gdb/testsuite: Don't allow paths to appear in test name
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
4ef3f3be 77static int follow_fork (void);
96baa820 78
d83ad864
DB
79static int follow_fork_inferior (int follow_child, int detach_fork);
80
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
e58b0e63
PA
85void nullify_last_target_wait_ptid (void);
86
2c03e5be 87static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
88
89static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
2484c66b
UW
91static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
8550d3b3
YQ
93static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
aff4e175
AB
95static void resume (gdb_signal sig);
96
372316f1
PA
97/* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99static struct async_event_handler *infrun_async_inferior_event_token;
100
101/* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103static int infrun_is_async = -1;
104
105/* See infrun.h. */
106
107void
108infrun_async (int enable)
109{
110 if (infrun_is_async != enable)
111 {
112 infrun_is_async = enable;
113
114 if (debug_infrun)
115 fprintf_unfiltered (gdb_stdlog,
116 "infrun: infrun_async(%d)\n",
117 enable);
118
119 if (enable)
120 mark_async_event_handler (infrun_async_inferior_event_token);
121 else
122 clear_async_event_handler (infrun_async_inferior_event_token);
123 }
124}
125
0b333c5e
PA
126/* See infrun.h. */
127
128void
129mark_infrun_async_event_handler (void)
130{
131 mark_async_event_handler (infrun_async_inferior_event_token);
132}
133
5fbbeb29
CF
134/* When set, stop the 'step' command if we enter a function which has
135 no line number information. The normal behavior is that we step
136 over such function. */
137int step_stop_if_no_debug = 0;
920d2a44
AC
138static void
139show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141{
142 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
143}
5fbbeb29 144
b9f437de
PA
145/* proceed and normal_stop use this to notify the user when the
146 inferior stopped in a different thread than it had been running
147 in. */
96baa820 148
39f77062 149static ptid_t previous_inferior_ptid;
7a292a7a 150
07107ca6
LM
151/* If set (default for legacy reasons), when following a fork, GDB
152 will detach from one of the fork branches, child or parent.
153 Exactly which branch is detached depends on 'set follow-fork-mode'
154 setting. */
155
156static int detach_fork = 1;
6c95b8df 157
237fc4c9
PA
158int debug_displaced = 0;
159static void
160show_debug_displaced (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
164}
165
ccce17b0 166unsigned int debug_infrun = 0;
920d2a44
AC
167static void
168show_debug_infrun (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
171 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
172}
527159b7 173
03583c20
UW
174
175/* Support for disabling address space randomization. */
176
177int disable_randomization = 1;
178
179static void
180show_disable_randomization (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182{
183 if (target_supports_disable_randomization ())
184 fprintf_filtered (file,
185 _("Disabling randomization of debuggee's "
186 "virtual address space is %s.\n"),
187 value);
188 else
189 fputs_filtered (_("Disabling randomization of debuggee's "
190 "virtual address space is unsupported on\n"
191 "this platform.\n"), file);
192}
193
194static void
eb4c3f4a 195set_disable_randomization (const char *args, int from_tty,
03583c20
UW
196 struct cmd_list_element *c)
197{
198 if (!target_supports_disable_randomization ())
199 error (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform."));
202}
203
d32dc48e
PA
204/* User interface for non-stop mode. */
205
206int non_stop = 0;
207static int non_stop_1 = 0;
208
209static void
eb4c3f4a 210set_non_stop (const char *args, int from_tty,
d32dc48e
PA
211 struct cmd_list_element *c)
212{
213 if (target_has_execution)
214 {
215 non_stop_1 = non_stop;
216 error (_("Cannot change this setting while the inferior is running."));
217 }
218
219 non_stop = non_stop_1;
220}
221
222static void
223show_non_stop (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225{
226 fprintf_filtered (file,
227 _("Controlling the inferior in non-stop mode is %s.\n"),
228 value);
229}
230
d914c394
SS
231/* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
d914c394
SS
235int observer_mode = 0;
236static int observer_mode_1 = 0;
237
238static void
eb4c3f4a 239set_observer_mode (const char *args, int from_tty,
d914c394
SS
240 struct cmd_list_element *c)
241{
d914c394
SS
242 if (target_has_execution)
243 {
244 observer_mode_1 = observer_mode;
245 error (_("Cannot change this setting while the inferior is running."));
246 }
247
248 observer_mode = observer_mode_1;
249
250 may_write_registers = !observer_mode;
251 may_write_memory = !observer_mode;
252 may_insert_breakpoints = !observer_mode;
253 may_insert_tracepoints = !observer_mode;
254 /* We can insert fast tracepoints in or out of observer mode,
255 but enable them if we're going into this mode. */
256 if (observer_mode)
257 may_insert_fast_tracepoints = 1;
258 may_stop = !observer_mode;
259 update_target_permissions ();
260
261 /* Going *into* observer mode we must force non-stop, then
262 going out we leave it that way. */
263 if (observer_mode)
264 {
d914c394
SS
265 pagination_enabled = 0;
266 non_stop = non_stop_1 = 1;
267 }
268
269 if (from_tty)
270 printf_filtered (_("Observer mode is now %s.\n"),
271 (observer_mode ? "on" : "off"));
272}
273
274static void
275show_observer_mode (struct ui_file *file, int from_tty,
276 struct cmd_list_element *c, const char *value)
277{
278 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
279}
280
281/* This updates the value of observer mode based on changes in
282 permissions. Note that we are deliberately ignoring the values of
283 may-write-registers and may-write-memory, since the user may have
284 reason to enable these during a session, for instance to turn on a
285 debugging-related global. */
286
287void
288update_observer_mode (void)
289{
290 int newval;
291
292 newval = (!may_insert_breakpoints
293 && !may_insert_tracepoints
294 && may_insert_fast_tracepoints
295 && !may_stop
296 && non_stop);
297
298 /* Let the user know if things change. */
299 if (newval != observer_mode)
300 printf_filtered (_("Observer mode is now %s.\n"),
301 (newval ? "on" : "off"));
302
303 observer_mode = observer_mode_1 = newval;
304}
c2c6d25f 305
c906108c
SS
306/* Tables of how to react to signals; the user sets them. */
307
308static unsigned char *signal_stop;
309static unsigned char *signal_print;
310static unsigned char *signal_program;
311
ab04a2af
TT
312/* Table of signals that are registered with "catch signal". A
313 non-zero entry indicates that the signal is caught by some "catch
314 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
315 signals. */
316static unsigned char *signal_catch;
317
2455069d
UW
318/* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
321static unsigned char *signal_pass;
322
c906108c
SS
323#define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331#define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
9b224c5e
PA
339/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
340 this function is to avoid exporting `signal_program'. */
341
342void
343update_signals_program_target (void)
344{
a493e3e2 345 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
346}
347
1777feb0 348/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 349
edb3359d 350#define RESUME_ALL minus_one_ptid
c906108c
SS
351
352/* Command list pointer for the "stop" placeholder. */
353
354static struct cmd_list_element *stop_command;
355
c906108c
SS
356/* Nonzero if we want to give control to the user when we're notified
357 of shared library events by the dynamic linker. */
628fe4e4 358int stop_on_solib_events;
f9e14852
GB
359
360/* Enable or disable optional shared library event breakpoints
361 as appropriate when the above flag is changed. */
362
363static void
eb4c3f4a
TT
364set_stop_on_solib_events (const char *args,
365 int from_tty, struct cmd_list_element *c)
f9e14852
GB
366{
367 update_solib_breakpoints ();
368}
369
920d2a44
AC
370static void
371show_stop_on_solib_events (struct ui_file *file, int from_tty,
372 struct cmd_list_element *c, const char *value)
373{
374 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
375 value);
376}
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
4e1c45ea 388void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
40478521 393static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
d83ad864
DB
411/* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417static int
418follow_fork_inferior (int follow_child, int detach_fork)
419{
420 int has_vforked;
79639e11 421 ptid_t parent_ptid, child_ptid;
d83ad864
DB
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
79639e11
PA
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 430 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439Can not resume the parent process over vfork in the foreground while\n\
440holding the child stopped. Try \"set detach-on-fork\" or \
441\"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
d83ad864
DB
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
00431a78 461 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
462 }
463
f67c0c91 464 if (print_inferior_events)
d83ad864 465 {
8dd06f7a 466 /* Ensure that we have a process ptid. */
e99b03dc 467 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 468
223ffa71 469 target_terminal::ours_for_output ();
d83ad864 470 fprintf_filtered (gdb_stdlog,
f67c0c91 471 _("[Detaching after %s from child %s]\n"),
6f259a23 472 has_vforked ? "vfork" : "fork",
8dd06f7a 473 target_pid_to_str (process_ptid));
d83ad864
DB
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
d83ad864
DB
479
480 /* Add process to GDB's tables. */
e99b03dc 481 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
5ed8105e 489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 490
79639e11 491 inferior_ptid = child_ptid;
f67c0c91 492 add_thread_silent (inferior_ptid);
2a00d7ce 493 set_current_inferior (child_inf);
d83ad864
DB
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
564b1e3f 514 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
d83ad864
DB
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
f67c0c91 552 if (print_inferior_events)
d83ad864 553 {
f67c0c91
SDJ
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
223ffa71 557 target_terminal::ours_for_output ();
6f259a23 558 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
6f259a23 561 has_vforked ? "vfork" : "fork",
f67c0c91 562 child_pid.c_str ());
d83ad864
DB
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
e99b03dc 568 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 /* If we're vforking, we want to hold on to the parent until the
579 child exits or execs. At child exec or exit time we can
580 remove the old breakpoints from the parent and detach or
581 resume debugging it. Otherwise, detach the parent now; we'll
582 want to reuse it's program/address spaces, but we can't set
583 them to the child before removing breakpoints from the
584 parent, otherwise, the breakpoints module could decide to
585 remove breakpoints from the wrong process (since they'd be
586 assigned to the same address space). */
587
588 if (has_vforked)
589 {
590 gdb_assert (child_inf->vfork_parent == NULL);
591 gdb_assert (parent_inf->vfork_child == NULL);
592 child_inf->vfork_parent = parent_inf;
593 child_inf->pending_detach = 0;
594 parent_inf->vfork_child = child_inf;
595 parent_inf->pending_detach = detach_fork;
596 parent_inf->waiting_for_vfork_done = 0;
597 }
598 else if (detach_fork)
6f259a23 599 {
f67c0c91 600 if (print_inferior_events)
6f259a23 601 {
8dd06f7a 602 /* Ensure that we have a process ptid. */
e99b03dc 603 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 604
223ffa71 605 target_terminal::ours_for_output ();
6f259a23 606 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
607 _("[Detaching after fork from "
608 "parent %s]\n"),
8dd06f7a 609 target_pid_to_str (process_ptid));
6f259a23
DB
610 }
611
6e1e1966 612 target_detach (parent_inf, 0);
6f259a23 613 }
d83ad864
DB
614
615 /* Note that the detach above makes PARENT_INF dangling. */
616
617 /* Add the child thread to the appropriate lists, and switch to
618 this new thread, before cloning the program space, and
619 informing the solib layer about this new process. */
620
79639e11 621 inferior_ptid = child_ptid;
f67c0c91 622 add_thread_silent (inferior_ptid);
2a00d7ce 623 set_current_inferior (child_inf);
d83ad864
DB
624
625 /* If this is a vfork child, then the address-space is shared
626 with the parent. If we detached from the parent, then we can
627 reuse the parent's program/address spaces. */
628 if (has_vforked || detach_fork)
629 {
630 child_inf->pspace = parent_pspace;
631 child_inf->aspace = child_inf->pspace->aspace;
632 }
633 else
634 {
635 child_inf->aspace = new_address_space ();
564b1e3f 636 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
637 child_inf->removable = 1;
638 child_inf->symfile_flags = SYMFILE_NO_READ;
639 set_current_program_space (child_inf->pspace);
640 clone_program_space (child_inf->pspace, parent_pspace);
641
642 /* Let the shared library layer (e.g., solib-svr4) learn
643 about this new process, relocate the cloned exec, pull in
644 shared libraries, and install the solib event breakpoint.
645 If a "cloned-VM" event was propagated better throughout
646 the core, this wouldn't be required. */
647 solib_create_inferior_hook (0);
648 }
649 }
650
651 return target_follow_fork (follow_child, detach_fork);
652}
653
e58b0e63
PA
654/* Tell the target to follow the fork we're stopped at. Returns true
655 if the inferior should be resumed; false, if the target for some
656 reason decided it's best not to resume. */
657
6604731b 658static int
4ef3f3be 659follow_fork (void)
c906108c 660{
ea1dd7bc 661 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
662 int should_resume = 1;
663 struct thread_info *tp;
664
665 /* Copy user stepping state to the new inferior thread. FIXME: the
666 followed fork child thread should have a copy of most of the
4e3990f4
DE
667 parent thread structure's run control related fields, not just these.
668 Initialized to avoid "may be used uninitialized" warnings from gcc. */
669 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 670 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
671 CORE_ADDR step_range_start = 0;
672 CORE_ADDR step_range_end = 0;
673 struct frame_id step_frame_id = { 0 };
8980e177 674 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
675
676 if (!non_stop)
677 {
678 ptid_t wait_ptid;
679 struct target_waitstatus wait_status;
680
681 /* Get the last target status returned by target_wait(). */
682 get_last_target_status (&wait_ptid, &wait_status);
683
684 /* If not stopped at a fork event, then there's nothing else to
685 do. */
686 if (wait_status.kind != TARGET_WAITKIND_FORKED
687 && wait_status.kind != TARGET_WAITKIND_VFORKED)
688 return 1;
689
690 /* Check if we switched over from WAIT_PTID, since the event was
691 reported. */
00431a78
PA
692 if (wait_ptid != minus_one_ptid
693 && inferior_ptid != wait_ptid)
e58b0e63
PA
694 {
695 /* We did. Switch back to WAIT_PTID thread, to tell the
696 target to follow it (in either direction). We'll
697 afterwards refuse to resume, and inform the user what
698 happened. */
00431a78
PA
699 thread_info *wait_thread
700 = find_thread_ptid (wait_ptid);
701 switch_to_thread (wait_thread);
e58b0e63
PA
702 should_resume = 0;
703 }
704 }
705
706 tp = inferior_thread ();
707
708 /* If there were any forks/vforks that were caught and are now to be
709 followed, then do so now. */
710 switch (tp->pending_follow.kind)
711 {
712 case TARGET_WAITKIND_FORKED:
713 case TARGET_WAITKIND_VFORKED:
714 {
715 ptid_t parent, child;
716
717 /* If the user did a next/step, etc, over a fork call,
718 preserve the stepping state in the fork child. */
719 if (follow_child && should_resume)
720 {
8358c15c
JK
721 step_resume_breakpoint = clone_momentary_breakpoint
722 (tp->control.step_resume_breakpoint);
16c381f0
JK
723 step_range_start = tp->control.step_range_start;
724 step_range_end = tp->control.step_range_end;
725 step_frame_id = tp->control.step_frame_id;
186c406b
TT
726 exception_resume_breakpoint
727 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 728 thread_fsm = tp->thread_fsm;
e58b0e63
PA
729
730 /* For now, delete the parent's sr breakpoint, otherwise,
731 parent/child sr breakpoints are considered duplicates,
732 and the child version will not be installed. Remove
733 this when the breakpoints module becomes aware of
734 inferiors and address spaces. */
735 delete_step_resume_breakpoint (tp);
16c381f0
JK
736 tp->control.step_range_start = 0;
737 tp->control.step_range_end = 0;
738 tp->control.step_frame_id = null_frame_id;
186c406b 739 delete_exception_resume_breakpoint (tp);
8980e177 740 tp->thread_fsm = NULL;
e58b0e63
PA
741 }
742
743 parent = inferior_ptid;
744 child = tp->pending_follow.value.related_pid;
745
d83ad864
DB
746 /* Set up inferior(s) as specified by the caller, and tell the
747 target to do whatever is necessary to follow either parent
748 or child. */
749 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
750 {
751 /* Target refused to follow, or there's some other reason
752 we shouldn't resume. */
753 should_resume = 0;
754 }
755 else
756 {
757 /* This pending follow fork event is now handled, one way
758 or another. The previous selected thread may be gone
759 from the lists by now, but if it is still around, need
760 to clear the pending follow request. */
e09875d4 761 tp = find_thread_ptid (parent);
e58b0e63
PA
762 if (tp)
763 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
764
765 /* This makes sure we don't try to apply the "Switched
766 over from WAIT_PID" logic above. */
767 nullify_last_target_wait_ptid ();
768
1777feb0 769 /* If we followed the child, switch to it... */
e58b0e63
PA
770 if (follow_child)
771 {
00431a78
PA
772 thread_info *child_thr = find_thread_ptid (child);
773 switch_to_thread (child_thr);
e58b0e63
PA
774
775 /* ... and preserve the stepping state, in case the
776 user was stepping over the fork call. */
777 if (should_resume)
778 {
779 tp = inferior_thread ();
8358c15c
JK
780 tp->control.step_resume_breakpoint
781 = step_resume_breakpoint;
16c381f0
JK
782 tp->control.step_range_start = step_range_start;
783 tp->control.step_range_end = step_range_end;
784 tp->control.step_frame_id = step_frame_id;
186c406b
TT
785 tp->control.exception_resume_breakpoint
786 = exception_resume_breakpoint;
8980e177 787 tp->thread_fsm = thread_fsm;
e58b0e63
PA
788 }
789 else
790 {
791 /* If we get here, it was because we're trying to
792 resume from a fork catchpoint, but, the user
793 has switched threads away from the thread that
794 forked. In that case, the resume command
795 issued is most likely not applicable to the
796 child, so just warn, and refuse to resume. */
3e43a32a 797 warning (_("Not resuming: switched threads "
fd7dcb94 798 "before following fork child."));
e58b0e63
PA
799 }
800
801 /* Reset breakpoints in the child as appropriate. */
802 follow_inferior_reset_breakpoints ();
803 }
e58b0e63
PA
804 }
805 }
806 break;
807 case TARGET_WAITKIND_SPURIOUS:
808 /* Nothing to follow. */
809 break;
810 default:
811 internal_error (__FILE__, __LINE__,
812 "Unexpected pending_follow.kind %d\n",
813 tp->pending_follow.kind);
814 break;
815 }
c906108c 816
e58b0e63 817 return should_resume;
c906108c
SS
818}
819
d83ad864 820static void
6604731b 821follow_inferior_reset_breakpoints (void)
c906108c 822{
4e1c45ea
PA
823 struct thread_info *tp = inferior_thread ();
824
6604731b
DJ
825 /* Was there a step_resume breakpoint? (There was if the user
826 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
827 thread number. Cloned step_resume breakpoints are disabled on
828 creation, so enable it here now that it is associated with the
829 correct thread.
6604731b
DJ
830
831 step_resumes are a form of bp that are made to be per-thread.
832 Since we created the step_resume bp when the parent process
833 was being debugged, and now are switching to the child process,
834 from the breakpoint package's viewpoint, that's a switch of
835 "threads". We must update the bp's notion of which thread
836 it is for, or it'll be ignored when it triggers. */
837
8358c15c 838 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
839 {
840 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
841 tp->control.step_resume_breakpoint->loc->enabled = 1;
842 }
6604731b 843
a1aa2221 844 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 845 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
846 {
847 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
848 tp->control.exception_resume_breakpoint->loc->enabled = 1;
849 }
186c406b 850
6604731b
DJ
851 /* Reinsert all breakpoints in the child. The user may have set
852 breakpoints after catching the fork, in which case those
853 were never set in the child, but only in the parent. This makes
854 sure the inserted breakpoints match the breakpoint list. */
855
856 breakpoint_re_set ();
857 insert_breakpoints ();
c906108c 858}
c906108c 859
6c95b8df
PA
860/* The child has exited or execed: resume threads of the parent the
861 user wanted to be executing. */
862
863static int
864proceed_after_vfork_done (struct thread_info *thread,
865 void *arg)
866{
867 int pid = * (int *) arg;
868
00431a78
PA
869 if (thread->ptid.pid () == pid
870 && thread->state == THREAD_RUNNING
871 && !thread->executing
6c95b8df 872 && !thread->stop_requested
a493e3e2 873 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
874 {
875 if (debug_infrun)
876 fprintf_unfiltered (gdb_stdlog,
877 "infrun: resuming vfork parent thread %s\n",
878 target_pid_to_str (thread->ptid));
879
00431a78 880 switch_to_thread (thread);
70509625 881 clear_proceed_status (0);
64ce06e4 882 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
883 }
884
885 return 0;
886}
887
5ed8105e
PA
888/* Save/restore inferior_ptid, current program space and current
889 inferior. Only use this if the current context points at an exited
890 inferior (and therefore there's no current thread to save). */
891class scoped_restore_exited_inferior
892{
893public:
894 scoped_restore_exited_inferior ()
895 : m_saved_ptid (&inferior_ptid)
896 {}
897
898private:
899 scoped_restore_tmpl<ptid_t> m_saved_ptid;
900 scoped_restore_current_program_space m_pspace;
901 scoped_restore_current_inferior m_inferior;
902};
903
6c95b8df
PA
904/* Called whenever we notice an exec or exit event, to handle
905 detaching or resuming a vfork parent. */
906
907static void
908handle_vfork_child_exec_or_exit (int exec)
909{
910 struct inferior *inf = current_inferior ();
911
912 if (inf->vfork_parent)
913 {
914 int resume_parent = -1;
915
916 /* This exec or exit marks the end of the shared memory region
917 between the parent and the child. If the user wanted to
918 detach from the parent, now is the time. */
919
920 if (inf->vfork_parent->pending_detach)
921 {
922 struct thread_info *tp;
6c95b8df
PA
923 struct program_space *pspace;
924 struct address_space *aspace;
925
1777feb0 926 /* follow-fork child, detach-on-fork on. */
6c95b8df 927
68c9da30
PA
928 inf->vfork_parent->pending_detach = 0;
929
5ed8105e
PA
930 gdb::optional<scoped_restore_exited_inferior>
931 maybe_restore_inferior;
932 gdb::optional<scoped_restore_current_pspace_and_thread>
933 maybe_restore_thread;
934
935 /* If we're handling a child exit, then inferior_ptid points
936 at the inferior's pid, not to a thread. */
f50f4e56 937 if (!exec)
5ed8105e 938 maybe_restore_inferior.emplace ();
f50f4e56 939 else
5ed8105e 940 maybe_restore_thread.emplace ();
6c95b8df
PA
941
942 /* We're letting loose of the parent. */
00431a78
PA
943 tp = any_live_thread_of_inferior (inf->vfork_parent);
944 switch_to_thread (tp);
6c95b8df
PA
945
946 /* We're about to detach from the parent, which implicitly
947 removes breakpoints from its address space. There's a
948 catch here: we want to reuse the spaces for the child,
949 but, parent/child are still sharing the pspace at this
950 point, although the exec in reality makes the kernel give
951 the child a fresh set of new pages. The problem here is
952 that the breakpoints module being unaware of this, would
953 likely chose the child process to write to the parent
954 address space. Swapping the child temporarily away from
955 the spaces has the desired effect. Yes, this is "sort
956 of" a hack. */
957
958 pspace = inf->pspace;
959 aspace = inf->aspace;
960 inf->aspace = NULL;
961 inf->pspace = NULL;
962
f67c0c91 963 if (print_inferior_events)
6c95b8df 964 {
f67c0c91 965 const char *pidstr
f2907e49 966 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
f67c0c91 967
223ffa71 968 target_terminal::ours_for_output ();
6c95b8df
PA
969
970 if (exec)
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
973 _("[Detaching vfork parent %s "
974 "after child exec]\n"), pidstr);
6f259a23 975 }
6c95b8df 976 else
6f259a23
DB
977 {
978 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
979 _("[Detaching vfork parent %s "
980 "after child exit]\n"), pidstr);
6f259a23 981 }
6c95b8df
PA
982 }
983
6e1e1966 984 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
985
986 /* Put it back. */
987 inf->pspace = pspace;
988 inf->aspace = aspace;
6c95b8df
PA
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
564b1e3f 994 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
6c95b8df
PA
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
5ed8105e
PA
1017 /* Switch to null_ptid while running clone_program_space, so
1018 that clone_program_space doesn't want to read the
1019 selected frame of a dead process. */
1020 scoped_restore restore_ptid
1021 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
564b1e3f 1028 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
7dcd53a0 1031 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
6c95b8df
PA
1036 resume_parent = inf->vfork_parent->pid;
1037 /* Break the bonds. */
1038 inf->vfork_parent->vfork_child = NULL;
1039 }
1040
1041 inf->vfork_parent = NULL;
1042
1043 gdb_assert (current_program_space == inf->pspace);
1044
1045 if (non_stop && resume_parent != -1)
1046 {
1047 /* If the user wanted the parent to be running, let it go
1048 free now. */
5ed8105e 1049 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1050
1051 if (debug_infrun)
3e43a32a
MS
1052 fprintf_unfiltered (gdb_stdlog,
1053 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1054 resume_parent);
1055
1056 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
ecf45d2c 1080/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
ecf45d2c 1083follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1084{
6c95b8df 1085 struct inferior *inf = current_inferior ();
e99b03dc 1086 int pid = ptid.pid ();
94585166 1087 ptid_t process_ptid;
7a292a7a 1088
c906108c
SS
1089 /* This is an exec event that we actually wish to pay attention to.
1090 Refresh our symbol table to the newly exec'd program, remove any
1091 momentary bp's, etc.
1092
1093 If there are breakpoints, they aren't really inserted now,
1094 since the exec() transformed our inferior into a fresh set
1095 of instructions.
1096
1097 We want to preserve symbolic breakpoints on the list, since
1098 we have hopes that they can be reset after the new a.out's
1099 symbol table is read.
1100
1101 However, any "raw" breakpoints must be removed from the list
1102 (e.g., the solib bp's), since their address is probably invalid
1103 now.
1104
1105 And, we DON'T want to call delete_breakpoints() here, since
1106 that may write the bp's "shadow contents" (the instruction
1107 value that was overwritten witha TRAP instruction). Since
1777feb0 1108 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1109
1110 mark_breakpoints_out ();
1111
95e50b27
PA
1112 /* The target reports the exec event to the main thread, even if
1113 some other thread does the exec, and even if the main thread was
1114 stopped or already gone. We may still have non-leader threads of
1115 the process on our list. E.g., on targets that don't have thread
1116 exit events (like remote); or on native Linux in non-stop mode if
1117 there were only two threads in the inferior and the non-leader
1118 one is the one that execs (and nothing forces an update of the
1119 thread list up to here). When debugging remotely, it's best to
1120 avoid extra traffic, when possible, so avoid syncing the thread
1121 list with the target, and instead go ahead and delete all threads
1122 of the process but one that reported the event. Note this must
1123 be done before calling update_breakpoints_after_exec, as
1124 otherwise clearing the threads' resources would reference stale
1125 thread breakpoints -- it may have been one of these threads that
1126 stepped across the exec. We could just clear their stepping
1127 states, but as long as we're iterating, might as well delete
1128 them. Deleting them now rather than at the next user-visible
1129 stop provides a nicer sequence of events for user and MI
1130 notifications. */
08036331 1131 for (thread_info *th : all_threads_safe ())
d7e15655 1132 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1133 delete_thread (th);
95e50b27
PA
1134
1135 /* We also need to clear any left over stale state for the
1136 leader/event thread. E.g., if there was any step-resume
1137 breakpoint or similar, it's gone now. We cannot truly
1138 step-to-next statement through an exec(). */
08036331 1139 thread_info *th = inferior_thread ();
8358c15c 1140 th->control.step_resume_breakpoint = NULL;
186c406b 1141 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1142 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1143 th->control.step_range_start = 0;
1144 th->control.step_range_end = 0;
c906108c 1145
95e50b27
PA
1146 /* The user may have had the main thread held stopped in the
1147 previous image (e.g., schedlock on, or non-stop). Release
1148 it now. */
a75724bc
PA
1149 th->stop_requested = 0;
1150
95e50b27
PA
1151 update_breakpoints_after_exec ();
1152
1777feb0 1153 /* What is this a.out's name? */
f2907e49 1154 process_ptid = ptid_t (pid);
6c95b8df 1155 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1156 target_pid_to_str (process_ptid),
ecf45d2c 1157 exec_file_target);
c906108c
SS
1158
1159 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1160 inferior has essentially been killed & reborn. */
7a292a7a 1161
c906108c 1162 gdb_flush (gdb_stdout);
6ca15a4b
PA
1163
1164 breakpoint_init_inferior (inf_execd);
e85a822c 1165
797bc1cb
TT
1166 gdb::unique_xmalloc_ptr<char> exec_file_host
1167 = exec_file_find (exec_file_target, NULL);
ff862be4 1168
ecf45d2c
SL
1169 /* If we were unable to map the executable target pathname onto a host
1170 pathname, tell the user that. Otherwise GDB's subsequent behavior
1171 is confusing. Maybe it would even be better to stop at this point
1172 so that the user can specify a file manually before continuing. */
1173 if (exec_file_host == NULL)
1174 warning (_("Could not load symbols for executable %s.\n"
1175 "Do you need \"set sysroot\"?"),
1176 exec_file_target);
c906108c 1177
cce9b6bf
PA
1178 /* Reset the shared library package. This ensures that we get a
1179 shlib event when the child reaches "_start", at which point the
1180 dld will have had a chance to initialize the child. */
1181 /* Also, loading a symbol file below may trigger symbol lookups, and
1182 we don't want those to be satisfied by the libraries of the
1183 previous incarnation of this process. */
1184 no_shared_libraries (NULL, 0);
1185
6c95b8df
PA
1186 if (follow_exec_mode_string == follow_exec_mode_new)
1187 {
6c95b8df
PA
1188 /* The user wants to keep the old inferior and program spaces
1189 around. Create a new fresh one, and switch to it. */
1190
35ed81d4
SM
1191 /* Do exit processing for the original inferior before setting the new
1192 inferior's pid. Having two inferiors with the same pid would confuse
1193 find_inferior_p(t)id. Transfer the terminal state and info from the
1194 old to the new inferior. */
1195 inf = add_inferior_with_spaces ();
1196 swap_terminal_info (inf, current_inferior ());
057302ce 1197 exit_inferior_silent (current_inferior ());
17d8546e 1198
94585166 1199 inf->pid = pid;
ecf45d2c 1200 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1201
1202 set_current_inferior (inf);
94585166 1203 set_current_program_space (inf->pspace);
c4c17fb0 1204 add_thread (ptid);
6c95b8df 1205 }
9107fc8d
PA
1206 else
1207 {
1208 /* The old description may no longer be fit for the new image.
1209 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1210 old description; we'll read a new one below. No need to do
1211 this on "follow-exec-mode new", as the old inferior stays
1212 around (its description is later cleared/refetched on
1213 restart). */
1214 target_clear_description ();
1215 }
6c95b8df
PA
1216
1217 gdb_assert (current_program_space == inf->pspace);
1218
ecf45d2c
SL
1219 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1220 because the proper displacement for a PIE (Position Independent
1221 Executable) main symbol file will only be computed by
1222 solib_create_inferior_hook below. breakpoint_re_set would fail
1223 to insert the breakpoints with the zero displacement. */
797bc1cb 1224 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1225
9107fc8d
PA
1226 /* If the target can specify a description, read it. Must do this
1227 after flipping to the new executable (because the target supplied
1228 description must be compatible with the executable's
1229 architecture, and the old executable may e.g., be 32-bit, while
1230 the new one 64-bit), and before anything involving memory or
1231 registers. */
1232 target_find_description ();
1233
268a4a75 1234 solib_create_inferior_hook (0);
c906108c 1235
4efc6507
DE
1236 jit_inferior_created_hook ();
1237
c1e56572
JK
1238 breakpoint_re_set ();
1239
c906108c
SS
1240 /* Reinsert all breakpoints. (Those which were symbolic have
1241 been reset to the proper address in the new a.out, thanks
1777feb0 1242 to symbol_file_command...). */
c906108c
SS
1243 insert_breakpoints ();
1244
1245 /* The next resume of this inferior should bring it to the shlib
1246 startup breakpoints. (If the user had also set bp's on
1247 "main" from the old (parent) process, then they'll auto-
1777feb0 1248 matically get reset there in the new process.). */
c906108c
SS
1249}
1250
c2829269
PA
1251/* The queue of threads that need to do a step-over operation to get
1252 past e.g., a breakpoint. What technique is used to step over the
1253 breakpoint/watchpoint does not matter -- all threads end up in the
1254 same queue, to maintain rough temporal order of execution, in order
1255 to avoid starvation, otherwise, we could e.g., find ourselves
1256 constantly stepping the same couple threads past their breakpoints
1257 over and over, if the single-step finish fast enough. */
1258struct thread_info *step_over_queue_head;
1259
6c4cfb24
PA
1260/* Bit flags indicating what the thread needs to step over. */
1261
8d297bbf 1262enum step_over_what_flag
6c4cfb24
PA
1263 {
1264 /* Step over a breakpoint. */
1265 STEP_OVER_BREAKPOINT = 1,
1266
1267 /* Step past a non-continuable watchpoint, in order to let the
1268 instruction execute so we can evaluate the watchpoint
1269 expression. */
1270 STEP_OVER_WATCHPOINT = 2
1271 };
8d297bbf 1272DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1273
963f9c80 1274/* Info about an instruction that is being stepped over. */
31e77af2
PA
1275
1276struct step_over_info
1277{
963f9c80
PA
1278 /* If we're stepping past a breakpoint, this is the address space
1279 and address of the instruction the breakpoint is set at. We'll
1280 skip inserting all breakpoints here. Valid iff ASPACE is
1281 non-NULL. */
8b86c959 1282 const address_space *aspace;
31e77af2 1283 CORE_ADDR address;
963f9c80
PA
1284
1285 /* The instruction being stepped over triggers a nonsteppable
1286 watchpoint. If true, we'll skip inserting watchpoints. */
1287 int nonsteppable_watchpoint_p;
21edc42f
YQ
1288
1289 /* The thread's global number. */
1290 int thread;
31e77af2
PA
1291};
1292
1293/* The step-over info of the location that is being stepped over.
1294
1295 Note that with async/breakpoint always-inserted mode, a user might
1296 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1297 being stepped over. As setting a new breakpoint inserts all
1298 breakpoints, we need to make sure the breakpoint being stepped over
1299 isn't inserted then. We do that by only clearing the step-over
1300 info when the step-over is actually finished (or aborted).
1301
1302 Presently GDB can only step over one breakpoint at any given time.
1303 Given threads that can't run code in the same address space as the
1304 breakpoint's can't really miss the breakpoint, GDB could be taught
1305 to step-over at most one breakpoint per address space (so this info
1306 could move to the address space object if/when GDB is extended).
1307 The set of breakpoints being stepped over will normally be much
1308 smaller than the set of all breakpoints, so a flag in the
1309 breakpoint location structure would be wasteful. A separate list
1310 also saves complexity and run-time, as otherwise we'd have to go
1311 through all breakpoint locations clearing their flag whenever we
1312 start a new sequence. Similar considerations weigh against storing
1313 this info in the thread object. Plus, not all step overs actually
1314 have breakpoint locations -- e.g., stepping past a single-step
1315 breakpoint, or stepping to complete a non-continuable
1316 watchpoint. */
1317static struct step_over_info step_over_info;
1318
1319/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1320 stepping over.
1321 N.B. We record the aspace and address now, instead of say just the thread,
1322 because when we need the info later the thread may be running. */
31e77af2
PA
1323
1324static void
8b86c959 1325set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1326 int nonsteppable_watchpoint_p,
1327 int thread)
31e77af2
PA
1328{
1329 step_over_info.aspace = aspace;
1330 step_over_info.address = address;
963f9c80 1331 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1332 step_over_info.thread = thread;
31e77af2
PA
1333}
1334
1335/* Called when we're not longer stepping over a breakpoint / an
1336 instruction, so all breakpoints are free to be (re)inserted. */
1337
1338static void
1339clear_step_over_info (void)
1340{
372316f1
PA
1341 if (debug_infrun)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "infrun: clear_step_over_info\n");
31e77af2
PA
1344 step_over_info.aspace = NULL;
1345 step_over_info.address = 0;
963f9c80 1346 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1347 step_over_info.thread = -1;
31e77af2
PA
1348}
1349
7f89fd65 1350/* See infrun.h. */
31e77af2
PA
1351
1352int
1353stepping_past_instruction_at (struct address_space *aspace,
1354 CORE_ADDR address)
1355{
1356 return (step_over_info.aspace != NULL
1357 && breakpoint_address_match (aspace, address,
1358 step_over_info.aspace,
1359 step_over_info.address));
1360}
1361
963f9c80
PA
1362/* See infrun.h. */
1363
21edc42f
YQ
1364int
1365thread_is_stepping_over_breakpoint (int thread)
1366{
1367 return (step_over_info.thread != -1
1368 && thread == step_over_info.thread);
1369}
1370
1371/* See infrun.h. */
1372
963f9c80
PA
1373int
1374stepping_past_nonsteppable_watchpoint (void)
1375{
1376 return step_over_info.nonsteppable_watchpoint_p;
1377}
1378
6cc83d2a
PA
1379/* Returns true if step-over info is valid. */
1380
1381static int
1382step_over_info_valid_p (void)
1383{
963f9c80
PA
1384 return (step_over_info.aspace != NULL
1385 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1386}
1387
c906108c 1388\f
237fc4c9
PA
1389/* Displaced stepping. */
1390
1391/* In non-stop debugging mode, we must take special care to manage
1392 breakpoints properly; in particular, the traditional strategy for
1393 stepping a thread past a breakpoint it has hit is unsuitable.
1394 'Displaced stepping' is a tactic for stepping one thread past a
1395 breakpoint it has hit while ensuring that other threads running
1396 concurrently will hit the breakpoint as they should.
1397
1398 The traditional way to step a thread T off a breakpoint in a
1399 multi-threaded program in all-stop mode is as follows:
1400
1401 a0) Initially, all threads are stopped, and breakpoints are not
1402 inserted.
1403 a1) We single-step T, leaving breakpoints uninserted.
1404 a2) We insert breakpoints, and resume all threads.
1405
1406 In non-stop debugging, however, this strategy is unsuitable: we
1407 don't want to have to stop all threads in the system in order to
1408 continue or step T past a breakpoint. Instead, we use displaced
1409 stepping:
1410
1411 n0) Initially, T is stopped, other threads are running, and
1412 breakpoints are inserted.
1413 n1) We copy the instruction "under" the breakpoint to a separate
1414 location, outside the main code stream, making any adjustments
1415 to the instruction, register, and memory state as directed by
1416 T's architecture.
1417 n2) We single-step T over the instruction at its new location.
1418 n3) We adjust the resulting register and memory state as directed
1419 by T's architecture. This includes resetting T's PC to point
1420 back into the main instruction stream.
1421 n4) We resume T.
1422
1423 This approach depends on the following gdbarch methods:
1424
1425 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1426 indicate where to copy the instruction, and how much space must
1427 be reserved there. We use these in step n1.
1428
1429 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1430 address, and makes any necessary adjustments to the instruction,
1431 register contents, and memory. We use this in step n1.
1432
1433 - gdbarch_displaced_step_fixup adjusts registers and memory after
1434 we have successfuly single-stepped the instruction, to yield the
1435 same effect the instruction would have had if we had executed it
1436 at its original address. We use this in step n3.
1437
237fc4c9
PA
1438 The gdbarch_displaced_step_copy_insn and
1439 gdbarch_displaced_step_fixup functions must be written so that
1440 copying an instruction with gdbarch_displaced_step_copy_insn,
1441 single-stepping across the copied instruction, and then applying
1442 gdbarch_displaced_insn_fixup should have the same effects on the
1443 thread's memory and registers as stepping the instruction in place
1444 would have. Exactly which responsibilities fall to the copy and
1445 which fall to the fixup is up to the author of those functions.
1446
1447 See the comments in gdbarch.sh for details.
1448
1449 Note that displaced stepping and software single-step cannot
1450 currently be used in combination, although with some care I think
1451 they could be made to. Software single-step works by placing
1452 breakpoints on all possible subsequent instructions; if the
1453 displaced instruction is a PC-relative jump, those breakpoints
1454 could fall in very strange places --- on pages that aren't
1455 executable, or at addresses that are not proper instruction
1456 boundaries. (We do generally let other threads run while we wait
1457 to hit the software single-step breakpoint, and they might
1458 encounter such a corrupted instruction.) One way to work around
1459 this would be to have gdbarch_displaced_step_copy_insn fully
1460 simulate the effect of PC-relative instructions (and return NULL)
1461 on architectures that use software single-stepping.
1462
1463 In non-stop mode, we can have independent and simultaneous step
1464 requests, so more than one thread may need to simultaneously step
1465 over a breakpoint. The current implementation assumes there is
1466 only one scratch space per process. In this case, we have to
1467 serialize access to the scratch space. If thread A wants to step
1468 over a breakpoint, but we are currently waiting for some other
1469 thread to complete a displaced step, we leave thread A stopped and
1470 place it in the displaced_step_request_queue. Whenever a displaced
1471 step finishes, we pick the next thread in the queue and start a new
1472 displaced step operation on it. See displaced_step_prepare and
1473 displaced_step_fixup for details. */
1474
cfba9872
SM
1475/* Default destructor for displaced_step_closure. */
1476
1477displaced_step_closure::~displaced_step_closure () = default;
1478
fc1cf338
PA
1479/* Get the displaced stepping state of process PID. */
1480
39a36629 1481static displaced_step_inferior_state *
00431a78 1482get_displaced_stepping_state (inferior *inf)
fc1cf338 1483{
d20172fc 1484 return &inf->displaced_step_state;
fc1cf338
PA
1485}
1486
372316f1
PA
1487/* Returns true if any inferior has a thread doing a displaced
1488 step. */
1489
39a36629
SM
1490static bool
1491displaced_step_in_progress_any_inferior ()
372316f1 1492{
d20172fc 1493 for (inferior *i : all_inferiors ())
39a36629 1494 {
d20172fc 1495 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1496 return true;
1497 }
372316f1 1498
39a36629 1499 return false;
372316f1
PA
1500}
1501
c0987663
YQ
1502/* Return true if thread represented by PTID is doing a displaced
1503 step. */
1504
1505static int
00431a78 1506displaced_step_in_progress_thread (thread_info *thread)
c0987663 1507{
00431a78 1508 gdb_assert (thread != NULL);
c0987663 1509
d20172fc 1510 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1511}
1512
8f572e5c
PA
1513/* Return true if process PID has a thread doing a displaced step. */
1514
1515static int
00431a78 1516displaced_step_in_progress (inferior *inf)
8f572e5c 1517{
d20172fc 1518 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1519}
1520
a42244db
YQ
1521/* If inferior is in displaced stepping, and ADDR equals to starting address
1522 of copy area, return corresponding displaced_step_closure. Otherwise,
1523 return NULL. */
1524
1525struct displaced_step_closure*
1526get_displaced_step_closure_by_addr (CORE_ADDR addr)
1527{
d20172fc 1528 displaced_step_inferior_state *displaced
00431a78 1529 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1530
1531 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1532 if (displaced->step_thread != nullptr
00431a78 1533 && displaced->step_copy == addr)
a42244db
YQ
1534 return displaced->step_closure;
1535
1536 return NULL;
1537}
1538
fc1cf338
PA
1539static void
1540infrun_inferior_exit (struct inferior *inf)
1541{
d20172fc 1542 inf->displaced_step_state.reset ();
fc1cf338 1543}
237fc4c9 1544
fff08868
HZ
1545/* If ON, and the architecture supports it, GDB will use displaced
1546 stepping to step over breakpoints. If OFF, or if the architecture
1547 doesn't support it, GDB will instead use the traditional
1548 hold-and-step approach. If AUTO (which is the default), GDB will
1549 decide which technique to use to step over breakpoints depending on
1550 which of all-stop or non-stop mode is active --- displaced stepping
1551 in non-stop mode; hold-and-step in all-stop mode. */
1552
72d0e2c5 1553static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1554
237fc4c9
PA
1555static void
1556show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1557 struct cmd_list_element *c,
1558 const char *value)
1559{
72d0e2c5 1560 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1561 fprintf_filtered (file,
1562 _("Debugger's willingness to use displaced stepping "
1563 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1564 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1565 else
3e43a32a
MS
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1569}
1570
fff08868 1571/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1572 over breakpoints of thread TP. */
fff08868 1573
237fc4c9 1574static int
3fc8eb30 1575use_displaced_stepping (struct thread_info *tp)
237fc4c9 1576{
00431a78 1577 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1578 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1579 displaced_step_inferior_state *displaced_state
1580 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1581
fbea99ea
PA
1582 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1583 && target_is_non_stop_p ())
72d0e2c5 1584 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1585 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1586 && find_record_target () == NULL
d20172fc 1587 && !displaced_state->failed_before);
237fc4c9
PA
1588}
1589
1590/* Clean out any stray displaced stepping state. */
1591static void
fc1cf338 1592displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1593{
1594 /* Indicate that there is no cleanup pending. */
00431a78 1595 displaced->step_thread = nullptr;
237fc4c9 1596
cfba9872 1597 delete displaced->step_closure;
6d45d4b4 1598 displaced->step_closure = NULL;
237fc4c9
PA
1599}
1600
1601static void
fc1cf338 1602displaced_step_clear_cleanup (void *arg)
237fc4c9 1603{
9a3c8263
SM
1604 struct displaced_step_inferior_state *state
1605 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1606
1607 displaced_step_clear (state);
237fc4c9
PA
1608}
1609
1610/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1611void
1612displaced_step_dump_bytes (struct ui_file *file,
1613 const gdb_byte *buf,
1614 size_t len)
1615{
1616 int i;
1617
1618 for (i = 0; i < len; i++)
1619 fprintf_unfiltered (file, "%02x ", buf[i]);
1620 fputs_unfiltered ("\n", file);
1621}
1622
1623/* Prepare to single-step, using displaced stepping.
1624
1625 Note that we cannot use displaced stepping when we have a signal to
1626 deliver. If we have a signal to deliver and an instruction to step
1627 over, then after the step, there will be no indication from the
1628 target whether the thread entered a signal handler or ignored the
1629 signal and stepped over the instruction successfully --- both cases
1630 result in a simple SIGTRAP. In the first case we mustn't do a
1631 fixup, and in the second case we must --- but we can't tell which.
1632 Comments in the code for 'random signals' in handle_inferior_event
1633 explain how we handle this case instead.
1634
1635 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1636 stepped now; 0 if displaced stepping this thread got queued; or -1
1637 if this instruction can't be displaced stepped. */
1638
237fc4c9 1639static int
00431a78 1640displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1641{
00431a78 1642 regcache *regcache = get_thread_regcache (tp);
ac7936df 1643 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1644 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1645 CORE_ADDR original, copy;
1646 ULONGEST len;
1647 struct displaced_step_closure *closure;
9e529e1d 1648 int status;
237fc4c9
PA
1649
1650 /* We should never reach this function if the architecture does not
1651 support displaced stepping. */
1652 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1653
c2829269
PA
1654 /* Nor if the thread isn't meant to step over a breakpoint. */
1655 gdb_assert (tp->control.trap_expected);
1656
c1e36e3e
PA
1657 /* Disable range stepping while executing in the scratch pad. We
1658 want a single-step even if executing the displaced instruction in
1659 the scratch buffer lands within the stepping range (e.g., a
1660 jump/branch). */
1661 tp->control.may_range_step = 0;
1662
fc1cf338
PA
1663 /* We have to displaced step one thread at a time, as we only have
1664 access to a single scratch space per inferior. */
237fc4c9 1665
d20172fc
SM
1666 displaced_step_inferior_state *displaced
1667 = get_displaced_stepping_state (tp->inf);
fc1cf338 1668
00431a78 1669 if (displaced->step_thread != nullptr)
237fc4c9
PA
1670 {
1671 /* Already waiting for a displaced step to finish. Defer this
1672 request and place in queue. */
237fc4c9
PA
1673
1674 if (debug_displaced)
1675 fprintf_unfiltered (gdb_stdlog,
c2829269 1676 "displaced: deferring step of %s\n",
00431a78 1677 target_pid_to_str (tp->ptid));
237fc4c9 1678
c2829269 1679 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1680 return 0;
1681 }
1682 else
1683 {
1684 if (debug_displaced)
1685 fprintf_unfiltered (gdb_stdlog,
1686 "displaced: stepping %s now\n",
00431a78 1687 target_pid_to_str (tp->ptid));
237fc4c9
PA
1688 }
1689
fc1cf338 1690 displaced_step_clear (displaced);
237fc4c9 1691
00431a78
PA
1692 scoped_restore_current_thread restore_thread;
1693
1694 switch_to_thread (tp);
ad53cd71 1695
515630c5 1696 original = regcache_read_pc (regcache);
237fc4c9
PA
1697
1698 copy = gdbarch_displaced_step_location (gdbarch);
1699 len = gdbarch_max_insn_length (gdbarch);
1700
d35ae833
PA
1701 if (breakpoint_in_range_p (aspace, copy, len))
1702 {
1703 /* There's a breakpoint set in the scratch pad location range
1704 (which is usually around the entry point). We'd either
1705 install it before resuming, which would overwrite/corrupt the
1706 scratch pad, or if it was already inserted, this displaced
1707 step would overwrite it. The latter is OK in the sense that
1708 we already assume that no thread is going to execute the code
1709 in the scratch pad range (after initial startup) anyway, but
1710 the former is unacceptable. Simply punt and fallback to
1711 stepping over this breakpoint in-line. */
1712 if (debug_displaced)
1713 {
1714 fprintf_unfiltered (gdb_stdlog,
1715 "displaced: breakpoint set in scratch pad. "
1716 "Stepping over breakpoint in-line instead.\n");
1717 }
1718
d35ae833
PA
1719 return -1;
1720 }
1721
237fc4c9 1722 /* Save the original contents of the copy area. */
d20172fc
SM
1723 displaced->step_saved_copy.resize (len);
1724 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1725 if (status != 0)
1726 throw_error (MEMORY_ERROR,
1727 _("Error accessing memory address %s (%s) for "
1728 "displaced-stepping scratch space."),
1729 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1730 if (debug_displaced)
1731 {
5af949e3
UW
1732 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1733 paddress (gdbarch, copy));
fc1cf338 1734 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1735 displaced->step_saved_copy.data (),
fc1cf338 1736 len);
237fc4c9
PA
1737 };
1738
1739 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1740 original, copy, regcache);
7f03bd92
PA
1741 if (closure == NULL)
1742 {
1743 /* The architecture doesn't know how or want to displaced step
1744 this instruction or instruction sequence. Fallback to
1745 stepping over the breakpoint in-line. */
7f03bd92
PA
1746 return -1;
1747 }
237fc4c9 1748
9f5a595d
UW
1749 /* Save the information we need to fix things up if the step
1750 succeeds. */
00431a78 1751 displaced->step_thread = tp;
fc1cf338
PA
1752 displaced->step_gdbarch = gdbarch;
1753 displaced->step_closure = closure;
1754 displaced->step_original = original;
1755 displaced->step_copy = copy;
9f5a595d 1756
d20172fc
SM
1757 cleanup *ignore_cleanups
1758 = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1759
1760 /* Resume execution at the copy. */
515630c5 1761 regcache_write_pc (regcache, copy);
237fc4c9 1762
ad53cd71
PA
1763 discard_cleanups (ignore_cleanups);
1764
237fc4c9 1765 if (debug_displaced)
5af949e3
UW
1766 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1767 paddress (gdbarch, copy));
237fc4c9 1768
237fc4c9
PA
1769 return 1;
1770}
1771
3fc8eb30
PA
1772/* Wrapper for displaced_step_prepare_throw that disabled further
1773 attempts at displaced stepping if we get a memory error. */
1774
1775static int
00431a78 1776displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1777{
1778 int prepared = -1;
1779
1780 TRY
1781 {
00431a78 1782 prepared = displaced_step_prepare_throw (thread);
3fc8eb30
PA
1783 }
1784 CATCH (ex, RETURN_MASK_ERROR)
1785 {
1786 struct displaced_step_inferior_state *displaced_state;
1787
16b41842
PA
1788 if (ex.error != MEMORY_ERROR
1789 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1790 throw_exception (ex);
1791
1792 if (debug_infrun)
1793 {
1794 fprintf_unfiltered (gdb_stdlog,
1795 "infrun: disabling displaced stepping: %s\n",
1796 ex.message);
1797 }
1798
1799 /* Be verbose if "set displaced-stepping" is "on", silent if
1800 "auto". */
1801 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1802 {
fd7dcb94 1803 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1804 ex.message);
1805 }
1806
1807 /* Disable further displaced stepping attempts. */
1808 displaced_state
00431a78 1809 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1810 displaced_state->failed_before = 1;
1811 }
1812 END_CATCH
1813
1814 return prepared;
1815}
1816
237fc4c9 1817static void
3e43a32a
MS
1818write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1819 const gdb_byte *myaddr, int len)
237fc4c9 1820{
2989a365 1821 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1822
237fc4c9
PA
1823 inferior_ptid = ptid;
1824 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1825}
1826
e2d96639
YQ
1827/* Restore the contents of the copy area for thread PTID. */
1828
1829static void
1830displaced_step_restore (struct displaced_step_inferior_state *displaced,
1831 ptid_t ptid)
1832{
1833 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1834
1835 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1836 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1837 if (debug_displaced)
1838 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1839 target_pid_to_str (ptid),
1840 paddress (displaced->step_gdbarch,
1841 displaced->step_copy));
1842}
1843
372316f1
PA
1844/* If we displaced stepped an instruction successfully, adjust
1845 registers and memory to yield the same effect the instruction would
1846 have had if we had executed it at its original address, and return
1847 1. If the instruction didn't complete, relocate the PC and return
1848 -1. If the thread wasn't displaced stepping, return 0. */
1849
1850static int
00431a78 1851displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9
PA
1852{
1853 struct cleanup *old_cleanups;
fc1cf338 1854 struct displaced_step_inferior_state *displaced
00431a78 1855 = get_displaced_stepping_state (event_thread->inf);
372316f1 1856 int ret;
fc1cf338 1857
00431a78
PA
1858 /* Was this event for the thread we displaced? */
1859 if (displaced->step_thread != event_thread)
372316f1 1860 return 0;
237fc4c9 1861
fc1cf338 1862 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1863
00431a78 1864 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1865
cb71640d
PA
1866 /* Fixup may need to read memory/registers. Switch to the thread
1867 that we're fixing up. Also, target_stopped_by_watchpoint checks
1868 the current thread. */
00431a78 1869 switch_to_thread (event_thread);
cb71640d 1870
237fc4c9 1871 /* Did the instruction complete successfully? */
cb71640d
PA
1872 if (signal == GDB_SIGNAL_TRAP
1873 && !(target_stopped_by_watchpoint ()
1874 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1875 || target_have_steppable_watchpoint)))
237fc4c9
PA
1876 {
1877 /* Fix up the resulting state. */
fc1cf338
PA
1878 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1879 displaced->step_closure,
1880 displaced->step_original,
1881 displaced->step_copy,
00431a78 1882 get_thread_regcache (displaced->step_thread));
372316f1 1883 ret = 1;
237fc4c9
PA
1884 }
1885 else
1886 {
1887 /* Since the instruction didn't complete, all we can do is
1888 relocate the PC. */
00431a78 1889 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1890 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1891
fc1cf338 1892 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1893 regcache_write_pc (regcache, pc);
372316f1 1894 ret = -1;
237fc4c9
PA
1895 }
1896
1897 do_cleanups (old_cleanups);
1898
00431a78 1899 displaced->step_thread = nullptr;
372316f1
PA
1900
1901 return ret;
c2829269 1902}
1c5cfe86 1903
4d9d9d04
PA
1904/* Data to be passed around while handling an event. This data is
1905 discarded between events. */
1906struct execution_control_state
1907{
1908 ptid_t ptid;
1909 /* The thread that got the event, if this was a thread event; NULL
1910 otherwise. */
1911 struct thread_info *event_thread;
1912
1913 struct target_waitstatus ws;
1914 int stop_func_filled_in;
1915 CORE_ADDR stop_func_start;
1916 CORE_ADDR stop_func_end;
1917 const char *stop_func_name;
1918 int wait_some_more;
1919
1920 /* True if the event thread hit the single-step breakpoint of
1921 another thread. Thus the event doesn't cause a stop, the thread
1922 needs to be single-stepped past the single-step breakpoint before
1923 we can switch back to the original stepping thread. */
1924 int hit_singlestep_breakpoint;
1925};
1926
1927/* Clear ECS and set it to point at TP. */
c2829269
PA
1928
1929static void
4d9d9d04
PA
1930reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1931{
1932 memset (ecs, 0, sizeof (*ecs));
1933 ecs->event_thread = tp;
1934 ecs->ptid = tp->ptid;
1935}
1936
1937static void keep_going_pass_signal (struct execution_control_state *ecs);
1938static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1939static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1940static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1941
1942/* Are there any pending step-over requests? If so, run all we can
1943 now and return true. Otherwise, return false. */
1944
1945static int
c2829269
PA
1946start_step_over (void)
1947{
1948 struct thread_info *tp, *next;
1949
372316f1
PA
1950 /* Don't start a new step-over if we already have an in-line
1951 step-over operation ongoing. */
1952 if (step_over_info_valid_p ())
1953 return 0;
1954
c2829269 1955 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1956 {
4d9d9d04
PA
1957 struct execution_control_state ecss;
1958 struct execution_control_state *ecs = &ecss;
8d297bbf 1959 step_over_what step_what;
372316f1 1960 int must_be_in_line;
c2829269 1961
c65d6b55
PA
1962 gdb_assert (!tp->stop_requested);
1963
c2829269 1964 next = thread_step_over_chain_next (tp);
237fc4c9 1965
c2829269
PA
1966 /* If this inferior already has a displaced step in process,
1967 don't start a new one. */
00431a78 1968 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1969 continue;
1970
372316f1
PA
1971 step_what = thread_still_needs_step_over (tp);
1972 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1973 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1974 && !use_displaced_stepping (tp)));
372316f1
PA
1975
1976 /* We currently stop all threads of all processes to step-over
1977 in-line. If we need to start a new in-line step-over, let
1978 any pending displaced steps finish first. */
1979 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1980 return 0;
1981
c2829269
PA
1982 thread_step_over_chain_remove (tp);
1983
1984 if (step_over_queue_head == NULL)
1985 {
1986 if (debug_infrun)
1987 fprintf_unfiltered (gdb_stdlog,
1988 "infrun: step-over queue now empty\n");
1989 }
1990
372316f1
PA
1991 if (tp->control.trap_expected
1992 || tp->resumed
1993 || tp->executing)
ad53cd71 1994 {
4d9d9d04
PA
1995 internal_error (__FILE__, __LINE__,
1996 "[%s] has inconsistent state: "
372316f1 1997 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
1998 target_pid_to_str (tp->ptid),
1999 tp->control.trap_expected,
372316f1 2000 tp->resumed,
4d9d9d04 2001 tp->executing);
ad53cd71 2002 }
1c5cfe86 2003
4d9d9d04
PA
2004 if (debug_infrun)
2005 fprintf_unfiltered (gdb_stdlog,
2006 "infrun: resuming [%s] for step-over\n",
2007 target_pid_to_str (tp->ptid));
2008
2009 /* keep_going_pass_signal skips the step-over if the breakpoint
2010 is no longer inserted. In all-stop, we want to keep looking
2011 for a thread that needs a step-over instead of resuming TP,
2012 because we wouldn't be able to resume anything else until the
2013 target stops again. In non-stop, the resume always resumes
2014 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2015 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2016 continue;
8550d3b3 2017
00431a78 2018 switch_to_thread (tp);
4d9d9d04
PA
2019 reset_ecs (ecs, tp);
2020 keep_going_pass_signal (ecs);
1c5cfe86 2021
4d9d9d04
PA
2022 if (!ecs->wait_some_more)
2023 error (_("Command aborted."));
1c5cfe86 2024
372316f1
PA
2025 gdb_assert (tp->resumed);
2026
2027 /* If we started a new in-line step-over, we're done. */
2028 if (step_over_info_valid_p ())
2029 {
2030 gdb_assert (tp->control.trap_expected);
2031 return 1;
2032 }
2033
fbea99ea 2034 if (!target_is_non_stop_p ())
4d9d9d04
PA
2035 {
2036 /* On all-stop, shouldn't have resumed unless we needed a
2037 step over. */
2038 gdb_assert (tp->control.trap_expected
2039 || tp->step_after_step_resume_breakpoint);
2040
2041 /* With remote targets (at least), in all-stop, we can't
2042 issue any further remote commands until the program stops
2043 again. */
2044 return 1;
1c5cfe86 2045 }
c2829269 2046
4d9d9d04
PA
2047 /* Either the thread no longer needed a step-over, or a new
2048 displaced stepping sequence started. Even in the latter
2049 case, continue looking. Maybe we can also start another
2050 displaced step on a thread of other process. */
237fc4c9 2051 }
4d9d9d04
PA
2052
2053 return 0;
237fc4c9
PA
2054}
2055
5231c1fd
PA
2056/* Update global variables holding ptids to hold NEW_PTID if they were
2057 holding OLD_PTID. */
2058static void
2059infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2060{
d7e15655 2061 if (inferior_ptid == old_ptid)
5231c1fd 2062 inferior_ptid = new_ptid;
5231c1fd
PA
2063}
2064
237fc4c9 2065\f
c906108c 2066
53904c9e
AC
2067static const char schedlock_off[] = "off";
2068static const char schedlock_on[] = "on";
2069static const char schedlock_step[] = "step";
f2665db5 2070static const char schedlock_replay[] = "replay";
40478521 2071static const char *const scheduler_enums[] = {
ef346e04
AC
2072 schedlock_off,
2073 schedlock_on,
2074 schedlock_step,
f2665db5 2075 schedlock_replay,
ef346e04
AC
2076 NULL
2077};
f2665db5 2078static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2079static void
2080show_scheduler_mode (struct ui_file *file, int from_tty,
2081 struct cmd_list_element *c, const char *value)
2082{
3e43a32a
MS
2083 fprintf_filtered (file,
2084 _("Mode for locking scheduler "
2085 "during execution is \"%s\".\n"),
920d2a44
AC
2086 value);
2087}
c906108c
SS
2088
2089static void
eb4c3f4a 2090set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2091{
eefe576e
AC
2092 if (!target_can_lock_scheduler)
2093 {
2094 scheduler_mode = schedlock_off;
2095 error (_("Target '%s' cannot support this command."), target_shortname);
2096 }
c906108c
SS
2097}
2098
d4db2f36
PA
2099/* True if execution commands resume all threads of all processes by
2100 default; otherwise, resume only threads of the current inferior
2101 process. */
2102int sched_multi = 0;
2103
2facfe5c
DD
2104/* Try to setup for software single stepping over the specified location.
2105 Return 1 if target_resume() should use hardware single step.
2106
2107 GDBARCH the current gdbarch.
2108 PC the location to step over. */
2109
2110static int
2111maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2112{
2113 int hw_step = 1;
2114
f02253f1 2115 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2116 && gdbarch_software_single_step_p (gdbarch))
2117 hw_step = !insert_single_step_breakpoints (gdbarch);
2118
2facfe5c
DD
2119 return hw_step;
2120}
c906108c 2121
f3263aa4
PA
2122/* See infrun.h. */
2123
09cee04b
PA
2124ptid_t
2125user_visible_resume_ptid (int step)
2126{
f3263aa4 2127 ptid_t resume_ptid;
09cee04b 2128
09cee04b
PA
2129 if (non_stop)
2130 {
2131 /* With non-stop mode on, threads are always handled
2132 individually. */
2133 resume_ptid = inferior_ptid;
2134 }
2135 else if ((scheduler_mode == schedlock_on)
03d46957 2136 || (scheduler_mode == schedlock_step && step))
09cee04b 2137 {
f3263aa4
PA
2138 /* User-settable 'scheduler' mode requires solo thread
2139 resume. */
09cee04b
PA
2140 resume_ptid = inferior_ptid;
2141 }
f2665db5
MM
2142 else if ((scheduler_mode == schedlock_replay)
2143 && target_record_will_replay (minus_one_ptid, execution_direction))
2144 {
2145 /* User-settable 'scheduler' mode requires solo thread resume in replay
2146 mode. */
2147 resume_ptid = inferior_ptid;
2148 }
f3263aa4
PA
2149 else if (!sched_multi && target_supports_multi_process ())
2150 {
2151 /* Resume all threads of the current process (and none of other
2152 processes). */
e99b03dc 2153 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2154 }
2155 else
2156 {
2157 /* Resume all threads of all processes. */
2158 resume_ptid = RESUME_ALL;
2159 }
09cee04b
PA
2160
2161 return resume_ptid;
2162}
2163
fbea99ea
PA
2164/* Return a ptid representing the set of threads that we will resume,
2165 in the perspective of the target, assuming run control handling
2166 does not require leaving some threads stopped (e.g., stepping past
2167 breakpoint). USER_STEP indicates whether we're about to start the
2168 target for a stepping command. */
2169
2170static ptid_t
2171internal_resume_ptid (int user_step)
2172{
2173 /* In non-stop, we always control threads individually. Note that
2174 the target may always work in non-stop mode even with "set
2175 non-stop off", in which case user_visible_resume_ptid could
2176 return a wildcard ptid. */
2177 if (target_is_non_stop_p ())
2178 return inferior_ptid;
2179 else
2180 return user_visible_resume_ptid (user_step);
2181}
2182
64ce06e4
PA
2183/* Wrapper for target_resume, that handles infrun-specific
2184 bookkeeping. */
2185
2186static void
2187do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2188{
2189 struct thread_info *tp = inferior_thread ();
2190
c65d6b55
PA
2191 gdb_assert (!tp->stop_requested);
2192
64ce06e4 2193 /* Install inferior's terminal modes. */
223ffa71 2194 target_terminal::inferior ();
64ce06e4
PA
2195
2196 /* Avoid confusing the next resume, if the next stop/resume
2197 happens to apply to another thread. */
2198 tp->suspend.stop_signal = GDB_SIGNAL_0;
2199
8f572e5c
PA
2200 /* Advise target which signals may be handled silently.
2201
2202 If we have removed breakpoints because we are stepping over one
2203 in-line (in any thread), we need to receive all signals to avoid
2204 accidentally skipping a breakpoint during execution of a signal
2205 handler.
2206
2207 Likewise if we're displaced stepping, otherwise a trap for a
2208 breakpoint in a signal handler might be confused with the
2209 displaced step finishing. We don't make the displaced_step_fixup
2210 step distinguish the cases instead, because:
2211
2212 - a backtrace while stopped in the signal handler would show the
2213 scratch pad as frame older than the signal handler, instead of
2214 the real mainline code.
2215
2216 - when the thread is later resumed, the signal handler would
2217 return to the scratch pad area, which would no longer be
2218 valid. */
2219 if (step_over_info_valid_p ()
00431a78 2220 || displaced_step_in_progress (tp->inf))
64ce06e4
PA
2221 target_pass_signals (0, NULL);
2222 else
2223 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2224
2225 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2226
2227 target_commit_resume ();
64ce06e4
PA
2228}
2229
d930703d 2230/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2231 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2232 call 'resume', which handles exceptions. */
c906108c 2233
71d378ae
PA
2234static void
2235resume_1 (enum gdb_signal sig)
c906108c 2236{
515630c5 2237 struct regcache *regcache = get_current_regcache ();
ac7936df 2238 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2239 struct thread_info *tp = inferior_thread ();
515630c5 2240 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2241 const address_space *aspace = regcache->aspace ();
b0f16a3e 2242 ptid_t resume_ptid;
856e7dd6
PA
2243 /* This represents the user's step vs continue request. When
2244 deciding whether "set scheduler-locking step" applies, it's the
2245 user's intention that counts. */
2246 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2247 /* This represents what we'll actually request the target to do.
2248 This can decay from a step to a continue, if e.g., we need to
2249 implement single-stepping with breakpoints (software
2250 single-step). */
6b403daa 2251 int step;
c7e8a53c 2252
c65d6b55 2253 gdb_assert (!tp->stop_requested);
c2829269
PA
2254 gdb_assert (!thread_is_in_step_over_chain (tp));
2255
372316f1
PA
2256 if (tp->suspend.waitstatus_pending_p)
2257 {
2258 if (debug_infrun)
2259 {
23fdd69e
SM
2260 std::string statstr
2261 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2262
372316f1 2263 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2264 "infrun: resume: thread %s has pending wait "
2265 "status %s (currently_stepping=%d).\n",
2266 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2267 currently_stepping (tp));
372316f1
PA
2268 }
2269
2270 tp->resumed = 1;
2271
2272 /* FIXME: What should we do if we are supposed to resume this
2273 thread with a signal? Maybe we should maintain a queue of
2274 pending signals to deliver. */
2275 if (sig != GDB_SIGNAL_0)
2276 {
fd7dcb94 2277 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2278 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2279 }
2280
2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2282
2283 if (target_can_async_p ())
9516f85a
AB
2284 {
2285 target_async (1);
2286 /* Tell the event loop we have an event to process. */
2287 mark_async_event_handler (infrun_async_inferior_event_token);
2288 }
372316f1
PA
2289 return;
2290 }
2291
2292 tp->stepped_breakpoint = 0;
2293
6b403daa
PA
2294 /* Depends on stepped_breakpoint. */
2295 step = currently_stepping (tp);
2296
74609e71
YQ
2297 if (current_inferior ()->waiting_for_vfork_done)
2298 {
48f9886d
PA
2299 /* Don't try to single-step a vfork parent that is waiting for
2300 the child to get out of the shared memory region (by exec'ing
2301 or exiting). This is particularly important on software
2302 single-step archs, as the child process would trip on the
2303 software single step breakpoint inserted for the parent
2304 process. Since the parent will not actually execute any
2305 instruction until the child is out of the shared region (such
2306 are vfork's semantics), it is safe to simply continue it.
2307 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2308 the parent, and tell it to `keep_going', which automatically
2309 re-sets it stepping. */
74609e71
YQ
2310 if (debug_infrun)
2311 fprintf_unfiltered (gdb_stdlog,
2312 "infrun: resume : clear step\n");
a09dd441 2313 step = 0;
74609e71
YQ
2314 }
2315
527159b7 2316 if (debug_infrun)
237fc4c9 2317 fprintf_unfiltered (gdb_stdlog,
c9737c08 2318 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2319 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2320 step, gdb_signal_to_symbol_string (sig),
2321 tp->control.trap_expected,
0d9a9a5f
PA
2322 target_pid_to_str (inferior_ptid),
2323 paddress (gdbarch, pc));
c906108c 2324
c2c6d25f
JM
2325 /* Normally, by the time we reach `resume', the breakpoints are either
2326 removed or inserted, as appropriate. The exception is if we're sitting
2327 at a permanent breakpoint; we need to step over it, but permanent
2328 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2329 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2330 {
af48d08f
PA
2331 if (sig != GDB_SIGNAL_0)
2332 {
2333 /* We have a signal to pass to the inferior. The resume
2334 may, or may not take us to the signal handler. If this
2335 is a step, we'll need to stop in the signal handler, if
2336 there's one, (if the target supports stepping into
2337 handlers), or in the next mainline instruction, if
2338 there's no handler. If this is a continue, we need to be
2339 sure to run the handler with all breakpoints inserted.
2340 In all cases, set a breakpoint at the current address
2341 (where the handler returns to), and once that breakpoint
2342 is hit, resume skipping the permanent breakpoint. If
2343 that breakpoint isn't hit, then we've stepped into the
2344 signal handler (or hit some other event). We'll delete
2345 the step-resume breakpoint then. */
2346
2347 if (debug_infrun)
2348 fprintf_unfiltered (gdb_stdlog,
2349 "infrun: resume: skipping permanent breakpoint, "
2350 "deliver signal first\n");
2351
2352 clear_step_over_info ();
2353 tp->control.trap_expected = 0;
2354
2355 if (tp->control.step_resume_breakpoint == NULL)
2356 {
2357 /* Set a "high-priority" step-resume, as we don't want
2358 user breakpoints at PC to trigger (again) when this
2359 hits. */
2360 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2361 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2362
2363 tp->step_after_step_resume_breakpoint = step;
2364 }
2365
2366 insert_breakpoints ();
2367 }
2368 else
2369 {
2370 /* There's no signal to pass, we can go ahead and skip the
2371 permanent breakpoint manually. */
2372 if (debug_infrun)
2373 fprintf_unfiltered (gdb_stdlog,
2374 "infrun: resume: skipping permanent breakpoint\n");
2375 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2376 /* Update pc to reflect the new address from which we will
2377 execute instructions. */
2378 pc = regcache_read_pc (regcache);
2379
2380 if (step)
2381 {
2382 /* We've already advanced the PC, so the stepping part
2383 is done. Now we need to arrange for a trap to be
2384 reported to handle_inferior_event. Set a breakpoint
2385 at the current PC, and run to it. Don't update
2386 prev_pc, because if we end in
44a1ee51
PA
2387 switch_back_to_stepped_thread, we want the "expected
2388 thread advanced also" branch to be taken. IOW, we
2389 don't want this thread to step further from PC
af48d08f 2390 (overstep). */
1ac806b8 2391 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2392 insert_single_step_breakpoint (gdbarch, aspace, pc);
2393 insert_breakpoints ();
2394
fbea99ea 2395 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2396 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2397 tp->resumed = 1;
af48d08f
PA
2398 return;
2399 }
2400 }
6d350bb5 2401 }
c2c6d25f 2402
c1e36e3e
PA
2403 /* If we have a breakpoint to step over, make sure to do a single
2404 step only. Same if we have software watchpoints. */
2405 if (tp->control.trap_expected || bpstat_should_step ())
2406 tp->control.may_range_step = 0;
2407
237fc4c9
PA
2408 /* If enabled, step over breakpoints by executing a copy of the
2409 instruction at a different address.
2410
2411 We can't use displaced stepping when we have a signal to deliver;
2412 the comments for displaced_step_prepare explain why. The
2413 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2414 signals' explain what we do instead.
2415
2416 We can't use displaced stepping when we are waiting for vfork_done
2417 event, displaced stepping breaks the vfork child similarly as single
2418 step software breakpoint. */
3fc8eb30
PA
2419 if (tp->control.trap_expected
2420 && use_displaced_stepping (tp)
cb71640d 2421 && !step_over_info_valid_p ()
a493e3e2 2422 && sig == GDB_SIGNAL_0
74609e71 2423 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2424 {
00431a78 2425 int prepared = displaced_step_prepare (tp);
fc1cf338 2426
3fc8eb30 2427 if (prepared == 0)
d56b7306 2428 {
4d9d9d04
PA
2429 if (debug_infrun)
2430 fprintf_unfiltered (gdb_stdlog,
2431 "Got placed in step-over queue\n");
2432
2433 tp->control.trap_expected = 0;
d56b7306
VP
2434 return;
2435 }
3fc8eb30
PA
2436 else if (prepared < 0)
2437 {
2438 /* Fallback to stepping over the breakpoint in-line. */
2439
2440 if (target_is_non_stop_p ())
2441 stop_all_threads ();
2442
a01bda52 2443 set_step_over_info (regcache->aspace (),
21edc42f 2444 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2445
2446 step = maybe_software_singlestep (gdbarch, pc);
2447
2448 insert_breakpoints ();
2449 }
2450 else if (prepared > 0)
2451 {
2452 struct displaced_step_inferior_state *displaced;
99e40580 2453
3fc8eb30
PA
2454 /* Update pc to reflect the new address from which we will
2455 execute instructions due to displaced stepping. */
00431a78 2456 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2457
00431a78 2458 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2459 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2460 displaced->step_closure);
2461 }
237fc4c9
PA
2462 }
2463
2facfe5c 2464 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2465 else if (step)
2facfe5c 2466 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2467
30852783
UW
2468 /* Currently, our software single-step implementation leads to different
2469 results than hardware single-stepping in one situation: when stepping
2470 into delivering a signal which has an associated signal handler,
2471 hardware single-step will stop at the first instruction of the handler,
2472 while software single-step will simply skip execution of the handler.
2473
2474 For now, this difference in behavior is accepted since there is no
2475 easy way to actually implement single-stepping into a signal handler
2476 without kernel support.
2477
2478 However, there is one scenario where this difference leads to follow-on
2479 problems: if we're stepping off a breakpoint by removing all breakpoints
2480 and then single-stepping. In this case, the software single-step
2481 behavior means that even if there is a *breakpoint* in the signal
2482 handler, GDB still would not stop.
2483
2484 Fortunately, we can at least fix this particular issue. We detect
2485 here the case where we are about to deliver a signal while software
2486 single-stepping with breakpoints removed. In this situation, we
2487 revert the decisions to remove all breakpoints and insert single-
2488 step breakpoints, and instead we install a step-resume breakpoint
2489 at the current address, deliver the signal without stepping, and
2490 once we arrive back at the step-resume breakpoint, actually step
2491 over the breakpoint we originally wanted to step over. */
34b7e8a6 2492 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2493 && sig != GDB_SIGNAL_0
2494 && step_over_info_valid_p ())
30852783
UW
2495 {
2496 /* If we have nested signals or a pending signal is delivered
2497 immediately after a handler returns, might might already have
2498 a step-resume breakpoint set on the earlier handler. We cannot
2499 set another step-resume breakpoint; just continue on until the
2500 original breakpoint is hit. */
2501 if (tp->control.step_resume_breakpoint == NULL)
2502 {
2c03e5be 2503 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2504 tp->step_after_step_resume_breakpoint = 1;
2505 }
2506
34b7e8a6 2507 delete_single_step_breakpoints (tp);
30852783 2508
31e77af2 2509 clear_step_over_info ();
30852783 2510 tp->control.trap_expected = 0;
31e77af2
PA
2511
2512 insert_breakpoints ();
30852783
UW
2513 }
2514
b0f16a3e
SM
2515 /* If STEP is set, it's a request to use hardware stepping
2516 facilities. But in that case, we should never
2517 use singlestep breakpoint. */
34b7e8a6 2518 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2519
fbea99ea 2520 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2521 if (tp->control.trap_expected)
b0f16a3e
SM
2522 {
2523 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2524 hit, either by single-stepping the thread with the breakpoint
2525 removed, or by displaced stepping, with the breakpoint inserted.
2526 In the former case, we need to single-step only this thread,
2527 and keep others stopped, as they can miss this breakpoint if
2528 allowed to run. That's not really a problem for displaced
2529 stepping, but, we still keep other threads stopped, in case
2530 another thread is also stopped for a breakpoint waiting for
2531 its turn in the displaced stepping queue. */
b0f16a3e
SM
2532 resume_ptid = inferior_ptid;
2533 }
fbea99ea
PA
2534 else
2535 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2536
7f5ef605
PA
2537 if (execution_direction != EXEC_REVERSE
2538 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2539 {
372316f1
PA
2540 /* There are two cases where we currently need to step a
2541 breakpoint instruction when we have a signal to deliver:
2542
2543 - See handle_signal_stop where we handle random signals that
2544 could take out us out of the stepping range. Normally, in
2545 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2546 signal handler with a breakpoint at PC, but there are cases
2547 where we should _always_ single-step, even if we have a
2548 step-resume breakpoint, like when a software watchpoint is
2549 set. Assuming single-stepping and delivering a signal at the
2550 same time would takes us to the signal handler, then we could
2551 have removed the breakpoint at PC to step over it. However,
2552 some hardware step targets (like e.g., Mac OS) can't step
2553 into signal handlers, and for those, we need to leave the
2554 breakpoint at PC inserted, as otherwise if the handler
2555 recurses and executes PC again, it'll miss the breakpoint.
2556 So we leave the breakpoint inserted anyway, but we need to
2557 record that we tried to step a breakpoint instruction, so
372316f1
PA
2558 that adjust_pc_after_break doesn't end up confused.
2559
2560 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2561 in one thread after another thread that was stepping had been
2562 momentarily paused for a step-over. When we re-resume the
2563 stepping thread, it may be resumed from that address with a
2564 breakpoint that hasn't trapped yet. Seen with
2565 gdb.threads/non-stop-fair-events.exp, on targets that don't
2566 do displaced stepping. */
2567
2568 if (debug_infrun)
2569 fprintf_unfiltered (gdb_stdlog,
2570 "infrun: resume: [%s] stepped breakpoint\n",
2571 target_pid_to_str (tp->ptid));
7f5ef605
PA
2572
2573 tp->stepped_breakpoint = 1;
2574
b0f16a3e
SM
2575 /* Most targets can step a breakpoint instruction, thus
2576 executing it normally. But if this one cannot, just
2577 continue and we will hit it anyway. */
7f5ef605 2578 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2579 step = 0;
2580 }
ef5cf84e 2581
b0f16a3e 2582 if (debug_displaced
cb71640d 2583 && tp->control.trap_expected
3fc8eb30 2584 && use_displaced_stepping (tp)
cb71640d 2585 && !step_over_info_valid_p ())
b0f16a3e 2586 {
00431a78 2587 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2588 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2589 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2590 gdb_byte buf[4];
2591
2592 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2593 paddress (resume_gdbarch, actual_pc));
2594 read_memory (actual_pc, buf, sizeof (buf));
2595 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2596 }
237fc4c9 2597
b0f16a3e
SM
2598 if (tp->control.may_range_step)
2599 {
2600 /* If we're resuming a thread with the PC out of the step
2601 range, then we're doing some nested/finer run control
2602 operation, like stepping the thread out of the dynamic
2603 linker or the displaced stepping scratch pad. We
2604 shouldn't have allowed a range step then. */
2605 gdb_assert (pc_in_thread_step_range (pc, tp));
2606 }
c1e36e3e 2607
64ce06e4 2608 do_target_resume (resume_ptid, step, sig);
372316f1 2609 tp->resumed = 1;
c906108c 2610}
71d378ae
PA
2611
2612/* Resume the inferior. SIG is the signal to give the inferior
2613 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2614 rolls back state on error. */
2615
aff4e175 2616static void
71d378ae
PA
2617resume (gdb_signal sig)
2618{
2619 TRY
2620 {
2621 resume_1 (sig);
2622 }
2623 CATCH (ex, RETURN_MASK_ALL)
2624 {
2625 /* If resuming is being aborted for any reason, delete any
2626 single-step breakpoint resume_1 may have created, to avoid
2627 confusing the following resumption, and to avoid leaving
2628 single-step breakpoints perturbing other threads, in case
2629 we're running in non-stop mode. */
2630 if (inferior_ptid != null_ptid)
2631 delete_single_step_breakpoints (inferior_thread ());
2632 throw_exception (ex);
2633 }
2634 END_CATCH
2635}
2636
c906108c 2637\f
237fc4c9 2638/* Proceeding. */
c906108c 2639
4c2f2a79
PA
2640/* See infrun.h. */
2641
2642/* Counter that tracks number of user visible stops. This can be used
2643 to tell whether a command has proceeded the inferior past the
2644 current location. This allows e.g., inferior function calls in
2645 breakpoint commands to not interrupt the command list. When the
2646 call finishes successfully, the inferior is standing at the same
2647 breakpoint as if nothing happened (and so we don't call
2648 normal_stop). */
2649static ULONGEST current_stop_id;
2650
2651/* See infrun.h. */
2652
2653ULONGEST
2654get_stop_id (void)
2655{
2656 return current_stop_id;
2657}
2658
2659/* Called when we report a user visible stop. */
2660
2661static void
2662new_stop_id (void)
2663{
2664 current_stop_id++;
2665}
2666
c906108c
SS
2667/* Clear out all variables saying what to do when inferior is continued.
2668 First do this, then set the ones you want, then call `proceed'. */
2669
a7212384
UW
2670static void
2671clear_proceed_status_thread (struct thread_info *tp)
c906108c 2672{
a7212384
UW
2673 if (debug_infrun)
2674 fprintf_unfiltered (gdb_stdlog,
2675 "infrun: clear_proceed_status_thread (%s)\n",
2676 target_pid_to_str (tp->ptid));
d6b48e9c 2677
372316f1
PA
2678 /* If we're starting a new sequence, then the previous finished
2679 single-step is no longer relevant. */
2680 if (tp->suspend.waitstatus_pending_p)
2681 {
2682 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2683 {
2684 if (debug_infrun)
2685 fprintf_unfiltered (gdb_stdlog,
2686 "infrun: clear_proceed_status: pending "
2687 "event of %s was a finished step. "
2688 "Discarding.\n",
2689 target_pid_to_str (tp->ptid));
2690
2691 tp->suspend.waitstatus_pending_p = 0;
2692 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2693 }
2694 else if (debug_infrun)
2695 {
23fdd69e
SM
2696 std::string statstr
2697 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2698
372316f1
PA
2699 fprintf_unfiltered (gdb_stdlog,
2700 "infrun: clear_proceed_status_thread: thread %s "
2701 "has pending wait status %s "
2702 "(currently_stepping=%d).\n",
23fdd69e 2703 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2704 currently_stepping (tp));
372316f1
PA
2705 }
2706 }
2707
70509625
PA
2708 /* If this signal should not be seen by program, give it zero.
2709 Used for debugging signals. */
2710 if (!signal_pass_state (tp->suspend.stop_signal))
2711 tp->suspend.stop_signal = GDB_SIGNAL_0;
2712
243a9253
PA
2713 thread_fsm_delete (tp->thread_fsm);
2714 tp->thread_fsm = NULL;
2715
16c381f0
JK
2716 tp->control.trap_expected = 0;
2717 tp->control.step_range_start = 0;
2718 tp->control.step_range_end = 0;
c1e36e3e 2719 tp->control.may_range_step = 0;
16c381f0
JK
2720 tp->control.step_frame_id = null_frame_id;
2721 tp->control.step_stack_frame_id = null_frame_id;
2722 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2723 tp->control.step_start_function = NULL;
a7212384 2724 tp->stop_requested = 0;
4e1c45ea 2725
16c381f0 2726 tp->control.stop_step = 0;
32400beb 2727
16c381f0 2728 tp->control.proceed_to_finish = 0;
414c69f7 2729
856e7dd6 2730 tp->control.stepping_command = 0;
17b2616c 2731
a7212384 2732 /* Discard any remaining commands or status from previous stop. */
16c381f0 2733 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2734}
32400beb 2735
a7212384 2736void
70509625 2737clear_proceed_status (int step)
a7212384 2738{
f2665db5
MM
2739 /* With scheduler-locking replay, stop replaying other threads if we're
2740 not replaying the user-visible resume ptid.
2741
2742 This is a convenience feature to not require the user to explicitly
2743 stop replaying the other threads. We're assuming that the user's
2744 intent is to resume tracing the recorded process. */
2745 if (!non_stop && scheduler_mode == schedlock_replay
2746 && target_record_is_replaying (minus_one_ptid)
2747 && !target_record_will_replay (user_visible_resume_ptid (step),
2748 execution_direction))
2749 target_record_stop_replaying ();
2750
08036331 2751 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2752 {
08036331 2753 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2754
2755 /* In all-stop mode, delete the per-thread status of all threads
2756 we're about to resume, implicitly and explicitly. */
08036331
PA
2757 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2758 clear_proceed_status_thread (tp);
6c95b8df
PA
2759 }
2760
d7e15655 2761 if (inferior_ptid != null_ptid)
a7212384
UW
2762 {
2763 struct inferior *inferior;
2764
2765 if (non_stop)
2766 {
6c95b8df
PA
2767 /* If in non-stop mode, only delete the per-thread status of
2768 the current thread. */
a7212384
UW
2769 clear_proceed_status_thread (inferior_thread ());
2770 }
6c95b8df 2771
d6b48e9c 2772 inferior = current_inferior ();
16c381f0 2773 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2774 }
2775
76727919 2776 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2777}
2778
99619bea
PA
2779/* Returns true if TP is still stopped at a breakpoint that needs
2780 stepping-over in order to make progress. If the breakpoint is gone
2781 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2782
2783static int
6c4cfb24 2784thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2785{
2786 if (tp->stepping_over_breakpoint)
2787 {
00431a78 2788 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2789
a01bda52 2790 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2791 regcache_read_pc (regcache))
2792 == ordinary_breakpoint_here)
99619bea
PA
2793 return 1;
2794
2795 tp->stepping_over_breakpoint = 0;
2796 }
2797
2798 return 0;
2799}
2800
6c4cfb24
PA
2801/* Check whether thread TP still needs to start a step-over in order
2802 to make progress when resumed. Returns an bitwise or of enum
2803 step_over_what bits, indicating what needs to be stepped over. */
2804
8d297bbf 2805static step_over_what
6c4cfb24
PA
2806thread_still_needs_step_over (struct thread_info *tp)
2807{
8d297bbf 2808 step_over_what what = 0;
6c4cfb24
PA
2809
2810 if (thread_still_needs_step_over_bp (tp))
2811 what |= STEP_OVER_BREAKPOINT;
2812
2813 if (tp->stepping_over_watchpoint
2814 && !target_have_steppable_watchpoint)
2815 what |= STEP_OVER_WATCHPOINT;
2816
2817 return what;
2818}
2819
483805cf
PA
2820/* Returns true if scheduler locking applies. STEP indicates whether
2821 we're about to do a step/next-like command to a thread. */
2822
2823static int
856e7dd6 2824schedlock_applies (struct thread_info *tp)
483805cf
PA
2825{
2826 return (scheduler_mode == schedlock_on
2827 || (scheduler_mode == schedlock_step
f2665db5
MM
2828 && tp->control.stepping_command)
2829 || (scheduler_mode == schedlock_replay
2830 && target_record_will_replay (minus_one_ptid,
2831 execution_direction)));
483805cf
PA
2832}
2833
c906108c
SS
2834/* Basic routine for continuing the program in various fashions.
2835
2836 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2837 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2838 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2839
2840 You should call clear_proceed_status before calling proceed. */
2841
2842void
64ce06e4 2843proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2844{
e58b0e63
PA
2845 struct regcache *regcache;
2846 struct gdbarch *gdbarch;
e58b0e63 2847 CORE_ADDR pc;
4d9d9d04
PA
2848 ptid_t resume_ptid;
2849 struct execution_control_state ecss;
2850 struct execution_control_state *ecs = &ecss;
4d9d9d04 2851 int started;
c906108c 2852
e58b0e63
PA
2853 /* If we're stopped at a fork/vfork, follow the branch set by the
2854 "set follow-fork-mode" command; otherwise, we'll just proceed
2855 resuming the current thread. */
2856 if (!follow_fork ())
2857 {
2858 /* The target for some reason decided not to resume. */
2859 normal_stop ();
f148b27e
PA
2860 if (target_can_async_p ())
2861 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2862 return;
2863 }
2864
842951eb
PA
2865 /* We'll update this if & when we switch to a new thread. */
2866 previous_inferior_ptid = inferior_ptid;
2867
e58b0e63 2868 regcache = get_current_regcache ();
ac7936df 2869 gdbarch = regcache->arch ();
8b86c959
YQ
2870 const address_space *aspace = regcache->aspace ();
2871
e58b0e63 2872 pc = regcache_read_pc (regcache);
08036331 2873 thread_info *cur_thr = inferior_thread ();
e58b0e63 2874
99619bea 2875 /* Fill in with reasonable starting values. */
08036331 2876 init_thread_stepping_state (cur_thr);
99619bea 2877
08036331 2878 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2879
2acceee2 2880 if (addr == (CORE_ADDR) -1)
c906108c 2881 {
08036331 2882 if (pc == cur_thr->suspend.stop_pc
af48d08f 2883 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2884 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2885 /* There is a breakpoint at the address we will resume at,
2886 step one instruction before inserting breakpoints so that
2887 we do not stop right away (and report a second hit at this
b2175913
MS
2888 breakpoint).
2889
2890 Note, we don't do this in reverse, because we won't
2891 actually be executing the breakpoint insn anyway.
2892 We'll be (un-)executing the previous instruction. */
08036331 2893 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2894 else if (gdbarch_single_step_through_delay_p (gdbarch)
2895 && gdbarch_single_step_through_delay (gdbarch,
2896 get_current_frame ()))
3352ef37
AC
2897 /* We stepped onto an instruction that needs to be stepped
2898 again before re-inserting the breakpoint, do so. */
08036331 2899 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2900 }
2901 else
2902 {
515630c5 2903 regcache_write_pc (regcache, addr);
c906108c
SS
2904 }
2905
70509625 2906 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2907 cur_thr->suspend.stop_signal = siggnal;
70509625 2908
08036331 2909 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2910
2911 /* If an exception is thrown from this point on, make sure to
2912 propagate GDB's knowledge of the executing state to the
2913 frontend/user running state. */
731f534f 2914 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2915
2916 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2917 threads (e.g., we might need to set threads stepping over
2918 breakpoints first), from the user/frontend's point of view, all
2919 threads in RESUME_PTID are now running. Unless we're calling an
2920 inferior function, as in that case we pretend the inferior
2921 doesn't run at all. */
08036331 2922 if (!cur_thr->control.in_infcall)
4d9d9d04 2923 set_running (resume_ptid, 1);
17b2616c 2924
527159b7 2925 if (debug_infrun)
8a9de0e4 2926 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2927 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2928 paddress (gdbarch, addr),
64ce06e4 2929 gdb_signal_to_symbol_string (siggnal));
527159b7 2930
4d9d9d04
PA
2931 annotate_starting ();
2932
2933 /* Make sure that output from GDB appears before output from the
2934 inferior. */
2935 gdb_flush (gdb_stdout);
2936
d930703d
PA
2937 /* Since we've marked the inferior running, give it the terminal. A
2938 QUIT/Ctrl-C from here on is forwarded to the target (which can
2939 still detect attempts to unblock a stuck connection with repeated
2940 Ctrl-C from within target_pass_ctrlc). */
2941 target_terminal::inferior ();
2942
4d9d9d04
PA
2943 /* In a multi-threaded task we may select another thread and
2944 then continue or step.
2945
2946 But if a thread that we're resuming had stopped at a breakpoint,
2947 it will immediately cause another breakpoint stop without any
2948 execution (i.e. it will report a breakpoint hit incorrectly). So
2949 we must step over it first.
2950
2951 Look for threads other than the current (TP) that reported a
2952 breakpoint hit and haven't been resumed yet since. */
2953
2954 /* If scheduler locking applies, we can avoid iterating over all
2955 threads. */
08036331 2956 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2957 {
08036331
PA
2958 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2959 {
4d9d9d04
PA
2960 /* Ignore the current thread here. It's handled
2961 afterwards. */
08036331 2962 if (tp == cur_thr)
4d9d9d04 2963 continue;
c906108c 2964
4d9d9d04
PA
2965 if (!thread_still_needs_step_over (tp))
2966 continue;
2967
2968 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2969
99619bea
PA
2970 if (debug_infrun)
2971 fprintf_unfiltered (gdb_stdlog,
2972 "infrun: need to step-over [%s] first\n",
4d9d9d04 2973 target_pid_to_str (tp->ptid));
99619bea 2974
4d9d9d04 2975 thread_step_over_chain_enqueue (tp);
2adfaa28 2976 }
30852783
UW
2977 }
2978
4d9d9d04
PA
2979 /* Enqueue the current thread last, so that we move all other
2980 threads over their breakpoints first. */
08036331
PA
2981 if (cur_thr->stepping_over_breakpoint)
2982 thread_step_over_chain_enqueue (cur_thr);
30852783 2983
4d9d9d04
PA
2984 /* If the thread isn't started, we'll still need to set its prev_pc,
2985 so that switch_back_to_stepped_thread knows the thread hasn't
2986 advanced. Must do this before resuming any thread, as in
2987 all-stop/remote, once we resume we can't send any other packet
2988 until the target stops again. */
08036331 2989 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2990
a9bc57b9
TT
2991 {
2992 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2993
a9bc57b9 2994 started = start_step_over ();
c906108c 2995
a9bc57b9
TT
2996 if (step_over_info_valid_p ())
2997 {
2998 /* Either this thread started a new in-line step over, or some
2999 other thread was already doing one. In either case, don't
3000 resume anything else until the step-over is finished. */
3001 }
3002 else if (started && !target_is_non_stop_p ())
3003 {
3004 /* A new displaced stepping sequence was started. In all-stop,
3005 we can't talk to the target anymore until it next stops. */
3006 }
3007 else if (!non_stop && target_is_non_stop_p ())
3008 {
3009 /* In all-stop, but the target is always in non-stop mode.
3010 Start all other threads that are implicitly resumed too. */
08036331 3011 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 3012 {
fbea99ea
PA
3013 if (tp->resumed)
3014 {
3015 if (debug_infrun)
3016 fprintf_unfiltered (gdb_stdlog,
3017 "infrun: proceed: [%s] resumed\n",
3018 target_pid_to_str (tp->ptid));
3019 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3020 continue;
3021 }
3022
3023 if (thread_is_in_step_over_chain (tp))
3024 {
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "infrun: proceed: [%s] needs step-over\n",
3028 target_pid_to_str (tp->ptid));
3029 continue;
3030 }
3031
3032 if (debug_infrun)
3033 fprintf_unfiltered (gdb_stdlog,
3034 "infrun: proceed: resuming %s\n",
3035 target_pid_to_str (tp->ptid));
3036
3037 reset_ecs (ecs, tp);
00431a78 3038 switch_to_thread (tp);
fbea99ea
PA
3039 keep_going_pass_signal (ecs);
3040 if (!ecs->wait_some_more)
fd7dcb94 3041 error (_("Command aborted."));
fbea99ea 3042 }
a9bc57b9 3043 }
08036331 3044 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3045 {
3046 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3047 reset_ecs (ecs, cur_thr);
3048 switch_to_thread (cur_thr);
a9bc57b9
TT
3049 keep_going_pass_signal (ecs);
3050 if (!ecs->wait_some_more)
3051 error (_("Command aborted."));
3052 }
3053 }
c906108c 3054
85ad3aaf
PA
3055 target_commit_resume ();
3056
731f534f 3057 finish_state.release ();
c906108c 3058
0b333c5e
PA
3059 /* Tell the event loop to wait for it to stop. If the target
3060 supports asynchronous execution, it'll do this from within
3061 target_resume. */
362646f5 3062 if (!target_can_async_p ())
0b333c5e 3063 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3064}
c906108c
SS
3065\f
3066
3067/* Start remote-debugging of a machine over a serial link. */
96baa820 3068
c906108c 3069void
8621d6a9 3070start_remote (int from_tty)
c906108c 3071{
d6b48e9c 3072 struct inferior *inferior;
d6b48e9c
PA
3073
3074 inferior = current_inferior ();
16c381f0 3075 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3076
1777feb0 3077 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3078 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3079 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3080 nothing is returned (instead of just blocking). Because of this,
3081 targets expecting an immediate response need to, internally, set
3082 things up so that the target_wait() is forced to eventually
1777feb0 3083 timeout. */
6426a772
JM
3084 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3085 differentiate to its caller what the state of the target is after
3086 the initial open has been performed. Here we're assuming that
3087 the target has stopped. It should be possible to eventually have
3088 target_open() return to the caller an indication that the target
3089 is currently running and GDB state should be set to the same as
1777feb0 3090 for an async run. */
e4c8541f 3091 wait_for_inferior ();
8621d6a9
DJ
3092
3093 /* Now that the inferior has stopped, do any bookkeeping like
3094 loading shared libraries. We want to do this before normal_stop,
3095 so that the displayed frame is up to date. */
8b88a78e 3096 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3097
6426a772 3098 normal_stop ();
c906108c
SS
3099}
3100
3101/* Initialize static vars when a new inferior begins. */
3102
3103void
96baa820 3104init_wait_for_inferior (void)
c906108c
SS
3105{
3106 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3107
c906108c
SS
3108 breakpoint_init_inferior (inf_starting);
3109
70509625 3110 clear_proceed_status (0);
9f976b41 3111
ca005067 3112 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3113
842951eb 3114 previous_inferior_ptid = inferior_ptid;
c906108c 3115}
237fc4c9 3116
c906108c 3117\f
488f131b 3118
ec9499be 3119static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3120
568d6575
UW
3121static void handle_step_into_function (struct gdbarch *gdbarch,
3122 struct execution_control_state *ecs);
3123static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3124 struct execution_control_state *ecs);
4f5d7f63 3125static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3126static void check_exception_resume (struct execution_control_state *,
28106bc2 3127 struct frame_info *);
611c83ae 3128
bdc36728 3129static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3130static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3131static void keep_going (struct execution_control_state *ecs);
94c57d6a 3132static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3133static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3134
252fbfc8
PA
3135/* This function is attached as a "thread_stop_requested" observer.
3136 Cleanup local state that assumed the PTID was to be resumed, and
3137 report the stop to the frontend. */
3138
2c0b251b 3139static void
252fbfc8
PA
3140infrun_thread_stop_requested (ptid_t ptid)
3141{
c65d6b55
PA
3142 /* PTID was requested to stop. If the thread was already stopped,
3143 but the user/frontend doesn't know about that yet (e.g., the
3144 thread had been temporarily paused for some step-over), set up
3145 for reporting the stop now. */
08036331
PA
3146 for (thread_info *tp : all_threads (ptid))
3147 {
3148 if (tp->state != THREAD_RUNNING)
3149 continue;
3150 if (tp->executing)
3151 continue;
c65d6b55 3152
08036331
PA
3153 /* Remove matching threads from the step-over queue, so
3154 start_step_over doesn't try to resume them
3155 automatically. */
3156 if (thread_is_in_step_over_chain (tp))
3157 thread_step_over_chain_remove (tp);
c65d6b55 3158
08036331
PA
3159 /* If the thread is stopped, but the user/frontend doesn't
3160 know about that yet, queue a pending event, as if the
3161 thread had just stopped now. Unless the thread already had
3162 a pending event. */
3163 if (!tp->suspend.waitstatus_pending_p)
3164 {
3165 tp->suspend.waitstatus_pending_p = 1;
3166 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3167 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3168 }
c65d6b55 3169
08036331
PA
3170 /* Clear the inline-frame state, since we're re-processing the
3171 stop. */
3172 clear_inline_frame_state (tp->ptid);
c65d6b55 3173
08036331
PA
3174 /* If this thread was paused because some other thread was
3175 doing an inline-step over, let that finish first. Once
3176 that happens, we'll restart all threads and consume pending
3177 stop events then. */
3178 if (step_over_info_valid_p ())
3179 continue;
3180
3181 /* Otherwise we can process the (new) pending event now. Set
3182 it so this pending event is considered by
3183 do_target_wait. */
3184 tp->resumed = 1;
3185 }
252fbfc8
PA
3186}
3187
a07daef3
PA
3188static void
3189infrun_thread_thread_exit (struct thread_info *tp, int silent)
3190{
d7e15655 3191 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3192 nullify_last_target_wait_ptid ();
3193}
3194
0cbcdb96
PA
3195/* Delete the step resume, single-step and longjmp/exception resume
3196 breakpoints of TP. */
4e1c45ea 3197
0cbcdb96
PA
3198static void
3199delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3200{
0cbcdb96
PA
3201 delete_step_resume_breakpoint (tp);
3202 delete_exception_resume_breakpoint (tp);
34b7e8a6 3203 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3204}
3205
0cbcdb96
PA
3206/* If the target still has execution, call FUNC for each thread that
3207 just stopped. In all-stop, that's all the non-exited threads; in
3208 non-stop, that's the current thread, only. */
3209
3210typedef void (*for_each_just_stopped_thread_callback_func)
3211 (struct thread_info *tp);
4e1c45ea
PA
3212
3213static void
0cbcdb96 3214for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3215{
d7e15655 3216 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3217 return;
3218
fbea99ea 3219 if (target_is_non_stop_p ())
4e1c45ea 3220 {
0cbcdb96
PA
3221 /* If in non-stop mode, only the current thread stopped. */
3222 func (inferior_thread ());
4e1c45ea
PA
3223 }
3224 else
0cbcdb96 3225 {
0cbcdb96 3226 /* In all-stop mode, all threads have stopped. */
08036331
PA
3227 for (thread_info *tp : all_non_exited_threads ())
3228 func (tp);
0cbcdb96
PA
3229 }
3230}
3231
3232/* Delete the step resume and longjmp/exception resume breakpoints of
3233 the threads that just stopped. */
3234
3235static void
3236delete_just_stopped_threads_infrun_breakpoints (void)
3237{
3238 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3239}
3240
3241/* Delete the single-step breakpoints of the threads that just
3242 stopped. */
7c16b83e 3243
34b7e8a6
PA
3244static void
3245delete_just_stopped_threads_single_step_breakpoints (void)
3246{
3247 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3248}
3249
1777feb0 3250/* A cleanup wrapper. */
4e1c45ea
PA
3251
3252static void
0cbcdb96 3253delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3254{
0cbcdb96 3255 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3256}
3257
221e1a37 3258/* See infrun.h. */
223698f8 3259
221e1a37 3260void
223698f8
DE
3261print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3262 const struct target_waitstatus *ws)
3263{
23fdd69e 3264 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3265 string_file stb;
223698f8
DE
3266
3267 /* The text is split over several lines because it was getting too long.
3268 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3269 output as a unit; we want only one timestamp printed if debug_timestamp
3270 is set. */
3271
d7e74731 3272 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3273 waiton_ptid.pid (),
e38504b3 3274 waiton_ptid.lwp (),
cc6bcb54 3275 waiton_ptid.tid ());
e99b03dc 3276 if (waiton_ptid.pid () != -1)
d7e74731
PA
3277 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3278 stb.printf (", status) =\n");
3279 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3280 result_ptid.pid (),
e38504b3 3281 result_ptid.lwp (),
cc6bcb54 3282 result_ptid.tid (),
d7e74731 3283 target_pid_to_str (result_ptid));
23fdd69e 3284 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3285
3286 /* This uses %s in part to handle %'s in the text, but also to avoid
3287 a gcc error: the format attribute requires a string literal. */
d7e74731 3288 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3289}
3290
372316f1
PA
3291/* Select a thread at random, out of those which are resumed and have
3292 had events. */
3293
3294static struct thread_info *
3295random_pending_event_thread (ptid_t waiton_ptid)
3296{
372316f1 3297 int num_events = 0;
08036331
PA
3298
3299 auto has_event = [] (thread_info *tp)
3300 {
3301 return (tp->resumed
3302 && tp->suspend.waitstatus_pending_p);
3303 };
372316f1
PA
3304
3305 /* First see how many events we have. Count only resumed threads
3306 that have an event pending. */
08036331
PA
3307 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3308 if (has_event (tp))
372316f1
PA
3309 num_events++;
3310
3311 if (num_events == 0)
3312 return NULL;
3313
3314 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3315 int random_selector = (int) ((num_events * (double) rand ())
3316 / (RAND_MAX + 1.0));
372316f1
PA
3317
3318 if (debug_infrun && num_events > 1)
3319 fprintf_unfiltered (gdb_stdlog,
3320 "infrun: Found %d events, selecting #%d\n",
3321 num_events, random_selector);
3322
3323 /* Select the Nth thread that has had an event. */
08036331
PA
3324 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3325 if (has_event (tp))
372316f1 3326 if (random_selector-- == 0)
08036331 3327 return tp;
372316f1 3328
08036331 3329 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3330}
3331
3332/* Wrapper for target_wait that first checks whether threads have
3333 pending statuses to report before actually asking the target for
3334 more events. */
3335
3336static ptid_t
3337do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3338{
3339 ptid_t event_ptid;
3340 struct thread_info *tp;
3341
3342 /* First check if there is a resumed thread with a wait status
3343 pending. */
d7e15655 3344 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3345 {
3346 tp = random_pending_event_thread (ptid);
3347 }
3348 else
3349 {
3350 if (debug_infrun)
3351 fprintf_unfiltered (gdb_stdlog,
3352 "infrun: Waiting for specific thread %s.\n",
3353 target_pid_to_str (ptid));
3354
3355 /* We have a specific thread to check. */
3356 tp = find_thread_ptid (ptid);
3357 gdb_assert (tp != NULL);
3358 if (!tp->suspend.waitstatus_pending_p)
3359 tp = NULL;
3360 }
3361
3362 if (tp != NULL
3363 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3364 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3365 {
00431a78 3366 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3367 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3368 CORE_ADDR pc;
3369 int discard = 0;
3370
3371 pc = regcache_read_pc (regcache);
3372
3373 if (pc != tp->suspend.stop_pc)
3374 {
3375 if (debug_infrun)
3376 fprintf_unfiltered (gdb_stdlog,
3377 "infrun: PC of %s changed. was=%s, now=%s\n",
3378 target_pid_to_str (tp->ptid),
defd2172 3379 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3380 paddress (gdbarch, pc));
3381 discard = 1;
3382 }
a01bda52 3383 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3384 {
3385 if (debug_infrun)
3386 fprintf_unfiltered (gdb_stdlog,
3387 "infrun: previous breakpoint of %s, at %s gone\n",
3388 target_pid_to_str (tp->ptid),
3389 paddress (gdbarch, pc));
3390
3391 discard = 1;
3392 }
3393
3394 if (discard)
3395 {
3396 if (debug_infrun)
3397 fprintf_unfiltered (gdb_stdlog,
3398 "infrun: pending event of %s cancelled.\n",
3399 target_pid_to_str (tp->ptid));
3400
3401 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3402 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3403 }
3404 }
3405
3406 if (tp != NULL)
3407 {
3408 if (debug_infrun)
3409 {
23fdd69e
SM
3410 std::string statstr
3411 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3412
372316f1
PA
3413 fprintf_unfiltered (gdb_stdlog,
3414 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3415 statstr.c_str (),
372316f1 3416 target_pid_to_str (tp->ptid));
372316f1
PA
3417 }
3418
3419 /* Now that we've selected our final event LWP, un-adjust its PC
3420 if it was a software breakpoint (and the target doesn't
3421 always adjust the PC itself). */
3422 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3423 && !target_supports_stopped_by_sw_breakpoint ())
3424 {
3425 struct regcache *regcache;
3426 struct gdbarch *gdbarch;
3427 int decr_pc;
3428
00431a78 3429 regcache = get_thread_regcache (tp);
ac7936df 3430 gdbarch = regcache->arch ();
372316f1
PA
3431
3432 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3433 if (decr_pc != 0)
3434 {
3435 CORE_ADDR pc;
3436
3437 pc = regcache_read_pc (regcache);
3438 regcache_write_pc (regcache, pc + decr_pc);
3439 }
3440 }
3441
3442 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3443 *status = tp->suspend.waitstatus;
3444 tp->suspend.waitstatus_pending_p = 0;
3445
3446 /* Wake up the event loop again, until all pending events are
3447 processed. */
3448 if (target_is_async_p ())
3449 mark_async_event_handler (infrun_async_inferior_event_token);
3450 return tp->ptid;
3451 }
3452
3453 /* But if we don't find one, we'll have to wait. */
3454
3455 if (deprecated_target_wait_hook)
3456 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3457 else
3458 event_ptid = target_wait (ptid, status, options);
3459
3460 return event_ptid;
3461}
3462
24291992
PA
3463/* Prepare and stabilize the inferior for detaching it. E.g.,
3464 detaching while a thread is displaced stepping is a recipe for
3465 crashing it, as nothing would readjust the PC out of the scratch
3466 pad. */
3467
3468void
3469prepare_for_detach (void)
3470{
3471 struct inferior *inf = current_inferior ();
f2907e49 3472 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3473
00431a78 3474 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3475
3476 /* Is any thread of this process displaced stepping? If not,
3477 there's nothing else to do. */
d20172fc 3478 if (displaced->step_thread == nullptr)
24291992
PA
3479 return;
3480
3481 if (debug_infrun)
3482 fprintf_unfiltered (gdb_stdlog,
3483 "displaced-stepping in-process while detaching");
3484
9bcb1f16 3485 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3486
00431a78 3487 while (displaced->step_thread != nullptr)
24291992 3488 {
24291992
PA
3489 struct execution_control_state ecss;
3490 struct execution_control_state *ecs;
3491
3492 ecs = &ecss;
3493 memset (ecs, 0, sizeof (*ecs));
3494
3495 overlay_cache_invalid = 1;
f15cb84a
YQ
3496 /* Flush target cache before starting to handle each event.
3497 Target was running and cache could be stale. This is just a
3498 heuristic. Running threads may modify target memory, but we
3499 don't get any event. */
3500 target_dcache_invalidate ();
24291992 3501
372316f1 3502 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3503
3504 if (debug_infrun)
3505 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3506
3507 /* If an error happens while handling the event, propagate GDB's
3508 knowledge of the executing state to the frontend/user running
3509 state. */
731f534f 3510 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3511
3512 /* Now figure out what to do with the result of the result. */
3513 handle_inferior_event (ecs);
3514
3515 /* No error, don't finish the state yet. */
731f534f 3516 finish_state.release ();
24291992
PA
3517
3518 /* Breakpoints and watchpoints are not installed on the target
3519 at this point, and signals are passed directly to the
3520 inferior, so this must mean the process is gone. */
3521 if (!ecs->wait_some_more)
3522 {
9bcb1f16 3523 restore_detaching.release ();
24291992
PA
3524 error (_("Program exited while detaching"));
3525 }
3526 }
3527
9bcb1f16 3528 restore_detaching.release ();
24291992
PA
3529}
3530
cd0fc7c3 3531/* Wait for control to return from inferior to debugger.
ae123ec6 3532
cd0fc7c3
SS
3533 If inferior gets a signal, we may decide to start it up again
3534 instead of returning. That is why there is a loop in this function.
3535 When this function actually returns it means the inferior
3536 should be left stopped and GDB should read more commands. */
3537
3538void
e4c8541f 3539wait_for_inferior (void)
cd0fc7c3
SS
3540{
3541 struct cleanup *old_cleanups;
c906108c 3542
527159b7 3543 if (debug_infrun)
ae123ec6 3544 fprintf_unfiltered
e4c8541f 3545 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3546
0cbcdb96
PA
3547 old_cleanups
3548 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3549 NULL);
cd0fc7c3 3550
e6f5c25b
PA
3551 /* If an error happens while handling the event, propagate GDB's
3552 knowledge of the executing state to the frontend/user running
3553 state. */
731f534f 3554 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3555
c906108c
SS
3556 while (1)
3557 {
ae25568b
PA
3558 struct execution_control_state ecss;
3559 struct execution_control_state *ecs = &ecss;
963f9c80 3560 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3561
ae25568b
PA
3562 memset (ecs, 0, sizeof (*ecs));
3563
ec9499be 3564 overlay_cache_invalid = 1;
ec9499be 3565
f15cb84a
YQ
3566 /* Flush target cache before starting to handle each event.
3567 Target was running and cache could be stale. This is just a
3568 heuristic. Running threads may modify target memory, but we
3569 don't get any event. */
3570 target_dcache_invalidate ();
3571
372316f1 3572 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3573
f00150c9 3574 if (debug_infrun)
223698f8 3575 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3576
cd0fc7c3
SS
3577 /* Now figure out what to do with the result of the result. */
3578 handle_inferior_event (ecs);
c906108c 3579
cd0fc7c3
SS
3580 if (!ecs->wait_some_more)
3581 break;
3582 }
4e1c45ea 3583
e6f5c25b 3584 /* No error, don't finish the state yet. */
731f534f 3585 finish_state.release ();
e6f5c25b 3586
cd0fc7c3
SS
3587 do_cleanups (old_cleanups);
3588}
c906108c 3589
d3d4baed
PA
3590/* Cleanup that reinstalls the readline callback handler, if the
3591 target is running in the background. If while handling the target
3592 event something triggered a secondary prompt, like e.g., a
3593 pagination prompt, we'll have removed the callback handler (see
3594 gdb_readline_wrapper_line). Need to do this as we go back to the
3595 event loop, ready to process further input. Note this has no
3596 effect if the handler hasn't actually been removed, because calling
3597 rl_callback_handler_install resets the line buffer, thus losing
3598 input. */
3599
3600static void
3601reinstall_readline_callback_handler_cleanup (void *arg)
3602{
3b12939d
PA
3603 struct ui *ui = current_ui;
3604
3605 if (!ui->async)
6c400b59
PA
3606 {
3607 /* We're not going back to the top level event loop yet. Don't
3608 install the readline callback, as it'd prep the terminal,
3609 readline-style (raw, noecho) (e.g., --batch). We'll install
3610 it the next time the prompt is displayed, when we're ready
3611 for input. */
3612 return;
3613 }
3614
3b12939d 3615 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3616 gdb_rl_callback_handler_reinstall ();
3617}
3618
243a9253
PA
3619/* Clean up the FSMs of threads that are now stopped. In non-stop,
3620 that's just the event thread. In all-stop, that's all threads. */
3621
3622static void
3623clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3624{
08036331
PA
3625 if (ecs->event_thread != NULL
3626 && ecs->event_thread->thread_fsm != NULL)
3627 thread_fsm_clean_up (ecs->event_thread->thread_fsm,
3628 ecs->event_thread);
243a9253
PA
3629
3630 if (!non_stop)
3631 {
08036331 3632 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3633 {
3634 if (thr->thread_fsm == NULL)
3635 continue;
3636 if (thr == ecs->event_thread)
3637 continue;
3638
00431a78 3639 switch_to_thread (thr);
8980e177 3640 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3641 }
3642
3643 if (ecs->event_thread != NULL)
00431a78 3644 switch_to_thread (ecs->event_thread);
243a9253
PA
3645 }
3646}
3647
3b12939d
PA
3648/* Helper for all_uis_check_sync_execution_done that works on the
3649 current UI. */
3650
3651static void
3652check_curr_ui_sync_execution_done (void)
3653{
3654 struct ui *ui = current_ui;
3655
3656 if (ui->prompt_state == PROMPT_NEEDED
3657 && ui->async
3658 && !gdb_in_secondary_prompt_p (ui))
3659 {
223ffa71 3660 target_terminal::ours ();
76727919 3661 gdb::observers::sync_execution_done.notify ();
3eb7562a 3662 ui_register_input_event_handler (ui);
3b12939d
PA
3663 }
3664}
3665
3666/* See infrun.h. */
3667
3668void
3669all_uis_check_sync_execution_done (void)
3670{
0e454242 3671 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3672 {
3673 check_curr_ui_sync_execution_done ();
3674 }
3675}
3676
a8836c93
PA
3677/* See infrun.h. */
3678
3679void
3680all_uis_on_sync_execution_starting (void)
3681{
0e454242 3682 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3683 {
3684 if (current_ui->prompt_state == PROMPT_NEEDED)
3685 async_disable_stdin ();
3686 }
3687}
3688
1777feb0 3689/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3690 event loop whenever a change of state is detected on the file
1777feb0
MS
3691 descriptor corresponding to the target. It can be called more than
3692 once to complete a single execution command. In such cases we need
3693 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3694 that this function is called for a single execution command, then
3695 report to the user that the inferior has stopped, and do the
1777feb0 3696 necessary cleanups. */
43ff13b4
JM
3697
3698void
fba45db2 3699fetch_inferior_event (void *client_data)
43ff13b4 3700{
0d1e5fa7 3701 struct execution_control_state ecss;
a474d7c2 3702 struct execution_control_state *ecs = &ecss;
4f8d22e3 3703 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
0f641c01 3704 int cmd_done = 0;
963f9c80 3705 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3706
0d1e5fa7
PA
3707 memset (ecs, 0, sizeof (*ecs));
3708
c61db772
PA
3709 /* Events are always processed with the main UI as current UI. This
3710 way, warnings, debug output, etc. are always consistently sent to
3711 the main console. */
4b6749b9 3712 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3713
d3d4baed
PA
3714 /* End up with readline processing input, if necessary. */
3715 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3716
c5187ac6
PA
3717 /* We're handling a live event, so make sure we're doing live
3718 debugging. If we're looking at traceframes while the target is
3719 running, we're going to need to get back to that mode after
3720 handling the event. */
6f14adc5 3721 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
c5187ac6
PA
3722 if (non_stop)
3723 {
6f14adc5 3724 maybe_restore_traceframe.emplace ();
e6e4e701 3725 set_current_traceframe (-1);
c5187ac6
PA
3726 }
3727
5ed8105e
PA
3728 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3729
4f8d22e3
PA
3730 if (non_stop)
3731 /* In non-stop mode, the user/frontend should not notice a thread
3732 switch due to internal events. Make sure we reverse to the
3733 user selected thread and frame after handling the event and
3734 running any breakpoint commands. */
5ed8105e 3735 maybe_restore_thread.emplace ();
4f8d22e3 3736
ec9499be 3737 overlay_cache_invalid = 1;
f15cb84a
YQ
3738 /* Flush target cache before starting to handle each event. Target
3739 was running and cache could be stale. This is just a heuristic.
3740 Running threads may modify target memory, but we don't get any
3741 event. */
3742 target_dcache_invalidate ();
3dd5b83d 3743
b7b633e9
TT
3744 scoped_restore save_exec_dir
3745 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3746
0b333c5e
PA
3747 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3748 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3749
f00150c9 3750 if (debug_infrun)
223698f8 3751 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3752
29f49a6a
PA
3753 /* If an error happens while handling the event, propagate GDB's
3754 knowledge of the executing state to the frontend/user running
3755 state. */
731f534f
PA
3756 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3757 scoped_finish_thread_state finish_state (finish_ptid);
29f49a6a 3758
353d1d73
JK
3759 /* Get executed before make_cleanup_restore_current_thread above to apply
3760 still for the thread which has thrown the exception. */
731f534f 3761 struct cleanup *ts_old_chain = make_bpstat_clear_actions_cleanup ();
353d1d73 3762
7c16b83e
PA
3763 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3764
43ff13b4 3765 /* Now figure out what to do with the result of the result. */
a474d7c2 3766 handle_inferior_event (ecs);
43ff13b4 3767
a474d7c2 3768 if (!ecs->wait_some_more)
43ff13b4 3769 {
c9657e70 3770 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3771 int should_stop = 1;
3772 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3773
0cbcdb96 3774 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3775
243a9253
PA
3776 if (thr != NULL)
3777 {
3778 struct thread_fsm *thread_fsm = thr->thread_fsm;
3779
3780 if (thread_fsm != NULL)
8980e177 3781 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3782 }
3783
3784 if (!should_stop)
3785 {
3786 keep_going (ecs);
3787 }
c2d11a7d 3788 else
0f641c01 3789 {
1840d81a
AB
3790 int should_notify_stop = 1;
3791 int proceeded = 0;
3792
243a9253
PA
3793 clean_up_just_stopped_threads_fsms (ecs);
3794
388a7084
PA
3795 if (thr != NULL && thr->thread_fsm != NULL)
3796 {
3797 should_notify_stop
3798 = thread_fsm_should_notify_stop (thr->thread_fsm);
3799 }
3800
3801 if (should_notify_stop)
3802 {
3803 /* We may not find an inferior if this was a process exit. */
3804 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3805 proceeded = normal_stop ();
1840d81a 3806 }
243a9253 3807
1840d81a
AB
3808 if (!proceeded)
3809 {
3810 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3811 cmd_done = 1;
388a7084 3812 }
0f641c01 3813 }
43ff13b4 3814 }
4f8d22e3 3815
29f49a6a
PA
3816 discard_cleanups (ts_old_chain);
3817
731f534f
PA
3818 /* No error, don't finish the thread states yet. */
3819 finish_state.release ();
3820
4f8d22e3
PA
3821 /* Revert thread and frame. */
3822 do_cleanups (old_chain);
3823
3b12939d
PA
3824 /* If a UI was in sync execution mode, and now isn't, restore its
3825 prompt (a synchronous execution command has finished, and we're
3826 ready for input). */
3827 all_uis_check_sync_execution_done ();
0f641c01
PA
3828
3829 if (cmd_done
0f641c01 3830 && exec_done_display_p
00431a78
PA
3831 && (inferior_ptid == null_ptid
3832 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3833 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3834}
3835
edb3359d
DJ
3836/* Record the frame and location we're currently stepping through. */
3837void
3838set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3839{
3840 struct thread_info *tp = inferior_thread ();
3841
16c381f0
JK
3842 tp->control.step_frame_id = get_frame_id (frame);
3843 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3844
3845 tp->current_symtab = sal.symtab;
3846 tp->current_line = sal.line;
3847}
3848
0d1e5fa7
PA
3849/* Clear context switchable stepping state. */
3850
3851void
4e1c45ea 3852init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3853{
7f5ef605 3854 tss->stepped_breakpoint = 0;
0d1e5fa7 3855 tss->stepping_over_breakpoint = 0;
963f9c80 3856 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3857 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3858}
3859
c32c64b7
DE
3860/* Set the cached copy of the last ptid/waitstatus. */
3861
6efcd9a8 3862void
c32c64b7
DE
3863set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3864{
3865 target_last_wait_ptid = ptid;
3866 target_last_waitstatus = status;
3867}
3868
e02bc4cc 3869/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3870 target_wait()/deprecated_target_wait_hook(). The data is actually
3871 cached by handle_inferior_event(), which gets called immediately
3872 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3873
3874void
488f131b 3875get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3876{
39f77062 3877 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3878 *status = target_last_waitstatus;
3879}
3880
ac264b3b
MS
3881void
3882nullify_last_target_wait_ptid (void)
3883{
3884 target_last_wait_ptid = minus_one_ptid;
3885}
3886
dcf4fbde 3887/* Switch thread contexts. */
dd80620e
MS
3888
3889static void
00431a78 3890context_switch (execution_control_state *ecs)
dd80620e 3891{
00431a78
PA
3892 if (debug_infrun
3893 && ecs->ptid != inferior_ptid
3894 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3895 {
3896 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3897 target_pid_to_str (inferior_ptid));
3898 fprintf_unfiltered (gdb_stdlog, "to %s\n",
00431a78 3899 target_pid_to_str (ecs->ptid));
fd48f117
DJ
3900 }
3901
00431a78 3902 switch_to_thread (ecs->event_thread);
dd80620e
MS
3903}
3904
d8dd4d5f
PA
3905/* If the target can't tell whether we've hit breakpoints
3906 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3907 check whether that could have been caused by a breakpoint. If so,
3908 adjust the PC, per gdbarch_decr_pc_after_break. */
3909
4fa8626c 3910static void
d8dd4d5f
PA
3911adjust_pc_after_break (struct thread_info *thread,
3912 struct target_waitstatus *ws)
4fa8626c 3913{
24a73cce
UW
3914 struct regcache *regcache;
3915 struct gdbarch *gdbarch;
118e6252 3916 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3917
4fa8626c
DJ
3918 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3919 we aren't, just return.
9709f61c
DJ
3920
3921 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3922 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3923 implemented by software breakpoints should be handled through the normal
3924 breakpoint layer.
8fb3e588 3925
4fa8626c
DJ
3926 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3927 different signals (SIGILL or SIGEMT for instance), but it is less
3928 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3929 gdbarch_decr_pc_after_break. I don't know any specific target that
3930 generates these signals at breakpoints (the code has been in GDB since at
3931 least 1992) so I can not guess how to handle them here.
8fb3e588 3932
e6cf7916
UW
3933 In earlier versions of GDB, a target with
3934 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3935 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3936 target with both of these set in GDB history, and it seems unlikely to be
3937 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3938
d8dd4d5f 3939 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3940 return;
3941
d8dd4d5f 3942 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3943 return;
3944
4058b839
PA
3945 /* In reverse execution, when a breakpoint is hit, the instruction
3946 under it has already been de-executed. The reported PC always
3947 points at the breakpoint address, so adjusting it further would
3948 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3949 architecture:
3950
3951 B1 0x08000000 : INSN1
3952 B2 0x08000001 : INSN2
3953 0x08000002 : INSN3
3954 PC -> 0x08000003 : INSN4
3955
3956 Say you're stopped at 0x08000003 as above. Reverse continuing
3957 from that point should hit B2 as below. Reading the PC when the
3958 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3959 been de-executed already.
3960
3961 B1 0x08000000 : INSN1
3962 B2 PC -> 0x08000001 : INSN2
3963 0x08000002 : INSN3
3964 0x08000003 : INSN4
3965
3966 We can't apply the same logic as for forward execution, because
3967 we would wrongly adjust the PC to 0x08000000, since there's a
3968 breakpoint at PC - 1. We'd then report a hit on B1, although
3969 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3970 behaviour. */
3971 if (execution_direction == EXEC_REVERSE)
3972 return;
3973
1cf4d951
PA
3974 /* If the target can tell whether the thread hit a SW breakpoint,
3975 trust it. Targets that can tell also adjust the PC
3976 themselves. */
3977 if (target_supports_stopped_by_sw_breakpoint ())
3978 return;
3979
3980 /* Note that relying on whether a breakpoint is planted in memory to
3981 determine this can fail. E.g,. the breakpoint could have been
3982 removed since. Or the thread could have been told to step an
3983 instruction the size of a breakpoint instruction, and only
3984 _after_ was a breakpoint inserted at its address. */
3985
24a73cce
UW
3986 /* If this target does not decrement the PC after breakpoints, then
3987 we have nothing to do. */
00431a78 3988 regcache = get_thread_regcache (thread);
ac7936df 3989 gdbarch = regcache->arch ();
118e6252 3990
527a273a 3991 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3992 if (decr_pc == 0)
24a73cce
UW
3993 return;
3994
8b86c959 3995 const address_space *aspace = regcache->aspace ();
6c95b8df 3996
8aad930b
AC
3997 /* Find the location where (if we've hit a breakpoint) the
3998 breakpoint would be. */
118e6252 3999 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4000
1cf4d951
PA
4001 /* If the target can't tell whether a software breakpoint triggered,
4002 fallback to figuring it out based on breakpoints we think were
4003 inserted in the target, and on whether the thread was stepped or
4004 continued. */
4005
1c5cfe86
PA
4006 /* Check whether there actually is a software breakpoint inserted at
4007 that location.
4008
4009 If in non-stop mode, a race condition is possible where we've
4010 removed a breakpoint, but stop events for that breakpoint were
4011 already queued and arrive later. To suppress those spurious
4012 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4013 and retire them after a number of stop events are reported. Note
4014 this is an heuristic and can thus get confused. The real fix is
4015 to get the "stopped by SW BP and needs adjustment" info out of
4016 the target/kernel (and thus never reach here; see above). */
6c95b8df 4017 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4018 || (target_is_non_stop_p ()
4019 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4020 {
07036511 4021 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4022
8213266a 4023 if (record_full_is_used ())
07036511
TT
4024 restore_operation_disable.emplace
4025 (record_full_gdb_operation_disable_set ());
96429cc8 4026
1c0fdd0e
UW
4027 /* When using hardware single-step, a SIGTRAP is reported for both
4028 a completed single-step and a software breakpoint. Need to
4029 differentiate between the two, as the latter needs adjusting
4030 but the former does not.
4031
4032 The SIGTRAP can be due to a completed hardware single-step only if
4033 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4034 - this thread is currently being stepped
4035
4036 If any of these events did not occur, we must have stopped due
4037 to hitting a software breakpoint, and have to back up to the
4038 breakpoint address.
4039
4040 As a special case, we could have hardware single-stepped a
4041 software breakpoint. In this case (prev_pc == breakpoint_pc),
4042 we also need to back up to the breakpoint address. */
4043
d8dd4d5f
PA
4044 if (thread_has_single_step_breakpoints_set (thread)
4045 || !currently_stepping (thread)
4046 || (thread->stepped_breakpoint
4047 && thread->prev_pc == breakpoint_pc))
515630c5 4048 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4049 }
4fa8626c
DJ
4050}
4051
edb3359d
DJ
4052static int
4053stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4054{
4055 for (frame = get_prev_frame (frame);
4056 frame != NULL;
4057 frame = get_prev_frame (frame))
4058 {
4059 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4060 return 1;
4061 if (get_frame_type (frame) != INLINE_FRAME)
4062 break;
4063 }
4064
4065 return 0;
4066}
4067
c65d6b55
PA
4068/* If the event thread has the stop requested flag set, pretend it
4069 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4070 target_stop). */
4071
4072static bool
4073handle_stop_requested (struct execution_control_state *ecs)
4074{
4075 if (ecs->event_thread->stop_requested)
4076 {
4077 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4078 ecs->ws.value.sig = GDB_SIGNAL_0;
4079 handle_signal_stop (ecs);
4080 return true;
4081 }
4082 return false;
4083}
4084
a96d9b2e
SDJ
4085/* Auxiliary function that handles syscall entry/return events.
4086 It returns 1 if the inferior should keep going (and GDB
4087 should ignore the event), or 0 if the event deserves to be
4088 processed. */
ca2163eb 4089
a96d9b2e 4090static int
ca2163eb 4091handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4092{
ca2163eb 4093 struct regcache *regcache;
ca2163eb
PA
4094 int syscall_number;
4095
00431a78 4096 context_switch (ecs);
ca2163eb 4097
00431a78 4098 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4099 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4100 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4101
a96d9b2e
SDJ
4102 if (catch_syscall_enabled () > 0
4103 && catching_syscall_number (syscall_number) > 0)
4104 {
4105 if (debug_infrun)
4106 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4107 syscall_number);
a96d9b2e 4108
16c381f0 4109 ecs->event_thread->control.stop_bpstat
a01bda52 4110 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4111 ecs->event_thread->suspend.stop_pc,
4112 ecs->event_thread, &ecs->ws);
ab04a2af 4113
c65d6b55
PA
4114 if (handle_stop_requested (ecs))
4115 return 0;
4116
ce12b012 4117 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4118 {
4119 /* Catchpoint hit. */
ca2163eb
PA
4120 return 0;
4121 }
a96d9b2e 4122 }
ca2163eb 4123
c65d6b55
PA
4124 if (handle_stop_requested (ecs))
4125 return 0;
4126
ca2163eb 4127 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4128 keep_going (ecs);
4129 return 1;
a96d9b2e
SDJ
4130}
4131
7e324e48
GB
4132/* Lazily fill in the execution_control_state's stop_func_* fields. */
4133
4134static void
4135fill_in_stop_func (struct gdbarch *gdbarch,
4136 struct execution_control_state *ecs)
4137{
4138 if (!ecs->stop_func_filled_in)
4139 {
4140 /* Don't care about return value; stop_func_start and stop_func_name
4141 will both be 0 if it doesn't work. */
59adbf5d
KB
4142 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4143 &ecs->stop_func_name,
4144 &ecs->stop_func_start,
4145 &ecs->stop_func_end);
7e324e48
GB
4146 ecs->stop_func_start
4147 += gdbarch_deprecated_function_start_offset (gdbarch);
4148
591a12a1
UW
4149 if (gdbarch_skip_entrypoint_p (gdbarch))
4150 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4151 ecs->stop_func_start);
4152
7e324e48
GB
4153 ecs->stop_func_filled_in = 1;
4154 }
4155}
4156
4f5d7f63 4157
00431a78 4158/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4159
4160static enum stop_kind
00431a78 4161get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4162{
00431a78 4163 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4164
4165 gdb_assert (inf != NULL);
4166 return inf->control.stop_soon;
4167}
4168
372316f1
PA
4169/* Wait for one event. Store the resulting waitstatus in WS, and
4170 return the event ptid. */
4171
4172static ptid_t
4173wait_one (struct target_waitstatus *ws)
4174{
4175 ptid_t event_ptid;
4176 ptid_t wait_ptid = minus_one_ptid;
4177
4178 overlay_cache_invalid = 1;
4179
4180 /* Flush target cache before starting to handle each event.
4181 Target was running and cache could be stale. This is just a
4182 heuristic. Running threads may modify target memory, but we
4183 don't get any event. */
4184 target_dcache_invalidate ();
4185
4186 if (deprecated_target_wait_hook)
4187 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4188 else
4189 event_ptid = target_wait (wait_ptid, ws, 0);
4190
4191 if (debug_infrun)
4192 print_target_wait_results (wait_ptid, event_ptid, ws);
4193
4194 return event_ptid;
4195}
4196
4197/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4198 instead of the current thread. */
4199#define THREAD_STOPPED_BY(REASON) \
4200static int \
4201thread_stopped_by_ ## REASON (ptid_t ptid) \
4202{ \
2989a365 4203 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4204 inferior_ptid = ptid; \
4205 \
2989a365 4206 return target_stopped_by_ ## REASON (); \
372316f1
PA
4207}
4208
4209/* Generate thread_stopped_by_watchpoint. */
4210THREAD_STOPPED_BY (watchpoint)
4211/* Generate thread_stopped_by_sw_breakpoint. */
4212THREAD_STOPPED_BY (sw_breakpoint)
4213/* Generate thread_stopped_by_hw_breakpoint. */
4214THREAD_STOPPED_BY (hw_breakpoint)
4215
372316f1
PA
4216/* Save the thread's event and stop reason to process it later. */
4217
4218static void
4219save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4220{
372316f1
PA
4221 if (debug_infrun)
4222 {
23fdd69e 4223 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4224
372316f1
PA
4225 fprintf_unfiltered (gdb_stdlog,
4226 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4227 statstr.c_str (),
e99b03dc 4228 tp->ptid.pid (),
e38504b3 4229 tp->ptid.lwp (),
cc6bcb54 4230 tp->ptid.tid ());
372316f1
PA
4231 }
4232
4233 /* Record for later. */
4234 tp->suspend.waitstatus = *ws;
4235 tp->suspend.waitstatus_pending_p = 1;
4236
00431a78 4237 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4238 const address_space *aspace = regcache->aspace ();
372316f1
PA
4239
4240 if (ws->kind == TARGET_WAITKIND_STOPPED
4241 && ws->value.sig == GDB_SIGNAL_TRAP)
4242 {
4243 CORE_ADDR pc = regcache_read_pc (regcache);
4244
4245 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4246
4247 if (thread_stopped_by_watchpoint (tp->ptid))
4248 {
4249 tp->suspend.stop_reason
4250 = TARGET_STOPPED_BY_WATCHPOINT;
4251 }
4252 else if (target_supports_stopped_by_sw_breakpoint ()
4253 && thread_stopped_by_sw_breakpoint (tp->ptid))
4254 {
4255 tp->suspend.stop_reason
4256 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4257 }
4258 else if (target_supports_stopped_by_hw_breakpoint ()
4259 && thread_stopped_by_hw_breakpoint (tp->ptid))
4260 {
4261 tp->suspend.stop_reason
4262 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4263 }
4264 else if (!target_supports_stopped_by_hw_breakpoint ()
4265 && hardware_breakpoint_inserted_here_p (aspace,
4266 pc))
4267 {
4268 tp->suspend.stop_reason
4269 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4270 }
4271 else if (!target_supports_stopped_by_sw_breakpoint ()
4272 && software_breakpoint_inserted_here_p (aspace,
4273 pc))
4274 {
4275 tp->suspend.stop_reason
4276 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4277 }
4278 else if (!thread_has_single_step_breakpoints_set (tp)
4279 && currently_stepping (tp))
4280 {
4281 tp->suspend.stop_reason
4282 = TARGET_STOPPED_BY_SINGLE_STEP;
4283 }
4284 }
4285}
4286
65706a29
PA
4287/* A cleanup that disables thread create/exit events. */
4288
4289static void
4290disable_thread_events (void *arg)
4291{
4292 target_thread_events (0);
4293}
4294
6efcd9a8 4295/* See infrun.h. */
372316f1 4296
6efcd9a8 4297void
372316f1
PA
4298stop_all_threads (void)
4299{
4300 /* We may need multiple passes to discover all threads. */
4301 int pass;
4302 int iterations = 0;
372316f1
PA
4303 struct cleanup *old_chain;
4304
fbea99ea 4305 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4306
4307 if (debug_infrun)
4308 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4309
00431a78 4310 scoped_restore_current_thread restore_thread;
372316f1 4311
65706a29 4312 target_thread_events (1);
00431a78 4313 old_chain = make_cleanup (disable_thread_events, NULL);
65706a29 4314
372316f1
PA
4315 /* Request threads to stop, and then wait for the stops. Because
4316 threads we already know about can spawn more threads while we're
4317 trying to stop them, and we only learn about new threads when we
4318 update the thread list, do this in a loop, and keep iterating
4319 until two passes find no threads that need to be stopped. */
4320 for (pass = 0; pass < 2; pass++, iterations++)
4321 {
4322 if (debug_infrun)
4323 fprintf_unfiltered (gdb_stdlog,
4324 "infrun: stop_all_threads, pass=%d, "
4325 "iterations=%d\n", pass, iterations);
4326 while (1)
4327 {
4328 ptid_t event_ptid;
4329 struct target_waitstatus ws;
4330 int need_wait = 0;
372316f1
PA
4331
4332 update_thread_list ();
4333
4334 /* Go through all threads looking for threads that we need
4335 to tell the target to stop. */
08036331 4336 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4337 {
4338 if (t->executing)
4339 {
4340 /* If already stopping, don't request a stop again.
4341 We just haven't seen the notification yet. */
4342 if (!t->stop_requested)
4343 {
4344 if (debug_infrun)
4345 fprintf_unfiltered (gdb_stdlog,
4346 "infrun: %s executing, "
4347 "need stop\n",
4348 target_pid_to_str (t->ptid));
4349 target_stop (t->ptid);
4350 t->stop_requested = 1;
4351 }
4352 else
4353 {
4354 if (debug_infrun)
4355 fprintf_unfiltered (gdb_stdlog,
4356 "infrun: %s executing, "
4357 "already stopping\n",
4358 target_pid_to_str (t->ptid));
4359 }
4360
4361 if (t->stop_requested)
4362 need_wait = 1;
4363 }
4364 else
4365 {
4366 if (debug_infrun)
4367 fprintf_unfiltered (gdb_stdlog,
4368 "infrun: %s not executing\n",
4369 target_pid_to_str (t->ptid));
4370
4371 /* The thread may be not executing, but still be
4372 resumed with a pending status to process. */
4373 t->resumed = 0;
4374 }
4375 }
4376
4377 if (!need_wait)
4378 break;
4379
4380 /* If we find new threads on the second iteration, restart
4381 over. We want to see two iterations in a row with all
4382 threads stopped. */
4383 if (pass > 0)
4384 pass = -1;
4385
4386 event_ptid = wait_one (&ws);
00431a78 4387
372316f1
PA
4388 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4389 {
4390 /* All resumed threads exited. */
4391 }
65706a29
PA
4392 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4393 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4394 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4395 {
4396 if (debug_infrun)
4397 {
f2907e49 4398 ptid_t ptid = ptid_t (ws.value.integer);
372316f1
PA
4399
4400 fprintf_unfiltered (gdb_stdlog,
4401 "infrun: %s exited while "
4402 "stopping threads\n",
4403 target_pid_to_str (ptid));
4404 }
4405 }
4406 else
4407 {
08036331 4408 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4409 if (t == NULL)
4410 t = add_thread (event_ptid);
4411
4412 t->stop_requested = 0;
4413 t->executing = 0;
4414 t->resumed = 0;
4415 t->control.may_range_step = 0;
4416
6efcd9a8
PA
4417 /* This may be the first time we see the inferior report
4418 a stop. */
08036331 4419 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4420 if (inf->needs_setup)
4421 {
4422 switch_to_thread_no_regs (t);
4423 setup_inferior (0);
4424 }
4425
372316f1
PA
4426 if (ws.kind == TARGET_WAITKIND_STOPPED
4427 && ws.value.sig == GDB_SIGNAL_0)
4428 {
4429 /* We caught the event that we intended to catch, so
4430 there's no event pending. */
4431 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4432 t->suspend.waitstatus_pending_p = 0;
4433
00431a78 4434 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4435 {
4436 /* Add it back to the step-over queue. */
4437 if (debug_infrun)
4438 {
4439 fprintf_unfiltered (gdb_stdlog,
4440 "infrun: displaced-step of %s "
4441 "canceled: adding back to the "
4442 "step-over queue\n",
4443 target_pid_to_str (t->ptid));
4444 }
4445 t->control.trap_expected = 0;
4446 thread_step_over_chain_enqueue (t);
4447 }
4448 }
4449 else
4450 {
4451 enum gdb_signal sig;
4452 struct regcache *regcache;
372316f1
PA
4453
4454 if (debug_infrun)
4455 {
23fdd69e 4456 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4457
372316f1
PA
4458 fprintf_unfiltered (gdb_stdlog,
4459 "infrun: target_wait %s, saving "
4460 "status for %d.%ld.%ld\n",
23fdd69e 4461 statstr.c_str (),
e99b03dc 4462 t->ptid.pid (),
e38504b3 4463 t->ptid.lwp (),
cc6bcb54 4464 t->ptid.tid ());
372316f1
PA
4465 }
4466
4467 /* Record for later. */
4468 save_waitstatus (t, &ws);
4469
4470 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4471 ? ws.value.sig : GDB_SIGNAL_0);
4472
00431a78 4473 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4474 {
4475 /* Add it back to the step-over queue. */
4476 t->control.trap_expected = 0;
4477 thread_step_over_chain_enqueue (t);
4478 }
4479
00431a78 4480 regcache = get_thread_regcache (t);
372316f1
PA
4481 t->suspend.stop_pc = regcache_read_pc (regcache);
4482
4483 if (debug_infrun)
4484 {
4485 fprintf_unfiltered (gdb_stdlog,
4486 "infrun: saved stop_pc=%s for %s "
4487 "(currently_stepping=%d)\n",
4488 paddress (target_gdbarch (),
4489 t->suspend.stop_pc),
4490 target_pid_to_str (t->ptid),
4491 currently_stepping (t));
4492 }
4493 }
4494 }
4495 }
4496 }
4497
4498 do_cleanups (old_chain);
4499
4500 if (debug_infrun)
4501 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4502}
4503
f4836ba9
PA
4504/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4505
4506static int
4507handle_no_resumed (struct execution_control_state *ecs)
4508{
3b12939d 4509 if (target_can_async_p ())
f4836ba9 4510 {
3b12939d
PA
4511 struct ui *ui;
4512 int any_sync = 0;
f4836ba9 4513
3b12939d
PA
4514 ALL_UIS (ui)
4515 {
4516 if (ui->prompt_state == PROMPT_BLOCKED)
4517 {
4518 any_sync = 1;
4519 break;
4520 }
4521 }
4522 if (!any_sync)
4523 {
4524 /* There were no unwaited-for children left in the target, but,
4525 we're not synchronously waiting for events either. Just
4526 ignore. */
4527
4528 if (debug_infrun)
4529 fprintf_unfiltered (gdb_stdlog,
4530 "infrun: TARGET_WAITKIND_NO_RESUMED "
4531 "(ignoring: bg)\n");
4532 prepare_to_wait (ecs);
4533 return 1;
4534 }
f4836ba9
PA
4535 }
4536
4537 /* Otherwise, if we were running a synchronous execution command, we
4538 may need to cancel it and give the user back the terminal.
4539
4540 In non-stop mode, the target can't tell whether we've already
4541 consumed previous stop events, so it can end up sending us a
4542 no-resumed event like so:
4543
4544 #0 - thread 1 is left stopped
4545
4546 #1 - thread 2 is resumed and hits breakpoint
4547 -> TARGET_WAITKIND_STOPPED
4548
4549 #2 - thread 3 is resumed and exits
4550 this is the last resumed thread, so
4551 -> TARGET_WAITKIND_NO_RESUMED
4552
4553 #3 - gdb processes stop for thread 2 and decides to re-resume
4554 it.
4555
4556 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4557 thread 2 is now resumed, so the event should be ignored.
4558
4559 IOW, if the stop for thread 2 doesn't end a foreground command,
4560 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4561 event. But it could be that the event meant that thread 2 itself
4562 (or whatever other thread was the last resumed thread) exited.
4563
4564 To address this we refresh the thread list and check whether we
4565 have resumed threads _now_. In the example above, this removes
4566 thread 3 from the thread list. If thread 2 was re-resumed, we
4567 ignore this event. If we find no thread resumed, then we cancel
4568 the synchronous command show "no unwaited-for " to the user. */
4569 update_thread_list ();
4570
08036331 4571 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4572 {
4573 if (thread->executing
4574 || thread->suspend.waitstatus_pending_p)
4575 {
4576 /* There were no unwaited-for children left in the target at
4577 some point, but there are now. Just ignore. */
4578 if (debug_infrun)
4579 fprintf_unfiltered (gdb_stdlog,
4580 "infrun: TARGET_WAITKIND_NO_RESUMED "
4581 "(ignoring: found resumed)\n");
4582 prepare_to_wait (ecs);
4583 return 1;
4584 }
4585 }
4586
4587 /* Note however that we may find no resumed thread because the whole
4588 process exited meanwhile (thus updating the thread list results
4589 in an empty thread list). In this case we know we'll be getting
4590 a process exit event shortly. */
08036331 4591 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4592 {
4593 if (inf->pid == 0)
4594 continue;
4595
08036331 4596 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4597 if (thread == NULL)
4598 {
4599 if (debug_infrun)
4600 fprintf_unfiltered (gdb_stdlog,
4601 "infrun: TARGET_WAITKIND_NO_RESUMED "
4602 "(expect process exit)\n");
4603 prepare_to_wait (ecs);
4604 return 1;
4605 }
4606 }
4607
4608 /* Go ahead and report the event. */
4609 return 0;
4610}
4611
05ba8510
PA
4612/* Given an execution control state that has been freshly filled in by
4613 an event from the inferior, figure out what it means and take
4614 appropriate action.
4615
4616 The alternatives are:
4617
22bcd14b 4618 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4619 debugger.
4620
4621 2) keep_going and return; to wait for the next event (set
4622 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4623 once). */
c906108c 4624
ec9499be 4625static void
0b6e5e10 4626handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4627{
d6b48e9c
PA
4628 enum stop_kind stop_soon;
4629
28736962
PA
4630 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4631 {
4632 /* We had an event in the inferior, but we are not interested in
4633 handling it at this level. The lower layers have already
4634 done what needs to be done, if anything.
4635
4636 One of the possible circumstances for this is when the
4637 inferior produces output for the console. The inferior has
4638 not stopped, and we are ignoring the event. Another possible
4639 circumstance is any event which the lower level knows will be
4640 reported multiple times without an intervening resume. */
4641 if (debug_infrun)
4642 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4643 prepare_to_wait (ecs);
4644 return;
4645 }
4646
65706a29
PA
4647 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4648 {
4649 if (debug_infrun)
4650 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4651 prepare_to_wait (ecs);
4652 return;
4653 }
4654
0e5bf2a8 4655 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4656 && handle_no_resumed (ecs))
4657 return;
0e5bf2a8 4658
1777feb0 4659 /* Cache the last pid/waitstatus. */
c32c64b7 4660 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4661
ca005067 4662 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4663 stop_stack_dummy = STOP_NONE;
ca005067 4664
0e5bf2a8
PA
4665 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4666 {
4667 /* No unwaited-for children left. IOW, all resumed children
4668 have exited. */
4669 if (debug_infrun)
4670 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4671
4672 stop_print_frame = 0;
22bcd14b 4673 stop_waiting (ecs);
0e5bf2a8
PA
4674 return;
4675 }
4676
8c90c137 4677 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4678 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4679 {
4680 ecs->event_thread = find_thread_ptid (ecs->ptid);
4681 /* If it's a new thread, add it to the thread database. */
4682 if (ecs->event_thread == NULL)
4683 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4684
4685 /* Disable range stepping. If the next step request could use a
4686 range, this will be end up re-enabled then. */
4687 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4688 }
88ed393a
JK
4689
4690 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4691 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4692
4693 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4694 reinit_frame_cache ();
4695
28736962
PA
4696 breakpoint_retire_moribund ();
4697
2b009048
DJ
4698 /* First, distinguish signals caused by the debugger from signals
4699 that have to do with the program's own actions. Note that
4700 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4701 on the operating system version. Here we detect when a SIGILL or
4702 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4703 something similar for SIGSEGV, since a SIGSEGV will be generated
4704 when we're trying to execute a breakpoint instruction on a
4705 non-executable stack. This happens for call dummy breakpoints
4706 for architectures like SPARC that place call dummies on the
4707 stack. */
2b009048 4708 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4709 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4710 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4711 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4712 {
00431a78 4713 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4714
a01bda52 4715 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4716 regcache_read_pc (regcache)))
4717 {
4718 if (debug_infrun)
4719 fprintf_unfiltered (gdb_stdlog,
4720 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4721 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4722 }
2b009048
DJ
4723 }
4724
28736962
PA
4725 /* Mark the non-executing threads accordingly. In all-stop, all
4726 threads of all processes are stopped when we get any event
e1316e60 4727 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4728 {
4729 ptid_t mark_ptid;
4730
fbea99ea 4731 if (!target_is_non_stop_p ())
372316f1
PA
4732 mark_ptid = minus_one_ptid;
4733 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4734 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4735 {
4736 /* If we're handling a process exit in non-stop mode, even
4737 though threads haven't been deleted yet, one would think
4738 that there is nothing to do, as threads of the dead process
4739 will be soon deleted, and threads of any other process were
4740 left running. However, on some targets, threads survive a
4741 process exit event. E.g., for the "checkpoint" command,
4742 when the current checkpoint/fork exits, linux-fork.c
4743 automatically switches to another fork from within
4744 target_mourn_inferior, by associating the same
4745 inferior/thread to another fork. We haven't mourned yet at
4746 this point, but we must mark any threads left in the
4747 process as not-executing so that finish_thread_state marks
4748 them stopped (in the user's perspective) if/when we present
4749 the stop to the user. */
e99b03dc 4750 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4751 }
4752 else
4753 mark_ptid = ecs->ptid;
4754
4755 set_executing (mark_ptid, 0);
4756
4757 /* Likewise the resumed flag. */
4758 set_resumed (mark_ptid, 0);
4759 }
8c90c137 4760
488f131b
JB
4761 switch (ecs->ws.kind)
4762 {
4763 case TARGET_WAITKIND_LOADED:
527159b7 4764 if (debug_infrun)
8a9de0e4 4765 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
00431a78 4766 context_switch (ecs);
b0f4b84b
DJ
4767 /* Ignore gracefully during startup of the inferior, as it might
4768 be the shell which has just loaded some objects, otherwise
4769 add the symbols for the newly loaded objects. Also ignore at
4770 the beginning of an attach or remote session; we will query
4771 the full list of libraries once the connection is
4772 established. */
4f5d7f63 4773
00431a78 4774 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4775 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4776 {
edcc5120
TT
4777 struct regcache *regcache;
4778
00431a78 4779 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4780
4781 handle_solib_event ();
4782
4783 ecs->event_thread->control.stop_bpstat
a01bda52 4784 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4785 ecs->event_thread->suspend.stop_pc,
4786 ecs->event_thread, &ecs->ws);
ab04a2af 4787
c65d6b55
PA
4788 if (handle_stop_requested (ecs))
4789 return;
4790
ce12b012 4791 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4792 {
4793 /* A catchpoint triggered. */
94c57d6a
PA
4794 process_event_stop_test (ecs);
4795 return;
edcc5120 4796 }
488f131b 4797
b0f4b84b
DJ
4798 /* If requested, stop when the dynamic linker notifies
4799 gdb of events. This allows the user to get control
4800 and place breakpoints in initializer routines for
4801 dynamically loaded objects (among other things). */
a493e3e2 4802 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4803 if (stop_on_solib_events)
4804 {
55409f9d
DJ
4805 /* Make sure we print "Stopped due to solib-event" in
4806 normal_stop. */
4807 stop_print_frame = 1;
4808
22bcd14b 4809 stop_waiting (ecs);
b0f4b84b
DJ
4810 return;
4811 }
488f131b 4812 }
b0f4b84b
DJ
4813
4814 /* If we are skipping through a shell, or through shared library
4815 loading that we aren't interested in, resume the program. If
5c09a2c5 4816 we're running the program normally, also resume. */
b0f4b84b
DJ
4817 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4818 {
74960c60
VP
4819 /* Loading of shared libraries might have changed breakpoint
4820 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4821 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4822 insert_breakpoints ();
64ce06e4 4823 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4824 prepare_to_wait (ecs);
4825 return;
4826 }
4827
5c09a2c5
PA
4828 /* But stop if we're attaching or setting up a remote
4829 connection. */
4830 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4831 || stop_soon == STOP_QUIETLY_REMOTE)
4832 {
4833 if (debug_infrun)
4834 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4835 stop_waiting (ecs);
5c09a2c5
PA
4836 return;
4837 }
4838
4839 internal_error (__FILE__, __LINE__,
4840 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4841
488f131b 4842 case TARGET_WAITKIND_SPURIOUS:
527159b7 4843 if (debug_infrun)
8a9de0e4 4844 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
4845 if (handle_stop_requested (ecs))
4846 return;
00431a78 4847 context_switch (ecs);
64ce06e4 4848 resume (GDB_SIGNAL_0);
488f131b
JB
4849 prepare_to_wait (ecs);
4850 return;
c5aa993b 4851
65706a29
PA
4852 case TARGET_WAITKIND_THREAD_CREATED:
4853 if (debug_infrun)
4854 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
4855 if (handle_stop_requested (ecs))
4856 return;
00431a78 4857 context_switch (ecs);
65706a29
PA
4858 if (!switch_back_to_stepped_thread (ecs))
4859 keep_going (ecs);
4860 return;
4861
488f131b 4862 case TARGET_WAITKIND_EXITED:
940c3c06 4863 case TARGET_WAITKIND_SIGNALLED:
527159b7 4864 if (debug_infrun)
940c3c06
PA
4865 {
4866 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4867 fprintf_unfiltered (gdb_stdlog,
4868 "infrun: TARGET_WAITKIND_EXITED\n");
4869 else
4870 fprintf_unfiltered (gdb_stdlog,
4871 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4872 }
4873
fb66883a 4874 inferior_ptid = ecs->ptid;
c9657e70 4875 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4876 set_current_program_space (current_inferior ()->pspace);
4877 handle_vfork_child_exec_or_exit (0);
223ffa71 4878 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4879
0c557179
SDJ
4880 /* Clearing any previous state of convenience variables. */
4881 clear_exit_convenience_vars ();
4882
940c3c06
PA
4883 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4884 {
4885 /* Record the exit code in the convenience variable $_exitcode, so
4886 that the user can inspect this again later. */
4887 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4888 (LONGEST) ecs->ws.value.integer);
4889
4890 /* Also record this in the inferior itself. */
4891 current_inferior ()->has_exit_code = 1;
4892 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4893
98eb56a4
PA
4894 /* Support the --return-child-result option. */
4895 return_child_result_value = ecs->ws.value.integer;
4896
76727919 4897 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4898 }
4899 else
0c557179 4900 {
00431a78 4901 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4902
4903 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4904 {
4905 /* Set the value of the internal variable $_exitsignal,
4906 which holds the signal uncaught by the inferior. */
4907 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4908 gdbarch_gdb_signal_to_target (gdbarch,
4909 ecs->ws.value.sig));
4910 }
4911 else
4912 {
4913 /* We don't have access to the target's method used for
4914 converting between signal numbers (GDB's internal
4915 representation <-> target's representation).
4916 Therefore, we cannot do a good job at displaying this
4917 information to the user. It's better to just warn
4918 her about it (if infrun debugging is enabled), and
4919 give up. */
4920 if (debug_infrun)
4921 fprintf_filtered (gdb_stdlog, _("\
4922Cannot fill $_exitsignal with the correct signal number.\n"));
4923 }
4924
76727919 4925 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4926 }
8cf64490 4927
488f131b 4928 gdb_flush (gdb_stdout);
bc1e6c81 4929 target_mourn_inferior (inferior_ptid);
488f131b 4930 stop_print_frame = 0;
22bcd14b 4931 stop_waiting (ecs);
488f131b 4932 return;
c5aa993b 4933
488f131b 4934 /* The following are the only cases in which we keep going;
1777feb0 4935 the above cases end in a continue or goto. */
488f131b 4936 case TARGET_WAITKIND_FORKED:
deb3b17b 4937 case TARGET_WAITKIND_VFORKED:
527159b7 4938 if (debug_infrun)
fed708ed
PA
4939 {
4940 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4941 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4942 else
4943 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4944 }
c906108c 4945
e2d96639
YQ
4946 /* Check whether the inferior is displaced stepping. */
4947 {
00431a78 4948 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4949 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4950
4951 /* If checking displaced stepping is supported, and thread
4952 ecs->ptid is displaced stepping. */
00431a78 4953 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4954 {
4955 struct inferior *parent_inf
c9657e70 4956 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4957 struct regcache *child_regcache;
4958 CORE_ADDR parent_pc;
4959
4960 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4961 indicating that the displaced stepping of syscall instruction
4962 has been done. Perform cleanup for parent process here. Note
4963 that this operation also cleans up the child process for vfork,
4964 because their pages are shared. */
00431a78 4965 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4966 /* Start a new step-over in another thread if there's one
4967 that needs it. */
4968 start_step_over ();
e2d96639
YQ
4969
4970 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4971 {
c0987663 4972 struct displaced_step_inferior_state *displaced
00431a78 4973 = get_displaced_stepping_state (parent_inf);
c0987663 4974
e2d96639
YQ
4975 /* Restore scratch pad for child process. */
4976 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4977 }
4978
4979 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4980 the child's PC is also within the scratchpad. Set the child's PC
4981 to the parent's PC value, which has already been fixed up.
4982 FIXME: we use the parent's aspace here, although we're touching
4983 the child, because the child hasn't been added to the inferior
4984 list yet at this point. */
4985
4986 child_regcache
4987 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4988 gdbarch,
4989 parent_inf->aspace);
4990 /* Read PC value of parent process. */
4991 parent_pc = regcache_read_pc (regcache);
4992
4993 if (debug_displaced)
4994 fprintf_unfiltered (gdb_stdlog,
4995 "displaced: write child pc from %s to %s\n",
4996 paddress (gdbarch,
4997 regcache_read_pc (child_regcache)),
4998 paddress (gdbarch, parent_pc));
4999
5000 regcache_write_pc (child_regcache, parent_pc);
5001 }
5002 }
5003
00431a78 5004 context_switch (ecs);
5a2901d9 5005
b242c3c2
PA
5006 /* Immediately detach breakpoints from the child before there's
5007 any chance of letting the user delete breakpoints from the
5008 breakpoint lists. If we don't do this early, it's easy to
5009 leave left over traps in the child, vis: "break foo; catch
5010 fork; c; <fork>; del; c; <child calls foo>". We only follow
5011 the fork on the last `continue', and by that time the
5012 breakpoint at "foo" is long gone from the breakpoint table.
5013 If we vforked, then we don't need to unpatch here, since both
5014 parent and child are sharing the same memory pages; we'll
5015 need to unpatch at follow/detach time instead to be certain
5016 that new breakpoints added between catchpoint hit time and
5017 vfork follow are detached. */
5018 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5019 {
b242c3c2
PA
5020 /* This won't actually modify the breakpoint list, but will
5021 physically remove the breakpoints from the child. */
d80ee84f 5022 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5023 }
5024
34b7e8a6 5025 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5026
e58b0e63
PA
5027 /* In case the event is caught by a catchpoint, remember that
5028 the event is to be followed at the next resume of the thread,
5029 and not immediately. */
5030 ecs->event_thread->pending_follow = ecs->ws;
5031
f2ffa92b
PA
5032 ecs->event_thread->suspend.stop_pc
5033 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5034
16c381f0 5035 ecs->event_thread->control.stop_bpstat
a01bda52 5036 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5037 ecs->event_thread->suspend.stop_pc,
5038 ecs->event_thread, &ecs->ws);
675bf4cb 5039
c65d6b55
PA
5040 if (handle_stop_requested (ecs))
5041 return;
5042
ce12b012
PA
5043 /* If no catchpoint triggered for this, then keep going. Note
5044 that we're interested in knowing the bpstat actually causes a
5045 stop, not just if it may explain the signal. Software
5046 watchpoints, for example, always appear in the bpstat. */
5047 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5048 {
e58b0e63 5049 int should_resume;
3e43a32a
MS
5050 int follow_child
5051 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5052
a493e3e2 5053 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5054
5055 should_resume = follow_fork ();
5056
00431a78
PA
5057 thread_info *parent = ecs->event_thread;
5058 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5059
a2077e25
PA
5060 /* At this point, the parent is marked running, and the
5061 child is marked stopped. */
5062
5063 /* If not resuming the parent, mark it stopped. */
5064 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5065 parent->set_running (false);
a2077e25
PA
5066
5067 /* If resuming the child, mark it running. */
5068 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5069 child->set_running (true);
a2077e25 5070
6c95b8df 5071 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5072 if (!detach_fork && (non_stop
5073 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5074 {
5075 if (follow_child)
5076 switch_to_thread (parent);
5077 else
5078 switch_to_thread (child);
5079
5080 ecs->event_thread = inferior_thread ();
5081 ecs->ptid = inferior_ptid;
5082 keep_going (ecs);
5083 }
5084
5085 if (follow_child)
5086 switch_to_thread (child);
5087 else
5088 switch_to_thread (parent);
5089
e58b0e63
PA
5090 ecs->event_thread = inferior_thread ();
5091 ecs->ptid = inferior_ptid;
5092
5093 if (should_resume)
5094 keep_going (ecs);
5095 else
22bcd14b 5096 stop_waiting (ecs);
04e68871
DJ
5097 return;
5098 }
94c57d6a
PA
5099 process_event_stop_test (ecs);
5100 return;
488f131b 5101
6c95b8df
PA
5102 case TARGET_WAITKIND_VFORK_DONE:
5103 /* Done with the shared memory region. Re-insert breakpoints in
5104 the parent, and keep going. */
5105
5106 if (debug_infrun)
3e43a32a
MS
5107 fprintf_unfiltered (gdb_stdlog,
5108 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df 5109
00431a78 5110 context_switch (ecs);
6c95b8df
PA
5111
5112 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5113 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5114
5115 if (handle_stop_requested (ecs))
5116 return;
5117
6c95b8df
PA
5118 /* This also takes care of reinserting breakpoints in the
5119 previously locked inferior. */
5120 keep_going (ecs);
5121 return;
5122
488f131b 5123 case TARGET_WAITKIND_EXECD:
527159b7 5124 if (debug_infrun)
fc5261f2 5125 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5126
cbd2b4e3
PA
5127 /* Note we can't read registers yet (the stop_pc), because we
5128 don't yet know the inferior's post-exec architecture.
5129 'stop_pc' is explicitly read below instead. */
00431a78 5130 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5131
6c95b8df
PA
5132 /* Do whatever is necessary to the parent branch of the vfork. */
5133 handle_vfork_child_exec_or_exit (1);
5134
795e548f
PA
5135 /* This causes the eventpoints and symbol table to be reset.
5136 Must do this now, before trying to determine whether to
5137 stop. */
71b43ef8 5138 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5139
17d8546e
DB
5140 /* In follow_exec we may have deleted the original thread and
5141 created a new one. Make sure that the event thread is the
5142 execd thread for that case (this is a nop otherwise). */
5143 ecs->event_thread = inferior_thread ();
5144
f2ffa92b
PA
5145 ecs->event_thread->suspend.stop_pc
5146 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5147
16c381f0 5148 ecs->event_thread->control.stop_bpstat
a01bda52 5149 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5150 ecs->event_thread->suspend.stop_pc,
5151 ecs->event_thread, &ecs->ws);
795e548f 5152
71b43ef8
PA
5153 /* Note that this may be referenced from inside
5154 bpstat_stop_status above, through inferior_has_execd. */
5155 xfree (ecs->ws.value.execd_pathname);
5156 ecs->ws.value.execd_pathname = NULL;
5157
c65d6b55
PA
5158 if (handle_stop_requested (ecs))
5159 return;
5160
04e68871 5161 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5162 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5163 {
a493e3e2 5164 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5165 keep_going (ecs);
5166 return;
5167 }
94c57d6a
PA
5168 process_event_stop_test (ecs);
5169 return;
488f131b 5170
b4dc5ffa
MK
5171 /* Be careful not to try to gather much state about a thread
5172 that's in a syscall. It's frequently a losing proposition. */
488f131b 5173 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5174 if (debug_infrun)
3e43a32a
MS
5175 fprintf_unfiltered (gdb_stdlog,
5176 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5177 /* Getting the current syscall number. */
94c57d6a
PA
5178 if (handle_syscall_event (ecs) == 0)
5179 process_event_stop_test (ecs);
5180 return;
c906108c 5181
488f131b
JB
5182 /* Before examining the threads further, step this thread to
5183 get it entirely out of the syscall. (We get notice of the
5184 event when the thread is just on the verge of exiting a
5185 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5186 into user code.) */
488f131b 5187 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5188 if (debug_infrun)
3e43a32a
MS
5189 fprintf_unfiltered (gdb_stdlog,
5190 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5191 if (handle_syscall_event (ecs) == 0)
5192 process_event_stop_test (ecs);
5193 return;
c906108c 5194
488f131b 5195 case TARGET_WAITKIND_STOPPED:
527159b7 5196 if (debug_infrun)
8a9de0e4 5197 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5198 handle_signal_stop (ecs);
5199 return;
c906108c 5200
b2175913 5201 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5202 if (debug_infrun)
5203 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5204 /* Reverse execution: target ran out of history info. */
eab402df 5205
d1988021 5206 /* Switch to the stopped thread. */
00431a78 5207 context_switch (ecs);
d1988021
MM
5208 if (debug_infrun)
5209 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5210
34b7e8a6 5211 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5212 ecs->event_thread->suspend.stop_pc
5213 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5214
5215 if (handle_stop_requested (ecs))
5216 return;
5217
76727919 5218 gdb::observers::no_history.notify ();
22bcd14b 5219 stop_waiting (ecs);
b2175913 5220 return;
488f131b 5221 }
4f5d7f63
PA
5222}
5223
0b6e5e10
JB
5224/* A wrapper around handle_inferior_event_1, which also makes sure
5225 that all temporary struct value objects that were created during
5226 the handling of the event get deleted at the end. */
5227
5228static void
5229handle_inferior_event (struct execution_control_state *ecs)
5230{
5231 struct value *mark = value_mark ();
5232
5233 handle_inferior_event_1 (ecs);
5234 /* Purge all temporary values created during the event handling,
5235 as it could be a long time before we return to the command level
5236 where such values would otherwise be purged. */
5237 value_free_to_mark (mark);
5238}
5239
372316f1
PA
5240/* Restart threads back to what they were trying to do back when we
5241 paused them for an in-line step-over. The EVENT_THREAD thread is
5242 ignored. */
4d9d9d04
PA
5243
5244static void
372316f1
PA
5245restart_threads (struct thread_info *event_thread)
5246{
372316f1
PA
5247 /* In case the instruction just stepped spawned a new thread. */
5248 update_thread_list ();
5249
08036331 5250 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5251 {
5252 if (tp == event_thread)
5253 {
5254 if (debug_infrun)
5255 fprintf_unfiltered (gdb_stdlog,
5256 "infrun: restart threads: "
5257 "[%s] is event thread\n",
5258 target_pid_to_str (tp->ptid));
5259 continue;
5260 }
5261
5262 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5263 {
5264 if (debug_infrun)
5265 fprintf_unfiltered (gdb_stdlog,
5266 "infrun: restart threads: "
5267 "[%s] not meant to be running\n",
5268 target_pid_to_str (tp->ptid));
5269 continue;
5270 }
5271
5272 if (tp->resumed)
5273 {
5274 if (debug_infrun)
5275 fprintf_unfiltered (gdb_stdlog,
5276 "infrun: restart threads: [%s] resumed\n",
5277 target_pid_to_str (tp->ptid));
5278 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5279 continue;
5280 }
5281
5282 if (thread_is_in_step_over_chain (tp))
5283 {
5284 if (debug_infrun)
5285 fprintf_unfiltered (gdb_stdlog,
5286 "infrun: restart threads: "
5287 "[%s] needs step-over\n",
5288 target_pid_to_str (tp->ptid));
5289 gdb_assert (!tp->resumed);
5290 continue;
5291 }
5292
5293
5294 if (tp->suspend.waitstatus_pending_p)
5295 {
5296 if (debug_infrun)
5297 fprintf_unfiltered (gdb_stdlog,
5298 "infrun: restart threads: "
5299 "[%s] has pending status\n",
5300 target_pid_to_str (tp->ptid));
5301 tp->resumed = 1;
5302 continue;
5303 }
5304
c65d6b55
PA
5305 gdb_assert (!tp->stop_requested);
5306
372316f1
PA
5307 /* If some thread needs to start a step-over at this point, it
5308 should still be in the step-over queue, and thus skipped
5309 above. */
5310 if (thread_still_needs_step_over (tp))
5311 {
5312 internal_error (__FILE__, __LINE__,
5313 "thread [%s] needs a step-over, but not in "
5314 "step-over queue\n",
5315 target_pid_to_str (tp->ptid));
5316 }
5317
5318 if (currently_stepping (tp))
5319 {
5320 if (debug_infrun)
5321 fprintf_unfiltered (gdb_stdlog,
5322 "infrun: restart threads: [%s] was stepping\n",
5323 target_pid_to_str (tp->ptid));
5324 keep_going_stepped_thread (tp);
5325 }
5326 else
5327 {
5328 struct execution_control_state ecss;
5329 struct execution_control_state *ecs = &ecss;
5330
5331 if (debug_infrun)
5332 fprintf_unfiltered (gdb_stdlog,
5333 "infrun: restart threads: [%s] continuing\n",
5334 target_pid_to_str (tp->ptid));
5335 reset_ecs (ecs, tp);
00431a78 5336 switch_to_thread (tp);
372316f1
PA
5337 keep_going_pass_signal (ecs);
5338 }
5339 }
5340}
5341
5342/* Callback for iterate_over_threads. Find a resumed thread that has
5343 a pending waitstatus. */
5344
5345static int
5346resumed_thread_with_pending_status (struct thread_info *tp,
5347 void *arg)
5348{
5349 return (tp->resumed
5350 && tp->suspend.waitstatus_pending_p);
5351}
5352
5353/* Called when we get an event that may finish an in-line or
5354 out-of-line (displaced stepping) step-over started previously.
5355 Return true if the event is processed and we should go back to the
5356 event loop; false if the caller should continue processing the
5357 event. */
5358
5359static int
4d9d9d04
PA
5360finish_step_over (struct execution_control_state *ecs)
5361{
372316f1
PA
5362 int had_step_over_info;
5363
00431a78 5364 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5365 ecs->event_thread->suspend.stop_signal);
5366
372316f1
PA
5367 had_step_over_info = step_over_info_valid_p ();
5368
5369 if (had_step_over_info)
4d9d9d04
PA
5370 {
5371 /* If we're stepping over a breakpoint with all threads locked,
5372 then only the thread that was stepped should be reporting
5373 back an event. */
5374 gdb_assert (ecs->event_thread->control.trap_expected);
5375
c65d6b55 5376 clear_step_over_info ();
4d9d9d04
PA
5377 }
5378
fbea99ea 5379 if (!target_is_non_stop_p ())
372316f1 5380 return 0;
4d9d9d04
PA
5381
5382 /* Start a new step-over in another thread if there's one that
5383 needs it. */
5384 start_step_over ();
372316f1
PA
5385
5386 /* If we were stepping over a breakpoint before, and haven't started
5387 a new in-line step-over sequence, then restart all other threads
5388 (except the event thread). We can't do this in all-stop, as then
5389 e.g., we wouldn't be able to issue any other remote packet until
5390 these other threads stop. */
5391 if (had_step_over_info && !step_over_info_valid_p ())
5392 {
5393 struct thread_info *pending;
5394
5395 /* If we only have threads with pending statuses, the restart
5396 below won't restart any thread and so nothing re-inserts the
5397 breakpoint we just stepped over. But we need it inserted
5398 when we later process the pending events, otherwise if
5399 another thread has a pending event for this breakpoint too,
5400 we'd discard its event (because the breakpoint that
5401 originally caused the event was no longer inserted). */
00431a78 5402 context_switch (ecs);
372316f1
PA
5403 insert_breakpoints ();
5404
5405 restart_threads (ecs->event_thread);
5406
5407 /* If we have events pending, go through handle_inferior_event
5408 again, picking up a pending event at random. This avoids
5409 thread starvation. */
5410
5411 /* But not if we just stepped over a watchpoint in order to let
5412 the instruction execute so we can evaluate its expression.
5413 The set of watchpoints that triggered is recorded in the
5414 breakpoint objects themselves (see bp->watchpoint_triggered).
5415 If we processed another event first, that other event could
5416 clobber this info. */
5417 if (ecs->event_thread->stepping_over_watchpoint)
5418 return 0;
5419
5420 pending = iterate_over_threads (resumed_thread_with_pending_status,
5421 NULL);
5422 if (pending != NULL)
5423 {
5424 struct thread_info *tp = ecs->event_thread;
5425 struct regcache *regcache;
5426
5427 if (debug_infrun)
5428 {
5429 fprintf_unfiltered (gdb_stdlog,
5430 "infrun: found resumed threads with "
5431 "pending events, saving status\n");
5432 }
5433
5434 gdb_assert (pending != tp);
5435
5436 /* Record the event thread's event for later. */
5437 save_waitstatus (tp, &ecs->ws);
5438 /* This was cleared early, by handle_inferior_event. Set it
5439 so this pending event is considered by
5440 do_target_wait. */
5441 tp->resumed = 1;
5442
5443 gdb_assert (!tp->executing);
5444
00431a78 5445 regcache = get_thread_regcache (tp);
372316f1
PA
5446 tp->suspend.stop_pc = regcache_read_pc (regcache);
5447
5448 if (debug_infrun)
5449 {
5450 fprintf_unfiltered (gdb_stdlog,
5451 "infrun: saved stop_pc=%s for %s "
5452 "(currently_stepping=%d)\n",
5453 paddress (target_gdbarch (),
5454 tp->suspend.stop_pc),
5455 target_pid_to_str (tp->ptid),
5456 currently_stepping (tp));
5457 }
5458
5459 /* This in-line step-over finished; clear this so we won't
5460 start a new one. This is what handle_signal_stop would
5461 do, if we returned false. */
5462 tp->stepping_over_breakpoint = 0;
5463
5464 /* Wake up the event loop again. */
5465 mark_async_event_handler (infrun_async_inferior_event_token);
5466
5467 prepare_to_wait (ecs);
5468 return 1;
5469 }
5470 }
5471
5472 return 0;
4d9d9d04
PA
5473}
5474
4f5d7f63
PA
5475/* Come here when the program has stopped with a signal. */
5476
5477static void
5478handle_signal_stop (struct execution_control_state *ecs)
5479{
5480 struct frame_info *frame;
5481 struct gdbarch *gdbarch;
5482 int stopped_by_watchpoint;
5483 enum stop_kind stop_soon;
5484 int random_signal;
c906108c 5485
f0407826
DE
5486 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5487
c65d6b55
PA
5488 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5489
f0407826
DE
5490 /* Do we need to clean up the state of a thread that has
5491 completed a displaced single-step? (Doing so usually affects
5492 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5493 if (finish_step_over (ecs))
5494 return;
f0407826
DE
5495
5496 /* If we either finished a single-step or hit a breakpoint, but
5497 the user wanted this thread to be stopped, pretend we got a
5498 SIG0 (generic unsignaled stop). */
5499 if (ecs->event_thread->stop_requested
5500 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5501 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5502
f2ffa92b
PA
5503 ecs->event_thread->suspend.stop_pc
5504 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5505
527159b7 5506 if (debug_infrun)
237fc4c9 5507 {
00431a78 5508 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5509 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5510 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5511
5512 inferior_ptid = ecs->ptid;
5af949e3
UW
5513
5514 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5515 paddress (reg_gdbarch,
f2ffa92b 5516 ecs->event_thread->suspend.stop_pc));
d92524f1 5517 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5518 {
5519 CORE_ADDR addr;
abbb1732 5520
237fc4c9
PA
5521 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5522
8b88a78e 5523 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5524 fprintf_unfiltered (gdb_stdlog,
5af949e3 5525 "infrun: stopped data address = %s\n",
b926417a 5526 paddress (reg_gdbarch, addr));
237fc4c9
PA
5527 else
5528 fprintf_unfiltered (gdb_stdlog,
5529 "infrun: (no data address available)\n");
5530 }
5531 }
527159b7 5532
36fa8042
PA
5533 /* This is originated from start_remote(), start_inferior() and
5534 shared libraries hook functions. */
00431a78 5535 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5536 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5537 {
00431a78 5538 context_switch (ecs);
36fa8042
PA
5539 if (debug_infrun)
5540 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5541 stop_print_frame = 1;
22bcd14b 5542 stop_waiting (ecs);
36fa8042
PA
5543 return;
5544 }
5545
36fa8042
PA
5546 /* This originates from attach_command(). We need to overwrite
5547 the stop_signal here, because some kernels don't ignore a
5548 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5549 See more comments in inferior.h. On the other hand, if we
5550 get a non-SIGSTOP, report it to the user - assume the backend
5551 will handle the SIGSTOP if it should show up later.
5552
5553 Also consider that the attach is complete when we see a
5554 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5555 target extended-remote report it instead of a SIGSTOP
5556 (e.g. gdbserver). We already rely on SIGTRAP being our
5557 signal, so this is no exception.
5558
5559 Also consider that the attach is complete when we see a
5560 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5561 the target to stop all threads of the inferior, in case the
5562 low level attach operation doesn't stop them implicitly. If
5563 they weren't stopped implicitly, then the stub will report a
5564 GDB_SIGNAL_0, meaning: stopped for no particular reason
5565 other than GDB's request. */
5566 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5567 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5568 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5569 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5570 {
5571 stop_print_frame = 1;
22bcd14b 5572 stop_waiting (ecs);
36fa8042
PA
5573 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5574 return;
5575 }
5576
488f131b 5577 /* See if something interesting happened to the non-current thread. If
b40c7d58 5578 so, then switch to that thread. */
d7e15655 5579 if (ecs->ptid != inferior_ptid)
488f131b 5580 {
527159b7 5581 if (debug_infrun)
8a9de0e4 5582 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5583
00431a78 5584 context_switch (ecs);
c5aa993b 5585
9a4105ab 5586 if (deprecated_context_hook)
00431a78 5587 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5588 }
c906108c 5589
568d6575
UW
5590 /* At this point, get hold of the now-current thread's frame. */
5591 frame = get_current_frame ();
5592 gdbarch = get_frame_arch (frame);
5593
2adfaa28 5594 /* Pull the single step breakpoints out of the target. */
af48d08f 5595 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5596 {
af48d08f 5597 struct regcache *regcache;
af48d08f 5598 CORE_ADDR pc;
2adfaa28 5599
00431a78 5600 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5601 const address_space *aspace = regcache->aspace ();
5602
af48d08f 5603 pc = regcache_read_pc (regcache);
34b7e8a6 5604
af48d08f
PA
5605 /* However, before doing so, if this single-step breakpoint was
5606 actually for another thread, set this thread up for moving
5607 past it. */
5608 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5609 aspace, pc))
5610 {
5611 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5612 {
5613 if (debug_infrun)
5614 {
5615 fprintf_unfiltered (gdb_stdlog,
af48d08f 5616 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5617 "single-step breakpoint\n",
5618 target_pid_to_str (ecs->ptid));
2adfaa28 5619 }
af48d08f
PA
5620 ecs->hit_singlestep_breakpoint = 1;
5621 }
5622 }
5623 else
5624 {
5625 if (debug_infrun)
5626 {
5627 fprintf_unfiltered (gdb_stdlog,
5628 "infrun: [%s] hit its "
5629 "single-step breakpoint\n",
5630 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5631 }
5632 }
488f131b 5633 }
af48d08f 5634 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5635
963f9c80
PA
5636 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5637 && ecs->event_thread->control.trap_expected
5638 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5639 stopped_by_watchpoint = 0;
5640 else
5641 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5642
5643 /* If necessary, step over this watchpoint. We'll be back to display
5644 it in a moment. */
5645 if (stopped_by_watchpoint
d92524f1 5646 && (target_have_steppable_watchpoint
568d6575 5647 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5648 {
488f131b
JB
5649 /* At this point, we are stopped at an instruction which has
5650 attempted to write to a piece of memory under control of
5651 a watchpoint. The instruction hasn't actually executed
5652 yet. If we were to evaluate the watchpoint expression
5653 now, we would get the old value, and therefore no change
5654 would seem to have occurred.
5655
5656 In order to make watchpoints work `right', we really need
5657 to complete the memory write, and then evaluate the
d983da9c
DJ
5658 watchpoint expression. We do this by single-stepping the
5659 target.
5660
7f89fd65 5661 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5662 it. For example, the PA can (with some kernel cooperation)
5663 single step over a watchpoint without disabling the watchpoint.
5664
5665 It is far more common to need to disable a watchpoint to step
5666 the inferior over it. If we have non-steppable watchpoints,
5667 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5668 disable all watchpoints.
5669
5670 Any breakpoint at PC must also be stepped over -- if there's
5671 one, it will have already triggered before the watchpoint
5672 triggered, and we either already reported it to the user, or
5673 it didn't cause a stop and we called keep_going. In either
5674 case, if there was a breakpoint at PC, we must be trying to
5675 step past it. */
5676 ecs->event_thread->stepping_over_watchpoint = 1;
5677 keep_going (ecs);
488f131b
JB
5678 return;
5679 }
5680
4e1c45ea 5681 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5682 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5683 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5684 ecs->event_thread->control.stop_step = 0;
488f131b 5685 stop_print_frame = 1;
488f131b 5686 stopped_by_random_signal = 0;
ddfe970e 5687 bpstat stop_chain = NULL;
488f131b 5688
edb3359d
DJ
5689 /* Hide inlined functions starting here, unless we just performed stepi or
5690 nexti. After stepi and nexti, always show the innermost frame (not any
5691 inline function call sites). */
16c381f0 5692 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5693 {
00431a78
PA
5694 const address_space *aspace
5695 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5696
5697 /* skip_inline_frames is expensive, so we avoid it if we can
5698 determine that the address is one where functions cannot have
5699 been inlined. This improves performance with inferiors that
5700 load a lot of shared libraries, because the solib event
5701 breakpoint is defined as the address of a function (i.e. not
5702 inline). Note that we have to check the previous PC as well
5703 as the current one to catch cases when we have just
5704 single-stepped off a breakpoint prior to reinstating it.
5705 Note that we're assuming that the code we single-step to is
5706 not inline, but that's not definitive: there's nothing
5707 preventing the event breakpoint function from containing
5708 inlined code, and the single-step ending up there. If the
5709 user had set a breakpoint on that inlined code, the missing
5710 skip_inline_frames call would break things. Fortunately
5711 that's an extremely unlikely scenario. */
f2ffa92b
PA
5712 if (!pc_at_non_inline_function (aspace,
5713 ecs->event_thread->suspend.stop_pc,
5714 &ecs->ws)
a210c238
MR
5715 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5716 && ecs->event_thread->control.trap_expected
5717 && pc_at_non_inline_function (aspace,
5718 ecs->event_thread->prev_pc,
09ac7c10 5719 &ecs->ws)))
1c5a993e 5720 {
f2ffa92b
PA
5721 stop_chain = build_bpstat_chain (aspace,
5722 ecs->event_thread->suspend.stop_pc,
5723 &ecs->ws);
00431a78 5724 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5725
5726 /* Re-fetch current thread's frame in case that invalidated
5727 the frame cache. */
5728 frame = get_current_frame ();
5729 gdbarch = get_frame_arch (frame);
5730 }
0574c78f 5731 }
edb3359d 5732
a493e3e2 5733 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5734 && ecs->event_thread->control.trap_expected
568d6575 5735 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5736 && currently_stepping (ecs->event_thread))
3352ef37 5737 {
b50d7442 5738 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5739 also on an instruction that needs to be stepped multiple
1777feb0 5740 times before it's been fully executing. E.g., architectures
3352ef37
AC
5741 with a delay slot. It needs to be stepped twice, once for
5742 the instruction and once for the delay slot. */
5743 int step_through_delay
568d6575 5744 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5745
527159b7 5746 if (debug_infrun && step_through_delay)
8a9de0e4 5747 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5748 if (ecs->event_thread->control.step_range_end == 0
5749 && step_through_delay)
3352ef37
AC
5750 {
5751 /* The user issued a continue when stopped at a breakpoint.
5752 Set up for another trap and get out of here. */
4e1c45ea 5753 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5754 keep_going (ecs);
5755 return;
5756 }
5757 else if (step_through_delay)
5758 {
5759 /* The user issued a step when stopped at a breakpoint.
5760 Maybe we should stop, maybe we should not - the delay
5761 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5762 case, don't decide that here, just set
5763 ecs->stepping_over_breakpoint, making sure we
5764 single-step again before breakpoints are re-inserted. */
4e1c45ea 5765 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5766 }
5767 }
5768
ab04a2af
TT
5769 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5770 handles this event. */
5771 ecs->event_thread->control.stop_bpstat
a01bda52 5772 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5773 ecs->event_thread->suspend.stop_pc,
5774 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5775
ab04a2af
TT
5776 /* Following in case break condition called a
5777 function. */
5778 stop_print_frame = 1;
73dd234f 5779
ab04a2af
TT
5780 /* This is where we handle "moribund" watchpoints. Unlike
5781 software breakpoints traps, hardware watchpoint traps are
5782 always distinguishable from random traps. If no high-level
5783 watchpoint is associated with the reported stop data address
5784 anymore, then the bpstat does not explain the signal ---
5785 simply make sure to ignore it if `stopped_by_watchpoint' is
5786 set. */
5787
5788 if (debug_infrun
5789 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5790 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5791 GDB_SIGNAL_TRAP)
ab04a2af
TT
5792 && stopped_by_watchpoint)
5793 fprintf_unfiltered (gdb_stdlog,
5794 "infrun: no user watchpoint explains "
5795 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5796
bac7d97b 5797 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5798 at one stage in the past included checks for an inferior
5799 function call's call dummy's return breakpoint. The original
5800 comment, that went with the test, read:
03cebad2 5801
ab04a2af
TT
5802 ``End of a stack dummy. Some systems (e.g. Sony news) give
5803 another signal besides SIGTRAP, so check here as well as
5804 above.''
73dd234f 5805
ab04a2af
TT
5806 If someone ever tries to get call dummys on a
5807 non-executable stack to work (where the target would stop
5808 with something like a SIGSEGV), then those tests might need
5809 to be re-instated. Given, however, that the tests were only
5810 enabled when momentary breakpoints were not being used, I
5811 suspect that it won't be the case.
488f131b 5812
ab04a2af
TT
5813 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5814 be necessary for call dummies on a non-executable stack on
5815 SPARC. */
488f131b 5816
bac7d97b 5817 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5818 random_signal
5819 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5820 ecs->event_thread->suspend.stop_signal);
bac7d97b 5821
1cf4d951
PA
5822 /* Maybe this was a trap for a software breakpoint that has since
5823 been removed. */
5824 if (random_signal && target_stopped_by_sw_breakpoint ())
5825 {
f2ffa92b
PA
5826 if (program_breakpoint_here_p (gdbarch,
5827 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5828 {
5829 struct regcache *regcache;
5830 int decr_pc;
5831
5832 /* Re-adjust PC to what the program would see if GDB was not
5833 debugging it. */
00431a78 5834 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5835 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5836 if (decr_pc != 0)
5837 {
07036511
TT
5838 gdb::optional<scoped_restore_tmpl<int>>
5839 restore_operation_disable;
1cf4d951
PA
5840
5841 if (record_full_is_used ())
07036511
TT
5842 restore_operation_disable.emplace
5843 (record_full_gdb_operation_disable_set ());
1cf4d951 5844
f2ffa92b
PA
5845 regcache_write_pc (regcache,
5846 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5847 }
5848 }
5849 else
5850 {
5851 /* A delayed software breakpoint event. Ignore the trap. */
5852 if (debug_infrun)
5853 fprintf_unfiltered (gdb_stdlog,
5854 "infrun: delayed software breakpoint "
5855 "trap, ignoring\n");
5856 random_signal = 0;
5857 }
5858 }
5859
5860 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5861 has since been removed. */
5862 if (random_signal && target_stopped_by_hw_breakpoint ())
5863 {
5864 /* A delayed hardware breakpoint event. Ignore the trap. */
5865 if (debug_infrun)
5866 fprintf_unfiltered (gdb_stdlog,
5867 "infrun: delayed hardware breakpoint/watchpoint "
5868 "trap, ignoring\n");
5869 random_signal = 0;
5870 }
5871
bac7d97b
PA
5872 /* If not, perhaps stepping/nexting can. */
5873 if (random_signal)
5874 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5875 && currently_stepping (ecs->event_thread));
ab04a2af 5876
2adfaa28
PA
5877 /* Perhaps the thread hit a single-step breakpoint of _another_
5878 thread. Single-step breakpoints are transparent to the
5879 breakpoints module. */
5880 if (random_signal)
5881 random_signal = !ecs->hit_singlestep_breakpoint;
5882
bac7d97b
PA
5883 /* No? Perhaps we got a moribund watchpoint. */
5884 if (random_signal)
5885 random_signal = !stopped_by_watchpoint;
ab04a2af 5886
c65d6b55
PA
5887 /* Always stop if the user explicitly requested this thread to
5888 remain stopped. */
5889 if (ecs->event_thread->stop_requested)
5890 {
5891 random_signal = 1;
5892 if (debug_infrun)
5893 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5894 }
5895
488f131b
JB
5896 /* For the program's own signals, act according to
5897 the signal handling tables. */
5898
ce12b012 5899 if (random_signal)
488f131b
JB
5900 {
5901 /* Signal not for debugging purposes. */
c9657e70 5902 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5903 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5904
527159b7 5905 if (debug_infrun)
c9737c08
PA
5906 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5907 gdb_signal_to_symbol_string (stop_signal));
527159b7 5908
488f131b
JB
5909 stopped_by_random_signal = 1;
5910
252fbfc8
PA
5911 /* Always stop on signals if we're either just gaining control
5912 of the program, or the user explicitly requested this thread
5913 to remain stopped. */
d6b48e9c 5914 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5915 || ecs->event_thread->stop_requested
24291992 5916 || (!inf->detaching
16c381f0 5917 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5918 {
22bcd14b 5919 stop_waiting (ecs);
488f131b
JB
5920 return;
5921 }
b57bacec
PA
5922
5923 /* Notify observers the signal has "handle print" set. Note we
5924 returned early above if stopping; normal_stop handles the
5925 printing in that case. */
5926 if (signal_print[ecs->event_thread->suspend.stop_signal])
5927 {
5928 /* The signal table tells us to print about this signal. */
223ffa71 5929 target_terminal::ours_for_output ();
76727919 5930 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5931 target_terminal::inferior ();
b57bacec 5932 }
488f131b
JB
5933
5934 /* Clear the signal if it should not be passed. */
16c381f0 5935 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5936 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5937
f2ffa92b 5938 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5939 && ecs->event_thread->control.trap_expected
8358c15c 5940 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5941 {
5942 /* We were just starting a new sequence, attempting to
5943 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5944 Instead this signal arrives. This signal will take us out
68f53502
AC
5945 of the stepping range so GDB needs to remember to, when
5946 the signal handler returns, resume stepping off that
5947 breakpoint. */
5948 /* To simplify things, "continue" is forced to use the same
5949 code paths as single-step - set a breakpoint at the
5950 signal return address and then, once hit, step off that
5951 breakpoint. */
237fc4c9
PA
5952 if (debug_infrun)
5953 fprintf_unfiltered (gdb_stdlog,
5954 "infrun: signal arrived while stepping over "
5955 "breakpoint\n");
d3169d93 5956
2c03e5be 5957 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5958 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5959 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5960 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5961
5962 /* If we were nexting/stepping some other thread, switch to
5963 it, so that we don't continue it, losing control. */
5964 if (!switch_back_to_stepped_thread (ecs))
5965 keep_going (ecs);
9d799f85 5966 return;
68f53502 5967 }
9d799f85 5968
e5f8a7cc 5969 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5970 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5971 ecs->event_thread)
e5f8a7cc 5972 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5973 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5974 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5975 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5976 {
5977 /* The inferior is about to take a signal that will take it
5978 out of the single step range. Set a breakpoint at the
5979 current PC (which is presumably where the signal handler
5980 will eventually return) and then allow the inferior to
5981 run free.
5982
5983 Note that this is only needed for a signal delivered
5984 while in the single-step range. Nested signals aren't a
5985 problem as they eventually all return. */
237fc4c9
PA
5986 if (debug_infrun)
5987 fprintf_unfiltered (gdb_stdlog,
5988 "infrun: signal may take us out of "
5989 "single-step range\n");
5990
372316f1 5991 clear_step_over_info ();
2c03e5be 5992 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5993 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5994 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5995 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5996 keep_going (ecs);
5997 return;
d303a6c7 5998 }
9d799f85
AC
5999
6000 /* Note: step_resume_breakpoint may be non-NULL. This occures
6001 when either there's a nested signal, or when there's a
6002 pending signal enabled just as the signal handler returns
6003 (leaving the inferior at the step-resume-breakpoint without
6004 actually executing it). Either way continue until the
6005 breakpoint is really hit. */
c447ac0b
PA
6006
6007 if (!switch_back_to_stepped_thread (ecs))
6008 {
6009 if (debug_infrun)
6010 fprintf_unfiltered (gdb_stdlog,
6011 "infrun: random signal, keep going\n");
6012
6013 keep_going (ecs);
6014 }
6015 return;
488f131b 6016 }
94c57d6a
PA
6017
6018 process_event_stop_test (ecs);
6019}
6020
6021/* Come here when we've got some debug event / signal we can explain
6022 (IOW, not a random signal), and test whether it should cause a
6023 stop, or whether we should resume the inferior (transparently).
6024 E.g., could be a breakpoint whose condition evaluates false; we
6025 could be still stepping within the line; etc. */
6026
6027static void
6028process_event_stop_test (struct execution_control_state *ecs)
6029{
6030 struct symtab_and_line stop_pc_sal;
6031 struct frame_info *frame;
6032 struct gdbarch *gdbarch;
cdaa5b73
PA
6033 CORE_ADDR jmp_buf_pc;
6034 struct bpstat_what what;
94c57d6a 6035
cdaa5b73 6036 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6037
cdaa5b73
PA
6038 frame = get_current_frame ();
6039 gdbarch = get_frame_arch (frame);
fcf3daef 6040
cdaa5b73 6041 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6042
cdaa5b73
PA
6043 if (what.call_dummy)
6044 {
6045 stop_stack_dummy = what.call_dummy;
6046 }
186c406b 6047
243a9253
PA
6048 /* A few breakpoint types have callbacks associated (e.g.,
6049 bp_jit_event). Run them now. */
6050 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6051
cdaa5b73
PA
6052 /* If we hit an internal event that triggers symbol changes, the
6053 current frame will be invalidated within bpstat_what (e.g., if we
6054 hit an internal solib event). Re-fetch it. */
6055 frame = get_current_frame ();
6056 gdbarch = get_frame_arch (frame);
e2e4d78b 6057
cdaa5b73
PA
6058 switch (what.main_action)
6059 {
6060 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6061 /* If we hit the breakpoint at longjmp while stepping, we
6062 install a momentary breakpoint at the target of the
6063 jmp_buf. */
186c406b 6064
cdaa5b73
PA
6065 if (debug_infrun)
6066 fprintf_unfiltered (gdb_stdlog,
6067 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6068
cdaa5b73 6069 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6070
cdaa5b73
PA
6071 if (what.is_longjmp)
6072 {
6073 struct value *arg_value;
6074
6075 /* If we set the longjmp breakpoint via a SystemTap probe,
6076 then use it to extract the arguments. The destination PC
6077 is the third argument to the probe. */
6078 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6079 if (arg_value)
8fa0c4f8
AA
6080 {
6081 jmp_buf_pc = value_as_address (arg_value);
6082 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6083 }
cdaa5b73
PA
6084 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6085 || !gdbarch_get_longjmp_target (gdbarch,
6086 frame, &jmp_buf_pc))
e2e4d78b 6087 {
cdaa5b73
PA
6088 if (debug_infrun)
6089 fprintf_unfiltered (gdb_stdlog,
6090 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6091 "(!gdbarch_get_longjmp_target)\n");
6092 keep_going (ecs);
6093 return;
e2e4d78b 6094 }
e2e4d78b 6095
cdaa5b73
PA
6096 /* Insert a breakpoint at resume address. */
6097 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6098 }
6099 else
6100 check_exception_resume (ecs, frame);
6101 keep_going (ecs);
6102 return;
e81a37f7 6103
cdaa5b73
PA
6104 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6105 {
6106 struct frame_info *init_frame;
e81a37f7 6107
cdaa5b73 6108 /* There are several cases to consider.
c906108c 6109
cdaa5b73
PA
6110 1. The initiating frame no longer exists. In this case we
6111 must stop, because the exception or longjmp has gone too
6112 far.
2c03e5be 6113
cdaa5b73
PA
6114 2. The initiating frame exists, and is the same as the
6115 current frame. We stop, because the exception or longjmp
6116 has been caught.
2c03e5be 6117
cdaa5b73
PA
6118 3. The initiating frame exists and is different from the
6119 current frame. This means the exception or longjmp has
6120 been caught beneath the initiating frame, so keep going.
c906108c 6121
cdaa5b73
PA
6122 4. longjmp breakpoint has been placed just to protect
6123 against stale dummy frames and user is not interested in
6124 stopping around longjmps. */
c5aa993b 6125
cdaa5b73
PA
6126 if (debug_infrun)
6127 fprintf_unfiltered (gdb_stdlog,
6128 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6129
cdaa5b73
PA
6130 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6131 != NULL);
6132 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6133
cdaa5b73
PA
6134 if (what.is_longjmp)
6135 {
b67a2c6f 6136 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6137
cdaa5b73 6138 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6139 {
cdaa5b73
PA
6140 /* Case 4. */
6141 keep_going (ecs);
6142 return;
e5ef252a 6143 }
cdaa5b73 6144 }
c5aa993b 6145
cdaa5b73 6146 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6147
cdaa5b73
PA
6148 if (init_frame)
6149 {
6150 struct frame_id current_id
6151 = get_frame_id (get_current_frame ());
6152 if (frame_id_eq (current_id,
6153 ecs->event_thread->initiating_frame))
6154 {
6155 /* Case 2. Fall through. */
6156 }
6157 else
6158 {
6159 /* Case 3. */
6160 keep_going (ecs);
6161 return;
6162 }
68f53502 6163 }
488f131b 6164
cdaa5b73
PA
6165 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6166 exists. */
6167 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6168
bdc36728 6169 end_stepping_range (ecs);
cdaa5b73
PA
6170 }
6171 return;
e5ef252a 6172
cdaa5b73
PA
6173 case BPSTAT_WHAT_SINGLE:
6174 if (debug_infrun)
6175 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6176 ecs->event_thread->stepping_over_breakpoint = 1;
6177 /* Still need to check other stuff, at least the case where we
6178 are stepping and step out of the right range. */
6179 break;
e5ef252a 6180
cdaa5b73
PA
6181 case BPSTAT_WHAT_STEP_RESUME:
6182 if (debug_infrun)
6183 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6184
cdaa5b73
PA
6185 delete_step_resume_breakpoint (ecs->event_thread);
6186 if (ecs->event_thread->control.proceed_to_finish
6187 && execution_direction == EXEC_REVERSE)
6188 {
6189 struct thread_info *tp = ecs->event_thread;
6190
6191 /* We are finishing a function in reverse, and just hit the
6192 step-resume breakpoint at the start address of the
6193 function, and we're almost there -- just need to back up
6194 by one more single-step, which should take us back to the
6195 function call. */
6196 tp->control.step_range_start = tp->control.step_range_end = 1;
6197 keep_going (ecs);
e5ef252a 6198 return;
cdaa5b73
PA
6199 }
6200 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6201 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6202 && execution_direction == EXEC_REVERSE)
6203 {
6204 /* We are stepping over a function call in reverse, and just
6205 hit the step-resume breakpoint at the start address of
6206 the function. Go back to single-stepping, which should
6207 take us back to the function call. */
6208 ecs->event_thread->stepping_over_breakpoint = 1;
6209 keep_going (ecs);
6210 return;
6211 }
6212 break;
e5ef252a 6213
cdaa5b73
PA
6214 case BPSTAT_WHAT_STOP_NOISY:
6215 if (debug_infrun)
6216 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6217 stop_print_frame = 1;
e5ef252a 6218
99619bea
PA
6219 /* Assume the thread stopped for a breapoint. We'll still check
6220 whether a/the breakpoint is there when the thread is next
6221 resumed. */
6222 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6223
22bcd14b 6224 stop_waiting (ecs);
cdaa5b73 6225 return;
e5ef252a 6226
cdaa5b73
PA
6227 case BPSTAT_WHAT_STOP_SILENT:
6228 if (debug_infrun)
6229 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6230 stop_print_frame = 0;
e5ef252a 6231
99619bea
PA
6232 /* Assume the thread stopped for a breapoint. We'll still check
6233 whether a/the breakpoint is there when the thread is next
6234 resumed. */
6235 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6236 stop_waiting (ecs);
cdaa5b73
PA
6237 return;
6238
6239 case BPSTAT_WHAT_HP_STEP_RESUME:
6240 if (debug_infrun)
6241 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6242
6243 delete_step_resume_breakpoint (ecs->event_thread);
6244 if (ecs->event_thread->step_after_step_resume_breakpoint)
6245 {
6246 /* Back when the step-resume breakpoint was inserted, we
6247 were trying to single-step off a breakpoint. Go back to
6248 doing that. */
6249 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6250 ecs->event_thread->stepping_over_breakpoint = 1;
6251 keep_going (ecs);
6252 return;
e5ef252a 6253 }
cdaa5b73
PA
6254 break;
6255
6256 case BPSTAT_WHAT_KEEP_CHECKING:
6257 break;
e5ef252a 6258 }
c906108c 6259
af48d08f
PA
6260 /* If we stepped a permanent breakpoint and we had a high priority
6261 step-resume breakpoint for the address we stepped, but we didn't
6262 hit it, then we must have stepped into the signal handler. The
6263 step-resume was only necessary to catch the case of _not_
6264 stepping into the handler, so delete it, and fall through to
6265 checking whether the step finished. */
6266 if (ecs->event_thread->stepped_breakpoint)
6267 {
6268 struct breakpoint *sr_bp
6269 = ecs->event_thread->control.step_resume_breakpoint;
6270
8d707a12
PA
6271 if (sr_bp != NULL
6272 && sr_bp->loc->permanent
af48d08f
PA
6273 && sr_bp->type == bp_hp_step_resume
6274 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6275 {
6276 if (debug_infrun)
6277 fprintf_unfiltered (gdb_stdlog,
6278 "infrun: stepped permanent breakpoint, stopped in "
6279 "handler\n");
6280 delete_step_resume_breakpoint (ecs->event_thread);
6281 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6282 }
6283 }
6284
cdaa5b73
PA
6285 /* We come here if we hit a breakpoint but should not stop for it.
6286 Possibly we also were stepping and should stop for that. So fall
6287 through and test for stepping. But, if not stepping, do not
6288 stop. */
c906108c 6289
a7212384
UW
6290 /* In all-stop mode, if we're currently stepping but have stopped in
6291 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6292 if (switch_back_to_stepped_thread (ecs))
6293 return;
776f04fa 6294
8358c15c 6295 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6296 {
527159b7 6297 if (debug_infrun)
d3169d93
DJ
6298 fprintf_unfiltered (gdb_stdlog,
6299 "infrun: step-resume breakpoint is inserted\n");
527159b7 6300
488f131b
JB
6301 /* Having a step-resume breakpoint overrides anything
6302 else having to do with stepping commands until
6303 that breakpoint is reached. */
488f131b
JB
6304 keep_going (ecs);
6305 return;
6306 }
c5aa993b 6307
16c381f0 6308 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6309 {
527159b7 6310 if (debug_infrun)
8a9de0e4 6311 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6312 /* Likewise if we aren't even stepping. */
488f131b
JB
6313 keep_going (ecs);
6314 return;
6315 }
c5aa993b 6316
4b7703ad
JB
6317 /* Re-fetch current thread's frame in case the code above caused
6318 the frame cache to be re-initialized, making our FRAME variable
6319 a dangling pointer. */
6320 frame = get_current_frame ();
628fe4e4 6321 gdbarch = get_frame_arch (frame);
7e324e48 6322 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6323
488f131b 6324 /* If stepping through a line, keep going if still within it.
c906108c 6325
488f131b
JB
6326 Note that step_range_end is the address of the first instruction
6327 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6328 within it!
6329
6330 Note also that during reverse execution, we may be stepping
6331 through a function epilogue and therefore must detect when
6332 the current-frame changes in the middle of a line. */
6333
f2ffa92b
PA
6334 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6335 ecs->event_thread)
31410e84 6336 && (execution_direction != EXEC_REVERSE
388a8562 6337 || frame_id_eq (get_frame_id (frame),
16c381f0 6338 ecs->event_thread->control.step_frame_id)))
488f131b 6339 {
527159b7 6340 if (debug_infrun)
5af949e3
UW
6341 fprintf_unfiltered
6342 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6343 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6344 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6345
c1e36e3e
PA
6346 /* Tentatively re-enable range stepping; `resume' disables it if
6347 necessary (e.g., if we're stepping over a breakpoint or we
6348 have software watchpoints). */
6349 ecs->event_thread->control.may_range_step = 1;
6350
b2175913
MS
6351 /* When stepping backward, stop at beginning of line range
6352 (unless it's the function entry point, in which case
6353 keep going back to the call point). */
f2ffa92b 6354 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6355 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6356 && stop_pc != ecs->stop_func_start
6357 && execution_direction == EXEC_REVERSE)
bdc36728 6358 end_stepping_range (ecs);
b2175913
MS
6359 else
6360 keep_going (ecs);
6361
488f131b
JB
6362 return;
6363 }
c5aa993b 6364
488f131b 6365 /* We stepped out of the stepping range. */
c906108c 6366
488f131b 6367 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6368 loader dynamic symbol resolution code...
6369
6370 EXEC_FORWARD: we keep on single stepping until we exit the run
6371 time loader code and reach the callee's address.
6372
6373 EXEC_REVERSE: we've already executed the callee (backward), and
6374 the runtime loader code is handled just like any other
6375 undebuggable function call. Now we need only keep stepping
6376 backward through the trampoline code, and that's handled further
6377 down, so there is nothing for us to do here. */
6378
6379 if (execution_direction != EXEC_REVERSE
16c381f0 6380 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6381 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6382 {
4c8c40e6 6383 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6384 gdbarch_skip_solib_resolver (gdbarch,
6385 ecs->event_thread->suspend.stop_pc);
c906108c 6386
527159b7 6387 if (debug_infrun)
3e43a32a
MS
6388 fprintf_unfiltered (gdb_stdlog,
6389 "infrun: stepped into dynsym resolve code\n");
527159b7 6390
488f131b
JB
6391 if (pc_after_resolver)
6392 {
6393 /* Set up a step-resume breakpoint at the address
6394 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6395 symtab_and_line sr_sal;
488f131b 6396 sr_sal.pc = pc_after_resolver;
6c95b8df 6397 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6398
a6d9a66e
UW
6399 insert_step_resume_breakpoint_at_sal (gdbarch,
6400 sr_sal, null_frame_id);
c5aa993b 6401 }
c906108c 6402
488f131b
JB
6403 keep_going (ecs);
6404 return;
6405 }
c906108c 6406
1d509aa6
MM
6407 /* Step through an indirect branch thunk. */
6408 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6409 && gdbarch_in_indirect_branch_thunk (gdbarch,
6410 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6411 {
6412 if (debug_infrun)
6413 fprintf_unfiltered (gdb_stdlog,
6414 "infrun: stepped into indirect branch thunk\n");
6415 keep_going (ecs);
6416 return;
6417 }
6418
16c381f0
JK
6419 if (ecs->event_thread->control.step_range_end != 1
6420 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6421 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6422 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6423 {
527159b7 6424 if (debug_infrun)
3e43a32a
MS
6425 fprintf_unfiltered (gdb_stdlog,
6426 "infrun: stepped into signal trampoline\n");
42edda50 6427 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6428 a signal trampoline (either by a signal being delivered or by
6429 the signal handler returning). Just single-step until the
6430 inferior leaves the trampoline (either by calling the handler
6431 or returning). */
488f131b
JB
6432 keep_going (ecs);
6433 return;
6434 }
c906108c 6435
14132e89
MR
6436 /* If we're in the return path from a shared library trampoline,
6437 we want to proceed through the trampoline when stepping. */
6438 /* macro/2012-04-25: This needs to come before the subroutine
6439 call check below as on some targets return trampolines look
6440 like subroutine calls (MIPS16 return thunks). */
6441 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6442 ecs->event_thread->suspend.stop_pc,
6443 ecs->stop_func_name)
14132e89
MR
6444 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6445 {
6446 /* Determine where this trampoline returns. */
f2ffa92b
PA
6447 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6448 CORE_ADDR real_stop_pc
6449 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6450
6451 if (debug_infrun)
6452 fprintf_unfiltered (gdb_stdlog,
6453 "infrun: stepped into solib return tramp\n");
6454
6455 /* Only proceed through if we know where it's going. */
6456 if (real_stop_pc)
6457 {
6458 /* And put the step-breakpoint there and go until there. */
51abb421 6459 symtab_and_line sr_sal;
14132e89
MR
6460 sr_sal.pc = real_stop_pc;
6461 sr_sal.section = find_pc_overlay (sr_sal.pc);
6462 sr_sal.pspace = get_frame_program_space (frame);
6463
6464 /* Do not specify what the fp should be when we stop since
6465 on some machines the prologue is where the new fp value
6466 is established. */
6467 insert_step_resume_breakpoint_at_sal (gdbarch,
6468 sr_sal, null_frame_id);
6469
6470 /* Restart without fiddling with the step ranges or
6471 other state. */
6472 keep_going (ecs);
6473 return;
6474 }
6475 }
6476
c17eaafe
DJ
6477 /* Check for subroutine calls. The check for the current frame
6478 equalling the step ID is not necessary - the check of the
6479 previous frame's ID is sufficient - but it is a common case and
6480 cheaper than checking the previous frame's ID.
14e60db5
DJ
6481
6482 NOTE: frame_id_eq will never report two invalid frame IDs as
6483 being equal, so to get into this block, both the current and
6484 previous frame must have valid frame IDs. */
005ca36a
JB
6485 /* The outer_frame_id check is a heuristic to detect stepping
6486 through startup code. If we step over an instruction which
6487 sets the stack pointer from an invalid value to a valid value,
6488 we may detect that as a subroutine call from the mythical
6489 "outermost" function. This could be fixed by marking
6490 outermost frames as !stack_p,code_p,special_p. Then the
6491 initial outermost frame, before sp was valid, would
ce6cca6d 6492 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6493 for more. */
edb3359d 6494 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6495 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6496 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6497 ecs->event_thread->control.step_stack_frame_id)
6498 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6499 outer_frame_id)
885eeb5b 6500 || (ecs->event_thread->control.step_start_function
f2ffa92b 6501 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6502 {
f2ffa92b 6503 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6504 CORE_ADDR real_stop_pc;
8fb3e588 6505
527159b7 6506 if (debug_infrun)
8a9de0e4 6507 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6508
b7a084be 6509 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6510 {
6511 /* I presume that step_over_calls is only 0 when we're
6512 supposed to be stepping at the assembly language level
6513 ("stepi"). Just stop. */
388a8562 6514 /* And this works the same backward as frontward. MVS */
bdc36728 6515 end_stepping_range (ecs);
95918acb
AC
6516 return;
6517 }
8fb3e588 6518
388a8562
MS
6519 /* Reverse stepping through solib trampolines. */
6520
6521 if (execution_direction == EXEC_REVERSE
16c381f0 6522 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6523 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6524 || (ecs->stop_func_start == 0
6525 && in_solib_dynsym_resolve_code (stop_pc))))
6526 {
6527 /* Any solib trampoline code can be handled in reverse
6528 by simply continuing to single-step. We have already
6529 executed the solib function (backwards), and a few
6530 steps will take us back through the trampoline to the
6531 caller. */
6532 keep_going (ecs);
6533 return;
6534 }
6535
16c381f0 6536 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6537 {
b2175913
MS
6538 /* We're doing a "next".
6539
6540 Normal (forward) execution: set a breakpoint at the
6541 callee's return address (the address at which the caller
6542 will resume).
6543
6544 Reverse (backward) execution. set the step-resume
6545 breakpoint at the start of the function that we just
6546 stepped into (backwards), and continue to there. When we
6130d0b7 6547 get there, we'll need to single-step back to the caller. */
b2175913
MS
6548
6549 if (execution_direction == EXEC_REVERSE)
6550 {
acf9414f
JK
6551 /* If we're already at the start of the function, we've either
6552 just stepped backward into a single instruction function,
6553 or stepped back out of a signal handler to the first instruction
6554 of the function. Just keep going, which will single-step back
6555 to the caller. */
58c48e72 6556 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6557 {
acf9414f 6558 /* Normal function call return (static or dynamic). */
51abb421 6559 symtab_and_line sr_sal;
acf9414f
JK
6560 sr_sal.pc = ecs->stop_func_start;
6561 sr_sal.pspace = get_frame_program_space (frame);
6562 insert_step_resume_breakpoint_at_sal (gdbarch,
6563 sr_sal, null_frame_id);
6564 }
b2175913
MS
6565 }
6566 else
568d6575 6567 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6568
8567c30f
AC
6569 keep_going (ecs);
6570 return;
6571 }
a53c66de 6572
95918acb 6573 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6574 calling routine and the real function), locate the real
6575 function. That's what tells us (a) whether we want to step
6576 into it at all, and (b) what prologue we want to run to the
6577 end of, if we do step into it. */
568d6575 6578 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6579 if (real_stop_pc == 0)
568d6575 6580 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6581 if (real_stop_pc != 0)
6582 ecs->stop_func_start = real_stop_pc;
8fb3e588 6583
db5f024e 6584 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6585 {
51abb421 6586 symtab_and_line sr_sal;
1b2bfbb9 6587 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6588 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6589
a6d9a66e
UW
6590 insert_step_resume_breakpoint_at_sal (gdbarch,
6591 sr_sal, null_frame_id);
8fb3e588
AC
6592 keep_going (ecs);
6593 return;
1b2bfbb9
RC
6594 }
6595
95918acb 6596 /* If we have line number information for the function we are
1bfeeb0f
JL
6597 thinking of stepping into and the function isn't on the skip
6598 list, step into it.
95918acb 6599
8fb3e588
AC
6600 If there are several symtabs at that PC (e.g. with include
6601 files), just want to know whether *any* of them have line
6602 numbers. find_pc_line handles this. */
95918acb
AC
6603 {
6604 struct symtab_and_line tmp_sal;
8fb3e588 6605
95918acb 6606 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6607 if (tmp_sal.line != 0
85817405 6608 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6609 tmp_sal))
95918acb 6610 {
b2175913 6611 if (execution_direction == EXEC_REVERSE)
568d6575 6612 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6613 else
568d6575 6614 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6615 return;
6616 }
6617 }
6618
6619 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6620 set, we stop the step so that the user has a chance to switch
6621 in assembly mode. */
16c381f0 6622 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6623 && step_stop_if_no_debug)
95918acb 6624 {
bdc36728 6625 end_stepping_range (ecs);
95918acb
AC
6626 return;
6627 }
6628
b2175913
MS
6629 if (execution_direction == EXEC_REVERSE)
6630 {
acf9414f
JK
6631 /* If we're already at the start of the function, we've either just
6632 stepped backward into a single instruction function without line
6633 number info, or stepped back out of a signal handler to the first
6634 instruction of the function without line number info. Just keep
6635 going, which will single-step back to the caller. */
6636 if (ecs->stop_func_start != stop_pc)
6637 {
6638 /* Set a breakpoint at callee's start address.
6639 From there we can step once and be back in the caller. */
51abb421 6640 symtab_and_line sr_sal;
acf9414f
JK
6641 sr_sal.pc = ecs->stop_func_start;
6642 sr_sal.pspace = get_frame_program_space (frame);
6643 insert_step_resume_breakpoint_at_sal (gdbarch,
6644 sr_sal, null_frame_id);
6645 }
b2175913
MS
6646 }
6647 else
6648 /* Set a breakpoint at callee's return address (the address
6649 at which the caller will resume). */
568d6575 6650 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6651
95918acb 6652 keep_going (ecs);
488f131b 6653 return;
488f131b 6654 }
c906108c 6655
fdd654f3
MS
6656 /* Reverse stepping through solib trampolines. */
6657
6658 if (execution_direction == EXEC_REVERSE
16c381f0 6659 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6660 {
f2ffa92b
PA
6661 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6662
fdd654f3
MS
6663 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6664 || (ecs->stop_func_start == 0
6665 && in_solib_dynsym_resolve_code (stop_pc)))
6666 {
6667 /* Any solib trampoline code can be handled in reverse
6668 by simply continuing to single-step. We have already
6669 executed the solib function (backwards), and a few
6670 steps will take us back through the trampoline to the
6671 caller. */
6672 keep_going (ecs);
6673 return;
6674 }
6675 else if (in_solib_dynsym_resolve_code (stop_pc))
6676 {
6677 /* Stepped backward into the solib dynsym resolver.
6678 Set a breakpoint at its start and continue, then
6679 one more step will take us out. */
51abb421 6680 symtab_and_line sr_sal;
fdd654f3 6681 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6682 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6683 insert_step_resume_breakpoint_at_sal (gdbarch,
6684 sr_sal, null_frame_id);
6685 keep_going (ecs);
6686 return;
6687 }
6688 }
6689
f2ffa92b 6690 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6691
1b2bfbb9
RC
6692 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6693 the trampoline processing logic, however, there are some trampolines
6694 that have no names, so we should do trampoline handling first. */
16c381f0 6695 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6696 && ecs->stop_func_name == NULL
2afb61aa 6697 && stop_pc_sal.line == 0)
1b2bfbb9 6698 {
527159b7 6699 if (debug_infrun)
3e43a32a
MS
6700 fprintf_unfiltered (gdb_stdlog,
6701 "infrun: stepped into undebuggable function\n");
527159b7 6702
1b2bfbb9 6703 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6704 undebuggable function (where there is no debugging information
6705 and no line number corresponding to the address where the
1b2bfbb9
RC
6706 inferior stopped). Since we want to skip this kind of code,
6707 we keep going until the inferior returns from this
14e60db5
DJ
6708 function - unless the user has asked us not to (via
6709 set step-mode) or we no longer know how to get back
6710 to the call site. */
6711 if (step_stop_if_no_debug
c7ce8faa 6712 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6713 {
6714 /* If we have no line number and the step-stop-if-no-debug
6715 is set, we stop the step so that the user has a chance to
6716 switch in assembly mode. */
bdc36728 6717 end_stepping_range (ecs);
1b2bfbb9
RC
6718 return;
6719 }
6720 else
6721 {
6722 /* Set a breakpoint at callee's return address (the address
6723 at which the caller will resume). */
568d6575 6724 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6725 keep_going (ecs);
6726 return;
6727 }
6728 }
6729
16c381f0 6730 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6731 {
6732 /* It is stepi or nexti. We always want to stop stepping after
6733 one instruction. */
527159b7 6734 if (debug_infrun)
8a9de0e4 6735 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6736 end_stepping_range (ecs);
1b2bfbb9
RC
6737 return;
6738 }
6739
2afb61aa 6740 if (stop_pc_sal.line == 0)
488f131b
JB
6741 {
6742 /* We have no line number information. That means to stop
6743 stepping (does this always happen right after one instruction,
6744 when we do "s" in a function with no line numbers,
6745 or can this happen as a result of a return or longjmp?). */
527159b7 6746 if (debug_infrun)
8a9de0e4 6747 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6748 end_stepping_range (ecs);
488f131b
JB
6749 return;
6750 }
c906108c 6751
edb3359d
DJ
6752 /* Look for "calls" to inlined functions, part one. If the inline
6753 frame machinery detected some skipped call sites, we have entered
6754 a new inline function. */
6755
6756 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6757 ecs->event_thread->control.step_frame_id)
00431a78 6758 && inline_skipped_frames (ecs->event_thread))
edb3359d 6759 {
edb3359d
DJ
6760 if (debug_infrun)
6761 fprintf_unfiltered (gdb_stdlog,
6762 "infrun: stepped into inlined function\n");
6763
51abb421 6764 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6765
16c381f0 6766 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6767 {
6768 /* For "step", we're going to stop. But if the call site
6769 for this inlined function is on the same source line as
6770 we were previously stepping, go down into the function
6771 first. Otherwise stop at the call site. */
6772
6773 if (call_sal.line == ecs->event_thread->current_line
6774 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6775 step_into_inline_frame (ecs->event_thread);
edb3359d 6776
bdc36728 6777 end_stepping_range (ecs);
edb3359d
DJ
6778 return;
6779 }
6780 else
6781 {
6782 /* For "next", we should stop at the call site if it is on a
6783 different source line. Otherwise continue through the
6784 inlined function. */
6785 if (call_sal.line == ecs->event_thread->current_line
6786 && call_sal.symtab == ecs->event_thread->current_symtab)
6787 keep_going (ecs);
6788 else
bdc36728 6789 end_stepping_range (ecs);
edb3359d
DJ
6790 return;
6791 }
6792 }
6793
6794 /* Look for "calls" to inlined functions, part two. If we are still
6795 in the same real function we were stepping through, but we have
6796 to go further up to find the exact frame ID, we are stepping
6797 through a more inlined call beyond its call site. */
6798
6799 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6800 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6801 ecs->event_thread->control.step_frame_id)
edb3359d 6802 && stepped_in_from (get_current_frame (),
16c381f0 6803 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6804 {
6805 if (debug_infrun)
6806 fprintf_unfiltered (gdb_stdlog,
6807 "infrun: stepping through inlined function\n");
6808
16c381f0 6809 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6810 keep_going (ecs);
6811 else
bdc36728 6812 end_stepping_range (ecs);
edb3359d
DJ
6813 return;
6814 }
6815
f2ffa92b 6816 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6817 && (ecs->event_thread->current_line != stop_pc_sal.line
6818 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6819 {
6820 /* We are at the start of a different line. So stop. Note that
6821 we don't stop if we step into the middle of a different line.
6822 That is said to make things like for (;;) statements work
6823 better. */
527159b7 6824 if (debug_infrun)
3e43a32a
MS
6825 fprintf_unfiltered (gdb_stdlog,
6826 "infrun: stepped to a different line\n");
bdc36728 6827 end_stepping_range (ecs);
488f131b
JB
6828 return;
6829 }
c906108c 6830
488f131b 6831 /* We aren't done stepping.
c906108c 6832
488f131b
JB
6833 Optimize by setting the stepping range to the line.
6834 (We might not be in the original line, but if we entered a
6835 new line in mid-statement, we continue stepping. This makes
6836 things like for(;;) statements work better.) */
c906108c 6837
16c381f0
JK
6838 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6839 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6840 ecs->event_thread->control.may_range_step = 1;
edb3359d 6841 set_step_info (frame, stop_pc_sal);
488f131b 6842
527159b7 6843 if (debug_infrun)
8a9de0e4 6844 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6845 keep_going (ecs);
104c1213
JM
6846}
6847
c447ac0b
PA
6848/* In all-stop mode, if we're currently stepping but have stopped in
6849 some other thread, we may need to switch back to the stepped
6850 thread. Returns true we set the inferior running, false if we left
6851 it stopped (and the event needs further processing). */
6852
6853static int
6854switch_back_to_stepped_thread (struct execution_control_state *ecs)
6855{
fbea99ea 6856 if (!target_is_non_stop_p ())
c447ac0b 6857 {
99619bea
PA
6858 struct thread_info *stepping_thread;
6859
6860 /* If any thread is blocked on some internal breakpoint, and we
6861 simply need to step over that breakpoint to get it going
6862 again, do that first. */
6863
6864 /* However, if we see an event for the stepping thread, then we
6865 know all other threads have been moved past their breakpoints
6866 already. Let the caller check whether the step is finished,
6867 etc., before deciding to move it past a breakpoint. */
6868 if (ecs->event_thread->control.step_range_end != 0)
6869 return 0;
6870
6871 /* Check if the current thread is blocked on an incomplete
6872 step-over, interrupted by a random signal. */
6873 if (ecs->event_thread->control.trap_expected
6874 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6875 {
99619bea
PA
6876 if (debug_infrun)
6877 {
6878 fprintf_unfiltered (gdb_stdlog,
6879 "infrun: need to finish step-over of [%s]\n",
6880 target_pid_to_str (ecs->event_thread->ptid));
6881 }
6882 keep_going (ecs);
6883 return 1;
6884 }
2adfaa28 6885
99619bea
PA
6886 /* Check if the current thread is blocked by a single-step
6887 breakpoint of another thread. */
6888 if (ecs->hit_singlestep_breakpoint)
6889 {
6890 if (debug_infrun)
6891 {
6892 fprintf_unfiltered (gdb_stdlog,
6893 "infrun: need to step [%s] over single-step "
6894 "breakpoint\n",
6895 target_pid_to_str (ecs->ptid));
6896 }
6897 keep_going (ecs);
6898 return 1;
6899 }
6900
4d9d9d04
PA
6901 /* If this thread needs yet another step-over (e.g., stepping
6902 through a delay slot), do it first before moving on to
6903 another thread. */
6904 if (thread_still_needs_step_over (ecs->event_thread))
6905 {
6906 if (debug_infrun)
6907 {
6908 fprintf_unfiltered (gdb_stdlog,
6909 "infrun: thread [%s] still needs step-over\n",
6910 target_pid_to_str (ecs->event_thread->ptid));
6911 }
6912 keep_going (ecs);
6913 return 1;
6914 }
70509625 6915
483805cf
PA
6916 /* If scheduler locking applies even if not stepping, there's no
6917 need to walk over threads. Above we've checked whether the
6918 current thread is stepping. If some other thread not the
6919 event thread is stepping, then it must be that scheduler
6920 locking is not in effect. */
856e7dd6 6921 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6922 return 0;
6923
4d9d9d04
PA
6924 /* Otherwise, we no longer expect a trap in the current thread.
6925 Clear the trap_expected flag before switching back -- this is
6926 what keep_going does as well, if we call it. */
6927 ecs->event_thread->control.trap_expected = 0;
6928
6929 /* Likewise, clear the signal if it should not be passed. */
6930 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6931 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6932
6933 /* Do all pending step-overs before actually proceeding with
483805cf 6934 step/next/etc. */
4d9d9d04
PA
6935 if (start_step_over ())
6936 {
6937 prepare_to_wait (ecs);
6938 return 1;
6939 }
6940
6941 /* Look for the stepping/nexting thread. */
483805cf 6942 stepping_thread = NULL;
4d9d9d04 6943
08036331 6944 for (thread_info *tp : all_non_exited_threads ())
483805cf 6945 {
fbea99ea
PA
6946 /* Ignore threads of processes the caller is not
6947 resuming. */
483805cf 6948 if (!sched_multi
e99b03dc 6949 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6950 continue;
6951
6952 /* When stepping over a breakpoint, we lock all threads
6953 except the one that needs to move past the breakpoint.
6954 If a non-event thread has this set, the "incomplete
6955 step-over" check above should have caught it earlier. */
372316f1
PA
6956 if (tp->control.trap_expected)
6957 {
6958 internal_error (__FILE__, __LINE__,
6959 "[%s] has inconsistent state: "
6960 "trap_expected=%d\n",
6961 target_pid_to_str (tp->ptid),
6962 tp->control.trap_expected);
6963 }
483805cf
PA
6964
6965 /* Did we find the stepping thread? */
6966 if (tp->control.step_range_end)
6967 {
6968 /* Yep. There should only one though. */
6969 gdb_assert (stepping_thread == NULL);
6970
6971 /* The event thread is handled at the top, before we
6972 enter this loop. */
6973 gdb_assert (tp != ecs->event_thread);
6974
6975 /* If some thread other than the event thread is
6976 stepping, then scheduler locking can't be in effect,
6977 otherwise we wouldn't have resumed the current event
6978 thread in the first place. */
856e7dd6 6979 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6980
6981 stepping_thread = tp;
6982 }
99619bea
PA
6983 }
6984
483805cf 6985 if (stepping_thread != NULL)
99619bea 6986 {
c447ac0b
PA
6987 if (debug_infrun)
6988 fprintf_unfiltered (gdb_stdlog,
6989 "infrun: switching back to stepped thread\n");
6990
2ac7589c
PA
6991 if (keep_going_stepped_thread (stepping_thread))
6992 {
6993 prepare_to_wait (ecs);
6994 return 1;
6995 }
6996 }
6997 }
2adfaa28 6998
2ac7589c
PA
6999 return 0;
7000}
2adfaa28 7001
2ac7589c
PA
7002/* Set a previously stepped thread back to stepping. Returns true on
7003 success, false if the resume is not possible (e.g., the thread
7004 vanished). */
7005
7006static int
7007keep_going_stepped_thread (struct thread_info *tp)
7008{
7009 struct frame_info *frame;
2ac7589c
PA
7010 struct execution_control_state ecss;
7011 struct execution_control_state *ecs = &ecss;
2adfaa28 7012
2ac7589c
PA
7013 /* If the stepping thread exited, then don't try to switch back and
7014 resume it, which could fail in several different ways depending
7015 on the target. Instead, just keep going.
2adfaa28 7016
2ac7589c
PA
7017 We can find a stepping dead thread in the thread list in two
7018 cases:
2adfaa28 7019
2ac7589c
PA
7020 - The target supports thread exit events, and when the target
7021 tries to delete the thread from the thread list, inferior_ptid
7022 pointed at the exiting thread. In such case, calling
7023 delete_thread does not really remove the thread from the list;
7024 instead, the thread is left listed, with 'exited' state.
64ce06e4 7025
2ac7589c
PA
7026 - The target's debug interface does not support thread exit
7027 events, and so we have no idea whatsoever if the previously
7028 stepping thread is still alive. For that reason, we need to
7029 synchronously query the target now. */
2adfaa28 7030
00431a78 7031 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7032 {
7033 if (debug_infrun)
7034 fprintf_unfiltered (gdb_stdlog,
7035 "infrun: not resuming previously "
7036 "stepped thread, it has vanished\n");
7037
00431a78 7038 delete_thread (tp);
2ac7589c 7039 return 0;
c447ac0b 7040 }
2ac7589c
PA
7041
7042 if (debug_infrun)
7043 fprintf_unfiltered (gdb_stdlog,
7044 "infrun: resuming previously stepped thread\n");
7045
7046 reset_ecs (ecs, tp);
00431a78 7047 switch_to_thread (tp);
2ac7589c 7048
f2ffa92b 7049 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7050 frame = get_current_frame ();
2ac7589c
PA
7051
7052 /* If the PC of the thread we were trying to single-step has
7053 changed, then that thread has trapped or been signaled, but the
7054 event has not been reported to GDB yet. Re-poll the target
7055 looking for this particular thread's event (i.e. temporarily
7056 enable schedlock) by:
7057
7058 - setting a break at the current PC
7059 - resuming that particular thread, only (by setting trap
7060 expected)
7061
7062 This prevents us continuously moving the single-step breakpoint
7063 forward, one instruction at a time, overstepping. */
7064
f2ffa92b 7065 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7066 {
7067 ptid_t resume_ptid;
7068
7069 if (debug_infrun)
7070 fprintf_unfiltered (gdb_stdlog,
7071 "infrun: expected thread advanced also (%s -> %s)\n",
7072 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7073 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7074
7075 /* Clear the info of the previous step-over, as it's no longer
7076 valid (if the thread was trying to step over a breakpoint, it
7077 has already succeeded). It's what keep_going would do too,
7078 if we called it. Do this before trying to insert the sss
7079 breakpoint, otherwise if we were previously trying to step
7080 over this exact address in another thread, the breakpoint is
7081 skipped. */
7082 clear_step_over_info ();
7083 tp->control.trap_expected = 0;
7084
7085 insert_single_step_breakpoint (get_frame_arch (frame),
7086 get_frame_address_space (frame),
f2ffa92b 7087 tp->suspend.stop_pc);
2ac7589c 7088
372316f1 7089 tp->resumed = 1;
fbea99ea 7090 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7091 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7092 }
7093 else
7094 {
7095 if (debug_infrun)
7096 fprintf_unfiltered (gdb_stdlog,
7097 "infrun: expected thread still hasn't advanced\n");
7098
7099 keep_going_pass_signal (ecs);
7100 }
7101 return 1;
c447ac0b
PA
7102}
7103
8b061563
PA
7104/* Is thread TP in the middle of (software or hardware)
7105 single-stepping? (Note the result of this function must never be
7106 passed directly as target_resume's STEP parameter.) */
104c1213 7107
a289b8f6 7108static int
b3444185 7109currently_stepping (struct thread_info *tp)
a7212384 7110{
8358c15c
JK
7111 return ((tp->control.step_range_end
7112 && tp->control.step_resume_breakpoint == NULL)
7113 || tp->control.trap_expected
af48d08f 7114 || tp->stepped_breakpoint
8358c15c 7115 || bpstat_should_step ());
a7212384
UW
7116}
7117
b2175913
MS
7118/* Inferior has stepped into a subroutine call with source code that
7119 we should not step over. Do step to the first line of code in
7120 it. */
c2c6d25f
JM
7121
7122static void
568d6575
UW
7123handle_step_into_function (struct gdbarch *gdbarch,
7124 struct execution_control_state *ecs)
c2c6d25f 7125{
7e324e48
GB
7126 fill_in_stop_func (gdbarch, ecs);
7127
f2ffa92b
PA
7128 compunit_symtab *cust
7129 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7130 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7131 ecs->stop_func_start
7132 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7133
51abb421 7134 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7135 /* Use the step_resume_break to step until the end of the prologue,
7136 even if that involves jumps (as it seems to on the vax under
7137 4.2). */
7138 /* If the prologue ends in the middle of a source line, continue to
7139 the end of that source line (if it is still within the function).
7140 Otherwise, just go to end of prologue. */
2afb61aa
PA
7141 if (stop_func_sal.end
7142 && stop_func_sal.pc != ecs->stop_func_start
7143 && stop_func_sal.end < ecs->stop_func_end)
7144 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7145
2dbd5e30
KB
7146 /* Architectures which require breakpoint adjustment might not be able
7147 to place a breakpoint at the computed address. If so, the test
7148 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7149 ecs->stop_func_start to an address at which a breakpoint may be
7150 legitimately placed.
8fb3e588 7151
2dbd5e30
KB
7152 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7153 made, GDB will enter an infinite loop when stepping through
7154 optimized code consisting of VLIW instructions which contain
7155 subinstructions corresponding to different source lines. On
7156 FR-V, it's not permitted to place a breakpoint on any but the
7157 first subinstruction of a VLIW instruction. When a breakpoint is
7158 set, GDB will adjust the breakpoint address to the beginning of
7159 the VLIW instruction. Thus, we need to make the corresponding
7160 adjustment here when computing the stop address. */
8fb3e588 7161
568d6575 7162 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7163 {
7164 ecs->stop_func_start
568d6575 7165 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7166 ecs->stop_func_start);
2dbd5e30
KB
7167 }
7168
f2ffa92b 7169 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7170 {
7171 /* We are already there: stop now. */
bdc36728 7172 end_stepping_range (ecs);
c2c6d25f
JM
7173 return;
7174 }
7175 else
7176 {
7177 /* Put the step-breakpoint there and go until there. */
51abb421 7178 symtab_and_line sr_sal;
c2c6d25f
JM
7179 sr_sal.pc = ecs->stop_func_start;
7180 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7181 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7182
c2c6d25f 7183 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7184 some machines the prologue is where the new fp value is
7185 established. */
a6d9a66e 7186 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7187
7188 /* And make sure stepping stops right away then. */
16c381f0
JK
7189 ecs->event_thread->control.step_range_end
7190 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7191 }
7192 keep_going (ecs);
7193}
d4f3574e 7194
b2175913
MS
7195/* Inferior has stepped backward into a subroutine call with source
7196 code that we should not step over. Do step to the beginning of the
7197 last line of code in it. */
7198
7199static void
568d6575
UW
7200handle_step_into_function_backward (struct gdbarch *gdbarch,
7201 struct execution_control_state *ecs)
b2175913 7202{
43f3e411 7203 struct compunit_symtab *cust;
167e4384 7204 struct symtab_and_line stop_func_sal;
b2175913 7205
7e324e48
GB
7206 fill_in_stop_func (gdbarch, ecs);
7207
f2ffa92b 7208 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7209 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7210 ecs->stop_func_start
7211 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7212
f2ffa92b 7213 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7214
7215 /* OK, we're just going to keep stepping here. */
f2ffa92b 7216 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7217 {
7218 /* We're there already. Just stop stepping now. */
bdc36728 7219 end_stepping_range (ecs);
b2175913
MS
7220 }
7221 else
7222 {
7223 /* Else just reset the step range and keep going.
7224 No step-resume breakpoint, they don't work for
7225 epilogues, which can have multiple entry paths. */
16c381f0
JK
7226 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7227 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7228 keep_going (ecs);
7229 }
7230 return;
7231}
7232
d3169d93 7233/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7234 This is used to both functions and to skip over code. */
7235
7236static void
2c03e5be
PA
7237insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7238 struct symtab_and_line sr_sal,
7239 struct frame_id sr_id,
7240 enum bptype sr_type)
44cbf7b5 7241{
611c83ae
PA
7242 /* There should never be more than one step-resume or longjmp-resume
7243 breakpoint per thread, so we should never be setting a new
44cbf7b5 7244 step_resume_breakpoint when one is already active. */
8358c15c 7245 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7246 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7247
7248 if (debug_infrun)
7249 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7250 "infrun: inserting step-resume breakpoint at %s\n",
7251 paddress (gdbarch, sr_sal.pc));
d3169d93 7252
8358c15c 7253 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7254 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7255}
7256
9da8c2a0 7257void
2c03e5be
PA
7258insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7259 struct symtab_and_line sr_sal,
7260 struct frame_id sr_id)
7261{
7262 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7263 sr_sal, sr_id,
7264 bp_step_resume);
44cbf7b5 7265}
7ce450bd 7266
2c03e5be
PA
7267/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7268 This is used to skip a potential signal handler.
7ce450bd 7269
14e60db5
DJ
7270 This is called with the interrupted function's frame. The signal
7271 handler, when it returns, will resume the interrupted function at
7272 RETURN_FRAME.pc. */
d303a6c7
AC
7273
7274static void
2c03e5be 7275insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7276{
f4c1edd8 7277 gdb_assert (return_frame != NULL);
d303a6c7 7278
51abb421
PA
7279 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7280
7281 symtab_and_line sr_sal;
568d6575 7282 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7283 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7284 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7285
2c03e5be
PA
7286 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7287 get_stack_frame_id (return_frame),
7288 bp_hp_step_resume);
d303a6c7
AC
7289}
7290
2c03e5be
PA
7291/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7292 is used to skip a function after stepping into it (for "next" or if
7293 the called function has no debugging information).
14e60db5
DJ
7294
7295 The current function has almost always been reached by single
7296 stepping a call or return instruction. NEXT_FRAME belongs to the
7297 current function, and the breakpoint will be set at the caller's
7298 resume address.
7299
7300 This is a separate function rather than reusing
2c03e5be 7301 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7302 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7303 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7304
7305static void
7306insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7307{
14e60db5
DJ
7308 /* We shouldn't have gotten here if we don't know where the call site
7309 is. */
c7ce8faa 7310 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7311
51abb421 7312 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7313
51abb421 7314 symtab_and_line sr_sal;
c7ce8faa
DJ
7315 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7316 frame_unwind_caller_pc (next_frame));
14e60db5 7317 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7318 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7319
a6d9a66e 7320 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7321 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7322}
7323
611c83ae
PA
7324/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7325 new breakpoint at the target of a jmp_buf. The handling of
7326 longjmp-resume uses the same mechanisms used for handling
7327 "step-resume" breakpoints. */
7328
7329static void
a6d9a66e 7330insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7331{
e81a37f7
TT
7332 /* There should never be more than one longjmp-resume breakpoint per
7333 thread, so we should never be setting a new
611c83ae 7334 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7335 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7336
7337 if (debug_infrun)
7338 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7339 "infrun: inserting longjmp-resume breakpoint at %s\n",
7340 paddress (gdbarch, pc));
611c83ae 7341
e81a37f7 7342 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7343 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7344}
7345
186c406b
TT
7346/* Insert an exception resume breakpoint. TP is the thread throwing
7347 the exception. The block B is the block of the unwinder debug hook
7348 function. FRAME is the frame corresponding to the call to this
7349 function. SYM is the symbol of the function argument holding the
7350 target PC of the exception. */
7351
7352static void
7353insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7354 const struct block *b,
186c406b
TT
7355 struct frame_info *frame,
7356 struct symbol *sym)
7357{
492d29ea 7358 TRY
186c406b 7359 {
63e43d3a 7360 struct block_symbol vsym;
186c406b
TT
7361 struct value *value;
7362 CORE_ADDR handler;
7363 struct breakpoint *bp;
7364
de63c46b
PA
7365 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7366 b, VAR_DOMAIN);
63e43d3a 7367 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7368 /* If the value was optimized out, revert to the old behavior. */
7369 if (! value_optimized_out (value))
7370 {
7371 handler = value_as_address (value);
7372
7373 if (debug_infrun)
7374 fprintf_unfiltered (gdb_stdlog,
7375 "infrun: exception resume at %lx\n",
7376 (unsigned long) handler);
7377
7378 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7379 handler,
7380 bp_exception_resume).release ();
c70a6932
JK
7381
7382 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7383 frame = NULL;
7384
5d5658a1 7385 bp->thread = tp->global_num;
186c406b
TT
7386 inferior_thread ()->control.exception_resume_breakpoint = bp;
7387 }
7388 }
492d29ea
PA
7389 CATCH (e, RETURN_MASK_ERROR)
7390 {
7391 /* We want to ignore errors here. */
7392 }
7393 END_CATCH
186c406b
TT
7394}
7395
28106bc2
SDJ
7396/* A helper for check_exception_resume that sets an
7397 exception-breakpoint based on a SystemTap probe. */
7398
7399static void
7400insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7401 const struct bound_probe *probe,
28106bc2
SDJ
7402 struct frame_info *frame)
7403{
7404 struct value *arg_value;
7405 CORE_ADDR handler;
7406 struct breakpoint *bp;
7407
7408 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7409 if (!arg_value)
7410 return;
7411
7412 handler = value_as_address (arg_value);
7413
7414 if (debug_infrun)
7415 fprintf_unfiltered (gdb_stdlog,
7416 "infrun: exception resume at %s\n",
6bac7473 7417 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7418 handler));
7419
7420 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7421 handler, bp_exception_resume).release ();
5d5658a1 7422 bp->thread = tp->global_num;
28106bc2
SDJ
7423 inferior_thread ()->control.exception_resume_breakpoint = bp;
7424}
7425
186c406b
TT
7426/* This is called when an exception has been intercepted. Check to
7427 see whether the exception's destination is of interest, and if so,
7428 set an exception resume breakpoint there. */
7429
7430static void
7431check_exception_resume (struct execution_control_state *ecs,
28106bc2 7432 struct frame_info *frame)
186c406b 7433{
729662a5 7434 struct bound_probe probe;
28106bc2
SDJ
7435 struct symbol *func;
7436
7437 /* First see if this exception unwinding breakpoint was set via a
7438 SystemTap probe point. If so, the probe has two arguments: the
7439 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7440 set a breakpoint there. */
6bac7473 7441 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7442 if (probe.prob)
28106bc2 7443 {
729662a5 7444 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7445 return;
7446 }
7447
7448 func = get_frame_function (frame);
7449 if (!func)
7450 return;
186c406b 7451
492d29ea 7452 TRY
186c406b 7453 {
3977b71f 7454 const struct block *b;
8157b174 7455 struct block_iterator iter;
186c406b
TT
7456 struct symbol *sym;
7457 int argno = 0;
7458
7459 /* The exception breakpoint is a thread-specific breakpoint on
7460 the unwinder's debug hook, declared as:
7461
7462 void _Unwind_DebugHook (void *cfa, void *handler);
7463
7464 The CFA argument indicates the frame to which control is
7465 about to be transferred. HANDLER is the destination PC.
7466
7467 We ignore the CFA and set a temporary breakpoint at HANDLER.
7468 This is not extremely efficient but it avoids issues in gdb
7469 with computing the DWARF CFA, and it also works even in weird
7470 cases such as throwing an exception from inside a signal
7471 handler. */
7472
7473 b = SYMBOL_BLOCK_VALUE (func);
7474 ALL_BLOCK_SYMBOLS (b, iter, sym)
7475 {
7476 if (!SYMBOL_IS_ARGUMENT (sym))
7477 continue;
7478
7479 if (argno == 0)
7480 ++argno;
7481 else
7482 {
7483 insert_exception_resume_breakpoint (ecs->event_thread,
7484 b, frame, sym);
7485 break;
7486 }
7487 }
7488 }
492d29ea
PA
7489 CATCH (e, RETURN_MASK_ERROR)
7490 {
7491 }
7492 END_CATCH
186c406b
TT
7493}
7494
104c1213 7495static void
22bcd14b 7496stop_waiting (struct execution_control_state *ecs)
104c1213 7497{
527159b7 7498 if (debug_infrun)
22bcd14b 7499 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7500
cd0fc7c3
SS
7501 /* Let callers know we don't want to wait for the inferior anymore. */
7502 ecs->wait_some_more = 0;
fbea99ea
PA
7503
7504 /* If all-stop, but the target is always in non-stop mode, stop all
7505 threads now that we're presenting the stop to the user. */
7506 if (!non_stop && target_is_non_stop_p ())
7507 stop_all_threads ();
cd0fc7c3
SS
7508}
7509
4d9d9d04
PA
7510/* Like keep_going, but passes the signal to the inferior, even if the
7511 signal is set to nopass. */
d4f3574e
SS
7512
7513static void
4d9d9d04 7514keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7515{
d7e15655 7516 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7517 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7518
d4f3574e 7519 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7520 ecs->event_thread->prev_pc
00431a78 7521 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7522
4d9d9d04 7523 if (ecs->event_thread->control.trap_expected)
d4f3574e 7524 {
4d9d9d04
PA
7525 struct thread_info *tp = ecs->event_thread;
7526
7527 if (debug_infrun)
7528 fprintf_unfiltered (gdb_stdlog,
7529 "infrun: %s has trap_expected set, "
7530 "resuming to collect trap\n",
7531 target_pid_to_str (tp->ptid));
7532
a9ba6bae
PA
7533 /* We haven't yet gotten our trap, and either: intercepted a
7534 non-signal event (e.g., a fork); or took a signal which we
7535 are supposed to pass through to the inferior. Simply
7536 continue. */
64ce06e4 7537 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7538 }
372316f1
PA
7539 else if (step_over_info_valid_p ())
7540 {
7541 /* Another thread is stepping over a breakpoint in-line. If
7542 this thread needs a step-over too, queue the request. In
7543 either case, this resume must be deferred for later. */
7544 struct thread_info *tp = ecs->event_thread;
7545
7546 if (ecs->hit_singlestep_breakpoint
7547 || thread_still_needs_step_over (tp))
7548 {
7549 if (debug_infrun)
7550 fprintf_unfiltered (gdb_stdlog,
7551 "infrun: step-over already in progress: "
7552 "step-over for %s deferred\n",
7553 target_pid_to_str (tp->ptid));
7554 thread_step_over_chain_enqueue (tp);
7555 }
7556 else
7557 {
7558 if (debug_infrun)
7559 fprintf_unfiltered (gdb_stdlog,
7560 "infrun: step-over in progress: "
7561 "resume of %s deferred\n",
7562 target_pid_to_str (tp->ptid));
7563 }
372316f1 7564 }
d4f3574e
SS
7565 else
7566 {
31e77af2 7567 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7568 int remove_bp;
7569 int remove_wps;
8d297bbf 7570 step_over_what step_what;
31e77af2 7571
d4f3574e 7572 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7573 anyway (if we got a signal, the user asked it be passed to
7574 the child)
7575 -- or --
7576 We got our expected trap, but decided we should resume from
7577 it.
d4f3574e 7578
a9ba6bae 7579 We're going to run this baby now!
d4f3574e 7580
c36b740a
VP
7581 Note that insert_breakpoints won't try to re-insert
7582 already inserted breakpoints. Therefore, we don't
7583 care if breakpoints were already inserted, or not. */
a9ba6bae 7584
31e77af2
PA
7585 /* If we need to step over a breakpoint, and we're not using
7586 displaced stepping to do so, insert all breakpoints
7587 (watchpoints, etc.) but the one we're stepping over, step one
7588 instruction, and then re-insert the breakpoint when that step
7589 is finished. */
963f9c80 7590
6c4cfb24
PA
7591 step_what = thread_still_needs_step_over (ecs->event_thread);
7592
963f9c80 7593 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7594 || (step_what & STEP_OVER_BREAKPOINT));
7595 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7596
cb71640d
PA
7597 /* We can't use displaced stepping if we need to step past a
7598 watchpoint. The instruction copied to the scratch pad would
7599 still trigger the watchpoint. */
7600 if (remove_bp
3fc8eb30 7601 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7602 {
a01bda52 7603 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7604 regcache_read_pc (regcache), remove_wps,
7605 ecs->event_thread->global_num);
45e8c884 7606 }
963f9c80 7607 else if (remove_wps)
21edc42f 7608 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7609
7610 /* If we now need to do an in-line step-over, we need to stop
7611 all other threads. Note this must be done before
7612 insert_breakpoints below, because that removes the breakpoint
7613 we're about to step over, otherwise other threads could miss
7614 it. */
fbea99ea 7615 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7616 stop_all_threads ();
abbb1732 7617
31e77af2 7618 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7619 TRY
31e77af2
PA
7620 {
7621 insert_breakpoints ();
7622 }
492d29ea 7623 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7624 {
7625 exception_print (gdb_stderr, e);
22bcd14b 7626 stop_waiting (ecs);
bdf2a94a 7627 clear_step_over_info ();
31e77af2 7628 return;
d4f3574e 7629 }
492d29ea 7630 END_CATCH
d4f3574e 7631
963f9c80 7632 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7633
64ce06e4 7634 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7635 }
7636
488f131b 7637 prepare_to_wait (ecs);
d4f3574e
SS
7638}
7639
4d9d9d04
PA
7640/* Called when we should continue running the inferior, because the
7641 current event doesn't cause a user visible stop. This does the
7642 resuming part; waiting for the next event is done elsewhere. */
7643
7644static void
7645keep_going (struct execution_control_state *ecs)
7646{
7647 if (ecs->event_thread->control.trap_expected
7648 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7649 ecs->event_thread->control.trap_expected = 0;
7650
7651 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7652 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7653 keep_going_pass_signal (ecs);
7654}
7655
104c1213
JM
7656/* This function normally comes after a resume, before
7657 handle_inferior_event exits. It takes care of any last bits of
7658 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7659
104c1213
JM
7660static void
7661prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7662{
527159b7 7663 if (debug_infrun)
8a9de0e4 7664 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7665
104c1213 7666 ecs->wait_some_more = 1;
0b333c5e
PA
7667
7668 if (!target_is_async_p ())
7669 mark_infrun_async_event_handler ();
c906108c 7670}
11cf8741 7671
fd664c91 7672/* We are done with the step range of a step/next/si/ni command.
b57bacec 7673 Called once for each n of a "step n" operation. */
fd664c91
PA
7674
7675static void
bdc36728 7676end_stepping_range (struct execution_control_state *ecs)
fd664c91 7677{
bdc36728 7678 ecs->event_thread->control.stop_step = 1;
bdc36728 7679 stop_waiting (ecs);
fd664c91
PA
7680}
7681
33d62d64
JK
7682/* Several print_*_reason functions to print why the inferior has stopped.
7683 We always print something when the inferior exits, or receives a signal.
7684 The rest of the cases are dealt with later on in normal_stop and
7685 print_it_typical. Ideally there should be a call to one of these
7686 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7687 stop_waiting is called.
33d62d64 7688
fd664c91
PA
7689 Note that we don't call these directly, instead we delegate that to
7690 the interpreters, through observers. Interpreters then call these
7691 with whatever uiout is right. */
33d62d64 7692
fd664c91
PA
7693void
7694print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7695{
fd664c91 7696 /* For CLI-like interpreters, print nothing. */
33d62d64 7697
112e8700 7698 if (uiout->is_mi_like_p ())
fd664c91 7699 {
112e8700 7700 uiout->field_string ("reason",
fd664c91
PA
7701 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7702 }
7703}
33d62d64 7704
fd664c91
PA
7705void
7706print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7707{
33d62d64 7708 annotate_signalled ();
112e8700
SM
7709 if (uiout->is_mi_like_p ())
7710 uiout->field_string
7711 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7712 uiout->text ("\nProgram terminated with signal ");
33d62d64 7713 annotate_signal_name ();
112e8700 7714 uiout->field_string ("signal-name",
2ea28649 7715 gdb_signal_to_name (siggnal));
33d62d64 7716 annotate_signal_name_end ();
112e8700 7717 uiout->text (", ");
33d62d64 7718 annotate_signal_string ();
112e8700 7719 uiout->field_string ("signal-meaning",
2ea28649 7720 gdb_signal_to_string (siggnal));
33d62d64 7721 annotate_signal_string_end ();
112e8700
SM
7722 uiout->text (".\n");
7723 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7724}
7725
fd664c91
PA
7726void
7727print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7728{
fda326dd 7729 struct inferior *inf = current_inferior ();
f2907e49 7730 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7731
33d62d64
JK
7732 annotate_exited (exitstatus);
7733 if (exitstatus)
7734 {
112e8700
SM
7735 if (uiout->is_mi_like_p ())
7736 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7737 uiout->text ("[Inferior ");
7738 uiout->text (plongest (inf->num));
7739 uiout->text (" (");
7740 uiout->text (pidstr);
7741 uiout->text (") exited with code ");
7742 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7743 uiout->text ("]\n");
33d62d64
JK
7744 }
7745 else
11cf8741 7746 {
112e8700
SM
7747 if (uiout->is_mi_like_p ())
7748 uiout->field_string
7749 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7750 uiout->text ("[Inferior ");
7751 uiout->text (plongest (inf->num));
7752 uiout->text (" (");
7753 uiout->text (pidstr);
7754 uiout->text (") exited normally]\n");
33d62d64 7755 }
33d62d64
JK
7756}
7757
012b3a21
WT
7758/* Some targets/architectures can do extra processing/display of
7759 segmentation faults. E.g., Intel MPX boundary faults.
7760 Call the architecture dependent function to handle the fault. */
7761
7762static void
7763handle_segmentation_fault (struct ui_out *uiout)
7764{
7765 struct regcache *regcache = get_current_regcache ();
ac7936df 7766 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7767
7768 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7769 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7770}
7771
fd664c91
PA
7772void
7773print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7774{
f303dbd6
PA
7775 struct thread_info *thr = inferior_thread ();
7776
33d62d64
JK
7777 annotate_signal ();
7778
112e8700 7779 if (uiout->is_mi_like_p ())
f303dbd6
PA
7780 ;
7781 else if (show_thread_that_caused_stop ())
33d62d64 7782 {
f303dbd6 7783 const char *name;
33d62d64 7784
112e8700
SM
7785 uiout->text ("\nThread ");
7786 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7787
7788 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7789 if (name != NULL)
7790 {
112e8700
SM
7791 uiout->text (" \"");
7792 uiout->field_fmt ("name", "%s", name);
7793 uiout->text ("\"");
f303dbd6 7794 }
33d62d64 7795 }
f303dbd6 7796 else
112e8700 7797 uiout->text ("\nProgram");
f303dbd6 7798
112e8700
SM
7799 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7800 uiout->text (" stopped");
33d62d64
JK
7801 else
7802 {
112e8700 7803 uiout->text (" received signal ");
8b93c638 7804 annotate_signal_name ();
112e8700
SM
7805 if (uiout->is_mi_like_p ())
7806 uiout->field_string
7807 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7808 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7809 annotate_signal_name_end ();
112e8700 7810 uiout->text (", ");
8b93c638 7811 annotate_signal_string ();
112e8700 7812 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7813
7814 if (siggnal == GDB_SIGNAL_SEGV)
7815 handle_segmentation_fault (uiout);
7816
8b93c638 7817 annotate_signal_string_end ();
33d62d64 7818 }
112e8700 7819 uiout->text (".\n");
33d62d64 7820}
252fbfc8 7821
fd664c91
PA
7822void
7823print_no_history_reason (struct ui_out *uiout)
33d62d64 7824{
112e8700 7825 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7826}
43ff13b4 7827
0c7e1a46
PA
7828/* Print current location without a level number, if we have changed
7829 functions or hit a breakpoint. Print source line if we have one.
7830 bpstat_print contains the logic deciding in detail what to print,
7831 based on the event(s) that just occurred. */
7832
243a9253
PA
7833static void
7834print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7835{
7836 int bpstat_ret;
f486487f 7837 enum print_what source_flag;
0c7e1a46
PA
7838 int do_frame_printing = 1;
7839 struct thread_info *tp = inferior_thread ();
7840
7841 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7842 switch (bpstat_ret)
7843 {
7844 case PRINT_UNKNOWN:
7845 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7846 should) carry around the function and does (or should) use
7847 that when doing a frame comparison. */
7848 if (tp->control.stop_step
7849 && frame_id_eq (tp->control.step_frame_id,
7850 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7851 && (tp->control.step_start_function
7852 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7853 {
7854 /* Finished step, just print source line. */
7855 source_flag = SRC_LINE;
7856 }
7857 else
7858 {
7859 /* Print location and source line. */
7860 source_flag = SRC_AND_LOC;
7861 }
7862 break;
7863 case PRINT_SRC_AND_LOC:
7864 /* Print location and source line. */
7865 source_flag = SRC_AND_LOC;
7866 break;
7867 case PRINT_SRC_ONLY:
7868 source_flag = SRC_LINE;
7869 break;
7870 case PRINT_NOTHING:
7871 /* Something bogus. */
7872 source_flag = SRC_LINE;
7873 do_frame_printing = 0;
7874 break;
7875 default:
7876 internal_error (__FILE__, __LINE__, _("Unknown value."));
7877 }
7878
7879 /* The behavior of this routine with respect to the source
7880 flag is:
7881 SRC_LINE: Print only source line
7882 LOCATION: Print only location
7883 SRC_AND_LOC: Print location and source line. */
7884 if (do_frame_printing)
7885 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7886}
7887
243a9253
PA
7888/* See infrun.h. */
7889
7890void
7891print_stop_event (struct ui_out *uiout)
7892{
243a9253
PA
7893 struct target_waitstatus last;
7894 ptid_t last_ptid;
7895 struct thread_info *tp;
7896
7897 get_last_target_status (&last_ptid, &last);
7898
67ad9399
TT
7899 {
7900 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7901
67ad9399 7902 print_stop_location (&last);
243a9253 7903
67ad9399
TT
7904 /* Display the auto-display expressions. */
7905 do_displays ();
7906 }
243a9253
PA
7907
7908 tp = inferior_thread ();
7909 if (tp->thread_fsm != NULL
7910 && thread_fsm_finished_p (tp->thread_fsm))
7911 {
7912 struct return_value_info *rv;
7913
7914 rv = thread_fsm_return_value (tp->thread_fsm);
7915 if (rv != NULL)
7916 print_return_value (uiout, rv);
7917 }
0c7e1a46
PA
7918}
7919
388a7084
PA
7920/* See infrun.h. */
7921
7922void
7923maybe_remove_breakpoints (void)
7924{
7925 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7926 {
7927 if (remove_breakpoints ())
7928 {
223ffa71 7929 target_terminal::ours_for_output ();
388a7084
PA
7930 printf_filtered (_("Cannot remove breakpoints because "
7931 "program is no longer writable.\nFurther "
7932 "execution is probably impossible.\n"));
7933 }
7934 }
7935}
7936
4c2f2a79
PA
7937/* The execution context that just caused a normal stop. */
7938
7939struct stop_context
7940{
2d844eaf
TT
7941 stop_context ();
7942 ~stop_context ();
7943
7944 DISABLE_COPY_AND_ASSIGN (stop_context);
7945
7946 bool changed () const;
7947
4c2f2a79
PA
7948 /* The stop ID. */
7949 ULONGEST stop_id;
c906108c 7950
4c2f2a79 7951 /* The event PTID. */
c906108c 7952
4c2f2a79
PA
7953 ptid_t ptid;
7954
7955 /* If stopp for a thread event, this is the thread that caused the
7956 stop. */
7957 struct thread_info *thread;
7958
7959 /* The inferior that caused the stop. */
7960 int inf_num;
7961};
7962
2d844eaf 7963/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7964 takes a strong reference to the thread. */
7965
2d844eaf 7966stop_context::stop_context ()
4c2f2a79 7967{
2d844eaf
TT
7968 stop_id = get_stop_id ();
7969 ptid = inferior_ptid;
7970 inf_num = current_inferior ()->num;
4c2f2a79 7971
d7e15655 7972 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7973 {
7974 /* Take a strong reference so that the thread can't be deleted
7975 yet. */
2d844eaf
TT
7976 thread = inferior_thread ();
7977 thread->incref ();
4c2f2a79
PA
7978 }
7979 else
2d844eaf 7980 thread = NULL;
4c2f2a79
PA
7981}
7982
7983/* Release a stop context previously created with save_stop_context.
7984 Releases the strong reference to the thread as well. */
7985
2d844eaf 7986stop_context::~stop_context ()
4c2f2a79 7987{
2d844eaf
TT
7988 if (thread != NULL)
7989 thread->decref ();
4c2f2a79
PA
7990}
7991
7992/* Return true if the current context no longer matches the saved stop
7993 context. */
7994
2d844eaf
TT
7995bool
7996stop_context::changed () const
7997{
7998 if (ptid != inferior_ptid)
7999 return true;
8000 if (inf_num != current_inferior ()->num)
8001 return true;
8002 if (thread != NULL && thread->state != THREAD_STOPPED)
8003 return true;
8004 if (get_stop_id () != stop_id)
8005 return true;
8006 return false;
4c2f2a79
PA
8007}
8008
8009/* See infrun.h. */
8010
8011int
96baa820 8012normal_stop (void)
c906108c 8013{
73b65bb0
DJ
8014 struct target_waitstatus last;
8015 ptid_t last_ptid;
8016
8017 get_last_target_status (&last_ptid, &last);
8018
4c2f2a79
PA
8019 new_stop_id ();
8020
29f49a6a
PA
8021 /* If an exception is thrown from this point on, make sure to
8022 propagate GDB's knowledge of the executing state to the
8023 frontend/user running state. A QUIT is an easy exception to see
8024 here, so do this before any filtered output. */
731f534f
PA
8025
8026 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8027
c35b1492 8028 if (!non_stop)
731f534f 8029 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
8030 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8031 || last.kind == TARGET_WAITKIND_EXITED)
8032 {
8033 /* On some targets, we may still have live threads in the
8034 inferior when we get a process exit event. E.g., for
8035 "checkpoint", when the current checkpoint/fork exits,
8036 linux-fork.c automatically switches to another fork from
8037 within target_mourn_inferior. */
731f534f
PA
8038 if (inferior_ptid != null_ptid)
8039 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8040 }
8041 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8042 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8043
b57bacec
PA
8044 /* As we're presenting a stop, and potentially removing breakpoints,
8045 update the thread list so we can tell whether there are threads
8046 running on the target. With target remote, for example, we can
8047 only learn about new threads when we explicitly update the thread
8048 list. Do this before notifying the interpreters about signal
8049 stops, end of stepping ranges, etc., so that the "new thread"
8050 output is emitted before e.g., "Program received signal FOO",
8051 instead of after. */
8052 update_thread_list ();
8053
8054 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8055 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8056
c906108c
SS
8057 /* As with the notification of thread events, we want to delay
8058 notifying the user that we've switched thread context until
8059 the inferior actually stops.
8060
73b65bb0
DJ
8061 There's no point in saying anything if the inferior has exited.
8062 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8063 "received a signal".
8064
8065 Also skip saying anything in non-stop mode. In that mode, as we
8066 don't want GDB to switch threads behind the user's back, to avoid
8067 races where the user is typing a command to apply to thread x,
8068 but GDB switches to thread y before the user finishes entering
8069 the command, fetch_inferior_event installs a cleanup to restore
8070 the current thread back to the thread the user had selected right
8071 after this event is handled, so we're not really switching, only
8072 informing of a stop. */
4f8d22e3 8073 if (!non_stop
731f534f 8074 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8075 && target_has_execution
8076 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8077 && last.kind != TARGET_WAITKIND_EXITED
8078 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8079 {
0e454242 8080 SWITCH_THRU_ALL_UIS ()
3b12939d 8081 {
223ffa71 8082 target_terminal::ours_for_output ();
3b12939d
PA
8083 printf_filtered (_("[Switching to %s]\n"),
8084 target_pid_to_str (inferior_ptid));
8085 annotate_thread_changed ();
8086 }
39f77062 8087 previous_inferior_ptid = inferior_ptid;
c906108c 8088 }
c906108c 8089
0e5bf2a8
PA
8090 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8091 {
0e454242 8092 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8093 if (current_ui->prompt_state == PROMPT_BLOCKED)
8094 {
223ffa71 8095 target_terminal::ours_for_output ();
3b12939d
PA
8096 printf_filtered (_("No unwaited-for children left.\n"));
8097 }
0e5bf2a8
PA
8098 }
8099
b57bacec 8100 /* Note: this depends on the update_thread_list call above. */
388a7084 8101 maybe_remove_breakpoints ();
c906108c 8102
c906108c
SS
8103 /* If an auto-display called a function and that got a signal,
8104 delete that auto-display to avoid an infinite recursion. */
8105
8106 if (stopped_by_random_signal)
8107 disable_current_display ();
8108
0e454242 8109 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8110 {
8111 async_enable_stdin ();
8112 }
c906108c 8113
388a7084 8114 /* Let the user/frontend see the threads as stopped. */
731f534f 8115 maybe_finish_thread_state.reset ();
388a7084
PA
8116
8117 /* Select innermost stack frame - i.e., current frame is frame 0,
8118 and current location is based on that. Handle the case where the
8119 dummy call is returning after being stopped. E.g. the dummy call
8120 previously hit a breakpoint. (If the dummy call returns
8121 normally, we won't reach here.) Do this before the stop hook is
8122 run, so that it doesn't get to see the temporary dummy frame,
8123 which is not where we'll present the stop. */
8124 if (has_stack_frames ())
8125 {
8126 if (stop_stack_dummy == STOP_STACK_DUMMY)
8127 {
8128 /* Pop the empty frame that contains the stack dummy. This
8129 also restores inferior state prior to the call (struct
8130 infcall_suspend_state). */
8131 struct frame_info *frame = get_current_frame ();
8132
8133 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8134 frame_pop (frame);
8135 /* frame_pop calls reinit_frame_cache as the last thing it
8136 does which means there's now no selected frame. */
8137 }
8138
8139 select_frame (get_current_frame ());
8140
8141 /* Set the current source location. */
8142 set_current_sal_from_frame (get_current_frame ());
8143 }
dd7e2d2b
PA
8144
8145 /* Look up the hook_stop and run it (CLI internally handles problem
8146 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8147 if (stop_command != NULL)
8148 {
2d844eaf 8149 stop_context saved_context;
4c2f2a79 8150
bf469271
PA
8151 TRY
8152 {
8153 execute_cmd_pre_hook (stop_command);
8154 }
8155 CATCH (ex, RETURN_MASK_ALL)
8156 {
8157 exception_fprintf (gdb_stderr, ex,
8158 "Error while running hook_stop:\n");
8159 }
8160 END_CATCH
4c2f2a79
PA
8161
8162 /* If the stop hook resumes the target, then there's no point in
8163 trying to notify about the previous stop; its context is
8164 gone. Likewise if the command switches thread or inferior --
8165 the observers would print a stop for the wrong
8166 thread/inferior. */
2d844eaf
TT
8167 if (saved_context.changed ())
8168 return 1;
4c2f2a79 8169 }
dd7e2d2b 8170
388a7084
PA
8171 /* Notify observers about the stop. This is where the interpreters
8172 print the stop event. */
d7e15655 8173 if (inferior_ptid != null_ptid)
76727919 8174 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8175 stop_print_frame);
8176 else
76727919 8177 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8178
243a9253
PA
8179 annotate_stopped ();
8180
48844aa6
PA
8181 if (target_has_execution)
8182 {
8183 if (last.kind != TARGET_WAITKIND_SIGNALLED
8184 && last.kind != TARGET_WAITKIND_EXITED)
8185 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8186 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8187 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8188 }
6c95b8df
PA
8189
8190 /* Try to get rid of automatically added inferiors that are no
8191 longer needed. Keeping those around slows down things linearly.
8192 Note that this never removes the current inferior. */
8193 prune_inferiors ();
4c2f2a79
PA
8194
8195 return 0;
c906108c 8196}
c906108c 8197\f
c5aa993b 8198int
96baa820 8199signal_stop_state (int signo)
c906108c 8200{
d6b48e9c 8201 return signal_stop[signo];
c906108c
SS
8202}
8203
c5aa993b 8204int
96baa820 8205signal_print_state (int signo)
c906108c
SS
8206{
8207 return signal_print[signo];
8208}
8209
c5aa993b 8210int
96baa820 8211signal_pass_state (int signo)
c906108c
SS
8212{
8213 return signal_program[signo];
8214}
8215
2455069d
UW
8216static void
8217signal_cache_update (int signo)
8218{
8219 if (signo == -1)
8220 {
a493e3e2 8221 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8222 signal_cache_update (signo);
8223
8224 return;
8225 }
8226
8227 signal_pass[signo] = (signal_stop[signo] == 0
8228 && signal_print[signo] == 0
ab04a2af
TT
8229 && signal_program[signo] == 1
8230 && signal_catch[signo] == 0);
2455069d
UW
8231}
8232
488f131b 8233int
7bda5e4a 8234signal_stop_update (int signo, int state)
d4f3574e
SS
8235{
8236 int ret = signal_stop[signo];
abbb1732 8237
d4f3574e 8238 signal_stop[signo] = state;
2455069d 8239 signal_cache_update (signo);
d4f3574e
SS
8240 return ret;
8241}
8242
488f131b 8243int
7bda5e4a 8244signal_print_update (int signo, int state)
d4f3574e
SS
8245{
8246 int ret = signal_print[signo];
abbb1732 8247
d4f3574e 8248 signal_print[signo] = state;
2455069d 8249 signal_cache_update (signo);
d4f3574e
SS
8250 return ret;
8251}
8252
488f131b 8253int
7bda5e4a 8254signal_pass_update (int signo, int state)
d4f3574e
SS
8255{
8256 int ret = signal_program[signo];
abbb1732 8257
d4f3574e 8258 signal_program[signo] = state;
2455069d 8259 signal_cache_update (signo);
d4f3574e
SS
8260 return ret;
8261}
8262
ab04a2af
TT
8263/* Update the global 'signal_catch' from INFO and notify the
8264 target. */
8265
8266void
8267signal_catch_update (const unsigned int *info)
8268{
8269 int i;
8270
8271 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8272 signal_catch[i] = info[i] > 0;
8273 signal_cache_update (-1);
8274 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8275}
8276
c906108c 8277static void
96baa820 8278sig_print_header (void)
c906108c 8279{
3e43a32a
MS
8280 printf_filtered (_("Signal Stop\tPrint\tPass "
8281 "to program\tDescription\n"));
c906108c
SS
8282}
8283
8284static void
2ea28649 8285sig_print_info (enum gdb_signal oursig)
c906108c 8286{
2ea28649 8287 const char *name = gdb_signal_to_name (oursig);
c906108c 8288 int name_padding = 13 - strlen (name);
96baa820 8289
c906108c
SS
8290 if (name_padding <= 0)
8291 name_padding = 0;
8292
8293 printf_filtered ("%s", name);
488f131b 8294 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8295 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8296 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8297 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8298 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8299}
8300
8301/* Specify how various signals in the inferior should be handled. */
8302
8303static void
0b39b52e 8304handle_command (const char *args, int from_tty)
c906108c 8305{
c906108c 8306 int digits, wordlen;
b926417a 8307 int sigfirst, siglast;
2ea28649 8308 enum gdb_signal oursig;
c906108c
SS
8309 int allsigs;
8310 int nsigs;
8311 unsigned char *sigs;
c906108c
SS
8312
8313 if (args == NULL)
8314 {
e2e0b3e5 8315 error_no_arg (_("signal to handle"));
c906108c
SS
8316 }
8317
1777feb0 8318 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8319
a493e3e2 8320 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8321 sigs = (unsigned char *) alloca (nsigs);
8322 memset (sigs, 0, nsigs);
8323
1777feb0 8324 /* Break the command line up into args. */
c906108c 8325
773a1edc 8326 gdb_argv built_argv (args);
c906108c
SS
8327
8328 /* Walk through the args, looking for signal oursigs, signal names, and
8329 actions. Signal numbers and signal names may be interspersed with
8330 actions, with the actions being performed for all signals cumulatively
1777feb0 8331 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8332
773a1edc 8333 for (char *arg : built_argv)
c906108c 8334 {
773a1edc
TT
8335 wordlen = strlen (arg);
8336 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8337 {;
8338 }
8339 allsigs = 0;
8340 sigfirst = siglast = -1;
8341
773a1edc 8342 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8343 {
8344 /* Apply action to all signals except those used by the
1777feb0 8345 debugger. Silently skip those. */
c906108c
SS
8346 allsigs = 1;
8347 sigfirst = 0;
8348 siglast = nsigs - 1;
8349 }
773a1edc 8350 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8351 {
8352 SET_SIGS (nsigs, sigs, signal_stop);
8353 SET_SIGS (nsigs, sigs, signal_print);
8354 }
773a1edc 8355 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8356 {
8357 UNSET_SIGS (nsigs, sigs, signal_program);
8358 }
773a1edc 8359 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8360 {
8361 SET_SIGS (nsigs, sigs, signal_print);
8362 }
773a1edc 8363 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8364 {
8365 SET_SIGS (nsigs, sigs, signal_program);
8366 }
773a1edc 8367 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8368 {
8369 UNSET_SIGS (nsigs, sigs, signal_stop);
8370 }
773a1edc 8371 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8372 {
8373 SET_SIGS (nsigs, sigs, signal_program);
8374 }
773a1edc 8375 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8376 {
8377 UNSET_SIGS (nsigs, sigs, signal_print);
8378 UNSET_SIGS (nsigs, sigs, signal_stop);
8379 }
773a1edc 8380 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8381 {
8382 UNSET_SIGS (nsigs, sigs, signal_program);
8383 }
8384 else if (digits > 0)
8385 {
8386 /* It is numeric. The numeric signal refers to our own
8387 internal signal numbering from target.h, not to host/target
8388 signal number. This is a feature; users really should be
8389 using symbolic names anyway, and the common ones like
8390 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8391
8392 sigfirst = siglast = (int)
773a1edc
TT
8393 gdb_signal_from_command (atoi (arg));
8394 if (arg[digits] == '-')
c906108c
SS
8395 {
8396 siglast = (int)
773a1edc 8397 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8398 }
8399 if (sigfirst > siglast)
8400 {
1777feb0 8401 /* Bet he didn't figure we'd think of this case... */
b926417a 8402 std::swap (sigfirst, siglast);
c906108c
SS
8403 }
8404 }
8405 else
8406 {
773a1edc 8407 oursig = gdb_signal_from_name (arg);
a493e3e2 8408 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8409 {
8410 sigfirst = siglast = (int) oursig;
8411 }
8412 else
8413 {
8414 /* Not a number and not a recognized flag word => complain. */
773a1edc 8415 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8416 }
8417 }
8418
8419 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8420 which signals to apply actions to. */
c906108c 8421
b926417a 8422 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8423 {
2ea28649 8424 switch ((enum gdb_signal) signum)
c906108c 8425 {
a493e3e2
PA
8426 case GDB_SIGNAL_TRAP:
8427 case GDB_SIGNAL_INT:
c906108c
SS
8428 if (!allsigs && !sigs[signum])
8429 {
9e2f0ad4 8430 if (query (_("%s is used by the debugger.\n\
3e43a32a 8431Are you sure you want to change it? "),
2ea28649 8432 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8433 {
8434 sigs[signum] = 1;
8435 }
8436 else
8437 {
a3f17187 8438 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8439 gdb_flush (gdb_stdout);
8440 }
8441 }
8442 break;
a493e3e2
PA
8443 case GDB_SIGNAL_0:
8444 case GDB_SIGNAL_DEFAULT:
8445 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8446 /* Make sure that "all" doesn't print these. */
8447 break;
8448 default:
8449 sigs[signum] = 1;
8450 break;
8451 }
8452 }
c906108c
SS
8453 }
8454
b926417a 8455 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8456 if (sigs[signum])
8457 {
2455069d 8458 signal_cache_update (-1);
a493e3e2
PA
8459 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8460 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8461
3a031f65
PA
8462 if (from_tty)
8463 {
8464 /* Show the results. */
8465 sig_print_header ();
8466 for (; signum < nsigs; signum++)
8467 if (sigs[signum])
aead7601 8468 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8469 }
8470
8471 break;
8472 }
c906108c
SS
8473}
8474
de0bea00
MF
8475/* Complete the "handle" command. */
8476
eb3ff9a5 8477static void
de0bea00 8478handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8479 completion_tracker &tracker,
6f937416 8480 const char *text, const char *word)
de0bea00 8481{
de0bea00
MF
8482 static const char * const keywords[] =
8483 {
8484 "all",
8485 "stop",
8486 "ignore",
8487 "print",
8488 "pass",
8489 "nostop",
8490 "noignore",
8491 "noprint",
8492 "nopass",
8493 NULL,
8494 };
8495
eb3ff9a5
PA
8496 signal_completer (ignore, tracker, text, word);
8497 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8498}
8499
2ea28649
PA
8500enum gdb_signal
8501gdb_signal_from_command (int num)
ed01b82c
PA
8502{
8503 if (num >= 1 && num <= 15)
2ea28649 8504 return (enum gdb_signal) num;
ed01b82c
PA
8505 error (_("Only signals 1-15 are valid as numeric signals.\n\
8506Use \"info signals\" for a list of symbolic signals."));
8507}
8508
c906108c
SS
8509/* Print current contents of the tables set by the handle command.
8510 It is possible we should just be printing signals actually used
8511 by the current target (but for things to work right when switching
8512 targets, all signals should be in the signal tables). */
8513
8514static void
1d12d88f 8515info_signals_command (const char *signum_exp, int from_tty)
c906108c 8516{
2ea28649 8517 enum gdb_signal oursig;
abbb1732 8518
c906108c
SS
8519 sig_print_header ();
8520
8521 if (signum_exp)
8522 {
8523 /* First see if this is a symbol name. */
2ea28649 8524 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8525 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8526 {
8527 /* No, try numeric. */
8528 oursig =
2ea28649 8529 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8530 }
8531 sig_print_info (oursig);
8532 return;
8533 }
8534
8535 printf_filtered ("\n");
8536 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8537 for (oursig = GDB_SIGNAL_FIRST;
8538 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8539 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8540 {
8541 QUIT;
8542
a493e3e2
PA
8543 if (oursig != GDB_SIGNAL_UNKNOWN
8544 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8545 sig_print_info (oursig);
8546 }
8547
3e43a32a
MS
8548 printf_filtered (_("\nUse the \"handle\" command "
8549 "to change these tables.\n"));
c906108c 8550}
4aa995e1
PA
8551
8552/* The $_siginfo convenience variable is a bit special. We don't know
8553 for sure the type of the value until we actually have a chance to
7a9dd1b2 8554 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8555 also dependent on which thread you have selected.
8556
8557 1. making $_siginfo be an internalvar that creates a new value on
8558 access.
8559
8560 2. making the value of $_siginfo be an lval_computed value. */
8561
8562/* This function implements the lval_computed support for reading a
8563 $_siginfo value. */
8564
8565static void
8566siginfo_value_read (struct value *v)
8567{
8568 LONGEST transferred;
8569
a911d87a
PA
8570 /* If we can access registers, so can we access $_siginfo. Likewise
8571 vice versa. */
8572 validate_registers_access ();
c709acd1 8573
4aa995e1 8574 transferred =
8b88a78e 8575 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8576 NULL,
8577 value_contents_all_raw (v),
8578 value_offset (v),
8579 TYPE_LENGTH (value_type (v)));
8580
8581 if (transferred != TYPE_LENGTH (value_type (v)))
8582 error (_("Unable to read siginfo"));
8583}
8584
8585/* This function implements the lval_computed support for writing a
8586 $_siginfo value. */
8587
8588static void
8589siginfo_value_write (struct value *v, struct value *fromval)
8590{
8591 LONGEST transferred;
8592
a911d87a
PA
8593 /* If we can access registers, so can we access $_siginfo. Likewise
8594 vice versa. */
8595 validate_registers_access ();
c709acd1 8596
8b88a78e 8597 transferred = target_write (current_top_target (),
4aa995e1
PA
8598 TARGET_OBJECT_SIGNAL_INFO,
8599 NULL,
8600 value_contents_all_raw (fromval),
8601 value_offset (v),
8602 TYPE_LENGTH (value_type (fromval)));
8603
8604 if (transferred != TYPE_LENGTH (value_type (fromval)))
8605 error (_("Unable to write siginfo"));
8606}
8607
c8f2448a 8608static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8609 {
8610 siginfo_value_read,
8611 siginfo_value_write
8612 };
8613
8614/* Return a new value with the correct type for the siginfo object of
78267919
UW
8615 the current thread using architecture GDBARCH. Return a void value
8616 if there's no object available. */
4aa995e1 8617
2c0b251b 8618static struct value *
22d2b532
SDJ
8619siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8620 void *ignore)
4aa995e1 8621{
4aa995e1 8622 if (target_has_stack
d7e15655 8623 && inferior_ptid != null_ptid
78267919 8624 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8625 {
78267919 8626 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8627
78267919 8628 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8629 }
8630
78267919 8631 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8632}
8633
c906108c 8634\f
16c381f0
JK
8635/* infcall_suspend_state contains state about the program itself like its
8636 registers and any signal it received when it last stopped.
8637 This state must be restored regardless of how the inferior function call
8638 ends (either successfully, or after it hits a breakpoint or signal)
8639 if the program is to properly continue where it left off. */
8640
6bf78e29 8641class infcall_suspend_state
7a292a7a 8642{
6bf78e29
AB
8643public:
8644 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8645 once the inferior function call has finished. */
8646 infcall_suspend_state (struct gdbarch *gdbarch,
8647 const struct thread_info *tp,
8648 struct regcache *regcache)
8649 : m_thread_suspend (tp->suspend),
8650 m_registers (new readonly_detached_regcache (*regcache))
8651 {
8652 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8653
8654 if (gdbarch_get_siginfo_type_p (gdbarch))
8655 {
8656 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8657 size_t len = TYPE_LENGTH (type);
8658
8659 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8660
8661 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8662 siginfo_data.get (), 0, len) != len)
8663 {
8664 /* Errors ignored. */
8665 siginfo_data.reset (nullptr);
8666 }
8667 }
8668
8669 if (siginfo_data)
8670 {
8671 m_siginfo_gdbarch = gdbarch;
8672 m_siginfo_data = std::move (siginfo_data);
8673 }
8674 }
8675
8676 /* Return a pointer to the stored register state. */
16c381f0 8677
6bf78e29
AB
8678 readonly_detached_regcache *registers () const
8679 {
8680 return m_registers.get ();
8681 }
8682
8683 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8684
8685 void restore (struct gdbarch *gdbarch,
8686 struct thread_info *tp,
8687 struct regcache *regcache) const
8688 {
8689 tp->suspend = m_thread_suspend;
8690
8691 if (m_siginfo_gdbarch == gdbarch)
8692 {
8693 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8694
8695 /* Errors ignored. */
8696 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8697 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8698 }
8699
8700 /* The inferior can be gone if the user types "print exit(0)"
8701 (and perhaps other times). */
8702 if (target_has_execution)
8703 /* NB: The register write goes through to the target. */
8704 regcache->restore (registers ());
8705 }
8706
8707private:
8708 /* How the current thread stopped before the inferior function call was
8709 executed. */
8710 struct thread_suspend_state m_thread_suspend;
8711
8712 /* The registers before the inferior function call was executed. */
8713 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8714
35515841 8715 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8716 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8717
8718 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8719 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8720 content would be invalid. */
6bf78e29 8721 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8722};
8723
cb524840
TT
8724infcall_suspend_state_up
8725save_infcall_suspend_state ()
b89667eb 8726{
b89667eb 8727 struct thread_info *tp = inferior_thread ();
1736ad11 8728 struct regcache *regcache = get_current_regcache ();
ac7936df 8729 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8730
6bf78e29
AB
8731 infcall_suspend_state_up inf_state
8732 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8733
6bf78e29
AB
8734 /* Having saved the current state, adjust the thread state, discarding
8735 any stop signal information. The stop signal is not useful when
8736 starting an inferior function call, and run_inferior_call will not use
8737 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8738 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8739
b89667eb
DE
8740 return inf_state;
8741}
8742
8743/* Restore inferior session state to INF_STATE. */
8744
8745void
16c381f0 8746restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8747{
8748 struct thread_info *tp = inferior_thread ();
1736ad11 8749 struct regcache *regcache = get_current_regcache ();
ac7936df 8750 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8751
6bf78e29 8752 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8753 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8754}
8755
b89667eb 8756void
16c381f0 8757discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8758{
dd848631 8759 delete inf_state;
b89667eb
DE
8760}
8761
daf6667d 8762readonly_detached_regcache *
16c381f0 8763get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8764{
6bf78e29 8765 return inf_state->registers ();
b89667eb
DE
8766}
8767
16c381f0
JK
8768/* infcall_control_state contains state regarding gdb's control of the
8769 inferior itself like stepping control. It also contains session state like
8770 the user's currently selected frame. */
b89667eb 8771
16c381f0 8772struct infcall_control_state
b89667eb 8773{
16c381f0
JK
8774 struct thread_control_state thread_control;
8775 struct inferior_control_state inferior_control;
d82142e2
JK
8776
8777 /* Other fields: */
ee841dd8
TT
8778 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8779 int stopped_by_random_signal = 0;
7a292a7a 8780
b89667eb 8781 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8782 struct frame_id selected_frame_id {};
7a292a7a
SS
8783};
8784
c906108c 8785/* Save all of the information associated with the inferior<==>gdb
b89667eb 8786 connection. */
c906108c 8787
cb524840
TT
8788infcall_control_state_up
8789save_infcall_control_state ()
c906108c 8790{
cb524840 8791 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8792 struct thread_info *tp = inferior_thread ();
d6b48e9c 8793 struct inferior *inf = current_inferior ();
7a292a7a 8794
16c381f0
JK
8795 inf_status->thread_control = tp->control;
8796 inf_status->inferior_control = inf->control;
d82142e2 8797
8358c15c 8798 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8799 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8800
16c381f0
JK
8801 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8802 chain. If caller's caller is walking the chain, they'll be happier if we
8803 hand them back the original chain when restore_infcall_control_state is
8804 called. */
8805 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8806
8807 /* Other fields: */
8808 inf_status->stop_stack_dummy = stop_stack_dummy;
8809 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8810
206415a3 8811 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8812
7a292a7a 8813 return inf_status;
c906108c
SS
8814}
8815
bf469271
PA
8816static void
8817restore_selected_frame (const frame_id &fid)
c906108c 8818{
bf469271 8819 frame_info *frame = frame_find_by_id (fid);
c906108c 8820
aa0cd9c1
AC
8821 /* If inf_status->selected_frame_id is NULL, there was no previously
8822 selected frame. */
101dcfbe 8823 if (frame == NULL)
c906108c 8824 {
8a3fe4f8 8825 warning (_("Unable to restore previously selected frame."));
bf469271 8826 return;
c906108c
SS
8827 }
8828
0f7d239c 8829 select_frame (frame);
c906108c
SS
8830}
8831
b89667eb
DE
8832/* Restore inferior session state to INF_STATUS. */
8833
c906108c 8834void
16c381f0 8835restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8836{
4e1c45ea 8837 struct thread_info *tp = inferior_thread ();
d6b48e9c 8838 struct inferior *inf = current_inferior ();
4e1c45ea 8839
8358c15c
JK
8840 if (tp->control.step_resume_breakpoint)
8841 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8842
5b79abe7
TT
8843 if (tp->control.exception_resume_breakpoint)
8844 tp->control.exception_resume_breakpoint->disposition
8845 = disp_del_at_next_stop;
8846
d82142e2 8847 /* Handle the bpstat_copy of the chain. */
16c381f0 8848 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8849
16c381f0
JK
8850 tp->control = inf_status->thread_control;
8851 inf->control = inf_status->inferior_control;
d82142e2
JK
8852
8853 /* Other fields: */
8854 stop_stack_dummy = inf_status->stop_stack_dummy;
8855 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8856
b89667eb 8857 if (target_has_stack)
c906108c 8858 {
bf469271 8859 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8860 walking the stack might encounter a garbage pointer and
8861 error() trying to dereference it. */
bf469271
PA
8862 TRY
8863 {
8864 restore_selected_frame (inf_status->selected_frame_id);
8865 }
8866 CATCH (ex, RETURN_MASK_ERROR)
8867 {
8868 exception_fprintf (gdb_stderr, ex,
8869 "Unable to restore previously selected frame:\n");
8870 /* Error in restoring the selected frame. Select the
8871 innermost frame. */
8872 select_frame (get_current_frame ());
8873 }
8874 END_CATCH
c906108c 8875 }
c906108c 8876
ee841dd8 8877 delete inf_status;
7a292a7a 8878}
c906108c
SS
8879
8880void
16c381f0 8881discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8882{
8358c15c
JK
8883 if (inf_status->thread_control.step_resume_breakpoint)
8884 inf_status->thread_control.step_resume_breakpoint->disposition
8885 = disp_del_at_next_stop;
8886
5b79abe7
TT
8887 if (inf_status->thread_control.exception_resume_breakpoint)
8888 inf_status->thread_control.exception_resume_breakpoint->disposition
8889 = disp_del_at_next_stop;
8890
1777feb0 8891 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8892 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8893
ee841dd8 8894 delete inf_status;
7a292a7a 8895}
b89667eb 8896\f
7f89fd65 8897/* See infrun.h. */
0c557179
SDJ
8898
8899void
8900clear_exit_convenience_vars (void)
8901{
8902 clear_internalvar (lookup_internalvar ("_exitsignal"));
8903 clear_internalvar (lookup_internalvar ("_exitcode"));
8904}
c5aa993b 8905\f
488f131b 8906
b2175913
MS
8907/* User interface for reverse debugging:
8908 Set exec-direction / show exec-direction commands
8909 (returns error unless target implements to_set_exec_direction method). */
8910
170742de 8911enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8912static const char exec_forward[] = "forward";
8913static const char exec_reverse[] = "reverse";
8914static const char *exec_direction = exec_forward;
40478521 8915static const char *const exec_direction_names[] = {
b2175913
MS
8916 exec_forward,
8917 exec_reverse,
8918 NULL
8919};
8920
8921static void
eb4c3f4a 8922set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8923 struct cmd_list_element *cmd)
8924{
8925 if (target_can_execute_reverse)
8926 {
8927 if (!strcmp (exec_direction, exec_forward))
8928 execution_direction = EXEC_FORWARD;
8929 else if (!strcmp (exec_direction, exec_reverse))
8930 execution_direction = EXEC_REVERSE;
8931 }
8bbed405
MS
8932 else
8933 {
8934 exec_direction = exec_forward;
8935 error (_("Target does not support this operation."));
8936 }
b2175913
MS
8937}
8938
8939static void
8940show_exec_direction_func (struct ui_file *out, int from_tty,
8941 struct cmd_list_element *cmd, const char *value)
8942{
8943 switch (execution_direction) {
8944 case EXEC_FORWARD:
8945 fprintf_filtered (out, _("Forward.\n"));
8946 break;
8947 case EXEC_REVERSE:
8948 fprintf_filtered (out, _("Reverse.\n"));
8949 break;
b2175913 8950 default:
d8b34453
PA
8951 internal_error (__FILE__, __LINE__,
8952 _("bogus execution_direction value: %d"),
8953 (int) execution_direction);
b2175913
MS
8954 }
8955}
8956
d4db2f36
PA
8957static void
8958show_schedule_multiple (struct ui_file *file, int from_tty,
8959 struct cmd_list_element *c, const char *value)
8960{
3e43a32a
MS
8961 fprintf_filtered (file, _("Resuming the execution of threads "
8962 "of all processes is %s.\n"), value);
d4db2f36 8963}
ad52ddc6 8964
22d2b532
SDJ
8965/* Implementation of `siginfo' variable. */
8966
8967static const struct internalvar_funcs siginfo_funcs =
8968{
8969 siginfo_make_value,
8970 NULL,
8971 NULL
8972};
8973
372316f1
PA
8974/* Callback for infrun's target events source. This is marked when a
8975 thread has a pending status to process. */
8976
8977static void
8978infrun_async_inferior_event_handler (gdb_client_data data)
8979{
372316f1
PA
8980 inferior_event_handler (INF_REG_EVENT, NULL);
8981}
8982
c906108c 8983void
96baa820 8984_initialize_infrun (void)
c906108c 8985{
52f0bd74
AC
8986 int i;
8987 int numsigs;
de0bea00 8988 struct cmd_list_element *c;
c906108c 8989
372316f1
PA
8990 /* Register extra event sources in the event loop. */
8991 infrun_async_inferior_event_token
8992 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8993
11db9430 8994 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8995What debugger does when program gets various signals.\n\
8996Specify a signal as argument to print info on that signal only."));
c906108c
SS
8997 add_info_alias ("handle", "signals", 0);
8998
de0bea00 8999 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9000Specify how to handle signals.\n\
486c7739 9001Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9002Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9003If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9004will be displayed instead.\n\
9005\n\
c906108c
SS
9006Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9007from 1-15 are allowed for compatibility with old versions of GDB.\n\
9008Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9009The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9010used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9011\n\
1bedd215 9012Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9013\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9014Stop means reenter debugger if this signal happens (implies print).\n\
9015Print means print a message if this signal happens.\n\
9016Pass means let program see this signal; otherwise program doesn't know.\n\
9017Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9018Pass and Stop may be combined.\n\
9019\n\
9020Multiple signals may be specified. Signal numbers and signal names\n\
9021may be interspersed with actions, with the actions being performed for\n\
9022all signals cumulatively specified."));
de0bea00 9023 set_cmd_completer (c, handle_completer);
486c7739 9024
c906108c 9025 if (!dbx_commands)
1a966eab
AC
9026 stop_command = add_cmd ("stop", class_obscure,
9027 not_just_help_class_command, _("\
9028There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9029This allows you to set a list of commands to be run each time execution\n\
1a966eab 9030of the program stops."), &cmdlist);
c906108c 9031
ccce17b0 9032 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9033Set inferior debugging."), _("\
9034Show inferior debugging."), _("\
9035When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9036 NULL,
9037 show_debug_infrun,
9038 &setdebuglist, &showdebuglist);
527159b7 9039
3e43a32a
MS
9040 add_setshow_boolean_cmd ("displaced", class_maintenance,
9041 &debug_displaced, _("\
237fc4c9
PA
9042Set displaced stepping debugging."), _("\
9043Show displaced stepping debugging."), _("\
9044When non-zero, displaced stepping specific debugging is enabled."),
9045 NULL,
9046 show_debug_displaced,
9047 &setdebuglist, &showdebuglist);
9048
ad52ddc6
PA
9049 add_setshow_boolean_cmd ("non-stop", no_class,
9050 &non_stop_1, _("\
9051Set whether gdb controls the inferior in non-stop mode."), _("\
9052Show whether gdb controls the inferior in non-stop mode."), _("\
9053When debugging a multi-threaded program and this setting is\n\
9054off (the default, also called all-stop mode), when one thread stops\n\
9055(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9056all other threads in the program while you interact with the thread of\n\
9057interest. When you continue or step a thread, you can allow the other\n\
9058threads to run, or have them remain stopped, but while you inspect any\n\
9059thread's state, all threads stop.\n\
9060\n\
9061In non-stop mode, when one thread stops, other threads can continue\n\
9062to run freely. You'll be able to step each thread independently,\n\
9063leave it stopped or free to run as needed."),
9064 set_non_stop,
9065 show_non_stop,
9066 &setlist,
9067 &showlist);
9068
a493e3e2 9069 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9070 signal_stop = XNEWVEC (unsigned char, numsigs);
9071 signal_print = XNEWVEC (unsigned char, numsigs);
9072 signal_program = XNEWVEC (unsigned char, numsigs);
9073 signal_catch = XNEWVEC (unsigned char, numsigs);
9074 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9075 for (i = 0; i < numsigs; i++)
9076 {
9077 signal_stop[i] = 1;
9078 signal_print[i] = 1;
9079 signal_program[i] = 1;
ab04a2af 9080 signal_catch[i] = 0;
c906108c
SS
9081 }
9082
4d9d9d04
PA
9083 /* Signals caused by debugger's own actions should not be given to
9084 the program afterwards.
9085
9086 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9087 explicitly specifies that it should be delivered to the target
9088 program. Typically, that would occur when a user is debugging a
9089 target monitor on a simulator: the target monitor sets a
9090 breakpoint; the simulator encounters this breakpoint and halts
9091 the simulation handing control to GDB; GDB, noting that the stop
9092 address doesn't map to any known breakpoint, returns control back
9093 to the simulator; the simulator then delivers the hardware
9094 equivalent of a GDB_SIGNAL_TRAP to the program being
9095 debugged. */
a493e3e2
PA
9096 signal_program[GDB_SIGNAL_TRAP] = 0;
9097 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9098
9099 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9100 signal_stop[GDB_SIGNAL_ALRM] = 0;
9101 signal_print[GDB_SIGNAL_ALRM] = 0;
9102 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9103 signal_print[GDB_SIGNAL_VTALRM] = 0;
9104 signal_stop[GDB_SIGNAL_PROF] = 0;
9105 signal_print[GDB_SIGNAL_PROF] = 0;
9106 signal_stop[GDB_SIGNAL_CHLD] = 0;
9107 signal_print[GDB_SIGNAL_CHLD] = 0;
9108 signal_stop[GDB_SIGNAL_IO] = 0;
9109 signal_print[GDB_SIGNAL_IO] = 0;
9110 signal_stop[GDB_SIGNAL_POLL] = 0;
9111 signal_print[GDB_SIGNAL_POLL] = 0;
9112 signal_stop[GDB_SIGNAL_URG] = 0;
9113 signal_print[GDB_SIGNAL_URG] = 0;
9114 signal_stop[GDB_SIGNAL_WINCH] = 0;
9115 signal_print[GDB_SIGNAL_WINCH] = 0;
9116 signal_stop[GDB_SIGNAL_PRIO] = 0;
9117 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9118
cd0fc7c3
SS
9119 /* These signals are used internally by user-level thread
9120 implementations. (See signal(5) on Solaris.) Like the above
9121 signals, a healthy program receives and handles them as part of
9122 its normal operation. */
a493e3e2
PA
9123 signal_stop[GDB_SIGNAL_LWP] = 0;
9124 signal_print[GDB_SIGNAL_LWP] = 0;
9125 signal_stop[GDB_SIGNAL_WAITING] = 0;
9126 signal_print[GDB_SIGNAL_WAITING] = 0;
9127 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9128 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9129 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9130 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9131
2455069d
UW
9132 /* Update cached state. */
9133 signal_cache_update (-1);
9134
85c07804
AC
9135 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9136 &stop_on_solib_events, _("\
9137Set stopping for shared library events."), _("\
9138Show stopping for shared library events."), _("\
c906108c
SS
9139If nonzero, gdb will give control to the user when the dynamic linker\n\
9140notifies gdb of shared library events. The most common event of interest\n\
85c07804 9141to the user would be loading/unloading of a new library."),
f9e14852 9142 set_stop_on_solib_events,
920d2a44 9143 show_stop_on_solib_events,
85c07804 9144 &setlist, &showlist);
c906108c 9145
7ab04401
AC
9146 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9147 follow_fork_mode_kind_names,
9148 &follow_fork_mode_string, _("\
9149Set debugger response to a program call of fork or vfork."), _("\
9150Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9151A fork or vfork creates a new process. follow-fork-mode can be:\n\
9152 parent - the original process is debugged after a fork\n\
9153 child - the new process is debugged after a fork\n\
ea1dd7bc 9154The unfollowed process will continue to run.\n\
7ab04401
AC
9155By default, the debugger will follow the parent process."),
9156 NULL,
920d2a44 9157 show_follow_fork_mode_string,
7ab04401
AC
9158 &setlist, &showlist);
9159
6c95b8df
PA
9160 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9161 follow_exec_mode_names,
9162 &follow_exec_mode_string, _("\
9163Set debugger response to a program call of exec."), _("\
9164Show debugger response to a program call of exec."), _("\
9165An exec call replaces the program image of a process.\n\
9166\n\
9167follow-exec-mode can be:\n\
9168\n\
cce7e648 9169 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9170to this new inferior. The program the process was running before\n\
9171the exec call can be restarted afterwards by restarting the original\n\
9172inferior.\n\
9173\n\
9174 same - the debugger keeps the process bound to the same inferior.\n\
9175The new executable image replaces the previous executable loaded in\n\
9176the inferior. Restarting the inferior after the exec call restarts\n\
9177the executable the process was running after the exec call.\n\
9178\n\
9179By default, the debugger will use the same inferior."),
9180 NULL,
9181 show_follow_exec_mode_string,
9182 &setlist, &showlist);
9183
7ab04401
AC
9184 add_setshow_enum_cmd ("scheduler-locking", class_run,
9185 scheduler_enums, &scheduler_mode, _("\
9186Set mode for locking scheduler during execution."), _("\
9187Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9188off == no locking (threads may preempt at any time)\n\
9189on == full locking (no thread except the current thread may run)\n\
9190 This applies to both normal execution and replay mode.\n\
9191step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9192 In this mode, other threads may run during other commands.\n\
9193 This applies to both normal execution and replay mode.\n\
9194replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9195 set_schedlock_func, /* traps on target vector */
920d2a44 9196 show_scheduler_mode,
7ab04401 9197 &setlist, &showlist);
5fbbeb29 9198
d4db2f36
PA
9199 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9200Set mode for resuming threads of all processes."), _("\
9201Show mode for resuming threads of all processes."), _("\
9202When on, execution commands (such as 'continue' or 'next') resume all\n\
9203threads of all processes. When off (which is the default), execution\n\
9204commands only resume the threads of the current process. The set of\n\
9205threads that are resumed is further refined by the scheduler-locking\n\
9206mode (see help set scheduler-locking)."),
9207 NULL,
9208 show_schedule_multiple,
9209 &setlist, &showlist);
9210
5bf193a2
AC
9211 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9212Set mode of the step operation."), _("\
9213Show mode of the step operation."), _("\
9214When set, doing a step over a function without debug line information\n\
9215will stop at the first instruction of that function. Otherwise, the\n\
9216function is skipped and the step command stops at a different source line."),
9217 NULL,
920d2a44 9218 show_step_stop_if_no_debug,
5bf193a2 9219 &setlist, &showlist);
ca6724c1 9220
72d0e2c5
YQ
9221 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9222 &can_use_displaced_stepping, _("\
237fc4c9
PA
9223Set debugger's willingness to use displaced stepping."), _("\
9224Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9225If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9226supported by the target architecture. If off, gdb will not use displaced\n\
9227stepping to step over breakpoints, even if such is supported by the target\n\
9228architecture. If auto (which is the default), gdb will use displaced stepping\n\
9229if the target architecture supports it and non-stop mode is active, but will not\n\
9230use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9231 NULL,
9232 show_can_use_displaced_stepping,
9233 &setlist, &showlist);
237fc4c9 9234
b2175913
MS
9235 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9236 &exec_direction, _("Set direction of execution.\n\
9237Options are 'forward' or 'reverse'."),
9238 _("Show direction of execution (forward/reverse)."),
9239 _("Tells gdb whether to execute forward or backward."),
9240 set_exec_direction_func, show_exec_direction_func,
9241 &setlist, &showlist);
9242
6c95b8df
PA
9243 /* Set/show detach-on-fork: user-settable mode. */
9244
9245 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9246Set whether gdb will detach the child of a fork."), _("\
9247Show whether gdb will detach the child of a fork."), _("\
9248Tells gdb whether to detach the child of a fork."),
9249 NULL, NULL, &setlist, &showlist);
9250
03583c20
UW
9251 /* Set/show disable address space randomization mode. */
9252
9253 add_setshow_boolean_cmd ("disable-randomization", class_support,
9254 &disable_randomization, _("\
9255Set disabling of debuggee's virtual address space randomization."), _("\
9256Show disabling of debuggee's virtual address space randomization."), _("\
9257When this mode is on (which is the default), randomization of the virtual\n\
9258address space is disabled. Standalone programs run with the randomization\n\
9259enabled by default on some platforms."),
9260 &set_disable_randomization,
9261 &show_disable_randomization,
9262 &setlist, &showlist);
9263
ca6724c1 9264 /* ptid initializations */
ca6724c1
KB
9265 inferior_ptid = null_ptid;
9266 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9267
76727919
TT
9268 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9269 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9270 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9271 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9272
9273 /* Explicitly create without lookup, since that tries to create a
9274 value with a void typed value, and when we get here, gdbarch
9275 isn't initialized yet. At this point, we're quite sure there
9276 isn't another convenience variable of the same name. */
22d2b532 9277 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9278
9279 add_setshow_boolean_cmd ("observer", no_class,
9280 &observer_mode_1, _("\
9281Set whether gdb controls the inferior in observer mode."), _("\
9282Show whether gdb controls the inferior in observer mode."), _("\
9283In observer mode, GDB can get data from the inferior, but not\n\
9284affect its execution. Registers and memory may not be changed,\n\
9285breakpoints may not be set, and the program cannot be interrupted\n\
9286or signalled."),
9287 set_observer_mode,
9288 show_observer_mode,
9289 &setlist,
9290 &showlist);
c906108c 9291}
This page took 3.473694 seconds and 4 git commands to generate.