Fix handle_no_resumed w/ multiple targets
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
2f4fcf00 31#include "target-connection.h"
c906108c
SS
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
400b5eca 59#include "gdbsupport/event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
06cc9596 67#include "gdbsupport/gdb_select.h"
5b6d1e4f 68#include <unordered_map>
93b54c8e 69#include "async-event.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
d83ad864
DB
77static void follow_inferior_reset_breakpoints (void);
78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
2c03e5be 81static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
82
83static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
2484c66b
UW
85static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
8550d3b3
YQ
87static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
aff4e175
AB
89static void resume (gdb_signal sig);
90
5b6d1e4f
PA
91static void wait_for_inferior (inferior *inf);
92
372316f1
PA
93/* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95static struct async_event_handler *infrun_async_inferior_event_token;
96
97/* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99static int infrun_is_async = -1;
100
101/* See infrun.h. */
102
103void
104infrun_async (int enable)
105{
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120}
121
0b333c5e
PA
122/* See infrun.h. */
123
124void
125mark_infrun_async_event_handler (void)
126{
127 mark_async_event_handler (infrun_async_inferior_event_token);
128}
129
5fbbeb29
CF
130/* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
491144b5 133bool step_stop_if_no_debug = false;
920d2a44
AC
134static void
135show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139}
5fbbeb29 140
b9f437de
PA
141/* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
96baa820 144
39f77062 145static ptid_t previous_inferior_ptid;
7a292a7a 146
07107ca6
LM
147/* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
491144b5 152static bool detach_fork = true;
6c95b8df 153
491144b5 154bool debug_displaced = false;
237fc4c9
PA
155static void
156show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160}
161
ccce17b0 162unsigned int debug_infrun = 0;
920d2a44
AC
163static void
164show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168}
527159b7 169
03583c20
UW
170
171/* Support for disabling address space randomization. */
172
491144b5 173bool disable_randomization = true;
03583c20
UW
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
eb4c3f4a 191set_disable_randomization (const char *args, int from_tty,
03583c20
UW
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
d32dc48e
PA
200/* User interface for non-stop mode. */
201
491144b5
CB
202bool non_stop = false;
203static bool non_stop_1 = false;
d32dc48e
PA
204
205static void
eb4c3f4a 206set_non_stop (const char *args, int from_tty,
d32dc48e
PA
207 struct cmd_list_element *c)
208{
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
d914c394
SS
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
491144b5
CB
231bool observer_mode = false;
232static bool observer_mode_1 = false;
d914c394
SS
233
234static void
eb4c3f4a 235set_observer_mode (const char *args, int from_tty,
d914c394
SS
236 struct cmd_list_element *c)
237{
d914c394
SS
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
491144b5 253 may_insert_fast_tracepoints = true;
d914c394
SS
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
d914c394 261 pagination_enabled = 0;
491144b5 262 non_stop = non_stop_1 = true;
d914c394
SS
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
491144b5
CB
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
d914c394
SS
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
c2c6d25f 299
c906108c
SS
300/* Tables of how to react to signals; the user sets them. */
301
adc6a863
PA
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 305
ab04a2af
TT
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 310
2455069d
UW
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
adc6a863 314static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 315
c906108c
SS
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
9b224c5e
PA
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
adc6a863 338 target_program_signals (signal_program);
9b224c5e
PA
339}
340
1777feb0 341/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 342
edb3359d 343#define RESUME_ALL minus_one_ptid
c906108c
SS
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
c906108c
SS
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
628fe4e4 351int stop_on_solib_events;
f9e14852
GB
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
eb4c3f4a
TT
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
f9e14852
GB
359{
360 update_solib_breakpoints ();
361}
362
920d2a44
AC
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
c906108c 370
c906108c
SS
371/* Nonzero after stop if current stack frame should be printed. */
372
373static int stop_print_frame;
374
5b6d1e4f
PA
375/* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378static process_stratum_target *target_last_proc_target;
39f77062 379static ptid_t target_last_wait_ptid;
e02bc4cc
DS
380static struct target_waitstatus target_last_waitstatus;
381
4e1c45ea 382void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 383
53904c9e
AC
384static const char follow_fork_mode_child[] = "child";
385static const char follow_fork_mode_parent[] = "parent";
386
40478521 387static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
ef346e04 391};
c906108c 392
53904c9e 393static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
394static void
395show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
3e43a32a
MS
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
401 value);
402}
c906108c
SS
403\f
404
d83ad864
DB
405/* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
5ab2fbf1
SM
411static bool
412follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
413{
414 int has_vforked;
79639e11 415 ptid_t parent_ptid, child_ptid;
d83ad864
DB
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
79639e11
PA
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 424 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
d83ad864
DB
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
d83ad864
DB
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
00431a78 454 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
455 }
456
f67c0c91 457 if (print_inferior_events)
d83ad864 458 {
8dd06f7a 459 /* Ensure that we have a process ptid. */
e99b03dc 460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 461
223ffa71 462 target_terminal::ours_for_output ();
d83ad864 463 fprintf_filtered (gdb_stdlog,
f67c0c91 464 _("[Detaching after %s from child %s]\n"),
6f259a23 465 has_vforked ? "vfork" : "fork",
a068643d 466 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
d83ad864
DB
472
473 /* Add process to GDB's tables. */
e99b03dc 474 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
5ed8105e 482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 483
2a00d7ce 484 set_current_inferior (child_inf);
5b6d1e4f 485 switch_to_no_thread ();
d83ad864 486 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f 487 push_target (parent_inf->process_target ());
18493a00
PA
488 thread_info *child_thr
489 = add_thread_silent (child_inf->process_target (), child_ptid);
d83ad864
DB
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
5b6d1e4f
PA
498 exec_on_vfork ();
499
d83ad864
DB
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
18493a00
PA
507
508 /* Now that the inferiors and program spaces are all
509 wired up, we can switch to the child thread (which
510 switches inferior and program space too). */
511 switch_to_thread (child_thr);
d83ad864
DB
512 }
513 else
514 {
515 child_inf->aspace = new_address_space ();
564b1e3f 516 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
517 child_inf->removable = 1;
518 set_current_program_space (child_inf->pspace);
519 clone_program_space (child_inf->pspace, parent_inf->pspace);
520
18493a00
PA
521 /* solib_create_inferior_hook relies on the current
522 thread. */
523 switch_to_thread (child_thr);
524
d83ad864
DB
525 /* Let the shared library layer (e.g., solib-svr4) learn
526 about this new process, relocate the cloned exec, pull
527 in shared libraries, and install the solib event
528 breakpoint. If a "cloned-VM" event was propagated
529 better throughout the core, this wouldn't be
530 required. */
531 solib_create_inferior_hook (0);
532 }
d83ad864
DB
533 }
534
535 if (has_vforked)
536 {
537 struct inferior *parent_inf;
538
539 parent_inf = current_inferior ();
540
541 /* If we detached from the child, then we have to be careful
542 to not insert breakpoints in the parent until the child
543 is done with the shared memory region. However, if we're
544 staying attached to the child, then we can and should
545 insert breakpoints, so that we can debug it. A
546 subsequent child exec or exit is enough to know when does
547 the child stops using the parent's address space. */
548 parent_inf->waiting_for_vfork_done = detach_fork;
549 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
550 }
551 }
552 else
553 {
554 /* Follow the child. */
555 struct inferior *parent_inf, *child_inf;
556 struct program_space *parent_pspace;
557
f67c0c91 558 if (print_inferior_events)
d83ad864 559 {
f67c0c91
SDJ
560 std::string parent_pid = target_pid_to_str (parent_ptid);
561 std::string child_pid = target_pid_to_str (child_ptid);
562
223ffa71 563 target_terminal::ours_for_output ();
6f259a23 564 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
565 _("[Attaching after %s %s to child %s]\n"),
566 parent_pid.c_str (),
6f259a23 567 has_vforked ? "vfork" : "fork",
f67c0c91 568 child_pid.c_str ());
d83ad864
DB
569 }
570
571 /* Add the new inferior first, so that the target_detach below
572 doesn't unpush the target. */
573
e99b03dc 574 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
575
576 parent_inf = current_inferior ();
577 child_inf->attach_flag = parent_inf->attach_flag;
578 copy_terminal_info (child_inf, parent_inf);
579 child_inf->gdbarch = parent_inf->gdbarch;
580 copy_inferior_target_desc_info (child_inf, parent_inf);
581
582 parent_pspace = parent_inf->pspace;
583
5b6d1e4f 584 process_stratum_target *target = parent_inf->process_target ();
d83ad864 585
5b6d1e4f
PA
586 {
587 /* Hold a strong reference to the target while (maybe)
588 detaching the parent. Otherwise detaching could close the
589 target. */
590 auto target_ref = target_ops_ref::new_reference (target);
591
592 /* If we're vforking, we want to hold on to the parent until
593 the child exits or execs. At child exec or exit time we
594 can remove the old breakpoints from the parent and detach
595 or resume debugging it. Otherwise, detach the parent now;
596 we'll want to reuse it's program/address spaces, but we
597 can't set them to the child before removing breakpoints
598 from the parent, otherwise, the breakpoints module could
599 decide to remove breakpoints from the wrong process (since
600 they'd be assigned to the same address space). */
601
602 if (has_vforked)
603 {
604 gdb_assert (child_inf->vfork_parent == NULL);
605 gdb_assert (parent_inf->vfork_child == NULL);
606 child_inf->vfork_parent = parent_inf;
607 child_inf->pending_detach = 0;
608 parent_inf->vfork_child = child_inf;
609 parent_inf->pending_detach = detach_fork;
610 parent_inf->waiting_for_vfork_done = 0;
611 }
612 else if (detach_fork)
613 {
614 if (print_inferior_events)
615 {
616 /* Ensure that we have a process ptid. */
617 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
618
619 target_terminal::ours_for_output ();
620 fprintf_filtered (gdb_stdlog,
621 _("[Detaching after fork from "
622 "parent %s]\n"),
623 target_pid_to_str (process_ptid).c_str ());
624 }
8dd06f7a 625
5b6d1e4f
PA
626 target_detach (parent_inf, 0);
627 parent_inf = NULL;
628 }
6f259a23 629
5b6d1e4f 630 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 631
5b6d1e4f
PA
632 /* Add the child thread to the appropriate lists, and switch
633 to this new thread, before cloning the program space, and
634 informing the solib layer about this new process. */
d83ad864 635
5b6d1e4f
PA
636 set_current_inferior (child_inf);
637 push_target (target);
638 }
d83ad864 639
18493a00 640 thread_info *child_thr = add_thread_silent (target, child_ptid);
d83ad864
DB
641
642 /* If this is a vfork child, then the address-space is shared
643 with the parent. If we detached from the parent, then we can
644 reuse the parent's program/address spaces. */
645 if (has_vforked || detach_fork)
646 {
647 child_inf->pspace = parent_pspace;
648 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
649
650 exec_on_vfork ();
d83ad864
DB
651 }
652 else
653 {
654 child_inf->aspace = new_address_space ();
564b1e3f 655 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
656 child_inf->removable = 1;
657 child_inf->symfile_flags = SYMFILE_NO_READ;
658 set_current_program_space (child_inf->pspace);
659 clone_program_space (child_inf->pspace, parent_pspace);
660
661 /* Let the shared library layer (e.g., solib-svr4) learn
662 about this new process, relocate the cloned exec, pull in
663 shared libraries, and install the solib event breakpoint.
664 If a "cloned-VM" event was propagated better throughout
665 the core, this wouldn't be required. */
666 solib_create_inferior_hook (0);
667 }
18493a00
PA
668
669 switch_to_thread (child_thr);
d83ad864
DB
670 }
671
672 return target_follow_fork (follow_child, detach_fork);
673}
674
e58b0e63
PA
675/* Tell the target to follow the fork we're stopped at. Returns true
676 if the inferior should be resumed; false, if the target for some
677 reason decided it's best not to resume. */
678
5ab2fbf1
SM
679static bool
680follow_fork ()
c906108c 681{
5ab2fbf1
SM
682 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
683 bool should_resume = true;
e58b0e63
PA
684 struct thread_info *tp;
685
686 /* Copy user stepping state to the new inferior thread. FIXME: the
687 followed fork child thread should have a copy of most of the
4e3990f4
DE
688 parent thread structure's run control related fields, not just these.
689 Initialized to avoid "may be used uninitialized" warnings from gcc. */
690 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 691 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
692 CORE_ADDR step_range_start = 0;
693 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
694 int current_line = 0;
695 symtab *current_symtab = NULL;
4e3990f4 696 struct frame_id step_frame_id = { 0 };
8980e177 697 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
698
699 if (!non_stop)
700 {
5b6d1e4f 701 process_stratum_target *wait_target;
e58b0e63
PA
702 ptid_t wait_ptid;
703 struct target_waitstatus wait_status;
704
705 /* Get the last target status returned by target_wait(). */
5b6d1e4f 706 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
707
708 /* If not stopped at a fork event, then there's nothing else to
709 do. */
710 if (wait_status.kind != TARGET_WAITKIND_FORKED
711 && wait_status.kind != TARGET_WAITKIND_VFORKED)
712 return 1;
713
714 /* Check if we switched over from WAIT_PTID, since the event was
715 reported. */
00431a78 716 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
717 && (current_inferior ()->process_target () != wait_target
718 || inferior_ptid != wait_ptid))
e58b0e63
PA
719 {
720 /* We did. Switch back to WAIT_PTID thread, to tell the
721 target to follow it (in either direction). We'll
722 afterwards refuse to resume, and inform the user what
723 happened. */
5b6d1e4f 724 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 725 switch_to_thread (wait_thread);
5ab2fbf1 726 should_resume = false;
e58b0e63
PA
727 }
728 }
729
730 tp = inferior_thread ();
731
732 /* If there were any forks/vforks that were caught and are now to be
733 followed, then do so now. */
734 switch (tp->pending_follow.kind)
735 {
736 case TARGET_WAITKIND_FORKED:
737 case TARGET_WAITKIND_VFORKED:
738 {
739 ptid_t parent, child;
740
741 /* If the user did a next/step, etc, over a fork call,
742 preserve the stepping state in the fork child. */
743 if (follow_child && should_resume)
744 {
8358c15c
JK
745 step_resume_breakpoint = clone_momentary_breakpoint
746 (tp->control.step_resume_breakpoint);
16c381f0
JK
747 step_range_start = tp->control.step_range_start;
748 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
749 current_line = tp->current_line;
750 current_symtab = tp->current_symtab;
16c381f0 751 step_frame_id = tp->control.step_frame_id;
186c406b
TT
752 exception_resume_breakpoint
753 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 754 thread_fsm = tp->thread_fsm;
e58b0e63
PA
755
756 /* For now, delete the parent's sr breakpoint, otherwise,
757 parent/child sr breakpoints are considered duplicates,
758 and the child version will not be installed. Remove
759 this when the breakpoints module becomes aware of
760 inferiors and address spaces. */
761 delete_step_resume_breakpoint (tp);
16c381f0
JK
762 tp->control.step_range_start = 0;
763 tp->control.step_range_end = 0;
764 tp->control.step_frame_id = null_frame_id;
186c406b 765 delete_exception_resume_breakpoint (tp);
8980e177 766 tp->thread_fsm = NULL;
e58b0e63
PA
767 }
768
769 parent = inferior_ptid;
770 child = tp->pending_follow.value.related_pid;
771
5b6d1e4f 772 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
773 /* Set up inferior(s) as specified by the caller, and tell the
774 target to do whatever is necessary to follow either parent
775 or child. */
776 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
777 {
778 /* Target refused to follow, or there's some other reason
779 we shouldn't resume. */
780 should_resume = 0;
781 }
782 else
783 {
784 /* This pending follow fork event is now handled, one way
785 or another. The previous selected thread may be gone
786 from the lists by now, but if it is still around, need
787 to clear the pending follow request. */
5b6d1e4f 788 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
789 if (tp)
790 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
791
792 /* This makes sure we don't try to apply the "Switched
793 over from WAIT_PID" logic above. */
794 nullify_last_target_wait_ptid ();
795
1777feb0 796 /* If we followed the child, switch to it... */
e58b0e63
PA
797 if (follow_child)
798 {
5b6d1e4f 799 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 800 switch_to_thread (child_thr);
e58b0e63
PA
801
802 /* ... and preserve the stepping state, in case the
803 user was stepping over the fork call. */
804 if (should_resume)
805 {
806 tp = inferior_thread ();
8358c15c
JK
807 tp->control.step_resume_breakpoint
808 = step_resume_breakpoint;
16c381f0
JK
809 tp->control.step_range_start = step_range_start;
810 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
811 tp->current_line = current_line;
812 tp->current_symtab = current_symtab;
16c381f0 813 tp->control.step_frame_id = step_frame_id;
186c406b
TT
814 tp->control.exception_resume_breakpoint
815 = exception_resume_breakpoint;
8980e177 816 tp->thread_fsm = thread_fsm;
e58b0e63
PA
817 }
818 else
819 {
820 /* If we get here, it was because we're trying to
821 resume from a fork catchpoint, but, the user
822 has switched threads away from the thread that
823 forked. In that case, the resume command
824 issued is most likely not applicable to the
825 child, so just warn, and refuse to resume. */
3e43a32a 826 warning (_("Not resuming: switched threads "
fd7dcb94 827 "before following fork child."));
e58b0e63
PA
828 }
829
830 /* Reset breakpoints in the child as appropriate. */
831 follow_inferior_reset_breakpoints ();
832 }
e58b0e63
PA
833 }
834 }
835 break;
836 case TARGET_WAITKIND_SPURIOUS:
837 /* Nothing to follow. */
838 break;
839 default:
840 internal_error (__FILE__, __LINE__,
841 "Unexpected pending_follow.kind %d\n",
842 tp->pending_follow.kind);
843 break;
844 }
c906108c 845
e58b0e63 846 return should_resume;
c906108c
SS
847}
848
d83ad864 849static void
6604731b 850follow_inferior_reset_breakpoints (void)
c906108c 851{
4e1c45ea
PA
852 struct thread_info *tp = inferior_thread ();
853
6604731b
DJ
854 /* Was there a step_resume breakpoint? (There was if the user
855 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
856 thread number. Cloned step_resume breakpoints are disabled on
857 creation, so enable it here now that it is associated with the
858 correct thread.
6604731b
DJ
859
860 step_resumes are a form of bp that are made to be per-thread.
861 Since we created the step_resume bp when the parent process
862 was being debugged, and now are switching to the child process,
863 from the breakpoint package's viewpoint, that's a switch of
864 "threads". We must update the bp's notion of which thread
865 it is for, or it'll be ignored when it triggers. */
866
8358c15c 867 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
868 {
869 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
870 tp->control.step_resume_breakpoint->loc->enabled = 1;
871 }
6604731b 872
a1aa2221 873 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 874 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
875 {
876 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
877 tp->control.exception_resume_breakpoint->loc->enabled = 1;
878 }
186c406b 879
6604731b
DJ
880 /* Reinsert all breakpoints in the child. The user may have set
881 breakpoints after catching the fork, in which case those
882 were never set in the child, but only in the parent. This makes
883 sure the inserted breakpoints match the breakpoint list. */
884
885 breakpoint_re_set ();
886 insert_breakpoints ();
c906108c 887}
c906108c 888
6c95b8df
PA
889/* The child has exited or execed: resume threads of the parent the
890 user wanted to be executing. */
891
892static int
893proceed_after_vfork_done (struct thread_info *thread,
894 void *arg)
895{
896 int pid = * (int *) arg;
897
00431a78
PA
898 if (thread->ptid.pid () == pid
899 && thread->state == THREAD_RUNNING
900 && !thread->executing
6c95b8df 901 && !thread->stop_requested
a493e3e2 902 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
903 {
904 if (debug_infrun)
905 fprintf_unfiltered (gdb_stdlog,
906 "infrun: resuming vfork parent thread %s\n",
a068643d 907 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 908
00431a78 909 switch_to_thread (thread);
70509625 910 clear_proceed_status (0);
64ce06e4 911 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
912 }
913
914 return 0;
915}
916
917/* Called whenever we notice an exec or exit event, to handle
918 detaching or resuming a vfork parent. */
919
920static void
921handle_vfork_child_exec_or_exit (int exec)
922{
923 struct inferior *inf = current_inferior ();
924
925 if (inf->vfork_parent)
926 {
927 int resume_parent = -1;
928
929 /* This exec or exit marks the end of the shared memory region
b73715df
TV
930 between the parent and the child. Break the bonds. */
931 inferior *vfork_parent = inf->vfork_parent;
932 inf->vfork_parent->vfork_child = NULL;
933 inf->vfork_parent = NULL;
6c95b8df 934
b73715df
TV
935 /* If the user wanted to detach from the parent, now is the
936 time. */
937 if (vfork_parent->pending_detach)
6c95b8df 938 {
6c95b8df
PA
939 struct program_space *pspace;
940 struct address_space *aspace;
941
1777feb0 942 /* follow-fork child, detach-on-fork on. */
6c95b8df 943
b73715df 944 vfork_parent->pending_detach = 0;
68c9da30 945
18493a00 946 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
947
948 /* We're letting loose of the parent. */
18493a00 949 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 950 switch_to_thread (tp);
6c95b8df
PA
951
952 /* We're about to detach from the parent, which implicitly
953 removes breakpoints from its address space. There's a
954 catch here: we want to reuse the spaces for the child,
955 but, parent/child are still sharing the pspace at this
956 point, although the exec in reality makes the kernel give
957 the child a fresh set of new pages. The problem here is
958 that the breakpoints module being unaware of this, would
959 likely chose the child process to write to the parent
960 address space. Swapping the child temporarily away from
961 the spaces has the desired effect. Yes, this is "sort
962 of" a hack. */
963
964 pspace = inf->pspace;
965 aspace = inf->aspace;
966 inf->aspace = NULL;
967 inf->pspace = NULL;
968
f67c0c91 969 if (print_inferior_events)
6c95b8df 970 {
a068643d 971 std::string pidstr
b73715df 972 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 973
223ffa71 974 target_terminal::ours_for_output ();
6c95b8df
PA
975
976 if (exec)
6f259a23
DB
977 {
978 fprintf_filtered (gdb_stdlog,
f67c0c91 979 _("[Detaching vfork parent %s "
a068643d 980 "after child exec]\n"), pidstr.c_str ());
6f259a23 981 }
6c95b8df 982 else
6f259a23
DB
983 {
984 fprintf_filtered (gdb_stdlog,
f67c0c91 985 _("[Detaching vfork parent %s "
a068643d 986 "after child exit]\n"), pidstr.c_str ());
6f259a23 987 }
6c95b8df
PA
988 }
989
b73715df 990 target_detach (vfork_parent, 0);
6c95b8df
PA
991
992 /* Put it back. */
993 inf->pspace = pspace;
994 inf->aspace = aspace;
6c95b8df
PA
995 }
996 else if (exec)
997 {
998 /* We're staying attached to the parent, so, really give the
999 child a new address space. */
564b1e3f 1000 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1001 inf->aspace = inf->pspace->aspace;
1002 inf->removable = 1;
1003 set_current_program_space (inf->pspace);
1004
b73715df 1005 resume_parent = vfork_parent->pid;
6c95b8df
PA
1006 }
1007 else
1008 {
6c95b8df
PA
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
18493a00 1018 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
18493a00
PA
1021 scoped_restore_current_thread restore_thread;
1022 switch_to_no_thread ();
6c95b8df 1023
53af73bf
PA
1024 inf->pspace = new program_space (maybe_new_address_space ());
1025 inf->aspace = inf->pspace->aspace;
1026 set_current_program_space (inf->pspace);
6c95b8df 1027 inf->removable = 1;
7dcd53a0 1028 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1029 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1030
b73715df 1031 resume_parent = vfork_parent->pid;
6c95b8df
PA
1032 }
1033
6c95b8df
PA
1034 gdb_assert (current_program_space == inf->pspace);
1035
1036 if (non_stop && resume_parent != -1)
1037 {
1038 /* If the user wanted the parent to be running, let it go
1039 free now. */
5ed8105e 1040 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1041
1042 if (debug_infrun)
3e43a32a
MS
1043 fprintf_unfiltered (gdb_stdlog,
1044 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1045 resume_parent);
1046
1047 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1048 }
1049 }
1050}
1051
eb6c553b 1052/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1053
1054static const char follow_exec_mode_new[] = "new";
1055static const char follow_exec_mode_same[] = "same";
40478521 1056static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1057{
1058 follow_exec_mode_new,
1059 follow_exec_mode_same,
1060 NULL,
1061};
1062
1063static const char *follow_exec_mode_string = follow_exec_mode_same;
1064static void
1065show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1066 struct cmd_list_element *c, const char *value)
1067{
1068 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1069}
1070
ecf45d2c 1071/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1072
c906108c 1073static void
4ca51187 1074follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1075{
6c95b8df 1076 struct inferior *inf = current_inferior ();
e99b03dc 1077 int pid = ptid.pid ();
94585166 1078 ptid_t process_ptid;
7a292a7a 1079
65d2b333
PW
1080 /* Switch terminal for any messages produced e.g. by
1081 breakpoint_re_set. */
1082 target_terminal::ours_for_output ();
1083
c906108c
SS
1084 /* This is an exec event that we actually wish to pay attention to.
1085 Refresh our symbol table to the newly exec'd program, remove any
1086 momentary bp's, etc.
1087
1088 If there are breakpoints, they aren't really inserted now,
1089 since the exec() transformed our inferior into a fresh set
1090 of instructions.
1091
1092 We want to preserve symbolic breakpoints on the list, since
1093 we have hopes that they can be reset after the new a.out's
1094 symbol table is read.
1095
1096 However, any "raw" breakpoints must be removed from the list
1097 (e.g., the solib bp's), since their address is probably invalid
1098 now.
1099
1100 And, we DON'T want to call delete_breakpoints() here, since
1101 that may write the bp's "shadow contents" (the instruction
85102364 1102 value that was overwritten with a TRAP instruction). Since
1777feb0 1103 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1104
1105 mark_breakpoints_out ();
1106
95e50b27
PA
1107 /* The target reports the exec event to the main thread, even if
1108 some other thread does the exec, and even if the main thread was
1109 stopped or already gone. We may still have non-leader threads of
1110 the process on our list. E.g., on targets that don't have thread
1111 exit events (like remote); or on native Linux in non-stop mode if
1112 there were only two threads in the inferior and the non-leader
1113 one is the one that execs (and nothing forces an update of the
1114 thread list up to here). When debugging remotely, it's best to
1115 avoid extra traffic, when possible, so avoid syncing the thread
1116 list with the target, and instead go ahead and delete all threads
1117 of the process but one that reported the event. Note this must
1118 be done before calling update_breakpoints_after_exec, as
1119 otherwise clearing the threads' resources would reference stale
1120 thread breakpoints -- it may have been one of these threads that
1121 stepped across the exec. We could just clear their stepping
1122 states, but as long as we're iterating, might as well delete
1123 them. Deleting them now rather than at the next user-visible
1124 stop provides a nicer sequence of events for user and MI
1125 notifications. */
08036331 1126 for (thread_info *th : all_threads_safe ())
d7e15655 1127 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1128 delete_thread (th);
95e50b27
PA
1129
1130 /* We also need to clear any left over stale state for the
1131 leader/event thread. E.g., if there was any step-resume
1132 breakpoint or similar, it's gone now. We cannot truly
1133 step-to-next statement through an exec(). */
08036331 1134 thread_info *th = inferior_thread ();
8358c15c 1135 th->control.step_resume_breakpoint = NULL;
186c406b 1136 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1137 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1138 th->control.step_range_start = 0;
1139 th->control.step_range_end = 0;
c906108c 1140
95e50b27
PA
1141 /* The user may have had the main thread held stopped in the
1142 previous image (e.g., schedlock on, or non-stop). Release
1143 it now. */
a75724bc
PA
1144 th->stop_requested = 0;
1145
95e50b27
PA
1146 update_breakpoints_after_exec ();
1147
1777feb0 1148 /* What is this a.out's name? */
f2907e49 1149 process_ptid = ptid_t (pid);
6c95b8df 1150 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1151 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1152 exec_file_target);
c906108c
SS
1153
1154 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1155 inferior has essentially been killed & reborn. */
7a292a7a 1156
6ca15a4b 1157 breakpoint_init_inferior (inf_execd);
e85a822c 1158
797bc1cb
TT
1159 gdb::unique_xmalloc_ptr<char> exec_file_host
1160 = exec_file_find (exec_file_target, NULL);
ff862be4 1161
ecf45d2c
SL
1162 /* If we were unable to map the executable target pathname onto a host
1163 pathname, tell the user that. Otherwise GDB's subsequent behavior
1164 is confusing. Maybe it would even be better to stop at this point
1165 so that the user can specify a file manually before continuing. */
1166 if (exec_file_host == NULL)
1167 warning (_("Could not load symbols for executable %s.\n"
1168 "Do you need \"set sysroot\"?"),
1169 exec_file_target);
c906108c 1170
cce9b6bf
PA
1171 /* Reset the shared library package. This ensures that we get a
1172 shlib event when the child reaches "_start", at which point the
1173 dld will have had a chance to initialize the child. */
1174 /* Also, loading a symbol file below may trigger symbol lookups, and
1175 we don't want those to be satisfied by the libraries of the
1176 previous incarnation of this process. */
1177 no_shared_libraries (NULL, 0);
1178
6c95b8df
PA
1179 if (follow_exec_mode_string == follow_exec_mode_new)
1180 {
6c95b8df
PA
1181 /* The user wants to keep the old inferior and program spaces
1182 around. Create a new fresh one, and switch to it. */
1183
35ed81d4
SM
1184 /* Do exit processing for the original inferior before setting the new
1185 inferior's pid. Having two inferiors with the same pid would confuse
1186 find_inferior_p(t)id. Transfer the terminal state and info from the
1187 old to the new inferior. */
1188 inf = add_inferior_with_spaces ();
1189 swap_terminal_info (inf, current_inferior ());
057302ce 1190 exit_inferior_silent (current_inferior ());
17d8546e 1191
94585166 1192 inf->pid = pid;
ecf45d2c 1193 target_follow_exec (inf, exec_file_target);
6c95b8df 1194
5b6d1e4f
PA
1195 inferior *org_inferior = current_inferior ();
1196 switch_to_inferior_no_thread (inf);
1197 push_target (org_inferior->process_target ());
1198 thread_info *thr = add_thread (inf->process_target (), ptid);
1199 switch_to_thread (thr);
6c95b8df 1200 }
9107fc8d
PA
1201 else
1202 {
1203 /* The old description may no longer be fit for the new image.
1204 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1205 old description; we'll read a new one below. No need to do
1206 this on "follow-exec-mode new", as the old inferior stays
1207 around (its description is later cleared/refetched on
1208 restart). */
1209 target_clear_description ();
1210 }
6c95b8df
PA
1211
1212 gdb_assert (current_program_space == inf->pspace);
1213
ecf45d2c
SL
1214 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1215 because the proper displacement for a PIE (Position Independent
1216 Executable) main symbol file will only be computed by
1217 solib_create_inferior_hook below. breakpoint_re_set would fail
1218 to insert the breakpoints with the zero displacement. */
797bc1cb 1219 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1220
9107fc8d
PA
1221 /* If the target can specify a description, read it. Must do this
1222 after flipping to the new executable (because the target supplied
1223 description must be compatible with the executable's
1224 architecture, and the old executable may e.g., be 32-bit, while
1225 the new one 64-bit), and before anything involving memory or
1226 registers. */
1227 target_find_description ();
1228
268a4a75 1229 solib_create_inferior_hook (0);
c906108c 1230
4efc6507
DE
1231 jit_inferior_created_hook ();
1232
c1e56572
JK
1233 breakpoint_re_set ();
1234
c906108c
SS
1235 /* Reinsert all breakpoints. (Those which were symbolic have
1236 been reset to the proper address in the new a.out, thanks
1777feb0 1237 to symbol_file_command...). */
c906108c
SS
1238 insert_breakpoints ();
1239
1240 /* The next resume of this inferior should bring it to the shlib
1241 startup breakpoints. (If the user had also set bp's on
1242 "main" from the old (parent) process, then they'll auto-
1777feb0 1243 matically get reset there in the new process.). */
c906108c
SS
1244}
1245
c2829269
PA
1246/* The queue of threads that need to do a step-over operation to get
1247 past e.g., a breakpoint. What technique is used to step over the
1248 breakpoint/watchpoint does not matter -- all threads end up in the
1249 same queue, to maintain rough temporal order of execution, in order
1250 to avoid starvation, otherwise, we could e.g., find ourselves
1251 constantly stepping the same couple threads past their breakpoints
1252 over and over, if the single-step finish fast enough. */
1253struct thread_info *step_over_queue_head;
1254
6c4cfb24
PA
1255/* Bit flags indicating what the thread needs to step over. */
1256
8d297bbf 1257enum step_over_what_flag
6c4cfb24
PA
1258 {
1259 /* Step over a breakpoint. */
1260 STEP_OVER_BREAKPOINT = 1,
1261
1262 /* Step past a non-continuable watchpoint, in order to let the
1263 instruction execute so we can evaluate the watchpoint
1264 expression. */
1265 STEP_OVER_WATCHPOINT = 2
1266 };
8d297bbf 1267DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1268
963f9c80 1269/* Info about an instruction that is being stepped over. */
31e77af2
PA
1270
1271struct step_over_info
1272{
963f9c80
PA
1273 /* If we're stepping past a breakpoint, this is the address space
1274 and address of the instruction the breakpoint is set at. We'll
1275 skip inserting all breakpoints here. Valid iff ASPACE is
1276 non-NULL. */
8b86c959 1277 const address_space *aspace;
31e77af2 1278 CORE_ADDR address;
963f9c80
PA
1279
1280 /* The instruction being stepped over triggers a nonsteppable
1281 watchpoint. If true, we'll skip inserting watchpoints. */
1282 int nonsteppable_watchpoint_p;
21edc42f
YQ
1283
1284 /* The thread's global number. */
1285 int thread;
31e77af2
PA
1286};
1287
1288/* The step-over info of the location that is being stepped over.
1289
1290 Note that with async/breakpoint always-inserted mode, a user might
1291 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1292 being stepped over. As setting a new breakpoint inserts all
1293 breakpoints, we need to make sure the breakpoint being stepped over
1294 isn't inserted then. We do that by only clearing the step-over
1295 info when the step-over is actually finished (or aborted).
1296
1297 Presently GDB can only step over one breakpoint at any given time.
1298 Given threads that can't run code in the same address space as the
1299 breakpoint's can't really miss the breakpoint, GDB could be taught
1300 to step-over at most one breakpoint per address space (so this info
1301 could move to the address space object if/when GDB is extended).
1302 The set of breakpoints being stepped over will normally be much
1303 smaller than the set of all breakpoints, so a flag in the
1304 breakpoint location structure would be wasteful. A separate list
1305 also saves complexity and run-time, as otherwise we'd have to go
1306 through all breakpoint locations clearing their flag whenever we
1307 start a new sequence. Similar considerations weigh against storing
1308 this info in the thread object. Plus, not all step overs actually
1309 have breakpoint locations -- e.g., stepping past a single-step
1310 breakpoint, or stepping to complete a non-continuable
1311 watchpoint. */
1312static struct step_over_info step_over_info;
1313
1314/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1315 stepping over.
1316 N.B. We record the aspace and address now, instead of say just the thread,
1317 because when we need the info later the thread may be running. */
31e77af2
PA
1318
1319static void
8b86c959 1320set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1321 int nonsteppable_watchpoint_p,
1322 int thread)
31e77af2
PA
1323{
1324 step_over_info.aspace = aspace;
1325 step_over_info.address = address;
963f9c80 1326 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1327 step_over_info.thread = thread;
31e77af2
PA
1328}
1329
1330/* Called when we're not longer stepping over a breakpoint / an
1331 instruction, so all breakpoints are free to be (re)inserted. */
1332
1333static void
1334clear_step_over_info (void)
1335{
372316f1
PA
1336 if (debug_infrun)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "infrun: clear_step_over_info\n");
31e77af2
PA
1339 step_over_info.aspace = NULL;
1340 step_over_info.address = 0;
963f9c80 1341 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1342 step_over_info.thread = -1;
31e77af2
PA
1343}
1344
7f89fd65 1345/* See infrun.h. */
31e77af2
PA
1346
1347int
1348stepping_past_instruction_at (struct address_space *aspace,
1349 CORE_ADDR address)
1350{
1351 return (step_over_info.aspace != NULL
1352 && breakpoint_address_match (aspace, address,
1353 step_over_info.aspace,
1354 step_over_info.address));
1355}
1356
963f9c80
PA
1357/* See infrun.h. */
1358
21edc42f
YQ
1359int
1360thread_is_stepping_over_breakpoint (int thread)
1361{
1362 return (step_over_info.thread != -1
1363 && thread == step_over_info.thread);
1364}
1365
1366/* See infrun.h. */
1367
963f9c80
PA
1368int
1369stepping_past_nonsteppable_watchpoint (void)
1370{
1371 return step_over_info.nonsteppable_watchpoint_p;
1372}
1373
6cc83d2a
PA
1374/* Returns true if step-over info is valid. */
1375
1376static int
1377step_over_info_valid_p (void)
1378{
963f9c80
PA
1379 return (step_over_info.aspace != NULL
1380 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1381}
1382
c906108c 1383\f
237fc4c9
PA
1384/* Displaced stepping. */
1385
1386/* In non-stop debugging mode, we must take special care to manage
1387 breakpoints properly; in particular, the traditional strategy for
1388 stepping a thread past a breakpoint it has hit is unsuitable.
1389 'Displaced stepping' is a tactic for stepping one thread past a
1390 breakpoint it has hit while ensuring that other threads running
1391 concurrently will hit the breakpoint as they should.
1392
1393 The traditional way to step a thread T off a breakpoint in a
1394 multi-threaded program in all-stop mode is as follows:
1395
1396 a0) Initially, all threads are stopped, and breakpoints are not
1397 inserted.
1398 a1) We single-step T, leaving breakpoints uninserted.
1399 a2) We insert breakpoints, and resume all threads.
1400
1401 In non-stop debugging, however, this strategy is unsuitable: we
1402 don't want to have to stop all threads in the system in order to
1403 continue or step T past a breakpoint. Instead, we use displaced
1404 stepping:
1405
1406 n0) Initially, T is stopped, other threads are running, and
1407 breakpoints are inserted.
1408 n1) We copy the instruction "under" the breakpoint to a separate
1409 location, outside the main code stream, making any adjustments
1410 to the instruction, register, and memory state as directed by
1411 T's architecture.
1412 n2) We single-step T over the instruction at its new location.
1413 n3) We adjust the resulting register and memory state as directed
1414 by T's architecture. This includes resetting T's PC to point
1415 back into the main instruction stream.
1416 n4) We resume T.
1417
1418 This approach depends on the following gdbarch methods:
1419
1420 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1421 indicate where to copy the instruction, and how much space must
1422 be reserved there. We use these in step n1.
1423
1424 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1425 address, and makes any necessary adjustments to the instruction,
1426 register contents, and memory. We use this in step n1.
1427
1428 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1429 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1430 same effect the instruction would have had if we had executed it
1431 at its original address. We use this in step n3.
1432
237fc4c9
PA
1433 The gdbarch_displaced_step_copy_insn and
1434 gdbarch_displaced_step_fixup functions must be written so that
1435 copying an instruction with gdbarch_displaced_step_copy_insn,
1436 single-stepping across the copied instruction, and then applying
1437 gdbarch_displaced_insn_fixup should have the same effects on the
1438 thread's memory and registers as stepping the instruction in place
1439 would have. Exactly which responsibilities fall to the copy and
1440 which fall to the fixup is up to the author of those functions.
1441
1442 See the comments in gdbarch.sh for details.
1443
1444 Note that displaced stepping and software single-step cannot
1445 currently be used in combination, although with some care I think
1446 they could be made to. Software single-step works by placing
1447 breakpoints on all possible subsequent instructions; if the
1448 displaced instruction is a PC-relative jump, those breakpoints
1449 could fall in very strange places --- on pages that aren't
1450 executable, or at addresses that are not proper instruction
1451 boundaries. (We do generally let other threads run while we wait
1452 to hit the software single-step breakpoint, and they might
1453 encounter such a corrupted instruction.) One way to work around
1454 this would be to have gdbarch_displaced_step_copy_insn fully
1455 simulate the effect of PC-relative instructions (and return NULL)
1456 on architectures that use software single-stepping.
1457
1458 In non-stop mode, we can have independent and simultaneous step
1459 requests, so more than one thread may need to simultaneously step
1460 over a breakpoint. The current implementation assumes there is
1461 only one scratch space per process. In this case, we have to
1462 serialize access to the scratch space. If thread A wants to step
1463 over a breakpoint, but we are currently waiting for some other
1464 thread to complete a displaced step, we leave thread A stopped and
1465 place it in the displaced_step_request_queue. Whenever a displaced
1466 step finishes, we pick the next thread in the queue and start a new
1467 displaced step operation on it. See displaced_step_prepare and
1468 displaced_step_fixup for details. */
1469
cfba9872
SM
1470/* Default destructor for displaced_step_closure. */
1471
1472displaced_step_closure::~displaced_step_closure () = default;
1473
fc1cf338
PA
1474/* Get the displaced stepping state of process PID. */
1475
39a36629 1476static displaced_step_inferior_state *
00431a78 1477get_displaced_stepping_state (inferior *inf)
fc1cf338 1478{
d20172fc 1479 return &inf->displaced_step_state;
fc1cf338
PA
1480}
1481
372316f1
PA
1482/* Returns true if any inferior has a thread doing a displaced
1483 step. */
1484
39a36629
SM
1485static bool
1486displaced_step_in_progress_any_inferior ()
372316f1 1487{
d20172fc 1488 for (inferior *i : all_inferiors ())
39a36629 1489 {
d20172fc 1490 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1491 return true;
1492 }
372316f1 1493
39a36629 1494 return false;
372316f1
PA
1495}
1496
c0987663
YQ
1497/* Return true if thread represented by PTID is doing a displaced
1498 step. */
1499
1500static int
00431a78 1501displaced_step_in_progress_thread (thread_info *thread)
c0987663 1502{
00431a78 1503 gdb_assert (thread != NULL);
c0987663 1504
d20172fc 1505 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1506}
1507
8f572e5c
PA
1508/* Return true if process PID has a thread doing a displaced step. */
1509
1510static int
00431a78 1511displaced_step_in_progress (inferior *inf)
8f572e5c 1512{
d20172fc 1513 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1514}
1515
a42244db
YQ
1516/* If inferior is in displaced stepping, and ADDR equals to starting address
1517 of copy area, return corresponding displaced_step_closure. Otherwise,
1518 return NULL. */
1519
1520struct displaced_step_closure*
1521get_displaced_step_closure_by_addr (CORE_ADDR addr)
1522{
d20172fc 1523 displaced_step_inferior_state *displaced
00431a78 1524 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1525
1526 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1527 if (displaced->step_thread != nullptr
00431a78 1528 && displaced->step_copy == addr)
d8d83535 1529 return displaced->step_closure.get ();
a42244db
YQ
1530
1531 return NULL;
1532}
1533
fc1cf338
PA
1534static void
1535infrun_inferior_exit (struct inferior *inf)
1536{
d20172fc 1537 inf->displaced_step_state.reset ();
fc1cf338 1538}
237fc4c9 1539
fff08868
HZ
1540/* If ON, and the architecture supports it, GDB will use displaced
1541 stepping to step over breakpoints. If OFF, or if the architecture
1542 doesn't support it, GDB will instead use the traditional
1543 hold-and-step approach. If AUTO (which is the default), GDB will
1544 decide which technique to use to step over breakpoints depending on
9822cb57 1545 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1546
72d0e2c5 1547static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1548
237fc4c9
PA
1549static void
1550show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1551 struct cmd_list_element *c,
1552 const char *value)
1553{
72d0e2c5 1554 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1555 fprintf_filtered (file,
1556 _("Debugger's willingness to use displaced stepping "
1557 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1558 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1559 else
3e43a32a
MS
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1563}
1564
9822cb57
SM
1565/* Return true if the gdbarch implements the required methods to use
1566 displaced stepping. */
1567
1568static bool
1569gdbarch_supports_displaced_stepping (gdbarch *arch)
1570{
1571 /* Only check for the presence of step_copy_insn. Other required methods
1572 are checked by the gdbarch validation. */
1573 return gdbarch_displaced_step_copy_insn_p (arch);
1574}
1575
fff08868 1576/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1577 over breakpoints of thread TP. */
fff08868 1578
9822cb57
SM
1579static bool
1580use_displaced_stepping (thread_info *tp)
237fc4c9 1581{
9822cb57
SM
1582 /* If the user disabled it explicitly, don't use displaced stepping. */
1583 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1584 return false;
1585
1586 /* If "auto", only use displaced stepping if the target operates in a non-stop
1587 way. */
1588 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1589 && !target_is_non_stop_p ())
1590 return false;
1591
1592 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1593
1594 /* If the architecture doesn't implement displaced stepping, don't use
1595 it. */
1596 if (!gdbarch_supports_displaced_stepping (gdbarch))
1597 return false;
1598
1599 /* If recording, don't use displaced stepping. */
1600 if (find_record_target () != nullptr)
1601 return false;
1602
d20172fc
SM
1603 displaced_step_inferior_state *displaced_state
1604 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1605
9822cb57
SM
1606 /* If displaced stepping failed before for this inferior, don't bother trying
1607 again. */
1608 if (displaced_state->failed_before)
1609 return false;
1610
1611 return true;
237fc4c9
PA
1612}
1613
d8d83535
SM
1614/* Simple function wrapper around displaced_step_inferior_state::reset. */
1615
237fc4c9 1616static void
d8d83535 1617displaced_step_reset (displaced_step_inferior_state *displaced)
237fc4c9 1618{
d8d83535 1619 displaced->reset ();
237fc4c9
PA
1620}
1621
d8d83535
SM
1622/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1623 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1624
1625using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1626
1627/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1628void
1629displaced_step_dump_bytes (struct ui_file *file,
1630 const gdb_byte *buf,
1631 size_t len)
1632{
1633 int i;
1634
1635 for (i = 0; i < len; i++)
1636 fprintf_unfiltered (file, "%02x ", buf[i]);
1637 fputs_unfiltered ("\n", file);
1638}
1639
1640/* Prepare to single-step, using displaced stepping.
1641
1642 Note that we cannot use displaced stepping when we have a signal to
1643 deliver. If we have a signal to deliver and an instruction to step
1644 over, then after the step, there will be no indication from the
1645 target whether the thread entered a signal handler or ignored the
1646 signal and stepped over the instruction successfully --- both cases
1647 result in a simple SIGTRAP. In the first case we mustn't do a
1648 fixup, and in the second case we must --- but we can't tell which.
1649 Comments in the code for 'random signals' in handle_inferior_event
1650 explain how we handle this case instead.
1651
1652 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1653 stepped now; 0 if displaced stepping this thread got queued; or -1
1654 if this instruction can't be displaced stepped. */
1655
237fc4c9 1656static int
00431a78 1657displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1658{
00431a78 1659 regcache *regcache = get_thread_regcache (tp);
ac7936df 1660 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1661 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1662 CORE_ADDR original, copy;
1663 ULONGEST len;
9e529e1d 1664 int status;
237fc4c9
PA
1665
1666 /* We should never reach this function if the architecture does not
1667 support displaced stepping. */
9822cb57 1668 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1669
c2829269
PA
1670 /* Nor if the thread isn't meant to step over a breakpoint. */
1671 gdb_assert (tp->control.trap_expected);
1672
c1e36e3e
PA
1673 /* Disable range stepping while executing in the scratch pad. We
1674 want a single-step even if executing the displaced instruction in
1675 the scratch buffer lands within the stepping range (e.g., a
1676 jump/branch). */
1677 tp->control.may_range_step = 0;
1678
fc1cf338
PA
1679 /* We have to displaced step one thread at a time, as we only have
1680 access to a single scratch space per inferior. */
237fc4c9 1681
d20172fc
SM
1682 displaced_step_inferior_state *displaced
1683 = get_displaced_stepping_state (tp->inf);
fc1cf338 1684
00431a78 1685 if (displaced->step_thread != nullptr)
237fc4c9
PA
1686 {
1687 /* Already waiting for a displaced step to finish. Defer this
1688 request and place in queue. */
237fc4c9
PA
1689
1690 if (debug_displaced)
1691 fprintf_unfiltered (gdb_stdlog,
c2829269 1692 "displaced: deferring step of %s\n",
a068643d 1693 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1694
c2829269 1695 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1696 return 0;
1697 }
1698 else
1699 {
1700 if (debug_displaced)
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: stepping %s now\n",
a068643d 1703 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1704 }
1705
d8d83535 1706 displaced_step_reset (displaced);
237fc4c9 1707
00431a78
PA
1708 scoped_restore_current_thread restore_thread;
1709
1710 switch_to_thread (tp);
ad53cd71 1711
515630c5 1712 original = regcache_read_pc (regcache);
237fc4c9
PA
1713
1714 copy = gdbarch_displaced_step_location (gdbarch);
1715 len = gdbarch_max_insn_length (gdbarch);
1716
d35ae833
PA
1717 if (breakpoint_in_range_p (aspace, copy, len))
1718 {
1719 /* There's a breakpoint set in the scratch pad location range
1720 (which is usually around the entry point). We'd either
1721 install it before resuming, which would overwrite/corrupt the
1722 scratch pad, or if it was already inserted, this displaced
1723 step would overwrite it. The latter is OK in the sense that
1724 we already assume that no thread is going to execute the code
1725 in the scratch pad range (after initial startup) anyway, but
1726 the former is unacceptable. Simply punt and fallback to
1727 stepping over this breakpoint in-line. */
1728 if (debug_displaced)
1729 {
1730 fprintf_unfiltered (gdb_stdlog,
1731 "displaced: breakpoint set in scratch pad. "
1732 "Stepping over breakpoint in-line instead.\n");
1733 }
1734
d35ae833
PA
1735 return -1;
1736 }
1737
237fc4c9 1738 /* Save the original contents of the copy area. */
d20172fc
SM
1739 displaced->step_saved_copy.resize (len);
1740 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1741 if (status != 0)
1742 throw_error (MEMORY_ERROR,
1743 _("Error accessing memory address %s (%s) for "
1744 "displaced-stepping scratch space."),
1745 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1746 if (debug_displaced)
1747 {
5af949e3
UW
1748 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1749 paddress (gdbarch, copy));
fc1cf338 1750 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1751 displaced->step_saved_copy.data (),
fc1cf338 1752 len);
237fc4c9
PA
1753 };
1754
e8217e61
SM
1755 displaced->step_closure
1756 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1757 if (displaced->step_closure == NULL)
7f03bd92
PA
1758 {
1759 /* The architecture doesn't know how or want to displaced step
1760 this instruction or instruction sequence. Fallback to
1761 stepping over the breakpoint in-line. */
7f03bd92
PA
1762 return -1;
1763 }
237fc4c9 1764
9f5a595d
UW
1765 /* Save the information we need to fix things up if the step
1766 succeeds. */
00431a78 1767 displaced->step_thread = tp;
fc1cf338 1768 displaced->step_gdbarch = gdbarch;
fc1cf338
PA
1769 displaced->step_original = original;
1770 displaced->step_copy = copy;
9f5a595d 1771
9799571e 1772 {
d8d83535 1773 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1774
9799571e
TT
1775 /* Resume execution at the copy. */
1776 regcache_write_pc (regcache, copy);
237fc4c9 1777
9799571e
TT
1778 cleanup.release ();
1779 }
ad53cd71 1780
237fc4c9 1781 if (debug_displaced)
5af949e3
UW
1782 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1783 paddress (gdbarch, copy));
237fc4c9 1784
237fc4c9
PA
1785 return 1;
1786}
1787
3fc8eb30
PA
1788/* Wrapper for displaced_step_prepare_throw that disabled further
1789 attempts at displaced stepping if we get a memory error. */
1790
1791static int
00431a78 1792displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1793{
1794 int prepared = -1;
1795
a70b8144 1796 try
3fc8eb30 1797 {
00431a78 1798 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1799 }
230d2906 1800 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1801 {
1802 struct displaced_step_inferior_state *displaced_state;
1803
16b41842
PA
1804 if (ex.error != MEMORY_ERROR
1805 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1806 throw;
3fc8eb30
PA
1807
1808 if (debug_infrun)
1809 {
1810 fprintf_unfiltered (gdb_stdlog,
1811 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1812 ex.what ());
3fc8eb30
PA
1813 }
1814
1815 /* Be verbose if "set displaced-stepping" is "on", silent if
1816 "auto". */
1817 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1818 {
fd7dcb94 1819 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1820 ex.what ());
3fc8eb30
PA
1821 }
1822
1823 /* Disable further displaced stepping attempts. */
1824 displaced_state
00431a78 1825 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1826 displaced_state->failed_before = 1;
1827 }
3fc8eb30
PA
1828
1829 return prepared;
1830}
1831
237fc4c9 1832static void
3e43a32a
MS
1833write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1834 const gdb_byte *myaddr, int len)
237fc4c9 1835{
2989a365 1836 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1837
237fc4c9
PA
1838 inferior_ptid = ptid;
1839 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1840}
1841
e2d96639
YQ
1842/* Restore the contents of the copy area for thread PTID. */
1843
1844static void
1845displaced_step_restore (struct displaced_step_inferior_state *displaced,
1846 ptid_t ptid)
1847{
1848 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1849
1850 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1851 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1852 if (debug_displaced)
1853 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1854 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1855 paddress (displaced->step_gdbarch,
1856 displaced->step_copy));
1857}
1858
372316f1
PA
1859/* If we displaced stepped an instruction successfully, adjust
1860 registers and memory to yield the same effect the instruction would
1861 have had if we had executed it at its original address, and return
1862 1. If the instruction didn't complete, relocate the PC and return
1863 -1. If the thread wasn't displaced stepping, return 0. */
1864
1865static int
00431a78 1866displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1867{
fc1cf338 1868 struct displaced_step_inferior_state *displaced
00431a78 1869 = get_displaced_stepping_state (event_thread->inf);
372316f1 1870 int ret;
fc1cf338 1871
00431a78
PA
1872 /* Was this event for the thread we displaced? */
1873 if (displaced->step_thread != event_thread)
372316f1 1874 return 0;
237fc4c9 1875
cb71640d
PA
1876 /* Fixup may need to read memory/registers. Switch to the thread
1877 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d
TBA
1878 the current thread, and displaced_step_restore performs ptid-dependent
1879 memory accesses using current_inferior() and current_top_target(). */
00431a78 1880 switch_to_thread (event_thread);
cb71640d 1881
d43b7a2d
TBA
1882 displaced_step_reset_cleanup cleanup (displaced);
1883
1884 displaced_step_restore (displaced, displaced->step_thread->ptid);
1885
237fc4c9 1886 /* Did the instruction complete successfully? */
cb71640d
PA
1887 if (signal == GDB_SIGNAL_TRAP
1888 && !(target_stopped_by_watchpoint ()
1889 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1890 || target_have_steppable_watchpoint)))
237fc4c9
PA
1891 {
1892 /* Fix up the resulting state. */
fc1cf338 1893 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
d8d83535 1894 displaced->step_closure.get (),
fc1cf338
PA
1895 displaced->step_original,
1896 displaced->step_copy,
00431a78 1897 get_thread_regcache (displaced->step_thread));
372316f1 1898 ret = 1;
237fc4c9
PA
1899 }
1900 else
1901 {
1902 /* Since the instruction didn't complete, all we can do is
1903 relocate the PC. */
00431a78 1904 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1905 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1906
fc1cf338 1907 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1908 regcache_write_pc (regcache, pc);
372316f1 1909 ret = -1;
237fc4c9
PA
1910 }
1911
372316f1 1912 return ret;
c2829269 1913}
1c5cfe86 1914
4d9d9d04
PA
1915/* Data to be passed around while handling an event. This data is
1916 discarded between events. */
1917struct execution_control_state
1918{
5b6d1e4f 1919 process_stratum_target *target;
4d9d9d04
PA
1920 ptid_t ptid;
1921 /* The thread that got the event, if this was a thread event; NULL
1922 otherwise. */
1923 struct thread_info *event_thread;
1924
1925 struct target_waitstatus ws;
1926 int stop_func_filled_in;
1927 CORE_ADDR stop_func_start;
1928 CORE_ADDR stop_func_end;
1929 const char *stop_func_name;
1930 int wait_some_more;
1931
1932 /* True if the event thread hit the single-step breakpoint of
1933 another thread. Thus the event doesn't cause a stop, the thread
1934 needs to be single-stepped past the single-step breakpoint before
1935 we can switch back to the original stepping thread. */
1936 int hit_singlestep_breakpoint;
1937};
1938
1939/* Clear ECS and set it to point at TP. */
c2829269
PA
1940
1941static void
4d9d9d04
PA
1942reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1943{
1944 memset (ecs, 0, sizeof (*ecs));
1945 ecs->event_thread = tp;
1946 ecs->ptid = tp->ptid;
1947}
1948
1949static void keep_going_pass_signal (struct execution_control_state *ecs);
1950static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1951static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1952static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1953
1954/* Are there any pending step-over requests? If so, run all we can
1955 now and return true. Otherwise, return false. */
1956
1957static int
c2829269
PA
1958start_step_over (void)
1959{
1960 struct thread_info *tp, *next;
1961
372316f1
PA
1962 /* Don't start a new step-over if we already have an in-line
1963 step-over operation ongoing. */
1964 if (step_over_info_valid_p ())
1965 return 0;
1966
c2829269 1967 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1968 {
4d9d9d04
PA
1969 struct execution_control_state ecss;
1970 struct execution_control_state *ecs = &ecss;
8d297bbf 1971 step_over_what step_what;
372316f1 1972 int must_be_in_line;
c2829269 1973
c65d6b55
PA
1974 gdb_assert (!tp->stop_requested);
1975
c2829269 1976 next = thread_step_over_chain_next (tp);
237fc4c9 1977
c2829269
PA
1978 /* If this inferior already has a displaced step in process,
1979 don't start a new one. */
00431a78 1980 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1981 continue;
1982
372316f1
PA
1983 step_what = thread_still_needs_step_over (tp);
1984 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1985 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1986 && !use_displaced_stepping (tp)));
372316f1
PA
1987
1988 /* We currently stop all threads of all processes to step-over
1989 in-line. If we need to start a new in-line step-over, let
1990 any pending displaced steps finish first. */
1991 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1992 return 0;
1993
c2829269
PA
1994 thread_step_over_chain_remove (tp);
1995
1996 if (step_over_queue_head == NULL)
1997 {
1998 if (debug_infrun)
1999 fprintf_unfiltered (gdb_stdlog,
2000 "infrun: step-over queue now empty\n");
2001 }
2002
372316f1
PA
2003 if (tp->control.trap_expected
2004 || tp->resumed
2005 || tp->executing)
ad53cd71 2006 {
4d9d9d04
PA
2007 internal_error (__FILE__, __LINE__,
2008 "[%s] has inconsistent state: "
372316f1 2009 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 2010 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 2011 tp->control.trap_expected,
372316f1 2012 tp->resumed,
4d9d9d04 2013 tp->executing);
ad53cd71 2014 }
1c5cfe86 2015
4d9d9d04
PA
2016 if (debug_infrun)
2017 fprintf_unfiltered (gdb_stdlog,
2018 "infrun: resuming [%s] for step-over\n",
a068643d 2019 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2020
2021 /* keep_going_pass_signal skips the step-over if the breakpoint
2022 is no longer inserted. In all-stop, we want to keep looking
2023 for a thread that needs a step-over instead of resuming TP,
2024 because we wouldn't be able to resume anything else until the
2025 target stops again. In non-stop, the resume always resumes
2026 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2027 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2028 continue;
8550d3b3 2029
00431a78 2030 switch_to_thread (tp);
4d9d9d04
PA
2031 reset_ecs (ecs, tp);
2032 keep_going_pass_signal (ecs);
1c5cfe86 2033
4d9d9d04
PA
2034 if (!ecs->wait_some_more)
2035 error (_("Command aborted."));
1c5cfe86 2036
372316f1
PA
2037 gdb_assert (tp->resumed);
2038
2039 /* If we started a new in-line step-over, we're done. */
2040 if (step_over_info_valid_p ())
2041 {
2042 gdb_assert (tp->control.trap_expected);
2043 return 1;
2044 }
2045
fbea99ea 2046 if (!target_is_non_stop_p ())
4d9d9d04
PA
2047 {
2048 /* On all-stop, shouldn't have resumed unless we needed a
2049 step over. */
2050 gdb_assert (tp->control.trap_expected
2051 || tp->step_after_step_resume_breakpoint);
2052
2053 /* With remote targets (at least), in all-stop, we can't
2054 issue any further remote commands until the program stops
2055 again. */
2056 return 1;
1c5cfe86 2057 }
c2829269 2058
4d9d9d04
PA
2059 /* Either the thread no longer needed a step-over, or a new
2060 displaced stepping sequence started. Even in the latter
2061 case, continue looking. Maybe we can also start another
2062 displaced step on a thread of other process. */
237fc4c9 2063 }
4d9d9d04
PA
2064
2065 return 0;
237fc4c9
PA
2066}
2067
5231c1fd
PA
2068/* Update global variables holding ptids to hold NEW_PTID if they were
2069 holding OLD_PTID. */
2070static void
2071infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2072{
d7e15655 2073 if (inferior_ptid == old_ptid)
5231c1fd 2074 inferior_ptid = new_ptid;
5231c1fd
PA
2075}
2076
237fc4c9 2077\f
c906108c 2078
53904c9e
AC
2079static const char schedlock_off[] = "off";
2080static const char schedlock_on[] = "on";
2081static const char schedlock_step[] = "step";
f2665db5 2082static const char schedlock_replay[] = "replay";
40478521 2083static const char *const scheduler_enums[] = {
ef346e04
AC
2084 schedlock_off,
2085 schedlock_on,
2086 schedlock_step,
f2665db5 2087 schedlock_replay,
ef346e04
AC
2088 NULL
2089};
f2665db5 2090static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2091static void
2092show_scheduler_mode (struct ui_file *file, int from_tty,
2093 struct cmd_list_element *c, const char *value)
2094{
3e43a32a
MS
2095 fprintf_filtered (file,
2096 _("Mode for locking scheduler "
2097 "during execution is \"%s\".\n"),
920d2a44
AC
2098 value);
2099}
c906108c
SS
2100
2101static void
eb4c3f4a 2102set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2103{
eefe576e
AC
2104 if (!target_can_lock_scheduler)
2105 {
2106 scheduler_mode = schedlock_off;
2107 error (_("Target '%s' cannot support this command."), target_shortname);
2108 }
c906108c
SS
2109}
2110
d4db2f36
PA
2111/* True if execution commands resume all threads of all processes by
2112 default; otherwise, resume only threads of the current inferior
2113 process. */
491144b5 2114bool sched_multi = false;
d4db2f36 2115
2facfe5c
DD
2116/* Try to setup for software single stepping over the specified location.
2117 Return 1 if target_resume() should use hardware single step.
2118
2119 GDBARCH the current gdbarch.
2120 PC the location to step over. */
2121
2122static int
2123maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2124{
2125 int hw_step = 1;
2126
f02253f1 2127 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2128 && gdbarch_software_single_step_p (gdbarch))
2129 hw_step = !insert_single_step_breakpoints (gdbarch);
2130
2facfe5c
DD
2131 return hw_step;
2132}
c906108c 2133
f3263aa4
PA
2134/* See infrun.h. */
2135
09cee04b
PA
2136ptid_t
2137user_visible_resume_ptid (int step)
2138{
f3263aa4 2139 ptid_t resume_ptid;
09cee04b 2140
09cee04b
PA
2141 if (non_stop)
2142 {
2143 /* With non-stop mode on, threads are always handled
2144 individually. */
2145 resume_ptid = inferior_ptid;
2146 }
2147 else if ((scheduler_mode == schedlock_on)
03d46957 2148 || (scheduler_mode == schedlock_step && step))
09cee04b 2149 {
f3263aa4
PA
2150 /* User-settable 'scheduler' mode requires solo thread
2151 resume. */
09cee04b
PA
2152 resume_ptid = inferior_ptid;
2153 }
f2665db5
MM
2154 else if ((scheduler_mode == schedlock_replay)
2155 && target_record_will_replay (minus_one_ptid, execution_direction))
2156 {
2157 /* User-settable 'scheduler' mode requires solo thread resume in replay
2158 mode. */
2159 resume_ptid = inferior_ptid;
2160 }
f3263aa4
PA
2161 else if (!sched_multi && target_supports_multi_process ())
2162 {
2163 /* Resume all threads of the current process (and none of other
2164 processes). */
e99b03dc 2165 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2166 }
2167 else
2168 {
2169 /* Resume all threads of all processes. */
2170 resume_ptid = RESUME_ALL;
2171 }
09cee04b
PA
2172
2173 return resume_ptid;
2174}
2175
5b6d1e4f
PA
2176/* See infrun.h. */
2177
2178process_stratum_target *
2179user_visible_resume_target (ptid_t resume_ptid)
2180{
2181 return (resume_ptid == minus_one_ptid && sched_multi
2182 ? NULL
2183 : current_inferior ()->process_target ());
2184}
2185
fbea99ea
PA
2186/* Return a ptid representing the set of threads that we will resume,
2187 in the perspective of the target, assuming run control handling
2188 does not require leaving some threads stopped (e.g., stepping past
2189 breakpoint). USER_STEP indicates whether we're about to start the
2190 target for a stepping command. */
2191
2192static ptid_t
2193internal_resume_ptid (int user_step)
2194{
2195 /* In non-stop, we always control threads individually. Note that
2196 the target may always work in non-stop mode even with "set
2197 non-stop off", in which case user_visible_resume_ptid could
2198 return a wildcard ptid. */
2199 if (target_is_non_stop_p ())
2200 return inferior_ptid;
2201 else
2202 return user_visible_resume_ptid (user_step);
2203}
2204
64ce06e4
PA
2205/* Wrapper for target_resume, that handles infrun-specific
2206 bookkeeping. */
2207
2208static void
2209do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2210{
2211 struct thread_info *tp = inferior_thread ();
2212
c65d6b55
PA
2213 gdb_assert (!tp->stop_requested);
2214
64ce06e4 2215 /* Install inferior's terminal modes. */
223ffa71 2216 target_terminal::inferior ();
64ce06e4
PA
2217
2218 /* Avoid confusing the next resume, if the next stop/resume
2219 happens to apply to another thread. */
2220 tp->suspend.stop_signal = GDB_SIGNAL_0;
2221
8f572e5c
PA
2222 /* Advise target which signals may be handled silently.
2223
2224 If we have removed breakpoints because we are stepping over one
2225 in-line (in any thread), we need to receive all signals to avoid
2226 accidentally skipping a breakpoint during execution of a signal
2227 handler.
2228
2229 Likewise if we're displaced stepping, otherwise a trap for a
2230 breakpoint in a signal handler might be confused with the
2231 displaced step finishing. We don't make the displaced_step_fixup
2232 step distinguish the cases instead, because:
2233
2234 - a backtrace while stopped in the signal handler would show the
2235 scratch pad as frame older than the signal handler, instead of
2236 the real mainline code.
2237
2238 - when the thread is later resumed, the signal handler would
2239 return to the scratch pad area, which would no longer be
2240 valid. */
2241 if (step_over_info_valid_p ()
00431a78 2242 || displaced_step_in_progress (tp->inf))
adc6a863 2243 target_pass_signals ({});
64ce06e4 2244 else
adc6a863 2245 target_pass_signals (signal_pass);
64ce06e4
PA
2246
2247 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2248
2249 target_commit_resume ();
5b6d1e4f
PA
2250
2251 if (target_can_async_p ())
2252 target_async (1);
64ce06e4
PA
2253}
2254
d930703d 2255/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2256 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2257 call 'resume', which handles exceptions. */
c906108c 2258
71d378ae
PA
2259static void
2260resume_1 (enum gdb_signal sig)
c906108c 2261{
515630c5 2262 struct regcache *regcache = get_current_regcache ();
ac7936df 2263 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2264 struct thread_info *tp = inferior_thread ();
8b86c959 2265 const address_space *aspace = regcache->aspace ();
b0f16a3e 2266 ptid_t resume_ptid;
856e7dd6
PA
2267 /* This represents the user's step vs continue request. When
2268 deciding whether "set scheduler-locking step" applies, it's the
2269 user's intention that counts. */
2270 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2271 /* This represents what we'll actually request the target to do.
2272 This can decay from a step to a continue, if e.g., we need to
2273 implement single-stepping with breakpoints (software
2274 single-step). */
6b403daa 2275 int step;
c7e8a53c 2276
c65d6b55 2277 gdb_assert (!tp->stop_requested);
c2829269
PA
2278 gdb_assert (!thread_is_in_step_over_chain (tp));
2279
372316f1
PA
2280 if (tp->suspend.waitstatus_pending_p)
2281 {
2282 if (debug_infrun)
2283 {
23fdd69e
SM
2284 std::string statstr
2285 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2286
372316f1 2287 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2288 "infrun: resume: thread %s has pending wait "
2289 "status %s (currently_stepping=%d).\n",
a068643d
TT
2290 target_pid_to_str (tp->ptid).c_str (),
2291 statstr.c_str (),
372316f1 2292 currently_stepping (tp));
372316f1
PA
2293 }
2294
5b6d1e4f 2295 tp->inf->process_target ()->threads_executing = true;
719546c4 2296 tp->resumed = true;
372316f1
PA
2297
2298 /* FIXME: What should we do if we are supposed to resume this
2299 thread with a signal? Maybe we should maintain a queue of
2300 pending signals to deliver. */
2301 if (sig != GDB_SIGNAL_0)
2302 {
fd7dcb94 2303 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2304 gdb_signal_to_name (sig),
2305 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2306 }
2307
2308 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2309
2310 if (target_can_async_p ())
9516f85a
AB
2311 {
2312 target_async (1);
2313 /* Tell the event loop we have an event to process. */
2314 mark_async_event_handler (infrun_async_inferior_event_token);
2315 }
372316f1
PA
2316 return;
2317 }
2318
2319 tp->stepped_breakpoint = 0;
2320
6b403daa
PA
2321 /* Depends on stepped_breakpoint. */
2322 step = currently_stepping (tp);
2323
74609e71
YQ
2324 if (current_inferior ()->waiting_for_vfork_done)
2325 {
48f9886d
PA
2326 /* Don't try to single-step a vfork parent that is waiting for
2327 the child to get out of the shared memory region (by exec'ing
2328 or exiting). This is particularly important on software
2329 single-step archs, as the child process would trip on the
2330 software single step breakpoint inserted for the parent
2331 process. Since the parent will not actually execute any
2332 instruction until the child is out of the shared region (such
2333 are vfork's semantics), it is safe to simply continue it.
2334 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2335 the parent, and tell it to `keep_going', which automatically
2336 re-sets it stepping. */
74609e71
YQ
2337 if (debug_infrun)
2338 fprintf_unfiltered (gdb_stdlog,
2339 "infrun: resume : clear step\n");
a09dd441 2340 step = 0;
74609e71
YQ
2341 }
2342
7ca9b62a
TBA
2343 CORE_ADDR pc = regcache_read_pc (regcache);
2344
527159b7 2345 if (debug_infrun)
237fc4c9 2346 fprintf_unfiltered (gdb_stdlog,
c9737c08 2347 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2348 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2349 step, gdb_signal_to_symbol_string (sig),
2350 tp->control.trap_expected,
a068643d 2351 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2352 paddress (gdbarch, pc));
c906108c 2353
c2c6d25f
JM
2354 /* Normally, by the time we reach `resume', the breakpoints are either
2355 removed or inserted, as appropriate. The exception is if we're sitting
2356 at a permanent breakpoint; we need to step over it, but permanent
2357 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2358 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2359 {
af48d08f
PA
2360 if (sig != GDB_SIGNAL_0)
2361 {
2362 /* We have a signal to pass to the inferior. The resume
2363 may, or may not take us to the signal handler. If this
2364 is a step, we'll need to stop in the signal handler, if
2365 there's one, (if the target supports stepping into
2366 handlers), or in the next mainline instruction, if
2367 there's no handler. If this is a continue, we need to be
2368 sure to run the handler with all breakpoints inserted.
2369 In all cases, set a breakpoint at the current address
2370 (where the handler returns to), and once that breakpoint
2371 is hit, resume skipping the permanent breakpoint. If
2372 that breakpoint isn't hit, then we've stepped into the
2373 signal handler (or hit some other event). We'll delete
2374 the step-resume breakpoint then. */
2375
2376 if (debug_infrun)
2377 fprintf_unfiltered (gdb_stdlog,
2378 "infrun: resume: skipping permanent breakpoint, "
2379 "deliver signal first\n");
2380
2381 clear_step_over_info ();
2382 tp->control.trap_expected = 0;
2383
2384 if (tp->control.step_resume_breakpoint == NULL)
2385 {
2386 /* Set a "high-priority" step-resume, as we don't want
2387 user breakpoints at PC to trigger (again) when this
2388 hits. */
2389 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2390 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2391
2392 tp->step_after_step_resume_breakpoint = step;
2393 }
2394
2395 insert_breakpoints ();
2396 }
2397 else
2398 {
2399 /* There's no signal to pass, we can go ahead and skip the
2400 permanent breakpoint manually. */
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog,
2403 "infrun: resume: skipping permanent breakpoint\n");
2404 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2405 /* Update pc to reflect the new address from which we will
2406 execute instructions. */
2407 pc = regcache_read_pc (regcache);
2408
2409 if (step)
2410 {
2411 /* We've already advanced the PC, so the stepping part
2412 is done. Now we need to arrange for a trap to be
2413 reported to handle_inferior_event. Set a breakpoint
2414 at the current PC, and run to it. Don't update
2415 prev_pc, because if we end in
44a1ee51
PA
2416 switch_back_to_stepped_thread, we want the "expected
2417 thread advanced also" branch to be taken. IOW, we
2418 don't want this thread to step further from PC
af48d08f 2419 (overstep). */
1ac806b8 2420 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2421 insert_single_step_breakpoint (gdbarch, aspace, pc);
2422 insert_breakpoints ();
2423
fbea99ea 2424 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2425 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2426 tp->resumed = true;
af48d08f
PA
2427 return;
2428 }
2429 }
6d350bb5 2430 }
c2c6d25f 2431
c1e36e3e
PA
2432 /* If we have a breakpoint to step over, make sure to do a single
2433 step only. Same if we have software watchpoints. */
2434 if (tp->control.trap_expected || bpstat_should_step ())
2435 tp->control.may_range_step = 0;
2436
7da6a5b9
LM
2437 /* If displaced stepping is enabled, step over breakpoints by executing a
2438 copy of the instruction at a different address.
237fc4c9
PA
2439
2440 We can't use displaced stepping when we have a signal to deliver;
2441 the comments for displaced_step_prepare explain why. The
2442 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2443 signals' explain what we do instead.
2444
2445 We can't use displaced stepping when we are waiting for vfork_done
2446 event, displaced stepping breaks the vfork child similarly as single
2447 step software breakpoint. */
3fc8eb30
PA
2448 if (tp->control.trap_expected
2449 && use_displaced_stepping (tp)
cb71640d 2450 && !step_over_info_valid_p ()
a493e3e2 2451 && sig == GDB_SIGNAL_0
74609e71 2452 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2453 {
00431a78 2454 int prepared = displaced_step_prepare (tp);
fc1cf338 2455
3fc8eb30 2456 if (prepared == 0)
d56b7306 2457 {
4d9d9d04
PA
2458 if (debug_infrun)
2459 fprintf_unfiltered (gdb_stdlog,
2460 "Got placed in step-over queue\n");
2461
2462 tp->control.trap_expected = 0;
d56b7306
VP
2463 return;
2464 }
3fc8eb30
PA
2465 else if (prepared < 0)
2466 {
2467 /* Fallback to stepping over the breakpoint in-line. */
2468
2469 if (target_is_non_stop_p ())
2470 stop_all_threads ();
2471
a01bda52 2472 set_step_over_info (regcache->aspace (),
21edc42f 2473 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2474
2475 step = maybe_software_singlestep (gdbarch, pc);
2476
2477 insert_breakpoints ();
2478 }
2479 else if (prepared > 0)
2480 {
2481 struct displaced_step_inferior_state *displaced;
99e40580 2482
3fc8eb30
PA
2483 /* Update pc to reflect the new address from which we will
2484 execute instructions due to displaced stepping. */
00431a78 2485 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2486
00431a78 2487 displaced = get_displaced_stepping_state (tp->inf);
d8d83535
SM
2488 step = gdbarch_displaced_step_hw_singlestep
2489 (gdbarch, displaced->step_closure.get ());
3fc8eb30 2490 }
237fc4c9
PA
2491 }
2492
2facfe5c 2493 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2494 else if (step)
2facfe5c 2495 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2496
30852783
UW
2497 /* Currently, our software single-step implementation leads to different
2498 results than hardware single-stepping in one situation: when stepping
2499 into delivering a signal which has an associated signal handler,
2500 hardware single-step will stop at the first instruction of the handler,
2501 while software single-step will simply skip execution of the handler.
2502
2503 For now, this difference in behavior is accepted since there is no
2504 easy way to actually implement single-stepping into a signal handler
2505 without kernel support.
2506
2507 However, there is one scenario where this difference leads to follow-on
2508 problems: if we're stepping off a breakpoint by removing all breakpoints
2509 and then single-stepping. In this case, the software single-step
2510 behavior means that even if there is a *breakpoint* in the signal
2511 handler, GDB still would not stop.
2512
2513 Fortunately, we can at least fix this particular issue. We detect
2514 here the case where we are about to deliver a signal while software
2515 single-stepping with breakpoints removed. In this situation, we
2516 revert the decisions to remove all breakpoints and insert single-
2517 step breakpoints, and instead we install a step-resume breakpoint
2518 at the current address, deliver the signal without stepping, and
2519 once we arrive back at the step-resume breakpoint, actually step
2520 over the breakpoint we originally wanted to step over. */
34b7e8a6 2521 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2522 && sig != GDB_SIGNAL_0
2523 && step_over_info_valid_p ())
30852783
UW
2524 {
2525 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2526 immediately after a handler returns, might already have
30852783
UW
2527 a step-resume breakpoint set on the earlier handler. We cannot
2528 set another step-resume breakpoint; just continue on until the
2529 original breakpoint is hit. */
2530 if (tp->control.step_resume_breakpoint == NULL)
2531 {
2c03e5be 2532 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2533 tp->step_after_step_resume_breakpoint = 1;
2534 }
2535
34b7e8a6 2536 delete_single_step_breakpoints (tp);
30852783 2537
31e77af2 2538 clear_step_over_info ();
30852783 2539 tp->control.trap_expected = 0;
31e77af2
PA
2540
2541 insert_breakpoints ();
30852783
UW
2542 }
2543
b0f16a3e
SM
2544 /* If STEP is set, it's a request to use hardware stepping
2545 facilities. But in that case, we should never
2546 use singlestep breakpoint. */
34b7e8a6 2547 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2548
fbea99ea 2549 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2550 if (tp->control.trap_expected)
b0f16a3e
SM
2551 {
2552 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2553 hit, either by single-stepping the thread with the breakpoint
2554 removed, or by displaced stepping, with the breakpoint inserted.
2555 In the former case, we need to single-step only this thread,
2556 and keep others stopped, as they can miss this breakpoint if
2557 allowed to run. That's not really a problem for displaced
2558 stepping, but, we still keep other threads stopped, in case
2559 another thread is also stopped for a breakpoint waiting for
2560 its turn in the displaced stepping queue. */
b0f16a3e
SM
2561 resume_ptid = inferior_ptid;
2562 }
fbea99ea
PA
2563 else
2564 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2565
7f5ef605
PA
2566 if (execution_direction != EXEC_REVERSE
2567 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2568 {
372316f1
PA
2569 /* There are two cases where we currently need to step a
2570 breakpoint instruction when we have a signal to deliver:
2571
2572 - See handle_signal_stop where we handle random signals that
2573 could take out us out of the stepping range. Normally, in
2574 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2575 signal handler with a breakpoint at PC, but there are cases
2576 where we should _always_ single-step, even if we have a
2577 step-resume breakpoint, like when a software watchpoint is
2578 set. Assuming single-stepping and delivering a signal at the
2579 same time would takes us to the signal handler, then we could
2580 have removed the breakpoint at PC to step over it. However,
2581 some hardware step targets (like e.g., Mac OS) can't step
2582 into signal handlers, and for those, we need to leave the
2583 breakpoint at PC inserted, as otherwise if the handler
2584 recurses and executes PC again, it'll miss the breakpoint.
2585 So we leave the breakpoint inserted anyway, but we need to
2586 record that we tried to step a breakpoint instruction, so
372316f1
PA
2587 that adjust_pc_after_break doesn't end up confused.
2588
2589 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2590 in one thread after another thread that was stepping had been
2591 momentarily paused for a step-over. When we re-resume the
2592 stepping thread, it may be resumed from that address with a
2593 breakpoint that hasn't trapped yet. Seen with
2594 gdb.threads/non-stop-fair-events.exp, on targets that don't
2595 do displaced stepping. */
2596
2597 if (debug_infrun)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2600 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2601
2602 tp->stepped_breakpoint = 1;
2603
b0f16a3e
SM
2604 /* Most targets can step a breakpoint instruction, thus
2605 executing it normally. But if this one cannot, just
2606 continue and we will hit it anyway. */
7f5ef605 2607 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2608 step = 0;
2609 }
ef5cf84e 2610
b0f16a3e 2611 if (debug_displaced
cb71640d 2612 && tp->control.trap_expected
3fc8eb30 2613 && use_displaced_stepping (tp)
cb71640d 2614 && !step_over_info_valid_p ())
b0f16a3e 2615 {
00431a78 2616 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2617 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2618 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2619 gdb_byte buf[4];
2620
2621 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2622 paddress (resume_gdbarch, actual_pc));
2623 read_memory (actual_pc, buf, sizeof (buf));
2624 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2625 }
237fc4c9 2626
b0f16a3e
SM
2627 if (tp->control.may_range_step)
2628 {
2629 /* If we're resuming a thread with the PC out of the step
2630 range, then we're doing some nested/finer run control
2631 operation, like stepping the thread out of the dynamic
2632 linker or the displaced stepping scratch pad. We
2633 shouldn't have allowed a range step then. */
2634 gdb_assert (pc_in_thread_step_range (pc, tp));
2635 }
c1e36e3e 2636
64ce06e4 2637 do_target_resume (resume_ptid, step, sig);
719546c4 2638 tp->resumed = true;
c906108c 2639}
71d378ae
PA
2640
2641/* Resume the inferior. SIG is the signal to give the inferior
2642 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2643 rolls back state on error. */
2644
aff4e175 2645static void
71d378ae
PA
2646resume (gdb_signal sig)
2647{
a70b8144 2648 try
71d378ae
PA
2649 {
2650 resume_1 (sig);
2651 }
230d2906 2652 catch (const gdb_exception &ex)
71d378ae
PA
2653 {
2654 /* If resuming is being aborted for any reason, delete any
2655 single-step breakpoint resume_1 may have created, to avoid
2656 confusing the following resumption, and to avoid leaving
2657 single-step breakpoints perturbing other threads, in case
2658 we're running in non-stop mode. */
2659 if (inferior_ptid != null_ptid)
2660 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2661 throw;
71d378ae 2662 }
71d378ae
PA
2663}
2664
c906108c 2665\f
237fc4c9 2666/* Proceeding. */
c906108c 2667
4c2f2a79
PA
2668/* See infrun.h. */
2669
2670/* Counter that tracks number of user visible stops. This can be used
2671 to tell whether a command has proceeded the inferior past the
2672 current location. This allows e.g., inferior function calls in
2673 breakpoint commands to not interrupt the command list. When the
2674 call finishes successfully, the inferior is standing at the same
2675 breakpoint as if nothing happened (and so we don't call
2676 normal_stop). */
2677static ULONGEST current_stop_id;
2678
2679/* See infrun.h. */
2680
2681ULONGEST
2682get_stop_id (void)
2683{
2684 return current_stop_id;
2685}
2686
2687/* Called when we report a user visible stop. */
2688
2689static void
2690new_stop_id (void)
2691{
2692 current_stop_id++;
2693}
2694
c906108c
SS
2695/* Clear out all variables saying what to do when inferior is continued.
2696 First do this, then set the ones you want, then call `proceed'. */
2697
a7212384
UW
2698static void
2699clear_proceed_status_thread (struct thread_info *tp)
c906108c 2700{
a7212384
UW
2701 if (debug_infrun)
2702 fprintf_unfiltered (gdb_stdlog,
2703 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2704 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2705
372316f1
PA
2706 /* If we're starting a new sequence, then the previous finished
2707 single-step is no longer relevant. */
2708 if (tp->suspend.waitstatus_pending_p)
2709 {
2710 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2711 {
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: clear_proceed_status: pending "
2715 "event of %s was a finished step. "
2716 "Discarding.\n",
a068643d 2717 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2718
2719 tp->suspend.waitstatus_pending_p = 0;
2720 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2721 }
2722 else if (debug_infrun)
2723 {
23fdd69e
SM
2724 std::string statstr
2725 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2726
372316f1
PA
2727 fprintf_unfiltered (gdb_stdlog,
2728 "infrun: clear_proceed_status_thread: thread %s "
2729 "has pending wait status %s "
2730 "(currently_stepping=%d).\n",
a068643d
TT
2731 target_pid_to_str (tp->ptid).c_str (),
2732 statstr.c_str (),
372316f1 2733 currently_stepping (tp));
372316f1
PA
2734 }
2735 }
2736
70509625
PA
2737 /* If this signal should not be seen by program, give it zero.
2738 Used for debugging signals. */
2739 if (!signal_pass_state (tp->suspend.stop_signal))
2740 tp->suspend.stop_signal = GDB_SIGNAL_0;
2741
46e3ed7f 2742 delete tp->thread_fsm;
243a9253
PA
2743 tp->thread_fsm = NULL;
2744
16c381f0
JK
2745 tp->control.trap_expected = 0;
2746 tp->control.step_range_start = 0;
2747 tp->control.step_range_end = 0;
c1e36e3e 2748 tp->control.may_range_step = 0;
16c381f0
JK
2749 tp->control.step_frame_id = null_frame_id;
2750 tp->control.step_stack_frame_id = null_frame_id;
2751 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2752 tp->control.step_start_function = NULL;
a7212384 2753 tp->stop_requested = 0;
4e1c45ea 2754
16c381f0 2755 tp->control.stop_step = 0;
32400beb 2756
16c381f0 2757 tp->control.proceed_to_finish = 0;
414c69f7 2758
856e7dd6 2759 tp->control.stepping_command = 0;
17b2616c 2760
a7212384 2761 /* Discard any remaining commands or status from previous stop. */
16c381f0 2762 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2763}
32400beb 2764
a7212384 2765void
70509625 2766clear_proceed_status (int step)
a7212384 2767{
f2665db5
MM
2768 /* With scheduler-locking replay, stop replaying other threads if we're
2769 not replaying the user-visible resume ptid.
2770
2771 This is a convenience feature to not require the user to explicitly
2772 stop replaying the other threads. We're assuming that the user's
2773 intent is to resume tracing the recorded process. */
2774 if (!non_stop && scheduler_mode == schedlock_replay
2775 && target_record_is_replaying (minus_one_ptid)
2776 && !target_record_will_replay (user_visible_resume_ptid (step),
2777 execution_direction))
2778 target_record_stop_replaying ();
2779
08036331 2780 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2781 {
08036331 2782 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2783 process_stratum_target *resume_target
2784 = user_visible_resume_target (resume_ptid);
70509625
PA
2785
2786 /* In all-stop mode, delete the per-thread status of all threads
2787 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2788 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2789 clear_proceed_status_thread (tp);
6c95b8df
PA
2790 }
2791
d7e15655 2792 if (inferior_ptid != null_ptid)
a7212384
UW
2793 {
2794 struct inferior *inferior;
2795
2796 if (non_stop)
2797 {
6c95b8df
PA
2798 /* If in non-stop mode, only delete the per-thread status of
2799 the current thread. */
a7212384
UW
2800 clear_proceed_status_thread (inferior_thread ());
2801 }
6c95b8df 2802
d6b48e9c 2803 inferior = current_inferior ();
16c381f0 2804 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2805 }
2806
76727919 2807 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2808}
2809
99619bea
PA
2810/* Returns true if TP is still stopped at a breakpoint that needs
2811 stepping-over in order to make progress. If the breakpoint is gone
2812 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2813
2814static int
6c4cfb24 2815thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2816{
2817 if (tp->stepping_over_breakpoint)
2818 {
00431a78 2819 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2820
a01bda52 2821 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2822 regcache_read_pc (regcache))
2823 == ordinary_breakpoint_here)
99619bea
PA
2824 return 1;
2825
2826 tp->stepping_over_breakpoint = 0;
2827 }
2828
2829 return 0;
2830}
2831
6c4cfb24
PA
2832/* Check whether thread TP still needs to start a step-over in order
2833 to make progress when resumed. Returns an bitwise or of enum
2834 step_over_what bits, indicating what needs to be stepped over. */
2835
8d297bbf 2836static step_over_what
6c4cfb24
PA
2837thread_still_needs_step_over (struct thread_info *tp)
2838{
8d297bbf 2839 step_over_what what = 0;
6c4cfb24
PA
2840
2841 if (thread_still_needs_step_over_bp (tp))
2842 what |= STEP_OVER_BREAKPOINT;
2843
2844 if (tp->stepping_over_watchpoint
2845 && !target_have_steppable_watchpoint)
2846 what |= STEP_OVER_WATCHPOINT;
2847
2848 return what;
2849}
2850
483805cf
PA
2851/* Returns true if scheduler locking applies. STEP indicates whether
2852 we're about to do a step/next-like command to a thread. */
2853
2854static int
856e7dd6 2855schedlock_applies (struct thread_info *tp)
483805cf
PA
2856{
2857 return (scheduler_mode == schedlock_on
2858 || (scheduler_mode == schedlock_step
f2665db5
MM
2859 && tp->control.stepping_command)
2860 || (scheduler_mode == schedlock_replay
2861 && target_record_will_replay (minus_one_ptid,
2862 execution_direction)));
483805cf
PA
2863}
2864
5b6d1e4f
PA
2865/* Calls target_commit_resume on all targets. */
2866
2867static void
2868commit_resume_all_targets ()
2869{
2870 scoped_restore_current_thread restore_thread;
2871
2872 /* Map between process_target and a representative inferior. This
2873 is to avoid committing a resume in the same target more than
2874 once. Resumptions must be idempotent, so this is an
2875 optimization. */
2876 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2877
2878 for (inferior *inf : all_non_exited_inferiors ())
2879 if (inf->has_execution ())
2880 conn_inf[inf->process_target ()] = inf;
2881
2882 for (const auto &ci : conn_inf)
2883 {
2884 inferior *inf = ci.second;
2885 switch_to_inferior_no_thread (inf);
2886 target_commit_resume ();
2887 }
2888}
2889
2f4fcf00
PA
2890/* Check that all the targets we're about to resume are in non-stop
2891 mode. Ideally, we'd only care whether all targets support
2892 target-async, but we're not there yet. E.g., stop_all_threads
2893 doesn't know how to handle all-stop targets. Also, the remote
2894 protocol in all-stop mode is synchronous, irrespective of
2895 target-async, which means that things like a breakpoint re-set
2896 triggered by one target would try to read memory from all targets
2897 and fail. */
2898
2899static void
2900check_multi_target_resumption (process_stratum_target *resume_target)
2901{
2902 if (!non_stop && resume_target == nullptr)
2903 {
2904 scoped_restore_current_thread restore_thread;
2905
2906 /* This is used to track whether we're resuming more than one
2907 target. */
2908 process_stratum_target *first_connection = nullptr;
2909
2910 /* The first inferior we see with a target that does not work in
2911 always-non-stop mode. */
2912 inferior *first_not_non_stop = nullptr;
2913
2914 for (inferior *inf : all_non_exited_inferiors (resume_target))
2915 {
2916 switch_to_inferior_no_thread (inf);
2917
2918 if (!target_has_execution)
2919 continue;
2920
2921 process_stratum_target *proc_target
2922 = current_inferior ()->process_target();
2923
2924 if (!target_is_non_stop_p ())
2925 first_not_non_stop = inf;
2926
2927 if (first_connection == nullptr)
2928 first_connection = proc_target;
2929 else if (first_connection != proc_target
2930 && first_not_non_stop != nullptr)
2931 {
2932 switch_to_inferior_no_thread (first_not_non_stop);
2933
2934 proc_target = current_inferior ()->process_target();
2935
2936 error (_("Connection %d (%s) does not support "
2937 "multi-target resumption."),
2938 proc_target->connection_number,
2939 make_target_connection_string (proc_target).c_str ());
2940 }
2941 }
2942 }
2943}
2944
c906108c
SS
2945/* Basic routine for continuing the program in various fashions.
2946
2947 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2948 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2949 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2950
2951 You should call clear_proceed_status before calling proceed. */
2952
2953void
64ce06e4 2954proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2955{
e58b0e63
PA
2956 struct regcache *regcache;
2957 struct gdbarch *gdbarch;
e58b0e63 2958 CORE_ADDR pc;
4d9d9d04
PA
2959 struct execution_control_state ecss;
2960 struct execution_control_state *ecs = &ecss;
4d9d9d04 2961 int started;
c906108c 2962
e58b0e63
PA
2963 /* If we're stopped at a fork/vfork, follow the branch set by the
2964 "set follow-fork-mode" command; otherwise, we'll just proceed
2965 resuming the current thread. */
2966 if (!follow_fork ())
2967 {
2968 /* The target for some reason decided not to resume. */
2969 normal_stop ();
f148b27e 2970 if (target_can_async_p ())
b1a35af2 2971 inferior_event_handler (INF_EXEC_COMPLETE);
e58b0e63
PA
2972 return;
2973 }
2974
842951eb
PA
2975 /* We'll update this if & when we switch to a new thread. */
2976 previous_inferior_ptid = inferior_ptid;
2977
e58b0e63 2978 regcache = get_current_regcache ();
ac7936df 2979 gdbarch = regcache->arch ();
8b86c959
YQ
2980 const address_space *aspace = regcache->aspace ();
2981
fc75c28b
TBA
2982 pc = regcache_read_pc_protected (regcache);
2983
08036331 2984 thread_info *cur_thr = inferior_thread ();
e58b0e63 2985
99619bea 2986 /* Fill in with reasonable starting values. */
08036331 2987 init_thread_stepping_state (cur_thr);
99619bea 2988
08036331 2989 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2990
5b6d1e4f
PA
2991 ptid_t resume_ptid
2992 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2993 process_stratum_target *resume_target
2994 = user_visible_resume_target (resume_ptid);
2995
2f4fcf00
PA
2996 check_multi_target_resumption (resume_target);
2997
2acceee2 2998 if (addr == (CORE_ADDR) -1)
c906108c 2999 {
08036331 3000 if (pc == cur_thr->suspend.stop_pc
af48d08f 3001 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3002 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3003 /* There is a breakpoint at the address we will resume at,
3004 step one instruction before inserting breakpoints so that
3005 we do not stop right away (and report a second hit at this
b2175913
MS
3006 breakpoint).
3007
3008 Note, we don't do this in reverse, because we won't
3009 actually be executing the breakpoint insn anyway.
3010 We'll be (un-)executing the previous instruction. */
08036331 3011 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3012 else if (gdbarch_single_step_through_delay_p (gdbarch)
3013 && gdbarch_single_step_through_delay (gdbarch,
3014 get_current_frame ()))
3352ef37
AC
3015 /* We stepped onto an instruction that needs to be stepped
3016 again before re-inserting the breakpoint, do so. */
08036331 3017 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3018 }
3019 else
3020 {
515630c5 3021 regcache_write_pc (regcache, addr);
c906108c
SS
3022 }
3023
70509625 3024 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3025 cur_thr->suspend.stop_signal = siggnal;
70509625 3026
4d9d9d04
PA
3027 /* If an exception is thrown from this point on, make sure to
3028 propagate GDB's knowledge of the executing state to the
3029 frontend/user running state. */
5b6d1e4f 3030 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3031
3032 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3033 threads (e.g., we might need to set threads stepping over
3034 breakpoints first), from the user/frontend's point of view, all
3035 threads in RESUME_PTID are now running. Unless we're calling an
3036 inferior function, as in that case we pretend the inferior
3037 doesn't run at all. */
08036331 3038 if (!cur_thr->control.in_infcall)
719546c4 3039 set_running (resume_target, resume_ptid, true);
17b2616c 3040
527159b7 3041 if (debug_infrun)
8a9de0e4 3042 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3043 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3044 paddress (gdbarch, addr),
64ce06e4 3045 gdb_signal_to_symbol_string (siggnal));
527159b7 3046
4d9d9d04
PA
3047 annotate_starting ();
3048
3049 /* Make sure that output from GDB appears before output from the
3050 inferior. */
3051 gdb_flush (gdb_stdout);
3052
d930703d
PA
3053 /* Since we've marked the inferior running, give it the terminal. A
3054 QUIT/Ctrl-C from here on is forwarded to the target (which can
3055 still detect attempts to unblock a stuck connection with repeated
3056 Ctrl-C from within target_pass_ctrlc). */
3057 target_terminal::inferior ();
3058
4d9d9d04
PA
3059 /* In a multi-threaded task we may select another thread and
3060 then continue or step.
3061
3062 But if a thread that we're resuming had stopped at a breakpoint,
3063 it will immediately cause another breakpoint stop without any
3064 execution (i.e. it will report a breakpoint hit incorrectly). So
3065 we must step over it first.
3066
3067 Look for threads other than the current (TP) that reported a
3068 breakpoint hit and haven't been resumed yet since. */
3069
3070 /* If scheduler locking applies, we can avoid iterating over all
3071 threads. */
08036331 3072 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3073 {
5b6d1e4f
PA
3074 for (thread_info *tp : all_non_exited_threads (resume_target,
3075 resume_ptid))
08036331 3076 {
f3f8ece4
PA
3077 switch_to_thread_no_regs (tp);
3078
4d9d9d04
PA
3079 /* Ignore the current thread here. It's handled
3080 afterwards. */
08036331 3081 if (tp == cur_thr)
4d9d9d04 3082 continue;
c906108c 3083
4d9d9d04
PA
3084 if (!thread_still_needs_step_over (tp))
3085 continue;
3086
3087 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3088
99619bea
PA
3089 if (debug_infrun)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "infrun: need to step-over [%s] first\n",
a068643d 3092 target_pid_to_str (tp->ptid).c_str ());
99619bea 3093
4d9d9d04 3094 thread_step_over_chain_enqueue (tp);
2adfaa28 3095 }
f3f8ece4
PA
3096
3097 switch_to_thread (cur_thr);
30852783
UW
3098 }
3099
4d9d9d04
PA
3100 /* Enqueue the current thread last, so that we move all other
3101 threads over their breakpoints first. */
08036331
PA
3102 if (cur_thr->stepping_over_breakpoint)
3103 thread_step_over_chain_enqueue (cur_thr);
30852783 3104
4d9d9d04
PA
3105 /* If the thread isn't started, we'll still need to set its prev_pc,
3106 so that switch_back_to_stepped_thread knows the thread hasn't
3107 advanced. Must do this before resuming any thread, as in
3108 all-stop/remote, once we resume we can't send any other packet
3109 until the target stops again. */
fc75c28b 3110 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3111
a9bc57b9
TT
3112 {
3113 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3114
a9bc57b9 3115 started = start_step_over ();
c906108c 3116
a9bc57b9
TT
3117 if (step_over_info_valid_p ())
3118 {
3119 /* Either this thread started a new in-line step over, or some
3120 other thread was already doing one. In either case, don't
3121 resume anything else until the step-over is finished. */
3122 }
3123 else if (started && !target_is_non_stop_p ())
3124 {
3125 /* A new displaced stepping sequence was started. In all-stop,
3126 we can't talk to the target anymore until it next stops. */
3127 }
3128 else if (!non_stop && target_is_non_stop_p ())
3129 {
3130 /* In all-stop, but the target is always in non-stop mode.
3131 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3132 for (thread_info *tp : all_non_exited_threads (resume_target,
3133 resume_ptid))
3134 {
3135 switch_to_thread_no_regs (tp);
3136
f9fac3c8
SM
3137 if (!tp->inf->has_execution ())
3138 {
3139 if (debug_infrun)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "infrun: proceed: [%s] target has "
3142 "no execution\n",
3143 target_pid_to_str (tp->ptid).c_str ());
3144 continue;
3145 }
f3f8ece4 3146
f9fac3c8
SM
3147 if (tp->resumed)
3148 {
3149 if (debug_infrun)
3150 fprintf_unfiltered (gdb_stdlog,
3151 "infrun: proceed: [%s] resumed\n",
3152 target_pid_to_str (tp->ptid).c_str ());
3153 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3154 continue;
3155 }
fbea99ea 3156
f9fac3c8
SM
3157 if (thread_is_in_step_over_chain (tp))
3158 {
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: proceed: [%s] needs step-over\n",
3162 target_pid_to_str (tp->ptid).c_str ());
3163 continue;
3164 }
fbea99ea 3165
f9fac3c8
SM
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: resuming %s\n",
3169 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3170
f9fac3c8
SM
3171 reset_ecs (ecs, tp);
3172 switch_to_thread (tp);
3173 keep_going_pass_signal (ecs);
3174 if (!ecs->wait_some_more)
3175 error (_("Command aborted."));
3176 }
a9bc57b9 3177 }
08036331 3178 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3179 {
3180 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3181 reset_ecs (ecs, cur_thr);
3182 switch_to_thread (cur_thr);
a9bc57b9
TT
3183 keep_going_pass_signal (ecs);
3184 if (!ecs->wait_some_more)
3185 error (_("Command aborted."));
3186 }
3187 }
c906108c 3188
5b6d1e4f 3189 commit_resume_all_targets ();
85ad3aaf 3190
731f534f 3191 finish_state.release ();
c906108c 3192
873657b9
PA
3193 /* If we've switched threads above, switch back to the previously
3194 current thread. We don't want the user to see a different
3195 selected thread. */
3196 switch_to_thread (cur_thr);
3197
0b333c5e
PA
3198 /* Tell the event loop to wait for it to stop. If the target
3199 supports asynchronous execution, it'll do this from within
3200 target_resume. */
362646f5 3201 if (!target_can_async_p ())
0b333c5e 3202 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3203}
c906108c
SS
3204\f
3205
3206/* Start remote-debugging of a machine over a serial link. */
96baa820 3207
c906108c 3208void
8621d6a9 3209start_remote (int from_tty)
c906108c 3210{
5b6d1e4f
PA
3211 inferior *inf = current_inferior ();
3212 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3213
1777feb0 3214 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3215 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3216 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3217 nothing is returned (instead of just blocking). Because of this,
3218 targets expecting an immediate response need to, internally, set
3219 things up so that the target_wait() is forced to eventually
1777feb0 3220 timeout. */
6426a772
JM
3221 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3222 differentiate to its caller what the state of the target is after
3223 the initial open has been performed. Here we're assuming that
3224 the target has stopped. It should be possible to eventually have
3225 target_open() return to the caller an indication that the target
3226 is currently running and GDB state should be set to the same as
1777feb0 3227 for an async run. */
5b6d1e4f 3228 wait_for_inferior (inf);
8621d6a9
DJ
3229
3230 /* Now that the inferior has stopped, do any bookkeeping like
3231 loading shared libraries. We want to do this before normal_stop,
3232 so that the displayed frame is up to date. */
8b88a78e 3233 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3234
6426a772 3235 normal_stop ();
c906108c
SS
3236}
3237
3238/* Initialize static vars when a new inferior begins. */
3239
3240void
96baa820 3241init_wait_for_inferior (void)
c906108c
SS
3242{
3243 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3244
c906108c
SS
3245 breakpoint_init_inferior (inf_starting);
3246
70509625 3247 clear_proceed_status (0);
9f976b41 3248
ab1ddbcf 3249 nullify_last_target_wait_ptid ();
237fc4c9 3250
842951eb 3251 previous_inferior_ptid = inferior_ptid;
c906108c 3252}
237fc4c9 3253
c906108c 3254\f
488f131b 3255
ec9499be 3256static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3257
568d6575
UW
3258static void handle_step_into_function (struct gdbarch *gdbarch,
3259 struct execution_control_state *ecs);
3260static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3261 struct execution_control_state *ecs);
4f5d7f63 3262static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3263static void check_exception_resume (struct execution_control_state *,
28106bc2 3264 struct frame_info *);
611c83ae 3265
bdc36728 3266static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3267static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3268static void keep_going (struct execution_control_state *ecs);
94c57d6a 3269static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3270static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3271
252fbfc8
PA
3272/* This function is attached as a "thread_stop_requested" observer.
3273 Cleanup local state that assumed the PTID was to be resumed, and
3274 report the stop to the frontend. */
3275
2c0b251b 3276static void
252fbfc8
PA
3277infrun_thread_stop_requested (ptid_t ptid)
3278{
5b6d1e4f
PA
3279 process_stratum_target *curr_target = current_inferior ()->process_target ();
3280
c65d6b55
PA
3281 /* PTID was requested to stop. If the thread was already stopped,
3282 but the user/frontend doesn't know about that yet (e.g., the
3283 thread had been temporarily paused for some step-over), set up
3284 for reporting the stop now. */
5b6d1e4f 3285 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3286 {
3287 if (tp->state != THREAD_RUNNING)
3288 continue;
3289 if (tp->executing)
3290 continue;
c65d6b55 3291
08036331
PA
3292 /* Remove matching threads from the step-over queue, so
3293 start_step_over doesn't try to resume them
3294 automatically. */
3295 if (thread_is_in_step_over_chain (tp))
3296 thread_step_over_chain_remove (tp);
c65d6b55 3297
08036331
PA
3298 /* If the thread is stopped, but the user/frontend doesn't
3299 know about that yet, queue a pending event, as if the
3300 thread had just stopped now. Unless the thread already had
3301 a pending event. */
3302 if (!tp->suspend.waitstatus_pending_p)
3303 {
3304 tp->suspend.waitstatus_pending_p = 1;
3305 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3306 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3307 }
c65d6b55 3308
08036331
PA
3309 /* Clear the inline-frame state, since we're re-processing the
3310 stop. */
5b6d1e4f 3311 clear_inline_frame_state (tp);
c65d6b55 3312
08036331
PA
3313 /* If this thread was paused because some other thread was
3314 doing an inline-step over, let that finish first. Once
3315 that happens, we'll restart all threads and consume pending
3316 stop events then. */
3317 if (step_over_info_valid_p ())
3318 continue;
3319
3320 /* Otherwise we can process the (new) pending event now. Set
3321 it so this pending event is considered by
3322 do_target_wait. */
719546c4 3323 tp->resumed = true;
08036331 3324 }
252fbfc8
PA
3325}
3326
a07daef3
PA
3327static void
3328infrun_thread_thread_exit (struct thread_info *tp, int silent)
3329{
5b6d1e4f
PA
3330 if (target_last_proc_target == tp->inf->process_target ()
3331 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3332 nullify_last_target_wait_ptid ();
3333}
3334
0cbcdb96
PA
3335/* Delete the step resume, single-step and longjmp/exception resume
3336 breakpoints of TP. */
4e1c45ea 3337
0cbcdb96
PA
3338static void
3339delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3340{
0cbcdb96
PA
3341 delete_step_resume_breakpoint (tp);
3342 delete_exception_resume_breakpoint (tp);
34b7e8a6 3343 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3344}
3345
0cbcdb96
PA
3346/* If the target still has execution, call FUNC for each thread that
3347 just stopped. In all-stop, that's all the non-exited threads; in
3348 non-stop, that's the current thread, only. */
3349
3350typedef void (*for_each_just_stopped_thread_callback_func)
3351 (struct thread_info *tp);
4e1c45ea
PA
3352
3353static void
0cbcdb96 3354for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3355{
d7e15655 3356 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3357 return;
3358
fbea99ea 3359 if (target_is_non_stop_p ())
4e1c45ea 3360 {
0cbcdb96
PA
3361 /* If in non-stop mode, only the current thread stopped. */
3362 func (inferior_thread ());
4e1c45ea
PA
3363 }
3364 else
0cbcdb96 3365 {
0cbcdb96 3366 /* In all-stop mode, all threads have stopped. */
08036331
PA
3367 for (thread_info *tp : all_non_exited_threads ())
3368 func (tp);
0cbcdb96
PA
3369 }
3370}
3371
3372/* Delete the step resume and longjmp/exception resume breakpoints of
3373 the threads that just stopped. */
3374
3375static void
3376delete_just_stopped_threads_infrun_breakpoints (void)
3377{
3378 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3379}
3380
3381/* Delete the single-step breakpoints of the threads that just
3382 stopped. */
7c16b83e 3383
34b7e8a6
PA
3384static void
3385delete_just_stopped_threads_single_step_breakpoints (void)
3386{
3387 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3388}
3389
221e1a37 3390/* See infrun.h. */
223698f8 3391
221e1a37 3392void
223698f8
DE
3393print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3394 const struct target_waitstatus *ws)
3395{
23fdd69e 3396 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3397 string_file stb;
223698f8
DE
3398
3399 /* The text is split over several lines because it was getting too long.
3400 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3401 output as a unit; we want only one timestamp printed if debug_timestamp
3402 is set. */
3403
d7e74731 3404 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3405 waiton_ptid.pid (),
e38504b3 3406 waiton_ptid.lwp (),
cc6bcb54 3407 waiton_ptid.tid ());
e99b03dc 3408 if (waiton_ptid.pid () != -1)
a068643d 3409 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3410 stb.printf (", status) =\n");
3411 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3412 result_ptid.pid (),
e38504b3 3413 result_ptid.lwp (),
cc6bcb54 3414 result_ptid.tid (),
a068643d 3415 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3416 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3417
3418 /* This uses %s in part to handle %'s in the text, but also to avoid
3419 a gcc error: the format attribute requires a string literal. */
d7e74731 3420 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3421}
3422
372316f1
PA
3423/* Select a thread at random, out of those which are resumed and have
3424 had events. */
3425
3426static struct thread_info *
5b6d1e4f 3427random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3428{
372316f1 3429 int num_events = 0;
08036331 3430
5b6d1e4f 3431 auto has_event = [&] (thread_info *tp)
08036331 3432 {
5b6d1e4f
PA
3433 return (tp->ptid.matches (waiton_ptid)
3434 && tp->resumed
08036331
PA
3435 && tp->suspend.waitstatus_pending_p);
3436 };
372316f1
PA
3437
3438 /* First see how many events we have. Count only resumed threads
3439 that have an event pending. */
5b6d1e4f 3440 for (thread_info *tp : inf->non_exited_threads ())
08036331 3441 if (has_event (tp))
372316f1
PA
3442 num_events++;
3443
3444 if (num_events == 0)
3445 return NULL;
3446
3447 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3448 int random_selector = (int) ((num_events * (double) rand ())
3449 / (RAND_MAX + 1.0));
372316f1
PA
3450
3451 if (debug_infrun && num_events > 1)
3452 fprintf_unfiltered (gdb_stdlog,
3453 "infrun: Found %d events, selecting #%d\n",
3454 num_events, random_selector);
3455
3456 /* Select the Nth thread that has had an event. */
5b6d1e4f 3457 for (thread_info *tp : inf->non_exited_threads ())
08036331 3458 if (has_event (tp))
372316f1 3459 if (random_selector-- == 0)
08036331 3460 return tp;
372316f1 3461
08036331 3462 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3463}
3464
3465/* Wrapper for target_wait that first checks whether threads have
3466 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3467 more events. INF is the inferior we're using to call target_wait
3468 on. */
372316f1
PA
3469
3470static ptid_t
5b6d1e4f
PA
3471do_target_wait_1 (inferior *inf, ptid_t ptid,
3472 target_waitstatus *status, int options)
372316f1
PA
3473{
3474 ptid_t event_ptid;
3475 struct thread_info *tp;
3476
24ed6739
AB
3477 /* We know that we are looking for an event in the target of inferior
3478 INF, but we don't know which thread the event might come from. As
3479 such we want to make sure that INFERIOR_PTID is reset so that none of
3480 the wait code relies on it - doing so is always a mistake. */
3481 switch_to_inferior_no_thread (inf);
3482
372316f1
PA
3483 /* First check if there is a resumed thread with a wait status
3484 pending. */
d7e15655 3485 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3486 {
5b6d1e4f 3487 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3488 }
3489 else
3490 {
3491 if (debug_infrun)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "infrun: Waiting for specific thread %s.\n",
a068643d 3494 target_pid_to_str (ptid).c_str ());
372316f1
PA
3495
3496 /* We have a specific thread to check. */
5b6d1e4f 3497 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3498 gdb_assert (tp != NULL);
3499 if (!tp->suspend.waitstatus_pending_p)
3500 tp = NULL;
3501 }
3502
3503 if (tp != NULL
3504 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3505 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3506 {
00431a78 3507 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3508 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3509 CORE_ADDR pc;
3510 int discard = 0;
3511
3512 pc = regcache_read_pc (regcache);
3513
3514 if (pc != tp->suspend.stop_pc)
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3519 target_pid_to_str (tp->ptid).c_str (),
defd2172 3520 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3521 paddress (gdbarch, pc));
3522 discard = 1;
3523 }
a01bda52 3524 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3525 {
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog,
3528 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3529 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3530 paddress (gdbarch, pc));
3531
3532 discard = 1;
3533 }
3534
3535 if (discard)
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: pending event of %s cancelled.\n",
a068643d 3540 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3541
3542 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3543 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3544 }
3545 }
3546
3547 if (tp != NULL)
3548 {
3549 if (debug_infrun)
3550 {
23fdd69e
SM
3551 std::string statstr
3552 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3553
372316f1
PA
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3556 statstr.c_str (),
a068643d 3557 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3558 }
3559
3560 /* Now that we've selected our final event LWP, un-adjust its PC
3561 if it was a software breakpoint (and the target doesn't
3562 always adjust the PC itself). */
3563 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3564 && !target_supports_stopped_by_sw_breakpoint ())
3565 {
3566 struct regcache *regcache;
3567 struct gdbarch *gdbarch;
3568 int decr_pc;
3569
00431a78 3570 regcache = get_thread_regcache (tp);
ac7936df 3571 gdbarch = regcache->arch ();
372316f1
PA
3572
3573 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3574 if (decr_pc != 0)
3575 {
3576 CORE_ADDR pc;
3577
3578 pc = regcache_read_pc (regcache);
3579 regcache_write_pc (regcache, pc + decr_pc);
3580 }
3581 }
3582
3583 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3584 *status = tp->suspend.waitstatus;
3585 tp->suspend.waitstatus_pending_p = 0;
3586
3587 /* Wake up the event loop again, until all pending events are
3588 processed. */
3589 if (target_is_async_p ())
3590 mark_async_event_handler (infrun_async_inferior_event_token);
3591 return tp->ptid;
3592 }
3593
3594 /* But if we don't find one, we'll have to wait. */
3595
3596 if (deprecated_target_wait_hook)
3597 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3598 else
3599 event_ptid = target_wait (ptid, status, options);
3600
3601 return event_ptid;
3602}
3603
5b6d1e4f
PA
3604/* Returns true if INF has any resumed thread with a status
3605 pending. */
3606
3607static bool
3608threads_are_resumed_pending_p (inferior *inf)
3609{
3610 for (thread_info *tp : inf->non_exited_threads ())
3611 if (tp->resumed
3612 && tp->suspend.waitstatus_pending_p)
3613 return true;
3614
3615 return false;
3616}
3617
3618/* Wrapper for target_wait that first checks whether threads have
3619 pending statuses to report before actually asking the target for
3620 more events. Polls for events from all inferiors/targets. */
3621
3622static bool
3623do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3624{
3625 int num_inferiors = 0;
3626 int random_selector;
3627
3628 /* For fairness, we pick the first inferior/target to poll at
3629 random, and then continue polling the rest of the inferior list
3630 starting from that one in a circular fashion until the whole list
3631 is polled once. */
3632
3633 auto inferior_matches = [&wait_ptid] (inferior *inf)
3634 {
3635 return (inf->process_target () != NULL
3636 && (threads_are_executing (inf->process_target ())
3637 || threads_are_resumed_pending_p (inf))
3638 && ptid_t (inf->pid).matches (wait_ptid));
3639 };
3640
3641 /* First see how many resumed inferiors we have. */
3642 for (inferior *inf : all_inferiors ())
3643 if (inferior_matches (inf))
3644 num_inferiors++;
3645
3646 if (num_inferiors == 0)
3647 {
3648 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3649 return false;
3650 }
3651
3652 /* Now randomly pick an inferior out of those that were resumed. */
3653 random_selector = (int)
3654 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3655
3656 if (debug_infrun && num_inferiors > 1)
3657 fprintf_unfiltered (gdb_stdlog,
3658 "infrun: Found %d inferiors, starting at #%d\n",
3659 num_inferiors, random_selector);
3660
3661 /* Select the Nth inferior that was resumed. */
3662
3663 inferior *selected = nullptr;
3664
3665 for (inferior *inf : all_inferiors ())
3666 if (inferior_matches (inf))
3667 if (random_selector-- == 0)
3668 {
3669 selected = inf;
3670 break;
3671 }
3672
3673 /* Now poll for events out of each of the resumed inferior's
3674 targets, starting from the selected one. */
3675
3676 auto do_wait = [&] (inferior *inf)
3677 {
5b6d1e4f
PA
3678 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3679 ecs->target = inf->process_target ();
3680 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3681 };
3682
3683 /* Needed in all-stop+target-non-stop mode, because we end up here
3684 spuriously after the target is all stopped and we've already
3685 reported the stop to the user, polling for events. */
3686 scoped_restore_current_thread restore_thread;
3687
3688 int inf_num = selected->num;
3689 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3690 if (inferior_matches (inf))
3691 if (do_wait (inf))
3692 return true;
3693
3694 for (inferior *inf = inferior_list;
3695 inf != NULL && inf->num < inf_num;
3696 inf = inf->next)
3697 if (inferior_matches (inf))
3698 if (do_wait (inf))
3699 return true;
3700
3701 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3702 return false;
3703}
3704
24291992
PA
3705/* Prepare and stabilize the inferior for detaching it. E.g.,
3706 detaching while a thread is displaced stepping is a recipe for
3707 crashing it, as nothing would readjust the PC out of the scratch
3708 pad. */
3709
3710void
3711prepare_for_detach (void)
3712{
3713 struct inferior *inf = current_inferior ();
f2907e49 3714 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3715
00431a78 3716 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3717
3718 /* Is any thread of this process displaced stepping? If not,
3719 there's nothing else to do. */
d20172fc 3720 if (displaced->step_thread == nullptr)
24291992
PA
3721 return;
3722
3723 if (debug_infrun)
3724 fprintf_unfiltered (gdb_stdlog,
3725 "displaced-stepping in-process while detaching");
3726
9bcb1f16 3727 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3728
00431a78 3729 while (displaced->step_thread != nullptr)
24291992 3730 {
24291992
PA
3731 struct execution_control_state ecss;
3732 struct execution_control_state *ecs;
3733
3734 ecs = &ecss;
3735 memset (ecs, 0, sizeof (*ecs));
3736
3737 overlay_cache_invalid = 1;
f15cb84a
YQ
3738 /* Flush target cache before starting to handle each event.
3739 Target was running and cache could be stale. This is just a
3740 heuristic. Running threads may modify target memory, but we
3741 don't get any event. */
3742 target_dcache_invalidate ();
24291992 3743
5b6d1e4f 3744 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3745
3746 if (debug_infrun)
3747 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3748
3749 /* If an error happens while handling the event, propagate GDB's
3750 knowledge of the executing state to the frontend/user running
3751 state. */
5b6d1e4f
PA
3752 scoped_finish_thread_state finish_state (inf->process_target (),
3753 minus_one_ptid);
24291992
PA
3754
3755 /* Now figure out what to do with the result of the result. */
3756 handle_inferior_event (ecs);
3757
3758 /* No error, don't finish the state yet. */
731f534f 3759 finish_state.release ();
24291992
PA
3760
3761 /* Breakpoints and watchpoints are not installed on the target
3762 at this point, and signals are passed directly to the
3763 inferior, so this must mean the process is gone. */
3764 if (!ecs->wait_some_more)
3765 {
9bcb1f16 3766 restore_detaching.release ();
24291992
PA
3767 error (_("Program exited while detaching"));
3768 }
3769 }
3770
9bcb1f16 3771 restore_detaching.release ();
24291992
PA
3772}
3773
cd0fc7c3 3774/* Wait for control to return from inferior to debugger.
ae123ec6 3775
cd0fc7c3
SS
3776 If inferior gets a signal, we may decide to start it up again
3777 instead of returning. That is why there is a loop in this function.
3778 When this function actually returns it means the inferior
3779 should be left stopped and GDB should read more commands. */
3780
5b6d1e4f
PA
3781static void
3782wait_for_inferior (inferior *inf)
cd0fc7c3 3783{
527159b7 3784 if (debug_infrun)
ae123ec6 3785 fprintf_unfiltered
e4c8541f 3786 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3787
4c41382a 3788 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3789
e6f5c25b
PA
3790 /* If an error happens while handling the event, propagate GDB's
3791 knowledge of the executing state to the frontend/user running
3792 state. */
5b6d1e4f
PA
3793 scoped_finish_thread_state finish_state
3794 (inf->process_target (), minus_one_ptid);
e6f5c25b 3795
c906108c
SS
3796 while (1)
3797 {
ae25568b
PA
3798 struct execution_control_state ecss;
3799 struct execution_control_state *ecs = &ecss;
29f49a6a 3800
ae25568b
PA
3801 memset (ecs, 0, sizeof (*ecs));
3802
ec9499be 3803 overlay_cache_invalid = 1;
ec9499be 3804
f15cb84a
YQ
3805 /* Flush target cache before starting to handle each event.
3806 Target was running and cache could be stale. This is just a
3807 heuristic. Running threads may modify target memory, but we
3808 don't get any event. */
3809 target_dcache_invalidate ();
3810
5b6d1e4f
PA
3811 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3812 ecs->target = inf->process_target ();
c906108c 3813
f00150c9 3814 if (debug_infrun)
5b6d1e4f 3815 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3816
cd0fc7c3
SS
3817 /* Now figure out what to do with the result of the result. */
3818 handle_inferior_event (ecs);
c906108c 3819
cd0fc7c3
SS
3820 if (!ecs->wait_some_more)
3821 break;
3822 }
4e1c45ea 3823
e6f5c25b 3824 /* No error, don't finish the state yet. */
731f534f 3825 finish_state.release ();
cd0fc7c3 3826}
c906108c 3827
d3d4baed
PA
3828/* Cleanup that reinstalls the readline callback handler, if the
3829 target is running in the background. If while handling the target
3830 event something triggered a secondary prompt, like e.g., a
3831 pagination prompt, we'll have removed the callback handler (see
3832 gdb_readline_wrapper_line). Need to do this as we go back to the
3833 event loop, ready to process further input. Note this has no
3834 effect if the handler hasn't actually been removed, because calling
3835 rl_callback_handler_install resets the line buffer, thus losing
3836 input. */
3837
3838static void
d238133d 3839reinstall_readline_callback_handler_cleanup ()
d3d4baed 3840{
3b12939d
PA
3841 struct ui *ui = current_ui;
3842
3843 if (!ui->async)
6c400b59
PA
3844 {
3845 /* We're not going back to the top level event loop yet. Don't
3846 install the readline callback, as it'd prep the terminal,
3847 readline-style (raw, noecho) (e.g., --batch). We'll install
3848 it the next time the prompt is displayed, when we're ready
3849 for input. */
3850 return;
3851 }
3852
3b12939d 3853 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3854 gdb_rl_callback_handler_reinstall ();
3855}
3856
243a9253
PA
3857/* Clean up the FSMs of threads that are now stopped. In non-stop,
3858 that's just the event thread. In all-stop, that's all threads. */
3859
3860static void
3861clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3862{
08036331
PA
3863 if (ecs->event_thread != NULL
3864 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3865 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3866
3867 if (!non_stop)
3868 {
08036331 3869 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3870 {
3871 if (thr->thread_fsm == NULL)
3872 continue;
3873 if (thr == ecs->event_thread)
3874 continue;
3875
00431a78 3876 switch_to_thread (thr);
46e3ed7f 3877 thr->thread_fsm->clean_up (thr);
243a9253
PA
3878 }
3879
3880 if (ecs->event_thread != NULL)
00431a78 3881 switch_to_thread (ecs->event_thread);
243a9253
PA
3882 }
3883}
3884
3b12939d
PA
3885/* Helper for all_uis_check_sync_execution_done that works on the
3886 current UI. */
3887
3888static void
3889check_curr_ui_sync_execution_done (void)
3890{
3891 struct ui *ui = current_ui;
3892
3893 if (ui->prompt_state == PROMPT_NEEDED
3894 && ui->async
3895 && !gdb_in_secondary_prompt_p (ui))
3896 {
223ffa71 3897 target_terminal::ours ();
76727919 3898 gdb::observers::sync_execution_done.notify ();
3eb7562a 3899 ui_register_input_event_handler (ui);
3b12939d
PA
3900 }
3901}
3902
3903/* See infrun.h. */
3904
3905void
3906all_uis_check_sync_execution_done (void)
3907{
0e454242 3908 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3909 {
3910 check_curr_ui_sync_execution_done ();
3911 }
3912}
3913
a8836c93
PA
3914/* See infrun.h. */
3915
3916void
3917all_uis_on_sync_execution_starting (void)
3918{
0e454242 3919 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3920 {
3921 if (current_ui->prompt_state == PROMPT_NEEDED)
3922 async_disable_stdin ();
3923 }
3924}
3925
1777feb0 3926/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3927 event loop whenever a change of state is detected on the file
1777feb0
MS
3928 descriptor corresponding to the target. It can be called more than
3929 once to complete a single execution command. In such cases we need
3930 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3931 that this function is called for a single execution command, then
3932 report to the user that the inferior has stopped, and do the
1777feb0 3933 necessary cleanups. */
43ff13b4
JM
3934
3935void
b1a35af2 3936fetch_inferior_event ()
43ff13b4 3937{
0d1e5fa7 3938 struct execution_control_state ecss;
a474d7c2 3939 struct execution_control_state *ecs = &ecss;
0f641c01 3940 int cmd_done = 0;
43ff13b4 3941
0d1e5fa7
PA
3942 memset (ecs, 0, sizeof (*ecs));
3943
c61db772
PA
3944 /* Events are always processed with the main UI as current UI. This
3945 way, warnings, debug output, etc. are always consistently sent to
3946 the main console. */
4b6749b9 3947 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3948
d3d4baed 3949 /* End up with readline processing input, if necessary. */
d238133d
TT
3950 {
3951 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3952
3953 /* We're handling a live event, so make sure we're doing live
3954 debugging. If we're looking at traceframes while the target is
3955 running, we're going to need to get back to that mode after
3956 handling the event. */
3957 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3958 if (non_stop)
3959 {
3960 maybe_restore_traceframe.emplace ();
3961 set_current_traceframe (-1);
3962 }
43ff13b4 3963
873657b9
PA
3964 /* The user/frontend should not notice a thread switch due to
3965 internal events. Make sure we revert to the user selected
3966 thread and frame after handling the event and running any
3967 breakpoint commands. */
3968 scoped_restore_current_thread restore_thread;
d238133d
TT
3969
3970 overlay_cache_invalid = 1;
3971 /* Flush target cache before starting to handle each event. Target
3972 was running and cache could be stale. This is just a heuristic.
3973 Running threads may modify target memory, but we don't get any
3974 event. */
3975 target_dcache_invalidate ();
3976
3977 scoped_restore save_exec_dir
3978 = make_scoped_restore (&execution_direction,
3979 target_execution_direction ());
3980
5b6d1e4f
PA
3981 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3982 return;
3983
3984 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3985
3986 /* Switch to the target that generated the event, so we can do
3987 target calls. Any inferior bound to the target will do, so we
3988 just switch to the first we find. */
3989 for (inferior *inf : all_inferiors (ecs->target))
3990 {
3991 switch_to_inferior_no_thread (inf);
3992 break;
3993 }
d238133d
TT
3994
3995 if (debug_infrun)
5b6d1e4f 3996 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3997
3998 /* If an error happens while handling the event, propagate GDB's
3999 knowledge of the executing state to the frontend/user running
4000 state. */
4001 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 4002 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 4003
979a0d13 4004 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
4005 still for the thread which has thrown the exception. */
4006 auto defer_bpstat_clear
4007 = make_scope_exit (bpstat_clear_actions);
4008 auto defer_delete_threads
4009 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4010
4011 /* Now figure out what to do with the result of the result. */
4012 handle_inferior_event (ecs);
4013
4014 if (!ecs->wait_some_more)
4015 {
5b6d1e4f 4016 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
4017 int should_stop = 1;
4018 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4019
d238133d 4020 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4021
d238133d
TT
4022 if (thr != NULL)
4023 {
4024 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4025
d238133d 4026 if (thread_fsm != NULL)
46e3ed7f 4027 should_stop = thread_fsm->should_stop (thr);
d238133d 4028 }
243a9253 4029
d238133d
TT
4030 if (!should_stop)
4031 {
4032 keep_going (ecs);
4033 }
4034 else
4035 {
46e3ed7f 4036 bool should_notify_stop = true;
d238133d 4037 int proceeded = 0;
1840d81a 4038
d238133d 4039 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4040
d238133d 4041 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4042 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4043
d238133d
TT
4044 if (should_notify_stop)
4045 {
4046 /* We may not find an inferior if this was a process exit. */
4047 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4048 proceeded = normal_stop ();
4049 }
243a9253 4050
d238133d
TT
4051 if (!proceeded)
4052 {
b1a35af2 4053 inferior_event_handler (INF_EXEC_COMPLETE);
d238133d
TT
4054 cmd_done = 1;
4055 }
873657b9
PA
4056
4057 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4058 previously selected thread is gone. We have two
4059 choices - switch to no thread selected, or restore the
4060 previously selected thread (now exited). We chose the
4061 later, just because that's what GDB used to do. After
4062 this, "info threads" says "The current thread <Thread
4063 ID 2> has terminated." instead of "No thread
4064 selected.". */
4065 if (!non_stop
4066 && cmd_done
4067 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4068 restore_thread.dont_restore ();
d238133d
TT
4069 }
4070 }
4f8d22e3 4071
d238133d
TT
4072 defer_delete_threads.release ();
4073 defer_bpstat_clear.release ();
29f49a6a 4074
d238133d
TT
4075 /* No error, don't finish the thread states yet. */
4076 finish_state.release ();
731f534f 4077
d238133d
TT
4078 /* This scope is used to ensure that readline callbacks are
4079 reinstalled here. */
4080 }
4f8d22e3 4081
3b12939d
PA
4082 /* If a UI was in sync execution mode, and now isn't, restore its
4083 prompt (a synchronous execution command has finished, and we're
4084 ready for input). */
4085 all_uis_check_sync_execution_done ();
0f641c01
PA
4086
4087 if (cmd_done
0f641c01 4088 && exec_done_display_p
00431a78
PA
4089 && (inferior_ptid == null_ptid
4090 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4091 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4092}
4093
29734269
SM
4094/* See infrun.h. */
4095
edb3359d 4096void
29734269
SM
4097set_step_info (thread_info *tp, struct frame_info *frame,
4098 struct symtab_and_line sal)
edb3359d 4099{
29734269
SM
4100 /* This can be removed once this function no longer implicitly relies on the
4101 inferior_ptid value. */
4102 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4103
16c381f0
JK
4104 tp->control.step_frame_id = get_frame_id (frame);
4105 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4106
4107 tp->current_symtab = sal.symtab;
4108 tp->current_line = sal.line;
4109}
4110
0d1e5fa7
PA
4111/* Clear context switchable stepping state. */
4112
4113void
4e1c45ea 4114init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4115{
7f5ef605 4116 tss->stepped_breakpoint = 0;
0d1e5fa7 4117 tss->stepping_over_breakpoint = 0;
963f9c80 4118 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4119 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4120}
4121
ab1ddbcf 4122/* See infrun.h. */
c32c64b7 4123
6efcd9a8 4124void
5b6d1e4f
PA
4125set_last_target_status (process_stratum_target *target, ptid_t ptid,
4126 target_waitstatus status)
c32c64b7 4127{
5b6d1e4f 4128 target_last_proc_target = target;
c32c64b7
DE
4129 target_last_wait_ptid = ptid;
4130 target_last_waitstatus = status;
4131}
4132
ab1ddbcf 4133/* See infrun.h. */
e02bc4cc
DS
4134
4135void
5b6d1e4f
PA
4136get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4137 target_waitstatus *status)
e02bc4cc 4138{
5b6d1e4f
PA
4139 if (target != nullptr)
4140 *target = target_last_proc_target;
ab1ddbcf
PA
4141 if (ptid != nullptr)
4142 *ptid = target_last_wait_ptid;
4143 if (status != nullptr)
4144 *status = target_last_waitstatus;
e02bc4cc
DS
4145}
4146
ab1ddbcf
PA
4147/* See infrun.h. */
4148
ac264b3b
MS
4149void
4150nullify_last_target_wait_ptid (void)
4151{
5b6d1e4f 4152 target_last_proc_target = nullptr;
ac264b3b 4153 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4154 target_last_waitstatus = {};
ac264b3b
MS
4155}
4156
dcf4fbde 4157/* Switch thread contexts. */
dd80620e
MS
4158
4159static void
00431a78 4160context_switch (execution_control_state *ecs)
dd80620e 4161{
00431a78
PA
4162 if (debug_infrun
4163 && ecs->ptid != inferior_ptid
5b6d1e4f
PA
4164 && (inferior_ptid == null_ptid
4165 || ecs->event_thread != inferior_thread ()))
fd48f117
DJ
4166 {
4167 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 4168 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 4169 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 4170 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4171 }
4172
00431a78 4173 switch_to_thread (ecs->event_thread);
dd80620e
MS
4174}
4175
d8dd4d5f
PA
4176/* If the target can't tell whether we've hit breakpoints
4177 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4178 check whether that could have been caused by a breakpoint. If so,
4179 adjust the PC, per gdbarch_decr_pc_after_break. */
4180
4fa8626c 4181static void
d8dd4d5f
PA
4182adjust_pc_after_break (struct thread_info *thread,
4183 struct target_waitstatus *ws)
4fa8626c 4184{
24a73cce
UW
4185 struct regcache *regcache;
4186 struct gdbarch *gdbarch;
118e6252 4187 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4188
4fa8626c
DJ
4189 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4190 we aren't, just return.
9709f61c
DJ
4191
4192 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4193 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4194 implemented by software breakpoints should be handled through the normal
4195 breakpoint layer.
8fb3e588 4196
4fa8626c
DJ
4197 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4198 different signals (SIGILL or SIGEMT for instance), but it is less
4199 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4200 gdbarch_decr_pc_after_break. I don't know any specific target that
4201 generates these signals at breakpoints (the code has been in GDB since at
4202 least 1992) so I can not guess how to handle them here.
8fb3e588 4203
e6cf7916
UW
4204 In earlier versions of GDB, a target with
4205 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4206 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4207 target with both of these set in GDB history, and it seems unlikely to be
4208 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4209
d8dd4d5f 4210 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4211 return;
4212
d8dd4d5f 4213 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4214 return;
4215
4058b839
PA
4216 /* In reverse execution, when a breakpoint is hit, the instruction
4217 under it has already been de-executed. The reported PC always
4218 points at the breakpoint address, so adjusting it further would
4219 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4220 architecture:
4221
4222 B1 0x08000000 : INSN1
4223 B2 0x08000001 : INSN2
4224 0x08000002 : INSN3
4225 PC -> 0x08000003 : INSN4
4226
4227 Say you're stopped at 0x08000003 as above. Reverse continuing
4228 from that point should hit B2 as below. Reading the PC when the
4229 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4230 been de-executed already.
4231
4232 B1 0x08000000 : INSN1
4233 B2 PC -> 0x08000001 : INSN2
4234 0x08000002 : INSN3
4235 0x08000003 : INSN4
4236
4237 We can't apply the same logic as for forward execution, because
4238 we would wrongly adjust the PC to 0x08000000, since there's a
4239 breakpoint at PC - 1. We'd then report a hit on B1, although
4240 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4241 behaviour. */
4242 if (execution_direction == EXEC_REVERSE)
4243 return;
4244
1cf4d951
PA
4245 /* If the target can tell whether the thread hit a SW breakpoint,
4246 trust it. Targets that can tell also adjust the PC
4247 themselves. */
4248 if (target_supports_stopped_by_sw_breakpoint ())
4249 return;
4250
4251 /* Note that relying on whether a breakpoint is planted in memory to
4252 determine this can fail. E.g,. the breakpoint could have been
4253 removed since. Or the thread could have been told to step an
4254 instruction the size of a breakpoint instruction, and only
4255 _after_ was a breakpoint inserted at its address. */
4256
24a73cce
UW
4257 /* If this target does not decrement the PC after breakpoints, then
4258 we have nothing to do. */
00431a78 4259 regcache = get_thread_regcache (thread);
ac7936df 4260 gdbarch = regcache->arch ();
118e6252 4261
527a273a 4262 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4263 if (decr_pc == 0)
24a73cce
UW
4264 return;
4265
8b86c959 4266 const address_space *aspace = regcache->aspace ();
6c95b8df 4267
8aad930b
AC
4268 /* Find the location where (if we've hit a breakpoint) the
4269 breakpoint would be. */
118e6252 4270 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4271
1cf4d951
PA
4272 /* If the target can't tell whether a software breakpoint triggered,
4273 fallback to figuring it out based on breakpoints we think were
4274 inserted in the target, and on whether the thread was stepped or
4275 continued. */
4276
1c5cfe86
PA
4277 /* Check whether there actually is a software breakpoint inserted at
4278 that location.
4279
4280 If in non-stop mode, a race condition is possible where we've
4281 removed a breakpoint, but stop events for that breakpoint were
4282 already queued and arrive later. To suppress those spurious
4283 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4284 and retire them after a number of stop events are reported. Note
4285 this is an heuristic and can thus get confused. The real fix is
4286 to get the "stopped by SW BP and needs adjustment" info out of
4287 the target/kernel (and thus never reach here; see above). */
6c95b8df 4288 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4289 || (target_is_non_stop_p ()
4290 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4291 {
07036511 4292 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4293
8213266a 4294 if (record_full_is_used ())
07036511
TT
4295 restore_operation_disable.emplace
4296 (record_full_gdb_operation_disable_set ());
96429cc8 4297
1c0fdd0e
UW
4298 /* When using hardware single-step, a SIGTRAP is reported for both
4299 a completed single-step and a software breakpoint. Need to
4300 differentiate between the two, as the latter needs adjusting
4301 but the former does not.
4302
4303 The SIGTRAP can be due to a completed hardware single-step only if
4304 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4305 - this thread is currently being stepped
4306
4307 If any of these events did not occur, we must have stopped due
4308 to hitting a software breakpoint, and have to back up to the
4309 breakpoint address.
4310
4311 As a special case, we could have hardware single-stepped a
4312 software breakpoint. In this case (prev_pc == breakpoint_pc),
4313 we also need to back up to the breakpoint address. */
4314
d8dd4d5f
PA
4315 if (thread_has_single_step_breakpoints_set (thread)
4316 || !currently_stepping (thread)
4317 || (thread->stepped_breakpoint
4318 && thread->prev_pc == breakpoint_pc))
515630c5 4319 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4320 }
4fa8626c
DJ
4321}
4322
edb3359d
DJ
4323static int
4324stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4325{
4326 for (frame = get_prev_frame (frame);
4327 frame != NULL;
4328 frame = get_prev_frame (frame))
4329 {
4330 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4331 return 1;
4332 if (get_frame_type (frame) != INLINE_FRAME)
4333 break;
4334 }
4335
4336 return 0;
4337}
4338
4a4c04f1
BE
4339/* Look for an inline frame that is marked for skip.
4340 If PREV_FRAME is TRUE start at the previous frame,
4341 otherwise start at the current frame. Stop at the
4342 first non-inline frame, or at the frame where the
4343 step started. */
4344
4345static bool
4346inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4347{
4348 struct frame_info *frame = get_current_frame ();
4349
4350 if (prev_frame)
4351 frame = get_prev_frame (frame);
4352
4353 for (; frame != NULL; frame = get_prev_frame (frame))
4354 {
4355 const char *fn = NULL;
4356 symtab_and_line sal;
4357 struct symbol *sym;
4358
4359 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4360 break;
4361 if (get_frame_type (frame) != INLINE_FRAME)
4362 break;
4363
4364 sal = find_frame_sal (frame);
4365 sym = get_frame_function (frame);
4366
4367 if (sym != NULL)
4368 fn = sym->print_name ();
4369
4370 if (sal.line != 0
4371 && function_name_is_marked_for_skip (fn, sal))
4372 return true;
4373 }
4374
4375 return false;
4376}
4377
c65d6b55
PA
4378/* If the event thread has the stop requested flag set, pretend it
4379 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4380 target_stop). */
4381
4382static bool
4383handle_stop_requested (struct execution_control_state *ecs)
4384{
4385 if (ecs->event_thread->stop_requested)
4386 {
4387 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4388 ecs->ws.value.sig = GDB_SIGNAL_0;
4389 handle_signal_stop (ecs);
4390 return true;
4391 }
4392 return false;
4393}
4394
a96d9b2e
SDJ
4395/* Auxiliary function that handles syscall entry/return events.
4396 It returns 1 if the inferior should keep going (and GDB
4397 should ignore the event), or 0 if the event deserves to be
4398 processed. */
ca2163eb 4399
a96d9b2e 4400static int
ca2163eb 4401handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4402{
ca2163eb 4403 struct regcache *regcache;
ca2163eb
PA
4404 int syscall_number;
4405
00431a78 4406 context_switch (ecs);
ca2163eb 4407
00431a78 4408 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4409 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4410 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4411
a96d9b2e
SDJ
4412 if (catch_syscall_enabled () > 0
4413 && catching_syscall_number (syscall_number) > 0)
4414 {
4415 if (debug_infrun)
4416 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4417 syscall_number);
a96d9b2e 4418
16c381f0 4419 ecs->event_thread->control.stop_bpstat
a01bda52 4420 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4421 ecs->event_thread->suspend.stop_pc,
4422 ecs->event_thread, &ecs->ws);
ab04a2af 4423
c65d6b55
PA
4424 if (handle_stop_requested (ecs))
4425 return 0;
4426
ce12b012 4427 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4428 {
4429 /* Catchpoint hit. */
ca2163eb
PA
4430 return 0;
4431 }
a96d9b2e 4432 }
ca2163eb 4433
c65d6b55
PA
4434 if (handle_stop_requested (ecs))
4435 return 0;
4436
ca2163eb 4437 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4438 keep_going (ecs);
4439 return 1;
a96d9b2e
SDJ
4440}
4441
7e324e48
GB
4442/* Lazily fill in the execution_control_state's stop_func_* fields. */
4443
4444static void
4445fill_in_stop_func (struct gdbarch *gdbarch,
4446 struct execution_control_state *ecs)
4447{
4448 if (!ecs->stop_func_filled_in)
4449 {
98a617f8
KB
4450 const block *block;
4451
7e324e48
GB
4452 /* Don't care about return value; stop_func_start and stop_func_name
4453 will both be 0 if it doesn't work. */
98a617f8
KB
4454 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4455 &ecs->stop_func_name,
4456 &ecs->stop_func_start,
4457 &ecs->stop_func_end,
4458 &block);
4459
4460 /* The call to find_pc_partial_function, above, will set
4461 stop_func_start and stop_func_end to the start and end
4462 of the range containing the stop pc. If this range
4463 contains the entry pc for the block (which is always the
4464 case for contiguous blocks), advance stop_func_start past
4465 the function's start offset and entrypoint. Note that
4466 stop_func_start is NOT advanced when in a range of a
4467 non-contiguous block that does not contain the entry pc. */
4468 if (block != nullptr
4469 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4470 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4471 {
4472 ecs->stop_func_start
4473 += gdbarch_deprecated_function_start_offset (gdbarch);
4474
4475 if (gdbarch_skip_entrypoint_p (gdbarch))
4476 ecs->stop_func_start
4477 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4478 }
591a12a1 4479
7e324e48
GB
4480 ecs->stop_func_filled_in = 1;
4481 }
4482}
4483
4f5d7f63 4484
00431a78 4485/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4486
4487static enum stop_kind
00431a78 4488get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4489{
5b6d1e4f 4490 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4491
4492 gdb_assert (inf != NULL);
4493 return inf->control.stop_soon;
4494}
4495
5b6d1e4f
PA
4496/* Poll for one event out of the current target. Store the resulting
4497 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4498
4499static ptid_t
5b6d1e4f 4500poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4501{
4502 ptid_t event_ptid;
372316f1
PA
4503
4504 overlay_cache_invalid = 1;
4505
4506 /* Flush target cache before starting to handle each event.
4507 Target was running and cache could be stale. This is just a
4508 heuristic. Running threads may modify target memory, but we
4509 don't get any event. */
4510 target_dcache_invalidate ();
4511
4512 if (deprecated_target_wait_hook)
5b6d1e4f 4513 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4514 else
5b6d1e4f 4515 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4516
4517 if (debug_infrun)
5b6d1e4f 4518 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4519
4520 return event_ptid;
4521}
4522
5b6d1e4f
PA
4523/* An event reported by wait_one. */
4524
4525struct wait_one_event
4526{
4527 /* The target the event came out of. */
4528 process_stratum_target *target;
4529
4530 /* The PTID the event was for. */
4531 ptid_t ptid;
4532
4533 /* The waitstatus. */
4534 target_waitstatus ws;
4535};
4536
4537/* Wait for one event out of any target. */
4538
4539static wait_one_event
4540wait_one ()
4541{
4542 while (1)
4543 {
4544 for (inferior *inf : all_inferiors ())
4545 {
4546 process_stratum_target *target = inf->process_target ();
4547 if (target == NULL
4548 || !target->is_async_p ()
4549 || !target->threads_executing)
4550 continue;
4551
4552 switch_to_inferior_no_thread (inf);
4553
4554 wait_one_event event;
4555 event.target = target;
4556 event.ptid = poll_one_curr_target (&event.ws);
4557
4558 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4559 {
4560 /* If nothing is resumed, remove the target from the
4561 event loop. */
4562 target_async (0);
4563 }
4564 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4565 return event;
4566 }
4567
4568 /* Block waiting for some event. */
4569
4570 fd_set readfds;
4571 int nfds = 0;
4572
4573 FD_ZERO (&readfds);
4574
4575 for (inferior *inf : all_inferiors ())
4576 {
4577 process_stratum_target *target = inf->process_target ();
4578 if (target == NULL
4579 || !target->is_async_p ()
4580 || !target->threads_executing)
4581 continue;
4582
4583 int fd = target->async_wait_fd ();
4584 FD_SET (fd, &readfds);
4585 if (nfds <= fd)
4586 nfds = fd + 1;
4587 }
4588
4589 if (nfds == 0)
4590 {
4591 /* No waitable targets left. All must be stopped. */
4592 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4593 }
4594
4595 QUIT;
4596
4597 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4598 if (numfds < 0)
4599 {
4600 if (errno == EINTR)
4601 continue;
4602 else
4603 perror_with_name ("interruptible_select");
4604 }
4605 }
4606}
4607
372316f1
PA
4608/* Save the thread's event and stop reason to process it later. */
4609
4610static void
5b6d1e4f 4611save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4612{
372316f1
PA
4613 if (debug_infrun)
4614 {
23fdd69e 4615 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4616
372316f1
PA
4617 fprintf_unfiltered (gdb_stdlog,
4618 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4619 statstr.c_str (),
e99b03dc 4620 tp->ptid.pid (),
e38504b3 4621 tp->ptid.lwp (),
cc6bcb54 4622 tp->ptid.tid ());
372316f1
PA
4623 }
4624
4625 /* Record for later. */
4626 tp->suspend.waitstatus = *ws;
4627 tp->suspend.waitstatus_pending_p = 1;
4628
00431a78 4629 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4630 const address_space *aspace = regcache->aspace ();
372316f1
PA
4631
4632 if (ws->kind == TARGET_WAITKIND_STOPPED
4633 && ws->value.sig == GDB_SIGNAL_TRAP)
4634 {
4635 CORE_ADDR pc = regcache_read_pc (regcache);
4636
4637 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4638
18493a00
PA
4639 scoped_restore_current_thread restore_thread;
4640 switch_to_thread (tp);
4641
4642 if (target_stopped_by_watchpoint ())
372316f1
PA
4643 {
4644 tp->suspend.stop_reason
4645 = TARGET_STOPPED_BY_WATCHPOINT;
4646 }
4647 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4648 && target_stopped_by_sw_breakpoint ())
372316f1
PA
4649 {
4650 tp->suspend.stop_reason
4651 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4652 }
4653 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4654 && target_stopped_by_hw_breakpoint ())
372316f1
PA
4655 {
4656 tp->suspend.stop_reason
4657 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4658 }
4659 else if (!target_supports_stopped_by_hw_breakpoint ()
4660 && hardware_breakpoint_inserted_here_p (aspace,
4661 pc))
4662 {
4663 tp->suspend.stop_reason
4664 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4665 }
4666 else if (!target_supports_stopped_by_sw_breakpoint ()
4667 && software_breakpoint_inserted_here_p (aspace,
4668 pc))
4669 {
4670 tp->suspend.stop_reason
4671 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4672 }
4673 else if (!thread_has_single_step_breakpoints_set (tp)
4674 && currently_stepping (tp))
4675 {
4676 tp->suspend.stop_reason
4677 = TARGET_STOPPED_BY_SINGLE_STEP;
4678 }
4679 }
4680}
4681
293b3ebc
TBA
4682/* Mark the non-executing threads accordingly. In all-stop, all
4683 threads of all processes are stopped when we get any event
4684 reported. In non-stop mode, only the event thread stops. */
4685
4686static void
4687mark_non_executing_threads (process_stratum_target *target,
4688 ptid_t event_ptid,
4689 struct target_waitstatus ws)
4690{
4691 ptid_t mark_ptid;
4692
4693 if (!target_is_non_stop_p ())
4694 mark_ptid = minus_one_ptid;
4695 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4696 || ws.kind == TARGET_WAITKIND_EXITED)
4697 {
4698 /* If we're handling a process exit in non-stop mode, even
4699 though threads haven't been deleted yet, one would think
4700 that there is nothing to do, as threads of the dead process
4701 will be soon deleted, and threads of any other process were
4702 left running. However, on some targets, threads survive a
4703 process exit event. E.g., for the "checkpoint" command,
4704 when the current checkpoint/fork exits, linux-fork.c
4705 automatically switches to another fork from within
4706 target_mourn_inferior, by associating the same
4707 inferior/thread to another fork. We haven't mourned yet at
4708 this point, but we must mark any threads left in the
4709 process as not-executing so that finish_thread_state marks
4710 them stopped (in the user's perspective) if/when we present
4711 the stop to the user. */
4712 mark_ptid = ptid_t (event_ptid.pid ());
4713 }
4714 else
4715 mark_ptid = event_ptid;
4716
4717 set_executing (target, mark_ptid, false);
4718
4719 /* Likewise the resumed flag. */
4720 set_resumed (target, mark_ptid, false);
4721}
4722
6efcd9a8 4723/* See infrun.h. */
372316f1 4724
6efcd9a8 4725void
372316f1
PA
4726stop_all_threads (void)
4727{
4728 /* We may need multiple passes to discover all threads. */
4729 int pass;
4730 int iterations = 0;
372316f1 4731
53cccef1 4732 gdb_assert (exists_non_stop_target ());
372316f1
PA
4733
4734 if (debug_infrun)
4735 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4736
00431a78 4737 scoped_restore_current_thread restore_thread;
372316f1 4738
6ad82919
TBA
4739 /* Enable thread events of all targets. */
4740 for (auto *target : all_non_exited_process_targets ())
4741 {
4742 switch_to_target_no_thread (target);
4743 target_thread_events (true);
4744 }
4745
4746 SCOPE_EXIT
4747 {
4748 /* Disable thread events of all targets. */
4749 for (auto *target : all_non_exited_process_targets ())
4750 {
4751 switch_to_target_no_thread (target);
4752 target_thread_events (false);
4753 }
4754
4755 if (debug_infrun)
4756 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4757 };
65706a29 4758
372316f1
PA
4759 /* Request threads to stop, and then wait for the stops. Because
4760 threads we already know about can spawn more threads while we're
4761 trying to stop them, and we only learn about new threads when we
4762 update the thread list, do this in a loop, and keep iterating
4763 until two passes find no threads that need to be stopped. */
4764 for (pass = 0; pass < 2; pass++, iterations++)
4765 {
4766 if (debug_infrun)
4767 fprintf_unfiltered (gdb_stdlog,
4768 "infrun: stop_all_threads, pass=%d, "
4769 "iterations=%d\n", pass, iterations);
4770 while (1)
4771 {
29d6859f 4772 int waits_needed = 0;
372316f1 4773
a05575d3
TBA
4774 for (auto *target : all_non_exited_process_targets ())
4775 {
4776 switch_to_target_no_thread (target);
4777 update_thread_list ();
4778 }
372316f1
PA
4779
4780 /* Go through all threads looking for threads that we need
4781 to tell the target to stop. */
08036331 4782 for (thread_info *t : all_non_exited_threads ())
372316f1 4783 {
53cccef1
TBA
4784 /* For a single-target setting with an all-stop target,
4785 we would not even arrive here. For a multi-target
4786 setting, until GDB is able to handle a mixture of
4787 all-stop and non-stop targets, simply skip all-stop
4788 targets' threads. This should be fine due to the
4789 protection of 'check_multi_target_resumption'. */
4790
4791 switch_to_thread_no_regs (t);
4792 if (!target_is_non_stop_p ())
4793 continue;
4794
372316f1
PA
4795 if (t->executing)
4796 {
4797 /* If already stopping, don't request a stop again.
4798 We just haven't seen the notification yet. */
4799 if (!t->stop_requested)
4800 {
4801 if (debug_infrun)
4802 fprintf_unfiltered (gdb_stdlog,
4803 "infrun: %s executing, "
4804 "need stop\n",
a068643d 4805 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4806 target_stop (t->ptid);
4807 t->stop_requested = 1;
4808 }
4809 else
4810 {
4811 if (debug_infrun)
4812 fprintf_unfiltered (gdb_stdlog,
4813 "infrun: %s executing, "
4814 "already stopping\n",
a068643d 4815 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4816 }
4817
4818 if (t->stop_requested)
29d6859f 4819 waits_needed++;
372316f1
PA
4820 }
4821 else
4822 {
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog,
4825 "infrun: %s not executing\n",
a068643d 4826 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4827
4828 /* The thread may be not executing, but still be
4829 resumed with a pending status to process. */
719546c4 4830 t->resumed = false;
372316f1
PA
4831 }
4832 }
4833
29d6859f 4834 if (waits_needed == 0)
372316f1
PA
4835 break;
4836
4837 /* If we find new threads on the second iteration, restart
4838 over. We want to see two iterations in a row with all
4839 threads stopped. */
4840 if (pass > 0)
4841 pass = -1;
4842
29d6859f 4843 for (int i = 0; i < waits_needed; i++)
c29705b7 4844 {
29d6859f 4845 wait_one_event event = wait_one ();
a05575d3 4846
29d6859f 4847 if (debug_infrun)
a05575d3 4848 {
29d6859f
LM
4849 fprintf_unfiltered (gdb_stdlog,
4850 "infrun: stop_all_threads %s %s\n",
4851 target_waitstatus_to_string (&event.ws).c_str (),
4852 target_pid_to_str (event.ptid).c_str ());
a05575d3
TBA
4853 }
4854
29d6859f 4855 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
a05575d3 4856 {
29d6859f
LM
4857 /* All resumed threads exited. */
4858 break;
a05575d3 4859 }
29d6859f
LM
4860 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4861 || event.ws.kind == TARGET_WAITKIND_EXITED
4862 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
6efcd9a8 4863 {
29d6859f 4864 /* One thread/process exited/signalled. */
6efcd9a8 4865
29d6859f 4866 thread_info *t = nullptr;
372316f1 4867
29d6859f
LM
4868 /* The target may have reported just a pid. If so, try
4869 the first non-exited thread. */
4870 if (event.ptid.is_pid ())
372316f1 4871 {
29d6859f
LM
4872 int pid = event.ptid.pid ();
4873 inferior *inf = find_inferior_pid (event.target, pid);
4874 for (thread_info *tp : inf->non_exited_threads ())
372316f1 4875 {
29d6859f
LM
4876 t = tp;
4877 break;
372316f1 4878 }
29d6859f
LM
4879
4880 /* If there is no available thread, the event would
4881 have to be appended to a per-inferior event list,
4882 which does not exist (and if it did, we'd have
4883 to adjust run control command to be able to
4884 resume such an inferior). We assert here instead
4885 of going into an infinite loop. */
4886 gdb_assert (t != nullptr);
4887
4888 if (debug_infrun)
4889 fprintf_unfiltered (gdb_stdlog,
4890 "infrun: stop_all_threads, using %s\n",
4891 target_pid_to_str (t->ptid).c_str ());
4892 }
4893 else
4894 {
4895 t = find_thread_ptid (event.target, event.ptid);
4896 /* Check if this is the first time we see this thread.
4897 Don't bother adding if it individually exited. */
4898 if (t == nullptr
4899 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4900 t = add_thread (event.target, event.ptid);
4901 }
4902
4903 if (t != nullptr)
4904 {
4905 /* Set the threads as non-executing to avoid
4906 another stop attempt on them. */
4907 switch_to_thread_no_regs (t);
4908 mark_non_executing_threads (event.target, event.ptid,
4909 event.ws);
4910 save_waitstatus (t, &event.ws);
4911 t->stop_requested = false;
372316f1
PA
4912 }
4913 }
4914 else
4915 {
29d6859f
LM
4916 thread_info *t = find_thread_ptid (event.target, event.ptid);
4917 if (t == NULL)
4918 t = add_thread (event.target, event.ptid);
372316f1 4919
29d6859f
LM
4920 t->stop_requested = 0;
4921 t->executing = 0;
4922 t->resumed = false;
4923 t->control.may_range_step = 0;
4924
4925 /* This may be the first time we see the inferior report
4926 a stop. */
4927 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4928 if (inf->needs_setup)
372316f1 4929 {
29d6859f
LM
4930 switch_to_thread_no_regs (t);
4931 setup_inferior (0);
372316f1
PA
4932 }
4933
29d6859f
LM
4934 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4935 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1 4936 {
29d6859f
LM
4937 /* We caught the event that we intended to catch, so
4938 there's no event pending. */
4939 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4940 t->suspend.waitstatus_pending_p = 0;
4941
4942 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4943 {
4944 /* Add it back to the step-over queue. */
4945 if (debug_infrun)
4946 {
4947 fprintf_unfiltered (gdb_stdlog,
4948 "infrun: displaced-step of %s "
4949 "canceled: adding back to the "
4950 "step-over queue\n",
4951 target_pid_to_str (t->ptid).c_str ());
4952 }
4953 t->control.trap_expected = 0;
4954 thread_step_over_chain_enqueue (t);
4955 }
372316f1 4956 }
29d6859f
LM
4957 else
4958 {
4959 enum gdb_signal sig;
4960 struct regcache *regcache;
372316f1 4961
29d6859f
LM
4962 if (debug_infrun)
4963 {
4964 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4965
29d6859f
LM
4966 fprintf_unfiltered (gdb_stdlog,
4967 "infrun: target_wait %s, saving "
4968 "status for %d.%ld.%ld\n",
4969 statstr.c_str (),
4970 t->ptid.pid (),
4971 t->ptid.lwp (),
4972 t->ptid.tid ());
4973 }
4974
4975 /* Record for later. */
4976 save_waitstatus (t, &event.ws);
4977
4978 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4979 ? event.ws.value.sig : GDB_SIGNAL_0);
4980
4981 if (displaced_step_fixup (t, sig) < 0)
4982 {
4983 /* Add it back to the step-over queue. */
4984 t->control.trap_expected = 0;
4985 thread_step_over_chain_enqueue (t);
4986 }
4987
4988 regcache = get_thread_regcache (t);
4989 t->suspend.stop_pc = regcache_read_pc (regcache);
4990
4991 if (debug_infrun)
4992 {
4993 fprintf_unfiltered (gdb_stdlog,
4994 "infrun: saved stop_pc=%s for %s "
4995 "(currently_stepping=%d)\n",
4996 paddress (target_gdbarch (),
4997 t->suspend.stop_pc),
4998 target_pid_to_str (t->ptid).c_str (),
4999 currently_stepping (t));
5000 }
372316f1
PA
5001 }
5002 }
5003 }
5004 }
5005 }
372316f1
PA
5006}
5007
f4836ba9
PA
5008/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5009
5010static int
5011handle_no_resumed (struct execution_control_state *ecs)
5012{
3b12939d 5013 if (target_can_async_p ())
f4836ba9 5014 {
3b12939d 5015 int any_sync = 0;
f4836ba9 5016
2dab0c7b 5017 for (ui *ui : all_uis ())
3b12939d
PA
5018 {
5019 if (ui->prompt_state == PROMPT_BLOCKED)
5020 {
5021 any_sync = 1;
5022 break;
5023 }
5024 }
5025 if (!any_sync)
5026 {
5027 /* There were no unwaited-for children left in the target, but,
5028 we're not synchronously waiting for events either. Just
5029 ignore. */
5030
5031 if (debug_infrun)
5032 fprintf_unfiltered (gdb_stdlog,
5033 "infrun: TARGET_WAITKIND_NO_RESUMED "
5034 "(ignoring: bg)\n");
5035 prepare_to_wait (ecs);
5036 return 1;
5037 }
f4836ba9
PA
5038 }
5039
5040 /* Otherwise, if we were running a synchronous execution command, we
5041 may need to cancel it and give the user back the terminal.
5042
5043 In non-stop mode, the target can't tell whether we've already
5044 consumed previous stop events, so it can end up sending us a
5045 no-resumed event like so:
5046
5047 #0 - thread 1 is left stopped
5048
5049 #1 - thread 2 is resumed and hits breakpoint
5050 -> TARGET_WAITKIND_STOPPED
5051
5052 #2 - thread 3 is resumed and exits
5053 this is the last resumed thread, so
5054 -> TARGET_WAITKIND_NO_RESUMED
5055
5056 #3 - gdb processes stop for thread 2 and decides to re-resume
5057 it.
5058
5059 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5060 thread 2 is now resumed, so the event should be ignored.
5061
5062 IOW, if the stop for thread 2 doesn't end a foreground command,
5063 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5064 event. But it could be that the event meant that thread 2 itself
5065 (or whatever other thread was the last resumed thread) exited.
5066
5067 To address this we refresh the thread list and check whether we
5068 have resumed threads _now_. In the example above, this removes
5069 thread 3 from the thread list. If thread 2 was re-resumed, we
5070 ignore this event. If we find no thread resumed, then we cancel
2ec0f7ff
PA
5071 the synchronous command and show "no unwaited-for " to the
5072 user. */
f4836ba9 5073
2ec0f7ff
PA
5074 {
5075 scoped_restore_current_thread restore_thread;
5076
5077 for (auto *target : all_non_exited_process_targets ())
5078 {
5079 switch_to_target_no_thread (target);
5080 update_thread_list ();
5081 }
5082 }
5083
5084 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
5085 {
5086 if (thread->executing
5087 || thread->suspend.waitstatus_pending_p)
5088 {
2ec0f7ff
PA
5089 /* Either there were no unwaited-for children left in the
5090 target at some point, but there are now, or some target
5091 other than the eventing one has unwaited-for children
5092 left. Just ignore. */
f4836ba9
PA
5093 if (debug_infrun)
5094 fprintf_unfiltered (gdb_stdlog,
5095 "infrun: TARGET_WAITKIND_NO_RESUMED "
5096 "(ignoring: found resumed)\n");
5097 prepare_to_wait (ecs);
5098 return 1;
f4836ba9
PA
5099 }
5100 }
5101
5102 /* Go ahead and report the event. */
5103 return 0;
5104}
5105
05ba8510
PA
5106/* Given an execution control state that has been freshly filled in by
5107 an event from the inferior, figure out what it means and take
5108 appropriate action.
5109
5110 The alternatives are:
5111
22bcd14b 5112 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5113 debugger.
5114
5115 2) keep_going and return; to wait for the next event (set
5116 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5117 once). */
c906108c 5118
ec9499be 5119static void
595915c1 5120handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5121{
595915c1
TT
5122 /* Make sure that all temporary struct value objects that were
5123 created during the handling of the event get deleted at the
5124 end. */
5125 scoped_value_mark free_values;
5126
d6b48e9c
PA
5127 enum stop_kind stop_soon;
5128
c29705b7
PW
5129 if (debug_infrun)
5130 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5131 target_waitstatus_to_string (&ecs->ws).c_str ());
5132
28736962
PA
5133 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5134 {
5135 /* We had an event in the inferior, but we are not interested in
5136 handling it at this level. The lower layers have already
5137 done what needs to be done, if anything.
5138
5139 One of the possible circumstances for this is when the
5140 inferior produces output for the console. The inferior has
5141 not stopped, and we are ignoring the event. Another possible
5142 circumstance is any event which the lower level knows will be
5143 reported multiple times without an intervening resume. */
28736962
PA
5144 prepare_to_wait (ecs);
5145 return;
5146 }
5147
65706a29
PA
5148 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5149 {
65706a29
PA
5150 prepare_to_wait (ecs);
5151 return;
5152 }
5153
0e5bf2a8 5154 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5155 && handle_no_resumed (ecs))
5156 return;
0e5bf2a8 5157
5b6d1e4f
PA
5158 /* Cache the last target/ptid/waitstatus. */
5159 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5160
ca005067 5161 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5162 stop_stack_dummy = STOP_NONE;
ca005067 5163
0e5bf2a8
PA
5164 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5165 {
5166 /* No unwaited-for children left. IOW, all resumed children
5167 have exited. */
0e5bf2a8 5168 stop_print_frame = 0;
22bcd14b 5169 stop_waiting (ecs);
0e5bf2a8
PA
5170 return;
5171 }
5172
8c90c137 5173 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5174 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5175 {
5b6d1e4f 5176 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5177 /* If it's a new thread, add it to the thread database. */
5178 if (ecs->event_thread == NULL)
5b6d1e4f 5179 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5180
5181 /* Disable range stepping. If the next step request could use a
5182 range, this will be end up re-enabled then. */
5183 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5184 }
88ed393a
JK
5185
5186 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5187 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5188
5189 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5190 reinit_frame_cache ();
5191
28736962
PA
5192 breakpoint_retire_moribund ();
5193
2b009048
DJ
5194 /* First, distinguish signals caused by the debugger from signals
5195 that have to do with the program's own actions. Note that
5196 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5197 on the operating system version. Here we detect when a SIGILL or
5198 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5199 something similar for SIGSEGV, since a SIGSEGV will be generated
5200 when we're trying to execute a breakpoint instruction on a
5201 non-executable stack. This happens for call dummy breakpoints
5202 for architectures like SPARC that place call dummies on the
5203 stack. */
2b009048 5204 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5205 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5206 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5207 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5208 {
00431a78 5209 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5210
a01bda52 5211 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5212 regcache_read_pc (regcache)))
5213 {
5214 if (debug_infrun)
5215 fprintf_unfiltered (gdb_stdlog,
5216 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 5217 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5218 }
2b009048
DJ
5219 }
5220
293b3ebc 5221 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5222
488f131b
JB
5223 switch (ecs->ws.kind)
5224 {
5225 case TARGET_WAITKIND_LOADED:
00431a78 5226 context_switch (ecs);
b0f4b84b
DJ
5227 /* Ignore gracefully during startup of the inferior, as it might
5228 be the shell which has just loaded some objects, otherwise
5229 add the symbols for the newly loaded objects. Also ignore at
5230 the beginning of an attach or remote session; we will query
5231 the full list of libraries once the connection is
5232 established. */
4f5d7f63 5233
00431a78 5234 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5235 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5236 {
edcc5120
TT
5237 struct regcache *regcache;
5238
00431a78 5239 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5240
5241 handle_solib_event ();
5242
5243 ecs->event_thread->control.stop_bpstat
a01bda52 5244 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5245 ecs->event_thread->suspend.stop_pc,
5246 ecs->event_thread, &ecs->ws);
ab04a2af 5247
c65d6b55
PA
5248 if (handle_stop_requested (ecs))
5249 return;
5250
ce12b012 5251 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5252 {
5253 /* A catchpoint triggered. */
94c57d6a
PA
5254 process_event_stop_test (ecs);
5255 return;
edcc5120 5256 }
488f131b 5257
b0f4b84b
DJ
5258 /* If requested, stop when the dynamic linker notifies
5259 gdb of events. This allows the user to get control
5260 and place breakpoints in initializer routines for
5261 dynamically loaded objects (among other things). */
a493e3e2 5262 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5263 if (stop_on_solib_events)
5264 {
55409f9d
DJ
5265 /* Make sure we print "Stopped due to solib-event" in
5266 normal_stop. */
5267 stop_print_frame = 1;
5268
22bcd14b 5269 stop_waiting (ecs);
b0f4b84b
DJ
5270 return;
5271 }
488f131b 5272 }
b0f4b84b
DJ
5273
5274 /* If we are skipping through a shell, or through shared library
5275 loading that we aren't interested in, resume the program. If
5c09a2c5 5276 we're running the program normally, also resume. */
b0f4b84b
DJ
5277 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5278 {
74960c60
VP
5279 /* Loading of shared libraries might have changed breakpoint
5280 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5281 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5282 insert_breakpoints ();
64ce06e4 5283 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5284 prepare_to_wait (ecs);
5285 return;
5286 }
5287
5c09a2c5
PA
5288 /* But stop if we're attaching or setting up a remote
5289 connection. */
5290 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5291 || stop_soon == STOP_QUIETLY_REMOTE)
5292 {
5293 if (debug_infrun)
5294 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5295 stop_waiting (ecs);
5c09a2c5
PA
5296 return;
5297 }
5298
5299 internal_error (__FILE__, __LINE__,
5300 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5301
488f131b 5302 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5303 if (handle_stop_requested (ecs))
5304 return;
00431a78 5305 context_switch (ecs);
64ce06e4 5306 resume (GDB_SIGNAL_0);
488f131b
JB
5307 prepare_to_wait (ecs);
5308 return;
c5aa993b 5309
65706a29 5310 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5311 if (handle_stop_requested (ecs))
5312 return;
00431a78 5313 context_switch (ecs);
65706a29
PA
5314 if (!switch_back_to_stepped_thread (ecs))
5315 keep_going (ecs);
5316 return;
5317
488f131b 5318 case TARGET_WAITKIND_EXITED:
940c3c06 5319 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5320 {
5321 /* Depending on the system, ecs->ptid may point to a thread or
5322 to a process. On some targets, target_mourn_inferior may
5323 need to have access to the just-exited thread. That is the
5324 case of GNU/Linux's "checkpoint" support, for example.
5325 Call the switch_to_xxx routine as appropriate. */
5326 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5327 if (thr != nullptr)
5328 switch_to_thread (thr);
5329 else
5330 {
5331 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5332 switch_to_inferior_no_thread (inf);
5333 }
5334 }
6c95b8df 5335 handle_vfork_child_exec_or_exit (0);
223ffa71 5336 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5337
0c557179
SDJ
5338 /* Clearing any previous state of convenience variables. */
5339 clear_exit_convenience_vars ();
5340
940c3c06
PA
5341 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5342 {
5343 /* Record the exit code in the convenience variable $_exitcode, so
5344 that the user can inspect this again later. */
5345 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5346 (LONGEST) ecs->ws.value.integer);
5347
5348 /* Also record this in the inferior itself. */
5349 current_inferior ()->has_exit_code = 1;
5350 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5351
98eb56a4
PA
5352 /* Support the --return-child-result option. */
5353 return_child_result_value = ecs->ws.value.integer;
5354
76727919 5355 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5356 }
5357 else
0c557179 5358 {
00431a78 5359 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5360
5361 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5362 {
5363 /* Set the value of the internal variable $_exitsignal,
5364 which holds the signal uncaught by the inferior. */
5365 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5366 gdbarch_gdb_signal_to_target (gdbarch,
5367 ecs->ws.value.sig));
5368 }
5369 else
5370 {
5371 /* We don't have access to the target's method used for
5372 converting between signal numbers (GDB's internal
5373 representation <-> target's representation).
5374 Therefore, we cannot do a good job at displaying this
5375 information to the user. It's better to just warn
5376 her about it (if infrun debugging is enabled), and
5377 give up. */
5378 if (debug_infrun)
5379 fprintf_filtered (gdb_stdlog, _("\
5380Cannot fill $_exitsignal with the correct signal number.\n"));
5381 }
5382
76727919 5383 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5384 }
8cf64490 5385
488f131b 5386 gdb_flush (gdb_stdout);
bc1e6c81 5387 target_mourn_inferior (inferior_ptid);
488f131b 5388 stop_print_frame = 0;
22bcd14b 5389 stop_waiting (ecs);
488f131b 5390 return;
c5aa993b 5391
488f131b 5392 case TARGET_WAITKIND_FORKED:
deb3b17b 5393 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5394 /* Check whether the inferior is displaced stepping. */
5395 {
00431a78 5396 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5397 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5398
5399 /* If checking displaced stepping is supported, and thread
5400 ecs->ptid is displaced stepping. */
00431a78 5401 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5402 {
5403 struct inferior *parent_inf
5b6d1e4f 5404 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5405 struct regcache *child_regcache;
5406 CORE_ADDR parent_pc;
5407
d8d83535
SM
5408 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5409 {
5410 struct displaced_step_inferior_state *displaced
5411 = get_displaced_stepping_state (parent_inf);
5412
5413 /* Restore scratch pad for child process. */
5414 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5415 }
5416
e2d96639
YQ
5417 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5418 indicating that the displaced stepping of syscall instruction
5419 has been done. Perform cleanup for parent process here. Note
5420 that this operation also cleans up the child process for vfork,
5421 because their pages are shared. */
00431a78 5422 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5423 /* Start a new step-over in another thread if there's one
5424 that needs it. */
5425 start_step_over ();
e2d96639 5426
e2d96639
YQ
5427 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5428 the child's PC is also within the scratchpad. Set the child's PC
5429 to the parent's PC value, which has already been fixed up.
5430 FIXME: we use the parent's aspace here, although we're touching
5431 the child, because the child hasn't been added to the inferior
5432 list yet at this point. */
5433
5434 child_regcache
5b6d1e4f
PA
5435 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5436 ecs->ws.value.related_pid,
e2d96639
YQ
5437 gdbarch,
5438 parent_inf->aspace);
5439 /* Read PC value of parent process. */
5440 parent_pc = regcache_read_pc (regcache);
5441
5442 if (debug_displaced)
5443 fprintf_unfiltered (gdb_stdlog,
5444 "displaced: write child pc from %s to %s\n",
5445 paddress (gdbarch,
5446 regcache_read_pc (child_regcache)),
5447 paddress (gdbarch, parent_pc));
5448
5449 regcache_write_pc (child_regcache, parent_pc);
5450 }
5451 }
5452
00431a78 5453 context_switch (ecs);
5a2901d9 5454
b242c3c2
PA
5455 /* Immediately detach breakpoints from the child before there's
5456 any chance of letting the user delete breakpoints from the
5457 breakpoint lists. If we don't do this early, it's easy to
5458 leave left over traps in the child, vis: "break foo; catch
5459 fork; c; <fork>; del; c; <child calls foo>". We only follow
5460 the fork on the last `continue', and by that time the
5461 breakpoint at "foo" is long gone from the breakpoint table.
5462 If we vforked, then we don't need to unpatch here, since both
5463 parent and child are sharing the same memory pages; we'll
5464 need to unpatch at follow/detach time instead to be certain
5465 that new breakpoints added between catchpoint hit time and
5466 vfork follow are detached. */
5467 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5468 {
b242c3c2
PA
5469 /* This won't actually modify the breakpoint list, but will
5470 physically remove the breakpoints from the child. */
d80ee84f 5471 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5472 }
5473
34b7e8a6 5474 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5475
e58b0e63
PA
5476 /* In case the event is caught by a catchpoint, remember that
5477 the event is to be followed at the next resume of the thread,
5478 and not immediately. */
5479 ecs->event_thread->pending_follow = ecs->ws;
5480
f2ffa92b
PA
5481 ecs->event_thread->suspend.stop_pc
5482 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5483
16c381f0 5484 ecs->event_thread->control.stop_bpstat
a01bda52 5485 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5486 ecs->event_thread->suspend.stop_pc,
5487 ecs->event_thread, &ecs->ws);
675bf4cb 5488
c65d6b55
PA
5489 if (handle_stop_requested (ecs))
5490 return;
5491
ce12b012
PA
5492 /* If no catchpoint triggered for this, then keep going. Note
5493 that we're interested in knowing the bpstat actually causes a
5494 stop, not just if it may explain the signal. Software
5495 watchpoints, for example, always appear in the bpstat. */
5496 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5497 {
5ab2fbf1 5498 bool follow_child
3e43a32a 5499 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5500
a493e3e2 5501 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5502
5b6d1e4f
PA
5503 process_stratum_target *targ
5504 = ecs->event_thread->inf->process_target ();
5505
5ab2fbf1 5506 bool should_resume = follow_fork ();
e58b0e63 5507
5b6d1e4f
PA
5508 /* Note that one of these may be an invalid pointer,
5509 depending on detach_fork. */
00431a78 5510 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5511 thread_info *child
5512 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5513
a2077e25
PA
5514 /* At this point, the parent is marked running, and the
5515 child is marked stopped. */
5516
5517 /* If not resuming the parent, mark it stopped. */
5518 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5519 parent->set_running (false);
a2077e25
PA
5520
5521 /* If resuming the child, mark it running. */
5522 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5523 child->set_running (true);
a2077e25 5524
6c95b8df 5525 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5526 if (!detach_fork && (non_stop
5527 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5528 {
5529 if (follow_child)
5530 switch_to_thread (parent);
5531 else
5532 switch_to_thread (child);
5533
5534 ecs->event_thread = inferior_thread ();
5535 ecs->ptid = inferior_ptid;
5536 keep_going (ecs);
5537 }
5538
5539 if (follow_child)
5540 switch_to_thread (child);
5541 else
5542 switch_to_thread (parent);
5543
e58b0e63
PA
5544 ecs->event_thread = inferior_thread ();
5545 ecs->ptid = inferior_ptid;
5546
5547 if (should_resume)
5548 keep_going (ecs);
5549 else
22bcd14b 5550 stop_waiting (ecs);
04e68871
DJ
5551 return;
5552 }
94c57d6a
PA
5553 process_event_stop_test (ecs);
5554 return;
488f131b 5555
6c95b8df
PA
5556 case TARGET_WAITKIND_VFORK_DONE:
5557 /* Done with the shared memory region. Re-insert breakpoints in
5558 the parent, and keep going. */
5559
00431a78 5560 context_switch (ecs);
6c95b8df
PA
5561
5562 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5563 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5564
5565 if (handle_stop_requested (ecs))
5566 return;
5567
6c95b8df
PA
5568 /* This also takes care of reinserting breakpoints in the
5569 previously locked inferior. */
5570 keep_going (ecs);
5571 return;
5572
488f131b 5573 case TARGET_WAITKIND_EXECD:
488f131b 5574
cbd2b4e3
PA
5575 /* Note we can't read registers yet (the stop_pc), because we
5576 don't yet know the inferior's post-exec architecture.
5577 'stop_pc' is explicitly read below instead. */
00431a78 5578 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5579
6c95b8df
PA
5580 /* Do whatever is necessary to the parent branch of the vfork. */
5581 handle_vfork_child_exec_or_exit (1);
5582
795e548f
PA
5583 /* This causes the eventpoints and symbol table to be reset.
5584 Must do this now, before trying to determine whether to
5585 stop. */
71b43ef8 5586 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5587
17d8546e
DB
5588 /* In follow_exec we may have deleted the original thread and
5589 created a new one. Make sure that the event thread is the
5590 execd thread for that case (this is a nop otherwise). */
5591 ecs->event_thread = inferior_thread ();
5592
f2ffa92b
PA
5593 ecs->event_thread->suspend.stop_pc
5594 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5595
16c381f0 5596 ecs->event_thread->control.stop_bpstat
a01bda52 5597 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5598 ecs->event_thread->suspend.stop_pc,
5599 ecs->event_thread, &ecs->ws);
795e548f 5600
71b43ef8
PA
5601 /* Note that this may be referenced from inside
5602 bpstat_stop_status above, through inferior_has_execd. */
5603 xfree (ecs->ws.value.execd_pathname);
5604 ecs->ws.value.execd_pathname = NULL;
5605
c65d6b55
PA
5606 if (handle_stop_requested (ecs))
5607 return;
5608
04e68871 5609 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5610 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5611 {
a493e3e2 5612 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5613 keep_going (ecs);
5614 return;
5615 }
94c57d6a
PA
5616 process_event_stop_test (ecs);
5617 return;
488f131b 5618
b4dc5ffa
MK
5619 /* Be careful not to try to gather much state about a thread
5620 that's in a syscall. It's frequently a losing proposition. */
488f131b 5621 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5622 /* Getting the current syscall number. */
94c57d6a
PA
5623 if (handle_syscall_event (ecs) == 0)
5624 process_event_stop_test (ecs);
5625 return;
c906108c 5626
488f131b
JB
5627 /* Before examining the threads further, step this thread to
5628 get it entirely out of the syscall. (We get notice of the
5629 event when the thread is just on the verge of exiting a
5630 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5631 into user code.) */
488f131b 5632 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5633 if (handle_syscall_event (ecs) == 0)
5634 process_event_stop_test (ecs);
5635 return;
c906108c 5636
488f131b 5637 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5638 handle_signal_stop (ecs);
5639 return;
c906108c 5640
b2175913
MS
5641 case TARGET_WAITKIND_NO_HISTORY:
5642 /* Reverse execution: target ran out of history info. */
eab402df 5643
d1988021 5644 /* Switch to the stopped thread. */
00431a78 5645 context_switch (ecs);
d1988021
MM
5646 if (debug_infrun)
5647 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5648
34b7e8a6 5649 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5650 ecs->event_thread->suspend.stop_pc
5651 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5652
5653 if (handle_stop_requested (ecs))
5654 return;
5655
76727919 5656 gdb::observers::no_history.notify ();
22bcd14b 5657 stop_waiting (ecs);
b2175913 5658 return;
488f131b 5659 }
4f5d7f63
PA
5660}
5661
372316f1
PA
5662/* Restart threads back to what they were trying to do back when we
5663 paused them for an in-line step-over. The EVENT_THREAD thread is
5664 ignored. */
4d9d9d04
PA
5665
5666static void
372316f1
PA
5667restart_threads (struct thread_info *event_thread)
5668{
372316f1
PA
5669 /* In case the instruction just stepped spawned a new thread. */
5670 update_thread_list ();
5671
08036331 5672 for (thread_info *tp : all_non_exited_threads ())
372316f1 5673 {
f3f8ece4
PA
5674 switch_to_thread_no_regs (tp);
5675
372316f1
PA
5676 if (tp == event_thread)
5677 {
5678 if (debug_infrun)
5679 fprintf_unfiltered (gdb_stdlog,
5680 "infrun: restart threads: "
5681 "[%s] is event thread\n",
a068643d 5682 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5683 continue;
5684 }
5685
5686 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5687 {
5688 if (debug_infrun)
5689 fprintf_unfiltered (gdb_stdlog,
5690 "infrun: restart threads: "
5691 "[%s] not meant to be running\n",
a068643d 5692 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5693 continue;
5694 }
5695
5696 if (tp->resumed)
5697 {
5698 if (debug_infrun)
5699 fprintf_unfiltered (gdb_stdlog,
5700 "infrun: restart threads: [%s] resumed\n",
a068643d 5701 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5702 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5703 continue;
5704 }
5705
5706 if (thread_is_in_step_over_chain (tp))
5707 {
5708 if (debug_infrun)
5709 fprintf_unfiltered (gdb_stdlog,
5710 "infrun: restart threads: "
5711 "[%s] needs step-over\n",
a068643d 5712 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5713 gdb_assert (!tp->resumed);
5714 continue;
5715 }
5716
5717
5718 if (tp->suspend.waitstatus_pending_p)
5719 {
5720 if (debug_infrun)
5721 fprintf_unfiltered (gdb_stdlog,
5722 "infrun: restart threads: "
5723 "[%s] has pending status\n",
a068643d 5724 target_pid_to_str (tp->ptid).c_str ());
719546c4 5725 tp->resumed = true;
372316f1
PA
5726 continue;
5727 }
5728
c65d6b55
PA
5729 gdb_assert (!tp->stop_requested);
5730
372316f1
PA
5731 /* If some thread needs to start a step-over at this point, it
5732 should still be in the step-over queue, and thus skipped
5733 above. */
5734 if (thread_still_needs_step_over (tp))
5735 {
5736 internal_error (__FILE__, __LINE__,
5737 "thread [%s] needs a step-over, but not in "
5738 "step-over queue\n",
a068643d 5739 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5740 }
5741
5742 if (currently_stepping (tp))
5743 {
5744 if (debug_infrun)
5745 fprintf_unfiltered (gdb_stdlog,
5746 "infrun: restart threads: [%s] was stepping\n",
a068643d 5747 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5748 keep_going_stepped_thread (tp);
5749 }
5750 else
5751 {
5752 struct execution_control_state ecss;
5753 struct execution_control_state *ecs = &ecss;
5754
5755 if (debug_infrun)
5756 fprintf_unfiltered (gdb_stdlog,
5757 "infrun: restart threads: [%s] continuing\n",
a068643d 5758 target_pid_to_str (tp->ptid).c_str ());
372316f1 5759 reset_ecs (ecs, tp);
00431a78 5760 switch_to_thread (tp);
372316f1
PA
5761 keep_going_pass_signal (ecs);
5762 }
5763 }
5764}
5765
5766/* Callback for iterate_over_threads. Find a resumed thread that has
5767 a pending waitstatus. */
5768
5769static int
5770resumed_thread_with_pending_status (struct thread_info *tp,
5771 void *arg)
5772{
5773 return (tp->resumed
5774 && tp->suspend.waitstatus_pending_p);
5775}
5776
5777/* Called when we get an event that may finish an in-line or
5778 out-of-line (displaced stepping) step-over started previously.
5779 Return true if the event is processed and we should go back to the
5780 event loop; false if the caller should continue processing the
5781 event. */
5782
5783static int
4d9d9d04
PA
5784finish_step_over (struct execution_control_state *ecs)
5785{
372316f1
PA
5786 int had_step_over_info;
5787
00431a78 5788 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5789 ecs->event_thread->suspend.stop_signal);
5790
372316f1
PA
5791 had_step_over_info = step_over_info_valid_p ();
5792
5793 if (had_step_over_info)
4d9d9d04
PA
5794 {
5795 /* If we're stepping over a breakpoint with all threads locked,
5796 then only the thread that was stepped should be reporting
5797 back an event. */
5798 gdb_assert (ecs->event_thread->control.trap_expected);
5799
c65d6b55 5800 clear_step_over_info ();
4d9d9d04
PA
5801 }
5802
fbea99ea 5803 if (!target_is_non_stop_p ())
372316f1 5804 return 0;
4d9d9d04
PA
5805
5806 /* Start a new step-over in another thread if there's one that
5807 needs it. */
5808 start_step_over ();
372316f1
PA
5809
5810 /* If we were stepping over a breakpoint before, and haven't started
5811 a new in-line step-over sequence, then restart all other threads
5812 (except the event thread). We can't do this in all-stop, as then
5813 e.g., we wouldn't be able to issue any other remote packet until
5814 these other threads stop. */
5815 if (had_step_over_info && !step_over_info_valid_p ())
5816 {
5817 struct thread_info *pending;
5818
5819 /* If we only have threads with pending statuses, the restart
5820 below won't restart any thread and so nothing re-inserts the
5821 breakpoint we just stepped over. But we need it inserted
5822 when we later process the pending events, otherwise if
5823 another thread has a pending event for this breakpoint too,
5824 we'd discard its event (because the breakpoint that
5825 originally caused the event was no longer inserted). */
00431a78 5826 context_switch (ecs);
372316f1
PA
5827 insert_breakpoints ();
5828
5829 restart_threads (ecs->event_thread);
5830
5831 /* If we have events pending, go through handle_inferior_event
5832 again, picking up a pending event at random. This avoids
5833 thread starvation. */
5834
5835 /* But not if we just stepped over a watchpoint in order to let
5836 the instruction execute so we can evaluate its expression.
5837 The set of watchpoints that triggered is recorded in the
5838 breakpoint objects themselves (see bp->watchpoint_triggered).
5839 If we processed another event first, that other event could
5840 clobber this info. */
5841 if (ecs->event_thread->stepping_over_watchpoint)
5842 return 0;
5843
5844 pending = iterate_over_threads (resumed_thread_with_pending_status,
5845 NULL);
5846 if (pending != NULL)
5847 {
5848 struct thread_info *tp = ecs->event_thread;
5849 struct regcache *regcache;
5850
5851 if (debug_infrun)
5852 {
5853 fprintf_unfiltered (gdb_stdlog,
5854 "infrun: found resumed threads with "
5855 "pending events, saving status\n");
5856 }
5857
5858 gdb_assert (pending != tp);
5859
5860 /* Record the event thread's event for later. */
5861 save_waitstatus (tp, &ecs->ws);
5862 /* This was cleared early, by handle_inferior_event. Set it
5863 so this pending event is considered by
5864 do_target_wait. */
719546c4 5865 tp->resumed = true;
372316f1
PA
5866
5867 gdb_assert (!tp->executing);
5868
00431a78 5869 regcache = get_thread_regcache (tp);
372316f1
PA
5870 tp->suspend.stop_pc = regcache_read_pc (regcache);
5871
5872 if (debug_infrun)
5873 {
5874 fprintf_unfiltered (gdb_stdlog,
5875 "infrun: saved stop_pc=%s for %s "
5876 "(currently_stepping=%d)\n",
5877 paddress (target_gdbarch (),
5878 tp->suspend.stop_pc),
a068643d 5879 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5880 currently_stepping (tp));
5881 }
5882
5883 /* This in-line step-over finished; clear this so we won't
5884 start a new one. This is what handle_signal_stop would
5885 do, if we returned false. */
5886 tp->stepping_over_breakpoint = 0;
5887
5888 /* Wake up the event loop again. */
5889 mark_async_event_handler (infrun_async_inferior_event_token);
5890
5891 prepare_to_wait (ecs);
5892 return 1;
5893 }
5894 }
5895
5896 return 0;
4d9d9d04
PA
5897}
5898
4f5d7f63
PA
5899/* Come here when the program has stopped with a signal. */
5900
5901static void
5902handle_signal_stop (struct execution_control_state *ecs)
5903{
5904 struct frame_info *frame;
5905 struct gdbarch *gdbarch;
5906 int stopped_by_watchpoint;
5907 enum stop_kind stop_soon;
5908 int random_signal;
c906108c 5909
f0407826
DE
5910 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5911
c65d6b55
PA
5912 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5913
f0407826
DE
5914 /* Do we need to clean up the state of a thread that has
5915 completed a displaced single-step? (Doing so usually affects
5916 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5917 if (finish_step_over (ecs))
5918 return;
f0407826
DE
5919
5920 /* If we either finished a single-step or hit a breakpoint, but
5921 the user wanted this thread to be stopped, pretend we got a
5922 SIG0 (generic unsignaled stop). */
5923 if (ecs->event_thread->stop_requested
5924 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5925 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5926
f2ffa92b
PA
5927 ecs->event_thread->suspend.stop_pc
5928 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5929
527159b7 5930 if (debug_infrun)
237fc4c9 5931 {
00431a78 5932 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5933 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5934
f3f8ece4 5935 switch_to_thread (ecs->event_thread);
5af949e3
UW
5936
5937 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5938 paddress (reg_gdbarch,
f2ffa92b 5939 ecs->event_thread->suspend.stop_pc));
d92524f1 5940 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5941 {
5942 CORE_ADDR addr;
abbb1732 5943
237fc4c9
PA
5944 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5945
8b88a78e 5946 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5947 fprintf_unfiltered (gdb_stdlog,
5af949e3 5948 "infrun: stopped data address = %s\n",
b926417a 5949 paddress (reg_gdbarch, addr));
237fc4c9
PA
5950 else
5951 fprintf_unfiltered (gdb_stdlog,
5952 "infrun: (no data address available)\n");
5953 }
5954 }
527159b7 5955
36fa8042
PA
5956 /* This is originated from start_remote(), start_inferior() and
5957 shared libraries hook functions. */
00431a78 5958 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5959 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5960 {
00431a78 5961 context_switch (ecs);
36fa8042
PA
5962 if (debug_infrun)
5963 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5964 stop_print_frame = 1;
22bcd14b 5965 stop_waiting (ecs);
36fa8042
PA
5966 return;
5967 }
5968
36fa8042
PA
5969 /* This originates from attach_command(). We need to overwrite
5970 the stop_signal here, because some kernels don't ignore a
5971 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5972 See more comments in inferior.h. On the other hand, if we
5973 get a non-SIGSTOP, report it to the user - assume the backend
5974 will handle the SIGSTOP if it should show up later.
5975
5976 Also consider that the attach is complete when we see a
5977 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5978 target extended-remote report it instead of a SIGSTOP
5979 (e.g. gdbserver). We already rely on SIGTRAP being our
5980 signal, so this is no exception.
5981
5982 Also consider that the attach is complete when we see a
5983 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5984 the target to stop all threads of the inferior, in case the
5985 low level attach operation doesn't stop them implicitly. If
5986 they weren't stopped implicitly, then the stub will report a
5987 GDB_SIGNAL_0, meaning: stopped for no particular reason
5988 other than GDB's request. */
5989 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5990 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5991 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5992 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5993 {
5994 stop_print_frame = 1;
22bcd14b 5995 stop_waiting (ecs);
36fa8042
PA
5996 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5997 return;
5998 }
5999
488f131b 6000 /* See if something interesting happened to the non-current thread. If
b40c7d58 6001 so, then switch to that thread. */
d7e15655 6002 if (ecs->ptid != inferior_ptid)
488f131b 6003 {
527159b7 6004 if (debug_infrun)
8a9de0e4 6005 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 6006
00431a78 6007 context_switch (ecs);
c5aa993b 6008
9a4105ab 6009 if (deprecated_context_hook)
00431a78 6010 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 6011 }
c906108c 6012
568d6575
UW
6013 /* At this point, get hold of the now-current thread's frame. */
6014 frame = get_current_frame ();
6015 gdbarch = get_frame_arch (frame);
6016
2adfaa28 6017 /* Pull the single step breakpoints out of the target. */
af48d08f 6018 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 6019 {
af48d08f 6020 struct regcache *regcache;
af48d08f 6021 CORE_ADDR pc;
2adfaa28 6022
00431a78 6023 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
6024 const address_space *aspace = regcache->aspace ();
6025
af48d08f 6026 pc = regcache_read_pc (regcache);
34b7e8a6 6027
af48d08f
PA
6028 /* However, before doing so, if this single-step breakpoint was
6029 actually for another thread, set this thread up for moving
6030 past it. */
6031 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6032 aspace, pc))
6033 {
6034 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
6035 {
6036 if (debug_infrun)
6037 {
6038 fprintf_unfiltered (gdb_stdlog,
af48d08f 6039 "infrun: [%s] hit another thread's "
34b7e8a6 6040 "single-step breakpoint\n",
a068643d 6041 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 6042 }
af48d08f
PA
6043 ecs->hit_singlestep_breakpoint = 1;
6044 }
6045 }
6046 else
6047 {
6048 if (debug_infrun)
6049 {
6050 fprintf_unfiltered (gdb_stdlog,
6051 "infrun: [%s] hit its "
6052 "single-step breakpoint\n",
a068643d 6053 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
6054 }
6055 }
488f131b 6056 }
af48d08f 6057 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 6058
963f9c80
PA
6059 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6060 && ecs->event_thread->control.trap_expected
6061 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
6062 stopped_by_watchpoint = 0;
6063 else
6064 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6065
6066 /* If necessary, step over this watchpoint. We'll be back to display
6067 it in a moment. */
6068 if (stopped_by_watchpoint
d92524f1 6069 && (target_have_steppable_watchpoint
568d6575 6070 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6071 {
488f131b
JB
6072 /* At this point, we are stopped at an instruction which has
6073 attempted to write to a piece of memory under control of
6074 a watchpoint. The instruction hasn't actually executed
6075 yet. If we were to evaluate the watchpoint expression
6076 now, we would get the old value, and therefore no change
6077 would seem to have occurred.
6078
6079 In order to make watchpoints work `right', we really need
6080 to complete the memory write, and then evaluate the
d983da9c
DJ
6081 watchpoint expression. We do this by single-stepping the
6082 target.
6083
7f89fd65 6084 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6085 it. For example, the PA can (with some kernel cooperation)
6086 single step over a watchpoint without disabling the watchpoint.
6087
6088 It is far more common to need to disable a watchpoint to step
6089 the inferior over it. If we have non-steppable watchpoints,
6090 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6091 disable all watchpoints.
6092
6093 Any breakpoint at PC must also be stepped over -- if there's
6094 one, it will have already triggered before the watchpoint
6095 triggered, and we either already reported it to the user, or
6096 it didn't cause a stop and we called keep_going. In either
6097 case, if there was a breakpoint at PC, we must be trying to
6098 step past it. */
6099 ecs->event_thread->stepping_over_watchpoint = 1;
6100 keep_going (ecs);
488f131b
JB
6101 return;
6102 }
6103
4e1c45ea 6104 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6105 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6106 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6107 ecs->event_thread->control.stop_step = 0;
488f131b 6108 stop_print_frame = 1;
488f131b 6109 stopped_by_random_signal = 0;
ddfe970e 6110 bpstat stop_chain = NULL;
488f131b 6111
edb3359d
DJ
6112 /* Hide inlined functions starting here, unless we just performed stepi or
6113 nexti. After stepi and nexti, always show the innermost frame (not any
6114 inline function call sites). */
16c381f0 6115 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6116 {
00431a78
PA
6117 const address_space *aspace
6118 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6119
6120 /* skip_inline_frames is expensive, so we avoid it if we can
6121 determine that the address is one where functions cannot have
6122 been inlined. This improves performance with inferiors that
6123 load a lot of shared libraries, because the solib event
6124 breakpoint is defined as the address of a function (i.e. not
6125 inline). Note that we have to check the previous PC as well
6126 as the current one to catch cases when we have just
6127 single-stepped off a breakpoint prior to reinstating it.
6128 Note that we're assuming that the code we single-step to is
6129 not inline, but that's not definitive: there's nothing
6130 preventing the event breakpoint function from containing
6131 inlined code, and the single-step ending up there. If the
6132 user had set a breakpoint on that inlined code, the missing
6133 skip_inline_frames call would break things. Fortunately
6134 that's an extremely unlikely scenario. */
f2ffa92b
PA
6135 if (!pc_at_non_inline_function (aspace,
6136 ecs->event_thread->suspend.stop_pc,
6137 &ecs->ws)
a210c238
MR
6138 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6139 && ecs->event_thread->control.trap_expected
6140 && pc_at_non_inline_function (aspace,
6141 ecs->event_thread->prev_pc,
09ac7c10 6142 &ecs->ws)))
1c5a993e 6143 {
f2ffa92b
PA
6144 stop_chain = build_bpstat_chain (aspace,
6145 ecs->event_thread->suspend.stop_pc,
6146 &ecs->ws);
00431a78 6147 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6148
6149 /* Re-fetch current thread's frame in case that invalidated
6150 the frame cache. */
6151 frame = get_current_frame ();
6152 gdbarch = get_frame_arch (frame);
6153 }
0574c78f 6154 }
edb3359d 6155
a493e3e2 6156 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6157 && ecs->event_thread->control.trap_expected
568d6575 6158 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6159 && currently_stepping (ecs->event_thread))
3352ef37 6160 {
b50d7442 6161 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6162 also on an instruction that needs to be stepped multiple
1777feb0 6163 times before it's been fully executing. E.g., architectures
3352ef37
AC
6164 with a delay slot. It needs to be stepped twice, once for
6165 the instruction and once for the delay slot. */
6166 int step_through_delay
568d6575 6167 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6168
527159b7 6169 if (debug_infrun && step_through_delay)
8a9de0e4 6170 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
6171 if (ecs->event_thread->control.step_range_end == 0
6172 && step_through_delay)
3352ef37
AC
6173 {
6174 /* The user issued a continue when stopped at a breakpoint.
6175 Set up for another trap and get out of here. */
4e1c45ea 6176 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6177 keep_going (ecs);
6178 return;
6179 }
6180 else if (step_through_delay)
6181 {
6182 /* The user issued a step when stopped at a breakpoint.
6183 Maybe we should stop, maybe we should not - the delay
6184 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6185 case, don't decide that here, just set
6186 ecs->stepping_over_breakpoint, making sure we
6187 single-step again before breakpoints are re-inserted. */
4e1c45ea 6188 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6189 }
6190 }
6191
ab04a2af
TT
6192 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6193 handles this event. */
6194 ecs->event_thread->control.stop_bpstat
a01bda52 6195 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6196 ecs->event_thread->suspend.stop_pc,
6197 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6198
ab04a2af
TT
6199 /* Following in case break condition called a
6200 function. */
6201 stop_print_frame = 1;
73dd234f 6202
ab04a2af
TT
6203 /* This is where we handle "moribund" watchpoints. Unlike
6204 software breakpoints traps, hardware watchpoint traps are
6205 always distinguishable from random traps. If no high-level
6206 watchpoint is associated with the reported stop data address
6207 anymore, then the bpstat does not explain the signal ---
6208 simply make sure to ignore it if `stopped_by_watchpoint' is
6209 set. */
6210
6211 if (debug_infrun
6212 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6213 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6214 GDB_SIGNAL_TRAP)
ab04a2af
TT
6215 && stopped_by_watchpoint)
6216 fprintf_unfiltered (gdb_stdlog,
6217 "infrun: no user watchpoint explains "
6218 "watchpoint SIGTRAP, ignoring\n");
73dd234f 6219
bac7d97b 6220 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6221 at one stage in the past included checks for an inferior
6222 function call's call dummy's return breakpoint. The original
6223 comment, that went with the test, read:
03cebad2 6224
ab04a2af
TT
6225 ``End of a stack dummy. Some systems (e.g. Sony news) give
6226 another signal besides SIGTRAP, so check here as well as
6227 above.''
73dd234f 6228
ab04a2af
TT
6229 If someone ever tries to get call dummys on a
6230 non-executable stack to work (where the target would stop
6231 with something like a SIGSEGV), then those tests might need
6232 to be re-instated. Given, however, that the tests were only
6233 enabled when momentary breakpoints were not being used, I
6234 suspect that it won't be the case.
488f131b 6235
ab04a2af
TT
6236 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6237 be necessary for call dummies on a non-executable stack on
6238 SPARC. */
488f131b 6239
bac7d97b 6240 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6241 random_signal
6242 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6243 ecs->event_thread->suspend.stop_signal);
bac7d97b 6244
1cf4d951
PA
6245 /* Maybe this was a trap for a software breakpoint that has since
6246 been removed. */
6247 if (random_signal && target_stopped_by_sw_breakpoint ())
6248 {
5133a315
LM
6249 if (gdbarch_program_breakpoint_here_p (gdbarch,
6250 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6251 {
6252 struct regcache *regcache;
6253 int decr_pc;
6254
6255 /* Re-adjust PC to what the program would see if GDB was not
6256 debugging it. */
00431a78 6257 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6258 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6259 if (decr_pc != 0)
6260 {
07036511
TT
6261 gdb::optional<scoped_restore_tmpl<int>>
6262 restore_operation_disable;
1cf4d951
PA
6263
6264 if (record_full_is_used ())
07036511
TT
6265 restore_operation_disable.emplace
6266 (record_full_gdb_operation_disable_set ());
1cf4d951 6267
f2ffa92b
PA
6268 regcache_write_pc (regcache,
6269 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6270 }
6271 }
6272 else
6273 {
6274 /* A delayed software breakpoint event. Ignore the trap. */
6275 if (debug_infrun)
6276 fprintf_unfiltered (gdb_stdlog,
6277 "infrun: delayed software breakpoint "
6278 "trap, ignoring\n");
6279 random_signal = 0;
6280 }
6281 }
6282
6283 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6284 has since been removed. */
6285 if (random_signal && target_stopped_by_hw_breakpoint ())
6286 {
6287 /* A delayed hardware breakpoint event. Ignore the trap. */
6288 if (debug_infrun)
6289 fprintf_unfiltered (gdb_stdlog,
6290 "infrun: delayed hardware breakpoint/watchpoint "
6291 "trap, ignoring\n");
6292 random_signal = 0;
6293 }
6294
bac7d97b
PA
6295 /* If not, perhaps stepping/nexting can. */
6296 if (random_signal)
6297 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6298 && currently_stepping (ecs->event_thread));
ab04a2af 6299
2adfaa28
PA
6300 /* Perhaps the thread hit a single-step breakpoint of _another_
6301 thread. Single-step breakpoints are transparent to the
6302 breakpoints module. */
6303 if (random_signal)
6304 random_signal = !ecs->hit_singlestep_breakpoint;
6305
bac7d97b
PA
6306 /* No? Perhaps we got a moribund watchpoint. */
6307 if (random_signal)
6308 random_signal = !stopped_by_watchpoint;
ab04a2af 6309
c65d6b55
PA
6310 /* Always stop if the user explicitly requested this thread to
6311 remain stopped. */
6312 if (ecs->event_thread->stop_requested)
6313 {
6314 random_signal = 1;
6315 if (debug_infrun)
6316 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6317 }
6318
488f131b
JB
6319 /* For the program's own signals, act according to
6320 the signal handling tables. */
6321
ce12b012 6322 if (random_signal)
488f131b
JB
6323 {
6324 /* Signal not for debugging purposes. */
5b6d1e4f 6325 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6326 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6327
527159b7 6328 if (debug_infrun)
c9737c08
PA
6329 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6330 gdb_signal_to_symbol_string (stop_signal));
527159b7 6331
488f131b
JB
6332 stopped_by_random_signal = 1;
6333
252fbfc8
PA
6334 /* Always stop on signals if we're either just gaining control
6335 of the program, or the user explicitly requested this thread
6336 to remain stopped. */
d6b48e9c 6337 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6338 || ecs->event_thread->stop_requested
24291992 6339 || (!inf->detaching
16c381f0 6340 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6341 {
22bcd14b 6342 stop_waiting (ecs);
488f131b
JB
6343 return;
6344 }
b57bacec
PA
6345
6346 /* Notify observers the signal has "handle print" set. Note we
6347 returned early above if stopping; normal_stop handles the
6348 printing in that case. */
6349 if (signal_print[ecs->event_thread->suspend.stop_signal])
6350 {
6351 /* The signal table tells us to print about this signal. */
223ffa71 6352 target_terminal::ours_for_output ();
76727919 6353 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6354 target_terminal::inferior ();
b57bacec 6355 }
488f131b
JB
6356
6357 /* Clear the signal if it should not be passed. */
16c381f0 6358 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6359 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6360
f2ffa92b 6361 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6362 && ecs->event_thread->control.trap_expected
8358c15c 6363 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6364 {
6365 /* We were just starting a new sequence, attempting to
6366 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6367 Instead this signal arrives. This signal will take us out
68f53502
AC
6368 of the stepping range so GDB needs to remember to, when
6369 the signal handler returns, resume stepping off that
6370 breakpoint. */
6371 /* To simplify things, "continue" is forced to use the same
6372 code paths as single-step - set a breakpoint at the
6373 signal return address and then, once hit, step off that
6374 breakpoint. */
237fc4c9
PA
6375 if (debug_infrun)
6376 fprintf_unfiltered (gdb_stdlog,
6377 "infrun: signal arrived while stepping over "
6378 "breakpoint\n");
d3169d93 6379
2c03e5be 6380 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6381 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6382 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6383 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6384
6385 /* If we were nexting/stepping some other thread, switch to
6386 it, so that we don't continue it, losing control. */
6387 if (!switch_back_to_stepped_thread (ecs))
6388 keep_going (ecs);
9d799f85 6389 return;
68f53502 6390 }
9d799f85 6391
e5f8a7cc 6392 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6393 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6394 ecs->event_thread)
e5f8a7cc 6395 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6396 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6397 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6398 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6399 {
6400 /* The inferior is about to take a signal that will take it
6401 out of the single step range. Set a breakpoint at the
6402 current PC (which is presumably where the signal handler
6403 will eventually return) and then allow the inferior to
6404 run free.
6405
6406 Note that this is only needed for a signal delivered
6407 while in the single-step range. Nested signals aren't a
6408 problem as they eventually all return. */
237fc4c9
PA
6409 if (debug_infrun)
6410 fprintf_unfiltered (gdb_stdlog,
6411 "infrun: signal may take us out of "
6412 "single-step range\n");
6413
372316f1 6414 clear_step_over_info ();
2c03e5be 6415 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6416 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6417 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6418 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6419 keep_going (ecs);
6420 return;
d303a6c7 6421 }
9d799f85 6422
85102364 6423 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6424 when either there's a nested signal, or when there's a
6425 pending signal enabled just as the signal handler returns
6426 (leaving the inferior at the step-resume-breakpoint without
6427 actually executing it). Either way continue until the
6428 breakpoint is really hit. */
c447ac0b
PA
6429
6430 if (!switch_back_to_stepped_thread (ecs))
6431 {
6432 if (debug_infrun)
6433 fprintf_unfiltered (gdb_stdlog,
6434 "infrun: random signal, keep going\n");
6435
6436 keep_going (ecs);
6437 }
6438 return;
488f131b 6439 }
94c57d6a
PA
6440
6441 process_event_stop_test (ecs);
6442}
6443
6444/* Come here when we've got some debug event / signal we can explain
6445 (IOW, not a random signal), and test whether it should cause a
6446 stop, or whether we should resume the inferior (transparently).
6447 E.g., could be a breakpoint whose condition evaluates false; we
6448 could be still stepping within the line; etc. */
6449
6450static void
6451process_event_stop_test (struct execution_control_state *ecs)
6452{
6453 struct symtab_and_line stop_pc_sal;
6454 struct frame_info *frame;
6455 struct gdbarch *gdbarch;
cdaa5b73
PA
6456 CORE_ADDR jmp_buf_pc;
6457 struct bpstat_what what;
94c57d6a 6458
cdaa5b73 6459 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6460
cdaa5b73
PA
6461 frame = get_current_frame ();
6462 gdbarch = get_frame_arch (frame);
fcf3daef 6463
cdaa5b73 6464 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6465
cdaa5b73
PA
6466 if (what.call_dummy)
6467 {
6468 stop_stack_dummy = what.call_dummy;
6469 }
186c406b 6470
243a9253
PA
6471 /* A few breakpoint types have callbacks associated (e.g.,
6472 bp_jit_event). Run them now. */
6473 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6474
cdaa5b73
PA
6475 /* If we hit an internal event that triggers symbol changes, the
6476 current frame will be invalidated within bpstat_what (e.g., if we
6477 hit an internal solib event). Re-fetch it. */
6478 frame = get_current_frame ();
6479 gdbarch = get_frame_arch (frame);
e2e4d78b 6480
cdaa5b73
PA
6481 switch (what.main_action)
6482 {
6483 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6484 /* If we hit the breakpoint at longjmp while stepping, we
6485 install a momentary breakpoint at the target of the
6486 jmp_buf. */
186c406b 6487
cdaa5b73
PA
6488 if (debug_infrun)
6489 fprintf_unfiltered (gdb_stdlog,
6490 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6491
cdaa5b73 6492 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6493
cdaa5b73
PA
6494 if (what.is_longjmp)
6495 {
6496 struct value *arg_value;
6497
6498 /* If we set the longjmp breakpoint via a SystemTap probe,
6499 then use it to extract the arguments. The destination PC
6500 is the third argument to the probe. */
6501 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6502 if (arg_value)
8fa0c4f8
AA
6503 {
6504 jmp_buf_pc = value_as_address (arg_value);
6505 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6506 }
cdaa5b73
PA
6507 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6508 || !gdbarch_get_longjmp_target (gdbarch,
6509 frame, &jmp_buf_pc))
e2e4d78b 6510 {
cdaa5b73
PA
6511 if (debug_infrun)
6512 fprintf_unfiltered (gdb_stdlog,
6513 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6514 "(!gdbarch_get_longjmp_target)\n");
6515 keep_going (ecs);
6516 return;
e2e4d78b 6517 }
e2e4d78b 6518
cdaa5b73
PA
6519 /* Insert a breakpoint at resume address. */
6520 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6521 }
6522 else
6523 check_exception_resume (ecs, frame);
6524 keep_going (ecs);
6525 return;
e81a37f7 6526
cdaa5b73
PA
6527 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6528 {
6529 struct frame_info *init_frame;
e81a37f7 6530
cdaa5b73 6531 /* There are several cases to consider.
c906108c 6532
cdaa5b73
PA
6533 1. The initiating frame no longer exists. In this case we
6534 must stop, because the exception or longjmp has gone too
6535 far.
2c03e5be 6536
cdaa5b73
PA
6537 2. The initiating frame exists, and is the same as the
6538 current frame. We stop, because the exception or longjmp
6539 has been caught.
2c03e5be 6540
cdaa5b73
PA
6541 3. The initiating frame exists and is different from the
6542 current frame. This means the exception or longjmp has
6543 been caught beneath the initiating frame, so keep going.
c906108c 6544
cdaa5b73
PA
6545 4. longjmp breakpoint has been placed just to protect
6546 against stale dummy frames and user is not interested in
6547 stopping around longjmps. */
c5aa993b 6548
cdaa5b73
PA
6549 if (debug_infrun)
6550 fprintf_unfiltered (gdb_stdlog,
6551 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6552
cdaa5b73
PA
6553 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6554 != NULL);
6555 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6556
cdaa5b73
PA
6557 if (what.is_longjmp)
6558 {
b67a2c6f 6559 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6560
cdaa5b73 6561 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6562 {
cdaa5b73
PA
6563 /* Case 4. */
6564 keep_going (ecs);
6565 return;
e5ef252a 6566 }
cdaa5b73 6567 }
c5aa993b 6568
cdaa5b73 6569 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6570
cdaa5b73
PA
6571 if (init_frame)
6572 {
6573 struct frame_id current_id
6574 = get_frame_id (get_current_frame ());
6575 if (frame_id_eq (current_id,
6576 ecs->event_thread->initiating_frame))
6577 {
6578 /* Case 2. Fall through. */
6579 }
6580 else
6581 {
6582 /* Case 3. */
6583 keep_going (ecs);
6584 return;
6585 }
68f53502 6586 }
488f131b 6587
cdaa5b73
PA
6588 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6589 exists. */
6590 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6591
bdc36728 6592 end_stepping_range (ecs);
cdaa5b73
PA
6593 }
6594 return;
e5ef252a 6595
cdaa5b73
PA
6596 case BPSTAT_WHAT_SINGLE:
6597 if (debug_infrun)
6598 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6599 ecs->event_thread->stepping_over_breakpoint = 1;
6600 /* Still need to check other stuff, at least the case where we
6601 are stepping and step out of the right range. */
6602 break;
e5ef252a 6603
cdaa5b73
PA
6604 case BPSTAT_WHAT_STEP_RESUME:
6605 if (debug_infrun)
6606 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6607
cdaa5b73
PA
6608 delete_step_resume_breakpoint (ecs->event_thread);
6609 if (ecs->event_thread->control.proceed_to_finish
6610 && execution_direction == EXEC_REVERSE)
6611 {
6612 struct thread_info *tp = ecs->event_thread;
6613
6614 /* We are finishing a function in reverse, and just hit the
6615 step-resume breakpoint at the start address of the
6616 function, and we're almost there -- just need to back up
6617 by one more single-step, which should take us back to the
6618 function call. */
6619 tp->control.step_range_start = tp->control.step_range_end = 1;
6620 keep_going (ecs);
e5ef252a 6621 return;
cdaa5b73
PA
6622 }
6623 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6624 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6625 && execution_direction == EXEC_REVERSE)
6626 {
6627 /* We are stepping over a function call in reverse, and just
6628 hit the step-resume breakpoint at the start address of
6629 the function. Go back to single-stepping, which should
6630 take us back to the function call. */
6631 ecs->event_thread->stepping_over_breakpoint = 1;
6632 keep_going (ecs);
6633 return;
6634 }
6635 break;
e5ef252a 6636
cdaa5b73
PA
6637 case BPSTAT_WHAT_STOP_NOISY:
6638 if (debug_infrun)
6639 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6640 stop_print_frame = 1;
e5ef252a 6641
99619bea
PA
6642 /* Assume the thread stopped for a breapoint. We'll still check
6643 whether a/the breakpoint is there when the thread is next
6644 resumed. */
6645 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6646
22bcd14b 6647 stop_waiting (ecs);
cdaa5b73 6648 return;
e5ef252a 6649
cdaa5b73
PA
6650 case BPSTAT_WHAT_STOP_SILENT:
6651 if (debug_infrun)
6652 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6653 stop_print_frame = 0;
e5ef252a 6654
99619bea
PA
6655 /* Assume the thread stopped for a breapoint. We'll still check
6656 whether a/the breakpoint is there when the thread is next
6657 resumed. */
6658 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6659 stop_waiting (ecs);
cdaa5b73
PA
6660 return;
6661
6662 case BPSTAT_WHAT_HP_STEP_RESUME:
6663 if (debug_infrun)
6664 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6665
6666 delete_step_resume_breakpoint (ecs->event_thread);
6667 if (ecs->event_thread->step_after_step_resume_breakpoint)
6668 {
6669 /* Back when the step-resume breakpoint was inserted, we
6670 were trying to single-step off a breakpoint. Go back to
6671 doing that. */
6672 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6673 ecs->event_thread->stepping_over_breakpoint = 1;
6674 keep_going (ecs);
6675 return;
e5ef252a 6676 }
cdaa5b73
PA
6677 break;
6678
6679 case BPSTAT_WHAT_KEEP_CHECKING:
6680 break;
e5ef252a 6681 }
c906108c 6682
af48d08f
PA
6683 /* If we stepped a permanent breakpoint and we had a high priority
6684 step-resume breakpoint for the address we stepped, but we didn't
6685 hit it, then we must have stepped into the signal handler. The
6686 step-resume was only necessary to catch the case of _not_
6687 stepping into the handler, so delete it, and fall through to
6688 checking whether the step finished. */
6689 if (ecs->event_thread->stepped_breakpoint)
6690 {
6691 struct breakpoint *sr_bp
6692 = ecs->event_thread->control.step_resume_breakpoint;
6693
8d707a12
PA
6694 if (sr_bp != NULL
6695 && sr_bp->loc->permanent
af48d08f
PA
6696 && sr_bp->type == bp_hp_step_resume
6697 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6698 {
6699 if (debug_infrun)
6700 fprintf_unfiltered (gdb_stdlog,
6701 "infrun: stepped permanent breakpoint, stopped in "
6702 "handler\n");
6703 delete_step_resume_breakpoint (ecs->event_thread);
6704 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6705 }
6706 }
6707
cdaa5b73
PA
6708 /* We come here if we hit a breakpoint but should not stop for it.
6709 Possibly we also were stepping and should stop for that. So fall
6710 through and test for stepping. But, if not stepping, do not
6711 stop. */
c906108c 6712
a7212384
UW
6713 /* In all-stop mode, if we're currently stepping but have stopped in
6714 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6715 if (switch_back_to_stepped_thread (ecs))
6716 return;
776f04fa 6717
8358c15c 6718 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6719 {
527159b7 6720 if (debug_infrun)
d3169d93
DJ
6721 fprintf_unfiltered (gdb_stdlog,
6722 "infrun: step-resume breakpoint is inserted\n");
527159b7 6723
488f131b
JB
6724 /* Having a step-resume breakpoint overrides anything
6725 else having to do with stepping commands until
6726 that breakpoint is reached. */
488f131b
JB
6727 keep_going (ecs);
6728 return;
6729 }
c5aa993b 6730
16c381f0 6731 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6732 {
527159b7 6733 if (debug_infrun)
8a9de0e4 6734 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6735 /* Likewise if we aren't even stepping. */
488f131b
JB
6736 keep_going (ecs);
6737 return;
6738 }
c5aa993b 6739
4b7703ad
JB
6740 /* Re-fetch current thread's frame in case the code above caused
6741 the frame cache to be re-initialized, making our FRAME variable
6742 a dangling pointer. */
6743 frame = get_current_frame ();
628fe4e4 6744 gdbarch = get_frame_arch (frame);
7e324e48 6745 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6746
488f131b 6747 /* If stepping through a line, keep going if still within it.
c906108c 6748
488f131b
JB
6749 Note that step_range_end is the address of the first instruction
6750 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6751 within it!
6752
6753 Note also that during reverse execution, we may be stepping
6754 through a function epilogue and therefore must detect when
6755 the current-frame changes in the middle of a line. */
6756
f2ffa92b
PA
6757 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6758 ecs->event_thread)
31410e84 6759 && (execution_direction != EXEC_REVERSE
388a8562 6760 || frame_id_eq (get_frame_id (frame),
16c381f0 6761 ecs->event_thread->control.step_frame_id)))
488f131b 6762 {
527159b7 6763 if (debug_infrun)
5af949e3
UW
6764 fprintf_unfiltered
6765 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6766 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6767 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6768
c1e36e3e
PA
6769 /* Tentatively re-enable range stepping; `resume' disables it if
6770 necessary (e.g., if we're stepping over a breakpoint or we
6771 have software watchpoints). */
6772 ecs->event_thread->control.may_range_step = 1;
6773
b2175913
MS
6774 /* When stepping backward, stop at beginning of line range
6775 (unless it's the function entry point, in which case
6776 keep going back to the call point). */
f2ffa92b 6777 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6778 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6779 && stop_pc != ecs->stop_func_start
6780 && execution_direction == EXEC_REVERSE)
bdc36728 6781 end_stepping_range (ecs);
b2175913
MS
6782 else
6783 keep_going (ecs);
6784
488f131b
JB
6785 return;
6786 }
c5aa993b 6787
488f131b 6788 /* We stepped out of the stepping range. */
c906108c 6789
488f131b 6790 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6791 loader dynamic symbol resolution code...
6792
6793 EXEC_FORWARD: we keep on single stepping until we exit the run
6794 time loader code and reach the callee's address.
6795
6796 EXEC_REVERSE: we've already executed the callee (backward), and
6797 the runtime loader code is handled just like any other
6798 undebuggable function call. Now we need only keep stepping
6799 backward through the trampoline code, and that's handled further
6800 down, so there is nothing for us to do here. */
6801
6802 if (execution_direction != EXEC_REVERSE
16c381f0 6803 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6804 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6805 {
4c8c40e6 6806 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6807 gdbarch_skip_solib_resolver (gdbarch,
6808 ecs->event_thread->suspend.stop_pc);
c906108c 6809
527159b7 6810 if (debug_infrun)
3e43a32a
MS
6811 fprintf_unfiltered (gdb_stdlog,
6812 "infrun: stepped into dynsym resolve code\n");
527159b7 6813
488f131b
JB
6814 if (pc_after_resolver)
6815 {
6816 /* Set up a step-resume breakpoint at the address
6817 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6818 symtab_and_line sr_sal;
488f131b 6819 sr_sal.pc = pc_after_resolver;
6c95b8df 6820 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6821
a6d9a66e
UW
6822 insert_step_resume_breakpoint_at_sal (gdbarch,
6823 sr_sal, null_frame_id);
c5aa993b 6824 }
c906108c 6825
488f131b
JB
6826 keep_going (ecs);
6827 return;
6828 }
c906108c 6829
1d509aa6
MM
6830 /* Step through an indirect branch thunk. */
6831 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6832 && gdbarch_in_indirect_branch_thunk (gdbarch,
6833 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6834 {
6835 if (debug_infrun)
6836 fprintf_unfiltered (gdb_stdlog,
6837 "infrun: stepped into indirect branch thunk\n");
6838 keep_going (ecs);
6839 return;
6840 }
6841
16c381f0
JK
6842 if (ecs->event_thread->control.step_range_end != 1
6843 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6844 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6845 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6846 {
527159b7 6847 if (debug_infrun)
3e43a32a
MS
6848 fprintf_unfiltered (gdb_stdlog,
6849 "infrun: stepped into signal trampoline\n");
42edda50 6850 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6851 a signal trampoline (either by a signal being delivered or by
6852 the signal handler returning). Just single-step until the
6853 inferior leaves the trampoline (either by calling the handler
6854 or returning). */
488f131b
JB
6855 keep_going (ecs);
6856 return;
6857 }
c906108c 6858
14132e89
MR
6859 /* If we're in the return path from a shared library trampoline,
6860 we want to proceed through the trampoline when stepping. */
6861 /* macro/2012-04-25: This needs to come before the subroutine
6862 call check below as on some targets return trampolines look
6863 like subroutine calls (MIPS16 return thunks). */
6864 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6865 ecs->event_thread->suspend.stop_pc,
6866 ecs->stop_func_name)
14132e89
MR
6867 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6868 {
6869 /* Determine where this trampoline returns. */
f2ffa92b
PA
6870 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6871 CORE_ADDR real_stop_pc
6872 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6873
6874 if (debug_infrun)
6875 fprintf_unfiltered (gdb_stdlog,
6876 "infrun: stepped into solib return tramp\n");
6877
6878 /* Only proceed through if we know where it's going. */
6879 if (real_stop_pc)
6880 {
6881 /* And put the step-breakpoint there and go until there. */
51abb421 6882 symtab_and_line sr_sal;
14132e89
MR
6883 sr_sal.pc = real_stop_pc;
6884 sr_sal.section = find_pc_overlay (sr_sal.pc);
6885 sr_sal.pspace = get_frame_program_space (frame);
6886
6887 /* Do not specify what the fp should be when we stop since
6888 on some machines the prologue is where the new fp value
6889 is established. */
6890 insert_step_resume_breakpoint_at_sal (gdbarch,
6891 sr_sal, null_frame_id);
6892
6893 /* Restart without fiddling with the step ranges or
6894 other state. */
6895 keep_going (ecs);
6896 return;
6897 }
6898 }
6899
c17eaafe
DJ
6900 /* Check for subroutine calls. The check for the current frame
6901 equalling the step ID is not necessary - the check of the
6902 previous frame's ID is sufficient - but it is a common case and
6903 cheaper than checking the previous frame's ID.
14e60db5
DJ
6904
6905 NOTE: frame_id_eq will never report two invalid frame IDs as
6906 being equal, so to get into this block, both the current and
6907 previous frame must have valid frame IDs. */
005ca36a
JB
6908 /* The outer_frame_id check is a heuristic to detect stepping
6909 through startup code. If we step over an instruction which
6910 sets the stack pointer from an invalid value to a valid value,
6911 we may detect that as a subroutine call from the mythical
6912 "outermost" function. This could be fixed by marking
6913 outermost frames as !stack_p,code_p,special_p. Then the
6914 initial outermost frame, before sp was valid, would
ce6cca6d 6915 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6916 for more. */
edb3359d 6917 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6918 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6919 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6920 ecs->event_thread->control.step_stack_frame_id)
6921 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6922 outer_frame_id)
885eeb5b 6923 || (ecs->event_thread->control.step_start_function
f2ffa92b 6924 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6925 {
f2ffa92b 6926 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6927 CORE_ADDR real_stop_pc;
8fb3e588 6928
527159b7 6929 if (debug_infrun)
8a9de0e4 6930 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6931
b7a084be 6932 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6933 {
6934 /* I presume that step_over_calls is only 0 when we're
6935 supposed to be stepping at the assembly language level
6936 ("stepi"). Just stop. */
388a8562 6937 /* And this works the same backward as frontward. MVS */
bdc36728 6938 end_stepping_range (ecs);
95918acb
AC
6939 return;
6940 }
8fb3e588 6941
388a8562
MS
6942 /* Reverse stepping through solib trampolines. */
6943
6944 if (execution_direction == EXEC_REVERSE
16c381f0 6945 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6946 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6947 || (ecs->stop_func_start == 0
6948 && in_solib_dynsym_resolve_code (stop_pc))))
6949 {
6950 /* Any solib trampoline code can be handled in reverse
6951 by simply continuing to single-step. We have already
6952 executed the solib function (backwards), and a few
6953 steps will take us back through the trampoline to the
6954 caller. */
6955 keep_going (ecs);
6956 return;
6957 }
6958
16c381f0 6959 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6960 {
b2175913
MS
6961 /* We're doing a "next".
6962
6963 Normal (forward) execution: set a breakpoint at the
6964 callee's return address (the address at which the caller
6965 will resume).
6966
6967 Reverse (backward) execution. set the step-resume
6968 breakpoint at the start of the function that we just
6969 stepped into (backwards), and continue to there. When we
6130d0b7 6970 get there, we'll need to single-step back to the caller. */
b2175913
MS
6971
6972 if (execution_direction == EXEC_REVERSE)
6973 {
acf9414f
JK
6974 /* If we're already at the start of the function, we've either
6975 just stepped backward into a single instruction function,
6976 or stepped back out of a signal handler to the first instruction
6977 of the function. Just keep going, which will single-step back
6978 to the caller. */
58c48e72 6979 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6980 {
acf9414f 6981 /* Normal function call return (static or dynamic). */
51abb421 6982 symtab_and_line sr_sal;
acf9414f
JK
6983 sr_sal.pc = ecs->stop_func_start;
6984 sr_sal.pspace = get_frame_program_space (frame);
6985 insert_step_resume_breakpoint_at_sal (gdbarch,
6986 sr_sal, null_frame_id);
6987 }
b2175913
MS
6988 }
6989 else
568d6575 6990 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6991
8567c30f
AC
6992 keep_going (ecs);
6993 return;
6994 }
a53c66de 6995
95918acb 6996 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6997 calling routine and the real function), locate the real
6998 function. That's what tells us (a) whether we want to step
6999 into it at all, and (b) what prologue we want to run to the
7000 end of, if we do step into it. */
568d6575 7001 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 7002 if (real_stop_pc == 0)
568d6575 7003 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
7004 if (real_stop_pc != 0)
7005 ecs->stop_func_start = real_stop_pc;
8fb3e588 7006
db5f024e 7007 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 7008 {
51abb421 7009 symtab_and_line sr_sal;
1b2bfbb9 7010 sr_sal.pc = ecs->stop_func_start;
6c95b8df 7011 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 7012
a6d9a66e
UW
7013 insert_step_resume_breakpoint_at_sal (gdbarch,
7014 sr_sal, null_frame_id);
8fb3e588
AC
7015 keep_going (ecs);
7016 return;
1b2bfbb9
RC
7017 }
7018
95918acb 7019 /* If we have line number information for the function we are
1bfeeb0f
JL
7020 thinking of stepping into and the function isn't on the skip
7021 list, step into it.
95918acb 7022
8fb3e588
AC
7023 If there are several symtabs at that PC (e.g. with include
7024 files), just want to know whether *any* of them have line
7025 numbers. find_pc_line handles this. */
95918acb
AC
7026 {
7027 struct symtab_and_line tmp_sal;
8fb3e588 7028
95918acb 7029 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 7030 if (tmp_sal.line != 0
85817405 7031 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
7032 tmp_sal)
7033 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 7034 {
b2175913 7035 if (execution_direction == EXEC_REVERSE)
568d6575 7036 handle_step_into_function_backward (gdbarch, ecs);
b2175913 7037 else
568d6575 7038 handle_step_into_function (gdbarch, ecs);
95918acb
AC
7039 return;
7040 }
7041 }
7042
7043 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
7044 set, we stop the step so that the user has a chance to switch
7045 in assembly mode. */
16c381f0 7046 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 7047 && step_stop_if_no_debug)
95918acb 7048 {
bdc36728 7049 end_stepping_range (ecs);
95918acb
AC
7050 return;
7051 }
7052
b2175913
MS
7053 if (execution_direction == EXEC_REVERSE)
7054 {
acf9414f
JK
7055 /* If we're already at the start of the function, we've either just
7056 stepped backward into a single instruction function without line
7057 number info, or stepped back out of a signal handler to the first
7058 instruction of the function without line number info. Just keep
7059 going, which will single-step back to the caller. */
7060 if (ecs->stop_func_start != stop_pc)
7061 {
7062 /* Set a breakpoint at callee's start address.
7063 From there we can step once and be back in the caller. */
51abb421 7064 symtab_and_line sr_sal;
acf9414f
JK
7065 sr_sal.pc = ecs->stop_func_start;
7066 sr_sal.pspace = get_frame_program_space (frame);
7067 insert_step_resume_breakpoint_at_sal (gdbarch,
7068 sr_sal, null_frame_id);
7069 }
b2175913
MS
7070 }
7071 else
7072 /* Set a breakpoint at callee's return address (the address
7073 at which the caller will resume). */
568d6575 7074 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7075
95918acb 7076 keep_going (ecs);
488f131b 7077 return;
488f131b 7078 }
c906108c 7079
fdd654f3
MS
7080 /* Reverse stepping through solib trampolines. */
7081
7082 if (execution_direction == EXEC_REVERSE
16c381f0 7083 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7084 {
f2ffa92b
PA
7085 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7086
fdd654f3
MS
7087 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7088 || (ecs->stop_func_start == 0
7089 && in_solib_dynsym_resolve_code (stop_pc)))
7090 {
7091 /* Any solib trampoline code can be handled in reverse
7092 by simply continuing to single-step. We have already
7093 executed the solib function (backwards), and a few
7094 steps will take us back through the trampoline to the
7095 caller. */
7096 keep_going (ecs);
7097 return;
7098 }
7099 else if (in_solib_dynsym_resolve_code (stop_pc))
7100 {
7101 /* Stepped backward into the solib dynsym resolver.
7102 Set a breakpoint at its start and continue, then
7103 one more step will take us out. */
51abb421 7104 symtab_and_line sr_sal;
fdd654f3 7105 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7106 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7107 insert_step_resume_breakpoint_at_sal (gdbarch,
7108 sr_sal, null_frame_id);
7109 keep_going (ecs);
7110 return;
7111 }
7112 }
7113
8c95582d
AB
7114 /* This always returns the sal for the inner-most frame when we are in a
7115 stack of inlined frames, even if GDB actually believes that it is in a
7116 more outer frame. This is checked for below by calls to
7117 inline_skipped_frames. */
f2ffa92b 7118 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7119
1b2bfbb9
RC
7120 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7121 the trampoline processing logic, however, there are some trampolines
7122 that have no names, so we should do trampoline handling first. */
16c381f0 7123 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7124 && ecs->stop_func_name == NULL
2afb61aa 7125 && stop_pc_sal.line == 0)
1b2bfbb9 7126 {
527159b7 7127 if (debug_infrun)
3e43a32a
MS
7128 fprintf_unfiltered (gdb_stdlog,
7129 "infrun: stepped into undebuggable function\n");
527159b7 7130
1b2bfbb9 7131 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
7132 undebuggable function (where there is no debugging information
7133 and no line number corresponding to the address where the
1b2bfbb9
RC
7134 inferior stopped). Since we want to skip this kind of code,
7135 we keep going until the inferior returns from this
14e60db5
DJ
7136 function - unless the user has asked us not to (via
7137 set step-mode) or we no longer know how to get back
7138 to the call site. */
7139 if (step_stop_if_no_debug
c7ce8faa 7140 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7141 {
7142 /* If we have no line number and the step-stop-if-no-debug
7143 is set, we stop the step so that the user has a chance to
7144 switch in assembly mode. */
bdc36728 7145 end_stepping_range (ecs);
1b2bfbb9
RC
7146 return;
7147 }
7148 else
7149 {
7150 /* Set a breakpoint at callee's return address (the address
7151 at which the caller will resume). */
568d6575 7152 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7153 keep_going (ecs);
7154 return;
7155 }
7156 }
7157
16c381f0 7158 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7159 {
7160 /* It is stepi or nexti. We always want to stop stepping after
7161 one instruction. */
527159b7 7162 if (debug_infrun)
8a9de0e4 7163 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 7164 end_stepping_range (ecs);
1b2bfbb9
RC
7165 return;
7166 }
7167
2afb61aa 7168 if (stop_pc_sal.line == 0)
488f131b
JB
7169 {
7170 /* We have no line number information. That means to stop
7171 stepping (does this always happen right after one instruction,
7172 when we do "s" in a function with no line numbers,
7173 or can this happen as a result of a return or longjmp?). */
527159b7 7174 if (debug_infrun)
8a9de0e4 7175 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 7176 end_stepping_range (ecs);
488f131b
JB
7177 return;
7178 }
c906108c 7179
edb3359d
DJ
7180 /* Look for "calls" to inlined functions, part one. If the inline
7181 frame machinery detected some skipped call sites, we have entered
7182 a new inline function. */
7183
7184 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7185 ecs->event_thread->control.step_frame_id)
00431a78 7186 && inline_skipped_frames (ecs->event_thread))
edb3359d 7187 {
edb3359d
DJ
7188 if (debug_infrun)
7189 fprintf_unfiltered (gdb_stdlog,
7190 "infrun: stepped into inlined function\n");
7191
51abb421 7192 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7193
16c381f0 7194 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7195 {
7196 /* For "step", we're going to stop. But if the call site
7197 for this inlined function is on the same source line as
7198 we were previously stepping, go down into the function
7199 first. Otherwise stop at the call site. */
7200
7201 if (call_sal.line == ecs->event_thread->current_line
7202 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7203 {
7204 step_into_inline_frame (ecs->event_thread);
7205 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7206 {
7207 keep_going (ecs);
7208 return;
7209 }
7210 }
edb3359d 7211
bdc36728 7212 end_stepping_range (ecs);
edb3359d
DJ
7213 return;
7214 }
7215 else
7216 {
7217 /* For "next", we should stop at the call site if it is on a
7218 different source line. Otherwise continue through the
7219 inlined function. */
7220 if (call_sal.line == ecs->event_thread->current_line
7221 && call_sal.symtab == ecs->event_thread->current_symtab)
7222 keep_going (ecs);
7223 else
bdc36728 7224 end_stepping_range (ecs);
edb3359d
DJ
7225 return;
7226 }
7227 }
7228
7229 /* Look for "calls" to inlined functions, part two. If we are still
7230 in the same real function we were stepping through, but we have
7231 to go further up to find the exact frame ID, we are stepping
7232 through a more inlined call beyond its call site. */
7233
7234 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7235 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7236 ecs->event_thread->control.step_frame_id)
edb3359d 7237 && stepped_in_from (get_current_frame (),
16c381f0 7238 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
7239 {
7240 if (debug_infrun)
7241 fprintf_unfiltered (gdb_stdlog,
7242 "infrun: stepping through inlined function\n");
7243
4a4c04f1
BE
7244 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7245 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7246 keep_going (ecs);
7247 else
bdc36728 7248 end_stepping_range (ecs);
edb3359d
DJ
7249 return;
7250 }
7251
8c95582d 7252 bool refresh_step_info = true;
f2ffa92b 7253 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7254 && (ecs->event_thread->current_line != stop_pc_sal.line
7255 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7256 {
8c95582d
AB
7257 if (stop_pc_sal.is_stmt)
7258 {
7259 /* We are at the start of a different line. So stop. Note that
7260 we don't stop if we step into the middle of a different line.
7261 That is said to make things like for (;;) statements work
7262 better. */
7263 if (debug_infrun)
7264 fprintf_unfiltered (gdb_stdlog,
7265 "infrun: stepped to a different line\n");
7266 end_stepping_range (ecs);
7267 return;
7268 }
7269 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7270 ecs->event_thread->control.step_frame_id))
7271 {
7272 /* We are at the start of a different line, however, this line is
7273 not marked as a statement, and we have not changed frame. We
7274 ignore this line table entry, and continue stepping forward,
7275 looking for a better place to stop. */
7276 refresh_step_info = false;
7277 if (debug_infrun)
7278 fprintf_unfiltered (gdb_stdlog,
7279 "infrun: stepped to a different line, but "
7280 "it's not the start of a statement\n");
7281 }
488f131b 7282 }
c906108c 7283
488f131b 7284 /* We aren't done stepping.
c906108c 7285
488f131b
JB
7286 Optimize by setting the stepping range to the line.
7287 (We might not be in the original line, but if we entered a
7288 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7289 things like for(;;) statements work better.)
7290
7291 If we entered a SAL that indicates a non-statement line table entry,
7292 then we update the stepping range, but we don't update the step info,
7293 which includes things like the line number we are stepping away from.
7294 This means we will stop when we find a line table entry that is marked
7295 as is-statement, even if it matches the non-statement one we just
7296 stepped into. */
c906108c 7297
16c381f0
JK
7298 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7299 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7300 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7301 if (refresh_step_info)
7302 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7303
527159b7 7304 if (debug_infrun)
8a9de0e4 7305 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7306 keep_going (ecs);
104c1213
JM
7307}
7308
c447ac0b
PA
7309/* In all-stop mode, if we're currently stepping but have stopped in
7310 some other thread, we may need to switch back to the stepped
7311 thread. Returns true we set the inferior running, false if we left
7312 it stopped (and the event needs further processing). */
7313
7314static int
7315switch_back_to_stepped_thread (struct execution_control_state *ecs)
7316{
fbea99ea 7317 if (!target_is_non_stop_p ())
c447ac0b 7318 {
99619bea
PA
7319 struct thread_info *stepping_thread;
7320
7321 /* If any thread is blocked on some internal breakpoint, and we
7322 simply need to step over that breakpoint to get it going
7323 again, do that first. */
7324
7325 /* However, if we see an event for the stepping thread, then we
7326 know all other threads have been moved past their breakpoints
7327 already. Let the caller check whether the step is finished,
7328 etc., before deciding to move it past a breakpoint. */
7329 if (ecs->event_thread->control.step_range_end != 0)
7330 return 0;
7331
7332 /* Check if the current thread is blocked on an incomplete
7333 step-over, interrupted by a random signal. */
7334 if (ecs->event_thread->control.trap_expected
7335 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7336 {
99619bea
PA
7337 if (debug_infrun)
7338 {
7339 fprintf_unfiltered (gdb_stdlog,
7340 "infrun: need to finish step-over of [%s]\n",
a068643d 7341 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7342 }
7343 keep_going (ecs);
7344 return 1;
7345 }
2adfaa28 7346
99619bea
PA
7347 /* Check if the current thread is blocked by a single-step
7348 breakpoint of another thread. */
7349 if (ecs->hit_singlestep_breakpoint)
7350 {
7351 if (debug_infrun)
7352 {
7353 fprintf_unfiltered (gdb_stdlog,
7354 "infrun: need to step [%s] over single-step "
7355 "breakpoint\n",
a068643d 7356 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7357 }
7358 keep_going (ecs);
7359 return 1;
7360 }
7361
4d9d9d04
PA
7362 /* If this thread needs yet another step-over (e.g., stepping
7363 through a delay slot), do it first before moving on to
7364 another thread. */
7365 if (thread_still_needs_step_over (ecs->event_thread))
7366 {
7367 if (debug_infrun)
7368 {
7369 fprintf_unfiltered (gdb_stdlog,
7370 "infrun: thread [%s] still needs step-over\n",
a068643d 7371 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7372 }
7373 keep_going (ecs);
7374 return 1;
7375 }
70509625 7376
483805cf
PA
7377 /* If scheduler locking applies even if not stepping, there's no
7378 need to walk over threads. Above we've checked whether the
7379 current thread is stepping. If some other thread not the
7380 event thread is stepping, then it must be that scheduler
7381 locking is not in effect. */
856e7dd6 7382 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7383 return 0;
7384
4d9d9d04
PA
7385 /* Otherwise, we no longer expect a trap in the current thread.
7386 Clear the trap_expected flag before switching back -- this is
7387 what keep_going does as well, if we call it. */
7388 ecs->event_thread->control.trap_expected = 0;
7389
7390 /* Likewise, clear the signal if it should not be passed. */
7391 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7392 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7393
7394 /* Do all pending step-overs before actually proceeding with
483805cf 7395 step/next/etc. */
4d9d9d04
PA
7396 if (start_step_over ())
7397 {
7398 prepare_to_wait (ecs);
7399 return 1;
7400 }
7401
7402 /* Look for the stepping/nexting thread. */
483805cf 7403 stepping_thread = NULL;
4d9d9d04 7404
08036331 7405 for (thread_info *tp : all_non_exited_threads ())
483805cf 7406 {
f3f8ece4
PA
7407 switch_to_thread_no_regs (tp);
7408
fbea99ea
PA
7409 /* Ignore threads of processes the caller is not
7410 resuming. */
483805cf 7411 if (!sched_multi
5b6d1e4f
PA
7412 && (tp->inf->process_target () != ecs->target
7413 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7414 continue;
7415
7416 /* When stepping over a breakpoint, we lock all threads
7417 except the one that needs to move past the breakpoint.
7418 If a non-event thread has this set, the "incomplete
7419 step-over" check above should have caught it earlier. */
372316f1
PA
7420 if (tp->control.trap_expected)
7421 {
7422 internal_error (__FILE__, __LINE__,
7423 "[%s] has inconsistent state: "
7424 "trap_expected=%d\n",
a068643d 7425 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7426 tp->control.trap_expected);
7427 }
483805cf
PA
7428
7429 /* Did we find the stepping thread? */
7430 if (tp->control.step_range_end)
7431 {
7432 /* Yep. There should only one though. */
7433 gdb_assert (stepping_thread == NULL);
7434
7435 /* The event thread is handled at the top, before we
7436 enter this loop. */
7437 gdb_assert (tp != ecs->event_thread);
7438
7439 /* If some thread other than the event thread is
7440 stepping, then scheduler locking can't be in effect,
7441 otherwise we wouldn't have resumed the current event
7442 thread in the first place. */
856e7dd6 7443 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7444
7445 stepping_thread = tp;
7446 }
99619bea
PA
7447 }
7448
483805cf 7449 if (stepping_thread != NULL)
99619bea 7450 {
c447ac0b
PA
7451 if (debug_infrun)
7452 fprintf_unfiltered (gdb_stdlog,
7453 "infrun: switching back to stepped thread\n");
7454
2ac7589c
PA
7455 if (keep_going_stepped_thread (stepping_thread))
7456 {
7457 prepare_to_wait (ecs);
7458 return 1;
7459 }
7460 }
f3f8ece4
PA
7461
7462 switch_to_thread (ecs->event_thread);
2ac7589c 7463 }
2adfaa28 7464
2ac7589c
PA
7465 return 0;
7466}
2adfaa28 7467
2ac7589c
PA
7468/* Set a previously stepped thread back to stepping. Returns true on
7469 success, false if the resume is not possible (e.g., the thread
7470 vanished). */
7471
7472static int
7473keep_going_stepped_thread (struct thread_info *tp)
7474{
7475 struct frame_info *frame;
2ac7589c
PA
7476 struct execution_control_state ecss;
7477 struct execution_control_state *ecs = &ecss;
2adfaa28 7478
2ac7589c
PA
7479 /* If the stepping thread exited, then don't try to switch back and
7480 resume it, which could fail in several different ways depending
7481 on the target. Instead, just keep going.
2adfaa28 7482
2ac7589c
PA
7483 We can find a stepping dead thread in the thread list in two
7484 cases:
2adfaa28 7485
2ac7589c
PA
7486 - The target supports thread exit events, and when the target
7487 tries to delete the thread from the thread list, inferior_ptid
7488 pointed at the exiting thread. In such case, calling
7489 delete_thread does not really remove the thread from the list;
7490 instead, the thread is left listed, with 'exited' state.
64ce06e4 7491
2ac7589c
PA
7492 - The target's debug interface does not support thread exit
7493 events, and so we have no idea whatsoever if the previously
7494 stepping thread is still alive. For that reason, we need to
7495 synchronously query the target now. */
2adfaa28 7496
00431a78 7497 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7498 {
7499 if (debug_infrun)
7500 fprintf_unfiltered (gdb_stdlog,
7501 "infrun: not resuming previously "
7502 "stepped thread, it has vanished\n");
7503
00431a78 7504 delete_thread (tp);
2ac7589c 7505 return 0;
c447ac0b 7506 }
2ac7589c
PA
7507
7508 if (debug_infrun)
7509 fprintf_unfiltered (gdb_stdlog,
7510 "infrun: resuming previously stepped thread\n");
7511
7512 reset_ecs (ecs, tp);
00431a78 7513 switch_to_thread (tp);
2ac7589c 7514
f2ffa92b 7515 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7516 frame = get_current_frame ();
2ac7589c
PA
7517
7518 /* If the PC of the thread we were trying to single-step has
7519 changed, then that thread has trapped or been signaled, but the
7520 event has not been reported to GDB yet. Re-poll the target
7521 looking for this particular thread's event (i.e. temporarily
7522 enable schedlock) by:
7523
7524 - setting a break at the current PC
7525 - resuming that particular thread, only (by setting trap
7526 expected)
7527
7528 This prevents us continuously moving the single-step breakpoint
7529 forward, one instruction at a time, overstepping. */
7530
f2ffa92b 7531 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7532 {
7533 ptid_t resume_ptid;
7534
7535 if (debug_infrun)
7536 fprintf_unfiltered (gdb_stdlog,
7537 "infrun: expected thread advanced also (%s -> %s)\n",
7538 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7539 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7540
7541 /* Clear the info of the previous step-over, as it's no longer
7542 valid (if the thread was trying to step over a breakpoint, it
7543 has already succeeded). It's what keep_going would do too,
7544 if we called it. Do this before trying to insert the sss
7545 breakpoint, otherwise if we were previously trying to step
7546 over this exact address in another thread, the breakpoint is
7547 skipped. */
7548 clear_step_over_info ();
7549 tp->control.trap_expected = 0;
7550
7551 insert_single_step_breakpoint (get_frame_arch (frame),
7552 get_frame_address_space (frame),
f2ffa92b 7553 tp->suspend.stop_pc);
2ac7589c 7554
719546c4 7555 tp->resumed = true;
fbea99ea 7556 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7557 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7558 }
7559 else
7560 {
7561 if (debug_infrun)
7562 fprintf_unfiltered (gdb_stdlog,
7563 "infrun: expected thread still hasn't advanced\n");
7564
7565 keep_going_pass_signal (ecs);
7566 }
7567 return 1;
c447ac0b
PA
7568}
7569
8b061563
PA
7570/* Is thread TP in the middle of (software or hardware)
7571 single-stepping? (Note the result of this function must never be
7572 passed directly as target_resume's STEP parameter.) */
104c1213 7573
a289b8f6 7574static int
b3444185 7575currently_stepping (struct thread_info *tp)
a7212384 7576{
8358c15c
JK
7577 return ((tp->control.step_range_end
7578 && tp->control.step_resume_breakpoint == NULL)
7579 || tp->control.trap_expected
af48d08f 7580 || tp->stepped_breakpoint
8358c15c 7581 || bpstat_should_step ());
a7212384
UW
7582}
7583
b2175913
MS
7584/* Inferior has stepped into a subroutine call with source code that
7585 we should not step over. Do step to the first line of code in
7586 it. */
c2c6d25f
JM
7587
7588static void
568d6575
UW
7589handle_step_into_function (struct gdbarch *gdbarch,
7590 struct execution_control_state *ecs)
c2c6d25f 7591{
7e324e48
GB
7592 fill_in_stop_func (gdbarch, ecs);
7593
f2ffa92b
PA
7594 compunit_symtab *cust
7595 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7596 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7597 ecs->stop_func_start
7598 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7599
51abb421 7600 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7601 /* Use the step_resume_break to step until the end of the prologue,
7602 even if that involves jumps (as it seems to on the vax under
7603 4.2). */
7604 /* If the prologue ends in the middle of a source line, continue to
7605 the end of that source line (if it is still within the function).
7606 Otherwise, just go to end of prologue. */
2afb61aa
PA
7607 if (stop_func_sal.end
7608 && stop_func_sal.pc != ecs->stop_func_start
7609 && stop_func_sal.end < ecs->stop_func_end)
7610 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7611
2dbd5e30
KB
7612 /* Architectures which require breakpoint adjustment might not be able
7613 to place a breakpoint at the computed address. If so, the test
7614 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7615 ecs->stop_func_start to an address at which a breakpoint may be
7616 legitimately placed.
8fb3e588 7617
2dbd5e30
KB
7618 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7619 made, GDB will enter an infinite loop when stepping through
7620 optimized code consisting of VLIW instructions which contain
7621 subinstructions corresponding to different source lines. On
7622 FR-V, it's not permitted to place a breakpoint on any but the
7623 first subinstruction of a VLIW instruction. When a breakpoint is
7624 set, GDB will adjust the breakpoint address to the beginning of
7625 the VLIW instruction. Thus, we need to make the corresponding
7626 adjustment here when computing the stop address. */
8fb3e588 7627
568d6575 7628 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7629 {
7630 ecs->stop_func_start
568d6575 7631 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7632 ecs->stop_func_start);
2dbd5e30
KB
7633 }
7634
f2ffa92b 7635 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7636 {
7637 /* We are already there: stop now. */
bdc36728 7638 end_stepping_range (ecs);
c2c6d25f
JM
7639 return;
7640 }
7641 else
7642 {
7643 /* Put the step-breakpoint there and go until there. */
51abb421 7644 symtab_and_line sr_sal;
c2c6d25f
JM
7645 sr_sal.pc = ecs->stop_func_start;
7646 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7647 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7648
c2c6d25f 7649 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7650 some machines the prologue is where the new fp value is
7651 established. */
a6d9a66e 7652 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7653
7654 /* And make sure stepping stops right away then. */
16c381f0
JK
7655 ecs->event_thread->control.step_range_end
7656 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7657 }
7658 keep_going (ecs);
7659}
d4f3574e 7660
b2175913
MS
7661/* Inferior has stepped backward into a subroutine call with source
7662 code that we should not step over. Do step to the beginning of the
7663 last line of code in it. */
7664
7665static void
568d6575
UW
7666handle_step_into_function_backward (struct gdbarch *gdbarch,
7667 struct execution_control_state *ecs)
b2175913 7668{
43f3e411 7669 struct compunit_symtab *cust;
167e4384 7670 struct symtab_and_line stop_func_sal;
b2175913 7671
7e324e48
GB
7672 fill_in_stop_func (gdbarch, ecs);
7673
f2ffa92b 7674 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7675 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7676 ecs->stop_func_start
7677 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7678
f2ffa92b 7679 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7680
7681 /* OK, we're just going to keep stepping here. */
f2ffa92b 7682 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7683 {
7684 /* We're there already. Just stop stepping now. */
bdc36728 7685 end_stepping_range (ecs);
b2175913
MS
7686 }
7687 else
7688 {
7689 /* Else just reset the step range and keep going.
7690 No step-resume breakpoint, they don't work for
7691 epilogues, which can have multiple entry paths. */
16c381f0
JK
7692 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7693 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7694 keep_going (ecs);
7695 }
7696 return;
7697}
7698
d3169d93 7699/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7700 This is used to both functions and to skip over code. */
7701
7702static void
2c03e5be
PA
7703insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7704 struct symtab_and_line sr_sal,
7705 struct frame_id sr_id,
7706 enum bptype sr_type)
44cbf7b5 7707{
611c83ae
PA
7708 /* There should never be more than one step-resume or longjmp-resume
7709 breakpoint per thread, so we should never be setting a new
44cbf7b5 7710 step_resume_breakpoint when one is already active. */
8358c15c 7711 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7712 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7713
7714 if (debug_infrun)
7715 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7716 "infrun: inserting step-resume breakpoint at %s\n",
7717 paddress (gdbarch, sr_sal.pc));
d3169d93 7718
8358c15c 7719 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7720 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7721}
7722
9da8c2a0 7723void
2c03e5be
PA
7724insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7725 struct symtab_and_line sr_sal,
7726 struct frame_id sr_id)
7727{
7728 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7729 sr_sal, sr_id,
7730 bp_step_resume);
44cbf7b5 7731}
7ce450bd 7732
2c03e5be
PA
7733/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7734 This is used to skip a potential signal handler.
7ce450bd 7735
14e60db5
DJ
7736 This is called with the interrupted function's frame. The signal
7737 handler, when it returns, will resume the interrupted function at
7738 RETURN_FRAME.pc. */
d303a6c7
AC
7739
7740static void
2c03e5be 7741insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7742{
f4c1edd8 7743 gdb_assert (return_frame != NULL);
d303a6c7 7744
51abb421
PA
7745 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7746
7747 symtab_and_line sr_sal;
568d6575 7748 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7749 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7750 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7751
2c03e5be
PA
7752 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7753 get_stack_frame_id (return_frame),
7754 bp_hp_step_resume);
d303a6c7
AC
7755}
7756
2c03e5be
PA
7757/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7758 is used to skip a function after stepping into it (for "next" or if
7759 the called function has no debugging information).
14e60db5
DJ
7760
7761 The current function has almost always been reached by single
7762 stepping a call or return instruction. NEXT_FRAME belongs to the
7763 current function, and the breakpoint will be set at the caller's
7764 resume address.
7765
7766 This is a separate function rather than reusing
2c03e5be 7767 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7768 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7769 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7770
7771static void
7772insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7773{
14e60db5
DJ
7774 /* We shouldn't have gotten here if we don't know where the call site
7775 is. */
c7ce8faa 7776 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7777
51abb421 7778 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7779
51abb421 7780 symtab_and_line sr_sal;
c7ce8faa
DJ
7781 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7782 frame_unwind_caller_pc (next_frame));
14e60db5 7783 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7784 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7785
a6d9a66e 7786 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7787 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7788}
7789
611c83ae
PA
7790/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7791 new breakpoint at the target of a jmp_buf. The handling of
7792 longjmp-resume uses the same mechanisms used for handling
7793 "step-resume" breakpoints. */
7794
7795static void
a6d9a66e 7796insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7797{
e81a37f7
TT
7798 /* There should never be more than one longjmp-resume breakpoint per
7799 thread, so we should never be setting a new
611c83ae 7800 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7801 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7802
7803 if (debug_infrun)
7804 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7805 "infrun: inserting longjmp-resume breakpoint at %s\n",
7806 paddress (gdbarch, pc));
611c83ae 7807
e81a37f7 7808 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7809 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7810}
7811
186c406b
TT
7812/* Insert an exception resume breakpoint. TP is the thread throwing
7813 the exception. The block B is the block of the unwinder debug hook
7814 function. FRAME is the frame corresponding to the call to this
7815 function. SYM is the symbol of the function argument holding the
7816 target PC of the exception. */
7817
7818static void
7819insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7820 const struct block *b,
186c406b
TT
7821 struct frame_info *frame,
7822 struct symbol *sym)
7823{
a70b8144 7824 try
186c406b 7825 {
63e43d3a 7826 struct block_symbol vsym;
186c406b
TT
7827 struct value *value;
7828 CORE_ADDR handler;
7829 struct breakpoint *bp;
7830
987012b8 7831 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7832 b, VAR_DOMAIN);
63e43d3a 7833 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7834 /* If the value was optimized out, revert to the old behavior. */
7835 if (! value_optimized_out (value))
7836 {
7837 handler = value_as_address (value);
7838
7839 if (debug_infrun)
7840 fprintf_unfiltered (gdb_stdlog,
7841 "infrun: exception resume at %lx\n",
7842 (unsigned long) handler);
7843
7844 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7845 handler,
7846 bp_exception_resume).release ();
c70a6932
JK
7847
7848 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7849 frame = NULL;
7850
5d5658a1 7851 bp->thread = tp->global_num;
186c406b
TT
7852 inferior_thread ()->control.exception_resume_breakpoint = bp;
7853 }
7854 }
230d2906 7855 catch (const gdb_exception_error &e)
492d29ea
PA
7856 {
7857 /* We want to ignore errors here. */
7858 }
186c406b
TT
7859}
7860
28106bc2
SDJ
7861/* A helper for check_exception_resume that sets an
7862 exception-breakpoint based on a SystemTap probe. */
7863
7864static void
7865insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7866 const struct bound_probe *probe,
28106bc2
SDJ
7867 struct frame_info *frame)
7868{
7869 struct value *arg_value;
7870 CORE_ADDR handler;
7871 struct breakpoint *bp;
7872
7873 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7874 if (!arg_value)
7875 return;
7876
7877 handler = value_as_address (arg_value);
7878
7879 if (debug_infrun)
7880 fprintf_unfiltered (gdb_stdlog,
7881 "infrun: exception resume at %s\n",
08feed99 7882 paddress (probe->objfile->arch (),
28106bc2
SDJ
7883 handler));
7884
7885 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7886 handler, bp_exception_resume).release ();
5d5658a1 7887 bp->thread = tp->global_num;
28106bc2
SDJ
7888 inferior_thread ()->control.exception_resume_breakpoint = bp;
7889}
7890
186c406b
TT
7891/* This is called when an exception has been intercepted. Check to
7892 see whether the exception's destination is of interest, and if so,
7893 set an exception resume breakpoint there. */
7894
7895static void
7896check_exception_resume (struct execution_control_state *ecs,
28106bc2 7897 struct frame_info *frame)
186c406b 7898{
729662a5 7899 struct bound_probe probe;
28106bc2
SDJ
7900 struct symbol *func;
7901
7902 /* First see if this exception unwinding breakpoint was set via a
7903 SystemTap probe point. If so, the probe has two arguments: the
7904 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7905 set a breakpoint there. */
6bac7473 7906 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7907 if (probe.prob)
28106bc2 7908 {
729662a5 7909 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7910 return;
7911 }
7912
7913 func = get_frame_function (frame);
7914 if (!func)
7915 return;
186c406b 7916
a70b8144 7917 try
186c406b 7918 {
3977b71f 7919 const struct block *b;
8157b174 7920 struct block_iterator iter;
186c406b
TT
7921 struct symbol *sym;
7922 int argno = 0;
7923
7924 /* The exception breakpoint is a thread-specific breakpoint on
7925 the unwinder's debug hook, declared as:
7926
7927 void _Unwind_DebugHook (void *cfa, void *handler);
7928
7929 The CFA argument indicates the frame to which control is
7930 about to be transferred. HANDLER is the destination PC.
7931
7932 We ignore the CFA and set a temporary breakpoint at HANDLER.
7933 This is not extremely efficient but it avoids issues in gdb
7934 with computing the DWARF CFA, and it also works even in weird
7935 cases such as throwing an exception from inside a signal
7936 handler. */
7937
7938 b = SYMBOL_BLOCK_VALUE (func);
7939 ALL_BLOCK_SYMBOLS (b, iter, sym)
7940 {
7941 if (!SYMBOL_IS_ARGUMENT (sym))
7942 continue;
7943
7944 if (argno == 0)
7945 ++argno;
7946 else
7947 {
7948 insert_exception_resume_breakpoint (ecs->event_thread,
7949 b, frame, sym);
7950 break;
7951 }
7952 }
7953 }
230d2906 7954 catch (const gdb_exception_error &e)
492d29ea
PA
7955 {
7956 }
186c406b
TT
7957}
7958
104c1213 7959static void
22bcd14b 7960stop_waiting (struct execution_control_state *ecs)
104c1213 7961{
527159b7 7962 if (debug_infrun)
22bcd14b 7963 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7964
cd0fc7c3
SS
7965 /* Let callers know we don't want to wait for the inferior anymore. */
7966 ecs->wait_some_more = 0;
fbea99ea 7967
53cccef1 7968 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7969 threads now that we're presenting the stop to the user. */
53cccef1 7970 if (!non_stop && exists_non_stop_target ())
fbea99ea 7971 stop_all_threads ();
cd0fc7c3
SS
7972}
7973
4d9d9d04
PA
7974/* Like keep_going, but passes the signal to the inferior, even if the
7975 signal is set to nopass. */
d4f3574e
SS
7976
7977static void
4d9d9d04 7978keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7979{
d7e15655 7980 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7981 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7982
d4f3574e 7983 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7984 ecs->event_thread->prev_pc
fc75c28b 7985 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 7986
4d9d9d04 7987 if (ecs->event_thread->control.trap_expected)
d4f3574e 7988 {
4d9d9d04
PA
7989 struct thread_info *tp = ecs->event_thread;
7990
7991 if (debug_infrun)
7992 fprintf_unfiltered (gdb_stdlog,
7993 "infrun: %s has trap_expected set, "
7994 "resuming to collect trap\n",
a068643d 7995 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7996
a9ba6bae
PA
7997 /* We haven't yet gotten our trap, and either: intercepted a
7998 non-signal event (e.g., a fork); or took a signal which we
7999 are supposed to pass through to the inferior. Simply
8000 continue. */
64ce06e4 8001 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 8002 }
372316f1
PA
8003 else if (step_over_info_valid_p ())
8004 {
8005 /* Another thread is stepping over a breakpoint in-line. If
8006 this thread needs a step-over too, queue the request. In
8007 either case, this resume must be deferred for later. */
8008 struct thread_info *tp = ecs->event_thread;
8009
8010 if (ecs->hit_singlestep_breakpoint
8011 || thread_still_needs_step_over (tp))
8012 {
8013 if (debug_infrun)
8014 fprintf_unfiltered (gdb_stdlog,
8015 "infrun: step-over already in progress: "
8016 "step-over for %s deferred\n",
a068643d 8017 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
8018 thread_step_over_chain_enqueue (tp);
8019 }
8020 else
8021 {
8022 if (debug_infrun)
8023 fprintf_unfiltered (gdb_stdlog,
8024 "infrun: step-over in progress: "
8025 "resume of %s deferred\n",
a068643d 8026 target_pid_to_str (tp->ptid).c_str ());
372316f1 8027 }
372316f1 8028 }
d4f3574e
SS
8029 else
8030 {
31e77af2 8031 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
8032 int remove_bp;
8033 int remove_wps;
8d297bbf 8034 step_over_what step_what;
31e77af2 8035
d4f3574e 8036 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
8037 anyway (if we got a signal, the user asked it be passed to
8038 the child)
8039 -- or --
8040 We got our expected trap, but decided we should resume from
8041 it.
d4f3574e 8042
a9ba6bae 8043 We're going to run this baby now!
d4f3574e 8044
c36b740a
VP
8045 Note that insert_breakpoints won't try to re-insert
8046 already inserted breakpoints. Therefore, we don't
8047 care if breakpoints were already inserted, or not. */
a9ba6bae 8048
31e77af2
PA
8049 /* If we need to step over a breakpoint, and we're not using
8050 displaced stepping to do so, insert all breakpoints
8051 (watchpoints, etc.) but the one we're stepping over, step one
8052 instruction, and then re-insert the breakpoint when that step
8053 is finished. */
963f9c80 8054
6c4cfb24
PA
8055 step_what = thread_still_needs_step_over (ecs->event_thread);
8056
963f9c80 8057 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
8058 || (step_what & STEP_OVER_BREAKPOINT));
8059 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 8060
cb71640d
PA
8061 /* We can't use displaced stepping if we need to step past a
8062 watchpoint. The instruction copied to the scratch pad would
8063 still trigger the watchpoint. */
8064 if (remove_bp
3fc8eb30 8065 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8066 {
a01bda52 8067 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8068 regcache_read_pc (regcache), remove_wps,
8069 ecs->event_thread->global_num);
45e8c884 8070 }
963f9c80 8071 else if (remove_wps)
21edc42f 8072 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8073
8074 /* If we now need to do an in-line step-over, we need to stop
8075 all other threads. Note this must be done before
8076 insert_breakpoints below, because that removes the breakpoint
8077 we're about to step over, otherwise other threads could miss
8078 it. */
fbea99ea 8079 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 8080 stop_all_threads ();
abbb1732 8081
31e77af2 8082 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8083 try
31e77af2
PA
8084 {
8085 insert_breakpoints ();
8086 }
230d2906 8087 catch (const gdb_exception_error &e)
31e77af2
PA
8088 {
8089 exception_print (gdb_stderr, e);
22bcd14b 8090 stop_waiting (ecs);
bdf2a94a 8091 clear_step_over_info ();
31e77af2 8092 return;
d4f3574e
SS
8093 }
8094
963f9c80 8095 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8096
64ce06e4 8097 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
8098 }
8099
488f131b 8100 prepare_to_wait (ecs);
d4f3574e
SS
8101}
8102
4d9d9d04
PA
8103/* Called when we should continue running the inferior, because the
8104 current event doesn't cause a user visible stop. This does the
8105 resuming part; waiting for the next event is done elsewhere. */
8106
8107static void
8108keep_going (struct execution_control_state *ecs)
8109{
8110 if (ecs->event_thread->control.trap_expected
8111 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8112 ecs->event_thread->control.trap_expected = 0;
8113
8114 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8115 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8116 keep_going_pass_signal (ecs);
8117}
8118
104c1213
JM
8119/* This function normally comes after a resume, before
8120 handle_inferior_event exits. It takes care of any last bits of
8121 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8122
104c1213
JM
8123static void
8124prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8125{
527159b7 8126 if (debug_infrun)
8a9de0e4 8127 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 8128
104c1213 8129 ecs->wait_some_more = 1;
0b333c5e 8130
0e2dba2d
PA
8131 /* If the target can't async, emulate it by marking the infrun event
8132 handler such that as soon as we get back to the event-loop, we
8133 immediately end up in fetch_inferior_event again calling
8134 target_wait. */
8135 if (!target_can_async_p ())
0b333c5e 8136 mark_infrun_async_event_handler ();
c906108c 8137}
11cf8741 8138
fd664c91 8139/* We are done with the step range of a step/next/si/ni command.
b57bacec 8140 Called once for each n of a "step n" operation. */
fd664c91
PA
8141
8142static void
bdc36728 8143end_stepping_range (struct execution_control_state *ecs)
fd664c91 8144{
bdc36728 8145 ecs->event_thread->control.stop_step = 1;
bdc36728 8146 stop_waiting (ecs);
fd664c91
PA
8147}
8148
33d62d64
JK
8149/* Several print_*_reason functions to print why the inferior has stopped.
8150 We always print something when the inferior exits, or receives a signal.
8151 The rest of the cases are dealt with later on in normal_stop and
8152 print_it_typical. Ideally there should be a call to one of these
8153 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8154 stop_waiting is called.
33d62d64 8155
fd664c91
PA
8156 Note that we don't call these directly, instead we delegate that to
8157 the interpreters, through observers. Interpreters then call these
8158 with whatever uiout is right. */
33d62d64 8159
fd664c91
PA
8160void
8161print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8162{
fd664c91 8163 /* For CLI-like interpreters, print nothing. */
33d62d64 8164
112e8700 8165 if (uiout->is_mi_like_p ())
fd664c91 8166 {
112e8700 8167 uiout->field_string ("reason",
fd664c91
PA
8168 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8169 }
8170}
33d62d64 8171
fd664c91
PA
8172void
8173print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8174{
33d62d64 8175 annotate_signalled ();
112e8700
SM
8176 if (uiout->is_mi_like_p ())
8177 uiout->field_string
8178 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8179 uiout->text ("\nProgram terminated with signal ");
33d62d64 8180 annotate_signal_name ();
112e8700 8181 uiout->field_string ("signal-name",
2ea28649 8182 gdb_signal_to_name (siggnal));
33d62d64 8183 annotate_signal_name_end ();
112e8700 8184 uiout->text (", ");
33d62d64 8185 annotate_signal_string ();
112e8700 8186 uiout->field_string ("signal-meaning",
2ea28649 8187 gdb_signal_to_string (siggnal));
33d62d64 8188 annotate_signal_string_end ();
112e8700
SM
8189 uiout->text (".\n");
8190 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8191}
8192
fd664c91
PA
8193void
8194print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8195{
fda326dd 8196 struct inferior *inf = current_inferior ();
a068643d 8197 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8198
33d62d64
JK
8199 annotate_exited (exitstatus);
8200 if (exitstatus)
8201 {
112e8700
SM
8202 if (uiout->is_mi_like_p ())
8203 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8204 std::string exit_code_str
8205 = string_printf ("0%o", (unsigned int) exitstatus);
8206 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8207 plongest (inf->num), pidstr.c_str (),
8208 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8209 }
8210 else
11cf8741 8211 {
112e8700
SM
8212 if (uiout->is_mi_like_p ())
8213 uiout->field_string
8214 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8215 uiout->message ("[Inferior %s (%s) exited normally]\n",
8216 plongest (inf->num), pidstr.c_str ());
33d62d64 8217 }
33d62d64
JK
8218}
8219
012b3a21
WT
8220/* Some targets/architectures can do extra processing/display of
8221 segmentation faults. E.g., Intel MPX boundary faults.
8222 Call the architecture dependent function to handle the fault. */
8223
8224static void
8225handle_segmentation_fault (struct ui_out *uiout)
8226{
8227 struct regcache *regcache = get_current_regcache ();
ac7936df 8228 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8229
8230 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8231 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8232}
8233
fd664c91
PA
8234void
8235print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8236{
f303dbd6
PA
8237 struct thread_info *thr = inferior_thread ();
8238
33d62d64
JK
8239 annotate_signal ();
8240
112e8700 8241 if (uiout->is_mi_like_p ())
f303dbd6
PA
8242 ;
8243 else if (show_thread_that_caused_stop ())
33d62d64 8244 {
f303dbd6 8245 const char *name;
33d62d64 8246
112e8700 8247 uiout->text ("\nThread ");
33eca680 8248 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8249
8250 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8251 if (name != NULL)
8252 {
112e8700 8253 uiout->text (" \"");
33eca680 8254 uiout->field_string ("name", name);
112e8700 8255 uiout->text ("\"");
f303dbd6 8256 }
33d62d64 8257 }
f303dbd6 8258 else
112e8700 8259 uiout->text ("\nProgram");
f303dbd6 8260
112e8700
SM
8261 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8262 uiout->text (" stopped");
33d62d64
JK
8263 else
8264 {
112e8700 8265 uiout->text (" received signal ");
8b93c638 8266 annotate_signal_name ();
112e8700
SM
8267 if (uiout->is_mi_like_p ())
8268 uiout->field_string
8269 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8270 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8271 annotate_signal_name_end ();
112e8700 8272 uiout->text (", ");
8b93c638 8273 annotate_signal_string ();
112e8700 8274 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8275
8276 if (siggnal == GDB_SIGNAL_SEGV)
8277 handle_segmentation_fault (uiout);
8278
8b93c638 8279 annotate_signal_string_end ();
33d62d64 8280 }
112e8700 8281 uiout->text (".\n");
33d62d64 8282}
252fbfc8 8283
fd664c91
PA
8284void
8285print_no_history_reason (struct ui_out *uiout)
33d62d64 8286{
112e8700 8287 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8288}
43ff13b4 8289
0c7e1a46
PA
8290/* Print current location without a level number, if we have changed
8291 functions or hit a breakpoint. Print source line if we have one.
8292 bpstat_print contains the logic deciding in detail what to print,
8293 based on the event(s) that just occurred. */
8294
243a9253
PA
8295static void
8296print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8297{
8298 int bpstat_ret;
f486487f 8299 enum print_what source_flag;
0c7e1a46
PA
8300 int do_frame_printing = 1;
8301 struct thread_info *tp = inferior_thread ();
8302
8303 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8304 switch (bpstat_ret)
8305 {
8306 case PRINT_UNKNOWN:
8307 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8308 should) carry around the function and does (or should) use
8309 that when doing a frame comparison. */
8310 if (tp->control.stop_step
8311 && frame_id_eq (tp->control.step_frame_id,
8312 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8313 && (tp->control.step_start_function
8314 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8315 {
8316 /* Finished step, just print source line. */
8317 source_flag = SRC_LINE;
8318 }
8319 else
8320 {
8321 /* Print location and source line. */
8322 source_flag = SRC_AND_LOC;
8323 }
8324 break;
8325 case PRINT_SRC_AND_LOC:
8326 /* Print location and source line. */
8327 source_flag = SRC_AND_LOC;
8328 break;
8329 case PRINT_SRC_ONLY:
8330 source_flag = SRC_LINE;
8331 break;
8332 case PRINT_NOTHING:
8333 /* Something bogus. */
8334 source_flag = SRC_LINE;
8335 do_frame_printing = 0;
8336 break;
8337 default:
8338 internal_error (__FILE__, __LINE__, _("Unknown value."));
8339 }
8340
8341 /* The behavior of this routine with respect to the source
8342 flag is:
8343 SRC_LINE: Print only source line
8344 LOCATION: Print only location
8345 SRC_AND_LOC: Print location and source line. */
8346 if (do_frame_printing)
8347 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8348}
8349
243a9253
PA
8350/* See infrun.h. */
8351
8352void
4c7d57e7 8353print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8354{
243a9253 8355 struct target_waitstatus last;
243a9253
PA
8356 struct thread_info *tp;
8357
5b6d1e4f 8358 get_last_target_status (nullptr, nullptr, &last);
243a9253 8359
67ad9399
TT
8360 {
8361 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8362
67ad9399 8363 print_stop_location (&last);
243a9253 8364
67ad9399 8365 /* Display the auto-display expressions. */
4c7d57e7
TT
8366 if (displays)
8367 do_displays ();
67ad9399 8368 }
243a9253
PA
8369
8370 tp = inferior_thread ();
8371 if (tp->thread_fsm != NULL
46e3ed7f 8372 && tp->thread_fsm->finished_p ())
243a9253
PA
8373 {
8374 struct return_value_info *rv;
8375
46e3ed7f 8376 rv = tp->thread_fsm->return_value ();
243a9253
PA
8377 if (rv != NULL)
8378 print_return_value (uiout, rv);
8379 }
0c7e1a46
PA
8380}
8381
388a7084
PA
8382/* See infrun.h. */
8383
8384void
8385maybe_remove_breakpoints (void)
8386{
8387 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8388 {
8389 if (remove_breakpoints ())
8390 {
223ffa71 8391 target_terminal::ours_for_output ();
388a7084
PA
8392 printf_filtered (_("Cannot remove breakpoints because "
8393 "program is no longer writable.\nFurther "
8394 "execution is probably impossible.\n"));
8395 }
8396 }
8397}
8398
4c2f2a79
PA
8399/* The execution context that just caused a normal stop. */
8400
8401struct stop_context
8402{
2d844eaf
TT
8403 stop_context ();
8404 ~stop_context ();
8405
8406 DISABLE_COPY_AND_ASSIGN (stop_context);
8407
8408 bool changed () const;
8409
4c2f2a79
PA
8410 /* The stop ID. */
8411 ULONGEST stop_id;
c906108c 8412
4c2f2a79 8413 /* The event PTID. */
c906108c 8414
4c2f2a79
PA
8415 ptid_t ptid;
8416
8417 /* If stopp for a thread event, this is the thread that caused the
8418 stop. */
8419 struct thread_info *thread;
8420
8421 /* The inferior that caused the stop. */
8422 int inf_num;
8423};
8424
2d844eaf 8425/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8426 takes a strong reference to the thread. */
8427
2d844eaf 8428stop_context::stop_context ()
4c2f2a79 8429{
2d844eaf
TT
8430 stop_id = get_stop_id ();
8431 ptid = inferior_ptid;
8432 inf_num = current_inferior ()->num;
4c2f2a79 8433
d7e15655 8434 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8435 {
8436 /* Take a strong reference so that the thread can't be deleted
8437 yet. */
2d844eaf
TT
8438 thread = inferior_thread ();
8439 thread->incref ();
4c2f2a79
PA
8440 }
8441 else
2d844eaf 8442 thread = NULL;
4c2f2a79
PA
8443}
8444
8445/* Release a stop context previously created with save_stop_context.
8446 Releases the strong reference to the thread as well. */
8447
2d844eaf 8448stop_context::~stop_context ()
4c2f2a79 8449{
2d844eaf
TT
8450 if (thread != NULL)
8451 thread->decref ();
4c2f2a79
PA
8452}
8453
8454/* Return true if the current context no longer matches the saved stop
8455 context. */
8456
2d844eaf
TT
8457bool
8458stop_context::changed () const
8459{
8460 if (ptid != inferior_ptid)
8461 return true;
8462 if (inf_num != current_inferior ()->num)
8463 return true;
8464 if (thread != NULL && thread->state != THREAD_STOPPED)
8465 return true;
8466 if (get_stop_id () != stop_id)
8467 return true;
8468 return false;
4c2f2a79
PA
8469}
8470
8471/* See infrun.h. */
8472
8473int
96baa820 8474normal_stop (void)
c906108c 8475{
73b65bb0 8476 struct target_waitstatus last;
73b65bb0 8477
5b6d1e4f 8478 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8479
4c2f2a79
PA
8480 new_stop_id ();
8481
29f49a6a
PA
8482 /* If an exception is thrown from this point on, make sure to
8483 propagate GDB's knowledge of the executing state to the
8484 frontend/user running state. A QUIT is an easy exception to see
8485 here, so do this before any filtered output. */
731f534f 8486
5b6d1e4f 8487 ptid_t finish_ptid = null_ptid;
731f534f 8488
c35b1492 8489 if (!non_stop)
5b6d1e4f 8490 finish_ptid = minus_one_ptid;
e1316e60
PA
8491 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8492 || last.kind == TARGET_WAITKIND_EXITED)
8493 {
8494 /* On some targets, we may still have live threads in the
8495 inferior when we get a process exit event. E.g., for
8496 "checkpoint", when the current checkpoint/fork exits,
8497 linux-fork.c automatically switches to another fork from
8498 within target_mourn_inferior. */
731f534f 8499 if (inferior_ptid != null_ptid)
5b6d1e4f 8500 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8501 }
8502 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8503 finish_ptid = inferior_ptid;
8504
8505 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8506 if (finish_ptid != null_ptid)
8507 {
8508 maybe_finish_thread_state.emplace
8509 (user_visible_resume_target (finish_ptid), finish_ptid);
8510 }
29f49a6a 8511
b57bacec
PA
8512 /* As we're presenting a stop, and potentially removing breakpoints,
8513 update the thread list so we can tell whether there are threads
8514 running on the target. With target remote, for example, we can
8515 only learn about new threads when we explicitly update the thread
8516 list. Do this before notifying the interpreters about signal
8517 stops, end of stepping ranges, etc., so that the "new thread"
8518 output is emitted before e.g., "Program received signal FOO",
8519 instead of after. */
8520 update_thread_list ();
8521
8522 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8523 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8524
c906108c
SS
8525 /* As with the notification of thread events, we want to delay
8526 notifying the user that we've switched thread context until
8527 the inferior actually stops.
8528
73b65bb0
DJ
8529 There's no point in saying anything if the inferior has exited.
8530 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8531 "received a signal".
8532
8533 Also skip saying anything in non-stop mode. In that mode, as we
8534 don't want GDB to switch threads behind the user's back, to avoid
8535 races where the user is typing a command to apply to thread x,
8536 but GDB switches to thread y before the user finishes entering
8537 the command, fetch_inferior_event installs a cleanup to restore
8538 the current thread back to the thread the user had selected right
8539 after this event is handled, so we're not really switching, only
8540 informing of a stop. */
4f8d22e3 8541 if (!non_stop
731f534f 8542 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8543 && target_has_execution
8544 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8545 && last.kind != TARGET_WAITKIND_EXITED
8546 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8547 {
0e454242 8548 SWITCH_THRU_ALL_UIS ()
3b12939d 8549 {
223ffa71 8550 target_terminal::ours_for_output ();
3b12939d 8551 printf_filtered (_("[Switching to %s]\n"),
a068643d 8552 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8553 annotate_thread_changed ();
8554 }
39f77062 8555 previous_inferior_ptid = inferior_ptid;
c906108c 8556 }
c906108c 8557
0e5bf2a8
PA
8558 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8559 {
0e454242 8560 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8561 if (current_ui->prompt_state == PROMPT_BLOCKED)
8562 {
223ffa71 8563 target_terminal::ours_for_output ();
3b12939d
PA
8564 printf_filtered (_("No unwaited-for children left.\n"));
8565 }
0e5bf2a8
PA
8566 }
8567
b57bacec 8568 /* Note: this depends on the update_thread_list call above. */
388a7084 8569 maybe_remove_breakpoints ();
c906108c 8570
c906108c
SS
8571 /* If an auto-display called a function and that got a signal,
8572 delete that auto-display to avoid an infinite recursion. */
8573
8574 if (stopped_by_random_signal)
8575 disable_current_display ();
8576
0e454242 8577 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8578 {
8579 async_enable_stdin ();
8580 }
c906108c 8581
388a7084 8582 /* Let the user/frontend see the threads as stopped. */
731f534f 8583 maybe_finish_thread_state.reset ();
388a7084
PA
8584
8585 /* Select innermost stack frame - i.e., current frame is frame 0,
8586 and current location is based on that. Handle the case where the
8587 dummy call is returning after being stopped. E.g. the dummy call
8588 previously hit a breakpoint. (If the dummy call returns
8589 normally, we won't reach here.) Do this before the stop hook is
8590 run, so that it doesn't get to see the temporary dummy frame,
8591 which is not where we'll present the stop. */
8592 if (has_stack_frames ())
8593 {
8594 if (stop_stack_dummy == STOP_STACK_DUMMY)
8595 {
8596 /* Pop the empty frame that contains the stack dummy. This
8597 also restores inferior state prior to the call (struct
8598 infcall_suspend_state). */
8599 struct frame_info *frame = get_current_frame ();
8600
8601 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8602 frame_pop (frame);
8603 /* frame_pop calls reinit_frame_cache as the last thing it
8604 does which means there's now no selected frame. */
8605 }
8606
8607 select_frame (get_current_frame ());
8608
8609 /* Set the current source location. */
8610 set_current_sal_from_frame (get_current_frame ());
8611 }
dd7e2d2b
PA
8612
8613 /* Look up the hook_stop and run it (CLI internally handles problem
8614 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8615 if (stop_command != NULL)
8616 {
2d844eaf 8617 stop_context saved_context;
4c2f2a79 8618
a70b8144 8619 try
bf469271
PA
8620 {
8621 execute_cmd_pre_hook (stop_command);
8622 }
230d2906 8623 catch (const gdb_exception &ex)
bf469271
PA
8624 {
8625 exception_fprintf (gdb_stderr, ex,
8626 "Error while running hook_stop:\n");
8627 }
4c2f2a79
PA
8628
8629 /* If the stop hook resumes the target, then there's no point in
8630 trying to notify about the previous stop; its context is
8631 gone. Likewise if the command switches thread or inferior --
8632 the observers would print a stop for the wrong
8633 thread/inferior. */
2d844eaf
TT
8634 if (saved_context.changed ())
8635 return 1;
4c2f2a79 8636 }
dd7e2d2b 8637
388a7084
PA
8638 /* Notify observers about the stop. This is where the interpreters
8639 print the stop event. */
d7e15655 8640 if (inferior_ptid != null_ptid)
76727919 8641 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8642 stop_print_frame);
8643 else
76727919 8644 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8645
243a9253
PA
8646 annotate_stopped ();
8647
48844aa6
PA
8648 if (target_has_execution)
8649 {
8650 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8651 && last.kind != TARGET_WAITKIND_EXITED
8652 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8653 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8654 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8655 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8656 }
6c95b8df
PA
8657
8658 /* Try to get rid of automatically added inferiors that are no
8659 longer needed. Keeping those around slows down things linearly.
8660 Note that this never removes the current inferior. */
8661 prune_inferiors ();
4c2f2a79
PA
8662
8663 return 0;
c906108c 8664}
c906108c 8665\f
c5aa993b 8666int
96baa820 8667signal_stop_state (int signo)
c906108c 8668{
d6b48e9c 8669 return signal_stop[signo];
c906108c
SS
8670}
8671
c5aa993b 8672int
96baa820 8673signal_print_state (int signo)
c906108c
SS
8674{
8675 return signal_print[signo];
8676}
8677
c5aa993b 8678int
96baa820 8679signal_pass_state (int signo)
c906108c
SS
8680{
8681 return signal_program[signo];
8682}
8683
2455069d
UW
8684static void
8685signal_cache_update (int signo)
8686{
8687 if (signo == -1)
8688 {
a493e3e2 8689 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8690 signal_cache_update (signo);
8691
8692 return;
8693 }
8694
8695 signal_pass[signo] = (signal_stop[signo] == 0
8696 && signal_print[signo] == 0
ab04a2af
TT
8697 && signal_program[signo] == 1
8698 && signal_catch[signo] == 0);
2455069d
UW
8699}
8700
488f131b 8701int
7bda5e4a 8702signal_stop_update (int signo, int state)
d4f3574e
SS
8703{
8704 int ret = signal_stop[signo];
abbb1732 8705
d4f3574e 8706 signal_stop[signo] = state;
2455069d 8707 signal_cache_update (signo);
d4f3574e
SS
8708 return ret;
8709}
8710
488f131b 8711int
7bda5e4a 8712signal_print_update (int signo, int state)
d4f3574e
SS
8713{
8714 int ret = signal_print[signo];
abbb1732 8715
d4f3574e 8716 signal_print[signo] = state;
2455069d 8717 signal_cache_update (signo);
d4f3574e
SS
8718 return ret;
8719}
8720
488f131b 8721int
7bda5e4a 8722signal_pass_update (int signo, int state)
d4f3574e
SS
8723{
8724 int ret = signal_program[signo];
abbb1732 8725
d4f3574e 8726 signal_program[signo] = state;
2455069d 8727 signal_cache_update (signo);
d4f3574e
SS
8728 return ret;
8729}
8730
ab04a2af
TT
8731/* Update the global 'signal_catch' from INFO and notify the
8732 target. */
8733
8734void
8735signal_catch_update (const unsigned int *info)
8736{
8737 int i;
8738
8739 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8740 signal_catch[i] = info[i] > 0;
8741 signal_cache_update (-1);
adc6a863 8742 target_pass_signals (signal_pass);
ab04a2af
TT
8743}
8744
c906108c 8745static void
96baa820 8746sig_print_header (void)
c906108c 8747{
3e43a32a
MS
8748 printf_filtered (_("Signal Stop\tPrint\tPass "
8749 "to program\tDescription\n"));
c906108c
SS
8750}
8751
8752static void
2ea28649 8753sig_print_info (enum gdb_signal oursig)
c906108c 8754{
2ea28649 8755 const char *name = gdb_signal_to_name (oursig);
c906108c 8756 int name_padding = 13 - strlen (name);
96baa820 8757
c906108c
SS
8758 if (name_padding <= 0)
8759 name_padding = 0;
8760
8761 printf_filtered ("%s", name);
488f131b 8762 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8763 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8764 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8765 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8766 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8767}
8768
8769/* Specify how various signals in the inferior should be handled. */
8770
8771static void
0b39b52e 8772handle_command (const char *args, int from_tty)
c906108c 8773{
c906108c 8774 int digits, wordlen;
b926417a 8775 int sigfirst, siglast;
2ea28649 8776 enum gdb_signal oursig;
c906108c 8777 int allsigs;
c906108c
SS
8778
8779 if (args == NULL)
8780 {
e2e0b3e5 8781 error_no_arg (_("signal to handle"));
c906108c
SS
8782 }
8783
1777feb0 8784 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8785
adc6a863
PA
8786 const size_t nsigs = GDB_SIGNAL_LAST;
8787 unsigned char sigs[nsigs] {};
c906108c 8788
1777feb0 8789 /* Break the command line up into args. */
c906108c 8790
773a1edc 8791 gdb_argv built_argv (args);
c906108c
SS
8792
8793 /* Walk through the args, looking for signal oursigs, signal names, and
8794 actions. Signal numbers and signal names may be interspersed with
8795 actions, with the actions being performed for all signals cumulatively
1777feb0 8796 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8797
773a1edc 8798 for (char *arg : built_argv)
c906108c 8799 {
773a1edc
TT
8800 wordlen = strlen (arg);
8801 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8802 {;
8803 }
8804 allsigs = 0;
8805 sigfirst = siglast = -1;
8806
773a1edc 8807 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8808 {
8809 /* Apply action to all signals except those used by the
1777feb0 8810 debugger. Silently skip those. */
c906108c
SS
8811 allsigs = 1;
8812 sigfirst = 0;
8813 siglast = nsigs - 1;
8814 }
773a1edc 8815 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8816 {
8817 SET_SIGS (nsigs, sigs, signal_stop);
8818 SET_SIGS (nsigs, sigs, signal_print);
8819 }
773a1edc 8820 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8821 {
8822 UNSET_SIGS (nsigs, sigs, signal_program);
8823 }
773a1edc 8824 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8825 {
8826 SET_SIGS (nsigs, sigs, signal_print);
8827 }
773a1edc 8828 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8829 {
8830 SET_SIGS (nsigs, sigs, signal_program);
8831 }
773a1edc 8832 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8833 {
8834 UNSET_SIGS (nsigs, sigs, signal_stop);
8835 }
773a1edc 8836 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8837 {
8838 SET_SIGS (nsigs, sigs, signal_program);
8839 }
773a1edc 8840 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8841 {
8842 UNSET_SIGS (nsigs, sigs, signal_print);
8843 UNSET_SIGS (nsigs, sigs, signal_stop);
8844 }
773a1edc 8845 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8846 {
8847 UNSET_SIGS (nsigs, sigs, signal_program);
8848 }
8849 else if (digits > 0)
8850 {
8851 /* It is numeric. The numeric signal refers to our own
8852 internal signal numbering from target.h, not to host/target
8853 signal number. This is a feature; users really should be
8854 using symbolic names anyway, and the common ones like
8855 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8856
8857 sigfirst = siglast = (int)
773a1edc
TT
8858 gdb_signal_from_command (atoi (arg));
8859 if (arg[digits] == '-')
c906108c
SS
8860 {
8861 siglast = (int)
773a1edc 8862 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8863 }
8864 if (sigfirst > siglast)
8865 {
1777feb0 8866 /* Bet he didn't figure we'd think of this case... */
b926417a 8867 std::swap (sigfirst, siglast);
c906108c
SS
8868 }
8869 }
8870 else
8871 {
773a1edc 8872 oursig = gdb_signal_from_name (arg);
a493e3e2 8873 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8874 {
8875 sigfirst = siglast = (int) oursig;
8876 }
8877 else
8878 {
8879 /* Not a number and not a recognized flag word => complain. */
773a1edc 8880 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8881 }
8882 }
8883
8884 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8885 which signals to apply actions to. */
c906108c 8886
b926417a 8887 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8888 {
2ea28649 8889 switch ((enum gdb_signal) signum)
c906108c 8890 {
a493e3e2
PA
8891 case GDB_SIGNAL_TRAP:
8892 case GDB_SIGNAL_INT:
c906108c
SS
8893 if (!allsigs && !sigs[signum])
8894 {
9e2f0ad4 8895 if (query (_("%s is used by the debugger.\n\
3e43a32a 8896Are you sure you want to change it? "),
2ea28649 8897 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8898 {
8899 sigs[signum] = 1;
8900 }
8901 else
c119e040 8902 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8903 }
8904 break;
a493e3e2
PA
8905 case GDB_SIGNAL_0:
8906 case GDB_SIGNAL_DEFAULT:
8907 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8908 /* Make sure that "all" doesn't print these. */
8909 break;
8910 default:
8911 sigs[signum] = 1;
8912 break;
8913 }
8914 }
c906108c
SS
8915 }
8916
b926417a 8917 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8918 if (sigs[signum])
8919 {
2455069d 8920 signal_cache_update (-1);
adc6a863
PA
8921 target_pass_signals (signal_pass);
8922 target_program_signals (signal_program);
c906108c 8923
3a031f65
PA
8924 if (from_tty)
8925 {
8926 /* Show the results. */
8927 sig_print_header ();
8928 for (; signum < nsigs; signum++)
8929 if (sigs[signum])
aead7601 8930 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8931 }
8932
8933 break;
8934 }
c906108c
SS
8935}
8936
de0bea00
MF
8937/* Complete the "handle" command. */
8938
eb3ff9a5 8939static void
de0bea00 8940handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8941 completion_tracker &tracker,
6f937416 8942 const char *text, const char *word)
de0bea00 8943{
de0bea00
MF
8944 static const char * const keywords[] =
8945 {
8946 "all",
8947 "stop",
8948 "ignore",
8949 "print",
8950 "pass",
8951 "nostop",
8952 "noignore",
8953 "noprint",
8954 "nopass",
8955 NULL,
8956 };
8957
eb3ff9a5
PA
8958 signal_completer (ignore, tracker, text, word);
8959 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8960}
8961
2ea28649
PA
8962enum gdb_signal
8963gdb_signal_from_command (int num)
ed01b82c
PA
8964{
8965 if (num >= 1 && num <= 15)
2ea28649 8966 return (enum gdb_signal) num;
ed01b82c
PA
8967 error (_("Only signals 1-15 are valid as numeric signals.\n\
8968Use \"info signals\" for a list of symbolic signals."));
8969}
8970
c906108c
SS
8971/* Print current contents of the tables set by the handle command.
8972 It is possible we should just be printing signals actually used
8973 by the current target (but for things to work right when switching
8974 targets, all signals should be in the signal tables). */
8975
8976static void
1d12d88f 8977info_signals_command (const char *signum_exp, int from_tty)
c906108c 8978{
2ea28649 8979 enum gdb_signal oursig;
abbb1732 8980
c906108c
SS
8981 sig_print_header ();
8982
8983 if (signum_exp)
8984 {
8985 /* First see if this is a symbol name. */
2ea28649 8986 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8987 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8988 {
8989 /* No, try numeric. */
8990 oursig =
2ea28649 8991 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8992 }
8993 sig_print_info (oursig);
8994 return;
8995 }
8996
8997 printf_filtered ("\n");
8998 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8999 for (oursig = GDB_SIGNAL_FIRST;
9000 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 9001 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
9002 {
9003 QUIT;
9004
a493e3e2
PA
9005 if (oursig != GDB_SIGNAL_UNKNOWN
9006 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
9007 sig_print_info (oursig);
9008 }
9009
3e43a32a
MS
9010 printf_filtered (_("\nUse the \"handle\" command "
9011 "to change these tables.\n"));
c906108c 9012}
4aa995e1
PA
9013
9014/* The $_siginfo convenience variable is a bit special. We don't know
9015 for sure the type of the value until we actually have a chance to
7a9dd1b2 9016 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
9017 also dependent on which thread you have selected.
9018
9019 1. making $_siginfo be an internalvar that creates a new value on
9020 access.
9021
9022 2. making the value of $_siginfo be an lval_computed value. */
9023
9024/* This function implements the lval_computed support for reading a
9025 $_siginfo value. */
9026
9027static void
9028siginfo_value_read (struct value *v)
9029{
9030 LONGEST transferred;
9031
a911d87a
PA
9032 /* If we can access registers, so can we access $_siginfo. Likewise
9033 vice versa. */
9034 validate_registers_access ();
c709acd1 9035
4aa995e1 9036 transferred =
8b88a78e 9037 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
9038 NULL,
9039 value_contents_all_raw (v),
9040 value_offset (v),
9041 TYPE_LENGTH (value_type (v)));
9042
9043 if (transferred != TYPE_LENGTH (value_type (v)))
9044 error (_("Unable to read siginfo"));
9045}
9046
9047/* This function implements the lval_computed support for writing a
9048 $_siginfo value. */
9049
9050static void
9051siginfo_value_write (struct value *v, struct value *fromval)
9052{
9053 LONGEST transferred;
9054
a911d87a
PA
9055 /* If we can access registers, so can we access $_siginfo. Likewise
9056 vice versa. */
9057 validate_registers_access ();
c709acd1 9058
8b88a78e 9059 transferred = target_write (current_top_target (),
4aa995e1
PA
9060 TARGET_OBJECT_SIGNAL_INFO,
9061 NULL,
9062 value_contents_all_raw (fromval),
9063 value_offset (v),
9064 TYPE_LENGTH (value_type (fromval)));
9065
9066 if (transferred != TYPE_LENGTH (value_type (fromval)))
9067 error (_("Unable to write siginfo"));
9068}
9069
c8f2448a 9070static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9071 {
9072 siginfo_value_read,
9073 siginfo_value_write
9074 };
9075
9076/* Return a new value with the correct type for the siginfo object of
78267919
UW
9077 the current thread using architecture GDBARCH. Return a void value
9078 if there's no object available. */
4aa995e1 9079
2c0b251b 9080static struct value *
22d2b532
SDJ
9081siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9082 void *ignore)
4aa995e1 9083{
4aa995e1 9084 if (target_has_stack
d7e15655 9085 && inferior_ptid != null_ptid
78267919 9086 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9087 {
78267919 9088 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9089
78267919 9090 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9091 }
9092
78267919 9093 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9094}
9095
c906108c 9096\f
16c381f0
JK
9097/* infcall_suspend_state contains state about the program itself like its
9098 registers and any signal it received when it last stopped.
9099 This state must be restored regardless of how the inferior function call
9100 ends (either successfully, or after it hits a breakpoint or signal)
9101 if the program is to properly continue where it left off. */
9102
6bf78e29 9103class infcall_suspend_state
7a292a7a 9104{
6bf78e29
AB
9105public:
9106 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9107 once the inferior function call has finished. */
9108 infcall_suspend_state (struct gdbarch *gdbarch,
9109 const struct thread_info *tp,
9110 struct regcache *regcache)
9111 : m_thread_suspend (tp->suspend),
9112 m_registers (new readonly_detached_regcache (*regcache))
9113 {
9114 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9115
9116 if (gdbarch_get_siginfo_type_p (gdbarch))
9117 {
9118 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9119 size_t len = TYPE_LENGTH (type);
9120
9121 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9122
9123 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9124 siginfo_data.get (), 0, len) != len)
9125 {
9126 /* Errors ignored. */
9127 siginfo_data.reset (nullptr);
9128 }
9129 }
9130
9131 if (siginfo_data)
9132 {
9133 m_siginfo_gdbarch = gdbarch;
9134 m_siginfo_data = std::move (siginfo_data);
9135 }
9136 }
9137
9138 /* Return a pointer to the stored register state. */
16c381f0 9139
6bf78e29
AB
9140 readonly_detached_regcache *registers () const
9141 {
9142 return m_registers.get ();
9143 }
9144
9145 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9146
9147 void restore (struct gdbarch *gdbarch,
9148 struct thread_info *tp,
9149 struct regcache *regcache) const
9150 {
9151 tp->suspend = m_thread_suspend;
9152
9153 if (m_siginfo_gdbarch == gdbarch)
9154 {
9155 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9156
9157 /* Errors ignored. */
9158 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9159 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9160 }
9161
9162 /* The inferior can be gone if the user types "print exit(0)"
9163 (and perhaps other times). */
9164 if (target_has_execution)
9165 /* NB: The register write goes through to the target. */
9166 regcache->restore (registers ());
9167 }
9168
9169private:
9170 /* How the current thread stopped before the inferior function call was
9171 executed. */
9172 struct thread_suspend_state m_thread_suspend;
9173
9174 /* The registers before the inferior function call was executed. */
9175 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9176
35515841 9177 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9178 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9179
9180 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9181 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9182 content would be invalid. */
6bf78e29 9183 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9184};
9185
cb524840
TT
9186infcall_suspend_state_up
9187save_infcall_suspend_state ()
b89667eb 9188{
b89667eb 9189 struct thread_info *tp = inferior_thread ();
1736ad11 9190 struct regcache *regcache = get_current_regcache ();
ac7936df 9191 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9192
6bf78e29
AB
9193 infcall_suspend_state_up inf_state
9194 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9195
6bf78e29
AB
9196 /* Having saved the current state, adjust the thread state, discarding
9197 any stop signal information. The stop signal is not useful when
9198 starting an inferior function call, and run_inferior_call will not use
9199 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9200 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9201
b89667eb
DE
9202 return inf_state;
9203}
9204
9205/* Restore inferior session state to INF_STATE. */
9206
9207void
16c381f0 9208restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9209{
9210 struct thread_info *tp = inferior_thread ();
1736ad11 9211 struct regcache *regcache = get_current_regcache ();
ac7936df 9212 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9213
6bf78e29 9214 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9215 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9216}
9217
b89667eb 9218void
16c381f0 9219discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9220{
dd848631 9221 delete inf_state;
b89667eb
DE
9222}
9223
daf6667d 9224readonly_detached_regcache *
16c381f0 9225get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9226{
6bf78e29 9227 return inf_state->registers ();
b89667eb
DE
9228}
9229
16c381f0
JK
9230/* infcall_control_state contains state regarding gdb's control of the
9231 inferior itself like stepping control. It also contains session state like
9232 the user's currently selected frame. */
b89667eb 9233
16c381f0 9234struct infcall_control_state
b89667eb 9235{
16c381f0
JK
9236 struct thread_control_state thread_control;
9237 struct inferior_control_state inferior_control;
d82142e2
JK
9238
9239 /* Other fields: */
ee841dd8
TT
9240 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9241 int stopped_by_random_signal = 0;
7a292a7a 9242
b89667eb 9243 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9244 struct frame_id selected_frame_id {};
7a292a7a
SS
9245};
9246
c906108c 9247/* Save all of the information associated with the inferior<==>gdb
b89667eb 9248 connection. */
c906108c 9249
cb524840
TT
9250infcall_control_state_up
9251save_infcall_control_state ()
c906108c 9252{
cb524840 9253 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9254 struct thread_info *tp = inferior_thread ();
d6b48e9c 9255 struct inferior *inf = current_inferior ();
7a292a7a 9256
16c381f0
JK
9257 inf_status->thread_control = tp->control;
9258 inf_status->inferior_control = inf->control;
d82142e2 9259
8358c15c 9260 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9261 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9262
16c381f0
JK
9263 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9264 chain. If caller's caller is walking the chain, they'll be happier if we
9265 hand them back the original chain when restore_infcall_control_state is
9266 called. */
9267 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9268
9269 /* Other fields: */
9270 inf_status->stop_stack_dummy = stop_stack_dummy;
9271 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9272
206415a3 9273 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9274
7a292a7a 9275 return inf_status;
c906108c
SS
9276}
9277
bf469271
PA
9278static void
9279restore_selected_frame (const frame_id &fid)
c906108c 9280{
bf469271 9281 frame_info *frame = frame_find_by_id (fid);
c906108c 9282
aa0cd9c1
AC
9283 /* If inf_status->selected_frame_id is NULL, there was no previously
9284 selected frame. */
101dcfbe 9285 if (frame == NULL)
c906108c 9286 {
8a3fe4f8 9287 warning (_("Unable to restore previously selected frame."));
bf469271 9288 return;
c906108c
SS
9289 }
9290
0f7d239c 9291 select_frame (frame);
c906108c
SS
9292}
9293
b89667eb
DE
9294/* Restore inferior session state to INF_STATUS. */
9295
c906108c 9296void
16c381f0 9297restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9298{
4e1c45ea 9299 struct thread_info *tp = inferior_thread ();
d6b48e9c 9300 struct inferior *inf = current_inferior ();
4e1c45ea 9301
8358c15c
JK
9302 if (tp->control.step_resume_breakpoint)
9303 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9304
5b79abe7
TT
9305 if (tp->control.exception_resume_breakpoint)
9306 tp->control.exception_resume_breakpoint->disposition
9307 = disp_del_at_next_stop;
9308
d82142e2 9309 /* Handle the bpstat_copy of the chain. */
16c381f0 9310 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9311
16c381f0
JK
9312 tp->control = inf_status->thread_control;
9313 inf->control = inf_status->inferior_control;
d82142e2
JK
9314
9315 /* Other fields: */
9316 stop_stack_dummy = inf_status->stop_stack_dummy;
9317 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9318
b89667eb 9319 if (target_has_stack)
c906108c 9320 {
bf469271 9321 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9322 walking the stack might encounter a garbage pointer and
9323 error() trying to dereference it. */
a70b8144 9324 try
bf469271
PA
9325 {
9326 restore_selected_frame (inf_status->selected_frame_id);
9327 }
230d2906 9328 catch (const gdb_exception_error &ex)
bf469271
PA
9329 {
9330 exception_fprintf (gdb_stderr, ex,
9331 "Unable to restore previously selected frame:\n");
9332 /* Error in restoring the selected frame. Select the
9333 innermost frame. */
9334 select_frame (get_current_frame ());
9335 }
c906108c 9336 }
c906108c 9337
ee841dd8 9338 delete inf_status;
7a292a7a 9339}
c906108c
SS
9340
9341void
16c381f0 9342discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9343{
8358c15c
JK
9344 if (inf_status->thread_control.step_resume_breakpoint)
9345 inf_status->thread_control.step_resume_breakpoint->disposition
9346 = disp_del_at_next_stop;
9347
5b79abe7
TT
9348 if (inf_status->thread_control.exception_resume_breakpoint)
9349 inf_status->thread_control.exception_resume_breakpoint->disposition
9350 = disp_del_at_next_stop;
9351
1777feb0 9352 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9353 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9354
ee841dd8 9355 delete inf_status;
7a292a7a 9356}
b89667eb 9357\f
7f89fd65 9358/* See infrun.h. */
0c557179
SDJ
9359
9360void
9361clear_exit_convenience_vars (void)
9362{
9363 clear_internalvar (lookup_internalvar ("_exitsignal"));
9364 clear_internalvar (lookup_internalvar ("_exitcode"));
9365}
c5aa993b 9366\f
488f131b 9367
b2175913
MS
9368/* User interface for reverse debugging:
9369 Set exec-direction / show exec-direction commands
9370 (returns error unless target implements to_set_exec_direction method). */
9371
170742de 9372enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9373static const char exec_forward[] = "forward";
9374static const char exec_reverse[] = "reverse";
9375static const char *exec_direction = exec_forward;
40478521 9376static const char *const exec_direction_names[] = {
b2175913
MS
9377 exec_forward,
9378 exec_reverse,
9379 NULL
9380};
9381
9382static void
eb4c3f4a 9383set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9384 struct cmd_list_element *cmd)
9385{
9386 if (target_can_execute_reverse)
9387 {
9388 if (!strcmp (exec_direction, exec_forward))
9389 execution_direction = EXEC_FORWARD;
9390 else if (!strcmp (exec_direction, exec_reverse))
9391 execution_direction = EXEC_REVERSE;
9392 }
8bbed405
MS
9393 else
9394 {
9395 exec_direction = exec_forward;
9396 error (_("Target does not support this operation."));
9397 }
b2175913
MS
9398}
9399
9400static void
9401show_exec_direction_func (struct ui_file *out, int from_tty,
9402 struct cmd_list_element *cmd, const char *value)
9403{
9404 switch (execution_direction) {
9405 case EXEC_FORWARD:
9406 fprintf_filtered (out, _("Forward.\n"));
9407 break;
9408 case EXEC_REVERSE:
9409 fprintf_filtered (out, _("Reverse.\n"));
9410 break;
b2175913 9411 default:
d8b34453
PA
9412 internal_error (__FILE__, __LINE__,
9413 _("bogus execution_direction value: %d"),
9414 (int) execution_direction);
b2175913
MS
9415 }
9416}
9417
d4db2f36
PA
9418static void
9419show_schedule_multiple (struct ui_file *file, int from_tty,
9420 struct cmd_list_element *c, const char *value)
9421{
3e43a32a
MS
9422 fprintf_filtered (file, _("Resuming the execution of threads "
9423 "of all processes is %s.\n"), value);
d4db2f36 9424}
ad52ddc6 9425
22d2b532
SDJ
9426/* Implementation of `siginfo' variable. */
9427
9428static const struct internalvar_funcs siginfo_funcs =
9429{
9430 siginfo_make_value,
9431 NULL,
9432 NULL
9433};
9434
372316f1
PA
9435/* Callback for infrun's target events source. This is marked when a
9436 thread has a pending status to process. */
9437
9438static void
9439infrun_async_inferior_event_handler (gdb_client_data data)
9440{
b1a35af2 9441 inferior_event_handler (INF_REG_EVENT);
372316f1
PA
9442}
9443
6c265988 9444void _initialize_infrun ();
c906108c 9445void
6c265988 9446_initialize_infrun ()
c906108c 9447{
de0bea00 9448 struct cmd_list_element *c;
c906108c 9449
372316f1
PA
9450 /* Register extra event sources in the event loop. */
9451 infrun_async_inferior_event_token
9452 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9453
11db9430 9454 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9455What debugger does when program gets various signals.\n\
9456Specify a signal as argument to print info on that signal only."));
c906108c
SS
9457 add_info_alias ("handle", "signals", 0);
9458
de0bea00 9459 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9460Specify how to handle signals.\n\
486c7739 9461Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9462Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9463If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9464will be displayed instead.\n\
9465\n\
c906108c
SS
9466Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9467from 1-15 are allowed for compatibility with old versions of GDB.\n\
9468Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9469The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9470used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9471\n\
1bedd215 9472Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9473\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9474Stop means reenter debugger if this signal happens (implies print).\n\
9475Print means print a message if this signal happens.\n\
9476Pass means let program see this signal; otherwise program doesn't know.\n\
9477Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9478Pass and Stop may be combined.\n\
9479\n\
9480Multiple signals may be specified. Signal numbers and signal names\n\
9481may be interspersed with actions, with the actions being performed for\n\
9482all signals cumulatively specified."));
de0bea00 9483 set_cmd_completer (c, handle_completer);
486c7739 9484
c906108c 9485 if (!dbx_commands)
1a966eab
AC
9486 stop_command = add_cmd ("stop", class_obscure,
9487 not_just_help_class_command, _("\
9488There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9489This allows you to set a list of commands to be run each time execution\n\
1a966eab 9490of the program stops."), &cmdlist);
c906108c 9491
ccce17b0 9492 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9493Set inferior debugging."), _("\
9494Show inferior debugging."), _("\
9495When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9496 NULL,
9497 show_debug_infrun,
9498 &setdebuglist, &showdebuglist);
527159b7 9499
3e43a32a
MS
9500 add_setshow_boolean_cmd ("displaced", class_maintenance,
9501 &debug_displaced, _("\
237fc4c9
PA
9502Set displaced stepping debugging."), _("\
9503Show displaced stepping debugging."), _("\
9504When non-zero, displaced stepping specific debugging is enabled."),
9505 NULL,
9506 show_debug_displaced,
9507 &setdebuglist, &showdebuglist);
9508
ad52ddc6
PA
9509 add_setshow_boolean_cmd ("non-stop", no_class,
9510 &non_stop_1, _("\
9511Set whether gdb controls the inferior in non-stop mode."), _("\
9512Show whether gdb controls the inferior in non-stop mode."), _("\
9513When debugging a multi-threaded program and this setting is\n\
9514off (the default, also called all-stop mode), when one thread stops\n\
9515(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9516all other threads in the program while you interact with the thread of\n\
9517interest. When you continue or step a thread, you can allow the other\n\
9518threads to run, or have them remain stopped, but while you inspect any\n\
9519thread's state, all threads stop.\n\
9520\n\
9521In non-stop mode, when one thread stops, other threads can continue\n\
9522to run freely. You'll be able to step each thread independently,\n\
9523leave it stopped or free to run as needed."),
9524 set_non_stop,
9525 show_non_stop,
9526 &setlist,
9527 &showlist);
9528
adc6a863 9529 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9530 {
9531 signal_stop[i] = 1;
9532 signal_print[i] = 1;
9533 signal_program[i] = 1;
ab04a2af 9534 signal_catch[i] = 0;
c906108c
SS
9535 }
9536
4d9d9d04
PA
9537 /* Signals caused by debugger's own actions should not be given to
9538 the program afterwards.
9539
9540 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9541 explicitly specifies that it should be delivered to the target
9542 program. Typically, that would occur when a user is debugging a
9543 target monitor on a simulator: the target monitor sets a
9544 breakpoint; the simulator encounters this breakpoint and halts
9545 the simulation handing control to GDB; GDB, noting that the stop
9546 address doesn't map to any known breakpoint, returns control back
9547 to the simulator; the simulator then delivers the hardware
9548 equivalent of a GDB_SIGNAL_TRAP to the program being
9549 debugged. */
a493e3e2
PA
9550 signal_program[GDB_SIGNAL_TRAP] = 0;
9551 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9552
9553 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9554 signal_stop[GDB_SIGNAL_ALRM] = 0;
9555 signal_print[GDB_SIGNAL_ALRM] = 0;
9556 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9557 signal_print[GDB_SIGNAL_VTALRM] = 0;
9558 signal_stop[GDB_SIGNAL_PROF] = 0;
9559 signal_print[GDB_SIGNAL_PROF] = 0;
9560 signal_stop[GDB_SIGNAL_CHLD] = 0;
9561 signal_print[GDB_SIGNAL_CHLD] = 0;
9562 signal_stop[GDB_SIGNAL_IO] = 0;
9563 signal_print[GDB_SIGNAL_IO] = 0;
9564 signal_stop[GDB_SIGNAL_POLL] = 0;
9565 signal_print[GDB_SIGNAL_POLL] = 0;
9566 signal_stop[GDB_SIGNAL_URG] = 0;
9567 signal_print[GDB_SIGNAL_URG] = 0;
9568 signal_stop[GDB_SIGNAL_WINCH] = 0;
9569 signal_print[GDB_SIGNAL_WINCH] = 0;
9570 signal_stop[GDB_SIGNAL_PRIO] = 0;
9571 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9572
cd0fc7c3
SS
9573 /* These signals are used internally by user-level thread
9574 implementations. (See signal(5) on Solaris.) Like the above
9575 signals, a healthy program receives and handles them as part of
9576 its normal operation. */
a493e3e2
PA
9577 signal_stop[GDB_SIGNAL_LWP] = 0;
9578 signal_print[GDB_SIGNAL_LWP] = 0;
9579 signal_stop[GDB_SIGNAL_WAITING] = 0;
9580 signal_print[GDB_SIGNAL_WAITING] = 0;
9581 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9582 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9583 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9584 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9585
2455069d
UW
9586 /* Update cached state. */
9587 signal_cache_update (-1);
9588
85c07804
AC
9589 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9590 &stop_on_solib_events, _("\
9591Set stopping for shared library events."), _("\
9592Show stopping for shared library events."), _("\
c906108c
SS
9593If nonzero, gdb will give control to the user when the dynamic linker\n\
9594notifies gdb of shared library events. The most common event of interest\n\
85c07804 9595to the user would be loading/unloading of a new library."),
f9e14852 9596 set_stop_on_solib_events,
920d2a44 9597 show_stop_on_solib_events,
85c07804 9598 &setlist, &showlist);
c906108c 9599
7ab04401
AC
9600 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9601 follow_fork_mode_kind_names,
9602 &follow_fork_mode_string, _("\
9603Set debugger response to a program call of fork or vfork."), _("\
9604Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9605A fork or vfork creates a new process. follow-fork-mode can be:\n\
9606 parent - the original process is debugged after a fork\n\
9607 child - the new process is debugged after a fork\n\
ea1dd7bc 9608The unfollowed process will continue to run.\n\
7ab04401
AC
9609By default, the debugger will follow the parent process."),
9610 NULL,
920d2a44 9611 show_follow_fork_mode_string,
7ab04401
AC
9612 &setlist, &showlist);
9613
6c95b8df
PA
9614 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9615 follow_exec_mode_names,
9616 &follow_exec_mode_string, _("\
9617Set debugger response to a program call of exec."), _("\
9618Show debugger response to a program call of exec."), _("\
9619An exec call replaces the program image of a process.\n\
9620\n\
9621follow-exec-mode can be:\n\
9622\n\
cce7e648 9623 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9624to this new inferior. The program the process was running before\n\
9625the exec call can be restarted afterwards by restarting the original\n\
9626inferior.\n\
9627\n\
9628 same - the debugger keeps the process bound to the same inferior.\n\
9629The new executable image replaces the previous executable loaded in\n\
9630the inferior. Restarting the inferior after the exec call restarts\n\
9631the executable the process was running after the exec call.\n\
9632\n\
9633By default, the debugger will use the same inferior."),
9634 NULL,
9635 show_follow_exec_mode_string,
9636 &setlist, &showlist);
9637
7ab04401
AC
9638 add_setshow_enum_cmd ("scheduler-locking", class_run,
9639 scheduler_enums, &scheduler_mode, _("\
9640Set mode for locking scheduler during execution."), _("\
9641Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9642off == no locking (threads may preempt at any time)\n\
9643on == full locking (no thread except the current thread may run)\n\
9644 This applies to both normal execution and replay mode.\n\
9645step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9646 In this mode, other threads may run during other commands.\n\
9647 This applies to both normal execution and replay mode.\n\
9648replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9649 set_schedlock_func, /* traps on target vector */
920d2a44 9650 show_scheduler_mode,
7ab04401 9651 &setlist, &showlist);
5fbbeb29 9652
d4db2f36
PA
9653 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9654Set mode for resuming threads of all processes."), _("\
9655Show mode for resuming threads of all processes."), _("\
9656When on, execution commands (such as 'continue' or 'next') resume all\n\
9657threads of all processes. When off (which is the default), execution\n\
9658commands only resume the threads of the current process. The set of\n\
9659threads that are resumed is further refined by the scheduler-locking\n\
9660mode (see help set scheduler-locking)."),
9661 NULL,
9662 show_schedule_multiple,
9663 &setlist, &showlist);
9664
5bf193a2
AC
9665 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9666Set mode of the step operation."), _("\
9667Show mode of the step operation."), _("\
9668When set, doing a step over a function without debug line information\n\
9669will stop at the first instruction of that function. Otherwise, the\n\
9670function is skipped and the step command stops at a different source line."),
9671 NULL,
920d2a44 9672 show_step_stop_if_no_debug,
5bf193a2 9673 &setlist, &showlist);
ca6724c1 9674
72d0e2c5
YQ
9675 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9676 &can_use_displaced_stepping, _("\
237fc4c9
PA
9677Set debugger's willingness to use displaced stepping."), _("\
9678Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9679If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9680supported by the target architecture. If off, gdb will not use displaced\n\
9681stepping to step over breakpoints, even if such is supported by the target\n\
9682architecture. If auto (which is the default), gdb will use displaced stepping\n\
9683if the target architecture supports it and non-stop mode is active, but will not\n\
9684use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9685 NULL,
9686 show_can_use_displaced_stepping,
9687 &setlist, &showlist);
237fc4c9 9688
b2175913
MS
9689 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9690 &exec_direction, _("Set direction of execution.\n\
9691Options are 'forward' or 'reverse'."),
9692 _("Show direction of execution (forward/reverse)."),
9693 _("Tells gdb whether to execute forward or backward."),
9694 set_exec_direction_func, show_exec_direction_func,
9695 &setlist, &showlist);
9696
6c95b8df
PA
9697 /* Set/show detach-on-fork: user-settable mode. */
9698
9699 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9700Set whether gdb will detach the child of a fork."), _("\
9701Show whether gdb will detach the child of a fork."), _("\
9702Tells gdb whether to detach the child of a fork."),
9703 NULL, NULL, &setlist, &showlist);
9704
03583c20
UW
9705 /* Set/show disable address space randomization mode. */
9706
9707 add_setshow_boolean_cmd ("disable-randomization", class_support,
9708 &disable_randomization, _("\
9709Set disabling of debuggee's virtual address space randomization."), _("\
9710Show disabling of debuggee's virtual address space randomization."), _("\
9711When this mode is on (which is the default), randomization of the virtual\n\
9712address space is disabled. Standalone programs run with the randomization\n\
9713enabled by default on some platforms."),
9714 &set_disable_randomization,
9715 &show_disable_randomization,
9716 &setlist, &showlist);
9717
ca6724c1 9718 /* ptid initializations */
ca6724c1
KB
9719 inferior_ptid = null_ptid;
9720 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9721
76727919
TT
9722 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9723 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9724 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9725 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9726
9727 /* Explicitly create without lookup, since that tries to create a
9728 value with a void typed value, and when we get here, gdbarch
9729 isn't initialized yet. At this point, we're quite sure there
9730 isn't another convenience variable of the same name. */
22d2b532 9731 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9732
9733 add_setshow_boolean_cmd ("observer", no_class,
9734 &observer_mode_1, _("\
9735Set whether gdb controls the inferior in observer mode."), _("\
9736Show whether gdb controls the inferior in observer mode."), _("\
9737In observer mode, GDB can get data from the inferior, but not\n\
9738affect its execution. Registers and memory may not be changed,\n\
9739breakpoints may not be set, and the program cannot be interrupted\n\
9740or signalled."),
9741 set_observer_mode,
9742 show_observer_mode,
9743 &setlist,
9744 &showlist);
c906108c 9745}
This page took 2.673342 seconds and 4 git commands to generate.