
a38bba38
MS
5381 case 0xfe: /* GRP4 */
5382 case 0xff: /* GRP5 */
7ad10968
HZ
5383 if (i386_record_modrm (&ir))
5384 return -1;
5385 if (ir.reg >= 2 && opcode == 0xfe)
5386 {
5387 ir.addr -= 2;
5388 opcode = opcode << 8 | ir.modrm;
5389 goto no_support;
5390 }
7ad10968
HZ
5391 switch (ir.reg)
5392 {
a38bba38
MS
5393 case 0: /* inc */
5394 case 1: /* dec */
dda83cd7 5395 if ((opcode & 1) == 0)
cf648174 5396 ir.ot = OT_BYTE;
dda83cd7 5397 else
cf648174 5398 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5399 if (ir.mod != 3)
5400 {
5401 if (i386_record_lea_modrm (&ir))
5402 return -1;
5403 }
5404 else
5405 {
cf648174
HZ
5406 ir.rm |= ir.rex_b;
5407 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5408 ir.rm &= 0x3;
25ea693b 5409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5410 }
25ea693b 5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5412 break;
a38bba38 5413 case 2: /* call */
dda83cd7
SM
5414 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5415 ir.dflag = 2;
cf648174 5416 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5417 return -1;
25ea693b 5418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5419 break;
a38bba38 5420 case 3: /* lcall */
25ea693b 5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5422 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5423 return -1;
25ea693b 5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5425 break;
a38bba38
MS
5426 case 4: /* jmp */
5427 case 5: /* ljmp */
25ea693b 5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5429 break;
a38bba38 5430 case 6: /* push */
dda83cd7
SM
5431 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5432 ir.dflag = 2;
cf648174
HZ
5433 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5434 return -1;
7ad10968
HZ
5435 break;
5436 default:
5437 ir.addr -= 2;
5438 opcode = opcode << 8 | ir.modrm;
5439 goto no_support;
5440 break;
5441 }
5442 break;
5443
a38bba38 5444 case 0x84: /* test */
7ad10968
HZ
5445 case 0x85:
5446 case 0xa8:
5447 case 0xa9:
25ea693b 5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5449 break;
5450
a38bba38 5451 case 0x98: /* CWDE/CBW */
25ea693b 5452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5453 break;
5454
a38bba38 5455 case 0x99: /* CDQ/CWD */
25ea693b
MM
5456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5458 break;
5459
a38bba38 5460 case 0x0faf: /* imul */
7ad10968
HZ
5461 case 0x69:
5462 case 0x6b:
5463 ir.ot = ir.dflag + OT_WORD;
5464 if (i386_record_modrm (&ir))
5465 return -1;
cf648174 5466 if (opcode == 0x69)
dda83cd7 5467 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
cf648174 5468 else if (opcode == 0x6b)
dda83cd7 5469 ir.rip_offset = 1;
cf648174
HZ
5470 ir.reg |= rex_r;
5471 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5472 ir.reg &= 0x3;
25ea693b
MM
5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5475 break;
5476
a38bba38 5477 case 0x0fc0: /* xadd */
7ad10968
HZ
5478 case 0x0fc1:
5479 if ((opcode & 1) == 0)
5480 ir.ot = OT_BYTE;
5481 else
5482 ir.ot = ir.dflag + OT_WORD;
5483 if (i386_record_modrm (&ir))
5484 return -1;
cf648174 5485 ir.reg |= rex_r;
7ad10968
HZ
5486 if (ir.mod == 3)
5487 {
cf648174 5488 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5489 ir.reg &= 0x3;
25ea693b 5490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5491 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5492 ir.rm &= 0x3;
25ea693b 5493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5494 }
5495 else
5496 {
5497 if (i386_record_lea_modrm (&ir))
5498 return -1;
cf648174 5499 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5500 ir.reg &= 0x3;
25ea693b 5501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5502 }
25ea693b 5503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5504 break;
5505
a38bba38 5506 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5507 case 0x0fb1:
5508 if ((opcode & 1) == 0)
5509 ir.ot = OT_BYTE;
5510 else
5511 ir.ot = ir.dflag + OT_WORD;
5512 if (i386_record_modrm (&ir))
5513 return -1;
5514 if (ir.mod == 3)
5515 {
dda83cd7 5516 ir.reg |= rex_r;
25ea693b 5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5518 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5519 ir.reg &= 0x3;
25ea693b 5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5521 }
5522 else
5523 {
25ea693b 5524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5525 if (i386_record_lea_modrm (&ir))
5526 return -1;
5527 }
25ea693b 5528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5529 break;
5530
20b477a7 5531 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
7ad10968
HZ
5532 if (i386_record_modrm (&ir))
5533 return -1;
5534 if (ir.mod == 3)
5535 {
20b477a7
LM
5536 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5537 an extended opcode. rdrand has bits 110 (/6) and rdseed
5538 has bits 111 (/7). */
5539 if (ir.reg == 6 || ir.reg == 7)
5540 {
5541 /* The storage register is described by the 3 R/M bits, but the
5542 REX.B prefix may be used to give access to registers
5543 R8~R15. In this case ir.rex_b + R/M will give us the register
5544 in the range R8~R15.
5545
5546 REX.W may also be used to access 64-bit registers, but we
5547 already record entire registers and not just partial bits
5548 of them. */
5549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5550 /* These instructions also set conditional bits. */
5551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5552 break;
5553 }
5554 else
5555 {
5556 /* We don't handle this particular instruction yet. */
5557 ir.addr -= 2;
5558 opcode = opcode << 8 | ir.modrm;
5559 goto no_support;
5560 }
7ad10968 5561 }
25ea693b
MM
5562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5564 if (i386_record_lea_modrm (&ir))
5565 return -1;
25ea693b 5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5567 break;
5568
a38bba38 5569 case 0x50: /* push */
7ad10968
HZ
5570 case 0x51:
5571 case 0x52:
5572 case 0x53:
5573 case 0x54:
5574 case 0x55:
5575 case 0x56:
5576 case 0x57:
5577 case 0x68:
5578 case 0x6a:
cf648174 5579 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
dda83cd7 5580 ir.dflag = 2;
cf648174
HZ
5581 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5582 return -1;
5583 break;
5584
a38bba38
MS
5585 case 0x06: /* push es */
5586 case 0x0e: /* push cs */
5587 case 0x16: /* push ss */
5588 case 0x1e: /* push ds */
cf648174 5589 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5590 {
cf648174
HZ
5591 ir.addr -= 1;
5592 goto no_support;
5593 }
5594 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5595 return -1;
5596 break;
5597
a38bba38
MS
5598 case 0x0fa0: /* push fs */
5599 case 0x0fa8: /* push gs */
cf648174 5600 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5601 {
cf648174
HZ
5602 ir.addr -= 2;
5603 goto no_support;
5604 }
5605 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5606 return -1;
cf648174
HZ
5607 break;
5608
a38bba38 5609 case 0x60: /* pusha */
cf648174 5610 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5611 {
cf648174
HZ
5612 ir.addr -= 1;
5613 goto no_support;
5614 }
5615 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5616 return -1;
5617 break;
5618
a38bba38 5619 case 0x58: /* pop */
7ad10968
HZ
5620 case 0x59:
5621 case 0x5a:
5622 case 0x5b:
5623 case 0x5c:
5624 case 0x5d:
5625 case 0x5e:
5626 case 0x5f:
25ea693b
MM
5627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5629 break;
5630
a38bba38 5631 case 0x61: /* popa */
cf648174 5632 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5633 {
cf648174
HZ
5634 ir.addr -= 1;
5635 goto no_support;
7ad10968 5636 }
425b824a
MS
5637 for (regnum = X86_RECORD_REAX_REGNUM;
5638 regnum <= X86_RECORD_REDI_REGNUM;
5639 regnum++)
25ea693b 5640 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5641 break;
5642
a38bba38 5643 case 0x8f: /* pop */
cf648174
HZ
5644 if (ir.regmap[X86_RECORD_R8_REGNUM])
5645 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5646 else
dda83cd7 5647 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5648 if (i386_record_modrm (&ir))
5649 return -1;
5650 if (ir.mod == 3)
25ea693b 5651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5652 else
5653 {
dda83cd7 5654 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5655 if (i386_record_lea_modrm (&ir))
5656 return -1;
5657 }
25ea693b 5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5659 break;
5660
a38bba38 5661 case 0xc8: /* enter */
25ea693b 5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174 5663 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
dda83cd7 5664 ir.dflag = 2;
cf648174 5665 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5666 return -1;
5667 break;
5668
a38bba38 5669 case 0xc9: /* leave */
25ea693b
MM
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5672 break;
5673
a38bba38 5674 case 0x07: /* pop es */
cf648174 5675 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5676 {
cf648174
HZ
5677 ir.addr -= 1;
5678 goto no_support;
5679 }
25ea693b
MM
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5683 break;
5684
a38bba38 5685 case 0x17: /* pop ss */
cf648174 5686 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5687 {
cf648174
HZ
5688 ir.addr -= 1;
5689 goto no_support;
5690 }
25ea693b
MM
5691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5694 break;
5695
a38bba38 5696 case 0x1f: /* pop ds */
cf648174 5697 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5698 {
cf648174
HZ
5699 ir.addr -= 1;
5700 goto no_support;
5701 }
25ea693b
MM
5702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5705 break;
5706
a38bba38 5707 case 0x0fa1: /* pop fs */
25ea693b
MM
5708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5711 break;
5712
a38bba38 5713 case 0x0fa9: /* pop gs */
25ea693b
MM
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5717 break;
5718
a38bba38 5719 case 0x88: /* mov */
7ad10968
HZ
5720 case 0x89:
5721 case 0xc6:
5722 case 0xc7:
5723 if ((opcode & 1) == 0)
5724 ir.ot = OT_BYTE;
5725 else
5726 ir.ot = ir.dflag + OT_WORD;
5727
5728 if (i386_record_modrm (&ir))
5729 return -1;
5730
5731 if (ir.mod != 3)
5732 {
dda83cd7 5733 if (opcode == 0xc6 || opcode == 0xc7)
cf648174 5734 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5735 if (i386_record_lea_modrm (&ir))
5736 return -1;
5737 }
5738 else
5739 {
dda83cd7 5740 if (opcode == 0xc6 || opcode == 0xc7)
cf648174
HZ
5741 ir.rm |= ir.rex_b;
5742 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5743 ir.rm &= 0x3;
25ea693b 5744 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5745 }
7ad10968 5746 break;
cf648174 5747
a38bba38 5748 case 0x8a: /* mov */
7ad10968
HZ
5749 case 0x8b:
5750 if ((opcode & 1) == 0)
5751 ir.ot = OT_BYTE;
5752 else
5753 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5754 if (i386_record_modrm (&ir))
5755 return -1;
cf648174
HZ
5756 ir.reg |= rex_r;
5757 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5758 ir.reg &= 0x3;
25ea693b 5759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5760 break;
7ad10968 5761
a38bba38 5762 case 0x8c: /* mov seg */
cf648174 5763 if (i386_record_modrm (&ir))
7ad10968 5764 return -1;
cf648174
HZ
5765 if (ir.reg > 5)
5766 {
5767 ir.addr -= 2;
5768 opcode = opcode << 8 | ir.modrm;
5769 goto no_support;
5770 }
5771
5772 if (ir.mod == 3)
25ea693b 5773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5774 else
5775 {
5776 ir.ot = OT_WORD;
5777 if (i386_record_lea_modrm (&ir))
5778 return -1;
5779 }
7ad10968
HZ
5780 break;
5781
a38bba38 5782 case 0x8e: /* mov seg */
7ad10968
HZ
5783 if (i386_record_modrm (&ir))
5784 return -1;
7ad10968
HZ
5785 switch (ir.reg)
5786 {
5787 case 0:
425b824a 5788 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5789 break;
5790 case 2:
425b824a 5791 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5792 break;
5793 case 3:
425b824a 5794 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5795 break;
5796 case 4:
425b824a 5797 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5798 break;
5799 case 5:
425b824a 5800 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5801 break;
5802 default:
5803 ir.addr -= 2;
5804 opcode = opcode << 8 | ir.modrm;
5805 goto no_support;
5806 break;
5807 }
25ea693b
MM
5808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5810 break;
5811
a38bba38
MS
5812 case 0x0fb6: /* movzbS */
5813 case 0x0fb7: /* movzwS */
5814 case 0x0fbe: /* movsbS */
5815 case 0x0fbf: /* movswS */
7ad10968
HZ
5816 if (i386_record_modrm (&ir))
5817 return -1;
25ea693b 5818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5819 break;
5820
a38bba38 5821 case 0x8d: /* lea */
7ad10968
HZ
5822 if (i386_record_modrm (&ir))
5823 return -1;
5824 if (ir.mod == 3)
5825 {
5826 ir.addr -= 2;
5827 opcode = opcode << 8 | ir.modrm;
5828 goto no_support;
5829 }
7ad10968 5830 ir.ot = ir.dflag;
cf648174
HZ
5831 ir.reg |= rex_r;
5832 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5833 ir.reg &= 0x3;
25ea693b 5834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5835 break;
5836
a38bba38 5837 case 0xa0: /* mov EAX */
7ad10968 5838 case 0xa1:
a38bba38
MS
5839
5840 case 0xd7: /* xlat */
25ea693b 5841 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5842 break;
5843
a38bba38 5844 case 0xa2: /* mov EAX */
7ad10968 5845 case 0xa3:
d7877f7e 5846 if (ir.override >= 0)
dda83cd7
SM
5847 {
5848 if (record_full_memory_query)
5849 {
5850 if (yquery (_("\
bb08c432
HZ
5851Process record ignores the memory change of instruction at address %s\n\
5852because it can't get the value of the segment register.\n\
5853Do you want to stop the program?"),
dda83cd7
SM
5854 paddress (gdbarch, ir.orig_addr)))
5855 return -1;
5856 }
cf648174
HZ
5857 }
5858 else
5859 {
dda83cd7 5860 if ((opcode & 1) == 0)
cf648174
HZ
5861 ir.ot = OT_BYTE;
5862 else
5863 ir.ot = ir.dflag + OT_WORD;
5864 if (ir.aflag == 2)
5865 {
dda83cd7 5866 if (record_read_memory (gdbarch, ir.addr, buf, 8))
4ffa4fc7 5867 return -1;
cf648174 5868 ir.addr += 8;
60a1502a 5869 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174 5870 }
dda83cd7 5871 else if (ir.aflag)
cf648174 5872 {
dda83cd7 5873 if (record_read_memory (gdbarch, ir.addr, buf, 4))
4ffa4fc7 5874 return -1;
cf648174 5875 ir.addr += 4;
dda83cd7 5876 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174 5877 }
dda83cd7 5878 else
cf648174 5879 {
dda83cd7 5880 if (record_read_memory (gdbarch, ir.addr, buf, 2))
4ffa4fc7 5881 return -1;
cf648174 5882 ir.addr += 2;
dda83cd7 5883 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5884 }
25ea693b 5885 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174 5886 return -1;
dda83cd7 5887 }
7ad10968
HZ
5888 break;
5889
a38bba38 5890 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5891 case 0xb1:
5892 case 0xb2:
5893 case 0xb3:
5894 case 0xb4:
5895 case 0xb5:
5896 case 0xb6:
5897 case 0xb7:
25ea693b
MM
5898 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5899 ? ((opcode & 0x7) | ir.rex_b)
5900 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5901 break;
5902
a38bba38 5903 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5904 case 0xb9:
5905 case 0xba:
5906 case 0xbb:
5907 case 0xbc:
5908 case 0xbd:
5909 case 0xbe:
5910 case 0xbf:
25ea693b 5911 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5912 break;
5913
a38bba38 5914 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5915 case 0x92:
5916 case 0x93:
5917 case 0x94:
5918 case 0x95:
5919 case 0x96:
5920 case 0x97:
25ea693b
MM
5921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5923 break;
5924
a38bba38 5925 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5926 case 0x87:
5927 if ((opcode & 1) == 0)
5928 ir.ot = OT_BYTE;
5929 else
5930 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5931 if (i386_record_modrm (&ir))
5932 return -1;
7ad10968
HZ
5933 if (ir.mod == 3)
5934 {
86839d38 5935 ir.rm |= ir.rex_b;
cf648174
HZ
5936 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5937 ir.rm &= 0x3;
25ea693b 5938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5939 }
5940 else
5941 {
5942 if (i386_record_lea_modrm (&ir))
5943 return -1;
5944 }
cf648174
HZ
5945 ir.reg |= rex_r;
5946 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5947 ir.reg &= 0x3;
25ea693b 5948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5949 break;
5950
a38bba38
MS
5951 case 0xc4: /* les Gv */
5952 case 0xc5: /* lds Gv */
cf648174 5953 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5954 {
cf648174
HZ
5955 ir.addr -= 1;
5956 goto no_support;
5957 }
d3f323f3 5958 /* FALLTHROUGH */
a38bba38
MS
5959 case 0x0fb2: /* lss Gv */
5960 case 0x0fb4: /* lfs Gv */
5961 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5962 if (i386_record_modrm (&ir))
5963 return -1;
5964 if (ir.mod == 3)
5965 {
5966 if (opcode > 0xff)
5967 ir.addr -= 3;
5968 else
5969 ir.addr -= 2;
5970 opcode = opcode << 8 | ir.modrm;
5971 goto no_support;
5972 }
7ad10968
HZ
5973 switch (opcode)
5974 {
a38bba38 5975 case 0xc4: /* les Gv */
425b824a 5976 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5977 break;
a38bba38 5978 case 0xc5: /* lds Gv */
425b824a 5979 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5980 break;
a38bba38 5981 case 0x0fb2: /* lss Gv */
425b824a 5982 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5983 break;
a38bba38 5984 case 0x0fb4: /* lfs Gv */
425b824a 5985 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5986 break;
a38bba38 5987 case 0x0fb5: /* lgs Gv */
425b824a 5988 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5989 break;
5990 }
25ea693b
MM
5991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5994 break;
5995
a38bba38 5996 case 0xc0: /* shifts */
7ad10968
HZ
5997 case 0xc1:
5998 case 0xd0:
5999 case 0xd1:
6000 case 0xd2:
6001 case 0xd3:
6002 if ((opcode & 1) == 0)
6003 ir.ot = OT_BYTE;
6004 else
6005 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
6006 if (i386_record_modrm (&ir))
6007 return -1;
7ad10968
HZ
6008 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6009 {
6010 if (i386_record_lea_modrm (&ir))
6011 return -1;
6012 }
6013 else
6014 {
cf648174
HZ
6015 ir.rm |= ir.rex_b;
6016 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 6017 ir.rm &= 0x3;
25ea693b 6018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 6019 }
25ea693b 6020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6021 break;
6022
6023 case 0x0fa4:
6024 case 0x0fa5:
6025 case 0x0fac:
6026 case 0x0fad:
6027 if (i386_record_modrm (&ir))
6028 return -1;
6029 if (ir.mod == 3)
6030 {
25ea693b 6031 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
6032 return -1;
6033 }
6034 else
6035 {
6036 if (i386_record_lea_modrm (&ir))
6037 return -1;
6038 }
6039 break;
6040
a38bba38 6041 case 0xd8: /* Floats. */
7ad10968
HZ
6042 case 0xd9:
6043 case 0xda:
6044 case 0xdb:
6045 case 0xdc:
6046 case 0xdd:
6047 case 0xde:
6048 case 0xdf:
6049 if (i386_record_modrm (&ir))
6050 return -1;
6051 ir.reg |= ((opcode & 7) << 3);
6052 if (ir.mod != 3)
6053 {
1777feb0 6054 /* Memory. */
955db0c0 6055 uint64_t addr64;
7ad10968 6056
955db0c0 6057 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
6058 return -1;
6059 switch (ir.reg)
6060 {
7ad10968 6061 case 0x02:
dda83cd7
SM
6062 case 0x12:
6063 case 0x22:
6064 case 0x32:
0289bdd7 6065 /* For fcom, ficom nothing to do. */
dda83cd7 6066 break;
7ad10968 6067 case 0x03:
dda83cd7
SM
6068 case 0x13:
6069 case 0x23:
6070 case 0x33:
0289bdd7 6071 /* For fcomp, ficomp pop FPU stack, store all. */
dda83cd7
SM
6072 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6073 return -1;
6074 break;
6075 case 0x00:
6076 case 0x01:
7ad10968
HZ
6077 case 0x04:
6078 case 0x05:
6079 case 0x06:
6080 case 0x07:
6081 case 0x10:
6082 case 0x11:
7ad10968
HZ
6083 case 0x14:
6084 case 0x15:
6085 case 0x16:
6086 case 0x17:
6087 case 0x20:
6088 case 0x21:
7ad10968
HZ
6089 case 0x24:
6090 case 0x25:
6091 case 0x26:
6092 case 0x27:
6093 case 0x30:
6094 case 0x31:
7ad10968
HZ
6095 case 0x34:
6096 case 0x35:
6097 case 0x36:
6098 case 0x37:
dda83cd7
SM
6099 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6100 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6101 of code, always affects st(0) register. */
6102 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6103 return -1;
7ad10968
HZ
6104 break;
6105 case 0x08:
6106 case 0x0a:
6107 case 0x0b:
6108 case 0x18:
6109 case 0x19:
6110 case 0x1a:
6111 case 0x1b:
dda83cd7 6112 case 0x1d:
7ad10968
HZ
6113 case 0x28:
6114 case 0x29:
6115 case 0x2a:
6116 case 0x2b:
6117 case 0x38:
6118 case 0x39:
6119 case 0x3a:
6120 case 0x3b:
dda83cd7
SM
6121 case 0x3c:
6122 case 0x3d:
7ad10968
HZ
6123 switch (ir.reg & 7)
6124 {
6125 case 0:
0289bdd7
MS
6126 /* Handling fld, fild. */
6127 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6128 return -1;
7ad10968
HZ
6129 break;
6130 case 1:
6131 switch (ir.reg >> 4)
6132 {
6133 case 0:
25ea693b 6134 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6135 return -1;
6136 break;
6137 case 2:
25ea693b 6138 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6139 return -1;
6140 break;
6141 case 3:
0289bdd7 6142 break;
7ad10968 6143 default:
25ea693b 6144 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6145 return -1;
6146 break;
6147 }
6148 break;
6149 default:
6150 switch (ir.reg >> 4)
6151 {
6152 case 0:
25ea693b 6153 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6154 return -1;
6155 if (3 == (ir.reg & 7))
6156 {
6157 /* For fstp m32fp. */
6158 if (i386_record_floats (gdbarch, &ir,
6159 I386_SAVE_FPU_REGS))
6160 return -1;
6161 }
6162 break;
7ad10968 6163 case 1:
25ea693b 6164 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6165 return -1;
0289bdd7
MS
6166 if ((3 == (ir.reg & 7))
6167 || (5 == (ir.reg & 7))
6168 || (7 == (ir.reg & 7)))
6169 {
6170 /* For fstp insn. */
6171 if (i386_record_floats (gdbarch, &ir,
6172 I386_SAVE_FPU_REGS))
6173 return -1;
6174 }
7ad10968
HZ
6175 break;
6176 case 2:
25ea693b 6177 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6178 return -1;
0289bdd7
MS
6179 if (3 == (ir.reg & 7))
6180 {
6181 /* For fstp m64fp. */
6182 if (i386_record_floats (gdbarch, &ir,
6183 I386_SAVE_FPU_REGS))
6184 return -1;
6185 }
7ad10968
HZ
6186 break;
6187 case 3:
0289bdd7
MS
6188 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6189 {
6190 /* For fistp, fbld, fild, fbstp. */
6191 if (i386_record_floats (gdbarch, &ir,
6192 I386_SAVE_FPU_REGS))
6193 return -1;
6194 }
6195 /* Fall through */
7ad10968 6196 default:
25ea693b 6197 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6198 return -1;
6199 break;
6200 }
6201 break;
6202 }
6203 break;
6204 case 0x0c:
dda83cd7
SM
6205 /* Insn fldenv. */
6206 if (i386_record_floats (gdbarch, &ir,
6207 I386_SAVE_FPU_ENV_REG_STACK))
6208 return -1;
6209 break;
7ad10968 6210 case 0x0d:
dda83cd7
SM
6211 /* Insn fldcw. */
6212 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6213 return -1;
6214 break;
7ad10968 6215 case 0x2c:
dda83cd7
SM
6216 /* Insn frstor. */
6217 if (i386_record_floats (gdbarch, &ir,
6218 I386_SAVE_FPU_ENV_REG_STACK))
6219 return -1;
7ad10968
HZ
6220 break;
6221 case 0x0e:
6222 if (ir.dflag)
6223 {
25ea693b 6224 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6225 return -1;
6226 }
6227 else
6228 {
25ea693b 6229 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6230 return -1;
6231 }
6232 break;
6233 case 0x0f:
6234 case 0x2f:
25ea693b 6235 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6236 return -1;
dda83cd7
SM
6237 /* Insn fstp, fbstp. */
6238 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6239 return -1;
7ad10968
HZ
6240 break;
6241 case 0x1f:
6242 case 0x3e:
25ea693b 6243 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6244 return -1;
6245 break;
6246 case 0x2e:
6247 if (ir.dflag)
6248 {
25ea693b 6249 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6250 return -1;
955db0c0 6251 addr64 += 28;
7ad10968
HZ
6252 }
6253 else
6254 {
25ea693b 6255 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6256 return -1;
955db0c0 6257 addr64 += 14;
7ad10968 6258 }
25ea693b 6259 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6260 return -1;
0289bdd7
MS
6261 /* Insn fsave. */
6262 if (i386_record_floats (gdbarch, &ir,
6263 I386_SAVE_FPU_ENV_REG_STACK))
6264 return -1;
7ad10968
HZ
6265 break;
6266 case 0x3f:
25ea693b 6267 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6268 return -1;
0289bdd7
MS
6269 /* Insn fistp. */
6270 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6271 return -1;
7ad10968
HZ
6272 break;
6273 default:
6274 ir.addr -= 2;
6275 opcode = opcode << 8 | ir.modrm;
6276 goto no_support;
6277 break;
6278 }
6279 }
0289bdd7
MS
6280 /* Opcode is an extension of modR/M byte. */
6281 else
dda83cd7 6282 {
0289bdd7
MS
6283 switch (opcode)
6284 {
6285 case 0xd8:
6286 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6287 return -1;
6288 break;
6289 case 0xd9:
6290 if (0x0c == (ir.modrm >> 4))
6291 {
6292 if ((ir.modrm & 0x0f) <= 7)
6293 {
6294 if (i386_record_floats (gdbarch, &ir,
6295 I386_SAVE_FPU_REGS))
6296 return -1;
6297 }
dda83cd7 6298 else
0289bdd7
MS
6299 {
6300 if (i386_record_floats (gdbarch, &ir,
6301 I387_ST0_REGNUM (tdep)))
6302 return -1;
6303 /* If only st(0) is changing, then we have already
6304 recorded. */
6305 if ((ir.modrm & 0x0f) - 0x08)
6306 {
6307 if (i386_record_floats (gdbarch, &ir,
6308 I387_ST0_REGNUM (tdep) +
6309 ((ir.modrm & 0x0f) - 0x08)))
6310 return -1;
6311 }
6312 }
6313 }
dda83cd7
SM
6314 else
6315 {
0289bdd7
MS
6316 switch (ir.modrm)
6317 {
6318 case 0xe0:
6319 case 0xe1:
6320 case 0xf0:
6321 case 0xf5:
6322 case 0xf8:
6323 case 0xfa:
6324 case 0xfc:
6325 case 0xfe:
6326 case 0xff:
6327 if (i386_record_floats (gdbarch, &ir,
6328 I387_ST0_REGNUM (tdep)))
6329 return -1;
6330 break;
6331 case 0xf1:
6332 case 0xf2:
6333 case 0xf3:
6334 case 0xf4:
6335 case 0xf6:
6336 case 0xf7:
6337 case 0xe8:
6338 case 0xe9:
6339 case 0xea:
6340 case 0xeb:
6341 case 0xec:
6342 case 0xed:
6343 case 0xee:
6344 case 0xf9:
6345 case 0xfb:
6346 if (i386_record_floats (gdbarch, &ir,
6347 I386_SAVE_FPU_REGS))
6348 return -1;
6349 break;
6350 case 0xfd:
6351 if (i386_record_floats (gdbarch, &ir,
6352 I387_ST0_REGNUM (tdep)))
6353 return -1;
6354 if (i386_record_floats (gdbarch, &ir,
6355 I387_ST0_REGNUM (tdep) + 1))
6356 return -1;
6357 break;
6358 }
6359 }
dda83cd7
SM
6360 break;
6361 case 0xda:
6362 if (0xe9 == ir.modrm)
6363 {
0289bdd7
MS
6364 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6365 return -1;
dda83cd7
SM
6366 }
6367 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6368 {
0289bdd7
MS
6369 if (i386_record_floats (gdbarch, &ir,
6370 I387_ST0_REGNUM (tdep)))
6371 return -1;
6372 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6373 {
6374 if (i386_record_floats (gdbarch, &ir,
6375 I387_ST0_REGNUM (tdep) +
6376 (ir.modrm & 0x0f)))
6377 return -1;
6378 }
6379 else if ((ir.modrm & 0x0f) - 0x08)
6380 {
6381 if (i386_record_floats (gdbarch, &ir,
6382 I387_ST0_REGNUM (tdep) +
6383 ((ir.modrm & 0x0f) - 0x08)))
6384 return -1;
6385 }
dda83cd7
SM
6386 }
6387 break;
6388 case 0xdb:
6389 if (0xe3 == ir.modrm)
6390 {
0289bdd7
MS
6391 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6392 return -1;
dda83cd7
SM
6393 }
6394 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6395 {
0289bdd7
MS
6396 if (i386_record_floats (gdbarch, &ir,
6397 I387_ST0_REGNUM (tdep)))
6398 return -1;
6399 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6400 {
6401 if (i386_record_floats (gdbarch, &ir,
6402 I387_ST0_REGNUM (tdep) +
6403 (ir.modrm & 0x0f)))
6404 return -1;
6405 }
6406 else if ((ir.modrm & 0x0f) - 0x08)
6407 {
6408 if (i386_record_floats (gdbarch, &ir,
6409 I387_ST0_REGNUM (tdep) +
6410 ((ir.modrm & 0x0f) - 0x08)))
6411 return -1;
6412 }
dda83cd7
SM
6413 }
6414 break;
6415 case 0xdc:
6416 if ((0x0c == ir.modrm >> 4)
0289bdd7
MS
6417 || (0x0d == ir.modrm >> 4)
6418 || (0x0f == ir.modrm >> 4))
dda83cd7 6419 {
0289bdd7
MS
6420 if ((ir.modrm & 0x0f) <= 7)
6421 {
6422 if (i386_record_floats (gdbarch, &ir,
6423 I387_ST0_REGNUM (tdep) +
6424 (ir.modrm & 0x0f)))
6425 return -1;
6426 }
6427 else
6428 {
6429 if (i386_record_floats (gdbarch, &ir,
6430 I387_ST0_REGNUM (tdep) +
6431 ((ir.modrm & 0x0f) - 0x08)))
6432 return -1;
6433 }
dda83cd7 6434 }
0289bdd7 6435 break;
dda83cd7
SM
6436 case 0xdd:
6437 if (0x0c == ir.modrm >> 4)
6438 {
6439 if (i386_record_floats (gdbarch, &ir,
6440 I387_FTAG_REGNUM (tdep)))
6441 return -1;
6442 }
6443 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6444 {
6445 if ((ir.modrm & 0x0f) <= 7)
6446 {
0289bdd7
MS
6447 if (i386_record_floats (gdbarch, &ir,
6448 I387_ST0_REGNUM (tdep) +
6449 (ir.modrm & 0x0f)))
6450 return -1;
dda83cd7
SM
6451 }
6452 else
6453 {
6454 if (i386_record_floats (gdbarch, &ir,
0289bdd7 6455 I386_SAVE_FPU_REGS))
dda83cd7
SM
6456 return -1;
6457 }
6458 }
6459 break;
6460 case 0xde:
6461 if ((0x0c == ir.modrm >> 4)
0289bdd7
MS
6462 || (0x0e == ir.modrm >> 4)
6463 || (0x0f == ir.modrm >> 4)
6464 || (0xd9 == ir.modrm))
dda83cd7 6465 {
0289bdd7
MS
6466 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6467 return -1;
dda83cd7
SM
6468 }
6469 break;
6470 case 0xdf:
6471 if (0xe0 == ir.modrm)
6472 {
25ea693b
MM
6473 if (record_full_arch_list_add_reg (ir.regcache,
6474 I386_EAX_REGNUM))
0289bdd7 6475 return -1;
dda83cd7
SM
6476 }
6477 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6478 {
0289bdd7
MS
6479 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6480 return -1;
dda83cd7
SM
6481 }
6482 break;
0289bdd7
MS
6483 }
6484 }
7ad10968 6485 break;
7ad10968 6486 /* string ops */
a38bba38 6487 case 0xa4: /* movsS */
7ad10968 6488 case 0xa5:
a38bba38 6489 case 0xaa: /* stosS */
7ad10968 6490 case 0xab:
a38bba38 6491 case 0x6c: /* insS */
7ad10968 6492 case 0x6d:
cf648174 6493 regcache_raw_read_unsigned (ir.regcache,
dda83cd7
SM
6494 ir.regmap[X86_RECORD_RECX_REGNUM],
6495 &addr);
648d0c8b 6496 if (addr)
dda83cd7
SM
6497 {
6498 ULONGEST es, ds;
77d7dc92 6499
dda83cd7 6500 if ((opcode & 1) == 0)
77d7dc92 6501 ir.ot = OT_BYTE;
dda83cd7 6502 else
77d7dc92 6503 ir.ot = ir.dflag + OT_WORD;
dda83cd7
SM
6504 regcache_raw_read_unsigned (ir.regcache,
6505 ir.regmap[X86_RECORD_REDI_REGNUM],
6506 &addr);
6507
6508 regcache_raw_read_unsigned (ir.regcache,
6509 ir.regmap[X86_RECORD_ES_REGNUM],
6510 &es);
6511 regcache_raw_read_unsigned (ir.regcache,
6512 ir.regmap[X86_RECORD_DS_REGNUM],
6513 &ds);
6514 if (ir.aflag && (es != ds))
6515 {
6516 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6517 if (record_full_memory_query)
6518 {
6519 if (yquery (_("\
bb08c432
HZ
6520Process record ignores the memory change of instruction at address %s\n\
6521because it can't get the value of the segment register.\n\
6522Do you want to stop the program?"),
dda83cd7
SM
6523 paddress (gdbarch, ir.orig_addr)))
6524 return -1;
6525 }
6526 }
6527 else
6528 {
6529 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6530 return -1;
6531 }
6532
6533 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6535 if (opcode == 0xa4 || opcode == 0xa5)
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6539 }
cf648174 6540 break;
7ad10968 6541
a38bba38 6542 case 0xa6: /* cmpsS */
cf648174 6543 case 0xa7:
25ea693b
MM
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6546 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
dda83cd7 6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
25ea693b 6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6549 break;
6550
a38bba38 6551 case 0xac: /* lodsS */
7ad10968 6552 case 0xad:
25ea693b
MM
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6555 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
dda83cd7 6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
25ea693b 6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6558 break;
6559
a38bba38 6560 case 0xae: /* scasS */
7ad10968 6561 case 0xaf:
25ea693b 6562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6563 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
dda83cd7 6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
25ea693b 6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6566 break;
6567
a38bba38 6568 case 0x6e: /* outsS */
cf648174 6569 case 0x6f:
25ea693b 6570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6571 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
dda83cd7 6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
25ea693b 6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6574 break;
6575
a38bba38 6576 case 0xe4: /* port I/O */
7ad10968
HZ
6577 case 0xe5:
6578 case 0xec:
6579 case 0xed:
25ea693b
MM
6580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6582 break;
6583
6584 case 0xe6:
6585 case 0xe7:
6586 case 0xee:
6587 case 0xef:
6588 break;
6589
6590 /* control */
a38bba38
MS
6591 case 0xc2: /* ret im */
6592 case 0xc3: /* ret */
25ea693b
MM
6593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6595 break;
6596
a38bba38
MS
6597 case 0xca: /* lret im */
6598 case 0xcb: /* lret */
6599 case 0xcf: /* iret */
25ea693b
MM
6600 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6603 break;
6604
a38bba38 6605 case 0xe8: /* call im */
cf648174 6606 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
dda83cd7 6607 ir.dflag = 2;
cf648174 6608 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
dda83cd7 6609 return -1;
7ad10968
HZ
6610 break;
6611
a38bba38 6612 case 0x9a: /* lcall im */
cf648174 6613 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6614 {
6615 ir.addr -= 1;
6616 goto no_support;
6617 }
25ea693b 6618 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 6619 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
dda83cd7 6620 return -1;
7ad10968
HZ
6621 break;
6622
a38bba38
MS
6623 case 0xe9: /* jmp im */
6624 case 0xea: /* ljmp im */
6625 case 0xeb: /* jmp Jb */
6626 case 0x70: /* jcc Jb */
7ad10968
HZ
6627 case 0x71:
6628 case 0x72:
6629 case 0x73:
6630 case 0x74:
6631 case 0x75:
6632 case 0x76:
6633 case 0x77:
6634 case 0x78:
6635 case 0x79:
6636 case 0x7a:
6637 case 0x7b:
6638 case 0x7c:
6639 case 0x7d:
6640 case 0x7e:
6641 case 0x7f:
a38bba38 6642 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6643 case 0x0f81:
6644 case 0x0f82:
6645 case 0x0f83:
6646 case 0x0f84:
6647 case 0x0f85:
6648 case 0x0f86:
6649 case 0x0f87:
6650 case 0x0f88:
6651 case 0x0f89:
6652 case 0x0f8a:
6653 case 0x0f8b:
6654 case 0x0f8c:
6655 case 0x0f8d:
6656 case 0x0f8e:
6657 case 0x0f8f:
6658 break;
6659
a38bba38 6660 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6661 case 0x0f91:
6662 case 0x0f92:
6663 case 0x0f93:
6664 case 0x0f94:
6665 case 0x0f95:
6666 case 0x0f96:
6667 case 0x0f97:
6668 case 0x0f98:
6669 case 0x0f99:
6670 case 0x0f9a:
6671 case 0x0f9b:
6672 case 0x0f9c:
6673 case 0x0f9d:
6674 case 0x0f9e:
6675 case 0x0f9f:
25ea693b 6676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6677 ir.ot = OT_BYTE;
6678 if (i386_record_modrm (&ir))
6679 return -1;
6680 if (ir.mod == 3)
dda83cd7 6681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
25ea693b 6682 : (ir.rm & 0x3));
7ad10968
HZ
6683 else
6684 {
6685 if (i386_record_lea_modrm (&ir))
6686 return -1;
6687 }
6688 break;
6689
a38bba38 6690 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6691 case 0x0f41:
6692 case 0x0f42:
6693 case 0x0f43:
6694 case 0x0f44:
6695 case 0x0f45:
6696 case 0x0f46:
6697 case 0x0f47:
6698 case 0x0f48:
6699 case 0x0f49:
6700 case 0x0f4a:
6701 case 0x0f4b:
6702 case 0x0f4c:
6703 case 0x0f4d:
6704 case 0x0f4e:
6705 case 0x0f4f:
6706 if (i386_record_modrm (&ir))
6707 return -1;
cf648174 6708 ir.reg |= rex_r;
7ad10968
HZ
6709 if (ir.dflag == OT_BYTE)
6710 ir.reg &= 0x3;
25ea693b 6711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6712 break;
6713
6714 /* flags */
a38bba38 6715 case 0x9c: /* pushf */
25ea693b 6716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 6717 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
dda83cd7 6718 ir.dflag = 2;
cf648174 6719 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
dda83cd7 6720 return -1;
7ad10968
HZ
6721 break;
6722
a38bba38 6723 case 0x9d: /* popf */
25ea693b
MM
6724 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6726 break;
6727
a38bba38 6728 case 0x9e: /* sahf */
cf648174 6729 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6730 {
6731 ir.addr -= 1;
6732 goto no_support;
6733 }
d3f323f3 6734 /* FALLTHROUGH */
a38bba38
MS
6735 case 0xf5: /* cmc */
6736 case 0xf8: /* clc */
6737 case 0xf9: /* stc */
6738 case 0xfc: /* cld */
6739 case 0xfd: /* std */
25ea693b 6740 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6741 break;
6742
a38bba38 6743 case 0x9f: /* lahf */
cf648174 6744 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6745 {
6746 ir.addr -= 1;
6747 goto no_support;
6748 }
25ea693b
MM
6749 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6751 break;
6752
6753 /* bit operations */
a38bba38 6754 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6755 ir.ot = ir.dflag + OT_WORD;
6756 if (i386_record_modrm (&ir))
6757 return -1;
6758 if (ir.reg < 4)
6759 {
cf648174 6760 ir.addr -= 2;
7ad10968
HZ
6761 opcode = opcode << 8 | ir.modrm;
6762 goto no_support;
6763 }
cf648174 6764 if (ir.reg != 4)
7ad10968 6765 {
dda83cd7
SM
6766 if (ir.mod == 3)
6767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6768 else
6769 {
cf648174 6770 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6771 return -1;
6772 }
6773 }
25ea693b 6774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6775 break;
6776
a38bba38 6777 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6779 break;
6780
a38bba38
MS
6781 case 0x0fab: /* bts */
6782 case 0x0fb3: /* btr */
6783 case 0x0fbb: /* btc */
cf648174
HZ
6784 ir.ot = ir.dflag + OT_WORD;
6785 if (i386_record_modrm (&ir))
dda83cd7 6786 return -1;
cf648174 6787 if (ir.mod == 3)
dda83cd7 6788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174 6789 else
dda83cd7
SM
6790 {
6791 uint64_t addr64;
6792 if (i386_record_lea_modrm_addr (&ir, &addr64))
6793 return -1;
6794 regcache_raw_read_unsigned (ir.regcache,
6795 ir.regmap[ir.reg | rex_r],
6796 &addr);
6797 switch (ir.dflag)
6798 {
6799 case 0:
6800 addr64 += ((int16_t) addr >> 4) << 4;
6801 break;
6802 case 1:
6803 addr64 += ((int32_t) addr >> 5) << 5;
6804 break;
6805 case 2:
6806 addr64 += ((int64_t) addr >> 6) << 6;
6807 break;
6808 }
6809 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6810 return -1;
6811 if (i386_record_lea_modrm (&ir))
6812 return -1;
6813 }
25ea693b 6814 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6815 break;
6816
a38bba38
MS
6817 case 0x0fbc: /* bsf */
6818 case 0x0fbd: /* bsr */
25ea693b
MM
6819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6821 break;
6822
6823 /* bcd */
a38bba38
MS
6824 case 0x27: /* daa */
6825 case 0x2f: /* das */
6826 case 0x37: /* aaa */
6827 case 0x3f: /* aas */
6828 case 0xd4: /* aam */
6829 case 0xd5: /* aad */
cf648174 6830 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6831 {
6832 ir.addr -= 1;
6833 goto no_support;
6834 }
25ea693b
MM
6835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6837 break;
6838
6839 /* misc */
a38bba38 6840 case 0x90: /* nop */
7ad10968
HZ
6841 if (prefixes & PREFIX_LOCK)
6842 {
6843 ir.addr -= 1;
6844 goto no_support;
6845 }
6846 break;
6847
a38bba38 6848 case 0x9b: /* fwait */
4ffa4fc7
PA
6849 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6850 return -1;
425b824a 6851 opcode = (uint32_t) opcode8;
0289bdd7
MS
6852 ir.addr++;
6853 goto reswitch;
7ad10968
HZ
6854 break;
6855
7ad10968 6856 /* XXX */
a38bba38 6857 case 0xcc: /* int3 */
a3c4230a 6858 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6859 "int3.\n"));
6860 ir.addr -= 1;
6861 goto no_support;
6862 break;
6863
7ad10968 6864 /* XXX */
a38bba38 6865 case 0xcd: /* int */
7ad10968
HZ
6866 {
6867 int ret;
425b824a 6868 uint8_t interrupt;
4ffa4fc7
PA
6869 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6870 return -1;
7ad10968 6871 ir.addr++;
425b824a 6872 if (interrupt != 0x80
a3c4230a 6873 || tdep->i386_intx80_record == NULL)
7ad10968 6874 {
a3c4230a 6875 printf_unfiltered (_("Process record does not support "
7ad10968 6876 "instruction int 0x%02x.\n"),
425b824a 6877 interrupt);
7ad10968
HZ
6878 ir.addr -= 2;
6879 goto no_support;
6880 }
a3c4230a 6881 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6882 if (ret)
6883 return ret;
6884 }
6885 break;
6886
7ad10968 6887 /* XXX */
a38bba38 6888 case 0xce: /* into */
a3c4230a 6889 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6890 "instruction into.\n"));
6891 ir.addr -= 1;
6892 goto no_support;
6893 break;
6894
a38bba38
MS
6895 case 0xfa: /* cli */
6896 case 0xfb: /* sti */
7ad10968
HZ
6897 break;
6898
a38bba38 6899 case 0x62: /* bound */
a3c4230a 6900 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6901 "instruction bound.\n"));
6902 ir.addr -= 1;
6903 goto no_support;
6904 break;
6905
a38bba38 6906 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6907 case 0x0fc9:
6908 case 0x0fca:
6909 case 0x0fcb:
6910 case 0x0fcc:
6911 case 0x0fcd:
6912 case 0x0fce:
6913 case 0x0fcf:
25ea693b 6914 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6915 break;
6916
a38bba38 6917 case 0xd6: /* salc */
cf648174 6918 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6919 {
6920 ir.addr -= 1;
6921 goto no_support;
6922 }
25ea693b
MM
6923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6925 break;
6926
a38bba38
MS
6927 case 0xe0: /* loopnz */
6928 case 0xe1: /* loopz */
6929 case 0xe2: /* loop */
6930 case 0xe3: /* jecxz */
25ea693b
MM
6931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6932 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6933 break;
6934
a38bba38 6935 case 0x0f30: /* wrmsr */
a3c4230a 6936 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6937 "instruction wrmsr.\n"));
6938 ir.addr -= 2;
6939 goto no_support;
6940 break;
6941
a38bba38 6942 case 0x0f32: /* rdmsr */
a3c4230a 6943 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6944 "instruction rdmsr.\n"));
6945 ir.addr -= 2;
6946 goto no_support;
6947 break;
6948
a38bba38 6949 case 0x0f31: /* rdtsc */
25ea693b
MM
6950 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6952 break;
6953
a38bba38 6954 case 0x0f34: /* sysenter */
7ad10968
HZ
6955 {
6956 int ret;
dda83cd7
SM
6957 if (ir.regmap[X86_RECORD_R8_REGNUM])
6958 {
6959 ir.addr -= 2;
6960 goto no_support;
6961 }
a3c4230a 6962 if (tdep->i386_sysenter_record == NULL)
7ad10968 6963 {
a3c4230a 6964 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6965 "instruction sysenter.\n"));
6966 ir.addr -= 2;
6967 goto no_support;
6968 }
a3c4230a 6969 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6970 if (ret)
6971 return ret;
6972 }
6973 break;
6974
a38bba38 6975 case 0x0f35: /* sysexit */
a3c4230a 6976 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6977 "instruction sysexit.\n"));
6978 ir.addr -= 2;
6979 goto no_support;
6980 break;
6981
a38bba38 6982 case 0x0f05: /* syscall */
cf648174
HZ
6983 {
6984 int ret;
a3c4230a 6985 if (tdep->i386_syscall_record == NULL)
cf648174 6986 {
a3c4230a 6987 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6988 "instruction syscall.\n"));
6989 ir.addr -= 2;
6990 goto no_support;
6991 }
a3c4230a 6992 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6993 if (ret)
6994 return ret;
6995 }
6996 break;
6997
a38bba38 6998 case 0x0f07: /* sysret */
a3c4230a 6999 printf_unfiltered (_("Process record does not support "
dda83cd7 7000 "instruction sysret.\n"));
cf648174
HZ
7001 ir.addr -= 2;
7002 goto no_support;
7003 break;
7004
a38bba38 7005 case 0x0fa2: /* cpuid */
25ea693b
MM
7006 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7007 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
7010 break;
7011
a38bba38 7012 case 0xf4: /* hlt */
a3c4230a 7013 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
7014 "instruction hlt.\n"));
7015 ir.addr -= 1;
7016 goto no_support;
7017 break;
7018
7019 case 0x0f00:
7020 if (i386_record_modrm (&ir))
7021 return -1;
7022 switch (ir.reg)
7023 {
a38bba38
MS
7024 case 0: /* sldt */
7025 case 1: /* str */
7ad10968 7026 if (ir.mod == 3)
dda83cd7 7027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7028 else
7029 {
7030 ir.ot = OT_WORD;
7031 if (i386_record_lea_modrm (&ir))
7032 return -1;
7033 }
7034 break;
a38bba38
MS
7035 case 2: /* lldt */
7036 case 3: /* ltr */
7ad10968 7037 break;
a38bba38
MS
7038 case 4: /* verr */
7039 case 5: /* verw */
dda83cd7 7040 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7041 break;
7042 default:
7043 ir.addr -= 3;
7044 opcode = opcode << 8 | ir.modrm;
7045 goto no_support;
7046 break;
7047 }
7048 break;
7049
7050 case 0x0f01:
7051 if (i386_record_modrm (&ir))
7052 return -1;
7053 switch (ir.reg)
7054 {
a38bba38 7055 case 0: /* sgdt */
7ad10968 7056 {
955db0c0 7057 uint64_t addr64;
7ad10968
HZ
7058
7059 if (ir.mod == 3)
7060 {
7061 ir.addr -= 3;
7062 opcode = opcode << 8 | ir.modrm;
7063 goto no_support;
7064 }
d7877f7e 7065 if (ir.override >= 0)
7ad10968 7066 {
dda83cd7
SM
7067 if (record_full_memory_query)
7068 {
7069 if (yquery (_("\
bb08c432
HZ
7070Process record ignores the memory change of instruction at address %s\n\
7071because it can't get the value of the segment register.\n\
7072Do you want to stop the program?"),
dda83cd7 7073 paddress (gdbarch, ir.orig_addr)))
651ce16a 7074 return -1;
dda83cd7 7075 }
7ad10968
HZ
7076 }
7077 else
7078 {
955db0c0 7079 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7080 return -1;
25ea693b 7081 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7082 return -1;
955db0c0 7083 addr64 += 2;
dda83cd7
SM
7084 if (ir.regmap[X86_RECORD_R8_REGNUM])
7085 {
7086 if (record_full_arch_list_add_mem (addr64, 8))
cf648174 7087 return -1;
dda83cd7
SM
7088 }
7089 else
7090 {
7091 if (record_full_arch_list_add_mem (addr64, 4))
cf648174 7092 return -1;
dda83cd7 7093 }
7ad10968
HZ
7094 }
7095 }
7096 break;
7097 case 1:
7098 if (ir.mod == 3)
7099 {
7100 switch (ir.rm)
7101 {
a38bba38 7102 case 0: /* monitor */
7ad10968 7103 break;
a38bba38 7104 case 1: /* mwait */
25ea693b 7105 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7106 break;
7107 default:
7108 ir.addr -= 3;
7109 opcode = opcode << 8 | ir.modrm;
7110 goto no_support;
7111 break;
7112 }
7113 }
7114 else
7115 {
7116 /* sidt */
d7877f7e 7117 if (ir.override >= 0)
7ad10968 7118 {
dda83cd7
SM
7119 if (record_full_memory_query)
7120 {
7121 if (yquery (_("\
bb08c432
HZ
7122Process record ignores the memory change of instruction at address %s\n\
7123because it can't get the value of the segment register.\n\
7124Do you want to stop the program?"),
dda83cd7
SM
7125 paddress (gdbarch, ir.orig_addr)))
7126 return -1;
7127 }
7ad10968
HZ
7128 }
7129 else
7130 {
955db0c0 7131 uint64_t addr64;
7ad10968 7132
955db0c0 7133 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7134 return -1;
25ea693b 7135 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7136 return -1;
955db0c0 7137 addr64 += 2;
dda83cd7
SM
7138 if (ir.regmap[X86_RECORD_R8_REGNUM])
7139 {
7140 if (record_full_arch_list_add_mem (addr64, 8))
7141 return -1;
7142 }
7143 else
7144 {
7145 if (record_full_arch_list_add_mem (addr64, 4))
7146 return -1;
7147 }
7ad10968
HZ
7148 }
7149 }
7150 break;
a38bba38 7151 case 2: /* lgdt */
3800e645
MS
7152 if (ir.mod == 3)
7153 {
7154 /* xgetbv */
7155 if (ir.rm == 0)
7156 {
25ea693b
MM
7157 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7159 break;
7160 }
7161 /* xsetbv */
7162 else if (ir.rm == 1)
7163 break;
7164 }
da0e1563 7165 /* Fall through. */
a38bba38 7166 case 3: /* lidt */
7ad10968
HZ
7167 if (ir.mod == 3)
7168 {
7169 ir.addr -= 3;
7170 opcode = opcode << 8 | ir.modrm;
7171 goto no_support;
7172 }
7173 break;
a38bba38 7174 case 4: /* smsw */
7ad10968
HZ
7175 if (ir.mod == 3)
7176 {
25ea693b 7177 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7178 return -1;
7179 }
7180 else
7181 {
7182 ir.ot = OT_WORD;
7183 if (i386_record_lea_modrm (&ir))
7184 return -1;
7185 }
25ea693b 7186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7187 break;
a38bba38 7188 case 6: /* lmsw */
25ea693b 7189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7190 break;
a38bba38 7191 case 7: /* invlpg */
cf648174
HZ
7192 if (ir.mod == 3)
7193 {
7194 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 7195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174 7196 else
dda83cd7
SM
7197 {
7198 ir.addr -= 3;
7199 opcode = opcode << 8 | ir.modrm;
7200 goto no_support;
7201 }
cf648174
HZ
7202 }
7203 else
25ea693b 7204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7205 break;
7206 default:
7207 ir.addr -= 3;
7208 opcode = opcode << 8 | ir.modrm;
7209 goto no_support;
7ad10968
HZ
7210 break;
7211 }
7212 break;
7213
a38bba38
MS
7214 case 0x0f08: /* invd */
7215 case 0x0f09: /* wbinvd */
7ad10968
HZ
7216 break;
7217
a38bba38 7218 case 0x63: /* arpl */
7ad10968
HZ
7219 if (i386_record_modrm (&ir))
7220 return -1;
cf648174 7221 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
7222 {
7223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
25ea693b 7224 ? (ir.reg | rex_r) : ir.rm);
dda83cd7 7225 }
7ad10968 7226 else
dda83cd7
SM
7227 {
7228 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7229 if (i386_record_lea_modrm (&ir))
7230 return -1;
7231 }
cf648174 7232 if (!ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 7233 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7234 break;
7235
a38bba38
MS
7236 case 0x0f02: /* lar */
7237 case 0x0f03: /* lsl */
7ad10968
HZ
7238 if (i386_record_modrm (&ir))
7239 return -1;
25ea693b
MM
7240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7242 break;
7243
7244 case 0x0f18:
cf648174
HZ
7245 if (i386_record_modrm (&ir))
7246 return -1;
7247 if (ir.mod == 3 && ir.reg == 3)
dda83cd7 7248 {
cf648174
HZ
7249 ir.addr -= 3;
7250 opcode = opcode << 8 | ir.modrm;
7251 goto no_support;
7252 }
7ad10968
HZ
7253 break;
7254
7ad10968
HZ
7255 case 0x0f19:
7256 case 0x0f1a:
7257 case 0x0f1b:
7258 case 0x0f1c:
7259 case 0x0f1d:
7260 case 0x0f1e:
7261 case 0x0f1f:
a38bba38 7262 /* nop (multi byte) */
7ad10968
HZ
7263 break;
7264
a38bba38
MS
7265 case 0x0f20: /* mov reg, crN */
7266 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7267 if (i386_record_modrm (&ir))
7268 return -1;
7269 if ((ir.modrm & 0xc0) != 0xc0)
7270 {
cf648174 7271 ir.addr -= 3;
7ad10968
HZ
7272 opcode = opcode << 8 | ir.modrm;
7273 goto no_support;
7274 }
7275 switch (ir.reg)
7276 {
7277 case 0:
7278 case 2:
7279 case 3:
7280 case 4:
7281 case 8:
7282 if (opcode & 2)
25ea693b 7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7284 else
dda83cd7 7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7286 break;
7287 default:
cf648174 7288 ir.addr -= 3;
7ad10968
HZ
7289 opcode = opcode << 8 | ir.modrm;
7290 goto no_support;
7291 break;
7292 }
7293 break;
7294
a38bba38
MS
7295 case 0x0f21: /* mov reg, drN */
7296 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7297 if (i386_record_modrm (&ir))
7298 return -1;
7299 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7300 || ir.reg == 5 || ir.reg >= 8)
7301 {
cf648174 7302 ir.addr -= 3;
7ad10968
HZ
7303 opcode = opcode << 8 | ir.modrm;
7304 goto no_support;
7305 }
7306 if (opcode & 2)
dda83cd7 7307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7308 else
25ea693b 7309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7310 break;
7311
a38bba38 7312 case 0x0f06: /* clts */
25ea693b 7313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7314 break;
7315
a3c4230a
HZ
7316 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7317
7318 case 0x0f0d: /* 3DNow! prefetch */
7319 break;
7320
7321 case 0x0f0e: /* 3DNow! femms */
7322 case 0x0f77: /* emms */
7323 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
dda83cd7 7324 goto no_support;
25ea693b 7325 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7326 break;
7327
7328 case 0x0f0f: /* 3DNow! data */
7329 if (i386_record_modrm (&ir))
7330 return -1;
4ffa4fc7
PA
7331 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7332 return -1;
a3c4230a
HZ
7333 ir.addr++;
7334 switch (opcode8)
dda83cd7
SM
7335 {
7336 case 0x0c: /* 3DNow! pi2fw */
7337 case 0x0d: /* 3DNow! pi2fd */
7338 case 0x1c: /* 3DNow! pf2iw */
7339 case 0x1d: /* 3DNow! pf2id */
7340 case 0x8a: /* 3DNow! pfnacc */
7341 case 0x8e: /* 3DNow! pfpnacc */
7342 case 0x90: /* 3DNow! pfcmpge */
7343 case 0x94: /* 3DNow! pfmin */
7344 case 0x96: /* 3DNow! pfrcp */
7345 case 0x97: /* 3DNow! pfrsqrt */
7346 case 0x9a: /* 3DNow! pfsub */
7347 case 0x9e: /* 3DNow! pfadd */
7348 case 0xa0: /* 3DNow! pfcmpgt */
7349 case 0xa4: /* 3DNow! pfmax */
7350 case 0xa6: /* 3DNow! pfrcpit1 */
7351 case 0xa7: /* 3DNow! pfrsqit1 */
7352 case 0xaa: /* 3DNow! pfsubr */
7353 case 0xae: /* 3DNow! pfacc */
7354 case 0xb0: /* 3DNow! pfcmpeq */
7355 case 0xb4: /* 3DNow! pfmul */
7356 case 0xb6: /* 3DNow! pfrcpit2 */
7357 case 0xb7: /* 3DNow! pmulhrw */
7358 case 0xbb: /* 3DNow! pswapd */
7359 case 0xbf: /* 3DNow! pavgusb */
7360 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7361 goto no_support_3dnow_data;
7362 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7363 break;
7364
7365 default:
a3c4230a 7366no_support_3dnow_data:
dda83cd7
SM
7367 opcode = (opcode << 8) | opcode8;
7368 goto no_support;
7369 break;
7370 }
a3c4230a
HZ
7371 break;
7372
7373 case 0x0faa: /* rsm */
25ea693b
MM
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7383 break;
7384
7385 case 0x0fae:
7386 if (i386_record_modrm (&ir))
7387 return -1;
7388 switch(ir.reg)
dda83cd7
SM
7389 {
7390 case 0: /* fxsave */
7391 {
7392 uint64_t tmpu64;
a3c4230a 7393
dda83cd7 7394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7395 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7396 return -1;
dda83cd7
SM
7397 if (record_full_arch_list_add_mem (tmpu64, 512))
7398 return -1;
7399 }
7400 break;
a3c4230a 7401
dda83cd7
SM
7402 case 1: /* fxrstor */
7403 {
7404 int i;
a3c4230a 7405
dda83cd7 7406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a 7407
dda83cd7
SM
7408 for (i = I387_MM0_REGNUM (tdep);
7409 i386_mmx_regnum_p (gdbarch, i); i++)
7410 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a 7411
dda83cd7
SM
7412 for (i = I387_XMM0_REGNUM (tdep);
7413 i386_xmm_regnum_p (gdbarch, i); i++)
7414 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a 7415
dda83cd7
SM
7416 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7417 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7418 I387_MXCSR_REGNUM(tdep));
a3c4230a 7419
dda83cd7
SM
7420 for (i = I387_ST0_REGNUM (tdep);
7421 i386_fp_regnum_p (gdbarch, i); i++)
7422 record_full_arch_list_add_reg (ir.regcache, i);
7423
7424 for (i = I387_FCTRL_REGNUM (tdep);
7425 i386_fpc_regnum_p (gdbarch, i); i++)
7426 record_full_arch_list_add_reg (ir.regcache, i);
7427 }
7428 break;
7429
7430 case 2: /* ldmxcsr */
7431 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7432 goto no_support;
7433 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7434 break;
7435
7436 case 3: /* stmxcsr */
7437 ir.ot = OT_LONG;
7438 if (i386_record_lea_modrm (&ir))
7439 return -1;
7440 break;
7441
7442 case 5: /* lfence */
7443 case 6: /* mfence */
7444 case 7: /* sfence clflush */
7445 break;
7446
7447 default:
7448 opcode = (opcode << 8) | ir.modrm;
7449 goto no_support;
7450 break;
7451 }
a3c4230a
HZ
7452 break;
7453
7454 case 0x0fc3: /* movnti */
7455 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7456 if (i386_record_modrm (&ir))
7457 return -1;
7458 if (ir.mod == 3)
dda83cd7 7459 goto no_support;
a3c4230a
HZ
7460 ir.reg |= rex_r;
7461 if (i386_record_lea_modrm (&ir))
dda83cd7 7462 return -1;
a3c4230a
HZ
7463 break;
7464
7465 /* Add prefix to opcode. */
7466 case 0x0f10:
7467 case 0x0f11:
7468 case 0x0f12:
7469 case 0x0f13:
7470 case 0x0f14:
7471 case 0x0f15:
7472 case 0x0f16:
7473 case 0x0f17:
7474 case 0x0f28:
7475 case 0x0f29:
7476 case 0x0f2a:
7477 case 0x0f2b:
7478 case 0x0f2c:
7479 case 0x0f2d:
7480 case 0x0f2e:
7481 case 0x0f2f:
7482 case 0x0f38:
7483 case 0x0f39:
7484 case 0x0f3a:
7485 case 0x0f50:
7486 case 0x0f51:
7487 case 0x0f52:
7488 case 0x0f53:
7489 case 0x0f54:
7490 case 0x0f55:
7491 case 0x0f56:
7492 case 0x0f57:
7493 case 0x0f58:
7494 case 0x0f59:
7495 case 0x0f5a:
7496 case 0x0f5b:
7497 case 0x0f5c:
7498 case 0x0f5d:
7499 case 0x0f5e:
7500 case 0x0f5f:
7501 case 0x0f60:
7502 case 0x0f61:
7503 case 0x0f62:
7504 case 0x0f63:
7505 case 0x0f64:
7506 case 0x0f65:
7507 case 0x0f66:
7508 case 0x0f67:
7509 case 0x0f68:
7510 case 0x0f69:
7511 case 0x0f6a:
7512 case 0x0f6b:
7513 case 0x0f6c:
7514 case 0x0f6d:
7515 case 0x0f6e:
7516 case 0x0f6f:
7517 case 0x0f70:
7518 case 0x0f71:
7519 case 0x0f72:
7520 case 0x0f73:
7521 case 0x0f74:
7522 case 0x0f75:
7523 case 0x0f76:
7524 case 0x0f7c:
7525 case 0x0f7d:
7526 case 0x0f7e:
7527 case 0x0f7f:
7528 case 0x0fb8:
7529 case 0x0fc2:
7530 case 0x0fc4:
7531 case 0x0fc5:
7532 case 0x0fc6:
7533 case 0x0fd0:
7534 case 0x0fd1:
7535 case 0x0fd2:
7536 case 0x0fd3:
7537 case 0x0fd4:
7538 case 0x0fd5:
7539 case 0x0fd6:
7540 case 0x0fd7:
7541 case 0x0fd8:
7542 case 0x0fd9:
7543 case 0x0fda:
7544 case 0x0fdb:
7545 case 0x0fdc:
7546 case 0x0fdd:
7547 case 0x0fde:
7548 case 0x0fdf:
7549 case 0x0fe0:
7550 case 0x0fe1:
7551 case 0x0fe2:
7552 case 0x0fe3:
7553 case 0x0fe4:
7554 case 0x0fe5:
7555 case 0x0fe6:
7556 case 0x0fe7:
7557 case 0x0fe8:
7558 case 0x0fe9:
7559 case 0x0fea:
7560 case 0x0feb:
7561 case 0x0fec:
7562 case 0x0fed:
7563 case 0x0fee:
7564 case 0x0fef:
7565 case 0x0ff0:
7566 case 0x0ff1:
7567 case 0x0ff2:
7568 case 0x0ff3:
7569 case 0x0ff4:
7570 case 0x0ff5:
7571 case 0x0ff6:
7572 case 0x0ff7:
7573 case 0x0ff8:
7574 case 0x0ff9:
7575 case 0x0ffa:
7576 case 0x0ffb:
7577 case 0x0ffc:
7578 case 0x0ffd:
7579 case 0x0ffe:
f9fda3f5
L
7580 /* Mask out PREFIX_ADDR. */
7581 switch ((prefixes & ~PREFIX_ADDR))
dda83cd7
SM
7582 {
7583 case PREFIX_REPNZ:
7584 opcode |= 0xf20000;
7585 break;
7586 case PREFIX_DATA:
7587 opcode |= 0x660000;
7588 break;
7589 case PREFIX_REPZ:
7590 opcode |= 0xf30000;
7591 break;
7592 }
a3c4230a
HZ
7593reswitch_prefix_add:
7594 switch (opcode)
dda83cd7
SM
7595 {
7596 case 0x0f38:
7597 case 0x660f38:
7598 case 0xf20f38:
7599 case 0x0f3a:
7600 case 0x660f3a:
7601 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4ffa4fc7 7602 return -1;
dda83cd7
SM
7603 ir.addr++;
7604 opcode = (uint32_t) opcode8 | opcode << 8;
7605 goto reswitch_prefix_add;
7606 break;
7607
7608 case 0x0f10: /* movups */
7609 case 0x660f10: /* movupd */
7610 case 0xf30f10: /* movss */
7611 case 0xf20f10: /* movsd */
7612 case 0x0f12: /* movlps */
7613 case 0x660f12: /* movlpd */
7614 case 0xf30f12: /* movsldup */
7615 case 0xf20f12: /* movddup */
7616 case 0x0f14: /* unpcklps */
7617 case 0x660f14: /* unpcklpd */
7618 case 0x0f15: /* unpckhps */
7619 case 0x660f15: /* unpckhpd */
7620 case 0x0f16: /* movhps */
7621 case 0x660f16: /* movhpd */
7622 case 0xf30f16: /* movshdup */
7623 case 0x0f28: /* movaps */
7624 case 0x660f28: /* movapd */
7625 case 0x0f2a: /* cvtpi2ps */
7626 case 0x660f2a: /* cvtpi2pd */
7627 case 0xf30f2a: /* cvtsi2ss */
7628 case 0xf20f2a: /* cvtsi2sd */
7629 case 0x0f2c: /* cvttps2pi */
7630 case 0x660f2c: /* cvttpd2pi */
7631 case 0x0f2d: /* cvtps2pi */
7632 case 0x660f2d: /* cvtpd2pi */
7633 case 0x660f3800: /* pshufb */
7634 case 0x660f3801: /* phaddw */
7635 case 0x660f3802: /* phaddd */
7636 case 0x660f3803: /* phaddsw */
7637 case 0x660f3804: /* pmaddubsw */
7638 case 0x660f3805: /* phsubw */
7639 case 0x660f3806: /* phsubd */
7640 case 0x660f3807: /* phsubsw */
7641 case 0x660f3808: /* psignb */
7642 case 0x660f3809: /* psignw */
7643 case 0x660f380a: /* psignd */
7644 case 0x660f380b: /* pmulhrsw */
7645 case 0x660f3810: /* pblendvb */
7646 case 0x660f3814: /* blendvps */
7647 case 0x660f3815: /* blendvpd */
7648 case 0x660f381c: /* pabsb */
7649 case 0x660f381d: /* pabsw */
7650 case 0x660f381e: /* pabsd */
7651 case 0x660f3820: /* pmovsxbw */
7652 case 0x660f3821: /* pmovsxbd */
7653 case 0x660f3822: /* pmovsxbq */
7654 case 0x660f3823: /* pmovsxwd */
7655 case 0x660f3824: /* pmovsxwq */
7656 case 0x660f3825: /* pmovsxdq */
7657 case 0x660f3828: /* pmuldq */
7658 case 0x660f3829: /* pcmpeqq */
7659 case 0x660f382a: /* movntdqa */
7660 case 0x660f3a08: /* roundps */
7661 case 0x660f3a09: /* roundpd */
7662 case 0x660f3a0a: /* roundss */
7663 case 0x660f3a0b: /* roundsd */
7664 case 0x660f3a0c: /* blendps */
7665 case 0x660f3a0d: /* blendpd */
7666 case 0x660f3a0e: /* pblendw */
7667 case 0x660f3a0f: /* palignr */
7668 case 0x660f3a20: /* pinsrb */
7669 case 0x660f3a21: /* insertps */
7670 case 0x660f3a22: /* pinsrd pinsrq */
7671 case 0x660f3a40: /* dpps */
7672 case 0x660f3a41: /* dppd */
7673 case 0x660f3a42: /* mpsadbw */
7674 case 0x660f3a60: /* pcmpestrm */
7675 case 0x660f3a61: /* pcmpestri */
7676 case 0x660f3a62: /* pcmpistrm */
7677 case 0x660f3a63: /* pcmpistri */
7678 case 0x0f51: /* sqrtps */
7679 case 0x660f51: /* sqrtpd */
7680 case 0xf20f51: /* sqrtsd */
7681 case 0xf30f51: /* sqrtss */
7682 case 0x0f52: /* rsqrtps */
7683 case 0xf30f52: /* rsqrtss */
7684 case 0x0f53: /* rcpps */
7685 case 0xf30f53: /* rcpss */
7686 case 0x0f54: /* andps */
7687 case 0x660f54: /* andpd */
7688 case 0x0f55: /* andnps */
7689 case 0x660f55: /* andnpd */
7690 case 0x0f56: /* orps */
7691 case 0x660f56: /* orpd */
7692 case 0x0f57: /* xorps */
7693 case 0x660f57: /* xorpd */
7694 case 0x0f58: /* addps */
7695 case 0x660f58: /* addpd */
7696 case 0xf20f58: /* addsd */
7697 case 0xf30f58: /* addss */
7698 case 0x0f59: /* mulps */
7699 case 0x660f59: /* mulpd */
7700 case 0xf20f59: /* mulsd */
7701 case 0xf30f59: /* mulss */
7702 case 0x0f5a: /* cvtps2pd */
7703 case 0x660f5a: /* cvtpd2ps */
7704 case 0xf20f5a: /* cvtsd2ss */
7705 case 0xf30f5a: /* cvtss2sd */
7706 case 0x0f5b: /* cvtdq2ps */
7707 case 0x660f5b: /* cvtps2dq */
7708 case 0xf30f5b: /* cvttps2dq */
7709 case 0x0f5c: /* subps */
7710 case 0x660f5c: /* subpd */
7711 case 0xf20f5c: /* subsd */
7712 case 0xf30f5c: /* subss */
7713 case 0x0f5d: /* minps */
7714 case 0x660f5d: /* minpd */
7715 case 0xf20f5d: /* minsd */
7716 case 0xf30f5d: /* minss */
7717 case 0x0f5e: /* divps */
7718 case 0x660f5e: /* divpd */
7719 case 0xf20f5e: /* divsd */
7720 case 0xf30f5e: /* divss */
7721 case 0x0f5f: /* maxps */
7722 case 0x660f5f: /* maxpd */
7723 case 0xf20f5f: /* maxsd */
7724 case 0xf30f5f: /* maxss */
7725 case 0x660f60: /* punpcklbw */
7726 case 0x660f61: /* punpcklwd */
7727 case 0x660f62: /* punpckldq */
7728 case 0x660f63: /* packsswb */
7729 case 0x660f64: /* pcmpgtb */
7730 case 0x660f65: /* pcmpgtw */
7731 case 0x660f66: /* pcmpgtd */
7732 case 0x660f67: /* packuswb */
7733 case 0x660f68: /* punpckhbw */
7734 case 0x660f69: /* punpckhwd */
7735 case 0x660f6a: /* punpckhdq */
7736 case 0x660f6b: /* packssdw */
7737 case 0x660f6c: /* punpcklqdq */
7738 case 0x660f6d: /* punpckhqdq */
7739 case 0x660f6e: /* movd */
7740 case 0x660f6f: /* movdqa */
7741 case 0xf30f6f: /* movdqu */
7742 case 0x660f70: /* pshufd */
7743 case 0xf20f70: /* pshuflw */
7744 case 0xf30f70: /* pshufhw */
7745 case 0x660f74: /* pcmpeqb */
7746 case 0x660f75: /* pcmpeqw */
7747 case 0x660f76: /* pcmpeqd */
7748 case 0x660f7c: /* haddpd */
7749 case 0xf20f7c: /* haddps */
7750 case 0x660f7d: /* hsubpd */
7751 case 0xf20f7d: /* hsubps */
7752 case 0xf30f7e: /* movq */
7753 case 0x0fc2: /* cmpps */
7754 case 0x660fc2: /* cmppd */
7755 case 0xf20fc2: /* cmpsd */
7756 case 0xf30fc2: /* cmpss */
7757 case 0x660fc4: /* pinsrw */
7758 case 0x0fc6: /* shufps */
7759 case 0x660fc6: /* shufpd */
7760 case 0x660fd0: /* addsubpd */
7761 case 0xf20fd0: /* addsubps */
7762 case 0x660fd1: /* psrlw */
7763 case 0x660fd2: /* psrld */
7764 case 0x660fd3: /* psrlq */
7765 case 0x660fd4: /* paddq */
7766 case 0x660fd5: /* pmullw */
7767 case 0xf30fd6: /* movq2dq */
7768 case 0x660fd8: /* psubusb */
7769 case 0x660fd9: /* psubusw */
7770 case 0x660fda: /* pminub */
7771 case 0x660fdb: /* pand */
7772 case 0x660fdc: /* paddusb */
7773 case 0x660fdd: /* paddusw */
7774 case 0x660fde: /* pmaxub */
7775 case 0x660fdf: /* pandn */
7776 case 0x660fe0: /* pavgb */
7777 case 0x660fe1: /* psraw */
7778 case 0x660fe2: /* psrad */
7779 case 0x660fe3: /* pavgw */
7780 case 0x660fe4: /* pmulhuw */
7781 case 0x660fe5: /* pmulhw */
7782 case 0x660fe6: /* cvttpd2dq */
7783 case 0xf20fe6: /* cvtpd2dq */
7784 case 0xf30fe6: /* cvtdq2pd */
7785 case 0x660fe8: /* psubsb */
7786 case 0x660fe9: /* psubsw */
7787 case 0x660fea: /* pminsw */
7788 case 0x660feb: /* por */
7789 case 0x660fec: /* paddsb */
7790 case 0x660fed: /* paddsw */
7791 case 0x660fee: /* pmaxsw */
7792 case 0x660fef: /* pxor */
7793 case 0xf20ff0: /* lddqu */
7794 case 0x660ff1: /* psllw */
7795 case 0x660ff2: /* pslld */
7796 case 0x660ff3: /* psllq */
7797 case 0x660ff4: /* pmuludq */
7798 case 0x660ff5: /* pmaddwd */
7799 case 0x660ff6: /* psadbw */
7800 case 0x660ff8: /* psubb */
7801 case 0x660ff9: /* psubw */
7802 case 0x660ffa: /* psubd */
7803 case 0x660ffb: /* psubq */
7804 case 0x660ffc: /* paddb */
7805 case 0x660ffd: /* paddw */
7806 case 0x660ffe: /* paddd */
7807 if (i386_record_modrm (&ir))
a3c4230a 7808 return -1;
dda83cd7
SM
7809 ir.reg |= rex_r;
7810 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7811 goto no_support;
7812 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7813 I387_XMM0_REGNUM (tdep) + ir.reg);
dda83cd7
SM
7814 if ((opcode & 0xfffffffc) == 0x660f3a60)
7815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7816 break;
7817
7818 case 0x0f11: /* movups */
7819 case 0x660f11: /* movupd */
7820 case 0xf30f11: /* movss */
7821 case 0xf20f11: /* movsd */
7822 case 0x0f13: /* movlps */
7823 case 0x660f13: /* movlpd */
7824 case 0x0f17: /* movhps */
7825 case 0x660f17: /* movhpd */
7826 case 0x0f29: /* movaps */
7827 case 0x660f29: /* movapd */
7828 case 0x660f3a14: /* pextrb */
7829 case 0x660f3a15: /* pextrw */
7830 case 0x660f3a16: /* pextrd pextrq */
7831 case 0x660f3a17: /* extractps */
7832 case 0x660f7f: /* movdqa */
7833 case 0xf30f7f: /* movdqu */
7834 if (i386_record_modrm (&ir))
a3c4230a 7835 return -1;
dda83cd7
SM
7836 if (ir.mod == 3)
7837 {
7838 if (opcode == 0x0f13 || opcode == 0x660f13
7839 || opcode == 0x0f17 || opcode == 0x660f17)
7840 goto no_support;
7841 ir.rm |= ir.rex_b;
7842 if (!i386_xmm_regnum_p (gdbarch,
1777feb0 7843 I387_XMM0_REGNUM (tdep) + ir.rm))
dda83cd7
SM
7844 goto no_support;
7845 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7846 I387_XMM0_REGNUM (tdep) + ir.rm);
dda83cd7
SM
7847 }
7848 else
7849 {
7850 switch (opcode)
7851 {
7852 case 0x660f3a14:
7853 ir.ot = OT_BYTE;
7854 break;
7855 case 0x660f3a15:
7856 ir.ot = OT_WORD;
7857 break;
7858 case 0x660f3a16:
7859 ir.ot = OT_LONG;
7860 break;
7861 case 0x660f3a17:
7862 ir.ot = OT_QUAD;
7863 break;
7864 default:
7865 ir.ot = OT_DQUAD;
7866 break;
7867 }
7868 if (i386_record_lea_modrm (&ir))
7869 return -1;
7870 }
7871 break;
7872
7873 case 0x0f2b: /* movntps */
7874 case 0x660f2b: /* movntpd */
7875 case 0x0fe7: /* movntq */
7876 case 0x660fe7: /* movntdq */
7877 if (ir.mod == 3)
7878 goto no_support;
7879 if (opcode == 0x0fe7)
7880 ir.ot = OT_QUAD;
7881 else
7882 ir.ot = OT_DQUAD;
7883 if (i386_record_lea_modrm (&ir))
a3c4230a 7884 return -1;
dda83cd7
SM
7885 break;
7886
7887 case 0xf30f2c: /* cvttss2si */
7888 case 0xf20f2c: /* cvttsd2si */
7889 case 0xf30f2d: /* cvtss2si */
7890 case 0xf20f2d: /* cvtsd2si */
7891 case 0xf20f38f0: /* crc32 */
7892 case 0xf20f38f1: /* crc32 */
7893 case 0x0f50: /* movmskps */
7894 case 0x660f50: /* movmskpd */
7895 case 0x0fc5: /* pextrw */
7896 case 0x660fc5: /* pextrw */
7897 case 0x0fd7: /* pmovmskb */
7898 case 0x660fd7: /* pmovmskb */
7899 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7900 break;
7901
7902 case 0x0f3800: /* pshufb */
7903 case 0x0f3801: /* phaddw */
7904 case 0x0f3802: /* phaddd */
7905 case 0x0f3803: /* phaddsw */
7906 case 0x0f3804: /* pmaddubsw */
7907 case 0x0f3805: /* phsubw */
7908 case 0x0f3806: /* phsubd */
7909 case 0x0f3807: /* phsubsw */
7910 case 0x0f3808: /* psignb */
7911 case 0x0f3809: /* psignw */
7912 case 0x0f380a: /* psignd */
7913 case 0x0f380b: /* pmulhrsw */
7914 case 0x0f381c: /* pabsb */
7915 case 0x0f381d: /* pabsw */
7916 case 0x0f381e: /* pabsd */
7917 case 0x0f382b: /* packusdw */
7918 case 0x0f3830: /* pmovzxbw */
7919 case 0x0f3831: /* pmovzxbd */
7920 case 0x0f3832: /* pmovzxbq */
7921 case 0x0f3833: /* pmovzxwd */
7922 case 0x0f3834: /* pmovzxwq */
7923 case 0x0f3835: /* pmovzxdq */
7924 case 0x0f3837: /* pcmpgtq */
7925 case 0x0f3838: /* pminsb */
7926 case 0x0f3839: /* pminsd */
7927 case 0x0f383a: /* pminuw */
7928 case 0x0f383b: /* pminud */
7929 case 0x0f383c: /* pmaxsb */
7930 case 0x0f383d: /* pmaxsd */
7931 case 0x0f383e: /* pmaxuw */
7932 case 0x0f383f: /* pmaxud */
7933 case 0x0f3840: /* pmulld */
7934 case 0x0f3841: /* phminposuw */
7935 case 0x0f3a0f: /* palignr */
7936 case 0x0f60: /* punpcklbw */
7937 case 0x0f61: /* punpcklwd */
7938 case 0x0f62: /* punpckldq */
7939 case 0x0f63: /* packsswb */
7940 case 0x0f64: /* pcmpgtb */
7941 case 0x0f65: /* pcmpgtw */
7942 case 0x0f66: /* pcmpgtd */
7943 case 0x0f67: /* packuswb */
7944 case 0x0f68: /* punpckhbw */
7945 case 0x0f69: /* punpckhwd */
7946 case 0x0f6a: /* punpckhdq */
7947 case 0x0f6b: /* packssdw */
7948 case 0x0f6e: /* movd */
7949 case 0x0f6f: /* movq */
7950 case 0x0f70: /* pshufw */
7951 case 0x0f74: /* pcmpeqb */
7952 case 0x0f75: /* pcmpeqw */
7953 case 0x0f76: /* pcmpeqd */
7954 case 0x0fc4: /* pinsrw */
7955 case 0x0fd1: /* psrlw */
7956 case 0x0fd2: /* psrld */
7957 case 0x0fd3: /* psrlq */
7958 case 0x0fd4: /* paddq */
7959 case 0x0fd5: /* pmullw */
7960 case 0xf20fd6: /* movdq2q */
7961 case 0x0fd8: /* psubusb */
7962 case 0x0fd9: /* psubusw */
7963 case 0x0fda: /* pminub */
7964 case 0x0fdb: /* pand */
7965 case 0x0fdc: /* paddusb */
7966 case 0x0fdd: /* paddusw */
7967 case 0x0fde: /* pmaxub */
7968 case 0x0fdf: /* pandn */
7969 case 0x0fe0: /* pavgb */
7970 case 0x0fe1: /* psraw */
7971 case 0x0fe2: /* psrad */
7972 case 0x0fe3: /* pavgw */
7973 case 0x0fe4: /* pmulhuw */
7974 case 0x0fe5: /* pmulhw */
7975 case 0x0fe8: /* psubsb */
7976 case 0x0fe9: /* psubsw */
7977 case 0x0fea: /* pminsw */
7978 case 0x0feb: /* por */
7979 case 0x0fec: /* paddsb */
7980 case 0x0fed: /* paddsw */
7981 case 0x0fee: /* pmaxsw */
7982 case 0x0fef: /* pxor */
7983 case 0x0ff1: /* psllw */
7984 case 0x0ff2: /* pslld */
7985 case 0x0ff3: /* psllq */
7986 case 0x0ff4: /* pmuludq */
7987 case 0x0ff5: /* pmaddwd */
7988 case 0x0ff6: /* psadbw */
7989 case 0x0ff8: /* psubb */
7990 case 0x0ff9: /* psubw */
7991 case 0x0ffa: /* psubd */
7992 case 0x0ffb: /* psubq */
7993 case 0x0ffc: /* paddb */
7994 case 0x0ffd: /* paddw */
7995 case 0x0ffe: /* paddd */
7996 if (i386_record_modrm (&ir))
7997 return -1;
7998 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7999 goto no_support;
8000 record_full_arch_list_add_reg (ir.regcache,
25ea693b 8001 I387_MM0_REGNUM (tdep) + ir.reg);
dda83cd7 8002 break;
a3c4230a 8003
dda83cd7
SM
8004 case 0x0f71: /* psllw */
8005 case 0x0f72: /* pslld */
8006 case 0x0f73: /* psllq */
8007 if (i386_record_modrm (&ir))
a3c4230a 8008 return -1;
dda83cd7
SM
8009 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8010 goto no_support;
8011 record_full_arch_list_add_reg (ir.regcache,
25ea693b 8012 I387_MM0_REGNUM (tdep) + ir.rm);
dda83cd7 8013 break;
a3c4230a 8014
dda83cd7
SM
8015 case 0x660f71: /* psllw */
8016 case 0x660f72: /* pslld */
8017 case 0x660f73: /* psllq */
8018 if (i386_record_modrm (&ir))
a3c4230a 8019 return -1;
dda83cd7
SM
8020 ir.rm |= ir.rex_b;
8021 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8022 goto no_support;
8023 record_full_arch_list_add_reg (ir.regcache,
25ea693b 8024 I387_XMM0_REGNUM (tdep) + ir.rm);
dda83cd7 8025 break;
a3c4230a 8026
dda83cd7
SM
8027 case 0x0f7e: /* movd */
8028 case 0x660f7e: /* movd */
8029 if (i386_record_modrm (&ir))
a3c4230a 8030 return -1;
dda83cd7
SM
8031 if (ir.mod == 3)
8032 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8033 else
8034 {
8035 if (ir.dflag == 2)
8036 ir.ot = OT_QUAD;
8037 else
8038 ir.ot = OT_LONG;
8039 if (i386_record_lea_modrm (&ir))
8040 return -1;
8041 }
8042 break;
8043
8044 case 0x0f7f: /* movq */
8045 if (i386_record_modrm (&ir))
a3c4230a 8046 return -1;
dda83cd7
SM
8047 if (ir.mod == 3)
8048 {
8049 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8050 goto no_support;
8051 record_full_arch_list_add_reg (ir.regcache,
25ea693b 8052 I387_MM0_REGNUM (tdep) + ir.rm);
dda83cd7
SM
8053 }
8054 else
8055 {
8056 ir.ot = OT_QUAD;
8057 if (i386_record_lea_modrm (&ir))
8058 return -1;
8059 }
8060 break;
8061
8062 case 0xf30fb8: /* popcnt */
8063 if (i386_record_modrm (&ir))
a3c4230a 8064 return -1;
dda83cd7
SM
8065 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8067 break;
a3c4230a 8068
dda83cd7
SM
8069 case 0x660fd6: /* movq */
8070 if (i386_record_modrm (&ir))
a3c4230a 8071 return -1;
dda83cd7
SM
8072 if (ir.mod == 3)
8073 {
8074 ir.rm |= ir.rex_b;
8075 if (!i386_xmm_regnum_p (gdbarch,
1777feb0 8076 I387_XMM0_REGNUM (tdep) + ir.rm))
dda83cd7
SM
8077 goto no_support;
8078 record_full_arch_list_add_reg (ir.regcache,
25ea693b 8079 I387_XMM0_REGNUM (tdep) + ir.rm);
dda83cd7
SM
8080 }
8081 else
8082 {
8083 ir.ot = OT_QUAD;
8084 if (i386_record_lea_modrm (&ir))
8085 return -1;
8086 }
8087 break;
8088
8089 case 0x660f3817: /* ptest */
8090 case 0x0f2e: /* ucomiss */
8091 case 0x660f2e: /* ucomisd */
8092 case 0x0f2f: /* comiss */
8093 case 0x660f2f: /* comisd */
8094 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8095 break;
8096
8097 case 0x0ff7: /* maskmovq */
8098 regcache_raw_read_unsigned (ir.regcache,
8099 ir.regmap[X86_RECORD_REDI_REGNUM],
8100 &addr);
8101 if (record_full_arch_list_add_mem (addr, 64))
8102 return -1;
8103 break;
8104
8105 case 0x660ff7: /* maskmovdqu */
8106 regcache_raw_read_unsigned (ir.regcache,
8107 ir.regmap[X86_RECORD_REDI_REGNUM],
8108 &addr);
8109 if (record_full_arch_list_add_mem (addr, 128))
8110 return -1;
8111 break;
8112
8113 default:
8114 goto no_support;
8115 break;
8116 }
a3c4230a 8117 break;
7ad10968
HZ
8118
8119 default:
7ad10968
HZ
8120 goto no_support;
8121 break;
8122 }
8123
cf648174 8124 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8125 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8126 if (record_full_arch_list_add_end ())
7ad10968
HZ
8127 return -1;
8128
8129 return 0;
8130
01fe1b41 8131 no_support:
a3c4230a 8132 printf_unfiltered (_("Process record does not support instruction 0x%02x "
dda83cd7
SM
8133 "at address %s.\n"),
8134 (unsigned int) (opcode),
8135 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8136 return -1;
8137}
8138
cf648174
HZ
8139static const int i386_record_regmap[] =
8140{
8141 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8142 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8143 0, 0, 0, 0, 0, 0, 0, 0,
8144 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8145 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8146};
8147
7a697b8d 8148/* Check that the given address appears suitable for a fast
405f8e94 8149 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8150 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8151 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8152 middle of the tracepoint jump. On x86, it may be possible to use
8153 4-byte jumps with a 2-byte offset to a trampoline located in the
8154 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8155 of instruction to replace, and 0 if not, plus an explanatory
8156 string. */
8157
8158static int
6b940e6a 8159i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
281d762b 8160 std::string *msg)
7a697b8d
SS
8161{
8162 int len, jumplen;
7a697b8d 8163
405f8e94
SS
8164 /* Ask the target for the minimum instruction length supported. */
8165 jumplen = target_get_min_fast_tracepoint_insn_len ();
8166
8167 if (jumplen < 0)
8168 {
8169 /* If the target does not support the get_min_fast_tracepoint_insn_len
8170 operation, assume that fast tracepoints will always be implemented
8171 using 4-byte relative jumps on both x86 and x86-64. */
8172 jumplen = 5;
8173 }
8174 else if (jumplen == 0)
8175 {
8176 /* If the target does support get_min_fast_tracepoint_insn_len but
8177 returns zero, then the IPA has not loaded yet. In this case,
8178 we optimistically assume that truncated 2-byte relative jumps
8179 will be available on x86, and compensate later if this assumption
8180 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8181 jumps will always be used. */
8182 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8183 }
7a697b8d 8184
7a697b8d 8185 /* Check for fit. */
be85ce7d 8186 len = gdb_insn_length (gdbarch, addr);
405f8e94 8187
7a697b8d
SS
8188 if (len < jumplen)
8189 {
8190 /* Return a bit of target-specific detail to add to the caller's
8191 generic failure message. */
8192 if (msg)
281d762b
TT
8193 *msg = string_printf (_("; instruction is only %d bytes long, "
8194 "need at least %d bytes for the jump"),
8195 len, jumplen);
7a697b8d
SS
8196 return 0;
8197 }
405f8e94
SS
8198 else
8199 {
8200 if (msg)
281d762b 8201 msg->clear ();
405f8e94
SS
8202 return 1;
8203 }
7a697b8d
SS
8204}
8205
00d5215e
UW
8206/* Return a floating-point format for a floating-point variable of
8207 length LEN in bits. If non-NULL, NAME is the name of its type.
8208 If no suitable type is found, return NULL. */
8209
cb8c24b6 8210static const struct floatformat **
00d5215e
UW
8211i386_floatformat_for_type (struct gdbarch *gdbarch,
8212 const char *name, int len)
8213{
8214 if (len == 128 && name)
8215 if (strcmp (name, "__float128") == 0
8216 || strcmp (name, "_Float128") == 0
34d11c68
AB
8217 || strcmp (name, "complex _Float128") == 0
8218 || strcmp (name, "complex(kind=16)") == 0
e56798df
AKS
8219 || strcmp (name, "quad complex") == 0
8220 || strcmp (name, "real(kind=16)") == 0
8221 || strcmp (name, "real*16") == 0)
00d5215e
UW
8222 return floatformats_ia64_quad;
8223
8224 return default_floatformat_for_type (gdbarch, name, len);
8225}
8226
90884b2b
L
8227static int
8228i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8229 struct tdesc_arch_data *tdesc_data)
8230{
8231 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8232 const struct tdesc_feature *feature_core;
01f9f808
MS
8233
8234 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
1163a4b7 8235 *feature_avx512, *feature_pkeys, *feature_segments;
90884b2b
L
8236 int i, num_regs, valid_p;
8237
8238 if (! tdesc_has_registers (tdesc))
8239 return 0;
8240
8241 /* Get core registers. */
8242 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8243 if (feature_core == NULL)
8244 return 0;
90884b2b
L
8245
8246 /* Get SSE registers. */
c131fcee 8247 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8248
c131fcee
L
8249 /* Try AVX registers. */
8250 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8251
1dbcd68c
WT
8252 /* Try MPX registers. */
8253 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8254
01f9f808
MS
8255 /* Try AVX512 registers. */
8256 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8257
1163a4b7
JB
8258 /* Try segment base registers. */
8259 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8260
51547df6
MS
8261 /* Try PKEYS */
8262 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8263
90884b2b
L
8264 valid_p = 1;
8265
c131fcee 8266 /* The XCR0 bits. */
01f9f808
MS
8267 if (feature_avx512)
8268 {
8269 /* AVX512 register description requires AVX register description. */
8270 if (!feature_avx)
8271 return 0;
8272
a1fa17ee 8273 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
01f9f808
MS
8274
8275 /* It may have been set by OSABI initialization function. */
8276 if (tdep->k0_regnum < 0)
8277 {
8278 tdep->k_register_names = i386_k_names;
8279 tdep->k0_regnum = I386_K0_REGNUM;
8280 }
8281
8282 for (i = 0; i < I387_NUM_K_REGS; i++)
8283 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8284 tdep->k0_regnum + i,
8285 i386_k_names[i]);
8286
8287 if (tdep->num_zmm_regs == 0)
8288 {
8289 tdep->zmmh_register_names = i386_zmmh_names;
8290 tdep->num_zmm_regs = 8;
8291 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8292 }
8293
8294 for (i = 0; i < tdep->num_zmm_regs; i++)
8295 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8296 tdep->zmm0h_regnum + i,
8297 tdep->zmmh_register_names[i]);
8298
8299 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8300 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8301 tdep->xmm16_regnum + i,
8302 tdep->xmm_avx512_register_names[i]);
8303
8304 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8305 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8306 tdep->ymm16h_regnum + i,
8307 tdep->ymm16h_register_names[i]);
8308 }
c131fcee
L
8309 if (feature_avx)
8310 {
3a13a53b
L
8311 /* AVX register description requires SSE register description. */
8312 if (!feature_sse)
8313 return 0;
8314
01f9f808 8315 if (!feature_avx512)
df7e5265 8316 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8317
8318 /* It may have been set by OSABI initialization function. */
8319 if (tdep->num_ymm_regs == 0)
8320 {
8321 tdep->ymmh_register_names = i386_ymmh_names;
8322 tdep->num_ymm_regs = 8;
8323 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8324 }
8325
8326 for (i = 0; i < tdep->num_ymm_regs; i++)
8327 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8328 tdep->ymm0h_regnum + i,
8329 tdep->ymmh_register_names[i]);
8330 }
3a13a53b 8331 else if (feature_sse)
df7e5265 8332 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8333 else
8334 {
df7e5265 8335 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8336 tdep->num_xmm_regs = 0;
8337 }
c131fcee 8338
90884b2b
L
8339 num_regs = tdep->num_core_regs;
8340 for (i = 0; i < num_regs; i++)
8341 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8342 tdep->register_names[i]);
8343
3a13a53b
L
8344 if (feature_sse)
8345 {
8346 /* Need to include %mxcsr, so add one. */
8347 num_regs += tdep->num_xmm_regs + 1;
8348 for (; i < num_regs; i++)
8349 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8350 tdep->register_names[i]);
8351 }
90884b2b 8352
1dbcd68c
WT
8353 if (feature_mpx)
8354 {
df7e5265 8355 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8356
8357 if (tdep->bnd0r_regnum < 0)
8358 {
8359 tdep->mpx_register_names = i386_mpx_names;
8360 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8361 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8362 }
8363
8364 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8365 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8366 I387_BND0R_REGNUM (tdep) + i,
8367 tdep->mpx_register_names[i]);
8368 }
8369
1163a4b7
JB
8370 if (feature_segments)
8371 {
8372 if (tdep->fsbase_regnum < 0)
8373 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8374 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8375 tdep->fsbase_regnum, "fs_base");
8376 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8377 tdep->fsbase_regnum + 1, "gs_base");
8378 }
8379
51547df6
MS
8380 if (feature_pkeys)
8381 {
8382 tdep->xcr0 |= X86_XSTATE_PKRU;
8383 if (tdep->pkru_regnum < 0)
8384 {
8385 tdep->pkeys_register_names = i386_pkeys_names;
8386 tdep->pkru_regnum = I386_PKRU_REGNUM;
8387 tdep->num_pkeys_regs = 1;
8388 }
8389
8390 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8391 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8392 I387_PKRU_REGNUM (tdep) + i,
8393 tdep->pkeys_register_names[i]);
8394 }
8395
90884b2b
L
8396 return valid_p;
8397}
8398
2b4424c3
TT
8399\f
8400
8401/* Implement the type_align gdbarch function. */
8402
8403static ULONGEST
8404i386_type_align (struct gdbarch *gdbarch, struct type *type)
8405{
8406 type = check_typedef (type);
8407
8408 if (gdbarch_ptr_bit (gdbarch) == 32)
8409 {
78134374
SM
8410 if ((type->code () == TYPE_CODE_INT
8411 || type->code () == TYPE_CODE_FLT)
2b4424c3
TT
8412 && TYPE_LENGTH (type) > 4)
8413 return 4;
8414
8415 /* Handle x86's funny long double. */
78134374 8416 if (type->code () == TYPE_CODE_FLT
2b4424c3
TT
8417 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8418 return 4;
8419 }
8420
5561fc30 8421 return 0;
2b4424c3
TT
8422}
8423
7ad10968 8424\f
ad9eb1fd
DE
8425/* Note: This is called for both i386 and amd64. */
8426
7ad10968
HZ
8427static struct gdbarch *
8428i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8429{
8430 struct gdbarch_tdep *tdep;
8431 struct gdbarch *gdbarch;
90884b2b 8432 const struct target_desc *tdesc;
1ba53b71 8433 int mm0_regnum;
c131fcee 8434 int ymm0_regnum;
1dbcd68c
WT
8435 int bnd0_regnum;
8436 int num_bnd_cooked;
7ad10968
HZ
8437
8438 /* If there is already a candidate, use it. */
8439 arches = gdbarch_list_lookup_by_info (arches, &info);
8440 if (arches != NULL)
8441 return arches->gdbarch;
8442
ad9eb1fd 8443 /* Allocate space for the new architecture. Assume i386 for now. */
fc270c35 8444 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8445 gdbarch = gdbarch_alloc (&info, tdep);
8446
8447 /* General-purpose registers. */
7ad10968
HZ
8448 tdep->gregset_reg_offset = NULL;
8449 tdep->gregset_num_regs = I386_NUM_GREGS;
8450 tdep->sizeof_gregset = 0;
8451
8452 /* Floating-point registers. */
7ad10968 8453 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8454 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8455
8456 /* The default settings include the FPU registers, the MMX registers
8457 and the SSE registers. This can be overridden for a specific ABI
8458 by adjusting the members `st0_regnum', `mm0_regnum' and
8459 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8460 will show up in the output of "info all-registers". */
7ad10968
HZ
8461
8462 tdep->st0_regnum = I386_ST0_REGNUM;
8463
7ad10968
HZ
8464 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8465 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8466
8467 tdep->jb_pc_offset = -1;
8468 tdep->struct_return = pcc_struct_return;
8469 tdep->sigtramp_start = 0;
8470 tdep->sigtramp_end = 0;
8471 tdep->sigtramp_p = i386_sigtramp_p;
8472 tdep->sigcontext_addr = NULL;
8473 tdep->sc_reg_offset = NULL;
8474 tdep->sc_pc_offset = -1;
8475 tdep->sc_sp_offset = -1;
8476
c131fcee
L
8477 tdep->xsave_xcr0_offset = -1;
8478
cf648174
HZ
8479 tdep->record_regmap = i386_record_regmap;
8480
2b4424c3 8481 set_gdbarch_type_align (gdbarch, i386_type_align);
205c306f 8482
7ad10968
HZ
8483 /* The format used for `long double' on almost all i386 targets is
8484 the i387 extended floating-point format. In fact, of all targets
8485 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8486 on having a `long double' that's not `long' at all. */
8487 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8488
8489 /* Although the i387 extended floating-point has only 80 significant
8490 bits, a `long double' actually takes up 96, probably to enforce
8491 alignment. */
8492 set_gdbarch_long_double_bit (gdbarch, 96);
8493
2a67f09d
FW
8494 /* Support of bfloat16 format. */
8495 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8496
00d5215e
UW
8497 /* Support for floating-point data type variants. */
8498 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8499
7ad10968
HZ
8500 /* Register numbers of various important registers. */
8501 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8502 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8503 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8504 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8505
8506 /* NOTE: kettenis/20040418: GCC does have two possible register
8507 numbering schemes on the i386: dbx and SVR4. These schemes
8508 differ in how they number %ebp, %esp, %eflags, and the
8509 floating-point registers, and are implemented by the arrays
8510 dbx_register_map[] and svr4_dbx_register_map in
8511 gcc/config/i386.c. GCC also defines a third numbering scheme in
8512 gcc/config/i386.c, which it designates as the "default" register
8513 map used in 64bit mode. This last register numbering scheme is
8514 implemented in dbx64_register_map, and is used for AMD64; see
8515 amd64-tdep.c.
8516
8517 Currently, each GCC i386 target always uses the same register
8518 numbering scheme across all its supported debugging formats
8519 i.e. SDB (COFF), stabs and DWARF 2. This is because
8520 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8521 DBX_REGISTER_NUMBER macro which is defined by each target's
8522 respective config header in a manner independent of the requested
8523 output debugging format.
8524
8525 This does not match the arrangement below, which presumes that
8526 the SDB and stabs numbering schemes differ from the DWARF and
8527 DWARF 2 ones. The reason for this arrangement is that it is
8528 likely to get the numbering scheme for the target's
8529 default/native debug format right. For targets where GCC is the
8530 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8531 targets where the native toolchain uses a different numbering
8532 scheme for a particular debug format (stabs-in-ELF on Solaris)
8533 the defaults below will have to be overridden, like
8534 i386_elf_init_abi() does. */
8535
8536 /* Use the dbx register numbering scheme for stabs and COFF. */
8537 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8538 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8539
8540 /* Use the SVR4 register numbering scheme for DWARF 2. */
0fde2c53 8541 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
7ad10968
HZ
8542
8543 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8544 be in use on any of the supported i386 targets. */
8545
8546 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8547
8548 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8549
8550 /* Call dummy code. */
a9b8d892
JK
8551 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8552 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8553 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8554 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8555
8556 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8557 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8558 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8559
8560 set_gdbarch_return_value (gdbarch, i386_return_value);
8561
8562 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8563
8564 /* Stack grows downward. */
8565 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8566
04180708
YQ
8567 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8568 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8569
7ad10968
HZ
8570 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8571 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8572
8573 set_gdbarch_frame_args_skip (gdbarch, 8);
8574
7ad10968
HZ
8575 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8576
8577 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8578
8579 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8580
8581 /* Add the i386 register groups. */
8582 i386_add_reggroups (gdbarch);
90884b2b 8583 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8584
143985b7
AF
8585 /* Helper for function argument information. */
8586 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8587
06da04c6 8588 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8589 appended to the list first, so that it supercedes the DWARF
8590 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8591 currently fails). */
8592 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8593
8594 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8595 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8596 CFI info will be used if it is available. */
10458914 8597 dwarf2_append_unwinders (gdbarch);
6405b0a6 8598
acd5c798 8599 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8600
1ba53b71 8601 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8602 set_gdbarch_pseudo_register_read_value (gdbarch,
8603 i386_pseudo_register_read_value);
90884b2b 8604 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
62e5fd57
MK
8605 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8606 i386_ax_pseudo_register_collect);
90884b2b
L
8607
8608 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8609 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8610
c131fcee
L
8611 /* Override the normal target description method to make the AVX
8612 upper halves anonymous. */
8613 set_gdbarch_register_name (gdbarch, i386_register_name);
8614
8615 /* Even though the default ABI only includes general-purpose registers,
8616 floating-point registers and the SSE registers, we have to leave a
01f9f808 8617 gap for the upper AVX, MPX and AVX512 registers. */
1163a4b7 8618 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
90884b2b 8619
ac04f72b
TT
8620 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8621
90884b2b
L
8622 /* Get the x86 target description from INFO. */
8623 tdesc = info.target_desc;
8624 if (! tdesc_has_registers (tdesc))
1163a4b7 8625 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
90884b2b
L
8626 tdep->tdesc = tdesc;
8627
8628 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8629 tdep->register_names = i386_register_names;
8630
c131fcee
L
8631 /* No upper YMM registers. */
8632 tdep->ymmh_register_names = NULL;
8633 tdep->ymm0h_regnum = -1;
8634
01f9f808
MS
8635 /* No upper ZMM registers. */
8636 tdep->zmmh_register_names = NULL;
8637 tdep->zmm0h_regnum = -1;
8638
8639 /* No high XMM registers. */
8640 tdep->xmm_avx512_register_names = NULL;
8641 tdep->xmm16_regnum = -1;
8642
8643 /* No upper YMM16-31 registers. */
8644 tdep->ymm16h_register_names = NULL;
8645 tdep->ymm16h_regnum = -1;
8646
1ba53b71
L
8647 tdep->num_byte_regs = 8;
8648 tdep->num_word_regs = 8;
8649 tdep->num_dword_regs = 0;
8650 tdep->num_mmx_regs = 8;
c131fcee 8651 tdep->num_ymm_regs = 0;
1ba53b71 8652
1dbcd68c
WT
8653 /* No MPX registers. */
8654 tdep->bnd0r_regnum = -1;
8655 tdep->bndcfgu_regnum = -1;
8656
01f9f808
MS
8657 /* No AVX512 registers. */
8658 tdep->k0_regnum = -1;
8659 tdep->num_zmm_regs = 0;
8660 tdep->num_ymm_avx512_regs = 0;
8661 tdep->num_xmm_avx512_regs = 0;
8662
51547df6
MS
8663 /* No PKEYS registers */
8664 tdep->pkru_regnum = -1;
8665 tdep->num_pkeys_regs = 0;
8666
1163a4b7
JB
8667 /* No segment base registers. */
8668 tdep->fsbase_regnum = -1;
8669
c1e1314d 8670 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
90884b2b 8671
dde08ee1
PA
8672 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8673
6710bf39
SS
8674 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8675
c2170eef
MM
8676 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8677 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8678 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8679
ad9eb1fd
DE
8680 /* Hook in ABI-specific overrides, if they have been registered.
8681 Note: If INFO specifies a 64 bit arch, this is where we turn
8682 a 32-bit i386 into a 64-bit amd64. */
c1e1314d 8683 info.tdesc_data = tdesc_data.get ();
4be87837 8684 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8685
c1e1314d 8686 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
c131fcee 8687 {
c131fcee
L
8688 xfree (tdep);
8689 gdbarch_free (gdbarch);
8690 return NULL;
8691 }
8692
1dbcd68c
WT
8693 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8694
1ba53b71
L
8695 /* Wire in pseudo registers. Number of pseudo registers may be
8696 changed. */
8697 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8698 + tdep->num_word_regs
8699 + tdep->num_dword_regs
c131fcee 8700 + tdep->num_mmx_regs
1dbcd68c 8701 + tdep->num_ymm_regs
01f9f808
MS
8702 + num_bnd_cooked
8703 + tdep->num_ymm_avx512_regs
8704 + tdep->num_zmm_regs));
1ba53b71 8705
90884b2b
L
8706 /* Target description may be changed. */
8707 tdesc = tdep->tdesc;
8708
c1e1314d 8709 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
90884b2b
L
8710
8711 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8712 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8713
1ba53b71
L
8714 /* Make %al the first pseudo-register. */
8715 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8716 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8717
c131fcee 8718 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8719 if (tdep->num_dword_regs)
8720 {
1c6272a6 8721 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8722 tdep->eax_regnum = ymm0_regnum;
8723 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8724 }
8725 else
8726 tdep->eax_regnum = -1;
8727
c131fcee
L
8728 mm0_regnum = ymm0_regnum;
8729 if (tdep->num_ymm_regs)
8730 {
1c6272a6 8731 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8732 tdep->ymm0_regnum = ymm0_regnum;
8733 mm0_regnum += tdep->num_ymm_regs;
8734 }
8735 else
8736 tdep->ymm0_regnum = -1;
8737
01f9f808
MS
8738 if (tdep->num_ymm_avx512_regs)
8739 {
8740 /* Support YMM16-31 pseudo registers if available. */
8741 tdep->ymm16_regnum = mm0_regnum;
8742 mm0_regnum += tdep->num_ymm_avx512_regs;
8743 }
8744 else
8745 tdep->ymm16_regnum = -1;
8746
8747 if (tdep->num_zmm_regs)
8748 {
8749 /* Support ZMM pseudo-register if it is available. */
8750 tdep->zmm0_regnum = mm0_regnum;
8751 mm0_regnum += tdep->num_zmm_regs;
8752 }
8753 else
8754 tdep->zmm0_regnum = -1;
8755
1dbcd68c 8756 bnd0_regnum = mm0_regnum;
1ba53b71
L
8757 if (tdep->num_mmx_regs != 0)
8758 {
1c6272a6 8759 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8760 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8761 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8762 }
8763 else
8764 tdep->mm0_regnum = -1;
8765
1dbcd68c
WT
8766 if (tdep->bnd0r_regnum > 0)
8767 tdep->bnd0_regnum = bnd0_regnum;
8768 else
8769 tdep-> bnd0_regnum = -1;
8770
06da04c6 8771 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8772 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8773 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8774 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8775
8446b36a
MK
8776 /* If we have a register mapping, enable the generic core file
8777 support, unless it has already been enabled. */
8778 if (tdep->gregset_reg_offset
8f0435f7 8779 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8780 set_gdbarch_iterate_over_regset_sections
8781 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8782
7a697b8d
SS
8783 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8784 i386_fast_tracepoint_valid_at);
8785
a62cc96e
AC
8786 return gdbarch;
8787}
8788
8201327c
MK
8789\f
8790
97de3545
JB
8791/* Return the target description for a specified XSAVE feature mask. */
8792
8793const struct target_desc *
1163a4b7 8794i386_target_description (uint64_t xcr0, bool segments)
97de3545 8795{
22916b07 8796 static target_desc *i386_tdescs \
1163a4b7 8797 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
22916b07
YQ
8798 target_desc **tdesc;
8799
8800 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8801 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8802 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8803 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
1163a4b7
JB
8804 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8805 [segments ? 1 : 0];
22916b07
YQ
8806
8807 if (*tdesc == NULL)
1163a4b7 8808 *tdesc = i386_create_target_description (xcr0, false, segments);
22916b07
YQ
8809
8810 return *tdesc;
97de3545
JB
8811}
8812
29c1c244
WT
8813#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8814
8815/* Find the bound directory base address. */
8816
8817static unsigned long
8818i386_mpx_bd_base (void)
8819{
8820 struct regcache *rcache;
8821 struct gdbarch_tdep *tdep;
8822 ULONGEST ret;
8823 enum register_status regstatus;
29c1c244
WT
8824
8825 rcache = get_current_regcache ();
ac7936df 8826 tdep = gdbarch_tdep (rcache->arch ());
29c1c244
WT
8827
8828 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8829
8830 if (regstatus != REG_VALID)
8831 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8832
8833 return ret & MPX_BASE_MASK;
8834}
8835
012b3a21 8836int
29c1c244
WT
8837i386_mpx_enabled (void)
8838{
8839 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8840 const struct target_desc *tdesc = tdep->tdesc;
8841
8842 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8843}
8844
8845#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8846#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8847#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8848#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8849
8850/* Find the bound table entry given the pointer location and the base
8851 address of the table. */
8852
8853static CORE_ADDR
8854i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8855{
8856 CORE_ADDR offset1;
8857 CORE_ADDR offset2;
8858 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8859 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8860 CORE_ADDR bd_entry_addr;
8861 CORE_ADDR bt_addr;
8862 CORE_ADDR bd_entry;
8863 struct gdbarch *gdbarch = get_current_arch ();
8864 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8865
8866
8867 if (gdbarch_ptr_bit (gdbarch) == 64)
8868 {
966f0aef 8869 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
29c1c244
WT
8870 bd_ptr_r_shift = 20;
8871 bd_ptr_l_shift = 3;
8872 bt_select_r_shift = 3;
8873 bt_select_l_shift = 5;
966f0aef
WT
8874 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8875
8876 if ( sizeof (CORE_ADDR) == 4)
e00b3c9b
WT
8877 error (_("bound table examination not supported\
8878 for 64-bit process with 32-bit GDB"));
29c1c244
WT
8879 }
8880 else
8881 {
8882 mpx_bd_mask = MPX_BD_MASK_32;
8883 bd_ptr_r_shift = 12;
8884 bd_ptr_l_shift = 2;
8885 bt_select_r_shift = 2;
8886 bt_select_l_shift = 4;
8887 bt_mask = MPX_BT_MASK_32;
8888 }
8889
8890 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8891 bd_entry_addr = bd_base + offset1;
8892 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8893
8894 if ((bd_entry & 0x1) == 0)
8895 error (_("Invalid bounds directory entry at %s."),
8896 paddress (get_current_arch (), bd_entry_addr));
8897
8898 /* Clearing status bit. */
8899 bd_entry--;
8900 bt_addr = bd_entry & ~bt_select_r_shift;
8901 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8902
8903 return bt_addr + offset2;
8904}
8905
8906/* Print routine for the mpx bounds. */
8907
8908static void
8909i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8910{
8911 struct ui_out *uiout = current_uiout;
34f8ac9f 8912 LONGEST size;
29c1c244
WT
8913 struct gdbarch *gdbarch = get_current_arch ();
8914 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8915 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8916
8917 if (bounds_in_map == 1)
8918 {
112e8700
SM
8919 uiout->text ("Null bounds on map:");
8920 uiout->text (" pointer value = ");
8921 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8922 uiout->text (".");
8923 uiout->text ("\n");
29c1c244
WT
8924 }
8925 else
8926 {
112e8700
SM
8927 uiout->text ("{lbound = ");
8928 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8929 uiout->text (", ubound = ");
29c1c244
WT
8930
8931 /* The upper bound is stored in 1's complement. */
112e8700
SM
8932 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8933 uiout->text ("}: pointer value = ");
8934 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
29c1c244
WT
8935
8936 if (gdbarch_ptr_bit (gdbarch) == 64)
8937 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8938 else
8939 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8940
8941 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8942 -1 represents in this sense full memory access, and there is no need
8943 one to the size. */
8944
8945 size = (size > -1 ? size + 1 : size);
112e8700 8946 uiout->text (", size = ");
33eca680 8947 uiout->field_string ("size", plongest (size));
29c1c244 8948
112e8700
SM
8949 uiout->text (", metadata = ");
8950 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8951 uiout->text ("\n");
29c1c244
WT
8952 }
8953}
8954
8955/* Implement the command "show mpx bound". */
8956
8957static void
c4a3e68e 8958i386_mpx_info_bounds (const char *args, int from_tty)
29c1c244
WT
8959{
8960 CORE_ADDR bd_base = 0;
8961 CORE_ADDR addr;
8962 CORE_ADDR bt_entry_addr = 0;
8963 CORE_ADDR bt_entry[4];
8964 int i;
8965 struct gdbarch *gdbarch = get_current_arch ();
8966 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8967
ae71e7b5
MR
8968 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8969 || !i386_mpx_enabled ())
118ca224 8970 {
bc504a31 8971 printf_unfiltered (_("Intel Memory Protection Extensions not "
118ca224
PP
8972 "supported on this target.\n"));
8973 return;
8974 }
29c1c244
WT
8975
8976 if (args == NULL)
118ca224
PP
8977 {
8978 printf_unfiltered (_("Address of pointer variable expected.\n"));
8979 return;
8980 }
29c1c244
WT
8981
8982 addr = parse_and_eval_address (args);
8983
8984 bd_base = i386_mpx_bd_base ();
8985 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8986
8987 memset (bt_entry, 0, sizeof (bt_entry));
8988
8989 for (i = 0; i < 4; i++)
8990 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8991 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8992 data_ptr_type);
8993
8994 i386_mpx_print_bounds (bt_entry);
8995}
8996
8997/* Implement the command "set mpx bound". */
8998
8999static void
c4a3e68e 9000i386_mpx_set_bounds (const char *args, int from_tty)
29c1c244
WT
9001{
9002 CORE_ADDR bd_base = 0;
9003 CORE_ADDR addr, lower, upper;
9004 CORE_ADDR bt_entry_addr = 0;
9005 CORE_ADDR bt_entry[2];
9006 const char *input = args;
9007 int i;
9008 struct gdbarch *gdbarch = get_current_arch ();
9009 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9010 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9011
ae71e7b5
MR
9012 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9013 || !i386_mpx_enabled ())
bc504a31 9014 error (_("Intel Memory Protection Extensions not supported\
29c1c244
WT
9015 on this target."));
9016
9017 if (args == NULL)
9018 error (_("Pointer value expected."));
9019
9020 addr = value_as_address (parse_to_comma_and_eval (&input));
9021
9022 if (input[0] == ',')
9023 ++input;
9024 if (input[0] == '\0')
9025 error (_("wrong number of arguments: missing lower and upper bound."));
9026 lower = value_as_address (parse_to_comma_and_eval (&input));
9027
9028 if (input[0] == ',')
9029 ++input;
9030 if (input[0] == '\0')
9031 error (_("Wrong number of arguments; Missing upper bound."));
9032 upper = value_as_address (parse_to_comma_and_eval (&input));
9033
9034 bd_base = i386_mpx_bd_base ();
9035 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9036 for (i = 0; i < 2; i++)
9037 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 9038 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
9039 data_ptr_type);
9040 bt_entry[0] = (uint64_t) lower;
9041 bt_entry[1] = ~(uint64_t) upper;
9042
9043 for (i = 0; i < 2; i++)
132874d7
AB
9044 write_memory_unsigned_integer (bt_entry_addr
9045 + i * TYPE_LENGTH (data_ptr_type),
9046 TYPE_LENGTH (data_ptr_type), byte_order,
29c1c244
WT
9047 bt_entry[i]);
9048}
9049
9050static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9051
6c265988 9052void _initialize_i386_tdep ();
c906108c 9053void
6c265988 9054_initialize_i386_tdep ()
c906108c 9055{
a62cc96e
AC
9056 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9057
fc338970 9058 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
9059 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9060 &disassembly_flavor, _("\
9061Set the disassembly flavor."), _("\
9062Show the disassembly flavor."), _("\
9063The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9064 NULL,
9065 NULL, /* FIXME: i18n: */
9066 &setlist, &showlist);
8201327c
MK
9067
9068 /* Add the variable that controls the convention for returning
9069 structs. */
7ab04401
AC
9070 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9071 &struct_convention, _("\
9072Set the convention for returning small structs."), _("\
9073Show the convention for returning small structs."), _("\
9074Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9075is \"default\"."),
9076 NULL,
9077 NULL, /* FIXME: i18n: */
9078 &setlist, &showlist);
8201327c 9079
29c1c244
WT
9080 /* Add "mpx" prefix for the set commands. */
9081
0743fc83 9082 add_basic_prefix_cmd ("mpx", class_support, _("\
bc504a31 9083Set Intel Memory Protection Extensions specific variables."),
0743fc83
TT
9084 &mpx_set_cmdlist, "set mpx ",
9085 0 /* allow-unknown */, &setlist);
29c1c244
WT
9086
9087 /* Add "mpx" prefix for the show commands. */
9088
0743fc83 9089 add_show_prefix_cmd ("mpx", class_support, _("\
bc504a31 9090Show Intel Memory Protection Extensions specific variables."),
0743fc83
TT
9091 &mpx_show_cmdlist, "show mpx ",
9092 0 /* allow-unknown */, &showlist);
29c1c244
WT
9093
9094 /* Add "bound" command for the show mpx commands list. */
9095
9096 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9097 "Show the memory bounds for a given array/pointer storage\
9098 in the bound table.",
9099 &mpx_show_cmdlist);
9100
9101 /* Add "bound" command for the set mpx commands list. */
9102
9103 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9104 "Set the memory bounds for a given array/pointer storage\
9105 in the bound table.",
9106 &mpx_set_cmdlist);
9107
05816f70 9108 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 9109 i386_svr4_init_abi);
38c968cf 9110
209bd28e 9111 /* Initialize the i386-specific register groups. */
38c968cf 9112 i386_init_reggroups ();
90884b2b 9113
c8d5aac9
L
9114 /* Tell remote stub that we support XML target description. */
9115 register_remote_support_xml ("i386");
c906108c 9116}
This page took 2.357214 seconds and 4 git commands to generate.