gdb: move displaced stepping logic to gdbarch, allow starting concurrent displaced...
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
9844051a 22#include "displaced-stepping.h"
edbcda09
SM
23#include "gdbsupport/common-defs.h"
24#include "gdbsupport/common-utils.h"
45741a9c 25#include "infrun.h"
c906108c
SS
26#include <ctype.h>
27#include "symtab.h"
28#include "frame.h"
29#include "inferior.h"
30#include "breakpoint.h"
c906108c
SS
31#include "gdbcore.h"
32#include "gdbcmd.h"
33#include "target.h"
2f4fcf00 34#include "target-connection.h"
c906108c
SS
35#include "gdbthread.h"
36#include "annotate.h"
1adeb98a 37#include "symfile.h"
7a292a7a 38#include "top.h"
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
9844051a 41#include "utils.h"
fd0407d6 42#include "value.h"
76727919 43#include "observable.h"
f636b87d 44#include "language.h"
a77053c2 45#include "solib.h"
f17517ea 46#include "main.h"
186c406b 47#include "block.h"
034dad6f 48#include "mi/mi-common.h"
4f8d22e3 49#include "event-top.h"
96429cc8 50#include "record.h"
d02ed0bb 51#include "record-full.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
1bfeeb0f 55#include "skip.h"
28106bc2
SDJ
56#include "probe.h"
57#include "objfiles.h"
de0bea00 58#include "completer.h"
9107fc8d 59#include "target-descriptions.h"
f15cb84a 60#include "target-dcache.h"
d83ad864 61#include "terminal.h"
ff862be4 62#include "solist.h"
400b5eca 63#include "gdbsupport/event-loop.h"
243a9253 64#include "thread-fsm.h"
268a13a5 65#include "gdbsupport/enum-flags.h"
5ed8105e 66#include "progspace-and-thread.h"
268a13a5 67#include "gdbsupport/gdb_optional.h"
46a62268 68#include "arch-utils.h"
268a13a5
TT
69#include "gdbsupport/scope-exit.h"
70#include "gdbsupport/forward-scope-exit.h"
06cc9596 71#include "gdbsupport/gdb_select.h"
5b6d1e4f 72#include <unordered_map>
93b54c8e 73#include "async-event.h"
c906108c
SS
74
75/* Prototypes for local functions */
76
2ea28649 77static void sig_print_info (enum gdb_signal);
c906108c 78
96baa820 79static void sig_print_header (void);
c906108c 80
d83ad864
DB
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
2c03e5be 85static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
86
87static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
2484c66b
UW
89static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
8550d3b3
YQ
91static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
aff4e175
AB
93static void resume (gdb_signal sig);
94
5b6d1e4f
PA
95static void wait_for_inferior (inferior *inf);
96
372316f1
PA
97/* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99static struct async_event_handler *infrun_async_inferior_event_token;
100
101/* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103static int infrun_is_async = -1;
104
edbcda09
SM
105#define infrun_log_debug(fmt, args...) \
106 infrun_log_debug_1 (__LINE__, __func__, fmt, ##args)
107
108static void ATTRIBUTE_PRINTF(3, 4)
109infrun_log_debug_1 (int line, const char *func,
110 const char *fmt, ...)
111{
112 if (debug_infrun)
113 {
114 va_list args;
115 va_start (args, fmt);
116 std::string msg = string_vprintf (fmt, args);
117 va_end (args);
118
119 fprintf_unfiltered (gdb_stdout, "infrun: %s: %s\n", func, msg.c_str ());
120 }
121}
122
372316f1
PA
123/* See infrun.h. */
124
125void
126infrun_async (int enable)
127{
128 if (infrun_is_async != enable)
129 {
130 infrun_is_async = enable;
131
edbcda09 132 infrun_log_debug ("enable=%d", enable);
372316f1
PA
133
134 if (enable)
135 mark_async_event_handler (infrun_async_inferior_event_token);
136 else
137 clear_async_event_handler (infrun_async_inferior_event_token);
138 }
139}
140
0b333c5e
PA
141/* See infrun.h. */
142
143void
144mark_infrun_async_event_handler (void)
145{
146 mark_async_event_handler (infrun_async_inferior_event_token);
147}
148
5fbbeb29
CF
149/* When set, stop the 'step' command if we enter a function which has
150 no line number information. The normal behavior is that we step
151 over such function. */
491144b5 152bool step_stop_if_no_debug = false;
920d2a44
AC
153static void
154show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
157 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
158}
5fbbeb29 159
b9f437de
PA
160/* proceed and normal_stop use this to notify the user when the
161 inferior stopped in a different thread than it had been running
162 in. */
96baa820 163
39f77062 164static ptid_t previous_inferior_ptid;
7a292a7a 165
07107ca6
LM
166/* If set (default for legacy reasons), when following a fork, GDB
167 will detach from one of the fork branches, child or parent.
168 Exactly which branch is detached depends on 'set follow-fork-mode'
169 setting. */
170
491144b5 171static bool detach_fork = true;
6c95b8df 172
491144b5 173bool debug_displaced = false;
237fc4c9
PA
174static void
175show_debug_displaced (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177{
178 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
179}
180
ccce17b0 181unsigned int debug_infrun = 0;
920d2a44
AC
182static void
183show_debug_infrun (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185{
186 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
187}
527159b7 188
03583c20
UW
189
190/* Support for disabling address space randomization. */
191
491144b5 192bool disable_randomization = true;
03583c20
UW
193
194static void
195show_disable_randomization (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197{
198 if (target_supports_disable_randomization ())
199 fprintf_filtered (file,
200 _("Disabling randomization of debuggee's "
201 "virtual address space is %s.\n"),
202 value);
203 else
204 fputs_filtered (_("Disabling randomization of debuggee's "
205 "virtual address space is unsupported on\n"
206 "this platform.\n"), file);
207}
208
209static void
eb4c3f4a 210set_disable_randomization (const char *args, int from_tty,
03583c20
UW
211 struct cmd_list_element *c)
212{
213 if (!target_supports_disable_randomization ())
214 error (_("Disabling randomization of debuggee's "
215 "virtual address space is unsupported on\n"
216 "this platform."));
217}
218
d32dc48e
PA
219/* User interface for non-stop mode. */
220
491144b5
CB
221bool non_stop = false;
222static bool non_stop_1 = false;
d32dc48e
PA
223
224static void
eb4c3f4a 225set_non_stop (const char *args, int from_tty,
d32dc48e
PA
226 struct cmd_list_element *c)
227{
228 if (target_has_execution)
229 {
230 non_stop_1 = non_stop;
231 error (_("Cannot change this setting while the inferior is running."));
232 }
233
234 non_stop = non_stop_1;
235}
236
237static void
238show_non_stop (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240{
241 fprintf_filtered (file,
242 _("Controlling the inferior in non-stop mode is %s.\n"),
243 value);
244}
245
d914c394
SS
246/* "Observer mode" is somewhat like a more extreme version of
247 non-stop, in which all GDB operations that might affect the
248 target's execution have been disabled. */
249
491144b5
CB
250bool observer_mode = false;
251static bool observer_mode_1 = false;
d914c394
SS
252
253static void
eb4c3f4a 254set_observer_mode (const char *args, int from_tty,
d914c394
SS
255 struct cmd_list_element *c)
256{
d914c394
SS
257 if (target_has_execution)
258 {
259 observer_mode_1 = observer_mode;
260 error (_("Cannot change this setting while the inferior is running."));
261 }
262
263 observer_mode = observer_mode_1;
264
265 may_write_registers = !observer_mode;
266 may_write_memory = !observer_mode;
267 may_insert_breakpoints = !observer_mode;
268 may_insert_tracepoints = !observer_mode;
269 /* We can insert fast tracepoints in or out of observer mode,
270 but enable them if we're going into this mode. */
271 if (observer_mode)
491144b5 272 may_insert_fast_tracepoints = true;
d914c394
SS
273 may_stop = !observer_mode;
274 update_target_permissions ();
275
276 /* Going *into* observer mode we must force non-stop, then
277 going out we leave it that way. */
278 if (observer_mode)
279 {
d914c394 280 pagination_enabled = 0;
491144b5 281 non_stop = non_stop_1 = true;
d914c394
SS
282 }
283
284 if (from_tty)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (observer_mode ? "on" : "off"));
287}
288
289static void
290show_observer_mode (struct ui_file *file, int from_tty,
291 struct cmd_list_element *c, const char *value)
292{
293 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
294}
295
296/* This updates the value of observer mode based on changes in
297 permissions. Note that we are deliberately ignoring the values of
298 may-write-registers and may-write-memory, since the user may have
299 reason to enable these during a session, for instance to turn on a
300 debugging-related global. */
301
302void
303update_observer_mode (void)
304{
491144b5
CB
305 bool newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
d914c394
SS
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
c2c6d25f 318
c906108c
SS
319/* Tables of how to react to signals; the user sets them. */
320
adc6a863
PA
321static unsigned char signal_stop[GDB_SIGNAL_LAST];
322static unsigned char signal_print[GDB_SIGNAL_LAST];
323static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 324
ab04a2af
TT
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
327 signal" command. */
328static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 329
2455069d
UW
330/* Table of signals that the target may silently handle.
331 This is automatically determined from the flags above,
332 and simply cached here. */
adc6a863 333static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 334
c906108c
SS
335#define SET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 1; \
341 } while (0)
342
343#define UNSET_SIGS(nsigs,sigs,flags) \
344 do { \
345 int signum = (nsigs); \
346 while (signum-- > 0) \
347 if ((sigs)[signum]) \
348 (flags)[signum] = 0; \
349 } while (0)
350
9b224c5e
PA
351/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
352 this function is to avoid exporting `signal_program'. */
353
354void
355update_signals_program_target (void)
356{
adc6a863 357 target_program_signals (signal_program);
9b224c5e
PA
358}
359
1777feb0 360/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 361
edb3359d 362#define RESUME_ALL minus_one_ptid
c906108c
SS
363
364/* Command list pointer for the "stop" placeholder. */
365
366static struct cmd_list_element *stop_command;
367
c906108c
SS
368/* Nonzero if we want to give control to the user when we're notified
369 of shared library events by the dynamic linker. */
628fe4e4 370int stop_on_solib_events;
f9e14852
GB
371
372/* Enable or disable optional shared library event breakpoints
373 as appropriate when the above flag is changed. */
374
375static void
eb4c3f4a
TT
376set_stop_on_solib_events (const char *args,
377 int from_tty, struct cmd_list_element *c)
f9e14852
GB
378{
379 update_solib_breakpoints ();
380}
381
920d2a44
AC
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
c906108c 389
c906108c
SS
390/* Nonzero after stop if current stack frame should be printed. */
391
392static int stop_print_frame;
393
5b6d1e4f
PA
394/* This is a cached copy of the target/ptid/waitstatus of the last
395 event returned by target_wait()/deprecated_target_wait_hook().
396 This information is returned by get_last_target_status(). */
397static process_stratum_target *target_last_proc_target;
39f77062 398static ptid_t target_last_wait_ptid;
e02bc4cc
DS
399static struct target_waitstatus target_last_waitstatus;
400
4e1c45ea 401void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 402
53904c9e
AC
403static const char follow_fork_mode_child[] = "child";
404static const char follow_fork_mode_parent[] = "parent";
405
40478521 406static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
407 follow_fork_mode_child,
408 follow_fork_mode_parent,
409 NULL
ef346e04 410};
c906108c 411
53904c9e 412static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
413static void
414show_follow_fork_mode_string (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c, const char *value)
416{
3e43a32a
MS
417 fprintf_filtered (file,
418 _("Debugger response to a program "
419 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
420 value);
421}
c906108c
SS
422\f
423
d83ad864
DB
424/* Handle changes to the inferior list based on the type of fork,
425 which process is being followed, and whether the other process
426 should be detached. On entry inferior_ptid must be the ptid of
427 the fork parent. At return inferior_ptid is the ptid of the
428 followed inferior. */
429
5ab2fbf1
SM
430static bool
431follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
432{
433 int has_vforked;
79639e11 434 ptid_t parent_ptid, child_ptid;
d83ad864
DB
435
436 has_vforked = (inferior_thread ()->pending_follow.kind
437 == TARGET_WAITKIND_VFORKED);
79639e11
PA
438 parent_ptid = inferior_ptid;
439 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
440
441 if (has_vforked
442 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 443 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
444 && !(follow_child || detach_fork || sched_multi))
445 {
446 /* The parent stays blocked inside the vfork syscall until the
447 child execs or exits. If we don't let the child run, then
448 the parent stays blocked. If we're telling the parent to run
449 in the foreground, the user will not be able to ctrl-c to get
450 back the terminal, effectively hanging the debug session. */
451 fprintf_filtered (gdb_stderr, _("\
452Can not resume the parent process over vfork in the foreground while\n\
453holding the child stopped. Try \"set detach-on-fork\" or \
454\"set schedule-multiple\".\n"));
d83ad864
DB
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
d83ad864
DB
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
00431a78 473 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
474 }
475
f67c0c91 476 if (print_inferior_events)
d83ad864 477 {
8dd06f7a 478 /* Ensure that we have a process ptid. */
e99b03dc 479 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 480
223ffa71 481 target_terminal::ours_for_output ();
d83ad864 482 fprintf_filtered (gdb_stdlog,
f67c0c91 483 _("[Detaching after %s from child %s]\n"),
6f259a23 484 has_vforked ? "vfork" : "fork",
a068643d 485 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
d83ad864
DB
491
492 /* Add process to GDB's tables. */
e99b03dc 493 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
5ed8105e 501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 502
2a00d7ce 503 set_current_inferior (child_inf);
5b6d1e4f 504 switch_to_no_thread ();
d83ad864 505 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f 506 push_target (parent_inf->process_target ());
18493a00
PA
507 thread_info *child_thr
508 = add_thread_silent (child_inf->process_target (), child_ptid);
d83ad864
DB
509
510 /* If this is a vfork child, then the address-space is
511 shared with the parent. */
512 if (has_vforked)
513 {
514 child_inf->pspace = parent_inf->pspace;
515 child_inf->aspace = parent_inf->aspace;
516
5b6d1e4f
PA
517 exec_on_vfork ();
518
d83ad864
DB
519 /* The parent will be frozen until the child is done
520 with the shared region. Keep track of the
521 parent. */
522 child_inf->vfork_parent = parent_inf;
523 child_inf->pending_detach = 0;
524 parent_inf->vfork_child = child_inf;
525 parent_inf->pending_detach = 0;
18493a00
PA
526
527 /* Now that the inferiors and program spaces are all
528 wired up, we can switch to the child thread (which
529 switches inferior and program space too). */
530 switch_to_thread (child_thr);
d83ad864
DB
531 }
532 else
533 {
534 child_inf->aspace = new_address_space ();
564b1e3f 535 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
536 child_inf->removable = 1;
537 set_current_program_space (child_inf->pspace);
538 clone_program_space (child_inf->pspace, parent_inf->pspace);
539
18493a00
PA
540 /* solib_create_inferior_hook relies on the current
541 thread. */
542 switch_to_thread (child_thr);
543
d83ad864
DB
544 /* Let the shared library layer (e.g., solib-svr4) learn
545 about this new process, relocate the cloned exec, pull
546 in shared libraries, and install the solib event
547 breakpoint. If a "cloned-VM" event was propagated
548 better throughout the core, this wouldn't be
549 required. */
550 solib_create_inferior_hook (0);
551 }
d83ad864
DB
552 }
553
554 if (has_vforked)
555 {
556 struct inferior *parent_inf;
557
558 parent_inf = current_inferior ();
559
560 /* If we detached from the child, then we have to be careful
561 to not insert breakpoints in the parent until the child
562 is done with the shared memory region. However, if we're
563 staying attached to the child, then we can and should
564 insert breakpoints, so that we can debug it. A
565 subsequent child exec or exit is enough to know when does
566 the child stops using the parent's address space. */
567 parent_inf->waiting_for_vfork_done = detach_fork;
568 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
569 }
570 }
571 else
572 {
573 /* Follow the child. */
574 struct inferior *parent_inf, *child_inf;
575 struct program_space *parent_pspace;
576
f67c0c91 577 if (print_inferior_events)
d83ad864 578 {
f67c0c91
SDJ
579 std::string parent_pid = target_pid_to_str (parent_ptid);
580 std::string child_pid = target_pid_to_str (child_ptid);
581
223ffa71 582 target_terminal::ours_for_output ();
6f259a23 583 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
584 _("[Attaching after %s %s to child %s]\n"),
585 parent_pid.c_str (),
6f259a23 586 has_vforked ? "vfork" : "fork",
f67c0c91 587 child_pid.c_str ());
d83ad864
DB
588 }
589
590 /* Add the new inferior first, so that the target_detach below
591 doesn't unpush the target. */
592
e99b03dc 593 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
594
595 parent_inf = current_inferior ();
596 child_inf->attach_flag = parent_inf->attach_flag;
597 copy_terminal_info (child_inf, parent_inf);
598 child_inf->gdbarch = parent_inf->gdbarch;
599 copy_inferior_target_desc_info (child_inf, parent_inf);
600
601 parent_pspace = parent_inf->pspace;
602
5b6d1e4f 603 process_stratum_target *target = parent_inf->process_target ();
d83ad864 604
5b6d1e4f
PA
605 {
606 /* Hold a strong reference to the target while (maybe)
607 detaching the parent. Otherwise detaching could close the
608 target. */
609 auto target_ref = target_ops_ref::new_reference (target);
610
611 /* If we're vforking, we want to hold on to the parent until
612 the child exits or execs. At child exec or exit time we
613 can remove the old breakpoints from the parent and detach
614 or resume debugging it. Otherwise, detach the parent now;
615 we'll want to reuse it's program/address spaces, but we
616 can't set them to the child before removing breakpoints
617 from the parent, otherwise, the breakpoints module could
618 decide to remove breakpoints from the wrong process (since
619 they'd be assigned to the same address space). */
620
621 if (has_vforked)
622 {
623 gdb_assert (child_inf->vfork_parent == NULL);
624 gdb_assert (parent_inf->vfork_child == NULL);
625 child_inf->vfork_parent = parent_inf;
626 child_inf->pending_detach = 0;
627 parent_inf->vfork_child = child_inf;
628 parent_inf->pending_detach = detach_fork;
629 parent_inf->waiting_for_vfork_done = 0;
630 }
631 else if (detach_fork)
632 {
633 if (print_inferior_events)
634 {
635 /* Ensure that we have a process ptid. */
636 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
637
638 target_terminal::ours_for_output ();
639 fprintf_filtered (gdb_stdlog,
640 _("[Detaching after fork from "
641 "parent %s]\n"),
642 target_pid_to_str (process_ptid).c_str ());
643 }
8dd06f7a 644
5b6d1e4f
PA
645 target_detach (parent_inf, 0);
646 parent_inf = NULL;
647 }
6f259a23 648
5b6d1e4f 649 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 650
5b6d1e4f
PA
651 /* Add the child thread to the appropriate lists, and switch
652 to this new thread, before cloning the program space, and
653 informing the solib layer about this new process. */
d83ad864 654
5b6d1e4f
PA
655 set_current_inferior (child_inf);
656 push_target (target);
657 }
d83ad864 658
18493a00 659 thread_info *child_thr = add_thread_silent (target, child_ptid);
d83ad864
DB
660
661 /* If this is a vfork child, then the address-space is shared
662 with the parent. If we detached from the parent, then we can
663 reuse the parent's program/address spaces. */
664 if (has_vforked || detach_fork)
665 {
666 child_inf->pspace = parent_pspace;
667 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
668
669 exec_on_vfork ();
d83ad864
DB
670 }
671 else
672 {
673 child_inf->aspace = new_address_space ();
564b1e3f 674 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
675 child_inf->removable = 1;
676 child_inf->symfile_flags = SYMFILE_NO_READ;
677 set_current_program_space (child_inf->pspace);
678 clone_program_space (child_inf->pspace, parent_pspace);
679
680 /* Let the shared library layer (e.g., solib-svr4) learn
681 about this new process, relocate the cloned exec, pull in
682 shared libraries, and install the solib event breakpoint.
683 If a "cloned-VM" event was propagated better throughout
684 the core, this wouldn't be required. */
685 solib_create_inferior_hook (0);
686 }
18493a00
PA
687
688 switch_to_thread (child_thr);
d83ad864
DB
689 }
690
691 return target_follow_fork (follow_child, detach_fork);
692}
693
e58b0e63
PA
694/* Tell the target to follow the fork we're stopped at. Returns true
695 if the inferior should be resumed; false, if the target for some
696 reason decided it's best not to resume. */
697
5ab2fbf1
SM
698static bool
699follow_fork ()
c906108c 700{
5ab2fbf1
SM
701 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
702 bool should_resume = true;
e58b0e63
PA
703 struct thread_info *tp;
704
705 /* Copy user stepping state to the new inferior thread. FIXME: the
706 followed fork child thread should have a copy of most of the
4e3990f4
DE
707 parent thread structure's run control related fields, not just these.
708 Initialized to avoid "may be used uninitialized" warnings from gcc. */
709 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 710 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
711 CORE_ADDR step_range_start = 0;
712 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
713 int current_line = 0;
714 symtab *current_symtab = NULL;
4e3990f4 715 struct frame_id step_frame_id = { 0 };
8980e177 716 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
717
718 if (!non_stop)
719 {
5b6d1e4f 720 process_stratum_target *wait_target;
e58b0e63
PA
721 ptid_t wait_ptid;
722 struct target_waitstatus wait_status;
723
724 /* Get the last target status returned by target_wait(). */
5b6d1e4f 725 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
726
727 /* If not stopped at a fork event, then there's nothing else to
728 do. */
729 if (wait_status.kind != TARGET_WAITKIND_FORKED
730 && wait_status.kind != TARGET_WAITKIND_VFORKED)
731 return 1;
732
733 /* Check if we switched over from WAIT_PTID, since the event was
734 reported. */
00431a78 735 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
736 && (current_inferior ()->process_target () != wait_target
737 || inferior_ptid != wait_ptid))
e58b0e63
PA
738 {
739 /* We did. Switch back to WAIT_PTID thread, to tell the
740 target to follow it (in either direction). We'll
741 afterwards refuse to resume, and inform the user what
742 happened. */
5b6d1e4f 743 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 744 switch_to_thread (wait_thread);
5ab2fbf1 745 should_resume = false;
e58b0e63
PA
746 }
747 }
748
749 tp = inferior_thread ();
750
751 /* If there were any forks/vforks that were caught and are now to be
752 followed, then do so now. */
753 switch (tp->pending_follow.kind)
754 {
755 case TARGET_WAITKIND_FORKED:
756 case TARGET_WAITKIND_VFORKED:
757 {
758 ptid_t parent, child;
759
760 /* If the user did a next/step, etc, over a fork call,
761 preserve the stepping state in the fork child. */
762 if (follow_child && should_resume)
763 {
8358c15c
JK
764 step_resume_breakpoint = clone_momentary_breakpoint
765 (tp->control.step_resume_breakpoint);
16c381f0
JK
766 step_range_start = tp->control.step_range_start;
767 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
768 current_line = tp->current_line;
769 current_symtab = tp->current_symtab;
16c381f0 770 step_frame_id = tp->control.step_frame_id;
186c406b
TT
771 exception_resume_breakpoint
772 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 773 thread_fsm = tp->thread_fsm;
e58b0e63
PA
774
775 /* For now, delete the parent's sr breakpoint, otherwise,
776 parent/child sr breakpoints are considered duplicates,
777 and the child version will not be installed. Remove
778 this when the breakpoints module becomes aware of
779 inferiors and address spaces. */
780 delete_step_resume_breakpoint (tp);
16c381f0
JK
781 tp->control.step_range_start = 0;
782 tp->control.step_range_end = 0;
783 tp->control.step_frame_id = null_frame_id;
186c406b 784 delete_exception_resume_breakpoint (tp);
8980e177 785 tp->thread_fsm = NULL;
e58b0e63
PA
786 }
787
788 parent = inferior_ptid;
789 child = tp->pending_follow.value.related_pid;
790
5b6d1e4f 791 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
792 /* Set up inferior(s) as specified by the caller, and tell the
793 target to do whatever is necessary to follow either parent
794 or child. */
795 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
796 {
797 /* Target refused to follow, or there's some other reason
798 we shouldn't resume. */
799 should_resume = 0;
800 }
801 else
802 {
803 /* This pending follow fork event is now handled, one way
804 or another. The previous selected thread may be gone
805 from the lists by now, but if it is still around, need
806 to clear the pending follow request. */
5b6d1e4f 807 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
808 if (tp)
809 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
810
811 /* This makes sure we don't try to apply the "Switched
812 over from WAIT_PID" logic above. */
813 nullify_last_target_wait_ptid ();
814
1777feb0 815 /* If we followed the child, switch to it... */
e58b0e63
PA
816 if (follow_child)
817 {
5b6d1e4f 818 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 819 switch_to_thread (child_thr);
e58b0e63
PA
820
821 /* ... and preserve the stepping state, in case the
822 user was stepping over the fork call. */
823 if (should_resume)
824 {
825 tp = inferior_thread ();
8358c15c
JK
826 tp->control.step_resume_breakpoint
827 = step_resume_breakpoint;
16c381f0
JK
828 tp->control.step_range_start = step_range_start;
829 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
830 tp->current_line = current_line;
831 tp->current_symtab = current_symtab;
16c381f0 832 tp->control.step_frame_id = step_frame_id;
186c406b
TT
833 tp->control.exception_resume_breakpoint
834 = exception_resume_breakpoint;
8980e177 835 tp->thread_fsm = thread_fsm;
e58b0e63
PA
836 }
837 else
838 {
839 /* If we get here, it was because we're trying to
840 resume from a fork catchpoint, but, the user
841 has switched threads away from the thread that
842 forked. In that case, the resume command
843 issued is most likely not applicable to the
844 child, so just warn, and refuse to resume. */
3e43a32a 845 warning (_("Not resuming: switched threads "
fd7dcb94 846 "before following fork child."));
e58b0e63
PA
847 }
848
849 /* Reset breakpoints in the child as appropriate. */
850 follow_inferior_reset_breakpoints ();
851 }
e58b0e63
PA
852 }
853 }
854 break;
855 case TARGET_WAITKIND_SPURIOUS:
856 /* Nothing to follow. */
857 break;
858 default:
859 internal_error (__FILE__, __LINE__,
860 "Unexpected pending_follow.kind %d\n",
861 tp->pending_follow.kind);
862 break;
863 }
c906108c 864
e58b0e63 865 return should_resume;
c906108c
SS
866}
867
d83ad864 868static void
6604731b 869follow_inferior_reset_breakpoints (void)
c906108c 870{
4e1c45ea
PA
871 struct thread_info *tp = inferior_thread ();
872
6604731b
DJ
873 /* Was there a step_resume breakpoint? (There was if the user
874 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
875 thread number. Cloned step_resume breakpoints are disabled on
876 creation, so enable it here now that it is associated with the
877 correct thread.
6604731b
DJ
878
879 step_resumes are a form of bp that are made to be per-thread.
880 Since we created the step_resume bp when the parent process
881 was being debugged, and now are switching to the child process,
882 from the breakpoint package's viewpoint, that's a switch of
883 "threads". We must update the bp's notion of which thread
884 it is for, or it'll be ignored when it triggers. */
885
8358c15c 886 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
887 {
888 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
889 tp->control.step_resume_breakpoint->loc->enabled = 1;
890 }
6604731b 891
a1aa2221 892 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 893 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
894 {
895 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
896 tp->control.exception_resume_breakpoint->loc->enabled = 1;
897 }
186c406b 898
6604731b
DJ
899 /* Reinsert all breakpoints in the child. The user may have set
900 breakpoints after catching the fork, in which case those
901 were never set in the child, but only in the parent. This makes
902 sure the inserted breakpoints match the breakpoint list. */
903
904 breakpoint_re_set ();
905 insert_breakpoints ();
c906108c 906}
c906108c 907
6c95b8df
PA
908/* The child has exited or execed: resume threads of the parent the
909 user wanted to be executing. */
910
911static int
912proceed_after_vfork_done (struct thread_info *thread,
913 void *arg)
914{
915 int pid = * (int *) arg;
916
00431a78
PA
917 if (thread->ptid.pid () == pid
918 && thread->state == THREAD_RUNNING
919 && !thread->executing
6c95b8df 920 && !thread->stop_requested
a493e3e2 921 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df 922 {
edbcda09
SM
923 infrun_log_debug ("resuming vfork parent thread %s",
924 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 925
00431a78 926 switch_to_thread (thread);
70509625 927 clear_proceed_status (0);
64ce06e4 928 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
929 }
930
931 return 0;
932}
933
934/* Called whenever we notice an exec or exit event, to handle
935 detaching or resuming a vfork parent. */
936
937static void
938handle_vfork_child_exec_or_exit (int exec)
939{
940 struct inferior *inf = current_inferior ();
941
942 if (inf->vfork_parent)
943 {
944 int resume_parent = -1;
945
946 /* This exec or exit marks the end of the shared memory region
b73715df
TV
947 between the parent and the child. Break the bonds. */
948 inferior *vfork_parent = inf->vfork_parent;
949 inf->vfork_parent->vfork_child = NULL;
950 inf->vfork_parent = NULL;
6c95b8df 951
b73715df
TV
952 /* If the user wanted to detach from the parent, now is the
953 time. */
954 if (vfork_parent->pending_detach)
6c95b8df 955 {
6c95b8df
PA
956 struct program_space *pspace;
957 struct address_space *aspace;
958
1777feb0 959 /* follow-fork child, detach-on-fork on. */
6c95b8df 960
b73715df 961 vfork_parent->pending_detach = 0;
68c9da30 962
18493a00 963 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
964
965 /* We're letting loose of the parent. */
18493a00 966 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 967 switch_to_thread (tp);
6c95b8df
PA
968
969 /* We're about to detach from the parent, which implicitly
970 removes breakpoints from its address space. There's a
971 catch here: we want to reuse the spaces for the child,
972 but, parent/child are still sharing the pspace at this
973 point, although the exec in reality makes the kernel give
974 the child a fresh set of new pages. The problem here is
975 that the breakpoints module being unaware of this, would
976 likely chose the child process to write to the parent
977 address space. Swapping the child temporarily away from
978 the spaces has the desired effect. Yes, this is "sort
979 of" a hack. */
980
981 pspace = inf->pspace;
982 aspace = inf->aspace;
983 inf->aspace = NULL;
984 inf->pspace = NULL;
985
f67c0c91 986 if (print_inferior_events)
6c95b8df 987 {
a068643d 988 std::string pidstr
b73715df 989 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 990
223ffa71 991 target_terminal::ours_for_output ();
6c95b8df
PA
992
993 if (exec)
6f259a23
DB
994 {
995 fprintf_filtered (gdb_stdlog,
f67c0c91 996 _("[Detaching vfork parent %s "
a068643d 997 "after child exec]\n"), pidstr.c_str ());
6f259a23 998 }
6c95b8df 999 else
6f259a23
DB
1000 {
1001 fprintf_filtered (gdb_stdlog,
f67c0c91 1002 _("[Detaching vfork parent %s "
a068643d 1003 "after child exit]\n"), pidstr.c_str ());
6f259a23 1004 }
6c95b8df
PA
1005 }
1006
b73715df 1007 target_detach (vfork_parent, 0);
6c95b8df
PA
1008
1009 /* Put it back. */
1010 inf->pspace = pspace;
1011 inf->aspace = aspace;
6c95b8df
PA
1012 }
1013 else if (exec)
1014 {
1015 /* We're staying attached to the parent, so, really give the
1016 child a new address space. */
564b1e3f 1017 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1018 inf->aspace = inf->pspace->aspace;
1019 inf->removable = 1;
1020 set_current_program_space (inf->pspace);
1021
b73715df 1022 resume_parent = vfork_parent->pid;
6c95b8df
PA
1023 }
1024 else
1025 {
6c95b8df
PA
1026 /* If this is a vfork child exiting, then the pspace and
1027 aspaces were shared with the parent. Since we're
1028 reporting the process exit, we'll be mourning all that is
1029 found in the address space, and switching to null_ptid,
1030 preparing to start a new inferior. But, since we don't
1031 want to clobber the parent's address/program spaces, we
1032 go ahead and create a new one for this exiting
1033 inferior. */
1034
18493a00 1035 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1036 that clone_program_space doesn't want to read the
1037 selected frame of a dead process. */
18493a00
PA
1038 scoped_restore_current_thread restore_thread;
1039 switch_to_no_thread ();
6c95b8df 1040
53af73bf
PA
1041 inf->pspace = new program_space (maybe_new_address_space ());
1042 inf->aspace = inf->pspace->aspace;
1043 set_current_program_space (inf->pspace);
6c95b8df 1044 inf->removable = 1;
7dcd53a0 1045 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1046 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1047
b73715df 1048 resume_parent = vfork_parent->pid;
6c95b8df
PA
1049 }
1050
6c95b8df
PA
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
5ed8105e 1057 scoped_restore_current_thread restore_thread;
6c95b8df 1058
edbcda09
SM
1059 infrun_log_debug ("resuming vfork parent process %d",
1060 resume_parent);
6c95b8df
PA
1061
1062 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1063 }
1064 }
1065}
1066
eb6c553b 1067/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1068
1069static const char follow_exec_mode_new[] = "new";
1070static const char follow_exec_mode_same[] = "same";
40478521 1071static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1072{
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076};
1077
1078static const char *follow_exec_mode_string = follow_exec_mode_same;
1079static void
1080show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082{
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084}
1085
ecf45d2c 1086/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1087
c906108c 1088static void
4ca51187 1089follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1090{
6c95b8df 1091 struct inferior *inf = current_inferior ();
e99b03dc 1092 int pid = ptid.pid ();
94585166 1093 ptid_t process_ptid;
7a292a7a 1094
65d2b333
PW
1095 /* Switch terminal for any messages produced e.g. by
1096 breakpoint_re_set. */
1097 target_terminal::ours_for_output ();
1098
c906108c
SS
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
85102364 1117 value that was overwritten with a TRAP instruction). Since
1777feb0 1118 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1119
1120 mark_breakpoints_out ();
1121
95e50b27
PA
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
08036331 1141 for (thread_info *th : all_threads_safe ())
d7e15655 1142 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1143 delete_thread (th);
95e50b27
PA
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
08036331 1149 thread_info *th = inferior_thread ();
8358c15c 1150 th->control.step_resume_breakpoint = NULL;
186c406b 1151 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1152 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
c906108c 1155
95e50b27
PA
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
a75724bc
PA
1159 th->stop_requested = 0;
1160
95e50b27
PA
1161 update_breakpoints_after_exec ();
1162
1777feb0 1163 /* What is this a.out's name? */
f2907e49 1164 process_ptid = ptid_t (pid);
6c95b8df 1165 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1166 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1167 exec_file_target);
c906108c
SS
1168
1169 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1170 inferior has essentially been killed & reborn. */
7a292a7a 1171
6ca15a4b 1172 breakpoint_init_inferior (inf_execd);
e85a822c 1173
797bc1cb
TT
1174 gdb::unique_xmalloc_ptr<char> exec_file_host
1175 = exec_file_find (exec_file_target, NULL);
ff862be4 1176
ecf45d2c
SL
1177 /* If we were unable to map the executable target pathname onto a host
1178 pathname, tell the user that. Otherwise GDB's subsequent behavior
1179 is confusing. Maybe it would even be better to stop at this point
1180 so that the user can specify a file manually before continuing. */
1181 if (exec_file_host == NULL)
1182 warning (_("Could not load symbols for executable %s.\n"
1183 "Do you need \"set sysroot\"?"),
1184 exec_file_target);
c906108c 1185
cce9b6bf
PA
1186 /* Reset the shared library package. This ensures that we get a
1187 shlib event when the child reaches "_start", at which point the
1188 dld will have had a chance to initialize the child. */
1189 /* Also, loading a symbol file below may trigger symbol lookups, and
1190 we don't want those to be satisfied by the libraries of the
1191 previous incarnation of this process. */
1192 no_shared_libraries (NULL, 0);
1193
6c95b8df
PA
1194 if (follow_exec_mode_string == follow_exec_mode_new)
1195 {
6c95b8df
PA
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
35ed81d4
SM
1199 /* Do exit processing for the original inferior before setting the new
1200 inferior's pid. Having two inferiors with the same pid would confuse
1201 find_inferior_p(t)id. Transfer the terminal state and info from the
1202 old to the new inferior. */
1203 inf = add_inferior_with_spaces ();
1204 swap_terminal_info (inf, current_inferior ());
057302ce 1205 exit_inferior_silent (current_inferior ());
17d8546e 1206
94585166 1207 inf->pid = pid;
ecf45d2c 1208 target_follow_exec (inf, exec_file_target);
6c95b8df 1209
5b6d1e4f
PA
1210 inferior *org_inferior = current_inferior ();
1211 switch_to_inferior_no_thread (inf);
1212 push_target (org_inferior->process_target ());
1213 thread_info *thr = add_thread (inf->process_target (), ptid);
1214 switch_to_thread (thr);
6c95b8df 1215 }
9107fc8d
PA
1216 else
1217 {
1218 /* The old description may no longer be fit for the new image.
1219 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1220 old description; we'll read a new one below. No need to do
1221 this on "follow-exec-mode new", as the old inferior stays
1222 around (its description is later cleared/refetched on
1223 restart). */
1224 target_clear_description ();
1225 }
6c95b8df
PA
1226
1227 gdb_assert (current_program_space == inf->pspace);
1228
ecf45d2c
SL
1229 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1230 because the proper displacement for a PIE (Position Independent
1231 Executable) main symbol file will only be computed by
1232 solib_create_inferior_hook below. breakpoint_re_set would fail
1233 to insert the breakpoints with the zero displacement. */
797bc1cb 1234 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1235
9107fc8d
PA
1236 /* If the target can specify a description, read it. Must do this
1237 after flipping to the new executable (because the target supplied
1238 description must be compatible with the executable's
1239 architecture, and the old executable may e.g., be 32-bit, while
1240 the new one 64-bit), and before anything involving memory or
1241 registers. */
1242 target_find_description ();
1243
268a4a75 1244 solib_create_inferior_hook (0);
c906108c 1245
4efc6507
DE
1246 jit_inferior_created_hook ();
1247
c1e56572
JK
1248 breakpoint_re_set ();
1249
c906108c
SS
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1777feb0 1252 to symbol_file_command...). */
c906108c
SS
1253 insert_breakpoints ();
1254
1255 /* The next resume of this inferior should bring it to the shlib
1256 startup breakpoints. (If the user had also set bp's on
1257 "main" from the old (parent) process, then they'll auto-
1777feb0 1258 matically get reset there in the new process.). */
c906108c
SS
1259}
1260
c2829269
PA
1261/* The queue of threads that need to do a step-over operation to get
1262 past e.g., a breakpoint. What technique is used to step over the
1263 breakpoint/watchpoint does not matter -- all threads end up in the
1264 same queue, to maintain rough temporal order of execution, in order
1265 to avoid starvation, otherwise, we could e.g., find ourselves
1266 constantly stepping the same couple threads past their breakpoints
1267 over and over, if the single-step finish fast enough. */
7bd43605 1268struct thread_info *global_thread_step_over_chain_head;
c2829269 1269
6c4cfb24
PA
1270/* Bit flags indicating what the thread needs to step over. */
1271
8d297bbf 1272enum step_over_what_flag
6c4cfb24
PA
1273 {
1274 /* Step over a breakpoint. */
1275 STEP_OVER_BREAKPOINT = 1,
1276
1277 /* Step past a non-continuable watchpoint, in order to let the
1278 instruction execute so we can evaluate the watchpoint
1279 expression. */
1280 STEP_OVER_WATCHPOINT = 2
1281 };
8d297bbf 1282DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1283
963f9c80 1284/* Info about an instruction that is being stepped over. */
31e77af2
PA
1285
1286struct step_over_info
1287{
963f9c80
PA
1288 /* If we're stepping past a breakpoint, this is the address space
1289 and address of the instruction the breakpoint is set at. We'll
1290 skip inserting all breakpoints here. Valid iff ASPACE is
1291 non-NULL. */
8b86c959 1292 const address_space *aspace;
31e77af2 1293 CORE_ADDR address;
963f9c80
PA
1294
1295 /* The instruction being stepped over triggers a nonsteppable
1296 watchpoint. If true, we'll skip inserting watchpoints. */
1297 int nonsteppable_watchpoint_p;
21edc42f
YQ
1298
1299 /* The thread's global number. */
1300 int thread;
31e77af2
PA
1301};
1302
1303/* The step-over info of the location that is being stepped over.
1304
1305 Note that with async/breakpoint always-inserted mode, a user might
1306 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1307 being stepped over. As setting a new breakpoint inserts all
1308 breakpoints, we need to make sure the breakpoint being stepped over
1309 isn't inserted then. We do that by only clearing the step-over
1310 info when the step-over is actually finished (or aborted).
1311
1312 Presently GDB can only step over one breakpoint at any given time.
1313 Given threads that can't run code in the same address space as the
1314 breakpoint's can't really miss the breakpoint, GDB could be taught
1315 to step-over at most one breakpoint per address space (so this info
1316 could move to the address space object if/when GDB is extended).
1317 The set of breakpoints being stepped over will normally be much
1318 smaller than the set of all breakpoints, so a flag in the
1319 breakpoint location structure would be wasteful. A separate list
1320 also saves complexity and run-time, as otherwise we'd have to go
1321 through all breakpoint locations clearing their flag whenever we
1322 start a new sequence. Similar considerations weigh against storing
1323 this info in the thread object. Plus, not all step overs actually
1324 have breakpoint locations -- e.g., stepping past a single-step
1325 breakpoint, or stepping to complete a non-continuable
1326 watchpoint. */
1327static struct step_over_info step_over_info;
1328
1329/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1330 stepping over.
1331 N.B. We record the aspace and address now, instead of say just the thread,
1332 because when we need the info later the thread may be running. */
31e77af2
PA
1333
1334static void
8b86c959 1335set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1336 int nonsteppable_watchpoint_p,
1337 int thread)
31e77af2
PA
1338{
1339 step_over_info.aspace = aspace;
1340 step_over_info.address = address;
963f9c80 1341 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1342 step_over_info.thread = thread;
31e77af2
PA
1343}
1344
1345/* Called when we're not longer stepping over a breakpoint / an
1346 instruction, so all breakpoints are free to be (re)inserted. */
1347
1348static void
1349clear_step_over_info (void)
1350{
edbcda09 1351 infrun_log_debug ("clearing step over info");
31e77af2
PA
1352 step_over_info.aspace = NULL;
1353 step_over_info.address = 0;
963f9c80 1354 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1355 step_over_info.thread = -1;
31e77af2
PA
1356}
1357
7f89fd65 1358/* See infrun.h. */
31e77af2
PA
1359
1360int
1361stepping_past_instruction_at (struct address_space *aspace,
1362 CORE_ADDR address)
1363{
1364 return (step_over_info.aspace != NULL
1365 && breakpoint_address_match (aspace, address,
1366 step_over_info.aspace,
1367 step_over_info.address));
1368}
1369
963f9c80
PA
1370/* See infrun.h. */
1371
21edc42f
YQ
1372int
1373thread_is_stepping_over_breakpoint (int thread)
1374{
1375 return (step_over_info.thread != -1
1376 && thread == step_over_info.thread);
1377}
1378
1379/* See infrun.h. */
1380
963f9c80
PA
1381int
1382stepping_past_nonsteppable_watchpoint (void)
1383{
1384 return step_over_info.nonsteppable_watchpoint_p;
1385}
1386
6cc83d2a
PA
1387/* Returns true if step-over info is valid. */
1388
1389static int
1390step_over_info_valid_p (void)
1391{
963f9c80
PA
1392 return (step_over_info.aspace != NULL
1393 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1394}
1395
c906108c 1396\f
237fc4c9
PA
1397/* Displaced stepping. */
1398
1399/* In non-stop debugging mode, we must take special care to manage
1400 breakpoints properly; in particular, the traditional strategy for
1401 stepping a thread past a breakpoint it has hit is unsuitable.
1402 'Displaced stepping' is a tactic for stepping one thread past a
1403 breakpoint it has hit while ensuring that other threads running
1404 concurrently will hit the breakpoint as they should.
1405
1406 The traditional way to step a thread T off a breakpoint in a
1407 multi-threaded program in all-stop mode is as follows:
1408
1409 a0) Initially, all threads are stopped, and breakpoints are not
1410 inserted.
1411 a1) We single-step T, leaving breakpoints uninserted.
1412 a2) We insert breakpoints, and resume all threads.
1413
1414 In non-stop debugging, however, this strategy is unsuitable: we
1415 don't want to have to stop all threads in the system in order to
1416 continue or step T past a breakpoint. Instead, we use displaced
1417 stepping:
1418
1419 n0) Initially, T is stopped, other threads are running, and
1420 breakpoints are inserted.
1421 n1) We copy the instruction "under" the breakpoint to a separate
1422 location, outside the main code stream, making any adjustments
1423 to the instruction, register, and memory state as directed by
1424 T's architecture.
1425 n2) We single-step T over the instruction at its new location.
1426 n3) We adjust the resulting register and memory state as directed
1427 by T's architecture. This includes resetting T's PC to point
1428 back into the main instruction stream.
1429 n4) We resume T.
1430
1431 This approach depends on the following gdbarch methods:
1432
1433 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1434 indicate where to copy the instruction, and how much space must
1435 be reserved there. We use these in step n1.
1436
1437 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1438 address, and makes any necessary adjustments to the instruction,
1439 register contents, and memory. We use this in step n1.
1440
1441 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1442 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1443 same effect the instruction would have had if we had executed it
1444 at its original address. We use this in step n3.
1445
237fc4c9
PA
1446 The gdbarch_displaced_step_copy_insn and
1447 gdbarch_displaced_step_fixup functions must be written so that
1448 copying an instruction with gdbarch_displaced_step_copy_insn,
1449 single-stepping across the copied instruction, and then applying
1450 gdbarch_displaced_insn_fixup should have the same effects on the
1451 thread's memory and registers as stepping the instruction in place
1452 would have. Exactly which responsibilities fall to the copy and
1453 which fall to the fixup is up to the author of those functions.
1454
1455 See the comments in gdbarch.sh for details.
1456
1457 Note that displaced stepping and software single-step cannot
1458 currently be used in combination, although with some care I think
1459 they could be made to. Software single-step works by placing
1460 breakpoints on all possible subsequent instructions; if the
1461 displaced instruction is a PC-relative jump, those breakpoints
1462 could fall in very strange places --- on pages that aren't
1463 executable, or at addresses that are not proper instruction
1464 boundaries. (We do generally let other threads run while we wait
1465 to hit the software single-step breakpoint, and they might
1466 encounter such a corrupted instruction.) One way to work around
1467 this would be to have gdbarch_displaced_step_copy_insn fully
1468 simulate the effect of PC-relative instructions (and return NULL)
1469 on architectures that use software single-stepping.
1470
1471 In non-stop mode, we can have independent and simultaneous step
1472 requests, so more than one thread may need to simultaneously step
1473 over a breakpoint. The current implementation assumes there is
1474 only one scratch space per process. In this case, we have to
1475 serialize access to the scratch space. If thread A wants to step
1476 over a breakpoint, but we are currently waiting for some other
1477 thread to complete a displaced step, we leave thread A stopped and
1478 place it in the displaced_step_request_queue. Whenever a displaced
1479 step finishes, we pick the next thread in the queue and start a new
1480 displaced step operation on it. See displaced_step_prepare and
1481 displaced_step_fixup for details. */
1482
9844051a 1483/* Get the displaced stepping state of inferior INF. */
fc1cf338 1484
39a36629 1485static displaced_step_inferior_state *
00431a78 1486get_displaced_stepping_state (inferior *inf)
fc1cf338 1487{
d20172fc 1488 return &inf->displaced_step_state;
fc1cf338
PA
1489}
1490
9844051a 1491/* Get the displaced stepping state of thread THREAD. */
372316f1 1492
9844051a
SM
1493static displaced_step_thread_state *
1494get_displaced_stepping_state (thread_info *thread)
372316f1 1495{
9844051a 1496 return &thread->displaced_step_state;
372316f1
PA
1497}
1498
9844051a 1499/* Return true if the given thread is doing a displaced step. */
c0987663 1500
9844051a
SM
1501static bool
1502displaced_step_in_progress (thread_info *thread)
c0987663 1503{
00431a78 1504 gdb_assert (thread != NULL);
c0987663 1505
9844051a 1506 return get_displaced_stepping_state (thread)->in_progress ();
c0987663
YQ
1507}
1508
9844051a 1509/* Return true if any thread of this inferior is doing a displaced step. */
8f572e5c 1510
9844051a 1511static bool
00431a78 1512displaced_step_in_progress (inferior *inf)
8f572e5c 1513{
9844051a
SM
1514 for (thread_info *thread : inf->non_exited_threads ())
1515 {
1516 if (displaced_step_in_progress (thread))
1517 return true;
1518 }
1519
1520 return false;
1521}
1522
1523/* Return true if any thread is doing a displaced step. */
1524
1525static bool
1526displaced_step_in_progress_any_thread ()
1527{
1528 for (thread_info *thread : all_non_exited_threads ())
1529 {
1530 if (displaced_step_in_progress (thread))
1531 return true;
1532 }
1533
1534 return false;
fc1cf338
PA
1535}
1536
a42244db 1537/* If inferior is in displaced stepping, and ADDR equals to starting address
7ccba087 1538 of copy area, return corresponding displaced_step_copy_insn_closure. Otherwise,
a42244db
YQ
1539 return NULL. */
1540
7ccba087
SM
1541struct displaced_step_copy_insn_closure *
1542get_displaced_step_copy_insn_closure_by_addr (CORE_ADDR addr)
a42244db 1543{
9844051a
SM
1544// FIXME: implement me (only needed on ARM).
1545// displaced_step_inferior_state *displaced
1546// = get_displaced_stepping_state (current_inferior ());
1547//
1548// /* If checking the mode of displaced instruction in copy area. */
1549// if (displaced->step_thread != nullptr
1550// && displaced->step_copy == addr)
1551// return displaced->step_closure.get ();
1552//
a42244db
YQ
1553 return NULL;
1554}
1555
fc1cf338
PA
1556static void
1557infrun_inferior_exit (struct inferior *inf)
1558{
d20172fc 1559 inf->displaced_step_state.reset ();
fc1cf338 1560}
237fc4c9 1561
fff08868
HZ
1562/* If ON, and the architecture supports it, GDB will use displaced
1563 stepping to step over breakpoints. If OFF, or if the architecture
1564 doesn't support it, GDB will instead use the traditional
1565 hold-and-step approach. If AUTO (which is the default), GDB will
1566 decide which technique to use to step over breakpoints depending on
9822cb57 1567 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1568
72d0e2c5 1569static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1570
237fc4c9
PA
1571static void
1572show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1573 struct cmd_list_element *c,
1574 const char *value)
1575{
72d0e2c5 1576 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1577 fprintf_filtered (file,
1578 _("Debugger's willingness to use displaced stepping "
1579 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1580 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1581 else
3e43a32a
MS
1582 fprintf_filtered (file,
1583 _("Debugger's willingness to use displaced stepping "
1584 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1585}
1586
9822cb57
SM
1587/* Return true if the gdbarch implements the required methods to use
1588 displaced stepping. */
1589
1590static bool
1591gdbarch_supports_displaced_stepping (gdbarch *arch)
1592{
9844051a
SM
1593 /* Only check for the presence of copy_insn. Other required methods
1594 are checked by the gdbarch validation to be provided if copy_insn is
1595 provided. */
9822cb57
SM
1596 return gdbarch_displaced_step_copy_insn_p (arch);
1597}
1598
fff08868 1599/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1600 over breakpoints of thread TP. */
fff08868 1601
9822cb57
SM
1602static bool
1603use_displaced_stepping (thread_info *tp)
237fc4c9 1604{
9822cb57
SM
1605 /* If the user disabled it explicitly, don't use displaced stepping. */
1606 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1607 return false;
1608
1609 /* If "auto", only use displaced stepping if the target operates in a non-stop
1610 way. */
1611 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1612 && !target_is_non_stop_p ())
1613 return false;
1614
1615 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1616
1617 /* If the architecture doesn't implement displaced stepping, don't use
1618 it. */
1619 if (!gdbarch_supports_displaced_stepping (gdbarch))
1620 return false;
1621
1622 /* If recording, don't use displaced stepping. */
1623 if (find_record_target () != nullptr)
1624 return false;
1625
d20172fc
SM
1626 displaced_step_inferior_state *displaced_state
1627 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1628
9822cb57
SM
1629 /* If displaced stepping failed before for this inferior, don't bother trying
1630 again. */
1631 if (displaced_state->failed_before)
1632 return false;
1633
1634 return true;
237fc4c9
PA
1635}
1636
9844051a 1637/* Simple function wrapper around displaced_step_thread_state::reset. */
d8d83535 1638
237fc4c9 1639static void
9844051a 1640displaced_step_reset (displaced_step_thread_state *displaced)
237fc4c9 1641{
d8d83535 1642 displaced->reset ();
237fc4c9
PA
1643}
1644
d8d83535
SM
1645/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1646 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1647
1648using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1649
1650/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1651void
1652displaced_step_dump_bytes (struct ui_file *file,
1653 const gdb_byte *buf,
1654 size_t len)
1655{
1656 int i;
1657
1658 for (i = 0; i < len; i++)
1659 fprintf_unfiltered (file, "%02x ", buf[i]);
1660 fputs_unfiltered ("\n", file);
1661}
1662
1663/* Prepare to single-step, using displaced stepping.
1664
1665 Note that we cannot use displaced stepping when we have a signal to
1666 deliver. If we have a signal to deliver and an instruction to step
1667 over, then after the step, there will be no indication from the
1668 target whether the thread entered a signal handler or ignored the
1669 signal and stepped over the instruction successfully --- both cases
1670 result in a simple SIGTRAP. In the first case we mustn't do a
1671 fixup, and in the second case we must --- but we can't tell which.
1672 Comments in the code for 'random signals' in handle_inferior_event
1673 explain how we handle this case instead.
1674
1675 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1676 stepped now; 0 if displaced stepping this thread got queued; or -1
1677 if this instruction can't be displaced stepped. */
1678
9844051a 1679static displaced_step_prepare_status
00431a78 1680displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1681{
00431a78 1682 regcache *regcache = get_thread_regcache (tp);
ac7936df 1683 struct gdbarch *gdbarch = regcache->arch ();
9844051a
SM
1684 displaced_step_thread_state *thread_disp_step_state
1685 = get_displaced_stepping_state (tp);
237fc4c9
PA
1686
1687 /* We should never reach this function if the architecture does not
1688 support displaced stepping. */
9822cb57 1689 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1690
c2829269
PA
1691 /* Nor if the thread isn't meant to step over a breakpoint. */
1692 gdb_assert (tp->control.trap_expected);
1693
c1e36e3e
PA
1694 /* Disable range stepping while executing in the scratch pad. We
1695 want a single-step even if executing the displaced instruction in
1696 the scratch buffer lands within the stepping range (e.g., a
1697 jump/branch). */
1698 tp->control.may_range_step = 0;
1699
9844051a
SM
1700 /* We are about to start a displaced step for this thread, if one is already
1701 in progress, we goofed up somewhere. */
1702 gdb_assert (!thread_disp_step_state->in_progress ());
237fc4c9 1703
9844051a 1704 scoped_restore_current_thread restore_thread;
fc1cf338 1705
9844051a
SM
1706 switch_to_thread (tp);
1707
1708 CORE_ADDR original_pc = regcache_read_pc (regcache);
1709
1710 displaced_step_prepare_status status =
1711 gdbarch_displaced_step_prepare (gdbarch, tp);
237fc4c9 1712
9844051a
SM
1713 if (status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
1714 {
237fc4c9
PA
1715 if (debug_displaced)
1716 fprintf_unfiltered (gdb_stdlog,
9844051a 1717 "displaced: failed to prepare (%s)",
a068643d 1718 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1719
9844051a 1720 return DISPLACED_STEP_PREPARE_STATUS_ERROR;
237fc4c9 1721 }
9844051a 1722 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
237fc4c9 1723 {
9844051a
SM
1724 /* Not enough displaced stepping resources available, defer this
1725 request by placing it the queue. */
1726
237fc4c9
PA
1727 if (debug_displaced)
1728 fprintf_unfiltered (gdb_stdlog,
9844051a
SM
1729 "displaced: not enough resources available, "
1730 "deferring step of %s\n",
a068643d 1731 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1732
9844051a 1733 global_thread_step_over_chain_enqueue (tp);
d35ae833 1734
9844051a 1735 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
d35ae833
PA
1736 }
1737
9844051a
SM
1738 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1739
1740// FIXME: Should probably replicated in the arch implementation now.
1741//
1742// if (breakpoint_in_range_p (aspace, copy, len))
1743// {
1744// /* There's a breakpoint set in the scratch pad location range
1745// (which is usually around the entry point). We'd either
1746// install it before resuming, which would overwrite/corrupt the
1747// scratch pad, or if it was already inserted, this displaced
1748// step would overwrite it. The latter is OK in the sense that
1749// we already assume that no thread is going to execute the code
1750// in the scratch pad range (after initial startup) anyway, but
1751// the former is unacceptable. Simply punt and fallback to
1752// stepping over this breakpoint in-line. */
1753// if (debug_displaced)
1754// {
1755// fprintf_unfiltered (gdb_stdlog,
1756// "displaced: breakpoint set in scratch pad. "
1757// "Stepping over breakpoint in-line instead.\n");
1758// }
1759//
1760// gdb_assert (false);
1761// gdbarch_displaced_step_release_location (gdbarch, copy);
1762//
1763// return -1;
1764// }
237fc4c9 1765
9f5a595d
UW
1766 /* Save the information we need to fix things up if the step
1767 succeeds. */
9844051a 1768 thread_disp_step_state->set (gdbarch);
9f5a595d 1769
9844051a
SM
1770 // FIXME: get it from _prepare?
1771 CORE_ADDR displaced_pc = 0;
ad53cd71 1772
237fc4c9 1773 if (debug_displaced)
9844051a
SM
1774 fprintf_unfiltered (gdb_stdlog,
1775 "displaced: prepared successfully thread=%s, "
1776 "original_pc=%s, displaced_pc=%s\n",
1777 target_pid_to_str (tp->ptid).c_str (),
1778 paddress (gdbarch, original_pc),
1779 paddress (gdbarch, displaced_pc));
1780
1781 return DISPLACED_STEP_PREPARE_STATUS_OK;
237fc4c9
PA
1782}
1783
3fc8eb30
PA
1784/* Wrapper for displaced_step_prepare_throw that disabled further
1785 attempts at displaced stepping if we get a memory error. */
1786
9844051a 1787static displaced_step_prepare_status
00431a78 1788displaced_step_prepare (thread_info *thread)
3fc8eb30 1789{
9844051a
SM
1790 displaced_step_prepare_status status
1791 = DISPLACED_STEP_PREPARE_STATUS_ERROR;
3fc8eb30 1792
a70b8144 1793 try
3fc8eb30 1794 {
9844051a 1795 status = displaced_step_prepare_throw (thread);
3fc8eb30 1796 }
230d2906 1797 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1798 {
1799 struct displaced_step_inferior_state *displaced_state;
1800
16b41842
PA
1801 if (ex.error != MEMORY_ERROR
1802 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1803 throw;
3fc8eb30 1804
edbcda09
SM
1805 infrun_log_debug ("caught exception, disabling displaced stepping: %s",
1806 ex.what ());
3fc8eb30
PA
1807
1808 /* Be verbose if "set displaced-stepping" is "on", silent if
1809 "auto". */
1810 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1811 {
fd7dcb94 1812 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1813 ex.what ());
3fc8eb30
PA
1814 }
1815
1816 /* Disable further displaced stepping attempts. */
1817 displaced_state
00431a78 1818 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1819 displaced_state->failed_before = 1;
1820 }
3fc8eb30 1821
9844051a 1822 return status;
e2d96639
YQ
1823}
1824
372316f1
PA
1825/* If we displaced stepped an instruction successfully, adjust
1826 registers and memory to yield the same effect the instruction would
1827 have had if we had executed it at its original address, and return
1828 1. If the instruction didn't complete, relocate the PC and return
1829 -1. If the thread wasn't displaced stepping, return 0. */
1830
1831static int
9844051a 1832displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1833{
9844051a
SM
1834 displaced_step_thread_state *displaced
1835 = get_displaced_stepping_state (event_thread);
fc1cf338 1836
9844051a
SM
1837 /* Was this thread performing a displaced step? */
1838 if (!displaced->in_progress ())
372316f1 1839 return 0;
237fc4c9 1840
9844051a
SM
1841 displaced_step_reset_cleanup cleanup (displaced);
1842
cb71640d
PA
1843 /* Fixup may need to read memory/registers. Switch to the thread
1844 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d
TBA
1845 the current thread, and displaced_step_restore performs ptid-dependent
1846 memory accesses using current_inferior() and current_top_target(). */
00431a78 1847 switch_to_thread (event_thread);
cb71640d 1848
9844051a
SM
1849 /* Do the fixup, and release the resources acquired to do the displaced
1850 step. */
1851 displaced_step_finish_status finish_status =
1852 gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1853 event_thread, signal);
d43b7a2d 1854
9844051a
SM
1855 if (finish_status == DISPLACED_STEP_FINISH_STATUS_OK)
1856 return 1;
237fc4c9 1857 else
9844051a 1858 return -1;
c2829269 1859}
1c5cfe86 1860
4d9d9d04
PA
1861/* Data to be passed around while handling an event. This data is
1862 discarded between events. */
1863struct execution_control_state
1864{
5b6d1e4f 1865 process_stratum_target *target;
4d9d9d04
PA
1866 ptid_t ptid;
1867 /* The thread that got the event, if this was a thread event; NULL
1868 otherwise. */
1869 struct thread_info *event_thread;
1870
1871 struct target_waitstatus ws;
1872 int stop_func_filled_in;
1873 CORE_ADDR stop_func_start;
1874 CORE_ADDR stop_func_end;
1875 const char *stop_func_name;
1876 int wait_some_more;
1877
1878 /* True if the event thread hit the single-step breakpoint of
1879 another thread. Thus the event doesn't cause a stop, the thread
1880 needs to be single-stepped past the single-step breakpoint before
1881 we can switch back to the original stepping thread. */
1882 int hit_singlestep_breakpoint;
1883};
1884
1885/* Clear ECS and set it to point at TP. */
c2829269
PA
1886
1887static void
4d9d9d04
PA
1888reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1889{
1890 memset (ecs, 0, sizeof (*ecs));
1891 ecs->event_thread = tp;
1892 ecs->ptid = tp->ptid;
1893}
1894
1895static void keep_going_pass_signal (struct execution_control_state *ecs);
1896static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1897static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1898static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1899
1900/* Are there any pending step-over requests? If so, run all we can
1901 now and return true. Otherwise, return false. */
1902
1903static int
c2829269
PA
1904start_step_over (void)
1905{
1906 struct thread_info *tp, *next;
9844051a 1907 int started = 0;
c2829269 1908
372316f1
PA
1909 /* Don't start a new step-over if we already have an in-line
1910 step-over operation ongoing. */
1911 if (step_over_info_valid_p ())
9844051a
SM
1912 return started;
1913
1914 /* Steal the global thread step over chain. */
1915 thread_info *threads_to_step = global_thread_step_over_chain_head;
1916 global_thread_step_over_chain_head = NULL;
1917
1918 if (debug_infrun)
1919 fprintf_unfiltered (gdb_stdlog,
1920 "infrun: stealing list of %d threads to step from global queue\n",
1921 thread_step_over_chain_length (threads_to_step));
372316f1 1922
9844051a 1923 for (tp = threads_to_step; tp != NULL; tp = next)
237fc4c9 1924 {
4d9d9d04
PA
1925 struct execution_control_state ecss;
1926 struct execution_control_state *ecs = &ecss;
8d297bbf 1927 step_over_what step_what;
372316f1 1928 int must_be_in_line;
c2829269 1929
c65d6b55
PA
1930 gdb_assert (!tp->stop_requested);
1931
9844051a 1932 next = thread_step_over_chain_next (threads_to_step, tp);
c2829269 1933
372316f1
PA
1934 step_what = thread_still_needs_step_over (tp);
1935 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1936 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1937 && !use_displaced_stepping (tp)));
372316f1
PA
1938
1939 /* We currently stop all threads of all processes to step-over
1940 in-line. If we need to start a new in-line step-over, let
1941 any pending displaced steps finish first. */
9844051a
SM
1942 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1943 continue;
c2829269 1944
9844051a 1945 thread_step_over_chain_remove (&threads_to_step, tp);
c2829269 1946
372316f1
PA
1947 if (tp->control.trap_expected
1948 || tp->resumed
1949 || tp->executing)
ad53cd71 1950 {
4d9d9d04
PA
1951 internal_error (__FILE__, __LINE__,
1952 "[%s] has inconsistent state: "
372316f1 1953 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1954 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1955 tp->control.trap_expected,
372316f1 1956 tp->resumed,
4d9d9d04 1957 tp->executing);
ad53cd71 1958 }
1c5cfe86 1959
edbcda09
SM
1960 infrun_log_debug ("resuming [%s] for step-over",
1961 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1962
1963 /* keep_going_pass_signal skips the step-over if the breakpoint
1964 is no longer inserted. In all-stop, we want to keep looking
1965 for a thread that needs a step-over instead of resuming TP,
1966 because we wouldn't be able to resume anything else until the
1967 target stops again. In non-stop, the resume always resumes
1968 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1969 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1970 continue;
8550d3b3 1971
00431a78 1972 switch_to_thread (tp);
4d9d9d04
PA
1973 reset_ecs (ecs, tp);
1974 keep_going_pass_signal (ecs);
1c5cfe86 1975
4d9d9d04
PA
1976 if (!ecs->wait_some_more)
1977 error (_("Command aborted."));
1c5cfe86 1978
9844051a
SM
1979 /* If the thread's step over could not be initiated, it was re-added
1980 to the global step over chain. */
1981 if (tp->resumed)
1982 {
1983 infrun_log_debug ("start_step_over: [%s] was resumed.\n",
1984 target_pid_to_str (tp->ptid).c_str ());
1985 gdb_assert (!thread_is_in_step_over_chain (tp));
1986 }
1987 else
1988 {
1989 infrun_log_debug ("infrun: start_step_over: [%s] was NOT resumed.\n",
1990 target_pid_to_str (tp->ptid).c_str ());
1991 gdb_assert (thread_is_in_step_over_chain (tp));
1992
1993 }
372316f1
PA
1994
1995 /* If we started a new in-line step-over, we're done. */
1996 if (step_over_info_valid_p ())
1997 {
1998 gdb_assert (tp->control.trap_expected);
9844051a
SM
1999 started = 1;
2000 break;
372316f1
PA
2001 }
2002
fbea99ea 2003 if (!target_is_non_stop_p ())
4d9d9d04
PA
2004 {
2005 /* On all-stop, shouldn't have resumed unless we needed a
2006 step over. */
2007 gdb_assert (tp->control.trap_expected
2008 || tp->step_after_step_resume_breakpoint);
2009
2010 /* With remote targets (at least), in all-stop, we can't
2011 issue any further remote commands until the program stops
2012 again. */
9844051a
SM
2013 started = 1;
2014 break;
1c5cfe86 2015 }
c2829269 2016
4d9d9d04
PA
2017 /* Either the thread no longer needed a step-over, or a new
2018 displaced stepping sequence started. Even in the latter
2019 case, continue looking. Maybe we can also start another
2020 displaced step on a thread of other process. */
237fc4c9 2021 }
4d9d9d04 2022
9844051a
SM
2023 /* If there are threads left in the THREADS_TO_STEP list, but we have
2024 detected that we can't start anything more, put back these threads
2025 in the global list. */
2026 if (threads_to_step == NULL)
2027 {
2028 if (debug_infrun)
2029 fprintf_unfiltered (gdb_stdlog,
2030 "infrun: step-over queue now empty\n");
2031 }
2032 else
2033 {
2034 if (debug_infrun)
2035 fprintf_unfiltered (gdb_stdlog,
2036 "infrun: putting back %d threads to step in global queue\n",
2037 thread_step_over_chain_length (threads_to_step));
2038 while (threads_to_step != nullptr)
2039 {
2040 thread_info *thread = threads_to_step;
2041
2042 /* Remove from that list. */
2043 thread_step_over_chain_remove (&threads_to_step, thread);
2044
2045 /* Add to global list. */
2046 global_thread_step_over_chain_enqueue (thread);
2047
2048 }
2049 }
2050
2051 return started;
237fc4c9
PA
2052}
2053
5231c1fd
PA
2054/* Update global variables holding ptids to hold NEW_PTID if they were
2055 holding OLD_PTID. */
2056static void
2057infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2058{
d7e15655 2059 if (inferior_ptid == old_ptid)
5231c1fd 2060 inferior_ptid = new_ptid;
5231c1fd
PA
2061}
2062
237fc4c9 2063\f
c906108c 2064
53904c9e
AC
2065static const char schedlock_off[] = "off";
2066static const char schedlock_on[] = "on";
2067static const char schedlock_step[] = "step";
f2665db5 2068static const char schedlock_replay[] = "replay";
40478521 2069static const char *const scheduler_enums[] = {
ef346e04
AC
2070 schedlock_off,
2071 schedlock_on,
2072 schedlock_step,
f2665db5 2073 schedlock_replay,
ef346e04
AC
2074 NULL
2075};
f2665db5 2076static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2077static void
2078show_scheduler_mode (struct ui_file *file, int from_tty,
2079 struct cmd_list_element *c, const char *value)
2080{
3e43a32a
MS
2081 fprintf_filtered (file,
2082 _("Mode for locking scheduler "
2083 "during execution is \"%s\".\n"),
920d2a44
AC
2084 value);
2085}
c906108c
SS
2086
2087static void
eb4c3f4a 2088set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2089{
eefe576e
AC
2090 if (!target_can_lock_scheduler)
2091 {
2092 scheduler_mode = schedlock_off;
2093 error (_("Target '%s' cannot support this command."), target_shortname);
2094 }
c906108c
SS
2095}
2096
d4db2f36
PA
2097/* True if execution commands resume all threads of all processes by
2098 default; otherwise, resume only threads of the current inferior
2099 process. */
491144b5 2100bool sched_multi = false;
d4db2f36 2101
2facfe5c
DD
2102/* Try to setup for software single stepping over the specified location.
2103 Return 1 if target_resume() should use hardware single step.
2104
2105 GDBARCH the current gdbarch.
2106 PC the location to step over. */
2107
2108static int
2109maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2110{
2111 int hw_step = 1;
2112
f02253f1 2113 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2114 && gdbarch_software_single_step_p (gdbarch))
2115 hw_step = !insert_single_step_breakpoints (gdbarch);
2116
2facfe5c
DD
2117 return hw_step;
2118}
c906108c 2119
f3263aa4
PA
2120/* See infrun.h. */
2121
09cee04b
PA
2122ptid_t
2123user_visible_resume_ptid (int step)
2124{
f3263aa4 2125 ptid_t resume_ptid;
09cee04b 2126
09cee04b
PA
2127 if (non_stop)
2128 {
2129 /* With non-stop mode on, threads are always handled
2130 individually. */
2131 resume_ptid = inferior_ptid;
2132 }
2133 else if ((scheduler_mode == schedlock_on)
03d46957 2134 || (scheduler_mode == schedlock_step && step))
09cee04b 2135 {
f3263aa4
PA
2136 /* User-settable 'scheduler' mode requires solo thread
2137 resume. */
09cee04b
PA
2138 resume_ptid = inferior_ptid;
2139 }
f2665db5
MM
2140 else if ((scheduler_mode == schedlock_replay)
2141 && target_record_will_replay (minus_one_ptid, execution_direction))
2142 {
2143 /* User-settable 'scheduler' mode requires solo thread resume in replay
2144 mode. */
2145 resume_ptid = inferior_ptid;
2146 }
f3263aa4
PA
2147 else if (!sched_multi && target_supports_multi_process ())
2148 {
2149 /* Resume all threads of the current process (and none of other
2150 processes). */
e99b03dc 2151 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2152 }
2153 else
2154 {
2155 /* Resume all threads of all processes. */
2156 resume_ptid = RESUME_ALL;
2157 }
09cee04b
PA
2158
2159 return resume_ptid;
2160}
2161
5b6d1e4f
PA
2162/* See infrun.h. */
2163
2164process_stratum_target *
2165user_visible_resume_target (ptid_t resume_ptid)
2166{
2167 return (resume_ptid == minus_one_ptid && sched_multi
2168 ? NULL
2169 : current_inferior ()->process_target ());
2170}
2171
fbea99ea
PA
2172/* Return a ptid representing the set of threads that we will resume,
2173 in the perspective of the target, assuming run control handling
2174 does not require leaving some threads stopped (e.g., stepping past
2175 breakpoint). USER_STEP indicates whether we're about to start the
2176 target for a stepping command. */
2177
2178static ptid_t
2179internal_resume_ptid (int user_step)
2180{
2181 /* In non-stop, we always control threads individually. Note that
2182 the target may always work in non-stop mode even with "set
2183 non-stop off", in which case user_visible_resume_ptid could
2184 return a wildcard ptid. */
2185 if (target_is_non_stop_p ())
2186 return inferior_ptid;
2187 else
2188 return user_visible_resume_ptid (user_step);
2189}
2190
64ce06e4
PA
2191/* Wrapper for target_resume, that handles infrun-specific
2192 bookkeeping. */
2193
2194static void
2195do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2196{
2197 struct thread_info *tp = inferior_thread ();
2198
c65d6b55
PA
2199 gdb_assert (!tp->stop_requested);
2200
64ce06e4 2201 /* Install inferior's terminal modes. */
223ffa71 2202 target_terminal::inferior ();
64ce06e4
PA
2203
2204 /* Avoid confusing the next resume, if the next stop/resume
2205 happens to apply to another thread. */
2206 tp->suspend.stop_signal = GDB_SIGNAL_0;
2207
8f572e5c
PA
2208 /* Advise target which signals may be handled silently.
2209
2210 If we have removed breakpoints because we are stepping over one
2211 in-line (in any thread), we need to receive all signals to avoid
2212 accidentally skipping a breakpoint during execution of a signal
2213 handler.
2214
2215 Likewise if we're displaced stepping, otherwise a trap for a
2216 breakpoint in a signal handler might be confused with the
2217 displaced step finishing. We don't make the displaced_step_fixup
2218 step distinguish the cases instead, because:
2219
2220 - a backtrace while stopped in the signal handler would show the
2221 scratch pad as frame older than the signal handler, instead of
2222 the real mainline code.
2223
2224 - when the thread is later resumed, the signal handler would
2225 return to the scratch pad area, which would no longer be
2226 valid. */
2227 if (step_over_info_valid_p ()
00431a78 2228 || displaced_step_in_progress (tp->inf))
adc6a863 2229 target_pass_signals ({});
64ce06e4 2230 else
adc6a863 2231 target_pass_signals (signal_pass);
64ce06e4
PA
2232
2233 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2234
2235 target_commit_resume ();
5b6d1e4f
PA
2236
2237 if (target_can_async_p ())
2238 target_async (1);
64ce06e4
PA
2239}
2240
d930703d 2241/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2242 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2243 call 'resume', which handles exceptions. */
c906108c 2244
71d378ae
PA
2245static void
2246resume_1 (enum gdb_signal sig)
c906108c 2247{
515630c5 2248 struct regcache *regcache = get_current_regcache ();
ac7936df 2249 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2250 struct thread_info *tp = inferior_thread ();
8b86c959 2251 const address_space *aspace = regcache->aspace ();
b0f16a3e 2252 ptid_t resume_ptid;
856e7dd6
PA
2253 /* This represents the user's step vs continue request. When
2254 deciding whether "set scheduler-locking step" applies, it's the
2255 user's intention that counts. */
2256 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2257 /* This represents what we'll actually request the target to do.
2258 This can decay from a step to a continue, if e.g., we need to
2259 implement single-stepping with breakpoints (software
2260 single-step). */
6b403daa 2261 int step;
c7e8a53c 2262
c65d6b55 2263 gdb_assert (!tp->stop_requested);
c2829269
PA
2264 gdb_assert (!thread_is_in_step_over_chain (tp));
2265
372316f1
PA
2266 if (tp->suspend.waitstatus_pending_p)
2267 {
edbcda09
SM
2268 infrun_log_debug
2269 ("thread %s has pending wait "
2270 "status %s (currently_stepping=%d).",
2271 target_pid_to_str (tp->ptid).c_str (),
2272 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2273 currently_stepping (tp));
372316f1 2274
5b6d1e4f 2275 tp->inf->process_target ()->threads_executing = true;
719546c4 2276 tp->resumed = true;
372316f1
PA
2277
2278 /* FIXME: What should we do if we are supposed to resume this
2279 thread with a signal? Maybe we should maintain a queue of
2280 pending signals to deliver. */
2281 if (sig != GDB_SIGNAL_0)
2282 {
fd7dcb94 2283 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2284 gdb_signal_to_name (sig),
2285 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2286 }
2287
2288 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2289
2290 if (target_can_async_p ())
9516f85a
AB
2291 {
2292 target_async (1);
2293 /* Tell the event loop we have an event to process. */
2294 mark_async_event_handler (infrun_async_inferior_event_token);
2295 }
372316f1
PA
2296 return;
2297 }
2298
2299 tp->stepped_breakpoint = 0;
2300
6b403daa
PA
2301 /* Depends on stepped_breakpoint. */
2302 step = currently_stepping (tp);
2303
74609e71
YQ
2304 if (current_inferior ()->waiting_for_vfork_done)
2305 {
48f9886d
PA
2306 /* Don't try to single-step a vfork parent that is waiting for
2307 the child to get out of the shared memory region (by exec'ing
2308 or exiting). This is particularly important on software
2309 single-step archs, as the child process would trip on the
2310 software single step breakpoint inserted for the parent
2311 process. Since the parent will not actually execute any
2312 instruction until the child is out of the shared region (such
2313 are vfork's semantics), it is safe to simply continue it.
2314 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2315 the parent, and tell it to `keep_going', which automatically
2316 re-sets it stepping. */
edbcda09 2317 infrun_log_debug ("resume : clear step");
a09dd441 2318 step = 0;
74609e71
YQ
2319 }
2320
7ca9b62a
TBA
2321 CORE_ADDR pc = regcache_read_pc (regcache);
2322
edbcda09
SM
2323 infrun_log_debug ("step=%d, signal=%s, trap_expected=%d, "
2324 "current thread [%s] at %s",
2325 step, gdb_signal_to_symbol_string (sig),
2326 tp->control.trap_expected,
2327 target_pid_to_str (inferior_ptid).c_str (),
2328 paddress (gdbarch, pc));
c906108c 2329
c2c6d25f
JM
2330 /* Normally, by the time we reach `resume', the breakpoints are either
2331 removed or inserted, as appropriate. The exception is if we're sitting
2332 at a permanent breakpoint; we need to step over it, but permanent
2333 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2334 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2335 {
af48d08f
PA
2336 if (sig != GDB_SIGNAL_0)
2337 {
2338 /* We have a signal to pass to the inferior. The resume
2339 may, or may not take us to the signal handler. If this
2340 is a step, we'll need to stop in the signal handler, if
2341 there's one, (if the target supports stepping into
2342 handlers), or in the next mainline instruction, if
2343 there's no handler. If this is a continue, we need to be
2344 sure to run the handler with all breakpoints inserted.
2345 In all cases, set a breakpoint at the current address
2346 (where the handler returns to), and once that breakpoint
2347 is hit, resume skipping the permanent breakpoint. If
2348 that breakpoint isn't hit, then we've stepped into the
2349 signal handler (or hit some other event). We'll delete
2350 the step-resume breakpoint then. */
2351
edbcda09
SM
2352 infrun_log_debug ("resume: skipping permanent breakpoint, "
2353 "deliver signal first");
af48d08f
PA
2354
2355 clear_step_over_info ();
2356 tp->control.trap_expected = 0;
2357
2358 if (tp->control.step_resume_breakpoint == NULL)
2359 {
2360 /* Set a "high-priority" step-resume, as we don't want
2361 user breakpoints at PC to trigger (again) when this
2362 hits. */
2363 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2364 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2365
2366 tp->step_after_step_resume_breakpoint = step;
2367 }
2368
2369 insert_breakpoints ();
2370 }
2371 else
2372 {
2373 /* There's no signal to pass, we can go ahead and skip the
2374 permanent breakpoint manually. */
edbcda09 2375 infrun_log_debug ("skipping permanent breakpoint");
af48d08f
PA
2376 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2377 /* Update pc to reflect the new address from which we will
2378 execute instructions. */
2379 pc = regcache_read_pc (regcache);
2380
2381 if (step)
2382 {
2383 /* We've already advanced the PC, so the stepping part
2384 is done. Now we need to arrange for a trap to be
2385 reported to handle_inferior_event. Set a breakpoint
2386 at the current PC, and run to it. Don't update
2387 prev_pc, because if we end in
44a1ee51
PA
2388 switch_back_to_stepped_thread, we want the "expected
2389 thread advanced also" branch to be taken. IOW, we
2390 don't want this thread to step further from PC
af48d08f 2391 (overstep). */
1ac806b8 2392 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2393 insert_single_step_breakpoint (gdbarch, aspace, pc);
2394 insert_breakpoints ();
2395
fbea99ea 2396 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2397 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2398 tp->resumed = true;
af48d08f
PA
2399 return;
2400 }
2401 }
6d350bb5 2402 }
c2c6d25f 2403
c1e36e3e
PA
2404 /* If we have a breakpoint to step over, make sure to do a single
2405 step only. Same if we have software watchpoints. */
2406 if (tp->control.trap_expected || bpstat_should_step ())
2407 tp->control.may_range_step = 0;
2408
7da6a5b9
LM
2409 /* If displaced stepping is enabled, step over breakpoints by executing a
2410 copy of the instruction at a different address.
237fc4c9
PA
2411
2412 We can't use displaced stepping when we have a signal to deliver;
2413 the comments for displaced_step_prepare explain why. The
2414 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2415 signals' explain what we do instead.
2416
2417 We can't use displaced stepping when we are waiting for vfork_done
2418 event, displaced stepping breaks the vfork child similarly as single
2419 step software breakpoint. */
3fc8eb30
PA
2420 if (tp->control.trap_expected
2421 && use_displaced_stepping (tp)
cb71640d 2422 && !step_over_info_valid_p ()
a493e3e2 2423 && sig == GDB_SIGNAL_0
74609e71 2424 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2425 {
9844051a
SM
2426 displaced_step_prepare_status prepare_status
2427 = displaced_step_prepare (tp);
fc1cf338 2428
9844051a 2429 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
d56b7306 2430 {
edbcda09 2431 infrun_log_debug ("Got placed in step-over queue");
4d9d9d04
PA
2432
2433 tp->control.trap_expected = 0;
d56b7306
VP
2434 return;
2435 }
9844051a 2436 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
3fc8eb30
PA
2437 {
2438 /* Fallback to stepping over the breakpoint in-line. */
2439
2440 if (target_is_non_stop_p ())
2441 stop_all_threads ();
2442
a01bda52 2443 set_step_over_info (regcache->aspace (),
21edc42f 2444 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2445
2446 step = maybe_software_singlestep (gdbarch, pc);
2447
2448 insert_breakpoints ();
2449 }
9844051a 2450 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
3fc8eb30 2451 {
9844051a 2452 step = gdbarch_displaced_step_hw_singlestep (gdbarch, NULL);
3fc8eb30 2453 }
9844051a
SM
2454 else
2455 gdb_assert_not_reached ("invalid displaced_step_prepare_status value");
237fc4c9
PA
2456 }
2457
2facfe5c 2458 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2459 else if (step)
2facfe5c 2460 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2461
30852783
UW
2462 /* Currently, our software single-step implementation leads to different
2463 results than hardware single-stepping in one situation: when stepping
2464 into delivering a signal which has an associated signal handler,
2465 hardware single-step will stop at the first instruction of the handler,
2466 while software single-step will simply skip execution of the handler.
2467
2468 For now, this difference in behavior is accepted since there is no
2469 easy way to actually implement single-stepping into a signal handler
2470 without kernel support.
2471
2472 However, there is one scenario where this difference leads to follow-on
2473 problems: if we're stepping off a breakpoint by removing all breakpoints
2474 and then single-stepping. In this case, the software single-step
2475 behavior means that even if there is a *breakpoint* in the signal
2476 handler, GDB still would not stop.
2477
2478 Fortunately, we can at least fix this particular issue. We detect
2479 here the case where we are about to deliver a signal while software
2480 single-stepping with breakpoints removed. In this situation, we
2481 revert the decisions to remove all breakpoints and insert single-
2482 step breakpoints, and instead we install a step-resume breakpoint
2483 at the current address, deliver the signal without stepping, and
2484 once we arrive back at the step-resume breakpoint, actually step
2485 over the breakpoint we originally wanted to step over. */
34b7e8a6 2486 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2487 && sig != GDB_SIGNAL_0
2488 && step_over_info_valid_p ())
30852783
UW
2489 {
2490 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2491 immediately after a handler returns, might already have
30852783
UW
2492 a step-resume breakpoint set on the earlier handler. We cannot
2493 set another step-resume breakpoint; just continue on until the
2494 original breakpoint is hit. */
2495 if (tp->control.step_resume_breakpoint == NULL)
2496 {
2c03e5be 2497 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2498 tp->step_after_step_resume_breakpoint = 1;
2499 }
2500
34b7e8a6 2501 delete_single_step_breakpoints (tp);
30852783 2502
31e77af2 2503 clear_step_over_info ();
30852783 2504 tp->control.trap_expected = 0;
31e77af2
PA
2505
2506 insert_breakpoints ();
30852783
UW
2507 }
2508
b0f16a3e
SM
2509 /* If STEP is set, it's a request to use hardware stepping
2510 facilities. But in that case, we should never
2511 use singlestep breakpoint. */
34b7e8a6 2512 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2513
fbea99ea 2514 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2515 if (tp->control.trap_expected)
b0f16a3e
SM
2516 {
2517 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2518 hit, either by single-stepping the thread with the breakpoint
2519 removed, or by displaced stepping, with the breakpoint inserted.
2520 In the former case, we need to single-step only this thread,
2521 and keep others stopped, as they can miss this breakpoint if
2522 allowed to run. That's not really a problem for displaced
2523 stepping, but, we still keep other threads stopped, in case
2524 another thread is also stopped for a breakpoint waiting for
2525 its turn in the displaced stepping queue. */
b0f16a3e
SM
2526 resume_ptid = inferior_ptid;
2527 }
fbea99ea
PA
2528 else
2529 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2530
7f5ef605
PA
2531 if (execution_direction != EXEC_REVERSE
2532 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2533 {
372316f1
PA
2534 /* There are two cases where we currently need to step a
2535 breakpoint instruction when we have a signal to deliver:
2536
2537 - See handle_signal_stop where we handle random signals that
2538 could take out us out of the stepping range. Normally, in
2539 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2540 signal handler with a breakpoint at PC, but there are cases
2541 where we should _always_ single-step, even if we have a
2542 step-resume breakpoint, like when a software watchpoint is
2543 set. Assuming single-stepping and delivering a signal at the
2544 same time would takes us to the signal handler, then we could
2545 have removed the breakpoint at PC to step over it. However,
2546 some hardware step targets (like e.g., Mac OS) can't step
2547 into signal handlers, and for those, we need to leave the
2548 breakpoint at PC inserted, as otherwise if the handler
2549 recurses and executes PC again, it'll miss the breakpoint.
2550 So we leave the breakpoint inserted anyway, but we need to
2551 record that we tried to step a breakpoint instruction, so
372316f1
PA
2552 that adjust_pc_after_break doesn't end up confused.
2553
2554 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2555 in one thread after another thread that was stepping had been
2556 momentarily paused for a step-over. When we re-resume the
2557 stepping thread, it may be resumed from that address with a
2558 breakpoint that hasn't trapped yet. Seen with
2559 gdb.threads/non-stop-fair-events.exp, on targets that don't
2560 do displaced stepping. */
2561
edbcda09
SM
2562 infrun_log_debug ("resume: [%s] stepped breakpoint",
2563 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2564
2565 tp->stepped_breakpoint = 1;
2566
b0f16a3e
SM
2567 /* Most targets can step a breakpoint instruction, thus
2568 executing it normally. But if this one cannot, just
2569 continue and we will hit it anyway. */
7f5ef605 2570 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2571 step = 0;
2572 }
ef5cf84e 2573
b0f16a3e 2574 if (debug_displaced
cb71640d 2575 && tp->control.trap_expected
3fc8eb30 2576 && use_displaced_stepping (tp)
cb71640d 2577 && !step_over_info_valid_p ())
b0f16a3e 2578 {
00431a78 2579 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2580 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2581 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2582 gdb_byte buf[4];
2583
2584 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2585 paddress (resume_gdbarch, actual_pc));
2586 read_memory (actual_pc, buf, sizeof (buf));
2587 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2588 }
237fc4c9 2589
b0f16a3e
SM
2590 if (tp->control.may_range_step)
2591 {
2592 /* If we're resuming a thread with the PC out of the step
2593 range, then we're doing some nested/finer run control
2594 operation, like stepping the thread out of the dynamic
2595 linker or the displaced stepping scratch pad. We
2596 shouldn't have allowed a range step then. */
2597 gdb_assert (pc_in_thread_step_range (pc, tp));
2598 }
c1e36e3e 2599
64ce06e4 2600 do_target_resume (resume_ptid, step, sig);
719546c4 2601 tp->resumed = true;
c906108c 2602}
71d378ae
PA
2603
2604/* Resume the inferior. SIG is the signal to give the inferior
2605 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2606 rolls back state on error. */
2607
aff4e175 2608static void
71d378ae
PA
2609resume (gdb_signal sig)
2610{
a70b8144 2611 try
71d378ae
PA
2612 {
2613 resume_1 (sig);
2614 }
230d2906 2615 catch (const gdb_exception &ex)
71d378ae
PA
2616 {
2617 /* If resuming is being aborted for any reason, delete any
2618 single-step breakpoint resume_1 may have created, to avoid
2619 confusing the following resumption, and to avoid leaving
2620 single-step breakpoints perturbing other threads, in case
2621 we're running in non-stop mode. */
2622 if (inferior_ptid != null_ptid)
2623 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2624 throw;
71d378ae 2625 }
71d378ae
PA
2626}
2627
c906108c 2628\f
237fc4c9 2629/* Proceeding. */
c906108c 2630
4c2f2a79
PA
2631/* See infrun.h. */
2632
2633/* Counter that tracks number of user visible stops. This can be used
2634 to tell whether a command has proceeded the inferior past the
2635 current location. This allows e.g., inferior function calls in
2636 breakpoint commands to not interrupt the command list. When the
2637 call finishes successfully, the inferior is standing at the same
2638 breakpoint as if nothing happened (and so we don't call
2639 normal_stop). */
2640static ULONGEST current_stop_id;
2641
2642/* See infrun.h. */
2643
2644ULONGEST
2645get_stop_id (void)
2646{
2647 return current_stop_id;
2648}
2649
2650/* Called when we report a user visible stop. */
2651
2652static void
2653new_stop_id (void)
2654{
2655 current_stop_id++;
2656}
2657
c906108c
SS
2658/* Clear out all variables saying what to do when inferior is continued.
2659 First do this, then set the ones you want, then call `proceed'. */
2660
a7212384
UW
2661static void
2662clear_proceed_status_thread (struct thread_info *tp)
c906108c 2663{
edbcda09 2664 infrun_log_debug ("%s", target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2665
372316f1
PA
2666 /* If we're starting a new sequence, then the previous finished
2667 single-step is no longer relevant. */
2668 if (tp->suspend.waitstatus_pending_p)
2669 {
2670 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2671 {
edbcda09
SM
2672 infrun_log_debug ("pending event of %s was a finished step. "
2673 "Discarding.",
2674 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2675
2676 tp->suspend.waitstatus_pending_p = 0;
2677 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2678 }
edbcda09 2679 else
372316f1 2680 {
edbcda09
SM
2681 infrun_log_debug
2682 ("thread %s has pending wait status %s (currently_stepping=%d).",
2683 target_pid_to_str (tp->ptid).c_str (),
2684 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2685 currently_stepping (tp));
372316f1
PA
2686 }
2687 }
2688
70509625
PA
2689 /* If this signal should not be seen by program, give it zero.
2690 Used for debugging signals. */
2691 if (!signal_pass_state (tp->suspend.stop_signal))
2692 tp->suspend.stop_signal = GDB_SIGNAL_0;
2693
46e3ed7f 2694 delete tp->thread_fsm;
243a9253
PA
2695 tp->thread_fsm = NULL;
2696
16c381f0
JK
2697 tp->control.trap_expected = 0;
2698 tp->control.step_range_start = 0;
2699 tp->control.step_range_end = 0;
c1e36e3e 2700 tp->control.may_range_step = 0;
16c381f0
JK
2701 tp->control.step_frame_id = null_frame_id;
2702 tp->control.step_stack_frame_id = null_frame_id;
2703 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2704 tp->control.step_start_function = NULL;
a7212384 2705 tp->stop_requested = 0;
4e1c45ea 2706
16c381f0 2707 tp->control.stop_step = 0;
32400beb 2708
16c381f0 2709 tp->control.proceed_to_finish = 0;
414c69f7 2710
856e7dd6 2711 tp->control.stepping_command = 0;
17b2616c 2712
a7212384 2713 /* Discard any remaining commands or status from previous stop. */
16c381f0 2714 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2715}
32400beb 2716
a7212384 2717void
70509625 2718clear_proceed_status (int step)
a7212384 2719{
f2665db5
MM
2720 /* With scheduler-locking replay, stop replaying other threads if we're
2721 not replaying the user-visible resume ptid.
2722
2723 This is a convenience feature to not require the user to explicitly
2724 stop replaying the other threads. We're assuming that the user's
2725 intent is to resume tracing the recorded process. */
2726 if (!non_stop && scheduler_mode == schedlock_replay
2727 && target_record_is_replaying (minus_one_ptid)
2728 && !target_record_will_replay (user_visible_resume_ptid (step),
2729 execution_direction))
2730 target_record_stop_replaying ();
2731
08036331 2732 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2733 {
08036331 2734 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2735 process_stratum_target *resume_target
2736 = user_visible_resume_target (resume_ptid);
70509625
PA
2737
2738 /* In all-stop mode, delete the per-thread status of all threads
2739 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2740 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2741 clear_proceed_status_thread (tp);
6c95b8df
PA
2742 }
2743
d7e15655 2744 if (inferior_ptid != null_ptid)
a7212384
UW
2745 {
2746 struct inferior *inferior;
2747
2748 if (non_stop)
2749 {
6c95b8df
PA
2750 /* If in non-stop mode, only delete the per-thread status of
2751 the current thread. */
a7212384
UW
2752 clear_proceed_status_thread (inferior_thread ());
2753 }
6c95b8df 2754
d6b48e9c 2755 inferior = current_inferior ();
16c381f0 2756 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2757 }
2758
76727919 2759 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2760}
2761
99619bea
PA
2762/* Returns true if TP is still stopped at a breakpoint that needs
2763 stepping-over in order to make progress. If the breakpoint is gone
2764 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2765
2766static int
6c4cfb24 2767thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2768{
2769 if (tp->stepping_over_breakpoint)
2770 {
00431a78 2771 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2772
a01bda52 2773 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2774 regcache_read_pc (regcache))
2775 == ordinary_breakpoint_here)
99619bea
PA
2776 return 1;
2777
2778 tp->stepping_over_breakpoint = 0;
2779 }
2780
2781 return 0;
2782}
2783
6c4cfb24
PA
2784/* Check whether thread TP still needs to start a step-over in order
2785 to make progress when resumed. Returns an bitwise or of enum
2786 step_over_what bits, indicating what needs to be stepped over. */
2787
8d297bbf 2788static step_over_what
6c4cfb24
PA
2789thread_still_needs_step_over (struct thread_info *tp)
2790{
8d297bbf 2791 step_over_what what = 0;
6c4cfb24
PA
2792
2793 if (thread_still_needs_step_over_bp (tp))
2794 what |= STEP_OVER_BREAKPOINT;
2795
2796 if (tp->stepping_over_watchpoint
2797 && !target_have_steppable_watchpoint)
2798 what |= STEP_OVER_WATCHPOINT;
2799
2800 return what;
2801}
2802
483805cf
PA
2803/* Returns true if scheduler locking applies. STEP indicates whether
2804 we're about to do a step/next-like command to a thread. */
2805
2806static int
856e7dd6 2807schedlock_applies (struct thread_info *tp)
483805cf
PA
2808{
2809 return (scheduler_mode == schedlock_on
2810 || (scheduler_mode == schedlock_step
f2665db5
MM
2811 && tp->control.stepping_command)
2812 || (scheduler_mode == schedlock_replay
2813 && target_record_will_replay (minus_one_ptid,
2814 execution_direction)));
483805cf
PA
2815}
2816
5b6d1e4f
PA
2817/* Calls target_commit_resume on all targets. */
2818
2819static void
2820commit_resume_all_targets ()
2821{
2822 scoped_restore_current_thread restore_thread;
2823
2824 /* Map between process_target and a representative inferior. This
2825 is to avoid committing a resume in the same target more than
2826 once. Resumptions must be idempotent, so this is an
2827 optimization. */
2828 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2829
2830 for (inferior *inf : all_non_exited_inferiors ())
2831 if (inf->has_execution ())
2832 conn_inf[inf->process_target ()] = inf;
2833
2834 for (const auto &ci : conn_inf)
2835 {
2836 inferior *inf = ci.second;
2837 switch_to_inferior_no_thread (inf);
2838 target_commit_resume ();
2839 }
2840}
2841
2f4fcf00
PA
2842/* Check that all the targets we're about to resume are in non-stop
2843 mode. Ideally, we'd only care whether all targets support
2844 target-async, but we're not there yet. E.g., stop_all_threads
2845 doesn't know how to handle all-stop targets. Also, the remote
2846 protocol in all-stop mode is synchronous, irrespective of
2847 target-async, which means that things like a breakpoint re-set
2848 triggered by one target would try to read memory from all targets
2849 and fail. */
2850
2851static void
2852check_multi_target_resumption (process_stratum_target *resume_target)
2853{
2854 if (!non_stop && resume_target == nullptr)
2855 {
2856 scoped_restore_current_thread restore_thread;
2857
2858 /* This is used to track whether we're resuming more than one
2859 target. */
2860 process_stratum_target *first_connection = nullptr;
2861
2862 /* The first inferior we see with a target that does not work in
2863 always-non-stop mode. */
2864 inferior *first_not_non_stop = nullptr;
2865
2866 for (inferior *inf : all_non_exited_inferiors (resume_target))
2867 {
2868 switch_to_inferior_no_thread (inf);
2869
2870 if (!target_has_execution)
2871 continue;
2872
2873 process_stratum_target *proc_target
2874 = current_inferior ()->process_target();
2875
2876 if (!target_is_non_stop_p ())
2877 first_not_non_stop = inf;
2878
2879 if (first_connection == nullptr)
2880 first_connection = proc_target;
2881 else if (first_connection != proc_target
2882 && first_not_non_stop != nullptr)
2883 {
2884 switch_to_inferior_no_thread (first_not_non_stop);
2885
2886 proc_target = current_inferior ()->process_target();
2887
2888 error (_("Connection %d (%s) does not support "
2889 "multi-target resumption."),
2890 proc_target->connection_number,
2891 make_target_connection_string (proc_target).c_str ());
2892 }
2893 }
2894 }
2895}
2896
c906108c
SS
2897/* Basic routine for continuing the program in various fashions.
2898
2899 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2900 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2901 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2902
2903 You should call clear_proceed_status before calling proceed. */
2904
2905void
64ce06e4 2906proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2907{
e58b0e63
PA
2908 struct regcache *regcache;
2909 struct gdbarch *gdbarch;
e58b0e63 2910 CORE_ADDR pc;
4d9d9d04
PA
2911 struct execution_control_state ecss;
2912 struct execution_control_state *ecs = &ecss;
4d9d9d04 2913 int started;
c906108c 2914
e58b0e63
PA
2915 /* If we're stopped at a fork/vfork, follow the branch set by the
2916 "set follow-fork-mode" command; otherwise, we'll just proceed
2917 resuming the current thread. */
2918 if (!follow_fork ())
2919 {
2920 /* The target for some reason decided not to resume. */
2921 normal_stop ();
f148b27e 2922 if (target_can_async_p ())
b1a35af2 2923 inferior_event_handler (INF_EXEC_COMPLETE);
e58b0e63
PA
2924 return;
2925 }
2926
842951eb
PA
2927 /* We'll update this if & when we switch to a new thread. */
2928 previous_inferior_ptid = inferior_ptid;
2929
e58b0e63 2930 regcache = get_current_regcache ();
ac7936df 2931 gdbarch = regcache->arch ();
8b86c959
YQ
2932 const address_space *aspace = regcache->aspace ();
2933
fc75c28b
TBA
2934 pc = regcache_read_pc_protected (regcache);
2935
08036331 2936 thread_info *cur_thr = inferior_thread ();
e58b0e63 2937
99619bea 2938 /* Fill in with reasonable starting values. */
08036331 2939 init_thread_stepping_state (cur_thr);
99619bea 2940
08036331 2941 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2942
5b6d1e4f
PA
2943 ptid_t resume_ptid
2944 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2945 process_stratum_target *resume_target
2946 = user_visible_resume_target (resume_ptid);
2947
2f4fcf00
PA
2948 check_multi_target_resumption (resume_target);
2949
2acceee2 2950 if (addr == (CORE_ADDR) -1)
c906108c 2951 {
08036331 2952 if (pc == cur_thr->suspend.stop_pc
af48d08f 2953 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2954 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2955 /* There is a breakpoint at the address we will resume at,
2956 step one instruction before inserting breakpoints so that
2957 we do not stop right away (and report a second hit at this
b2175913
MS
2958 breakpoint).
2959
2960 Note, we don't do this in reverse, because we won't
2961 actually be executing the breakpoint insn anyway.
2962 We'll be (un-)executing the previous instruction. */
08036331 2963 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2964 else if (gdbarch_single_step_through_delay_p (gdbarch)
2965 && gdbarch_single_step_through_delay (gdbarch,
2966 get_current_frame ()))
3352ef37
AC
2967 /* We stepped onto an instruction that needs to be stepped
2968 again before re-inserting the breakpoint, do so. */
08036331 2969 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2970 }
2971 else
2972 {
515630c5 2973 regcache_write_pc (regcache, addr);
c906108c
SS
2974 }
2975
70509625 2976 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2977 cur_thr->suspend.stop_signal = siggnal;
70509625 2978
4d9d9d04
PA
2979 /* If an exception is thrown from this point on, make sure to
2980 propagate GDB's knowledge of the executing state to the
2981 frontend/user running state. */
5b6d1e4f 2982 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
2983
2984 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2985 threads (e.g., we might need to set threads stepping over
2986 breakpoints first), from the user/frontend's point of view, all
2987 threads in RESUME_PTID are now running. Unless we're calling an
2988 inferior function, as in that case we pretend the inferior
2989 doesn't run at all. */
08036331 2990 if (!cur_thr->control.in_infcall)
719546c4 2991 set_running (resume_target, resume_ptid, true);
17b2616c 2992
edbcda09
SM
2993 infrun_log_debug ("addr=%s, signal=%s", paddress (gdbarch, addr),
2994 gdb_signal_to_symbol_string (siggnal));
527159b7 2995
4d9d9d04
PA
2996 annotate_starting ();
2997
2998 /* Make sure that output from GDB appears before output from the
2999 inferior. */
3000 gdb_flush (gdb_stdout);
3001
d930703d
PA
3002 /* Since we've marked the inferior running, give it the terminal. A
3003 QUIT/Ctrl-C from here on is forwarded to the target (which can
3004 still detect attempts to unblock a stuck connection with repeated
3005 Ctrl-C from within target_pass_ctrlc). */
3006 target_terminal::inferior ();
3007
4d9d9d04
PA
3008 /* In a multi-threaded task we may select another thread and
3009 then continue or step.
3010
3011 But if a thread that we're resuming had stopped at a breakpoint,
3012 it will immediately cause another breakpoint stop without any
3013 execution (i.e. it will report a breakpoint hit incorrectly). So
3014 we must step over it first.
3015
3016 Look for threads other than the current (TP) that reported a
3017 breakpoint hit and haven't been resumed yet since. */
3018
3019 /* If scheduler locking applies, we can avoid iterating over all
3020 threads. */
08036331 3021 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3022 {
5b6d1e4f
PA
3023 for (thread_info *tp : all_non_exited_threads (resume_target,
3024 resume_ptid))
08036331 3025 {
f3f8ece4
PA
3026 switch_to_thread_no_regs (tp);
3027
4d9d9d04
PA
3028 /* Ignore the current thread here. It's handled
3029 afterwards. */
08036331 3030 if (tp == cur_thr)
4d9d9d04 3031 continue;
c906108c 3032
4d9d9d04
PA
3033 if (!thread_still_needs_step_over (tp))
3034 continue;
3035
3036 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3037
edbcda09
SM
3038 infrun_log_debug ("need to step-over [%s] first",
3039 target_pid_to_str (tp->ptid).c_str ());
99619bea 3040
7bd43605 3041 global_thread_step_over_chain_enqueue (tp);
2adfaa28 3042 }
f3f8ece4
PA
3043
3044 switch_to_thread (cur_thr);
30852783
UW
3045 }
3046
4d9d9d04
PA
3047 /* Enqueue the current thread last, so that we move all other
3048 threads over their breakpoints first. */
08036331 3049 if (cur_thr->stepping_over_breakpoint)
7bd43605 3050 global_thread_step_over_chain_enqueue (cur_thr);
30852783 3051
4d9d9d04
PA
3052 /* If the thread isn't started, we'll still need to set its prev_pc,
3053 so that switch_back_to_stepped_thread knows the thread hasn't
3054 advanced. Must do this before resuming any thread, as in
3055 all-stop/remote, once we resume we can't send any other packet
3056 until the target stops again. */
fc75c28b 3057 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3058
a9bc57b9
TT
3059 {
3060 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3061
a9bc57b9 3062 started = start_step_over ();
c906108c 3063
a9bc57b9
TT
3064 if (step_over_info_valid_p ())
3065 {
3066 /* Either this thread started a new in-line step over, or some
3067 other thread was already doing one. In either case, don't
3068 resume anything else until the step-over is finished. */
3069 }
3070 else if (started && !target_is_non_stop_p ())
3071 {
3072 /* A new displaced stepping sequence was started. In all-stop,
3073 we can't talk to the target anymore until it next stops. */
3074 }
3075 else if (!non_stop && target_is_non_stop_p ())
3076 {
3077 /* In all-stop, but the target is always in non-stop mode.
3078 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3079 for (thread_info *tp : all_non_exited_threads (resume_target,
3080 resume_ptid))
3081 {
3082 switch_to_thread_no_regs (tp);
3083
f9fac3c8
SM
3084 if (!tp->inf->has_execution ())
3085 {
edbcda09
SM
3086 infrun_log_debug ("[%s] target has no execution",
3087 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3088 continue;
3089 }
f3f8ece4 3090
f9fac3c8
SM
3091 if (tp->resumed)
3092 {
edbcda09
SM
3093 infrun_log_debug ("[%s] resumed",
3094 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3095 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3096 continue;
3097 }
fbea99ea 3098
f9fac3c8
SM
3099 if (thread_is_in_step_over_chain (tp))
3100 {
edbcda09
SM
3101 infrun_log_debug ("[%s] needs step-over",
3102 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3103 continue;
3104 }
fbea99ea 3105
edbcda09
SM
3106 infrun_log_debug ("resuming %s",
3107 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3108
f9fac3c8
SM
3109 reset_ecs (ecs, tp);
3110 switch_to_thread (tp);
3111 keep_going_pass_signal (ecs);
3112 if (!ecs->wait_some_more)
3113 error (_("Command aborted."));
3114 }
a9bc57b9 3115 }
08036331 3116 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3117 {
3118 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3119 reset_ecs (ecs, cur_thr);
3120 switch_to_thread (cur_thr);
a9bc57b9
TT
3121 keep_going_pass_signal (ecs);
3122 if (!ecs->wait_some_more)
3123 error (_("Command aborted."));
3124 }
3125 }
c906108c 3126
5b6d1e4f 3127 commit_resume_all_targets ();
85ad3aaf 3128
731f534f 3129 finish_state.release ();
c906108c 3130
873657b9
PA
3131 /* If we've switched threads above, switch back to the previously
3132 current thread. We don't want the user to see a different
3133 selected thread. */
3134 switch_to_thread (cur_thr);
3135
0b333c5e
PA
3136 /* Tell the event loop to wait for it to stop. If the target
3137 supports asynchronous execution, it'll do this from within
3138 target_resume. */
362646f5 3139 if (!target_can_async_p ())
0b333c5e 3140 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3141}
c906108c
SS
3142\f
3143
3144/* Start remote-debugging of a machine over a serial link. */
96baa820 3145
c906108c 3146void
8621d6a9 3147start_remote (int from_tty)
c906108c 3148{
5b6d1e4f
PA
3149 inferior *inf = current_inferior ();
3150 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3151
1777feb0 3152 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3153 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3154 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3155 nothing is returned (instead of just blocking). Because of this,
3156 targets expecting an immediate response need to, internally, set
3157 things up so that the target_wait() is forced to eventually
1777feb0 3158 timeout. */
6426a772
JM
3159 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3160 differentiate to its caller what the state of the target is after
3161 the initial open has been performed. Here we're assuming that
3162 the target has stopped. It should be possible to eventually have
3163 target_open() return to the caller an indication that the target
3164 is currently running and GDB state should be set to the same as
1777feb0 3165 for an async run. */
5b6d1e4f 3166 wait_for_inferior (inf);
8621d6a9
DJ
3167
3168 /* Now that the inferior has stopped, do any bookkeeping like
3169 loading shared libraries. We want to do this before normal_stop,
3170 so that the displayed frame is up to date. */
8b88a78e 3171 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3172
6426a772 3173 normal_stop ();
c906108c
SS
3174}
3175
3176/* Initialize static vars when a new inferior begins. */
3177
3178void
96baa820 3179init_wait_for_inferior (void)
c906108c
SS
3180{
3181 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3182
c906108c
SS
3183 breakpoint_init_inferior (inf_starting);
3184
70509625 3185 clear_proceed_status (0);
9f976b41 3186
ab1ddbcf 3187 nullify_last_target_wait_ptid ();
237fc4c9 3188
842951eb 3189 previous_inferior_ptid = inferior_ptid;
c906108c 3190}
237fc4c9 3191
c906108c 3192\f
488f131b 3193
ec9499be 3194static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3195
568d6575
UW
3196static void handle_step_into_function (struct gdbarch *gdbarch,
3197 struct execution_control_state *ecs);
3198static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3199 struct execution_control_state *ecs);
4f5d7f63 3200static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3201static void check_exception_resume (struct execution_control_state *,
28106bc2 3202 struct frame_info *);
611c83ae 3203
bdc36728 3204static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3205static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3206static void keep_going (struct execution_control_state *ecs);
94c57d6a 3207static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3208static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3209
252fbfc8
PA
3210/* This function is attached as a "thread_stop_requested" observer.
3211 Cleanup local state that assumed the PTID was to be resumed, and
3212 report the stop to the frontend. */
3213
2c0b251b 3214static void
252fbfc8
PA
3215infrun_thread_stop_requested (ptid_t ptid)
3216{
5b6d1e4f
PA
3217 process_stratum_target *curr_target = current_inferior ()->process_target ();
3218
c65d6b55
PA
3219 /* PTID was requested to stop. If the thread was already stopped,
3220 but the user/frontend doesn't know about that yet (e.g., the
3221 thread had been temporarily paused for some step-over), set up
3222 for reporting the stop now. */
5b6d1e4f 3223 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3224 {
3225 if (tp->state != THREAD_RUNNING)
3226 continue;
3227 if (tp->executing)
3228 continue;
c65d6b55 3229
08036331
PA
3230 /* Remove matching threads from the step-over queue, so
3231 start_step_over doesn't try to resume them
3232 automatically. */
3233 if (thread_is_in_step_over_chain (tp))
7bd43605 3234 global_thread_step_over_chain_remove (tp);
c65d6b55 3235
08036331
PA
3236 /* If the thread is stopped, but the user/frontend doesn't
3237 know about that yet, queue a pending event, as if the
3238 thread had just stopped now. Unless the thread already had
3239 a pending event. */
3240 if (!tp->suspend.waitstatus_pending_p)
3241 {
3242 tp->suspend.waitstatus_pending_p = 1;
3243 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3244 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3245 }
c65d6b55 3246
08036331
PA
3247 /* Clear the inline-frame state, since we're re-processing the
3248 stop. */
5b6d1e4f 3249 clear_inline_frame_state (tp);
c65d6b55 3250
08036331
PA
3251 /* If this thread was paused because some other thread was
3252 doing an inline-step over, let that finish first. Once
3253 that happens, we'll restart all threads and consume pending
3254 stop events then. */
3255 if (step_over_info_valid_p ())
3256 continue;
3257
3258 /* Otherwise we can process the (new) pending event now. Set
3259 it so this pending event is considered by
3260 do_target_wait. */
719546c4 3261 tp->resumed = true;
08036331 3262 }
252fbfc8
PA
3263}
3264
a07daef3
PA
3265static void
3266infrun_thread_thread_exit (struct thread_info *tp, int silent)
3267{
5b6d1e4f
PA
3268 if (target_last_proc_target == tp->inf->process_target ()
3269 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3270 nullify_last_target_wait_ptid ();
3271}
3272
0cbcdb96
PA
3273/* Delete the step resume, single-step and longjmp/exception resume
3274 breakpoints of TP. */
4e1c45ea 3275
0cbcdb96
PA
3276static void
3277delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3278{
0cbcdb96
PA
3279 delete_step_resume_breakpoint (tp);
3280 delete_exception_resume_breakpoint (tp);
34b7e8a6 3281 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3282}
3283
0cbcdb96
PA
3284/* If the target still has execution, call FUNC for each thread that
3285 just stopped. In all-stop, that's all the non-exited threads; in
3286 non-stop, that's the current thread, only. */
3287
3288typedef void (*for_each_just_stopped_thread_callback_func)
3289 (struct thread_info *tp);
4e1c45ea
PA
3290
3291static void
0cbcdb96 3292for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3293{
d7e15655 3294 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3295 return;
3296
fbea99ea 3297 if (target_is_non_stop_p ())
4e1c45ea 3298 {
0cbcdb96
PA
3299 /* If in non-stop mode, only the current thread stopped. */
3300 func (inferior_thread ());
4e1c45ea
PA
3301 }
3302 else
0cbcdb96 3303 {
0cbcdb96 3304 /* In all-stop mode, all threads have stopped. */
08036331
PA
3305 for (thread_info *tp : all_non_exited_threads ())
3306 func (tp);
0cbcdb96
PA
3307 }
3308}
3309
3310/* Delete the step resume and longjmp/exception resume breakpoints of
3311 the threads that just stopped. */
3312
3313static void
3314delete_just_stopped_threads_infrun_breakpoints (void)
3315{
3316 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3317}
3318
3319/* Delete the single-step breakpoints of the threads that just
3320 stopped. */
7c16b83e 3321
34b7e8a6
PA
3322static void
3323delete_just_stopped_threads_single_step_breakpoints (void)
3324{
3325 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3326}
3327
221e1a37 3328/* See infrun.h. */
223698f8 3329
221e1a37 3330void
223698f8
DE
3331print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3332 const struct target_waitstatus *ws)
3333{
23fdd69e 3334 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3335 string_file stb;
223698f8
DE
3336
3337 /* The text is split over several lines because it was getting too long.
3338 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3339 output as a unit; we want only one timestamp printed if debug_timestamp
3340 is set. */
3341
d7e74731 3342 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3343 waiton_ptid.pid (),
e38504b3 3344 waiton_ptid.lwp (),
cc6bcb54 3345 waiton_ptid.tid ());
e99b03dc 3346 if (waiton_ptid.pid () != -1)
a068643d 3347 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3348 stb.printf (", status) =\n");
3349 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3350 result_ptid.pid (),
e38504b3 3351 result_ptid.lwp (),
cc6bcb54 3352 result_ptid.tid (),
a068643d 3353 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3354 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3355
3356 /* This uses %s in part to handle %'s in the text, but also to avoid
3357 a gcc error: the format attribute requires a string literal. */
d7e74731 3358 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3359}
3360
372316f1
PA
3361/* Select a thread at random, out of those which are resumed and have
3362 had events. */
3363
3364static struct thread_info *
5b6d1e4f 3365random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3366{
372316f1 3367 int num_events = 0;
08036331 3368
5b6d1e4f 3369 auto has_event = [&] (thread_info *tp)
08036331 3370 {
5b6d1e4f
PA
3371 return (tp->ptid.matches (waiton_ptid)
3372 && tp->resumed
08036331
PA
3373 && tp->suspend.waitstatus_pending_p);
3374 };
372316f1
PA
3375
3376 /* First see how many events we have. Count only resumed threads
3377 that have an event pending. */
5b6d1e4f 3378 for (thread_info *tp : inf->non_exited_threads ())
08036331 3379 if (has_event (tp))
372316f1
PA
3380 num_events++;
3381
3382 if (num_events == 0)
3383 return NULL;
3384
3385 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3386 int random_selector = (int) ((num_events * (double) rand ())
3387 / (RAND_MAX + 1.0));
372316f1 3388
edbcda09
SM
3389 if (num_events > 1)
3390 infrun_log_debug ("Found %d events, selecting #%d",
3391 num_events, random_selector);
372316f1
PA
3392
3393 /* Select the Nth thread that has had an event. */
5b6d1e4f 3394 for (thread_info *tp : inf->non_exited_threads ())
08036331 3395 if (has_event (tp))
372316f1 3396 if (random_selector-- == 0)
08036331 3397 return tp;
372316f1 3398
08036331 3399 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3400}
3401
3402/* Wrapper for target_wait that first checks whether threads have
3403 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3404 more events. INF is the inferior we're using to call target_wait
3405 on. */
372316f1
PA
3406
3407static ptid_t
5b6d1e4f
PA
3408do_target_wait_1 (inferior *inf, ptid_t ptid,
3409 target_waitstatus *status, int options)
372316f1
PA
3410{
3411 ptid_t event_ptid;
3412 struct thread_info *tp;
3413
24ed6739
AB
3414 /* We know that we are looking for an event in the target of inferior
3415 INF, but we don't know which thread the event might come from. As
3416 such we want to make sure that INFERIOR_PTID is reset so that none of
3417 the wait code relies on it - doing so is always a mistake. */
3418 switch_to_inferior_no_thread (inf);
3419
372316f1
PA
3420 /* First check if there is a resumed thread with a wait status
3421 pending. */
d7e15655 3422 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3423 {
5b6d1e4f 3424 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3425 }
3426 else
3427 {
edbcda09
SM
3428 infrun_log_debug ("Waiting for specific thread %s.",
3429 target_pid_to_str (ptid).c_str ());
372316f1
PA
3430
3431 /* We have a specific thread to check. */
5b6d1e4f 3432 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3433 gdb_assert (tp != NULL);
3434 if (!tp->suspend.waitstatus_pending_p)
3435 tp = NULL;
3436 }
3437
3438 if (tp != NULL
3439 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3440 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3441 {
00431a78 3442 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3443 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3444 CORE_ADDR pc;
3445 int discard = 0;
3446
3447 pc = regcache_read_pc (regcache);
3448
3449 if (pc != tp->suspend.stop_pc)
3450 {
edbcda09
SM
3451 infrun_log_debug ("PC of %s changed. was=%s, now=%s",
3452 target_pid_to_str (tp->ptid).c_str (),
3453 paddress (gdbarch, tp->suspend.stop_pc),
3454 paddress (gdbarch, pc));
372316f1
PA
3455 discard = 1;
3456 }
a01bda52 3457 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1 3458 {
edbcda09
SM
3459 infrun_log_debug ("previous breakpoint of %s, at %s gone",
3460 target_pid_to_str (tp->ptid).c_str (),
3461 paddress (gdbarch, pc));
372316f1
PA
3462
3463 discard = 1;
3464 }
3465
3466 if (discard)
3467 {
edbcda09
SM
3468 infrun_log_debug ("pending event of %s cancelled.",
3469 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3470
3471 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3472 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3473 }
3474 }
3475
3476 if (tp != NULL)
3477 {
edbcda09
SM
3478 infrun_log_debug ("Using pending wait status %s for %s.",
3479 target_waitstatus_to_string
3480 (&tp->suspend.waitstatus).c_str (),
3481 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3482
3483 /* Now that we've selected our final event LWP, un-adjust its PC
3484 if it was a software breakpoint (and the target doesn't
3485 always adjust the PC itself). */
3486 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3487 && !target_supports_stopped_by_sw_breakpoint ())
3488 {
3489 struct regcache *regcache;
3490 struct gdbarch *gdbarch;
3491 int decr_pc;
3492
00431a78 3493 regcache = get_thread_regcache (tp);
ac7936df 3494 gdbarch = regcache->arch ();
372316f1
PA
3495
3496 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3497 if (decr_pc != 0)
3498 {
3499 CORE_ADDR pc;
3500
3501 pc = regcache_read_pc (regcache);
3502 regcache_write_pc (regcache, pc + decr_pc);
3503 }
3504 }
3505
3506 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3507 *status = tp->suspend.waitstatus;
3508 tp->suspend.waitstatus_pending_p = 0;
3509
3510 /* Wake up the event loop again, until all pending events are
3511 processed. */
3512 if (target_is_async_p ())
3513 mark_async_event_handler (infrun_async_inferior_event_token);
3514 return tp->ptid;
3515 }
3516
3517 /* But if we don't find one, we'll have to wait. */
3518
3519 if (deprecated_target_wait_hook)
3520 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3521 else
3522 event_ptid = target_wait (ptid, status, options);
3523
3524 return event_ptid;
3525}
3526
5b6d1e4f
PA
3527/* Wrapper for target_wait that first checks whether threads have
3528 pending statuses to report before actually asking the target for
cad90433 3529 more events. Polls for events from all inferiors/targets. */
5b6d1e4f
PA
3530
3531static bool
3532do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3533{
3534 int num_inferiors = 0;
3535 int random_selector;
3536
cad90433
SM
3537 /* For fairness, we pick the first inferior/target to poll at random
3538 out of all inferiors that may report events, and then continue
3539 polling the rest of the inferior list starting from that one in a
3540 circular fashion until the whole list is polled once. */
5b6d1e4f
PA
3541
3542 auto inferior_matches = [&wait_ptid] (inferior *inf)
3543 {
3544 return (inf->process_target () != NULL
5b6d1e4f
PA
3545 && ptid_t (inf->pid).matches (wait_ptid));
3546 };
3547
cad90433 3548 /* First see how many matching inferiors we have. */
5b6d1e4f
PA
3549 for (inferior *inf : all_inferiors ())
3550 if (inferior_matches (inf))
3551 num_inferiors++;
3552
3553 if (num_inferiors == 0)
3554 {
3555 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3556 return false;
3557 }
3558
cad90433 3559 /* Now randomly pick an inferior out of those that matched. */
5b6d1e4f
PA
3560 random_selector = (int)
3561 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3562
edbcda09
SM
3563 if (num_inferiors > 1)
3564 infrun_log_debug ("Found %d inferiors, starting at #%d",
3565 num_inferiors, random_selector);
5b6d1e4f 3566
cad90433 3567 /* Select the Nth inferior that matched. */
5b6d1e4f
PA
3568
3569 inferior *selected = nullptr;
3570
3571 for (inferior *inf : all_inferiors ())
3572 if (inferior_matches (inf))
3573 if (random_selector-- == 0)
3574 {
3575 selected = inf;
3576 break;
3577 }
3578
cad90433 3579 /* Now poll for events out of each of the matching inferior's
5b6d1e4f
PA
3580 targets, starting from the selected one. */
3581
3582 auto do_wait = [&] (inferior *inf)
3583 {
5b6d1e4f
PA
3584 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3585 ecs->target = inf->process_target ();
3586 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3587 };
3588
cad90433
SM
3589 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3590 here spuriously after the target is all stopped and we've already
5b6d1e4f
PA
3591 reported the stop to the user, polling for events. */
3592 scoped_restore_current_thread restore_thread;
3593
3594 int inf_num = selected->num;
3595 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3596 if (inferior_matches (inf))
3597 if (do_wait (inf))
3598 return true;
3599
3600 for (inferior *inf = inferior_list;
3601 inf != NULL && inf->num < inf_num;
3602 inf = inf->next)
3603 if (inferior_matches (inf))
3604 if (do_wait (inf))
3605 return true;
3606
3607 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3608 return false;
3609}
3610
24291992
PA
3611/* Prepare and stabilize the inferior for detaching it. E.g.,
3612 detaching while a thread is displaced stepping is a recipe for
3613 crashing it, as nothing would readjust the PC out of the scratch
3614 pad. */
3615
3616void
3617prepare_for_detach (void)
3618{
3619 struct inferior *inf = current_inferior ();
f2907e49 3620 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3621
9844051a 3622 // displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3623
3624 /* Is any thread of this process displaced stepping? If not,
3625 there's nothing else to do. */
9844051a 3626 if (displaced_step_in_progress (inf))
24291992
PA
3627 return;
3628
edbcda09 3629 infrun_log_debug ("displaced-stepping in-process while detaching");
24291992 3630
9bcb1f16 3631 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3632
9844051a
SM
3633 // FIXME
3634 while (false)
24291992 3635 {
24291992
PA
3636 struct execution_control_state ecss;
3637 struct execution_control_state *ecs;
3638
3639 ecs = &ecss;
3640 memset (ecs, 0, sizeof (*ecs));
3641
3642 overlay_cache_invalid = 1;
f15cb84a
YQ
3643 /* Flush target cache before starting to handle each event.
3644 Target was running and cache could be stale. This is just a
3645 heuristic. Running threads may modify target memory, but we
3646 don't get any event. */
3647 target_dcache_invalidate ();
24291992 3648
5b6d1e4f 3649 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3650
3651 if (debug_infrun)
3652 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3653
3654 /* If an error happens while handling the event, propagate GDB's
3655 knowledge of the executing state to the frontend/user running
3656 state. */
5b6d1e4f
PA
3657 scoped_finish_thread_state finish_state (inf->process_target (),
3658 minus_one_ptid);
24291992
PA
3659
3660 /* Now figure out what to do with the result of the result. */
3661 handle_inferior_event (ecs);
3662
3663 /* No error, don't finish the state yet. */
731f534f 3664 finish_state.release ();
24291992
PA
3665
3666 /* Breakpoints and watchpoints are not installed on the target
3667 at this point, and signals are passed directly to the
3668 inferior, so this must mean the process is gone. */
3669 if (!ecs->wait_some_more)
3670 {
9bcb1f16 3671 restore_detaching.release ();
24291992
PA
3672 error (_("Program exited while detaching"));
3673 }
3674 }
3675
9bcb1f16 3676 restore_detaching.release ();
24291992
PA
3677}
3678
cd0fc7c3 3679/* Wait for control to return from inferior to debugger.
ae123ec6 3680
cd0fc7c3
SS
3681 If inferior gets a signal, we may decide to start it up again
3682 instead of returning. That is why there is a loop in this function.
3683 When this function actually returns it means the inferior
3684 should be left stopped and GDB should read more commands. */
3685
5b6d1e4f
PA
3686static void
3687wait_for_inferior (inferior *inf)
cd0fc7c3 3688{
edbcda09 3689 infrun_log_debug ("wait_for_inferior ()");
527159b7 3690
4c41382a 3691 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3692
e6f5c25b
PA
3693 /* If an error happens while handling the event, propagate GDB's
3694 knowledge of the executing state to the frontend/user running
3695 state. */
5b6d1e4f
PA
3696 scoped_finish_thread_state finish_state
3697 (inf->process_target (), minus_one_ptid);
e6f5c25b 3698
c906108c
SS
3699 while (1)
3700 {
ae25568b
PA
3701 struct execution_control_state ecss;
3702 struct execution_control_state *ecs = &ecss;
29f49a6a 3703
ae25568b
PA
3704 memset (ecs, 0, sizeof (*ecs));
3705
ec9499be 3706 overlay_cache_invalid = 1;
ec9499be 3707
f15cb84a
YQ
3708 /* Flush target cache before starting to handle each event.
3709 Target was running and cache could be stale. This is just a
3710 heuristic. Running threads may modify target memory, but we
3711 don't get any event. */
3712 target_dcache_invalidate ();
3713
5b6d1e4f
PA
3714 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3715 ecs->target = inf->process_target ();
c906108c 3716
f00150c9 3717 if (debug_infrun)
5b6d1e4f 3718 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3719
cd0fc7c3
SS
3720 /* Now figure out what to do with the result of the result. */
3721 handle_inferior_event (ecs);
c906108c 3722
cd0fc7c3
SS
3723 if (!ecs->wait_some_more)
3724 break;
3725 }
4e1c45ea 3726
e6f5c25b 3727 /* No error, don't finish the state yet. */
731f534f 3728 finish_state.release ();
cd0fc7c3 3729}
c906108c 3730
d3d4baed
PA
3731/* Cleanup that reinstalls the readline callback handler, if the
3732 target is running in the background. If while handling the target
3733 event something triggered a secondary prompt, like e.g., a
3734 pagination prompt, we'll have removed the callback handler (see
3735 gdb_readline_wrapper_line). Need to do this as we go back to the
3736 event loop, ready to process further input. Note this has no
3737 effect if the handler hasn't actually been removed, because calling
3738 rl_callback_handler_install resets the line buffer, thus losing
3739 input. */
3740
3741static void
d238133d 3742reinstall_readline_callback_handler_cleanup ()
d3d4baed 3743{
3b12939d
PA
3744 struct ui *ui = current_ui;
3745
3746 if (!ui->async)
6c400b59
PA
3747 {
3748 /* We're not going back to the top level event loop yet. Don't
3749 install the readline callback, as it'd prep the terminal,
3750 readline-style (raw, noecho) (e.g., --batch). We'll install
3751 it the next time the prompt is displayed, when we're ready
3752 for input. */
3753 return;
3754 }
3755
3b12939d 3756 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3757 gdb_rl_callback_handler_reinstall ();
3758}
3759
243a9253
PA
3760/* Clean up the FSMs of threads that are now stopped. In non-stop,
3761 that's just the event thread. In all-stop, that's all threads. */
3762
3763static void
3764clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3765{
08036331
PA
3766 if (ecs->event_thread != NULL
3767 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3768 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3769
3770 if (!non_stop)
3771 {
08036331 3772 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3773 {
3774 if (thr->thread_fsm == NULL)
3775 continue;
3776 if (thr == ecs->event_thread)
3777 continue;
3778
00431a78 3779 switch_to_thread (thr);
46e3ed7f 3780 thr->thread_fsm->clean_up (thr);
243a9253
PA
3781 }
3782
3783 if (ecs->event_thread != NULL)
00431a78 3784 switch_to_thread (ecs->event_thread);
243a9253
PA
3785 }
3786}
3787
3b12939d
PA
3788/* Helper for all_uis_check_sync_execution_done that works on the
3789 current UI. */
3790
3791static void
3792check_curr_ui_sync_execution_done (void)
3793{
3794 struct ui *ui = current_ui;
3795
3796 if (ui->prompt_state == PROMPT_NEEDED
3797 && ui->async
3798 && !gdb_in_secondary_prompt_p (ui))
3799 {
223ffa71 3800 target_terminal::ours ();
76727919 3801 gdb::observers::sync_execution_done.notify ();
3eb7562a 3802 ui_register_input_event_handler (ui);
3b12939d
PA
3803 }
3804}
3805
3806/* See infrun.h. */
3807
3808void
3809all_uis_check_sync_execution_done (void)
3810{
0e454242 3811 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3812 {
3813 check_curr_ui_sync_execution_done ();
3814 }
3815}
3816
a8836c93
PA
3817/* See infrun.h. */
3818
3819void
3820all_uis_on_sync_execution_starting (void)
3821{
0e454242 3822 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3823 {
3824 if (current_ui->prompt_state == PROMPT_NEEDED)
3825 async_disable_stdin ();
3826 }
3827}
3828
1777feb0 3829/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3830 event loop whenever a change of state is detected on the file
1777feb0
MS
3831 descriptor corresponding to the target. It can be called more than
3832 once to complete a single execution command. In such cases we need
3833 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3834 that this function is called for a single execution command, then
3835 report to the user that the inferior has stopped, and do the
1777feb0 3836 necessary cleanups. */
43ff13b4
JM
3837
3838void
b1a35af2 3839fetch_inferior_event ()
43ff13b4 3840{
0d1e5fa7 3841 struct execution_control_state ecss;
a474d7c2 3842 struct execution_control_state *ecs = &ecss;
0f641c01 3843 int cmd_done = 0;
43ff13b4 3844
0d1e5fa7
PA
3845 memset (ecs, 0, sizeof (*ecs));
3846
c61db772
PA
3847 /* Events are always processed with the main UI as current UI. This
3848 way, warnings, debug output, etc. are always consistently sent to
3849 the main console. */
4b6749b9 3850 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3851
d3d4baed 3852 /* End up with readline processing input, if necessary. */
d238133d
TT
3853 {
3854 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3855
3856 /* We're handling a live event, so make sure we're doing live
3857 debugging. If we're looking at traceframes while the target is
3858 running, we're going to need to get back to that mode after
3859 handling the event. */
3860 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3861 if (non_stop)
3862 {
3863 maybe_restore_traceframe.emplace ();
3864 set_current_traceframe (-1);
3865 }
43ff13b4 3866
873657b9
PA
3867 /* The user/frontend should not notice a thread switch due to
3868 internal events. Make sure we revert to the user selected
3869 thread and frame after handling the event and running any
3870 breakpoint commands. */
3871 scoped_restore_current_thread restore_thread;
d238133d
TT
3872
3873 overlay_cache_invalid = 1;
3874 /* Flush target cache before starting to handle each event. Target
3875 was running and cache could be stale. This is just a heuristic.
3876 Running threads may modify target memory, but we don't get any
3877 event. */
3878 target_dcache_invalidate ();
3879
3880 scoped_restore save_exec_dir
3881 = make_scoped_restore (&execution_direction,
3882 target_execution_direction ());
3883
5b6d1e4f
PA
3884 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3885 return;
3886
3887 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3888
3889 /* Switch to the target that generated the event, so we can do
3890 target calls. Any inferior bound to the target will do, so we
3891 just switch to the first we find. */
3892 for (inferior *inf : all_inferiors (ecs->target))
3893 {
3894 switch_to_inferior_no_thread (inf);
3895 break;
3896 }
d238133d
TT
3897
3898 if (debug_infrun)
5b6d1e4f 3899 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3900
3901 /* If an error happens while handling the event, propagate GDB's
3902 knowledge of the executing state to the frontend/user running
3903 state. */
3904 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 3905 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 3906
979a0d13 3907 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3908 still for the thread which has thrown the exception. */
3909 auto defer_bpstat_clear
3910 = make_scope_exit (bpstat_clear_actions);
3911 auto defer_delete_threads
3912 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3913
3914 /* Now figure out what to do with the result of the result. */
3915 handle_inferior_event (ecs);
3916
3917 if (!ecs->wait_some_more)
3918 {
5b6d1e4f 3919 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
3920 int should_stop = 1;
3921 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3922
d238133d 3923 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3924
d238133d
TT
3925 if (thr != NULL)
3926 {
3927 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3928
d238133d 3929 if (thread_fsm != NULL)
46e3ed7f 3930 should_stop = thread_fsm->should_stop (thr);
d238133d 3931 }
243a9253 3932
d238133d
TT
3933 if (!should_stop)
3934 {
3935 keep_going (ecs);
3936 }
3937 else
3938 {
46e3ed7f 3939 bool should_notify_stop = true;
d238133d 3940 int proceeded = 0;
1840d81a 3941
d238133d 3942 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3943
d238133d 3944 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3945 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3946
d238133d
TT
3947 if (should_notify_stop)
3948 {
3949 /* We may not find an inferior if this was a process exit. */
3950 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3951 proceeded = normal_stop ();
3952 }
243a9253 3953
d238133d
TT
3954 if (!proceeded)
3955 {
b1a35af2 3956 inferior_event_handler (INF_EXEC_COMPLETE);
d238133d
TT
3957 cmd_done = 1;
3958 }
873657b9
PA
3959
3960 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3961 previously selected thread is gone. We have two
3962 choices - switch to no thread selected, or restore the
3963 previously selected thread (now exited). We chose the
3964 later, just because that's what GDB used to do. After
3965 this, "info threads" says "The current thread <Thread
3966 ID 2> has terminated." instead of "No thread
3967 selected.". */
3968 if (!non_stop
3969 && cmd_done
3970 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3971 restore_thread.dont_restore ();
d238133d
TT
3972 }
3973 }
4f8d22e3 3974
d238133d
TT
3975 defer_delete_threads.release ();
3976 defer_bpstat_clear.release ();
29f49a6a 3977
d238133d
TT
3978 /* No error, don't finish the thread states yet. */
3979 finish_state.release ();
731f534f 3980
d238133d
TT
3981 /* This scope is used to ensure that readline callbacks are
3982 reinstalled here. */
3983 }
4f8d22e3 3984
3b12939d
PA
3985 /* If a UI was in sync execution mode, and now isn't, restore its
3986 prompt (a synchronous execution command has finished, and we're
3987 ready for input). */
3988 all_uis_check_sync_execution_done ();
0f641c01
PA
3989
3990 if (cmd_done
0f641c01 3991 && exec_done_display_p
00431a78
PA
3992 && (inferior_ptid == null_ptid
3993 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3994 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3995}
3996
29734269
SM
3997/* See infrun.h. */
3998
edb3359d 3999void
29734269
SM
4000set_step_info (thread_info *tp, struct frame_info *frame,
4001 struct symtab_and_line sal)
edb3359d 4002{
29734269
SM
4003 /* This can be removed once this function no longer implicitly relies on the
4004 inferior_ptid value. */
4005 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4006
16c381f0
JK
4007 tp->control.step_frame_id = get_frame_id (frame);
4008 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4009
4010 tp->current_symtab = sal.symtab;
4011 tp->current_line = sal.line;
4012}
4013
0d1e5fa7
PA
4014/* Clear context switchable stepping state. */
4015
4016void
4e1c45ea 4017init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4018{
7f5ef605 4019 tss->stepped_breakpoint = 0;
0d1e5fa7 4020 tss->stepping_over_breakpoint = 0;
963f9c80 4021 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4022 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4023}
4024
ab1ddbcf 4025/* See infrun.h. */
c32c64b7 4026
6efcd9a8 4027void
5b6d1e4f
PA
4028set_last_target_status (process_stratum_target *target, ptid_t ptid,
4029 target_waitstatus status)
c32c64b7 4030{
5b6d1e4f 4031 target_last_proc_target = target;
c32c64b7
DE
4032 target_last_wait_ptid = ptid;
4033 target_last_waitstatus = status;
4034}
4035
ab1ddbcf 4036/* See infrun.h. */
e02bc4cc
DS
4037
4038void
5b6d1e4f
PA
4039get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4040 target_waitstatus *status)
e02bc4cc 4041{
5b6d1e4f
PA
4042 if (target != nullptr)
4043 *target = target_last_proc_target;
ab1ddbcf
PA
4044 if (ptid != nullptr)
4045 *ptid = target_last_wait_ptid;
4046 if (status != nullptr)
4047 *status = target_last_waitstatus;
e02bc4cc
DS
4048}
4049
ab1ddbcf
PA
4050/* See infrun.h. */
4051
ac264b3b
MS
4052void
4053nullify_last_target_wait_ptid (void)
4054{
5b6d1e4f 4055 target_last_proc_target = nullptr;
ac264b3b 4056 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4057 target_last_waitstatus = {};
ac264b3b
MS
4058}
4059
dcf4fbde 4060/* Switch thread contexts. */
dd80620e
MS
4061
4062static void
00431a78 4063context_switch (execution_control_state *ecs)
dd80620e 4064{
edbcda09 4065 if (ecs->ptid != inferior_ptid
5b6d1e4f
PA
4066 && (inferior_ptid == null_ptid
4067 || ecs->event_thread != inferior_thread ()))
fd48f117 4068 {
edbcda09
SM
4069 infrun_log_debug ("Switching context from %s to %s",
4070 target_pid_to_str (inferior_ptid).c_str (),
4071 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4072 }
4073
00431a78 4074 switch_to_thread (ecs->event_thread);
dd80620e
MS
4075}
4076
d8dd4d5f
PA
4077/* If the target can't tell whether we've hit breakpoints
4078 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4079 check whether that could have been caused by a breakpoint. If so,
4080 adjust the PC, per gdbarch_decr_pc_after_break. */
4081
4fa8626c 4082static void
d8dd4d5f
PA
4083adjust_pc_after_break (struct thread_info *thread,
4084 struct target_waitstatus *ws)
4fa8626c 4085{
24a73cce
UW
4086 struct regcache *regcache;
4087 struct gdbarch *gdbarch;
118e6252 4088 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4089
4fa8626c
DJ
4090 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4091 we aren't, just return.
9709f61c
DJ
4092
4093 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4094 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4095 implemented by software breakpoints should be handled through the normal
4096 breakpoint layer.
8fb3e588 4097
4fa8626c
DJ
4098 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4099 different signals (SIGILL or SIGEMT for instance), but it is less
4100 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4101 gdbarch_decr_pc_after_break. I don't know any specific target that
4102 generates these signals at breakpoints (the code has been in GDB since at
4103 least 1992) so I can not guess how to handle them here.
8fb3e588 4104
e6cf7916
UW
4105 In earlier versions of GDB, a target with
4106 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4107 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4108 target with both of these set in GDB history, and it seems unlikely to be
4109 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4110
d8dd4d5f 4111 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4112 return;
4113
d8dd4d5f 4114 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4115 return;
4116
4058b839
PA
4117 /* In reverse execution, when a breakpoint is hit, the instruction
4118 under it has already been de-executed. The reported PC always
4119 points at the breakpoint address, so adjusting it further would
4120 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4121 architecture:
4122
4123 B1 0x08000000 : INSN1
4124 B2 0x08000001 : INSN2
4125 0x08000002 : INSN3
4126 PC -> 0x08000003 : INSN4
4127
4128 Say you're stopped at 0x08000003 as above. Reverse continuing
4129 from that point should hit B2 as below. Reading the PC when the
4130 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4131 been de-executed already.
4132
4133 B1 0x08000000 : INSN1
4134 B2 PC -> 0x08000001 : INSN2
4135 0x08000002 : INSN3
4136 0x08000003 : INSN4
4137
4138 We can't apply the same logic as for forward execution, because
4139 we would wrongly adjust the PC to 0x08000000, since there's a
4140 breakpoint at PC - 1. We'd then report a hit on B1, although
4141 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4142 behaviour. */
4143 if (execution_direction == EXEC_REVERSE)
4144 return;
4145
1cf4d951
PA
4146 /* If the target can tell whether the thread hit a SW breakpoint,
4147 trust it. Targets that can tell also adjust the PC
4148 themselves. */
4149 if (target_supports_stopped_by_sw_breakpoint ())
4150 return;
4151
4152 /* Note that relying on whether a breakpoint is planted in memory to
4153 determine this can fail. E.g,. the breakpoint could have been
4154 removed since. Or the thread could have been told to step an
4155 instruction the size of a breakpoint instruction, and only
4156 _after_ was a breakpoint inserted at its address. */
4157
24a73cce
UW
4158 /* If this target does not decrement the PC after breakpoints, then
4159 we have nothing to do. */
00431a78 4160 regcache = get_thread_regcache (thread);
ac7936df 4161 gdbarch = regcache->arch ();
118e6252 4162
527a273a 4163 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4164 if (decr_pc == 0)
24a73cce
UW
4165 return;
4166
8b86c959 4167 const address_space *aspace = regcache->aspace ();
6c95b8df 4168
8aad930b
AC
4169 /* Find the location where (if we've hit a breakpoint) the
4170 breakpoint would be. */
118e6252 4171 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4172
1cf4d951
PA
4173 /* If the target can't tell whether a software breakpoint triggered,
4174 fallback to figuring it out based on breakpoints we think were
4175 inserted in the target, and on whether the thread was stepped or
4176 continued. */
4177
1c5cfe86
PA
4178 /* Check whether there actually is a software breakpoint inserted at
4179 that location.
4180
4181 If in non-stop mode, a race condition is possible where we've
4182 removed a breakpoint, but stop events for that breakpoint were
4183 already queued and arrive later. To suppress those spurious
4184 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4185 and retire them after a number of stop events are reported. Note
4186 this is an heuristic and can thus get confused. The real fix is
4187 to get the "stopped by SW BP and needs adjustment" info out of
4188 the target/kernel (and thus never reach here; see above). */
6c95b8df 4189 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4190 || (target_is_non_stop_p ()
4191 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4192 {
07036511 4193 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4194
8213266a 4195 if (record_full_is_used ())
07036511
TT
4196 restore_operation_disable.emplace
4197 (record_full_gdb_operation_disable_set ());
96429cc8 4198
1c0fdd0e
UW
4199 /* When using hardware single-step, a SIGTRAP is reported for both
4200 a completed single-step and a software breakpoint. Need to
4201 differentiate between the two, as the latter needs adjusting
4202 but the former does not.
4203
4204 The SIGTRAP can be due to a completed hardware single-step only if
4205 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4206 - this thread is currently being stepped
4207
4208 If any of these events did not occur, we must have stopped due
4209 to hitting a software breakpoint, and have to back up to the
4210 breakpoint address.
4211
4212 As a special case, we could have hardware single-stepped a
4213 software breakpoint. In this case (prev_pc == breakpoint_pc),
4214 we also need to back up to the breakpoint address. */
4215
d8dd4d5f
PA
4216 if (thread_has_single_step_breakpoints_set (thread)
4217 || !currently_stepping (thread)
4218 || (thread->stepped_breakpoint
4219 && thread->prev_pc == breakpoint_pc))
515630c5 4220 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4221 }
4fa8626c
DJ
4222}
4223
edb3359d
DJ
4224static int
4225stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4226{
4227 for (frame = get_prev_frame (frame);
4228 frame != NULL;
4229 frame = get_prev_frame (frame))
4230 {
4231 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4232 return 1;
4233 if (get_frame_type (frame) != INLINE_FRAME)
4234 break;
4235 }
4236
4237 return 0;
4238}
4239
4a4c04f1
BE
4240/* Look for an inline frame that is marked for skip.
4241 If PREV_FRAME is TRUE start at the previous frame,
4242 otherwise start at the current frame. Stop at the
4243 first non-inline frame, or at the frame where the
4244 step started. */
4245
4246static bool
4247inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4248{
4249 struct frame_info *frame = get_current_frame ();
4250
4251 if (prev_frame)
4252 frame = get_prev_frame (frame);
4253
4254 for (; frame != NULL; frame = get_prev_frame (frame))
4255 {
4256 const char *fn = NULL;
4257 symtab_and_line sal;
4258 struct symbol *sym;
4259
4260 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4261 break;
4262 if (get_frame_type (frame) != INLINE_FRAME)
4263 break;
4264
4265 sal = find_frame_sal (frame);
4266 sym = get_frame_function (frame);
4267
4268 if (sym != NULL)
4269 fn = sym->print_name ();
4270
4271 if (sal.line != 0
4272 && function_name_is_marked_for_skip (fn, sal))
4273 return true;
4274 }
4275
4276 return false;
4277}
4278
c65d6b55
PA
4279/* If the event thread has the stop requested flag set, pretend it
4280 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4281 target_stop). */
4282
4283static bool
4284handle_stop_requested (struct execution_control_state *ecs)
4285{
4286 if (ecs->event_thread->stop_requested)
4287 {
4288 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4289 ecs->ws.value.sig = GDB_SIGNAL_0;
4290 handle_signal_stop (ecs);
4291 return true;
4292 }
4293 return false;
4294}
4295
a96d9b2e
SDJ
4296/* Auxiliary function that handles syscall entry/return events.
4297 It returns 1 if the inferior should keep going (and GDB
4298 should ignore the event), or 0 if the event deserves to be
4299 processed. */
ca2163eb 4300
a96d9b2e 4301static int
ca2163eb 4302handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4303{
ca2163eb 4304 struct regcache *regcache;
ca2163eb
PA
4305 int syscall_number;
4306
00431a78 4307 context_switch (ecs);
ca2163eb 4308
00431a78 4309 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4310 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4311 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4312
a96d9b2e
SDJ
4313 if (catch_syscall_enabled () > 0
4314 && catching_syscall_number (syscall_number) > 0)
4315 {
edbcda09 4316 infrun_log_debug ("syscall number=%d", syscall_number);
a96d9b2e 4317
16c381f0 4318 ecs->event_thread->control.stop_bpstat
a01bda52 4319 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4320 ecs->event_thread->suspend.stop_pc,
4321 ecs->event_thread, &ecs->ws);
ab04a2af 4322
c65d6b55
PA
4323 if (handle_stop_requested (ecs))
4324 return 0;
4325
ce12b012 4326 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4327 {
4328 /* Catchpoint hit. */
ca2163eb
PA
4329 return 0;
4330 }
a96d9b2e 4331 }
ca2163eb 4332
c65d6b55
PA
4333 if (handle_stop_requested (ecs))
4334 return 0;
4335
ca2163eb 4336 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4337 keep_going (ecs);
4338 return 1;
a96d9b2e
SDJ
4339}
4340
7e324e48
GB
4341/* Lazily fill in the execution_control_state's stop_func_* fields. */
4342
4343static void
4344fill_in_stop_func (struct gdbarch *gdbarch,
4345 struct execution_control_state *ecs)
4346{
4347 if (!ecs->stop_func_filled_in)
4348 {
98a617f8
KB
4349 const block *block;
4350
7e324e48
GB
4351 /* Don't care about return value; stop_func_start and stop_func_name
4352 will both be 0 if it doesn't work. */
98a617f8
KB
4353 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4354 &ecs->stop_func_name,
4355 &ecs->stop_func_start,
4356 &ecs->stop_func_end,
4357 &block);
4358
4359 /* The call to find_pc_partial_function, above, will set
4360 stop_func_start and stop_func_end to the start and end
4361 of the range containing the stop pc. If this range
4362 contains the entry pc for the block (which is always the
4363 case for contiguous blocks), advance stop_func_start past
4364 the function's start offset and entrypoint. Note that
4365 stop_func_start is NOT advanced when in a range of a
4366 non-contiguous block that does not contain the entry pc. */
4367 if (block != nullptr
4368 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4369 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4370 {
4371 ecs->stop_func_start
4372 += gdbarch_deprecated_function_start_offset (gdbarch);
4373
4374 if (gdbarch_skip_entrypoint_p (gdbarch))
4375 ecs->stop_func_start
4376 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4377 }
591a12a1 4378
7e324e48
GB
4379 ecs->stop_func_filled_in = 1;
4380 }
4381}
4382
4f5d7f63 4383
00431a78 4384/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4385
4386static enum stop_kind
00431a78 4387get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4388{
5b6d1e4f 4389 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4390
4391 gdb_assert (inf != NULL);
4392 return inf->control.stop_soon;
4393}
4394
5b6d1e4f
PA
4395/* Poll for one event out of the current target. Store the resulting
4396 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4397
4398static ptid_t
5b6d1e4f 4399poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4400{
4401 ptid_t event_ptid;
372316f1
PA
4402
4403 overlay_cache_invalid = 1;
4404
4405 /* Flush target cache before starting to handle each event.
4406 Target was running and cache could be stale. This is just a
4407 heuristic. Running threads may modify target memory, but we
4408 don't get any event. */
4409 target_dcache_invalidate ();
4410
4411 if (deprecated_target_wait_hook)
5b6d1e4f 4412 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4413 else
5b6d1e4f 4414 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4415
4416 if (debug_infrun)
5b6d1e4f 4417 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4418
4419 return event_ptid;
4420}
4421
5b6d1e4f
PA
4422/* An event reported by wait_one. */
4423
4424struct wait_one_event
4425{
4426 /* The target the event came out of. */
4427 process_stratum_target *target;
4428
4429 /* The PTID the event was for. */
4430 ptid_t ptid;
4431
4432 /* The waitstatus. */
4433 target_waitstatus ws;
4434};
4435
4436/* Wait for one event out of any target. */
4437
4438static wait_one_event
4439wait_one ()
4440{
4441 while (1)
4442 {
4443 for (inferior *inf : all_inferiors ())
4444 {
4445 process_stratum_target *target = inf->process_target ();
4446 if (target == NULL
4447 || !target->is_async_p ()
4448 || !target->threads_executing)
4449 continue;
4450
4451 switch_to_inferior_no_thread (inf);
4452
4453 wait_one_event event;
4454 event.target = target;
4455 event.ptid = poll_one_curr_target (&event.ws);
4456
4457 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4458 {
4459 /* If nothing is resumed, remove the target from the
4460 event loop. */
4461 target_async (0);
4462 }
4463 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4464 return event;
4465 }
4466
4467 /* Block waiting for some event. */
4468
4469 fd_set readfds;
4470 int nfds = 0;
4471
4472 FD_ZERO (&readfds);
4473
4474 for (inferior *inf : all_inferiors ())
4475 {
4476 process_stratum_target *target = inf->process_target ();
4477 if (target == NULL
4478 || !target->is_async_p ()
4479 || !target->threads_executing)
4480 continue;
4481
4482 int fd = target->async_wait_fd ();
4483 FD_SET (fd, &readfds);
4484 if (nfds <= fd)
4485 nfds = fd + 1;
4486 }
4487
4488 if (nfds == 0)
4489 {
4490 /* No waitable targets left. All must be stopped. */
4491 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4492 }
4493
4494 QUIT;
4495
4496 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4497 if (numfds < 0)
4498 {
4499 if (errno == EINTR)
4500 continue;
4501 else
4502 perror_with_name ("interruptible_select");
4503 }
4504 }
4505}
4506
372316f1
PA
4507/* Save the thread's event and stop reason to process it later. */
4508
4509static void
5b6d1e4f 4510save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4511{
edbcda09
SM
4512 infrun_log_debug ("saving status %s for %d.%ld.%ld",
4513 target_waitstatus_to_string (ws).c_str (),
4514 tp->ptid.pid (),
4515 tp->ptid.lwp (),
4516 tp->ptid.tid ());
372316f1
PA
4517
4518 /* Record for later. */
4519 tp->suspend.waitstatus = *ws;
4520 tp->suspend.waitstatus_pending_p = 1;
4521
00431a78 4522 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4523 const address_space *aspace = regcache->aspace ();
372316f1
PA
4524
4525 if (ws->kind == TARGET_WAITKIND_STOPPED
4526 && ws->value.sig == GDB_SIGNAL_TRAP)
4527 {
4528 CORE_ADDR pc = regcache_read_pc (regcache);
4529
4530 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4531
18493a00
PA
4532 scoped_restore_current_thread restore_thread;
4533 switch_to_thread (tp);
4534
4535 if (target_stopped_by_watchpoint ())
372316f1
PA
4536 {
4537 tp->suspend.stop_reason
4538 = TARGET_STOPPED_BY_WATCHPOINT;
4539 }
4540 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4541 && target_stopped_by_sw_breakpoint ())
372316f1
PA
4542 {
4543 tp->suspend.stop_reason
4544 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4545 }
4546 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4547 && target_stopped_by_hw_breakpoint ())
372316f1
PA
4548 {
4549 tp->suspend.stop_reason
4550 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4551 }
4552 else if (!target_supports_stopped_by_hw_breakpoint ()
4553 && hardware_breakpoint_inserted_here_p (aspace,
4554 pc))
4555 {
4556 tp->suspend.stop_reason
4557 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4558 }
4559 else if (!target_supports_stopped_by_sw_breakpoint ()
4560 && software_breakpoint_inserted_here_p (aspace,
4561 pc))
4562 {
4563 tp->suspend.stop_reason
4564 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4565 }
4566 else if (!thread_has_single_step_breakpoints_set (tp)
4567 && currently_stepping (tp))
4568 {
4569 tp->suspend.stop_reason
4570 = TARGET_STOPPED_BY_SINGLE_STEP;
4571 }
4572 }
4573}
4574
293b3ebc
TBA
4575/* Mark the non-executing threads accordingly. In all-stop, all
4576 threads of all processes are stopped when we get any event
4577 reported. In non-stop mode, only the event thread stops. */
4578
4579static void
4580mark_non_executing_threads (process_stratum_target *target,
4581 ptid_t event_ptid,
4582 struct target_waitstatus ws)
4583{
4584 ptid_t mark_ptid;
4585
4586 if (!target_is_non_stop_p ())
4587 mark_ptid = minus_one_ptid;
4588 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4589 || ws.kind == TARGET_WAITKIND_EXITED)
4590 {
4591 /* If we're handling a process exit in non-stop mode, even
4592 though threads haven't been deleted yet, one would think
4593 that there is nothing to do, as threads of the dead process
4594 will be soon deleted, and threads of any other process were
4595 left running. However, on some targets, threads survive a
4596 process exit event. E.g., for the "checkpoint" command,
4597 when the current checkpoint/fork exits, linux-fork.c
4598 automatically switches to another fork from within
4599 target_mourn_inferior, by associating the same
4600 inferior/thread to another fork. We haven't mourned yet at
4601 this point, but we must mark any threads left in the
4602 process as not-executing so that finish_thread_state marks
4603 them stopped (in the user's perspective) if/when we present
4604 the stop to the user. */
4605 mark_ptid = ptid_t (event_ptid.pid ());
4606 }
4607 else
4608 mark_ptid = event_ptid;
4609
4610 set_executing (target, mark_ptid, false);
4611
4612 /* Likewise the resumed flag. */
4613 set_resumed (target, mark_ptid, false);
4614}
4615
6efcd9a8 4616/* See infrun.h. */
372316f1 4617
6efcd9a8 4618void
372316f1
PA
4619stop_all_threads (void)
4620{
4621 /* We may need multiple passes to discover all threads. */
4622 int pass;
4623 int iterations = 0;
372316f1 4624
53cccef1 4625 gdb_assert (exists_non_stop_target ());
372316f1 4626
edbcda09 4627 infrun_log_debug ("stop_all_threads");
372316f1 4628
00431a78 4629 scoped_restore_current_thread restore_thread;
372316f1 4630
6ad82919
TBA
4631 /* Enable thread events of all targets. */
4632 for (auto *target : all_non_exited_process_targets ())
4633 {
4634 switch_to_target_no_thread (target);
4635 target_thread_events (true);
4636 }
4637
4638 SCOPE_EXIT
4639 {
4640 /* Disable thread events of all targets. */
4641 for (auto *target : all_non_exited_process_targets ())
4642 {
4643 switch_to_target_no_thread (target);
4644 target_thread_events (false);
4645 }
4646
edbcda09
SM
4647
4648 infrun_log_debug ("stop_all_threads done");
6ad82919 4649 };
65706a29 4650
372316f1
PA
4651 /* Request threads to stop, and then wait for the stops. Because
4652 threads we already know about can spawn more threads while we're
4653 trying to stop them, and we only learn about new threads when we
4654 update the thread list, do this in a loop, and keep iterating
4655 until two passes find no threads that need to be stopped. */
4656 for (pass = 0; pass < 2; pass++, iterations++)
4657 {
edbcda09
SM
4658 infrun_log_debug ("stop_all_threads, pass=%d, iterations=%d",
4659 pass, iterations);
372316f1
PA
4660 while (1)
4661 {
29d6859f 4662 int waits_needed = 0;
372316f1 4663
a05575d3
TBA
4664 for (auto *target : all_non_exited_process_targets ())
4665 {
4666 switch_to_target_no_thread (target);
4667 update_thread_list ();
4668 }
372316f1
PA
4669
4670 /* Go through all threads looking for threads that we need
4671 to tell the target to stop. */
08036331 4672 for (thread_info *t : all_non_exited_threads ())
372316f1 4673 {
53cccef1
TBA
4674 /* For a single-target setting with an all-stop target,
4675 we would not even arrive here. For a multi-target
4676 setting, until GDB is able to handle a mixture of
4677 all-stop and non-stop targets, simply skip all-stop
4678 targets' threads. This should be fine due to the
4679 protection of 'check_multi_target_resumption'. */
4680
4681 switch_to_thread_no_regs (t);
4682 if (!target_is_non_stop_p ())
4683 continue;
4684
372316f1
PA
4685 if (t->executing)
4686 {
4687 /* If already stopping, don't request a stop again.
4688 We just haven't seen the notification yet. */
4689 if (!t->stop_requested)
4690 {
edbcda09
SM
4691 infrun_log_debug (" %s executing, need stop",
4692 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4693 target_stop (t->ptid);
4694 t->stop_requested = 1;
4695 }
4696 else
4697 {
edbcda09
SM
4698 infrun_log_debug (" %s executing, already stopping",
4699 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4700 }
4701
4702 if (t->stop_requested)
29d6859f 4703 waits_needed++;
372316f1
PA
4704 }
4705 else
4706 {
edbcda09
SM
4707 infrun_log_debug (" %s not executing",
4708 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4709
4710 /* The thread may be not executing, but still be
4711 resumed with a pending status to process. */
719546c4 4712 t->resumed = false;
372316f1
PA
4713 }
4714 }
4715
29d6859f 4716 if (waits_needed == 0)
372316f1
PA
4717 break;
4718
4719 /* If we find new threads on the second iteration, restart
4720 over. We want to see two iterations in a row with all
4721 threads stopped. */
4722 if (pass > 0)
4723 pass = -1;
4724
29d6859f 4725 for (int i = 0; i < waits_needed; i++)
c29705b7 4726 {
29d6859f 4727 wait_one_event event = wait_one ();
a05575d3 4728
edbcda09
SM
4729 infrun_log_debug ("%s %s\n",
4730 target_waitstatus_to_string (&event.ws).c_str (),
4731 target_pid_to_str (event.ptid).c_str ());
a05575d3 4732
29d6859f 4733 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
a05575d3 4734 {
29d6859f
LM
4735 /* All resumed threads exited. */
4736 break;
a05575d3 4737 }
29d6859f
LM
4738 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4739 || event.ws.kind == TARGET_WAITKIND_EXITED
4740 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
6efcd9a8 4741 {
29d6859f 4742 /* One thread/process exited/signalled. */
6efcd9a8 4743
29d6859f 4744 thread_info *t = nullptr;
372316f1 4745
29d6859f
LM
4746 /* The target may have reported just a pid. If so, try
4747 the first non-exited thread. */
4748 if (event.ptid.is_pid ())
372316f1 4749 {
29d6859f
LM
4750 int pid = event.ptid.pid ();
4751 inferior *inf = find_inferior_pid (event.target, pid);
4752 for (thread_info *tp : inf->non_exited_threads ())
372316f1 4753 {
29d6859f
LM
4754 t = tp;
4755 break;
372316f1 4756 }
29d6859f
LM
4757
4758 /* If there is no available thread, the event would
4759 have to be appended to a per-inferior event list,
4760 which does not exist (and if it did, we'd have
4761 to adjust run control command to be able to
4762 resume such an inferior). We assert here instead
4763 of going into an infinite loop. */
4764 gdb_assert (t != nullptr);
4765
edbcda09
SM
4766 infrun_log_debug ("using %s\n",
4767 target_pid_to_str (t->ptid).c_str ());
29d6859f
LM
4768 }
4769 else
4770 {
4771 t = find_thread_ptid (event.target, event.ptid);
4772 /* Check if this is the first time we see this thread.
4773 Don't bother adding if it individually exited. */
4774 if (t == nullptr
4775 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4776 t = add_thread (event.target, event.ptid);
4777 }
4778
4779 if (t != nullptr)
4780 {
4781 /* Set the threads as non-executing to avoid
4782 another stop attempt on them. */
4783 switch_to_thread_no_regs (t);
4784 mark_non_executing_threads (event.target, event.ptid,
4785 event.ws);
4786 save_waitstatus (t, &event.ws);
4787 t->stop_requested = false;
372316f1
PA
4788 }
4789 }
4790 else
4791 {
29d6859f
LM
4792 thread_info *t = find_thread_ptid (event.target, event.ptid);
4793 if (t == NULL)
4794 t = add_thread (event.target, event.ptid);
372316f1 4795
29d6859f
LM
4796 t->stop_requested = 0;
4797 t->executing = 0;
4798 t->resumed = false;
4799 t->control.may_range_step = 0;
4800
4801 /* This may be the first time we see the inferior report
4802 a stop. */
4803 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4804 if (inf->needs_setup)
372316f1 4805 {
29d6859f
LM
4806 switch_to_thread_no_regs (t);
4807 setup_inferior (0);
372316f1
PA
4808 }
4809
29d6859f
LM
4810 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4811 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1 4812 {
29d6859f
LM
4813 /* We caught the event that we intended to catch, so
4814 there's no event pending. */
4815 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4816 t->suspend.waitstatus_pending_p = 0;
4817
9844051a 4818 if (displaced_step_finish (t, GDB_SIGNAL_0) < 0)
29d6859f
LM
4819 {
4820 /* Add it back to the step-over queue. */
edbcda09
SM
4821 infrun_log_debug ("displaced-step of %s "
4822 "canceled: adding back to the "
4823 "step-over queue\n",
4824 target_pid_to_str (t->ptid).c_str ());
4825
29d6859f 4826 t->control.trap_expected = 0;
7bd43605 4827 global_thread_step_over_chain_enqueue (t);
29d6859f 4828 }
372316f1 4829 }
29d6859f
LM
4830 else
4831 {
4832 enum gdb_signal sig;
4833 struct regcache *regcache;
372316f1 4834
29d6859f
LM
4835 if (debug_infrun)
4836 {
4837 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4838
edbcda09
SM
4839 infrun_log_debug ("target_wait %s, saving "
4840 "status for %d.%ld.%ld\n",
4841 statstr.c_str (),
4842 t->ptid.pid (),
4843 t->ptid.lwp (),
4844 t->ptid.tid ());
29d6859f
LM
4845 }
4846
4847 /* Record for later. */
4848 save_waitstatus (t, &event.ws);
4849
4850 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4851 ? event.ws.value.sig : GDB_SIGNAL_0);
4852
9844051a 4853 if (displaced_step_finish (t, sig) < 0)
29d6859f
LM
4854 {
4855 /* Add it back to the step-over queue. */
4856 t->control.trap_expected = 0;
7bd43605 4857 global_thread_step_over_chain_enqueue (t);
29d6859f
LM
4858 }
4859
4860 regcache = get_thread_regcache (t);
4861 t->suspend.stop_pc = regcache_read_pc (regcache);
4862
edbcda09
SM
4863 infrun_log_debug ("saved stop_pc=%s for %s "
4864 "(currently_stepping=%d)\n",
4865 paddress (target_gdbarch (),
4866 t->suspend.stop_pc),
4867 target_pid_to_str (t->ptid).c_str (),
4868 currently_stepping (t));
372316f1
PA
4869 }
4870 }
4871 }
4872 }
4873 }
372316f1
PA
4874}
4875
f4836ba9
PA
4876/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4877
4878static int
4879handle_no_resumed (struct execution_control_state *ecs)
4880{
3b12939d 4881 if (target_can_async_p ())
f4836ba9 4882 {
3b12939d 4883 int any_sync = 0;
f4836ba9 4884
2dab0c7b 4885 for (ui *ui : all_uis ())
3b12939d
PA
4886 {
4887 if (ui->prompt_state == PROMPT_BLOCKED)
4888 {
4889 any_sync = 1;
4890 break;
4891 }
4892 }
4893 if (!any_sync)
4894 {
4895 /* There were no unwaited-for children left in the target, but,
4896 we're not synchronously waiting for events either. Just
4897 ignore. */
4898
edbcda09 4899 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
3b12939d
PA
4900 prepare_to_wait (ecs);
4901 return 1;
4902 }
f4836ba9
PA
4903 }
4904
4905 /* Otherwise, if we were running a synchronous execution command, we
4906 may need to cancel it and give the user back the terminal.
4907
4908 In non-stop mode, the target can't tell whether we've already
4909 consumed previous stop events, so it can end up sending us a
4910 no-resumed event like so:
4911
4912 #0 - thread 1 is left stopped
4913
4914 #1 - thread 2 is resumed and hits breakpoint
4915 -> TARGET_WAITKIND_STOPPED
4916
4917 #2 - thread 3 is resumed and exits
4918 this is the last resumed thread, so
4919 -> TARGET_WAITKIND_NO_RESUMED
4920
4921 #3 - gdb processes stop for thread 2 and decides to re-resume
4922 it.
4923
4924 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4925 thread 2 is now resumed, so the event should be ignored.
4926
4927 IOW, if the stop for thread 2 doesn't end a foreground command,
4928 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4929 event. But it could be that the event meant that thread 2 itself
4930 (or whatever other thread was the last resumed thread) exited.
4931
4932 To address this we refresh the thread list and check whether we
4933 have resumed threads _now_. In the example above, this removes
4934 thread 3 from the thread list. If thread 2 was re-resumed, we
4935 ignore this event. If we find no thread resumed, then we cancel
2ec0f7ff
PA
4936 the synchronous command and show "no unwaited-for " to the
4937 user. */
f4836ba9 4938
aecd6cb8 4939 inferior *curr_inf = current_inferior ();
2ec0f7ff 4940
aecd6cb8
PA
4941 scoped_restore_current_thread restore_thread;
4942
4943 for (auto *target : all_non_exited_process_targets ())
4944 {
4945 switch_to_target_no_thread (target);
4946 update_thread_list ();
4947 }
4948
4949 /* If:
4950
4951 - the current target has no thread executing, and
4952 - the current inferior is native, and
4953 - the current inferior is the one which has the terminal, and
4954 - we did nothing,
4955
4956 then a Ctrl-C from this point on would remain stuck in the
4957 kernel, until a thread resumes and dequeues it. That would
4958 result in the GDB CLI not reacting to Ctrl-C, not able to
4959 interrupt the program. To address this, if the current inferior
4960 no longer has any thread executing, we give the terminal to some
4961 other inferior that has at least one thread executing. */
4962 bool swap_terminal = true;
4963
4964 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4965 whether to report it to the user. */
4966 bool ignore_event = false;
2ec0f7ff
PA
4967
4968 for (thread_info *thread : all_non_exited_threads ())
f4836ba9 4969 {
aecd6cb8
PA
4970 if (swap_terminal && thread->executing)
4971 {
4972 if (thread->inf != curr_inf)
4973 {
4974 target_terminal::ours ();
4975
4976 switch_to_thread (thread);
4977 target_terminal::inferior ();
4978 }
4979 swap_terminal = false;
4980 }
4981
4982 if (!ignore_event
4983 && (thread->executing
4984 || thread->suspend.waitstatus_pending_p))
f4836ba9 4985 {
2ec0f7ff
PA
4986 /* Either there were no unwaited-for children left in the
4987 target at some point, but there are now, or some target
4988 other than the eventing one has unwaited-for children
4989 left. Just ignore. */
edbcda09
SM
4990 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED "
4991 "(ignoring: found resumed)\n");
aecd6cb8
PA
4992
4993 ignore_event = true;
f4836ba9 4994 }
aecd6cb8
PA
4995
4996 if (ignore_event && !swap_terminal)
4997 break;
4998 }
4999
5000 if (ignore_event)
5001 {
5002 switch_to_inferior_no_thread (curr_inf);
5003 prepare_to_wait (ecs);
5004 return 1;
f4836ba9
PA
5005 }
5006
5007 /* Go ahead and report the event. */
5008 return 0;
5009}
5010
05ba8510
PA
5011/* Given an execution control state that has been freshly filled in by
5012 an event from the inferior, figure out what it means and take
5013 appropriate action.
5014
5015 The alternatives are:
5016
22bcd14b 5017 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5018 debugger.
5019
5020 2) keep_going and return; to wait for the next event (set
5021 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5022 once). */
c906108c 5023
ec9499be 5024static void
595915c1 5025handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5026{
595915c1
TT
5027 /* Make sure that all temporary struct value objects that were
5028 created during the handling of the event get deleted at the
5029 end. */
5030 scoped_value_mark free_values;
5031
d6b48e9c
PA
5032 enum stop_kind stop_soon;
5033
edbcda09 5034 infrun_log_debug ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
c29705b7 5035
28736962
PA
5036 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5037 {
5038 /* We had an event in the inferior, but we are not interested in
5039 handling it at this level. The lower layers have already
5040 done what needs to be done, if anything.
5041
5042 One of the possible circumstances for this is when the
5043 inferior produces output for the console. The inferior has
5044 not stopped, and we are ignoring the event. Another possible
5045 circumstance is any event which the lower level knows will be
5046 reported multiple times without an intervening resume. */
28736962
PA
5047 prepare_to_wait (ecs);
5048 return;
5049 }
5050
65706a29
PA
5051 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5052 {
65706a29
PA
5053 prepare_to_wait (ecs);
5054 return;
5055 }
5056
0e5bf2a8 5057 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5058 && handle_no_resumed (ecs))
5059 return;
0e5bf2a8 5060
5b6d1e4f
PA
5061 /* Cache the last target/ptid/waitstatus. */
5062 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5063
ca005067 5064 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5065 stop_stack_dummy = STOP_NONE;
ca005067 5066
0e5bf2a8
PA
5067 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5068 {
5069 /* No unwaited-for children left. IOW, all resumed children
5070 have exited. */
0e5bf2a8 5071 stop_print_frame = 0;
22bcd14b 5072 stop_waiting (ecs);
0e5bf2a8
PA
5073 return;
5074 }
5075
8c90c137 5076 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5077 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5078 {
5b6d1e4f 5079 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5080 /* If it's a new thread, add it to the thread database. */
5081 if (ecs->event_thread == NULL)
5b6d1e4f 5082 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5083
5084 /* Disable range stepping. If the next step request could use a
5085 range, this will be end up re-enabled then. */
5086 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5087 }
88ed393a
JK
5088
5089 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5090 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5091
5092 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5093 reinit_frame_cache ();
5094
28736962
PA
5095 breakpoint_retire_moribund ();
5096
2b009048
DJ
5097 /* First, distinguish signals caused by the debugger from signals
5098 that have to do with the program's own actions. Note that
5099 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5100 on the operating system version. Here we detect when a SIGILL or
5101 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5102 something similar for SIGSEGV, since a SIGSEGV will be generated
5103 when we're trying to execute a breakpoint instruction on a
5104 non-executable stack. This happens for call dummy breakpoints
5105 for architectures like SPARC that place call dummies on the
5106 stack. */
2b009048 5107 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5108 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5109 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5110 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5111 {
00431a78 5112 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5113
a01bda52 5114 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5115 regcache_read_pc (regcache)))
5116 {
edbcda09 5117 infrun_log_debug ("Treating signal as SIGTRAP");
a493e3e2 5118 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5119 }
2b009048
DJ
5120 }
5121
293b3ebc 5122 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5123
488f131b
JB
5124 switch (ecs->ws.kind)
5125 {
5126 case TARGET_WAITKIND_LOADED:
00431a78 5127 context_switch (ecs);
b0f4b84b
DJ
5128 /* Ignore gracefully during startup of the inferior, as it might
5129 be the shell which has just loaded some objects, otherwise
5130 add the symbols for the newly loaded objects. Also ignore at
5131 the beginning of an attach or remote session; we will query
5132 the full list of libraries once the connection is
5133 established. */
4f5d7f63 5134
00431a78 5135 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5136 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5137 {
edcc5120
TT
5138 struct regcache *regcache;
5139
00431a78 5140 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5141
5142 handle_solib_event ();
5143
5144 ecs->event_thread->control.stop_bpstat
a01bda52 5145 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5146 ecs->event_thread->suspend.stop_pc,
5147 ecs->event_thread, &ecs->ws);
ab04a2af 5148
c65d6b55
PA
5149 if (handle_stop_requested (ecs))
5150 return;
5151
ce12b012 5152 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5153 {
5154 /* A catchpoint triggered. */
94c57d6a
PA
5155 process_event_stop_test (ecs);
5156 return;
edcc5120 5157 }
488f131b 5158
b0f4b84b
DJ
5159 /* If requested, stop when the dynamic linker notifies
5160 gdb of events. This allows the user to get control
5161 and place breakpoints in initializer routines for
5162 dynamically loaded objects (among other things). */
a493e3e2 5163 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5164 if (stop_on_solib_events)
5165 {
55409f9d
DJ
5166 /* Make sure we print "Stopped due to solib-event" in
5167 normal_stop. */
5168 stop_print_frame = 1;
5169
22bcd14b 5170 stop_waiting (ecs);
b0f4b84b
DJ
5171 return;
5172 }
488f131b 5173 }
b0f4b84b
DJ
5174
5175 /* If we are skipping through a shell, or through shared library
5176 loading that we aren't interested in, resume the program. If
5c09a2c5 5177 we're running the program normally, also resume. */
b0f4b84b
DJ
5178 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5179 {
74960c60
VP
5180 /* Loading of shared libraries might have changed breakpoint
5181 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5182 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5183 insert_breakpoints ();
64ce06e4 5184 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5185 prepare_to_wait (ecs);
5186 return;
5187 }
5188
5c09a2c5
PA
5189 /* But stop if we're attaching or setting up a remote
5190 connection. */
5191 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5192 || stop_soon == STOP_QUIETLY_REMOTE)
5193 {
edbcda09 5194 infrun_log_debug ("quietly stopped");
22bcd14b 5195 stop_waiting (ecs);
5c09a2c5
PA
5196 return;
5197 }
5198
5199 internal_error (__FILE__, __LINE__,
5200 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5201
488f131b 5202 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5203 if (handle_stop_requested (ecs))
5204 return;
00431a78 5205 context_switch (ecs);
64ce06e4 5206 resume (GDB_SIGNAL_0);
488f131b
JB
5207 prepare_to_wait (ecs);
5208 return;
c5aa993b 5209
65706a29 5210 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5211 if (handle_stop_requested (ecs))
5212 return;
00431a78 5213 context_switch (ecs);
65706a29
PA
5214 if (!switch_back_to_stepped_thread (ecs))
5215 keep_going (ecs);
5216 return;
5217
488f131b 5218 case TARGET_WAITKIND_EXITED:
940c3c06 5219 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5220 {
5221 /* Depending on the system, ecs->ptid may point to a thread or
5222 to a process. On some targets, target_mourn_inferior may
5223 need to have access to the just-exited thread. That is the
5224 case of GNU/Linux's "checkpoint" support, for example.
5225 Call the switch_to_xxx routine as appropriate. */
5226 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5227 if (thr != nullptr)
5228 switch_to_thread (thr);
5229 else
5230 {
5231 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5232 switch_to_inferior_no_thread (inf);
5233 }
5234 }
6c95b8df 5235 handle_vfork_child_exec_or_exit (0);
223ffa71 5236 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5237
0c557179
SDJ
5238 /* Clearing any previous state of convenience variables. */
5239 clear_exit_convenience_vars ();
5240
940c3c06
PA
5241 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5242 {
5243 /* Record the exit code in the convenience variable $_exitcode, so
5244 that the user can inspect this again later. */
5245 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5246 (LONGEST) ecs->ws.value.integer);
5247
5248 /* Also record this in the inferior itself. */
5249 current_inferior ()->has_exit_code = 1;
5250 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5251
98eb56a4
PA
5252 /* Support the --return-child-result option. */
5253 return_child_result_value = ecs->ws.value.integer;
5254
76727919 5255 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5256 }
5257 else
0c557179 5258 {
00431a78 5259 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5260
5261 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5262 {
5263 /* Set the value of the internal variable $_exitsignal,
5264 which holds the signal uncaught by the inferior. */
5265 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5266 gdbarch_gdb_signal_to_target (gdbarch,
5267 ecs->ws.value.sig));
5268 }
5269 else
5270 {
5271 /* We don't have access to the target's method used for
5272 converting between signal numbers (GDB's internal
5273 representation <-> target's representation).
5274 Therefore, we cannot do a good job at displaying this
5275 information to the user. It's better to just warn
5276 her about it (if infrun debugging is enabled), and
5277 give up. */
edbcda09
SM
5278 infrun_log_debug ("Cannot fill $_exitsignal with the correct "
5279 "signal number.");
0c557179
SDJ
5280 }
5281
76727919 5282 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5283 }
8cf64490 5284
488f131b 5285 gdb_flush (gdb_stdout);
bc1e6c81 5286 target_mourn_inferior (inferior_ptid);
488f131b 5287 stop_print_frame = 0;
22bcd14b 5288 stop_waiting (ecs);
488f131b 5289 return;
c5aa993b 5290
488f131b 5291 case TARGET_WAITKIND_FORKED:
deb3b17b 5292 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5293 /* Check whether the inferior is displaced stepping. */
5294 {
00431a78 5295 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5296 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5297
5298 /* If checking displaced stepping is supported, and thread
5299 ecs->ptid is displaced stepping. */
9844051a 5300 if (displaced_step_in_progress (ecs->event_thread))
e2d96639
YQ
5301 {
5302 struct inferior *parent_inf
5b6d1e4f 5303 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5304 struct regcache *child_regcache;
5305 CORE_ADDR parent_pc;
5306
d8d83535
SM
5307 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5308 {
9844051a
SM
5309 // struct displaced_step_inferior_state *displaced
5310 // = get_displaced_stepping_state (parent_inf);
d8d83535
SM
5311
5312 /* Restore scratch pad for child process. */
9844051a
SM
5313 //displaced_step_restore (displaced, ecs->ws.value.related_pid);
5314 // FIXME: we should restore all the buffers that were currently in use
d8d83535
SM
5315 }
5316
e2d96639
YQ
5317 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5318 indicating that the displaced stepping of syscall instruction
5319 has been done. Perform cleanup for parent process here. Note
5320 that this operation also cleans up the child process for vfork,
5321 because their pages are shared. */
9844051a 5322 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5323 /* Start a new step-over in another thread if there's one
5324 that needs it. */
5325 start_step_over ();
e2d96639 5326
e2d96639
YQ
5327 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5328 the child's PC is also within the scratchpad. Set the child's PC
5329 to the parent's PC value, which has already been fixed up.
5330 FIXME: we use the parent's aspace here, although we're touching
5331 the child, because the child hasn't been added to the inferior
5332 list yet at this point. */
5333
5334 child_regcache
5b6d1e4f
PA
5335 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5336 ecs->ws.value.related_pid,
e2d96639
YQ
5337 gdbarch,
5338 parent_inf->aspace);
5339 /* Read PC value of parent process. */
5340 parent_pc = regcache_read_pc (regcache);
5341
5342 if (debug_displaced)
5343 fprintf_unfiltered (gdb_stdlog,
5344 "displaced: write child pc from %s to %s\n",
5345 paddress (gdbarch,
5346 regcache_read_pc (child_regcache)),
5347 paddress (gdbarch, parent_pc));
5348
5349 regcache_write_pc (child_regcache, parent_pc);
5350 }
5351 }
5352
00431a78 5353 context_switch (ecs);
5a2901d9 5354
b242c3c2
PA
5355 /* Immediately detach breakpoints from the child before there's
5356 any chance of letting the user delete breakpoints from the
5357 breakpoint lists. If we don't do this early, it's easy to
5358 leave left over traps in the child, vis: "break foo; catch
5359 fork; c; <fork>; del; c; <child calls foo>". We only follow
5360 the fork on the last `continue', and by that time the
5361 breakpoint at "foo" is long gone from the breakpoint table.
5362 If we vforked, then we don't need to unpatch here, since both
5363 parent and child are sharing the same memory pages; we'll
5364 need to unpatch at follow/detach time instead to be certain
5365 that new breakpoints added between catchpoint hit time and
5366 vfork follow are detached. */
5367 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5368 {
b242c3c2
PA
5369 /* This won't actually modify the breakpoint list, but will
5370 physically remove the breakpoints from the child. */
d80ee84f 5371 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5372 }
5373
34b7e8a6 5374 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5375
e58b0e63
PA
5376 /* In case the event is caught by a catchpoint, remember that
5377 the event is to be followed at the next resume of the thread,
5378 and not immediately. */
5379 ecs->event_thread->pending_follow = ecs->ws;
5380
f2ffa92b
PA
5381 ecs->event_thread->suspend.stop_pc
5382 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5383
16c381f0 5384 ecs->event_thread->control.stop_bpstat
a01bda52 5385 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5386 ecs->event_thread->suspend.stop_pc,
5387 ecs->event_thread, &ecs->ws);
675bf4cb 5388
c65d6b55
PA
5389 if (handle_stop_requested (ecs))
5390 return;
5391
ce12b012
PA
5392 /* If no catchpoint triggered for this, then keep going. Note
5393 that we're interested in knowing the bpstat actually causes a
5394 stop, not just if it may explain the signal. Software
5395 watchpoints, for example, always appear in the bpstat. */
5396 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5397 {
5ab2fbf1 5398 bool follow_child
3e43a32a 5399 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5400
a493e3e2 5401 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5402
5b6d1e4f
PA
5403 process_stratum_target *targ
5404 = ecs->event_thread->inf->process_target ();
5405
5ab2fbf1 5406 bool should_resume = follow_fork ();
e58b0e63 5407
5b6d1e4f
PA
5408 /* Note that one of these may be an invalid pointer,
5409 depending on detach_fork. */
00431a78 5410 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5411 thread_info *child
5412 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5413
a2077e25
PA
5414 /* At this point, the parent is marked running, and the
5415 child is marked stopped. */
5416
5417 /* If not resuming the parent, mark it stopped. */
5418 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5419 parent->set_running (false);
a2077e25
PA
5420
5421 /* If resuming the child, mark it running. */
5422 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5423 child->set_running (true);
a2077e25 5424
6c95b8df 5425 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5426 if (!detach_fork && (non_stop
5427 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5428 {
5429 if (follow_child)
5430 switch_to_thread (parent);
5431 else
5432 switch_to_thread (child);
5433
5434 ecs->event_thread = inferior_thread ();
5435 ecs->ptid = inferior_ptid;
5436 keep_going (ecs);
5437 }
5438
5439 if (follow_child)
5440 switch_to_thread (child);
5441 else
5442 switch_to_thread (parent);
5443
e58b0e63
PA
5444 ecs->event_thread = inferior_thread ();
5445 ecs->ptid = inferior_ptid;
5446
5447 if (should_resume)
5448 keep_going (ecs);
5449 else
22bcd14b 5450 stop_waiting (ecs);
04e68871
DJ
5451 return;
5452 }
94c57d6a
PA
5453 process_event_stop_test (ecs);
5454 return;
488f131b 5455
6c95b8df
PA
5456 case TARGET_WAITKIND_VFORK_DONE:
5457 /* Done with the shared memory region. Re-insert breakpoints in
5458 the parent, and keep going. */
5459
00431a78 5460 context_switch (ecs);
6c95b8df
PA
5461
5462 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5463 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5464
5465 if (handle_stop_requested (ecs))
5466 return;
5467
6c95b8df
PA
5468 /* This also takes care of reinserting breakpoints in the
5469 previously locked inferior. */
5470 keep_going (ecs);
5471 return;
5472
488f131b 5473 case TARGET_WAITKIND_EXECD:
488f131b 5474
cbd2b4e3
PA
5475 /* Note we can't read registers yet (the stop_pc), because we
5476 don't yet know the inferior's post-exec architecture.
5477 'stop_pc' is explicitly read below instead. */
00431a78 5478 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5479
6c95b8df
PA
5480 /* Do whatever is necessary to the parent branch of the vfork. */
5481 handle_vfork_child_exec_or_exit (1);
5482
795e548f
PA
5483 /* This causes the eventpoints and symbol table to be reset.
5484 Must do this now, before trying to determine whether to
5485 stop. */
71b43ef8 5486 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5487
17d8546e
DB
5488 /* In follow_exec we may have deleted the original thread and
5489 created a new one. Make sure that the event thread is the
5490 execd thread for that case (this is a nop otherwise). */
5491 ecs->event_thread = inferior_thread ();
5492
f2ffa92b
PA
5493 ecs->event_thread->suspend.stop_pc
5494 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5495
16c381f0 5496 ecs->event_thread->control.stop_bpstat
a01bda52 5497 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5498 ecs->event_thread->suspend.stop_pc,
5499 ecs->event_thread, &ecs->ws);
795e548f 5500
71b43ef8
PA
5501 /* Note that this may be referenced from inside
5502 bpstat_stop_status above, through inferior_has_execd. */
5503 xfree (ecs->ws.value.execd_pathname);
5504 ecs->ws.value.execd_pathname = NULL;
5505
c65d6b55
PA
5506 if (handle_stop_requested (ecs))
5507 return;
5508
04e68871 5509 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5510 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5511 {
a493e3e2 5512 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5513 keep_going (ecs);
5514 return;
5515 }
94c57d6a
PA
5516 process_event_stop_test (ecs);
5517 return;
488f131b 5518
b4dc5ffa
MK
5519 /* Be careful not to try to gather much state about a thread
5520 that's in a syscall. It's frequently a losing proposition. */
488f131b 5521 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5522 /* Getting the current syscall number. */
94c57d6a
PA
5523 if (handle_syscall_event (ecs) == 0)
5524 process_event_stop_test (ecs);
5525 return;
c906108c 5526
488f131b
JB
5527 /* Before examining the threads further, step this thread to
5528 get it entirely out of the syscall. (We get notice of the
5529 event when the thread is just on the verge of exiting a
5530 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5531 into user code.) */
488f131b 5532 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5533 if (handle_syscall_event (ecs) == 0)
5534 process_event_stop_test (ecs);
5535 return;
c906108c 5536
488f131b 5537 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5538 handle_signal_stop (ecs);
5539 return;
c906108c 5540
b2175913
MS
5541 case TARGET_WAITKIND_NO_HISTORY:
5542 /* Reverse execution: target ran out of history info. */
eab402df 5543
d1988021 5544 /* Switch to the stopped thread. */
00431a78 5545 context_switch (ecs);
edbcda09 5546 infrun_log_debug ("stopped");
d1988021 5547
34b7e8a6 5548 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5549 ecs->event_thread->suspend.stop_pc
5550 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5551
5552 if (handle_stop_requested (ecs))
5553 return;
5554
76727919 5555 gdb::observers::no_history.notify ();
22bcd14b 5556 stop_waiting (ecs);
b2175913 5557 return;
488f131b 5558 }
4f5d7f63
PA
5559}
5560
372316f1
PA
5561/* Restart threads back to what they were trying to do back when we
5562 paused them for an in-line step-over. The EVENT_THREAD thread is
5563 ignored. */
4d9d9d04
PA
5564
5565static void
372316f1
PA
5566restart_threads (struct thread_info *event_thread)
5567{
372316f1
PA
5568 /* In case the instruction just stepped spawned a new thread. */
5569 update_thread_list ();
5570
08036331 5571 for (thread_info *tp : all_non_exited_threads ())
372316f1 5572 {
f3f8ece4
PA
5573 switch_to_thread_no_regs (tp);
5574
372316f1
PA
5575 if (tp == event_thread)
5576 {
edbcda09
SM
5577 infrun_log_debug ("restart threads: [%s] is event thread",
5578 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5579 continue;
5580 }
5581
5582 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5583 {
edbcda09
SM
5584 infrun_log_debug ("restart threads: [%s] not meant to be running",
5585 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5586 continue;
5587 }
5588
5589 if (tp->resumed)
5590 {
edbcda09
SM
5591 infrun_log_debug ("restart threads: [%s] resumed",
5592 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5593 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5594 continue;
5595 }
5596
5597 if (thread_is_in_step_over_chain (tp))
5598 {
edbcda09
SM
5599 infrun_log_debug ("restart threads: [%s] needs step-over",
5600 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5601 gdb_assert (!tp->resumed);
5602 continue;
5603 }
5604
5605
5606 if (tp->suspend.waitstatus_pending_p)
5607 {
edbcda09
SM
5608 infrun_log_debug ("restart threads: [%s] has pending status",
5609 target_pid_to_str (tp->ptid).c_str ());
719546c4 5610 tp->resumed = true;
372316f1
PA
5611 continue;
5612 }
5613
c65d6b55
PA
5614 gdb_assert (!tp->stop_requested);
5615
372316f1
PA
5616 /* If some thread needs to start a step-over at this point, it
5617 should still be in the step-over queue, and thus skipped
5618 above. */
5619 if (thread_still_needs_step_over (tp))
5620 {
5621 internal_error (__FILE__, __LINE__,
5622 "thread [%s] needs a step-over, but not in "
5623 "step-over queue\n",
a068643d 5624 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5625 }
5626
5627 if (currently_stepping (tp))
5628 {
edbcda09
SM
5629 infrun_log_debug ("restart threads: [%s] was stepping",
5630 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5631 keep_going_stepped_thread (tp);
5632 }
5633 else
5634 {
5635 struct execution_control_state ecss;
5636 struct execution_control_state *ecs = &ecss;
5637
edbcda09
SM
5638 infrun_log_debug ("restart threads: [%s] continuing",
5639 target_pid_to_str (tp->ptid).c_str ());
372316f1 5640 reset_ecs (ecs, tp);
00431a78 5641 switch_to_thread (tp);
372316f1
PA
5642 keep_going_pass_signal (ecs);
5643 }
5644 }
5645}
5646
5647/* Callback for iterate_over_threads. Find a resumed thread that has
5648 a pending waitstatus. */
5649
5650static int
5651resumed_thread_with_pending_status (struct thread_info *tp,
5652 void *arg)
5653{
5654 return (tp->resumed
5655 && tp->suspend.waitstatus_pending_p);
5656}
5657
5658/* Called when we get an event that may finish an in-line or
5659 out-of-line (displaced stepping) step-over started previously.
5660 Return true if the event is processed and we should go back to the
5661 event loop; false if the caller should continue processing the
5662 event. */
5663
5664static int
4d9d9d04
PA
5665finish_step_over (struct execution_control_state *ecs)
5666{
372316f1
PA
5667 int had_step_over_info;
5668
9844051a
SM
5669 displaced_step_finish (ecs->event_thread,
5670 ecs->event_thread->suspend.stop_signal);
4d9d9d04 5671
372316f1
PA
5672 had_step_over_info = step_over_info_valid_p ();
5673
5674 if (had_step_over_info)
4d9d9d04
PA
5675 {
5676 /* If we're stepping over a breakpoint with all threads locked,
5677 then only the thread that was stepped should be reporting
5678 back an event. */
5679 gdb_assert (ecs->event_thread->control.trap_expected);
5680
c65d6b55 5681 clear_step_over_info ();
4d9d9d04
PA
5682 }
5683
fbea99ea 5684 if (!target_is_non_stop_p ())
372316f1 5685 return 0;
4d9d9d04
PA
5686
5687 /* Start a new step-over in another thread if there's one that
5688 needs it. */
5689 start_step_over ();
372316f1
PA
5690
5691 /* If we were stepping over a breakpoint before, and haven't started
5692 a new in-line step-over sequence, then restart all other threads
5693 (except the event thread). We can't do this in all-stop, as then
5694 e.g., we wouldn't be able to issue any other remote packet until
5695 these other threads stop. */
5696 if (had_step_over_info && !step_over_info_valid_p ())
5697 {
5698 struct thread_info *pending;
5699
5700 /* If we only have threads with pending statuses, the restart
5701 below won't restart any thread and so nothing re-inserts the
5702 breakpoint we just stepped over. But we need it inserted
5703 when we later process the pending events, otherwise if
5704 another thread has a pending event for this breakpoint too,
5705 we'd discard its event (because the breakpoint that
5706 originally caused the event was no longer inserted). */
00431a78 5707 context_switch (ecs);
372316f1
PA
5708 insert_breakpoints ();
5709
5710 restart_threads (ecs->event_thread);
5711
5712 /* If we have events pending, go through handle_inferior_event
5713 again, picking up a pending event at random. This avoids
5714 thread starvation. */
5715
5716 /* But not if we just stepped over a watchpoint in order to let
5717 the instruction execute so we can evaluate its expression.
5718 The set of watchpoints that triggered is recorded in the
5719 breakpoint objects themselves (see bp->watchpoint_triggered).
5720 If we processed another event first, that other event could
5721 clobber this info. */
5722 if (ecs->event_thread->stepping_over_watchpoint)
5723 return 0;
5724
5725 pending = iterate_over_threads (resumed_thread_with_pending_status,
5726 NULL);
5727 if (pending != NULL)
5728 {
5729 struct thread_info *tp = ecs->event_thread;
5730 struct regcache *regcache;
5731
edbcda09
SM
5732 infrun_log_debug ("found resumed threads with "
5733 "pending events, saving status");
372316f1
PA
5734
5735 gdb_assert (pending != tp);
5736
5737 /* Record the event thread's event for later. */
5738 save_waitstatus (tp, &ecs->ws);
5739 /* This was cleared early, by handle_inferior_event. Set it
5740 so this pending event is considered by
5741 do_target_wait. */
719546c4 5742 tp->resumed = true;
372316f1
PA
5743
5744 gdb_assert (!tp->executing);
5745
00431a78 5746 regcache = get_thread_regcache (tp);
372316f1
PA
5747 tp->suspend.stop_pc = regcache_read_pc (regcache);
5748
edbcda09
SM
5749 infrun_log_debug ("saved stop_pc=%s for %s "
5750 "(currently_stepping=%d)\n",
5751 paddress (target_gdbarch (),
5752 tp->suspend.stop_pc),
5753 target_pid_to_str (tp->ptid).c_str (),
5754 currently_stepping (tp));
372316f1
PA
5755
5756 /* This in-line step-over finished; clear this so we won't
5757 start a new one. This is what handle_signal_stop would
5758 do, if we returned false. */
5759 tp->stepping_over_breakpoint = 0;
5760
5761 /* Wake up the event loop again. */
5762 mark_async_event_handler (infrun_async_inferior_event_token);
5763
5764 prepare_to_wait (ecs);
5765 return 1;
5766 }
5767 }
5768
5769 return 0;
4d9d9d04
PA
5770}
5771
4f5d7f63
PA
5772/* Come here when the program has stopped with a signal. */
5773
5774static void
5775handle_signal_stop (struct execution_control_state *ecs)
5776{
5777 struct frame_info *frame;
5778 struct gdbarch *gdbarch;
5779 int stopped_by_watchpoint;
5780 enum stop_kind stop_soon;
5781 int random_signal;
c906108c 5782
f0407826
DE
5783 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5784
c65d6b55
PA
5785 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5786
f0407826
DE
5787 /* Do we need to clean up the state of a thread that has
5788 completed a displaced single-step? (Doing so usually affects
5789 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5790 if (finish_step_over (ecs))
5791 return;
f0407826
DE
5792
5793 /* If we either finished a single-step or hit a breakpoint, but
5794 the user wanted this thread to be stopped, pretend we got a
5795 SIG0 (generic unsignaled stop). */
5796 if (ecs->event_thread->stop_requested
5797 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5798 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5799
f2ffa92b
PA
5800 ecs->event_thread->suspend.stop_pc
5801 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5802
527159b7 5803 if (debug_infrun)
237fc4c9 5804 {
00431a78 5805 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5806 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5807
f3f8ece4 5808 switch_to_thread (ecs->event_thread);
5af949e3 5809
edbcda09
SM
5810 infrun_log_debug ("stop_pc=%s",
5811 paddress (reg_gdbarch,
5812 ecs->event_thread->suspend.stop_pc));
d92524f1 5813 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5814 {
5815 CORE_ADDR addr;
abbb1732 5816
edbcda09 5817 infrun_log_debug ("stopped by watchpoint");
237fc4c9 5818
8b88a78e 5819 if (target_stopped_data_address (current_top_target (), &addr))
edbcda09
SM
5820 infrun_log_debug ("stopped data address=%s",
5821 paddress (reg_gdbarch, addr));
237fc4c9 5822 else
edbcda09 5823 infrun_log_debug ("(no data address available)");
237fc4c9
PA
5824 }
5825 }
527159b7 5826
36fa8042
PA
5827 /* This is originated from start_remote(), start_inferior() and
5828 shared libraries hook functions. */
00431a78 5829 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5830 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5831 {
00431a78 5832 context_switch (ecs);
edbcda09 5833 infrun_log_debug ("quietly stopped");
36fa8042 5834 stop_print_frame = 1;
22bcd14b 5835 stop_waiting (ecs);
36fa8042
PA
5836 return;
5837 }
5838
36fa8042
PA
5839 /* This originates from attach_command(). We need to overwrite
5840 the stop_signal here, because some kernels don't ignore a
5841 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5842 See more comments in inferior.h. On the other hand, if we
5843 get a non-SIGSTOP, report it to the user - assume the backend
5844 will handle the SIGSTOP if it should show up later.
5845
5846 Also consider that the attach is complete when we see a
5847 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5848 target extended-remote report it instead of a SIGSTOP
5849 (e.g. gdbserver). We already rely on SIGTRAP being our
5850 signal, so this is no exception.
5851
5852 Also consider that the attach is complete when we see a
5853 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5854 the target to stop all threads of the inferior, in case the
5855 low level attach operation doesn't stop them implicitly. If
5856 they weren't stopped implicitly, then the stub will report a
5857 GDB_SIGNAL_0, meaning: stopped for no particular reason
5858 other than GDB's request. */
5859 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5860 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5861 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5862 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5863 {
5864 stop_print_frame = 1;
22bcd14b 5865 stop_waiting (ecs);
36fa8042
PA
5866 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5867 return;
5868 }
5869
488f131b 5870 /* See if something interesting happened to the non-current thread. If
b40c7d58 5871 so, then switch to that thread. */
d7e15655 5872 if (ecs->ptid != inferior_ptid)
488f131b 5873 {
edbcda09 5874 infrun_log_debug ("context switch");
527159b7 5875
00431a78 5876 context_switch (ecs);
c5aa993b 5877
9a4105ab 5878 if (deprecated_context_hook)
00431a78 5879 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5880 }
c906108c 5881
568d6575
UW
5882 /* At this point, get hold of the now-current thread's frame. */
5883 frame = get_current_frame ();
5884 gdbarch = get_frame_arch (frame);
5885
2adfaa28 5886 /* Pull the single step breakpoints out of the target. */
af48d08f 5887 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5888 {
af48d08f 5889 struct regcache *regcache;
af48d08f 5890 CORE_ADDR pc;
2adfaa28 5891
00431a78 5892 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5893 const address_space *aspace = regcache->aspace ();
5894
af48d08f 5895 pc = regcache_read_pc (regcache);
34b7e8a6 5896
af48d08f
PA
5897 /* However, before doing so, if this single-step breakpoint was
5898 actually for another thread, set this thread up for moving
5899 past it. */
5900 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5901 aspace, pc))
5902 {
5903 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28 5904 {
edbcda09
SM
5905 infrun_log_debug ("[%s] hit another thread's single-step "
5906 "breakpoint",
5907 target_pid_to_str (ecs->ptid).c_str ());
af48d08f
PA
5908 ecs->hit_singlestep_breakpoint = 1;
5909 }
5910 }
5911 else
5912 {
edbcda09
SM
5913 infrun_log_debug ("[%s] hit its single-step breakpoint",
5914 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5915 }
488f131b 5916 }
af48d08f 5917 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5918
963f9c80
PA
5919 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5920 && ecs->event_thread->control.trap_expected
5921 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5922 stopped_by_watchpoint = 0;
5923 else
5924 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5925
5926 /* If necessary, step over this watchpoint. We'll be back to display
5927 it in a moment. */
5928 if (stopped_by_watchpoint
d92524f1 5929 && (target_have_steppable_watchpoint
568d6575 5930 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5931 {
488f131b
JB
5932 /* At this point, we are stopped at an instruction which has
5933 attempted to write to a piece of memory under control of
5934 a watchpoint. The instruction hasn't actually executed
5935 yet. If we were to evaluate the watchpoint expression
5936 now, we would get the old value, and therefore no change
5937 would seem to have occurred.
5938
5939 In order to make watchpoints work `right', we really need
5940 to complete the memory write, and then evaluate the
d983da9c
DJ
5941 watchpoint expression. We do this by single-stepping the
5942 target.
5943
7f89fd65 5944 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5945 it. For example, the PA can (with some kernel cooperation)
5946 single step over a watchpoint without disabling the watchpoint.
5947
5948 It is far more common to need to disable a watchpoint to step
5949 the inferior over it. If we have non-steppable watchpoints,
5950 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5951 disable all watchpoints.
5952
5953 Any breakpoint at PC must also be stepped over -- if there's
5954 one, it will have already triggered before the watchpoint
5955 triggered, and we either already reported it to the user, or
5956 it didn't cause a stop and we called keep_going. In either
5957 case, if there was a breakpoint at PC, we must be trying to
5958 step past it. */
5959 ecs->event_thread->stepping_over_watchpoint = 1;
5960 keep_going (ecs);
488f131b
JB
5961 return;
5962 }
5963
4e1c45ea 5964 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5965 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5966 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5967 ecs->event_thread->control.stop_step = 0;
488f131b 5968 stop_print_frame = 1;
488f131b 5969 stopped_by_random_signal = 0;
ddfe970e 5970 bpstat stop_chain = NULL;
488f131b 5971
edb3359d
DJ
5972 /* Hide inlined functions starting here, unless we just performed stepi or
5973 nexti. After stepi and nexti, always show the innermost frame (not any
5974 inline function call sites). */
16c381f0 5975 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5976 {
00431a78
PA
5977 const address_space *aspace
5978 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5979
5980 /* skip_inline_frames is expensive, so we avoid it if we can
5981 determine that the address is one where functions cannot have
5982 been inlined. This improves performance with inferiors that
5983 load a lot of shared libraries, because the solib event
5984 breakpoint is defined as the address of a function (i.e. not
5985 inline). Note that we have to check the previous PC as well
5986 as the current one to catch cases when we have just
5987 single-stepped off a breakpoint prior to reinstating it.
5988 Note that we're assuming that the code we single-step to is
5989 not inline, but that's not definitive: there's nothing
5990 preventing the event breakpoint function from containing
5991 inlined code, and the single-step ending up there. If the
5992 user had set a breakpoint on that inlined code, the missing
5993 skip_inline_frames call would break things. Fortunately
5994 that's an extremely unlikely scenario. */
f2ffa92b
PA
5995 if (!pc_at_non_inline_function (aspace,
5996 ecs->event_thread->suspend.stop_pc,
5997 &ecs->ws)
a210c238
MR
5998 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5999 && ecs->event_thread->control.trap_expected
6000 && pc_at_non_inline_function (aspace,
6001 ecs->event_thread->prev_pc,
09ac7c10 6002 &ecs->ws)))
1c5a993e 6003 {
f2ffa92b
PA
6004 stop_chain = build_bpstat_chain (aspace,
6005 ecs->event_thread->suspend.stop_pc,
6006 &ecs->ws);
00431a78 6007 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6008
6009 /* Re-fetch current thread's frame in case that invalidated
6010 the frame cache. */
6011 frame = get_current_frame ();
6012 gdbarch = get_frame_arch (frame);
6013 }
0574c78f 6014 }
edb3359d 6015
a493e3e2 6016 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6017 && ecs->event_thread->control.trap_expected
568d6575 6018 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6019 && currently_stepping (ecs->event_thread))
3352ef37 6020 {
b50d7442 6021 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6022 also on an instruction that needs to be stepped multiple
1777feb0 6023 times before it's been fully executing. E.g., architectures
3352ef37
AC
6024 with a delay slot. It needs to be stepped twice, once for
6025 the instruction and once for the delay slot. */
6026 int step_through_delay
568d6575 6027 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6028
edbcda09
SM
6029 if (step_through_delay)
6030 infrun_log_debug ("step through delay");
6031
16c381f0
JK
6032 if (ecs->event_thread->control.step_range_end == 0
6033 && step_through_delay)
3352ef37
AC
6034 {
6035 /* The user issued a continue when stopped at a breakpoint.
6036 Set up for another trap and get out of here. */
4e1c45ea 6037 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6038 keep_going (ecs);
6039 return;
6040 }
6041 else if (step_through_delay)
6042 {
6043 /* The user issued a step when stopped at a breakpoint.
6044 Maybe we should stop, maybe we should not - the delay
6045 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6046 case, don't decide that here, just set
6047 ecs->stepping_over_breakpoint, making sure we
6048 single-step again before breakpoints are re-inserted. */
4e1c45ea 6049 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6050 }
6051 }
6052
ab04a2af
TT
6053 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6054 handles this event. */
6055 ecs->event_thread->control.stop_bpstat
a01bda52 6056 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6057 ecs->event_thread->suspend.stop_pc,
6058 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6059
ab04a2af
TT
6060 /* Following in case break condition called a
6061 function. */
6062 stop_print_frame = 1;
73dd234f 6063
ab04a2af
TT
6064 /* This is where we handle "moribund" watchpoints. Unlike
6065 software breakpoints traps, hardware watchpoint traps are
6066 always distinguishable from random traps. If no high-level
6067 watchpoint is associated with the reported stop data address
6068 anymore, then the bpstat does not explain the signal ---
6069 simply make sure to ignore it if `stopped_by_watchpoint' is
6070 set. */
6071
edbcda09 6072 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6073 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6074 GDB_SIGNAL_TRAP)
ab04a2af 6075 && stopped_by_watchpoint)
edbcda09
SM
6076 {
6077 infrun_log_debug ("no user watchpoint explains watchpoint SIGTRAP, "
6078 "ignoring");
6079 }
73dd234f 6080
bac7d97b 6081 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6082 at one stage in the past included checks for an inferior
6083 function call's call dummy's return breakpoint. The original
6084 comment, that went with the test, read:
03cebad2 6085
ab04a2af
TT
6086 ``End of a stack dummy. Some systems (e.g. Sony news) give
6087 another signal besides SIGTRAP, so check here as well as
6088 above.''
73dd234f 6089
ab04a2af
TT
6090 If someone ever tries to get call dummys on a
6091 non-executable stack to work (where the target would stop
6092 with something like a SIGSEGV), then those tests might need
6093 to be re-instated. Given, however, that the tests were only
6094 enabled when momentary breakpoints were not being used, I
6095 suspect that it won't be the case.
488f131b 6096
ab04a2af
TT
6097 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6098 be necessary for call dummies on a non-executable stack on
6099 SPARC. */
488f131b 6100
bac7d97b 6101 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6102 random_signal
6103 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6104 ecs->event_thread->suspend.stop_signal);
bac7d97b 6105
1cf4d951
PA
6106 /* Maybe this was a trap for a software breakpoint that has since
6107 been removed. */
6108 if (random_signal && target_stopped_by_sw_breakpoint ())
6109 {
5133a315
LM
6110 if (gdbarch_program_breakpoint_here_p (gdbarch,
6111 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6112 {
6113 struct regcache *regcache;
6114 int decr_pc;
6115
6116 /* Re-adjust PC to what the program would see if GDB was not
6117 debugging it. */
00431a78 6118 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6119 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6120 if (decr_pc != 0)
6121 {
07036511
TT
6122 gdb::optional<scoped_restore_tmpl<int>>
6123 restore_operation_disable;
1cf4d951
PA
6124
6125 if (record_full_is_used ())
07036511
TT
6126 restore_operation_disable.emplace
6127 (record_full_gdb_operation_disable_set ());
1cf4d951 6128
f2ffa92b
PA
6129 regcache_write_pc (regcache,
6130 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6131 }
6132 }
6133 else
6134 {
6135 /* A delayed software breakpoint event. Ignore the trap. */
edbcda09 6136 infrun_log_debug ("delayed software breakpoint trap, ignoring");
1cf4d951
PA
6137 random_signal = 0;
6138 }
6139 }
6140
6141 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6142 has since been removed. */
6143 if (random_signal && target_stopped_by_hw_breakpoint ())
6144 {
6145 /* A delayed hardware breakpoint event. Ignore the trap. */
edbcda09
SM
6146 infrun_log_debug ("delayed hardware breakpoint/watchpoint "
6147 "trap, ignoring");
1cf4d951
PA
6148 random_signal = 0;
6149 }
6150
bac7d97b
PA
6151 /* If not, perhaps stepping/nexting can. */
6152 if (random_signal)
6153 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6154 && currently_stepping (ecs->event_thread));
ab04a2af 6155
2adfaa28
PA
6156 /* Perhaps the thread hit a single-step breakpoint of _another_
6157 thread. Single-step breakpoints are transparent to the
6158 breakpoints module. */
6159 if (random_signal)
6160 random_signal = !ecs->hit_singlestep_breakpoint;
6161
bac7d97b
PA
6162 /* No? Perhaps we got a moribund watchpoint. */
6163 if (random_signal)
6164 random_signal = !stopped_by_watchpoint;
ab04a2af 6165
c65d6b55
PA
6166 /* Always stop if the user explicitly requested this thread to
6167 remain stopped. */
6168 if (ecs->event_thread->stop_requested)
6169 {
6170 random_signal = 1;
edbcda09 6171 infrun_log_debug ("user-requested stop");
c65d6b55
PA
6172 }
6173
488f131b
JB
6174 /* For the program's own signals, act according to
6175 the signal handling tables. */
6176
ce12b012 6177 if (random_signal)
488f131b
JB
6178 {
6179 /* Signal not for debugging purposes. */
5b6d1e4f 6180 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6181 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6182
edbcda09
SM
6183 infrun_log_debug ("random signal (%s)",
6184 gdb_signal_to_symbol_string (stop_signal));
527159b7 6185
488f131b
JB
6186 stopped_by_random_signal = 1;
6187
252fbfc8
PA
6188 /* Always stop on signals if we're either just gaining control
6189 of the program, or the user explicitly requested this thread
6190 to remain stopped. */
d6b48e9c 6191 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6192 || ecs->event_thread->stop_requested
24291992 6193 || (!inf->detaching
16c381f0 6194 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6195 {
22bcd14b 6196 stop_waiting (ecs);
488f131b
JB
6197 return;
6198 }
b57bacec
PA
6199
6200 /* Notify observers the signal has "handle print" set. Note we
6201 returned early above if stopping; normal_stop handles the
6202 printing in that case. */
6203 if (signal_print[ecs->event_thread->suspend.stop_signal])
6204 {
6205 /* The signal table tells us to print about this signal. */
223ffa71 6206 target_terminal::ours_for_output ();
76727919 6207 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6208 target_terminal::inferior ();
b57bacec 6209 }
488f131b
JB
6210
6211 /* Clear the signal if it should not be passed. */
16c381f0 6212 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6213 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6214
f2ffa92b 6215 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6216 && ecs->event_thread->control.trap_expected
8358c15c 6217 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6218 {
6219 /* We were just starting a new sequence, attempting to
6220 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6221 Instead this signal arrives. This signal will take us out
68f53502
AC
6222 of the stepping range so GDB needs to remember to, when
6223 the signal handler returns, resume stepping off that
6224 breakpoint. */
6225 /* To simplify things, "continue" is forced to use the same
6226 code paths as single-step - set a breakpoint at the
6227 signal return address and then, once hit, step off that
6228 breakpoint. */
edbcda09 6229 infrun_log_debug ("signal arrived while stepping over breakpoint");
d3169d93 6230
2c03e5be 6231 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6232 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6233 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6234 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6235
6236 /* If we were nexting/stepping some other thread, switch to
6237 it, so that we don't continue it, losing control. */
6238 if (!switch_back_to_stepped_thread (ecs))
6239 keep_going (ecs);
9d799f85 6240 return;
68f53502 6241 }
9d799f85 6242
e5f8a7cc 6243 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6244 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6245 ecs->event_thread)
e5f8a7cc 6246 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6247 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6248 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6249 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6250 {
6251 /* The inferior is about to take a signal that will take it
6252 out of the single step range. Set a breakpoint at the
6253 current PC (which is presumably where the signal handler
6254 will eventually return) and then allow the inferior to
6255 run free.
6256
6257 Note that this is only needed for a signal delivered
6258 while in the single-step range. Nested signals aren't a
6259 problem as they eventually all return. */
edbcda09 6260 infrun_log_debug ("signal may take us out of single-step range");
237fc4c9 6261
372316f1 6262 clear_step_over_info ();
2c03e5be 6263 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6264 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6265 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6266 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6267 keep_going (ecs);
6268 return;
d303a6c7 6269 }
9d799f85 6270
85102364 6271 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6272 when either there's a nested signal, or when there's a
6273 pending signal enabled just as the signal handler returns
6274 (leaving the inferior at the step-resume-breakpoint without
6275 actually executing it). Either way continue until the
6276 breakpoint is really hit. */
c447ac0b
PA
6277
6278 if (!switch_back_to_stepped_thread (ecs))
6279 {
edbcda09 6280 infrun_log_debug ("random signal, keep going");
c447ac0b
PA
6281
6282 keep_going (ecs);
6283 }
6284 return;
488f131b 6285 }
94c57d6a
PA
6286
6287 process_event_stop_test (ecs);
6288}
6289
6290/* Come here when we've got some debug event / signal we can explain
6291 (IOW, not a random signal), and test whether it should cause a
6292 stop, or whether we should resume the inferior (transparently).
6293 E.g., could be a breakpoint whose condition evaluates false; we
6294 could be still stepping within the line; etc. */
6295
6296static void
6297process_event_stop_test (struct execution_control_state *ecs)
6298{
6299 struct symtab_and_line stop_pc_sal;
6300 struct frame_info *frame;
6301 struct gdbarch *gdbarch;
cdaa5b73
PA
6302 CORE_ADDR jmp_buf_pc;
6303 struct bpstat_what what;
94c57d6a 6304
cdaa5b73 6305 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6306
cdaa5b73
PA
6307 frame = get_current_frame ();
6308 gdbarch = get_frame_arch (frame);
fcf3daef 6309
cdaa5b73 6310 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6311
cdaa5b73
PA
6312 if (what.call_dummy)
6313 {
6314 stop_stack_dummy = what.call_dummy;
6315 }
186c406b 6316
243a9253
PA
6317 /* A few breakpoint types have callbacks associated (e.g.,
6318 bp_jit_event). Run them now. */
6319 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6320
cdaa5b73
PA
6321 /* If we hit an internal event that triggers symbol changes, the
6322 current frame will be invalidated within bpstat_what (e.g., if we
6323 hit an internal solib event). Re-fetch it. */
6324 frame = get_current_frame ();
6325 gdbarch = get_frame_arch (frame);
e2e4d78b 6326
cdaa5b73
PA
6327 switch (what.main_action)
6328 {
6329 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6330 /* If we hit the breakpoint at longjmp while stepping, we
6331 install a momentary breakpoint at the target of the
6332 jmp_buf. */
186c406b 6333
edbcda09 6334 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
186c406b 6335
cdaa5b73 6336 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6337
cdaa5b73
PA
6338 if (what.is_longjmp)
6339 {
6340 struct value *arg_value;
6341
6342 /* If we set the longjmp breakpoint via a SystemTap probe,
6343 then use it to extract the arguments. The destination PC
6344 is the third argument to the probe. */
6345 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6346 if (arg_value)
8fa0c4f8
AA
6347 {
6348 jmp_buf_pc = value_as_address (arg_value);
6349 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6350 }
cdaa5b73
PA
6351 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6352 || !gdbarch_get_longjmp_target (gdbarch,
6353 frame, &jmp_buf_pc))
e2e4d78b 6354 {
edbcda09
SM
6355 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6356 "(!gdbarch_get_longjmp_target)");
cdaa5b73
PA
6357 keep_going (ecs);
6358 return;
e2e4d78b 6359 }
e2e4d78b 6360
cdaa5b73
PA
6361 /* Insert a breakpoint at resume address. */
6362 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6363 }
6364 else
6365 check_exception_resume (ecs, frame);
6366 keep_going (ecs);
6367 return;
e81a37f7 6368
cdaa5b73
PA
6369 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6370 {
6371 struct frame_info *init_frame;
e81a37f7 6372
cdaa5b73 6373 /* There are several cases to consider.
c906108c 6374
cdaa5b73
PA
6375 1. The initiating frame no longer exists. In this case we
6376 must stop, because the exception or longjmp has gone too
6377 far.
2c03e5be 6378
cdaa5b73
PA
6379 2. The initiating frame exists, and is the same as the
6380 current frame. We stop, because the exception or longjmp
6381 has been caught.
2c03e5be 6382
cdaa5b73
PA
6383 3. The initiating frame exists and is different from the
6384 current frame. This means the exception or longjmp has
6385 been caught beneath the initiating frame, so keep going.
c906108c 6386
cdaa5b73
PA
6387 4. longjmp breakpoint has been placed just to protect
6388 against stale dummy frames and user is not interested in
6389 stopping around longjmps. */
c5aa993b 6390
edbcda09 6391 infrun_log_debug ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
c5aa993b 6392
cdaa5b73
PA
6393 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6394 != NULL);
6395 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6396
cdaa5b73
PA
6397 if (what.is_longjmp)
6398 {
b67a2c6f 6399 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6400
cdaa5b73 6401 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6402 {
cdaa5b73
PA
6403 /* Case 4. */
6404 keep_going (ecs);
6405 return;
e5ef252a 6406 }
cdaa5b73 6407 }
c5aa993b 6408
cdaa5b73 6409 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6410
cdaa5b73
PA
6411 if (init_frame)
6412 {
6413 struct frame_id current_id
6414 = get_frame_id (get_current_frame ());
6415 if (frame_id_eq (current_id,
6416 ecs->event_thread->initiating_frame))
6417 {
6418 /* Case 2. Fall through. */
6419 }
6420 else
6421 {
6422 /* Case 3. */
6423 keep_going (ecs);
6424 return;
6425 }
68f53502 6426 }
488f131b 6427
cdaa5b73
PA
6428 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6429 exists. */
6430 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6431
bdc36728 6432 end_stepping_range (ecs);
cdaa5b73
PA
6433 }
6434 return;
e5ef252a 6435
cdaa5b73 6436 case BPSTAT_WHAT_SINGLE:
edbcda09 6437 infrun_log_debug ("BPSTAT_WHAT_SINGLE");
cdaa5b73
PA
6438 ecs->event_thread->stepping_over_breakpoint = 1;
6439 /* Still need to check other stuff, at least the case where we
6440 are stepping and step out of the right range. */
6441 break;
e5ef252a 6442
cdaa5b73 6443 case BPSTAT_WHAT_STEP_RESUME:
edbcda09 6444 infrun_log_debug ("BPSTAT_WHAT_STEP_RESUME");
e5ef252a 6445
cdaa5b73
PA
6446 delete_step_resume_breakpoint (ecs->event_thread);
6447 if (ecs->event_thread->control.proceed_to_finish
6448 && execution_direction == EXEC_REVERSE)
6449 {
6450 struct thread_info *tp = ecs->event_thread;
6451
6452 /* We are finishing a function in reverse, and just hit the
6453 step-resume breakpoint at the start address of the
6454 function, and we're almost there -- just need to back up
6455 by one more single-step, which should take us back to the
6456 function call. */
6457 tp->control.step_range_start = tp->control.step_range_end = 1;
6458 keep_going (ecs);
e5ef252a 6459 return;
cdaa5b73
PA
6460 }
6461 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6462 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6463 && execution_direction == EXEC_REVERSE)
6464 {
6465 /* We are stepping over a function call in reverse, and just
6466 hit the step-resume breakpoint at the start address of
6467 the function. Go back to single-stepping, which should
6468 take us back to the function call. */
6469 ecs->event_thread->stepping_over_breakpoint = 1;
6470 keep_going (ecs);
6471 return;
6472 }
6473 break;
e5ef252a 6474
cdaa5b73 6475 case BPSTAT_WHAT_STOP_NOISY:
edbcda09 6476 infrun_log_debug ("BPSTAT_WHAT_STOP_NOISY");
cdaa5b73 6477 stop_print_frame = 1;
e5ef252a 6478
99619bea
PA
6479 /* Assume the thread stopped for a breapoint. We'll still check
6480 whether a/the breakpoint is there when the thread is next
6481 resumed. */
6482 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6483
22bcd14b 6484 stop_waiting (ecs);
cdaa5b73 6485 return;
e5ef252a 6486
cdaa5b73 6487 case BPSTAT_WHAT_STOP_SILENT:
edbcda09 6488 infrun_log_debug ("BPSTAT_WHAT_STOP_SILENT");
cdaa5b73 6489 stop_print_frame = 0;
e5ef252a 6490
99619bea
PA
6491 /* Assume the thread stopped for a breapoint. We'll still check
6492 whether a/the breakpoint is there when the thread is next
6493 resumed. */
6494 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6495 stop_waiting (ecs);
cdaa5b73
PA
6496 return;
6497
6498 case BPSTAT_WHAT_HP_STEP_RESUME:
edbcda09 6499 infrun_log_debug ("BPSTAT_WHAT_HP_STEP_RESUME");
cdaa5b73
PA
6500
6501 delete_step_resume_breakpoint (ecs->event_thread);
6502 if (ecs->event_thread->step_after_step_resume_breakpoint)
6503 {
6504 /* Back when the step-resume breakpoint was inserted, we
6505 were trying to single-step off a breakpoint. Go back to
6506 doing that. */
6507 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6508 ecs->event_thread->stepping_over_breakpoint = 1;
6509 keep_going (ecs);
6510 return;
e5ef252a 6511 }
cdaa5b73
PA
6512 break;
6513
6514 case BPSTAT_WHAT_KEEP_CHECKING:
6515 break;
e5ef252a 6516 }
c906108c 6517
af48d08f
PA
6518 /* If we stepped a permanent breakpoint and we had a high priority
6519 step-resume breakpoint for the address we stepped, but we didn't
6520 hit it, then we must have stepped into the signal handler. The
6521 step-resume was only necessary to catch the case of _not_
6522 stepping into the handler, so delete it, and fall through to
6523 checking whether the step finished. */
6524 if (ecs->event_thread->stepped_breakpoint)
6525 {
6526 struct breakpoint *sr_bp
6527 = ecs->event_thread->control.step_resume_breakpoint;
6528
8d707a12
PA
6529 if (sr_bp != NULL
6530 && sr_bp->loc->permanent
af48d08f
PA
6531 && sr_bp->type == bp_hp_step_resume
6532 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6533 {
edbcda09 6534 infrun_log_debug ("stepped permanent breakpoint, stopped in handler");
af48d08f
PA
6535 delete_step_resume_breakpoint (ecs->event_thread);
6536 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6537 }
6538 }
6539
cdaa5b73
PA
6540 /* We come here if we hit a breakpoint but should not stop for it.
6541 Possibly we also were stepping and should stop for that. So fall
6542 through and test for stepping. But, if not stepping, do not
6543 stop. */
c906108c 6544
a7212384
UW
6545 /* In all-stop mode, if we're currently stepping but have stopped in
6546 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6547 if (switch_back_to_stepped_thread (ecs))
6548 return;
776f04fa 6549
8358c15c 6550 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6551 {
edbcda09 6552 infrun_log_debug ("step-resume breakpoint is inserted");
527159b7 6553
488f131b
JB
6554 /* Having a step-resume breakpoint overrides anything
6555 else having to do with stepping commands until
6556 that breakpoint is reached. */
488f131b
JB
6557 keep_going (ecs);
6558 return;
6559 }
c5aa993b 6560
16c381f0 6561 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6562 {
edbcda09 6563 infrun_log_debug ("no stepping, continue");
488f131b 6564 /* Likewise if we aren't even stepping. */
488f131b
JB
6565 keep_going (ecs);
6566 return;
6567 }
c5aa993b 6568
4b7703ad
JB
6569 /* Re-fetch current thread's frame in case the code above caused
6570 the frame cache to be re-initialized, making our FRAME variable
6571 a dangling pointer. */
6572 frame = get_current_frame ();
628fe4e4 6573 gdbarch = get_frame_arch (frame);
7e324e48 6574 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6575
488f131b 6576 /* If stepping through a line, keep going if still within it.
c906108c 6577
488f131b
JB
6578 Note that step_range_end is the address of the first instruction
6579 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6580 within it!
6581
6582 Note also that during reverse execution, we may be stepping
6583 through a function epilogue and therefore must detect when
6584 the current-frame changes in the middle of a line. */
6585
f2ffa92b
PA
6586 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6587 ecs->event_thread)
31410e84 6588 && (execution_direction != EXEC_REVERSE
388a8562 6589 || frame_id_eq (get_frame_id (frame),
16c381f0 6590 ecs->event_thread->control.step_frame_id)))
488f131b 6591 {
edbcda09
SM
6592 infrun_log_debug
6593 ("stepping inside range [%s-%s]",
6594 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6595 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6596
c1e36e3e
PA
6597 /* Tentatively re-enable range stepping; `resume' disables it if
6598 necessary (e.g., if we're stepping over a breakpoint or we
6599 have software watchpoints). */
6600 ecs->event_thread->control.may_range_step = 1;
6601
b2175913
MS
6602 /* When stepping backward, stop at beginning of line range
6603 (unless it's the function entry point, in which case
6604 keep going back to the call point). */
f2ffa92b 6605 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6606 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6607 && stop_pc != ecs->stop_func_start
6608 && execution_direction == EXEC_REVERSE)
bdc36728 6609 end_stepping_range (ecs);
b2175913
MS
6610 else
6611 keep_going (ecs);
6612
488f131b
JB
6613 return;
6614 }
c5aa993b 6615
488f131b 6616 /* We stepped out of the stepping range. */
c906108c 6617
488f131b 6618 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6619 loader dynamic symbol resolution code...
6620
6621 EXEC_FORWARD: we keep on single stepping until we exit the run
6622 time loader code and reach the callee's address.
6623
6624 EXEC_REVERSE: we've already executed the callee (backward), and
6625 the runtime loader code is handled just like any other
6626 undebuggable function call. Now we need only keep stepping
6627 backward through the trampoline code, and that's handled further
6628 down, so there is nothing for us to do here. */
6629
6630 if (execution_direction != EXEC_REVERSE
16c381f0 6631 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6632 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6633 {
4c8c40e6 6634 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6635 gdbarch_skip_solib_resolver (gdbarch,
6636 ecs->event_thread->suspend.stop_pc);
c906108c 6637
edbcda09 6638 infrun_log_debug ("stepped into dynsym resolve code");
527159b7 6639
488f131b
JB
6640 if (pc_after_resolver)
6641 {
6642 /* Set up a step-resume breakpoint at the address
6643 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6644 symtab_and_line sr_sal;
488f131b 6645 sr_sal.pc = pc_after_resolver;
6c95b8df 6646 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6647
a6d9a66e
UW
6648 insert_step_resume_breakpoint_at_sal (gdbarch,
6649 sr_sal, null_frame_id);
c5aa993b 6650 }
c906108c 6651
488f131b
JB
6652 keep_going (ecs);
6653 return;
6654 }
c906108c 6655
1d509aa6
MM
6656 /* Step through an indirect branch thunk. */
6657 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6658 && gdbarch_in_indirect_branch_thunk (gdbarch,
6659 ecs->event_thread->suspend.stop_pc))
1d509aa6 6660 {
edbcda09 6661 infrun_log_debug ("stepped into indirect branch thunk");
1d509aa6
MM
6662 keep_going (ecs);
6663 return;
6664 }
6665
16c381f0
JK
6666 if (ecs->event_thread->control.step_range_end != 1
6667 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6668 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6669 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6670 {
edbcda09 6671 infrun_log_debug ("stepped into signal trampoline");
42edda50 6672 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6673 a signal trampoline (either by a signal being delivered or by
6674 the signal handler returning). Just single-step until the
6675 inferior leaves the trampoline (either by calling the handler
6676 or returning). */
488f131b
JB
6677 keep_going (ecs);
6678 return;
6679 }
c906108c 6680
14132e89
MR
6681 /* If we're in the return path from a shared library trampoline,
6682 we want to proceed through the trampoline when stepping. */
6683 /* macro/2012-04-25: This needs to come before the subroutine
6684 call check below as on some targets return trampolines look
6685 like subroutine calls (MIPS16 return thunks). */
6686 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6687 ecs->event_thread->suspend.stop_pc,
6688 ecs->stop_func_name)
14132e89
MR
6689 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6690 {
6691 /* Determine where this trampoline returns. */
f2ffa92b
PA
6692 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6693 CORE_ADDR real_stop_pc
6694 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89 6695
edbcda09 6696 infrun_log_debug ("stepped into solib return tramp");
14132e89
MR
6697
6698 /* Only proceed through if we know where it's going. */
6699 if (real_stop_pc)
6700 {
6701 /* And put the step-breakpoint there and go until there. */
51abb421 6702 symtab_and_line sr_sal;
14132e89
MR
6703 sr_sal.pc = real_stop_pc;
6704 sr_sal.section = find_pc_overlay (sr_sal.pc);
6705 sr_sal.pspace = get_frame_program_space (frame);
6706
6707 /* Do not specify what the fp should be when we stop since
6708 on some machines the prologue is where the new fp value
6709 is established. */
6710 insert_step_resume_breakpoint_at_sal (gdbarch,
6711 sr_sal, null_frame_id);
6712
6713 /* Restart without fiddling with the step ranges or
6714 other state. */
6715 keep_going (ecs);
6716 return;
6717 }
6718 }
6719
c17eaafe
DJ
6720 /* Check for subroutine calls. The check for the current frame
6721 equalling the step ID is not necessary - the check of the
6722 previous frame's ID is sufficient - but it is a common case and
6723 cheaper than checking the previous frame's ID.
14e60db5
DJ
6724
6725 NOTE: frame_id_eq will never report two invalid frame IDs as
6726 being equal, so to get into this block, both the current and
6727 previous frame must have valid frame IDs. */
005ca36a
JB
6728 /* The outer_frame_id check is a heuristic to detect stepping
6729 through startup code. If we step over an instruction which
6730 sets the stack pointer from an invalid value to a valid value,
6731 we may detect that as a subroutine call from the mythical
6732 "outermost" function. This could be fixed by marking
6733 outermost frames as !stack_p,code_p,special_p. Then the
6734 initial outermost frame, before sp was valid, would
ce6cca6d 6735 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6736 for more. */
edb3359d 6737 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6738 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6739 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6740 ecs->event_thread->control.step_stack_frame_id)
6741 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6742 outer_frame_id)
885eeb5b 6743 || (ecs->event_thread->control.step_start_function
f2ffa92b 6744 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6745 {
f2ffa92b 6746 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6747 CORE_ADDR real_stop_pc;
8fb3e588 6748
edbcda09 6749 infrun_log_debug ("stepped into subroutine");
527159b7 6750
b7a084be 6751 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6752 {
6753 /* I presume that step_over_calls is only 0 when we're
6754 supposed to be stepping at the assembly language level
6755 ("stepi"). Just stop. */
388a8562 6756 /* And this works the same backward as frontward. MVS */
bdc36728 6757 end_stepping_range (ecs);
95918acb
AC
6758 return;
6759 }
8fb3e588 6760
388a8562
MS
6761 /* Reverse stepping through solib trampolines. */
6762
6763 if (execution_direction == EXEC_REVERSE
16c381f0 6764 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6765 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6766 || (ecs->stop_func_start == 0
6767 && in_solib_dynsym_resolve_code (stop_pc))))
6768 {
6769 /* Any solib trampoline code can be handled in reverse
6770 by simply continuing to single-step. We have already
6771 executed the solib function (backwards), and a few
6772 steps will take us back through the trampoline to the
6773 caller. */
6774 keep_going (ecs);
6775 return;
6776 }
6777
16c381f0 6778 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6779 {
b2175913
MS
6780 /* We're doing a "next".
6781
6782 Normal (forward) execution: set a breakpoint at the
6783 callee's return address (the address at which the caller
6784 will resume).
6785
6786 Reverse (backward) execution. set the step-resume
6787 breakpoint at the start of the function that we just
6788 stepped into (backwards), and continue to there. When we
6130d0b7 6789 get there, we'll need to single-step back to the caller. */
b2175913
MS
6790
6791 if (execution_direction == EXEC_REVERSE)
6792 {
acf9414f
JK
6793 /* If we're already at the start of the function, we've either
6794 just stepped backward into a single instruction function,
6795 or stepped back out of a signal handler to the first instruction
6796 of the function. Just keep going, which will single-step back
6797 to the caller. */
58c48e72 6798 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6799 {
acf9414f 6800 /* Normal function call return (static or dynamic). */
51abb421 6801 symtab_and_line sr_sal;
acf9414f
JK
6802 sr_sal.pc = ecs->stop_func_start;
6803 sr_sal.pspace = get_frame_program_space (frame);
6804 insert_step_resume_breakpoint_at_sal (gdbarch,
6805 sr_sal, null_frame_id);
6806 }
b2175913
MS
6807 }
6808 else
568d6575 6809 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6810
8567c30f
AC
6811 keep_going (ecs);
6812 return;
6813 }
a53c66de 6814
95918acb 6815 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6816 calling routine and the real function), locate the real
6817 function. That's what tells us (a) whether we want to step
6818 into it at all, and (b) what prologue we want to run to the
6819 end of, if we do step into it. */
568d6575 6820 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6821 if (real_stop_pc == 0)
568d6575 6822 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6823 if (real_stop_pc != 0)
6824 ecs->stop_func_start = real_stop_pc;
8fb3e588 6825
db5f024e 6826 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6827 {
51abb421 6828 symtab_and_line sr_sal;
1b2bfbb9 6829 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6830 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6831
a6d9a66e
UW
6832 insert_step_resume_breakpoint_at_sal (gdbarch,
6833 sr_sal, null_frame_id);
8fb3e588
AC
6834 keep_going (ecs);
6835 return;
1b2bfbb9
RC
6836 }
6837
95918acb 6838 /* If we have line number information for the function we are
1bfeeb0f
JL
6839 thinking of stepping into and the function isn't on the skip
6840 list, step into it.
95918acb 6841
8fb3e588
AC
6842 If there are several symtabs at that PC (e.g. with include
6843 files), just want to know whether *any* of them have line
6844 numbers. find_pc_line handles this. */
95918acb
AC
6845 {
6846 struct symtab_and_line tmp_sal;
8fb3e588 6847
95918acb 6848 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6849 if (tmp_sal.line != 0
85817405 6850 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6851 tmp_sal)
6852 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6853 {
b2175913 6854 if (execution_direction == EXEC_REVERSE)
568d6575 6855 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6856 else
568d6575 6857 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6858 return;
6859 }
6860 }
6861
6862 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6863 set, we stop the step so that the user has a chance to switch
6864 in assembly mode. */
16c381f0 6865 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6866 && step_stop_if_no_debug)
95918acb 6867 {
bdc36728 6868 end_stepping_range (ecs);
95918acb
AC
6869 return;
6870 }
6871
b2175913
MS
6872 if (execution_direction == EXEC_REVERSE)
6873 {
acf9414f
JK
6874 /* If we're already at the start of the function, we've either just
6875 stepped backward into a single instruction function without line
6876 number info, or stepped back out of a signal handler to the first
6877 instruction of the function without line number info. Just keep
6878 going, which will single-step back to the caller. */
6879 if (ecs->stop_func_start != stop_pc)
6880 {
6881 /* Set a breakpoint at callee's start address.
6882 From there we can step once and be back in the caller. */
51abb421 6883 symtab_and_line sr_sal;
acf9414f
JK
6884 sr_sal.pc = ecs->stop_func_start;
6885 sr_sal.pspace = get_frame_program_space (frame);
6886 insert_step_resume_breakpoint_at_sal (gdbarch,
6887 sr_sal, null_frame_id);
6888 }
b2175913
MS
6889 }
6890 else
6891 /* Set a breakpoint at callee's return address (the address
6892 at which the caller will resume). */
568d6575 6893 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6894
95918acb 6895 keep_going (ecs);
488f131b 6896 return;
488f131b 6897 }
c906108c 6898
fdd654f3
MS
6899 /* Reverse stepping through solib trampolines. */
6900
6901 if (execution_direction == EXEC_REVERSE
16c381f0 6902 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6903 {
f2ffa92b
PA
6904 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6905
fdd654f3
MS
6906 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6907 || (ecs->stop_func_start == 0
6908 && in_solib_dynsym_resolve_code (stop_pc)))
6909 {
6910 /* Any solib trampoline code can be handled in reverse
6911 by simply continuing to single-step. We have already
6912 executed the solib function (backwards), and a few
6913 steps will take us back through the trampoline to the
6914 caller. */
6915 keep_going (ecs);
6916 return;
6917 }
6918 else if (in_solib_dynsym_resolve_code (stop_pc))
6919 {
6920 /* Stepped backward into the solib dynsym resolver.
6921 Set a breakpoint at its start and continue, then
6922 one more step will take us out. */
51abb421 6923 symtab_and_line sr_sal;
fdd654f3 6924 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6925 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6926 insert_step_resume_breakpoint_at_sal (gdbarch,
6927 sr_sal, null_frame_id);
6928 keep_going (ecs);
6929 return;
6930 }
6931 }
6932
8c95582d
AB
6933 /* This always returns the sal for the inner-most frame when we are in a
6934 stack of inlined frames, even if GDB actually believes that it is in a
6935 more outer frame. This is checked for below by calls to
6936 inline_skipped_frames. */
f2ffa92b 6937 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6938
1b2bfbb9
RC
6939 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6940 the trampoline processing logic, however, there are some trampolines
6941 that have no names, so we should do trampoline handling first. */
16c381f0 6942 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6943 && ecs->stop_func_name == NULL
2afb61aa 6944 && stop_pc_sal.line == 0)
1b2bfbb9 6945 {
edbcda09 6946 infrun_log_debug ("stepped into undebuggable function");
527159b7 6947
1b2bfbb9 6948 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6949 undebuggable function (where there is no debugging information
6950 and no line number corresponding to the address where the
1b2bfbb9
RC
6951 inferior stopped). Since we want to skip this kind of code,
6952 we keep going until the inferior returns from this
14e60db5
DJ
6953 function - unless the user has asked us not to (via
6954 set step-mode) or we no longer know how to get back
6955 to the call site. */
6956 if (step_stop_if_no_debug
c7ce8faa 6957 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6958 {
6959 /* If we have no line number and the step-stop-if-no-debug
6960 is set, we stop the step so that the user has a chance to
6961 switch in assembly mode. */
bdc36728 6962 end_stepping_range (ecs);
1b2bfbb9
RC
6963 return;
6964 }
6965 else
6966 {
6967 /* Set a breakpoint at callee's return address (the address
6968 at which the caller will resume). */
568d6575 6969 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6970 keep_going (ecs);
6971 return;
6972 }
6973 }
6974
16c381f0 6975 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6976 {
6977 /* It is stepi or nexti. We always want to stop stepping after
6978 one instruction. */
edbcda09 6979 infrun_log_debug ("stepi/nexti");
bdc36728 6980 end_stepping_range (ecs);
1b2bfbb9
RC
6981 return;
6982 }
6983
2afb61aa 6984 if (stop_pc_sal.line == 0)
488f131b
JB
6985 {
6986 /* We have no line number information. That means to stop
6987 stepping (does this always happen right after one instruction,
6988 when we do "s" in a function with no line numbers,
6989 or can this happen as a result of a return or longjmp?). */
edbcda09 6990 infrun_log_debug ("line number info");
bdc36728 6991 end_stepping_range (ecs);
488f131b
JB
6992 return;
6993 }
c906108c 6994
edb3359d
DJ
6995 /* Look for "calls" to inlined functions, part one. If the inline
6996 frame machinery detected some skipped call sites, we have entered
6997 a new inline function. */
6998
6999 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7000 ecs->event_thread->control.step_frame_id)
00431a78 7001 && inline_skipped_frames (ecs->event_thread))
edb3359d 7002 {
edbcda09 7003 infrun_log_debug ("stepped into inlined function");
edb3359d 7004
51abb421 7005 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7006
16c381f0 7007 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7008 {
7009 /* For "step", we're going to stop. But if the call site
7010 for this inlined function is on the same source line as
7011 we were previously stepping, go down into the function
7012 first. Otherwise stop at the call site. */
7013
7014 if (call_sal.line == ecs->event_thread->current_line
7015 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7016 {
7017 step_into_inline_frame (ecs->event_thread);
7018 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7019 {
7020 keep_going (ecs);
7021 return;
7022 }
7023 }
edb3359d 7024
bdc36728 7025 end_stepping_range (ecs);
edb3359d
DJ
7026 return;
7027 }
7028 else
7029 {
7030 /* For "next", we should stop at the call site if it is on a
7031 different source line. Otherwise continue through the
7032 inlined function. */
7033 if (call_sal.line == ecs->event_thread->current_line
7034 && call_sal.symtab == ecs->event_thread->current_symtab)
7035 keep_going (ecs);
7036 else
bdc36728 7037 end_stepping_range (ecs);
edb3359d
DJ
7038 return;
7039 }
7040 }
7041
7042 /* Look for "calls" to inlined functions, part two. If we are still
7043 in the same real function we were stepping through, but we have
7044 to go further up to find the exact frame ID, we are stepping
7045 through a more inlined call beyond its call site. */
7046
7047 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7048 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7049 ecs->event_thread->control.step_frame_id)
edb3359d 7050 && stepped_in_from (get_current_frame (),
16c381f0 7051 ecs->event_thread->control.step_frame_id))
edb3359d 7052 {
edbcda09 7053 infrun_log_debug ("stepping through inlined function");
edb3359d 7054
4a4c04f1
BE
7055 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7056 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7057 keep_going (ecs);
7058 else
bdc36728 7059 end_stepping_range (ecs);
edb3359d
DJ
7060 return;
7061 }
7062
8c95582d 7063 bool refresh_step_info = true;
f2ffa92b 7064 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7065 && (ecs->event_thread->current_line != stop_pc_sal.line
7066 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7067 {
8c95582d
AB
7068 if (stop_pc_sal.is_stmt)
7069 {
7070 /* We are at the start of a different line. So stop. Note that
7071 we don't stop if we step into the middle of a different line.
7072 That is said to make things like for (;;) statements work
7073 better. */
edbcda09 7074 infrun_log_debug ("infrun: stepped to a different line\n");
8c95582d
AB
7075 end_stepping_range (ecs);
7076 return;
7077 }
7078 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7079 ecs->event_thread->control.step_frame_id))
7080 {
7081 /* We are at the start of a different line, however, this line is
7082 not marked as a statement, and we have not changed frame. We
7083 ignore this line table entry, and continue stepping forward,
7084 looking for a better place to stop. */
7085 refresh_step_info = false;
edbcda09
SM
7086 infrun_log_debug ("infrun: stepped to a different line, but "
7087 "it's not the start of a statement\n");
8c95582d 7088 }
488f131b 7089 }
c906108c 7090
488f131b 7091 /* We aren't done stepping.
c906108c 7092
488f131b
JB
7093 Optimize by setting the stepping range to the line.
7094 (We might not be in the original line, but if we entered a
7095 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7096 things like for(;;) statements work better.)
7097
7098 If we entered a SAL that indicates a non-statement line table entry,
7099 then we update the stepping range, but we don't update the step info,
7100 which includes things like the line number we are stepping away from.
7101 This means we will stop when we find a line table entry that is marked
7102 as is-statement, even if it matches the non-statement one we just
7103 stepped into. */
c906108c 7104
16c381f0
JK
7105 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7106 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7107 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7108 if (refresh_step_info)
7109 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7110
edbcda09 7111 infrun_log_debug ("keep going");
488f131b 7112 keep_going (ecs);
104c1213
JM
7113}
7114
c447ac0b
PA
7115/* In all-stop mode, if we're currently stepping but have stopped in
7116 some other thread, we may need to switch back to the stepped
7117 thread. Returns true we set the inferior running, false if we left
7118 it stopped (and the event needs further processing). */
7119
7120static int
7121switch_back_to_stepped_thread (struct execution_control_state *ecs)
7122{
fbea99ea 7123 if (!target_is_non_stop_p ())
c447ac0b 7124 {
99619bea
PA
7125 struct thread_info *stepping_thread;
7126
7127 /* If any thread is blocked on some internal breakpoint, and we
7128 simply need to step over that breakpoint to get it going
7129 again, do that first. */
7130
7131 /* However, if we see an event for the stepping thread, then we
7132 know all other threads have been moved past their breakpoints
7133 already. Let the caller check whether the step is finished,
7134 etc., before deciding to move it past a breakpoint. */
7135 if (ecs->event_thread->control.step_range_end != 0)
7136 return 0;
7137
7138 /* Check if the current thread is blocked on an incomplete
7139 step-over, interrupted by a random signal. */
7140 if (ecs->event_thread->control.trap_expected
7141 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7142 {
edbcda09
SM
7143 infrun_log_debug ("need to finish step-over of [%s]",
7144 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7145 keep_going (ecs);
7146 return 1;
7147 }
2adfaa28 7148
99619bea
PA
7149 /* Check if the current thread is blocked by a single-step
7150 breakpoint of another thread. */
7151 if (ecs->hit_singlestep_breakpoint)
7152 {
edbcda09
SM
7153 infrun_log_debug ("need to step [%s] over single-step breakpoint",
7154 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7155 keep_going (ecs);
7156 return 1;
7157 }
7158
4d9d9d04
PA
7159 /* If this thread needs yet another step-over (e.g., stepping
7160 through a delay slot), do it first before moving on to
7161 another thread. */
7162 if (thread_still_needs_step_over (ecs->event_thread))
7163 {
edbcda09
SM
7164 infrun_log_debug
7165 ("thread [%s] still needs step-over",
7166 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7167 keep_going (ecs);
7168 return 1;
7169 }
70509625 7170
483805cf
PA
7171 /* If scheduler locking applies even if not stepping, there's no
7172 need to walk over threads. Above we've checked whether the
7173 current thread is stepping. If some other thread not the
7174 event thread is stepping, then it must be that scheduler
7175 locking is not in effect. */
856e7dd6 7176 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7177 return 0;
7178
4d9d9d04
PA
7179 /* Otherwise, we no longer expect a trap in the current thread.
7180 Clear the trap_expected flag before switching back -- this is
7181 what keep_going does as well, if we call it. */
7182 ecs->event_thread->control.trap_expected = 0;
7183
7184 /* Likewise, clear the signal if it should not be passed. */
7185 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7186 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7187
7188 /* Do all pending step-overs before actually proceeding with
483805cf 7189 step/next/etc. */
4d9d9d04
PA
7190 if (start_step_over ())
7191 {
7192 prepare_to_wait (ecs);
7193 return 1;
7194 }
7195
7196 /* Look for the stepping/nexting thread. */
483805cf 7197 stepping_thread = NULL;
4d9d9d04 7198
08036331 7199 for (thread_info *tp : all_non_exited_threads ())
483805cf 7200 {
f3f8ece4
PA
7201 switch_to_thread_no_regs (tp);
7202
fbea99ea
PA
7203 /* Ignore threads of processes the caller is not
7204 resuming. */
483805cf 7205 if (!sched_multi
5b6d1e4f
PA
7206 && (tp->inf->process_target () != ecs->target
7207 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7208 continue;
7209
7210 /* When stepping over a breakpoint, we lock all threads
7211 except the one that needs to move past the breakpoint.
7212 If a non-event thread has this set, the "incomplete
7213 step-over" check above should have caught it earlier. */
372316f1
PA
7214 if (tp->control.trap_expected)
7215 {
7216 internal_error (__FILE__, __LINE__,
7217 "[%s] has inconsistent state: "
7218 "trap_expected=%d\n",
a068643d 7219 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7220 tp->control.trap_expected);
7221 }
483805cf
PA
7222
7223 /* Did we find the stepping thread? */
7224 if (tp->control.step_range_end)
7225 {
7226 /* Yep. There should only one though. */
7227 gdb_assert (stepping_thread == NULL);
7228
7229 /* The event thread is handled at the top, before we
7230 enter this loop. */
7231 gdb_assert (tp != ecs->event_thread);
7232
7233 /* If some thread other than the event thread is
7234 stepping, then scheduler locking can't be in effect,
7235 otherwise we wouldn't have resumed the current event
7236 thread in the first place. */
856e7dd6 7237 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7238
7239 stepping_thread = tp;
7240 }
99619bea
PA
7241 }
7242
483805cf 7243 if (stepping_thread != NULL)
99619bea 7244 {
edbcda09 7245 infrun_log_debug ("switching back to stepped thread");
c447ac0b 7246
2ac7589c
PA
7247 if (keep_going_stepped_thread (stepping_thread))
7248 {
7249 prepare_to_wait (ecs);
7250 return 1;
7251 }
7252 }
f3f8ece4
PA
7253
7254 switch_to_thread (ecs->event_thread);
2ac7589c 7255 }
2adfaa28 7256
2ac7589c
PA
7257 return 0;
7258}
2adfaa28 7259
2ac7589c
PA
7260/* Set a previously stepped thread back to stepping. Returns true on
7261 success, false if the resume is not possible (e.g., the thread
7262 vanished). */
7263
7264static int
7265keep_going_stepped_thread (struct thread_info *tp)
7266{
7267 struct frame_info *frame;
2ac7589c
PA
7268 struct execution_control_state ecss;
7269 struct execution_control_state *ecs = &ecss;
2adfaa28 7270
2ac7589c
PA
7271 /* If the stepping thread exited, then don't try to switch back and
7272 resume it, which could fail in several different ways depending
7273 on the target. Instead, just keep going.
2adfaa28 7274
2ac7589c
PA
7275 We can find a stepping dead thread in the thread list in two
7276 cases:
2adfaa28 7277
2ac7589c
PA
7278 - The target supports thread exit events, and when the target
7279 tries to delete the thread from the thread list, inferior_ptid
7280 pointed at the exiting thread. In such case, calling
7281 delete_thread does not really remove the thread from the list;
7282 instead, the thread is left listed, with 'exited' state.
64ce06e4 7283
2ac7589c
PA
7284 - The target's debug interface does not support thread exit
7285 events, and so we have no idea whatsoever if the previously
7286 stepping thread is still alive. For that reason, we need to
7287 synchronously query the target now. */
2adfaa28 7288
00431a78 7289 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c 7290 {
edbcda09
SM
7291 infrun_log_debug ("not resuming previously stepped thread, it has "
7292 "vanished");
2ac7589c 7293
00431a78 7294 delete_thread (tp);
2ac7589c 7295 return 0;
c447ac0b 7296 }
2ac7589c 7297
edbcda09 7298 infrun_log_debug ("resuming previously stepped thread");
2ac7589c
PA
7299
7300 reset_ecs (ecs, tp);
00431a78 7301 switch_to_thread (tp);
2ac7589c 7302
f2ffa92b 7303 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7304 frame = get_current_frame ();
2ac7589c
PA
7305
7306 /* If the PC of the thread we were trying to single-step has
7307 changed, then that thread has trapped or been signaled, but the
7308 event has not been reported to GDB yet. Re-poll the target
7309 looking for this particular thread's event (i.e. temporarily
7310 enable schedlock) by:
7311
7312 - setting a break at the current PC
7313 - resuming that particular thread, only (by setting trap
7314 expected)
7315
7316 This prevents us continuously moving the single-step breakpoint
7317 forward, one instruction at a time, overstepping. */
7318
f2ffa92b 7319 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7320 {
7321 ptid_t resume_ptid;
7322
edbcda09
SM
7323 infrun_log_debug ("expected thread advanced also (%s -> %s)",
7324 paddress (target_gdbarch (), tp->prev_pc),
7325 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7326
7327 /* Clear the info of the previous step-over, as it's no longer
7328 valid (if the thread was trying to step over a breakpoint, it
7329 has already succeeded). It's what keep_going would do too,
7330 if we called it. Do this before trying to insert the sss
7331 breakpoint, otherwise if we were previously trying to step
7332 over this exact address in another thread, the breakpoint is
7333 skipped. */
7334 clear_step_over_info ();
7335 tp->control.trap_expected = 0;
7336
7337 insert_single_step_breakpoint (get_frame_arch (frame),
7338 get_frame_address_space (frame),
f2ffa92b 7339 tp->suspend.stop_pc);
2ac7589c 7340
719546c4 7341 tp->resumed = true;
fbea99ea 7342 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7343 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7344 }
7345 else
7346 {
edbcda09 7347 infrun_log_debug ("expected thread still hasn't advanced");
2ac7589c
PA
7348
7349 keep_going_pass_signal (ecs);
7350 }
7351 return 1;
c447ac0b
PA
7352}
7353
8b061563
PA
7354/* Is thread TP in the middle of (software or hardware)
7355 single-stepping? (Note the result of this function must never be
7356 passed directly as target_resume's STEP parameter.) */
104c1213 7357
a289b8f6 7358static int
b3444185 7359currently_stepping (struct thread_info *tp)
a7212384 7360{
8358c15c
JK
7361 return ((tp->control.step_range_end
7362 && tp->control.step_resume_breakpoint == NULL)
7363 || tp->control.trap_expected
af48d08f 7364 || tp->stepped_breakpoint
8358c15c 7365 || bpstat_should_step ());
a7212384
UW
7366}
7367
b2175913
MS
7368/* Inferior has stepped into a subroutine call with source code that
7369 we should not step over. Do step to the first line of code in
7370 it. */
c2c6d25f
JM
7371
7372static void
568d6575
UW
7373handle_step_into_function (struct gdbarch *gdbarch,
7374 struct execution_control_state *ecs)
c2c6d25f 7375{
7e324e48
GB
7376 fill_in_stop_func (gdbarch, ecs);
7377
f2ffa92b
PA
7378 compunit_symtab *cust
7379 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7380 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7381 ecs->stop_func_start
7382 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7383
51abb421 7384 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7385 /* Use the step_resume_break to step until the end of the prologue,
7386 even if that involves jumps (as it seems to on the vax under
7387 4.2). */
7388 /* If the prologue ends in the middle of a source line, continue to
7389 the end of that source line (if it is still within the function).
7390 Otherwise, just go to end of prologue. */
2afb61aa
PA
7391 if (stop_func_sal.end
7392 && stop_func_sal.pc != ecs->stop_func_start
7393 && stop_func_sal.end < ecs->stop_func_end)
7394 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7395
2dbd5e30
KB
7396 /* Architectures which require breakpoint adjustment might not be able
7397 to place a breakpoint at the computed address. If so, the test
7398 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7399 ecs->stop_func_start to an address at which a breakpoint may be
7400 legitimately placed.
8fb3e588 7401
2dbd5e30
KB
7402 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7403 made, GDB will enter an infinite loop when stepping through
7404 optimized code consisting of VLIW instructions which contain
7405 subinstructions corresponding to different source lines. On
7406 FR-V, it's not permitted to place a breakpoint on any but the
7407 first subinstruction of a VLIW instruction. When a breakpoint is
7408 set, GDB will adjust the breakpoint address to the beginning of
7409 the VLIW instruction. Thus, we need to make the corresponding
7410 adjustment here when computing the stop address. */
8fb3e588 7411
568d6575 7412 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7413 {
7414 ecs->stop_func_start
568d6575 7415 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7416 ecs->stop_func_start);
2dbd5e30
KB
7417 }
7418
f2ffa92b 7419 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7420 {
7421 /* We are already there: stop now. */
bdc36728 7422 end_stepping_range (ecs);
c2c6d25f
JM
7423 return;
7424 }
7425 else
7426 {
7427 /* Put the step-breakpoint there and go until there. */
51abb421 7428 symtab_and_line sr_sal;
c2c6d25f
JM
7429 sr_sal.pc = ecs->stop_func_start;
7430 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7431 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7432
c2c6d25f 7433 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7434 some machines the prologue is where the new fp value is
7435 established. */
a6d9a66e 7436 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7437
7438 /* And make sure stepping stops right away then. */
16c381f0
JK
7439 ecs->event_thread->control.step_range_end
7440 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7441 }
7442 keep_going (ecs);
7443}
d4f3574e 7444
b2175913
MS
7445/* Inferior has stepped backward into a subroutine call with source
7446 code that we should not step over. Do step to the beginning of the
7447 last line of code in it. */
7448
7449static void
568d6575
UW
7450handle_step_into_function_backward (struct gdbarch *gdbarch,
7451 struct execution_control_state *ecs)
b2175913 7452{
43f3e411 7453 struct compunit_symtab *cust;
167e4384 7454 struct symtab_and_line stop_func_sal;
b2175913 7455
7e324e48
GB
7456 fill_in_stop_func (gdbarch, ecs);
7457
f2ffa92b 7458 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7459 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7460 ecs->stop_func_start
7461 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7462
f2ffa92b 7463 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7464
7465 /* OK, we're just going to keep stepping here. */
f2ffa92b 7466 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7467 {
7468 /* We're there already. Just stop stepping now. */
bdc36728 7469 end_stepping_range (ecs);
b2175913
MS
7470 }
7471 else
7472 {
7473 /* Else just reset the step range and keep going.
7474 No step-resume breakpoint, they don't work for
7475 epilogues, which can have multiple entry paths. */
16c381f0
JK
7476 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7477 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7478 keep_going (ecs);
7479 }
7480 return;
7481}
7482
d3169d93 7483/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7484 This is used to both functions and to skip over code. */
7485
7486static void
2c03e5be
PA
7487insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7488 struct symtab_and_line sr_sal,
7489 struct frame_id sr_id,
7490 enum bptype sr_type)
44cbf7b5 7491{
611c83ae
PA
7492 /* There should never be more than one step-resume or longjmp-resume
7493 breakpoint per thread, so we should never be setting a new
44cbf7b5 7494 step_resume_breakpoint when one is already active. */
8358c15c 7495 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7496 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93 7497
edbcda09
SM
7498 infrun_log_debug ("inserting step-resume breakpoint at %s",
7499 paddress (gdbarch, sr_sal.pc));
d3169d93 7500
8358c15c 7501 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7502 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7503}
7504
9da8c2a0 7505void
2c03e5be
PA
7506insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7507 struct symtab_and_line sr_sal,
7508 struct frame_id sr_id)
7509{
7510 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7511 sr_sal, sr_id,
7512 bp_step_resume);
44cbf7b5 7513}
7ce450bd 7514
2c03e5be
PA
7515/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7516 This is used to skip a potential signal handler.
7ce450bd 7517
14e60db5
DJ
7518 This is called with the interrupted function's frame. The signal
7519 handler, when it returns, will resume the interrupted function at
7520 RETURN_FRAME.pc. */
d303a6c7
AC
7521
7522static void
2c03e5be 7523insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7524{
f4c1edd8 7525 gdb_assert (return_frame != NULL);
d303a6c7 7526
51abb421
PA
7527 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7528
7529 symtab_and_line sr_sal;
568d6575 7530 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7531 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7532 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7533
2c03e5be
PA
7534 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7535 get_stack_frame_id (return_frame),
7536 bp_hp_step_resume);
d303a6c7
AC
7537}
7538
2c03e5be
PA
7539/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7540 is used to skip a function after stepping into it (for "next" or if
7541 the called function has no debugging information).
14e60db5
DJ
7542
7543 The current function has almost always been reached by single
7544 stepping a call or return instruction. NEXT_FRAME belongs to the
7545 current function, and the breakpoint will be set at the caller's
7546 resume address.
7547
7548 This is a separate function rather than reusing
2c03e5be 7549 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7550 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7551 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7552
7553static void
7554insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7555{
14e60db5
DJ
7556 /* We shouldn't have gotten here if we don't know where the call site
7557 is. */
c7ce8faa 7558 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7559
51abb421 7560 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7561
51abb421 7562 symtab_and_line sr_sal;
c7ce8faa
DJ
7563 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7564 frame_unwind_caller_pc (next_frame));
14e60db5 7565 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7566 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7567
a6d9a66e 7568 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7569 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7570}
7571
611c83ae
PA
7572/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7573 new breakpoint at the target of a jmp_buf. The handling of
7574 longjmp-resume uses the same mechanisms used for handling
7575 "step-resume" breakpoints. */
7576
7577static void
a6d9a66e 7578insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7579{
e81a37f7
TT
7580 /* There should never be more than one longjmp-resume breakpoint per
7581 thread, so we should never be setting a new
611c83ae 7582 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7583 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae 7584
edbcda09
SM
7585 infrun_log_debug ("inserting longjmp-resume breakpoint at %s",
7586 paddress (gdbarch, pc));
611c83ae 7587
e81a37f7 7588 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7589 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7590}
7591
186c406b
TT
7592/* Insert an exception resume breakpoint. TP is the thread throwing
7593 the exception. The block B is the block of the unwinder debug hook
7594 function. FRAME is the frame corresponding to the call to this
7595 function. SYM is the symbol of the function argument holding the
7596 target PC of the exception. */
7597
7598static void
7599insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7600 const struct block *b,
186c406b
TT
7601 struct frame_info *frame,
7602 struct symbol *sym)
7603{
a70b8144 7604 try
186c406b 7605 {
63e43d3a 7606 struct block_symbol vsym;
186c406b
TT
7607 struct value *value;
7608 CORE_ADDR handler;
7609 struct breakpoint *bp;
7610
987012b8 7611 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7612 b, VAR_DOMAIN);
63e43d3a 7613 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7614 /* If the value was optimized out, revert to the old behavior. */
7615 if (! value_optimized_out (value))
7616 {
7617 handler = value_as_address (value);
7618
edbcda09
SM
7619 infrun_log_debug ("exception resume at %lx",
7620 (unsigned long) handler);
186c406b
TT
7621
7622 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7623 handler,
7624 bp_exception_resume).release ();
c70a6932
JK
7625
7626 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7627 frame = NULL;
7628
5d5658a1 7629 bp->thread = tp->global_num;
186c406b
TT
7630 inferior_thread ()->control.exception_resume_breakpoint = bp;
7631 }
7632 }
230d2906 7633 catch (const gdb_exception_error &e)
492d29ea
PA
7634 {
7635 /* We want to ignore errors here. */
7636 }
186c406b
TT
7637}
7638
28106bc2
SDJ
7639/* A helper for check_exception_resume that sets an
7640 exception-breakpoint based on a SystemTap probe. */
7641
7642static void
7643insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7644 const struct bound_probe *probe,
28106bc2
SDJ
7645 struct frame_info *frame)
7646{
7647 struct value *arg_value;
7648 CORE_ADDR handler;
7649 struct breakpoint *bp;
7650
7651 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7652 if (!arg_value)
7653 return;
7654
7655 handler = value_as_address (arg_value);
7656
edbcda09
SM
7657 infrun_log_debug ("exception resume at %s",
7658 paddress (probe->objfile->arch (), handler));
28106bc2
SDJ
7659
7660 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7661 handler, bp_exception_resume).release ();
5d5658a1 7662 bp->thread = tp->global_num;
28106bc2
SDJ
7663 inferior_thread ()->control.exception_resume_breakpoint = bp;
7664}
7665
186c406b
TT
7666/* This is called when an exception has been intercepted. Check to
7667 see whether the exception's destination is of interest, and if so,
7668 set an exception resume breakpoint there. */
7669
7670static void
7671check_exception_resume (struct execution_control_state *ecs,
28106bc2 7672 struct frame_info *frame)
186c406b 7673{
729662a5 7674 struct bound_probe probe;
28106bc2
SDJ
7675 struct symbol *func;
7676
7677 /* First see if this exception unwinding breakpoint was set via a
7678 SystemTap probe point. If so, the probe has two arguments: the
7679 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7680 set a breakpoint there. */
6bac7473 7681 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7682 if (probe.prob)
28106bc2 7683 {
729662a5 7684 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7685 return;
7686 }
7687
7688 func = get_frame_function (frame);
7689 if (!func)
7690 return;
186c406b 7691
a70b8144 7692 try
186c406b 7693 {
3977b71f 7694 const struct block *b;
8157b174 7695 struct block_iterator iter;
186c406b
TT
7696 struct symbol *sym;
7697 int argno = 0;
7698
7699 /* The exception breakpoint is a thread-specific breakpoint on
7700 the unwinder's debug hook, declared as:
7701
7702 void _Unwind_DebugHook (void *cfa, void *handler);
7703
7704 The CFA argument indicates the frame to which control is
7705 about to be transferred. HANDLER is the destination PC.
7706
7707 We ignore the CFA and set a temporary breakpoint at HANDLER.
7708 This is not extremely efficient but it avoids issues in gdb
7709 with computing the DWARF CFA, and it also works even in weird
7710 cases such as throwing an exception from inside a signal
7711 handler. */
7712
7713 b = SYMBOL_BLOCK_VALUE (func);
7714 ALL_BLOCK_SYMBOLS (b, iter, sym)
7715 {
7716 if (!SYMBOL_IS_ARGUMENT (sym))
7717 continue;
7718
7719 if (argno == 0)
7720 ++argno;
7721 else
7722 {
7723 insert_exception_resume_breakpoint (ecs->event_thread,
7724 b, frame, sym);
7725 break;
7726 }
7727 }
7728 }
230d2906 7729 catch (const gdb_exception_error &e)
492d29ea
PA
7730 {
7731 }
186c406b
TT
7732}
7733
104c1213 7734static void
22bcd14b 7735stop_waiting (struct execution_control_state *ecs)
104c1213 7736{
edbcda09 7737 infrun_log_debug ("stop_waiting");
527159b7 7738
cd0fc7c3
SS
7739 /* Let callers know we don't want to wait for the inferior anymore. */
7740 ecs->wait_some_more = 0;
fbea99ea 7741
53cccef1 7742 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7743 threads now that we're presenting the stop to the user. */
53cccef1 7744 if (!non_stop && exists_non_stop_target ())
fbea99ea 7745 stop_all_threads ();
cd0fc7c3
SS
7746}
7747
4d9d9d04
PA
7748/* Like keep_going, but passes the signal to the inferior, even if the
7749 signal is set to nopass. */
d4f3574e
SS
7750
7751static void
4d9d9d04 7752keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7753{
d7e15655 7754 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7755 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7756
d4f3574e 7757 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7758 ecs->event_thread->prev_pc
fc75c28b 7759 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 7760
4d9d9d04 7761 if (ecs->event_thread->control.trap_expected)
d4f3574e 7762 {
4d9d9d04
PA
7763 struct thread_info *tp = ecs->event_thread;
7764
edbcda09
SM
7765 infrun_log_debug ("%s has trap_expected set, "
7766 "resuming to collect trap",
7767 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7768
a9ba6bae
PA
7769 /* We haven't yet gotten our trap, and either: intercepted a
7770 non-signal event (e.g., a fork); or took a signal which we
7771 are supposed to pass through to the inferior. Simply
7772 continue. */
64ce06e4 7773 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7774 }
372316f1
PA
7775 else if (step_over_info_valid_p ())
7776 {
7777 /* Another thread is stepping over a breakpoint in-line. If
7778 this thread needs a step-over too, queue the request. In
7779 either case, this resume must be deferred for later. */
7780 struct thread_info *tp = ecs->event_thread;
7781
7782 if (ecs->hit_singlestep_breakpoint
7783 || thread_still_needs_step_over (tp))
7784 {
edbcda09
SM
7785 infrun_log_debug ("step-over already in progress: "
7786 "step-over for %s deferred",
7787 target_pid_to_str (tp->ptid).c_str ());
7bd43605 7788 global_thread_step_over_chain_enqueue (tp);
372316f1
PA
7789 }
7790 else
7791 {
edbcda09
SM
7792 infrun_log_debug ("step-over in progress: resume of %s deferred",
7793 target_pid_to_str (tp->ptid).c_str ());
372316f1 7794 }
372316f1 7795 }
d4f3574e
SS
7796 else
7797 {
31e77af2 7798 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7799 int remove_bp;
7800 int remove_wps;
8d297bbf 7801 step_over_what step_what;
31e77af2 7802
d4f3574e 7803 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7804 anyway (if we got a signal, the user asked it be passed to
7805 the child)
7806 -- or --
7807 We got our expected trap, but decided we should resume from
7808 it.
d4f3574e 7809
a9ba6bae 7810 We're going to run this baby now!
d4f3574e 7811
c36b740a
VP
7812 Note that insert_breakpoints won't try to re-insert
7813 already inserted breakpoints. Therefore, we don't
7814 care if breakpoints were already inserted, or not. */
a9ba6bae 7815
31e77af2
PA
7816 /* If we need to step over a breakpoint, and we're not using
7817 displaced stepping to do so, insert all breakpoints
7818 (watchpoints, etc.) but the one we're stepping over, step one
7819 instruction, and then re-insert the breakpoint when that step
7820 is finished. */
963f9c80 7821
6c4cfb24
PA
7822 step_what = thread_still_needs_step_over (ecs->event_thread);
7823
963f9c80 7824 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7825 || (step_what & STEP_OVER_BREAKPOINT));
7826 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7827
cb71640d
PA
7828 /* We can't use displaced stepping if we need to step past a
7829 watchpoint. The instruction copied to the scratch pad would
7830 still trigger the watchpoint. */
7831 if (remove_bp
3fc8eb30 7832 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7833 {
a01bda52 7834 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7835 regcache_read_pc (regcache), remove_wps,
7836 ecs->event_thread->global_num);
45e8c884 7837 }
963f9c80 7838 else if (remove_wps)
21edc42f 7839 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7840
7841 /* If we now need to do an in-line step-over, we need to stop
7842 all other threads. Note this must be done before
7843 insert_breakpoints below, because that removes the breakpoint
7844 we're about to step over, otherwise other threads could miss
7845 it. */
fbea99ea 7846 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7847 stop_all_threads ();
abbb1732 7848
31e77af2 7849 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7850 try
31e77af2
PA
7851 {
7852 insert_breakpoints ();
7853 }
230d2906 7854 catch (const gdb_exception_error &e)
31e77af2
PA
7855 {
7856 exception_print (gdb_stderr, e);
22bcd14b 7857 stop_waiting (ecs);
bdf2a94a 7858 clear_step_over_info ();
31e77af2 7859 return;
d4f3574e
SS
7860 }
7861
963f9c80 7862 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7863
64ce06e4 7864 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7865 }
7866
488f131b 7867 prepare_to_wait (ecs);
d4f3574e
SS
7868}
7869
4d9d9d04
PA
7870/* Called when we should continue running the inferior, because the
7871 current event doesn't cause a user visible stop. This does the
7872 resuming part; waiting for the next event is done elsewhere. */
7873
7874static void
7875keep_going (struct execution_control_state *ecs)
7876{
7877 if (ecs->event_thread->control.trap_expected
7878 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7879 ecs->event_thread->control.trap_expected = 0;
7880
7881 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7882 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7883 keep_going_pass_signal (ecs);
7884}
7885
104c1213
JM
7886/* This function normally comes after a resume, before
7887 handle_inferior_event exits. It takes care of any last bits of
7888 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7889
104c1213
JM
7890static void
7891prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7892{
edbcda09 7893 infrun_log_debug ("prepare_to_wait");
104c1213 7894
104c1213 7895 ecs->wait_some_more = 1;
0b333c5e 7896
0e2dba2d
PA
7897 /* If the target can't async, emulate it by marking the infrun event
7898 handler such that as soon as we get back to the event-loop, we
7899 immediately end up in fetch_inferior_event again calling
7900 target_wait. */
7901 if (!target_can_async_p ())
0b333c5e 7902 mark_infrun_async_event_handler ();
c906108c 7903}
11cf8741 7904
fd664c91 7905/* We are done with the step range of a step/next/si/ni command.
b57bacec 7906 Called once for each n of a "step n" operation. */
fd664c91
PA
7907
7908static void
bdc36728 7909end_stepping_range (struct execution_control_state *ecs)
fd664c91 7910{
bdc36728 7911 ecs->event_thread->control.stop_step = 1;
bdc36728 7912 stop_waiting (ecs);
fd664c91
PA
7913}
7914
33d62d64
JK
7915/* Several print_*_reason functions to print why the inferior has stopped.
7916 We always print something when the inferior exits, or receives a signal.
7917 The rest of the cases are dealt with later on in normal_stop and
7918 print_it_typical. Ideally there should be a call to one of these
7919 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7920 stop_waiting is called.
33d62d64 7921
fd664c91
PA
7922 Note that we don't call these directly, instead we delegate that to
7923 the interpreters, through observers. Interpreters then call these
7924 with whatever uiout is right. */
33d62d64 7925
fd664c91
PA
7926void
7927print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7928{
fd664c91 7929 /* For CLI-like interpreters, print nothing. */
33d62d64 7930
112e8700 7931 if (uiout->is_mi_like_p ())
fd664c91 7932 {
112e8700 7933 uiout->field_string ("reason",
fd664c91
PA
7934 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7935 }
7936}
33d62d64 7937
fd664c91
PA
7938void
7939print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7940{
33d62d64 7941 annotate_signalled ();
112e8700
SM
7942 if (uiout->is_mi_like_p ())
7943 uiout->field_string
7944 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7945 uiout->text ("\nProgram terminated with signal ");
33d62d64 7946 annotate_signal_name ();
112e8700 7947 uiout->field_string ("signal-name",
2ea28649 7948 gdb_signal_to_name (siggnal));
33d62d64 7949 annotate_signal_name_end ();
112e8700 7950 uiout->text (", ");
33d62d64 7951 annotate_signal_string ();
112e8700 7952 uiout->field_string ("signal-meaning",
2ea28649 7953 gdb_signal_to_string (siggnal));
33d62d64 7954 annotate_signal_string_end ();
112e8700
SM
7955 uiout->text (".\n");
7956 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7957}
7958
fd664c91
PA
7959void
7960print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7961{
fda326dd 7962 struct inferior *inf = current_inferior ();
a068643d 7963 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7964
33d62d64
JK
7965 annotate_exited (exitstatus);
7966 if (exitstatus)
7967 {
112e8700
SM
7968 if (uiout->is_mi_like_p ())
7969 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7970 std::string exit_code_str
7971 = string_printf ("0%o", (unsigned int) exitstatus);
7972 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7973 plongest (inf->num), pidstr.c_str (),
7974 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
7975 }
7976 else
11cf8741 7977 {
112e8700
SM
7978 if (uiout->is_mi_like_p ())
7979 uiout->field_string
7980 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
7981 uiout->message ("[Inferior %s (%s) exited normally]\n",
7982 plongest (inf->num), pidstr.c_str ());
33d62d64 7983 }
33d62d64
JK
7984}
7985
012b3a21
WT
7986/* Some targets/architectures can do extra processing/display of
7987 segmentation faults. E.g., Intel MPX boundary faults.
7988 Call the architecture dependent function to handle the fault. */
7989
7990static void
7991handle_segmentation_fault (struct ui_out *uiout)
7992{
7993 struct regcache *regcache = get_current_regcache ();
ac7936df 7994 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7995
7996 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7997 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7998}
7999
fd664c91
PA
8000void
8001print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8002{
f303dbd6
PA
8003 struct thread_info *thr = inferior_thread ();
8004
33d62d64
JK
8005 annotate_signal ();
8006
112e8700 8007 if (uiout->is_mi_like_p ())
f303dbd6
PA
8008 ;
8009 else if (show_thread_that_caused_stop ())
33d62d64 8010 {
f303dbd6 8011 const char *name;
33d62d64 8012
112e8700 8013 uiout->text ("\nThread ");
33eca680 8014 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8015
8016 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8017 if (name != NULL)
8018 {
112e8700 8019 uiout->text (" \"");
33eca680 8020 uiout->field_string ("name", name);
112e8700 8021 uiout->text ("\"");
f303dbd6 8022 }
33d62d64 8023 }
f303dbd6 8024 else
112e8700 8025 uiout->text ("\nProgram");
f303dbd6 8026
112e8700
SM
8027 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8028 uiout->text (" stopped");
33d62d64
JK
8029 else
8030 {
112e8700 8031 uiout->text (" received signal ");
8b93c638 8032 annotate_signal_name ();
112e8700
SM
8033 if (uiout->is_mi_like_p ())
8034 uiout->field_string
8035 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8036 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8037 annotate_signal_name_end ();
112e8700 8038 uiout->text (", ");
8b93c638 8039 annotate_signal_string ();
112e8700 8040 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8041
8042 if (siggnal == GDB_SIGNAL_SEGV)
8043 handle_segmentation_fault (uiout);
8044
8b93c638 8045 annotate_signal_string_end ();
33d62d64 8046 }
112e8700 8047 uiout->text (".\n");
33d62d64 8048}
252fbfc8 8049
fd664c91
PA
8050void
8051print_no_history_reason (struct ui_out *uiout)
33d62d64 8052{
112e8700 8053 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8054}
43ff13b4 8055
0c7e1a46
PA
8056/* Print current location without a level number, if we have changed
8057 functions or hit a breakpoint. Print source line if we have one.
8058 bpstat_print contains the logic deciding in detail what to print,
8059 based on the event(s) that just occurred. */
8060
243a9253
PA
8061static void
8062print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8063{
8064 int bpstat_ret;
f486487f 8065 enum print_what source_flag;
0c7e1a46
PA
8066 int do_frame_printing = 1;
8067 struct thread_info *tp = inferior_thread ();
8068
8069 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8070 switch (bpstat_ret)
8071 {
8072 case PRINT_UNKNOWN:
8073 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8074 should) carry around the function and does (or should) use
8075 that when doing a frame comparison. */
8076 if (tp->control.stop_step
8077 && frame_id_eq (tp->control.step_frame_id,
8078 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8079 && (tp->control.step_start_function
8080 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8081 {
8082 /* Finished step, just print source line. */
8083 source_flag = SRC_LINE;
8084 }
8085 else
8086 {
8087 /* Print location and source line. */
8088 source_flag = SRC_AND_LOC;
8089 }
8090 break;
8091 case PRINT_SRC_AND_LOC:
8092 /* Print location and source line. */
8093 source_flag = SRC_AND_LOC;
8094 break;
8095 case PRINT_SRC_ONLY:
8096 source_flag = SRC_LINE;
8097 break;
8098 case PRINT_NOTHING:
8099 /* Something bogus. */
8100 source_flag = SRC_LINE;
8101 do_frame_printing = 0;
8102 break;
8103 default:
8104 internal_error (__FILE__, __LINE__, _("Unknown value."));
8105 }
8106
8107 /* The behavior of this routine with respect to the source
8108 flag is:
8109 SRC_LINE: Print only source line
8110 LOCATION: Print only location
8111 SRC_AND_LOC: Print location and source line. */
8112 if (do_frame_printing)
8113 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8114}
8115
243a9253
PA
8116/* See infrun.h. */
8117
8118void
4c7d57e7 8119print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8120{
243a9253 8121 struct target_waitstatus last;
243a9253
PA
8122 struct thread_info *tp;
8123
5b6d1e4f 8124 get_last_target_status (nullptr, nullptr, &last);
243a9253 8125
67ad9399
TT
8126 {
8127 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8128
67ad9399 8129 print_stop_location (&last);
243a9253 8130
67ad9399 8131 /* Display the auto-display expressions. */
4c7d57e7
TT
8132 if (displays)
8133 do_displays ();
67ad9399 8134 }
243a9253
PA
8135
8136 tp = inferior_thread ();
8137 if (tp->thread_fsm != NULL
46e3ed7f 8138 && tp->thread_fsm->finished_p ())
243a9253
PA
8139 {
8140 struct return_value_info *rv;
8141
46e3ed7f 8142 rv = tp->thread_fsm->return_value ();
243a9253
PA
8143 if (rv != NULL)
8144 print_return_value (uiout, rv);
8145 }
0c7e1a46
PA
8146}
8147
388a7084
PA
8148/* See infrun.h. */
8149
8150void
8151maybe_remove_breakpoints (void)
8152{
8153 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8154 {
8155 if (remove_breakpoints ())
8156 {
223ffa71 8157 target_terminal::ours_for_output ();
388a7084
PA
8158 printf_filtered (_("Cannot remove breakpoints because "
8159 "program is no longer writable.\nFurther "
8160 "execution is probably impossible.\n"));
8161 }
8162 }
8163}
8164
4c2f2a79
PA
8165/* The execution context that just caused a normal stop. */
8166
8167struct stop_context
8168{
2d844eaf
TT
8169 stop_context ();
8170 ~stop_context ();
8171
8172 DISABLE_COPY_AND_ASSIGN (stop_context);
8173
8174 bool changed () const;
8175
4c2f2a79
PA
8176 /* The stop ID. */
8177 ULONGEST stop_id;
c906108c 8178
4c2f2a79 8179 /* The event PTID. */
c906108c 8180
4c2f2a79
PA
8181 ptid_t ptid;
8182
8183 /* If stopp for a thread event, this is the thread that caused the
8184 stop. */
8185 struct thread_info *thread;
8186
8187 /* The inferior that caused the stop. */
8188 int inf_num;
8189};
8190
2d844eaf 8191/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8192 takes a strong reference to the thread. */
8193
2d844eaf 8194stop_context::stop_context ()
4c2f2a79 8195{
2d844eaf
TT
8196 stop_id = get_stop_id ();
8197 ptid = inferior_ptid;
8198 inf_num = current_inferior ()->num;
4c2f2a79 8199
d7e15655 8200 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8201 {
8202 /* Take a strong reference so that the thread can't be deleted
8203 yet. */
2d844eaf
TT
8204 thread = inferior_thread ();
8205 thread->incref ();
4c2f2a79
PA
8206 }
8207 else
2d844eaf 8208 thread = NULL;
4c2f2a79
PA
8209}
8210
8211/* Release a stop context previously created with save_stop_context.
8212 Releases the strong reference to the thread as well. */
8213
2d844eaf 8214stop_context::~stop_context ()
4c2f2a79 8215{
2d844eaf
TT
8216 if (thread != NULL)
8217 thread->decref ();
4c2f2a79
PA
8218}
8219
8220/* Return true if the current context no longer matches the saved stop
8221 context. */
8222
2d844eaf
TT
8223bool
8224stop_context::changed () const
8225{
8226 if (ptid != inferior_ptid)
8227 return true;
8228 if (inf_num != current_inferior ()->num)
8229 return true;
8230 if (thread != NULL && thread->state != THREAD_STOPPED)
8231 return true;
8232 if (get_stop_id () != stop_id)
8233 return true;
8234 return false;
4c2f2a79
PA
8235}
8236
8237/* See infrun.h. */
8238
8239int
96baa820 8240normal_stop (void)
c906108c 8241{
73b65bb0 8242 struct target_waitstatus last;
73b65bb0 8243
5b6d1e4f 8244 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8245
4c2f2a79
PA
8246 new_stop_id ();
8247
29f49a6a
PA
8248 /* If an exception is thrown from this point on, make sure to
8249 propagate GDB's knowledge of the executing state to the
8250 frontend/user running state. A QUIT is an easy exception to see
8251 here, so do this before any filtered output. */
731f534f 8252
5b6d1e4f 8253 ptid_t finish_ptid = null_ptid;
731f534f 8254
c35b1492 8255 if (!non_stop)
5b6d1e4f 8256 finish_ptid = minus_one_ptid;
e1316e60
PA
8257 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8258 || last.kind == TARGET_WAITKIND_EXITED)
8259 {
8260 /* On some targets, we may still have live threads in the
8261 inferior when we get a process exit event. E.g., for
8262 "checkpoint", when the current checkpoint/fork exits,
8263 linux-fork.c automatically switches to another fork from
8264 within target_mourn_inferior. */
731f534f 8265 if (inferior_ptid != null_ptid)
5b6d1e4f 8266 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8267 }
8268 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8269 finish_ptid = inferior_ptid;
8270
8271 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8272 if (finish_ptid != null_ptid)
8273 {
8274 maybe_finish_thread_state.emplace
8275 (user_visible_resume_target (finish_ptid), finish_ptid);
8276 }
29f49a6a 8277
b57bacec
PA
8278 /* As we're presenting a stop, and potentially removing breakpoints,
8279 update the thread list so we can tell whether there are threads
8280 running on the target. With target remote, for example, we can
8281 only learn about new threads when we explicitly update the thread
8282 list. Do this before notifying the interpreters about signal
8283 stops, end of stepping ranges, etc., so that the "new thread"
8284 output is emitted before e.g., "Program received signal FOO",
8285 instead of after. */
8286 update_thread_list ();
8287
8288 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8289 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8290
c906108c
SS
8291 /* As with the notification of thread events, we want to delay
8292 notifying the user that we've switched thread context until
8293 the inferior actually stops.
8294
73b65bb0
DJ
8295 There's no point in saying anything if the inferior has exited.
8296 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8297 "received a signal".
8298
8299 Also skip saying anything in non-stop mode. In that mode, as we
8300 don't want GDB to switch threads behind the user's back, to avoid
8301 races where the user is typing a command to apply to thread x,
8302 but GDB switches to thread y before the user finishes entering
8303 the command, fetch_inferior_event installs a cleanup to restore
8304 the current thread back to the thread the user had selected right
8305 after this event is handled, so we're not really switching, only
8306 informing of a stop. */
4f8d22e3 8307 if (!non_stop
731f534f 8308 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8309 && target_has_execution
8310 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8311 && last.kind != TARGET_WAITKIND_EXITED
8312 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8313 {
0e454242 8314 SWITCH_THRU_ALL_UIS ()
3b12939d 8315 {
223ffa71 8316 target_terminal::ours_for_output ();
3b12939d 8317 printf_filtered (_("[Switching to %s]\n"),
a068643d 8318 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8319 annotate_thread_changed ();
8320 }
39f77062 8321 previous_inferior_ptid = inferior_ptid;
c906108c 8322 }
c906108c 8323
0e5bf2a8
PA
8324 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8325 {
0e454242 8326 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8327 if (current_ui->prompt_state == PROMPT_BLOCKED)
8328 {
223ffa71 8329 target_terminal::ours_for_output ();
3b12939d
PA
8330 printf_filtered (_("No unwaited-for children left.\n"));
8331 }
0e5bf2a8
PA
8332 }
8333
b57bacec 8334 /* Note: this depends on the update_thread_list call above. */
388a7084 8335 maybe_remove_breakpoints ();
c906108c 8336
c906108c
SS
8337 /* If an auto-display called a function and that got a signal,
8338 delete that auto-display to avoid an infinite recursion. */
8339
8340 if (stopped_by_random_signal)
8341 disable_current_display ();
8342
0e454242 8343 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8344 {
8345 async_enable_stdin ();
8346 }
c906108c 8347
388a7084 8348 /* Let the user/frontend see the threads as stopped. */
731f534f 8349 maybe_finish_thread_state.reset ();
388a7084
PA
8350
8351 /* Select innermost stack frame - i.e., current frame is frame 0,
8352 and current location is based on that. Handle the case where the
8353 dummy call is returning after being stopped. E.g. the dummy call
8354 previously hit a breakpoint. (If the dummy call returns
8355 normally, we won't reach here.) Do this before the stop hook is
8356 run, so that it doesn't get to see the temporary dummy frame,
8357 which is not where we'll present the stop. */
8358 if (has_stack_frames ())
8359 {
8360 if (stop_stack_dummy == STOP_STACK_DUMMY)
8361 {
8362 /* Pop the empty frame that contains the stack dummy. This
8363 also restores inferior state prior to the call (struct
8364 infcall_suspend_state). */
8365 struct frame_info *frame = get_current_frame ();
8366
8367 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8368 frame_pop (frame);
8369 /* frame_pop calls reinit_frame_cache as the last thing it
8370 does which means there's now no selected frame. */
8371 }
8372
8373 select_frame (get_current_frame ());
8374
8375 /* Set the current source location. */
8376 set_current_sal_from_frame (get_current_frame ());
8377 }
dd7e2d2b
PA
8378
8379 /* Look up the hook_stop and run it (CLI internally handles problem
8380 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8381 if (stop_command != NULL)
8382 {
2d844eaf 8383 stop_context saved_context;
4c2f2a79 8384
a70b8144 8385 try
bf469271
PA
8386 {
8387 execute_cmd_pre_hook (stop_command);
8388 }
230d2906 8389 catch (const gdb_exception &ex)
bf469271
PA
8390 {
8391 exception_fprintf (gdb_stderr, ex,
8392 "Error while running hook_stop:\n");
8393 }
4c2f2a79
PA
8394
8395 /* If the stop hook resumes the target, then there's no point in
8396 trying to notify about the previous stop; its context is
8397 gone. Likewise if the command switches thread or inferior --
8398 the observers would print a stop for the wrong
8399 thread/inferior. */
2d844eaf
TT
8400 if (saved_context.changed ())
8401 return 1;
4c2f2a79 8402 }
dd7e2d2b 8403
388a7084
PA
8404 /* Notify observers about the stop. This is where the interpreters
8405 print the stop event. */
d7e15655 8406 if (inferior_ptid != null_ptid)
76727919 8407 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8408 stop_print_frame);
8409 else
76727919 8410 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8411
243a9253
PA
8412 annotate_stopped ();
8413
48844aa6
PA
8414 if (target_has_execution)
8415 {
8416 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8417 && last.kind != TARGET_WAITKIND_EXITED
8418 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8419 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8420 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8421 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8422 }
6c95b8df
PA
8423
8424 /* Try to get rid of automatically added inferiors that are no
8425 longer needed. Keeping those around slows down things linearly.
8426 Note that this never removes the current inferior. */
8427 prune_inferiors ();
4c2f2a79
PA
8428
8429 return 0;
c906108c 8430}
c906108c 8431\f
c5aa993b 8432int
96baa820 8433signal_stop_state (int signo)
c906108c 8434{
d6b48e9c 8435 return signal_stop[signo];
c906108c
SS
8436}
8437
c5aa993b 8438int
96baa820 8439signal_print_state (int signo)
c906108c
SS
8440{
8441 return signal_print[signo];
8442}
8443
c5aa993b 8444int
96baa820 8445signal_pass_state (int signo)
c906108c
SS
8446{
8447 return signal_program[signo];
8448}
8449
2455069d
UW
8450static void
8451signal_cache_update (int signo)
8452{
8453 if (signo == -1)
8454 {
a493e3e2 8455 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8456 signal_cache_update (signo);
8457
8458 return;
8459 }
8460
8461 signal_pass[signo] = (signal_stop[signo] == 0
8462 && signal_print[signo] == 0
ab04a2af
TT
8463 && signal_program[signo] == 1
8464 && signal_catch[signo] == 0);
2455069d
UW
8465}
8466
488f131b 8467int
7bda5e4a 8468signal_stop_update (int signo, int state)
d4f3574e
SS
8469{
8470 int ret = signal_stop[signo];
abbb1732 8471
d4f3574e 8472 signal_stop[signo] = state;
2455069d 8473 signal_cache_update (signo);
d4f3574e
SS
8474 return ret;
8475}
8476
488f131b 8477int
7bda5e4a 8478signal_print_update (int signo, int state)
d4f3574e
SS
8479{
8480 int ret = signal_print[signo];
abbb1732 8481
d4f3574e 8482 signal_print[signo] = state;
2455069d 8483 signal_cache_update (signo);
d4f3574e
SS
8484 return ret;
8485}
8486
488f131b 8487int
7bda5e4a 8488signal_pass_update (int signo, int state)
d4f3574e
SS
8489{
8490 int ret = signal_program[signo];
abbb1732 8491
d4f3574e 8492 signal_program[signo] = state;
2455069d 8493 signal_cache_update (signo);
d4f3574e
SS
8494 return ret;
8495}
8496
ab04a2af
TT
8497/* Update the global 'signal_catch' from INFO and notify the
8498 target. */
8499
8500void
8501signal_catch_update (const unsigned int *info)
8502{
8503 int i;
8504
8505 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8506 signal_catch[i] = info[i] > 0;
8507 signal_cache_update (-1);
adc6a863 8508 target_pass_signals (signal_pass);
ab04a2af
TT
8509}
8510
c906108c 8511static void
96baa820 8512sig_print_header (void)
c906108c 8513{
3e43a32a
MS
8514 printf_filtered (_("Signal Stop\tPrint\tPass "
8515 "to program\tDescription\n"));
c906108c
SS
8516}
8517
8518static void
2ea28649 8519sig_print_info (enum gdb_signal oursig)
c906108c 8520{
2ea28649 8521 const char *name = gdb_signal_to_name (oursig);
c906108c 8522 int name_padding = 13 - strlen (name);
96baa820 8523
c906108c
SS
8524 if (name_padding <= 0)
8525 name_padding = 0;
8526
8527 printf_filtered ("%s", name);
488f131b 8528 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8529 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8530 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8531 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8532 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8533}
8534
8535/* Specify how various signals in the inferior should be handled. */
8536
8537static void
0b39b52e 8538handle_command (const char *args, int from_tty)
c906108c 8539{
c906108c 8540 int digits, wordlen;
b926417a 8541 int sigfirst, siglast;
2ea28649 8542 enum gdb_signal oursig;
c906108c 8543 int allsigs;
c906108c
SS
8544
8545 if (args == NULL)
8546 {
e2e0b3e5 8547 error_no_arg (_("signal to handle"));
c906108c
SS
8548 }
8549
1777feb0 8550 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8551
adc6a863
PA
8552 const size_t nsigs = GDB_SIGNAL_LAST;
8553 unsigned char sigs[nsigs] {};
c906108c 8554
1777feb0 8555 /* Break the command line up into args. */
c906108c 8556
773a1edc 8557 gdb_argv built_argv (args);
c906108c
SS
8558
8559 /* Walk through the args, looking for signal oursigs, signal names, and
8560 actions. Signal numbers and signal names may be interspersed with
8561 actions, with the actions being performed for all signals cumulatively
1777feb0 8562 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8563
773a1edc 8564 for (char *arg : built_argv)
c906108c 8565 {
773a1edc
TT
8566 wordlen = strlen (arg);
8567 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8568 {;
8569 }
8570 allsigs = 0;
8571 sigfirst = siglast = -1;
8572
773a1edc 8573 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8574 {
8575 /* Apply action to all signals except those used by the
1777feb0 8576 debugger. Silently skip those. */
c906108c
SS
8577 allsigs = 1;
8578 sigfirst = 0;
8579 siglast = nsigs - 1;
8580 }
773a1edc 8581 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8582 {
8583 SET_SIGS (nsigs, sigs, signal_stop);
8584 SET_SIGS (nsigs, sigs, signal_print);
8585 }
773a1edc 8586 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8587 {
8588 UNSET_SIGS (nsigs, sigs, signal_program);
8589 }
773a1edc 8590 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8591 {
8592 SET_SIGS (nsigs, sigs, signal_print);
8593 }
773a1edc 8594 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8595 {
8596 SET_SIGS (nsigs, sigs, signal_program);
8597 }
773a1edc 8598 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8599 {
8600 UNSET_SIGS (nsigs, sigs, signal_stop);
8601 }
773a1edc 8602 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8603 {
8604 SET_SIGS (nsigs, sigs, signal_program);
8605 }
773a1edc 8606 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8607 {
8608 UNSET_SIGS (nsigs, sigs, signal_print);
8609 UNSET_SIGS (nsigs, sigs, signal_stop);
8610 }
773a1edc 8611 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8612 {
8613 UNSET_SIGS (nsigs, sigs, signal_program);
8614 }
8615 else if (digits > 0)
8616 {
8617 /* It is numeric. The numeric signal refers to our own
8618 internal signal numbering from target.h, not to host/target
8619 signal number. This is a feature; users really should be
8620 using symbolic names anyway, and the common ones like
8621 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8622
8623 sigfirst = siglast = (int)
773a1edc
TT
8624 gdb_signal_from_command (atoi (arg));
8625 if (arg[digits] == '-')
c906108c
SS
8626 {
8627 siglast = (int)
773a1edc 8628 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8629 }
8630 if (sigfirst > siglast)
8631 {
1777feb0 8632 /* Bet he didn't figure we'd think of this case... */
b926417a 8633 std::swap (sigfirst, siglast);
c906108c
SS
8634 }
8635 }
8636 else
8637 {
773a1edc 8638 oursig = gdb_signal_from_name (arg);
a493e3e2 8639 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8640 {
8641 sigfirst = siglast = (int) oursig;
8642 }
8643 else
8644 {
8645 /* Not a number and not a recognized flag word => complain. */
773a1edc 8646 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8647 }
8648 }
8649
8650 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8651 which signals to apply actions to. */
c906108c 8652
b926417a 8653 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8654 {
2ea28649 8655 switch ((enum gdb_signal) signum)
c906108c 8656 {
a493e3e2
PA
8657 case GDB_SIGNAL_TRAP:
8658 case GDB_SIGNAL_INT:
c906108c
SS
8659 if (!allsigs && !sigs[signum])
8660 {
9e2f0ad4 8661 if (query (_("%s is used by the debugger.\n\
3e43a32a 8662Are you sure you want to change it? "),
2ea28649 8663 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8664 {
8665 sigs[signum] = 1;
8666 }
8667 else
c119e040 8668 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8669 }
8670 break;
a493e3e2
PA
8671 case GDB_SIGNAL_0:
8672 case GDB_SIGNAL_DEFAULT:
8673 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8674 /* Make sure that "all" doesn't print these. */
8675 break;
8676 default:
8677 sigs[signum] = 1;
8678 break;
8679 }
8680 }
c906108c
SS
8681 }
8682
b926417a 8683 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8684 if (sigs[signum])
8685 {
2455069d 8686 signal_cache_update (-1);
adc6a863
PA
8687 target_pass_signals (signal_pass);
8688 target_program_signals (signal_program);
c906108c 8689
3a031f65
PA
8690 if (from_tty)
8691 {
8692 /* Show the results. */
8693 sig_print_header ();
8694 for (; signum < nsigs; signum++)
8695 if (sigs[signum])
aead7601 8696 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8697 }
8698
8699 break;
8700 }
c906108c
SS
8701}
8702
de0bea00
MF
8703/* Complete the "handle" command. */
8704
eb3ff9a5 8705static void
de0bea00 8706handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8707 completion_tracker &tracker,
6f937416 8708 const char *text, const char *word)
de0bea00 8709{
de0bea00
MF
8710 static const char * const keywords[] =
8711 {
8712 "all",
8713 "stop",
8714 "ignore",
8715 "print",
8716 "pass",
8717 "nostop",
8718 "noignore",
8719 "noprint",
8720 "nopass",
8721 NULL,
8722 };
8723
eb3ff9a5
PA
8724 signal_completer (ignore, tracker, text, word);
8725 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8726}
8727
2ea28649
PA
8728enum gdb_signal
8729gdb_signal_from_command (int num)
ed01b82c
PA
8730{
8731 if (num >= 1 && num <= 15)
2ea28649 8732 return (enum gdb_signal) num;
ed01b82c
PA
8733 error (_("Only signals 1-15 are valid as numeric signals.\n\
8734Use \"info signals\" for a list of symbolic signals."));
8735}
8736
c906108c
SS
8737/* Print current contents of the tables set by the handle command.
8738 It is possible we should just be printing signals actually used
8739 by the current target (but for things to work right when switching
8740 targets, all signals should be in the signal tables). */
8741
8742static void
1d12d88f 8743info_signals_command (const char *signum_exp, int from_tty)
c906108c 8744{
2ea28649 8745 enum gdb_signal oursig;
abbb1732 8746
c906108c
SS
8747 sig_print_header ();
8748
8749 if (signum_exp)
8750 {
8751 /* First see if this is a symbol name. */
2ea28649 8752 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8753 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8754 {
8755 /* No, try numeric. */
8756 oursig =
2ea28649 8757 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8758 }
8759 sig_print_info (oursig);
8760 return;
8761 }
8762
8763 printf_filtered ("\n");
8764 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8765 for (oursig = GDB_SIGNAL_FIRST;
8766 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8767 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8768 {
8769 QUIT;
8770
a493e3e2
PA
8771 if (oursig != GDB_SIGNAL_UNKNOWN
8772 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8773 sig_print_info (oursig);
8774 }
8775
3e43a32a
MS
8776 printf_filtered (_("\nUse the \"handle\" command "
8777 "to change these tables.\n"));
c906108c 8778}
4aa995e1
PA
8779
8780/* The $_siginfo convenience variable is a bit special. We don't know
8781 for sure the type of the value until we actually have a chance to
7a9dd1b2 8782 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8783 also dependent on which thread you have selected.
8784
8785 1. making $_siginfo be an internalvar that creates a new value on
8786 access.
8787
8788 2. making the value of $_siginfo be an lval_computed value. */
8789
8790/* This function implements the lval_computed support for reading a
8791 $_siginfo value. */
8792
8793static void
8794siginfo_value_read (struct value *v)
8795{
8796 LONGEST transferred;
8797
a911d87a
PA
8798 /* If we can access registers, so can we access $_siginfo. Likewise
8799 vice versa. */
8800 validate_registers_access ();
c709acd1 8801
4aa995e1 8802 transferred =
8b88a78e 8803 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8804 NULL,
8805 value_contents_all_raw (v),
8806 value_offset (v),
8807 TYPE_LENGTH (value_type (v)));
8808
8809 if (transferred != TYPE_LENGTH (value_type (v)))
8810 error (_("Unable to read siginfo"));
8811}
8812
8813/* This function implements the lval_computed support for writing a
8814 $_siginfo value. */
8815
8816static void
8817siginfo_value_write (struct value *v, struct value *fromval)
8818{
8819 LONGEST transferred;
8820
a911d87a
PA
8821 /* If we can access registers, so can we access $_siginfo. Likewise
8822 vice versa. */
8823 validate_registers_access ();
c709acd1 8824
8b88a78e 8825 transferred = target_write (current_top_target (),
4aa995e1
PA
8826 TARGET_OBJECT_SIGNAL_INFO,
8827 NULL,
8828 value_contents_all_raw (fromval),
8829 value_offset (v),
8830 TYPE_LENGTH (value_type (fromval)));
8831
8832 if (transferred != TYPE_LENGTH (value_type (fromval)))
8833 error (_("Unable to write siginfo"));
8834}
8835
c8f2448a 8836static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8837 {
8838 siginfo_value_read,
8839 siginfo_value_write
8840 };
8841
8842/* Return a new value with the correct type for the siginfo object of
78267919
UW
8843 the current thread using architecture GDBARCH. Return a void value
8844 if there's no object available. */
4aa995e1 8845
2c0b251b 8846static struct value *
22d2b532
SDJ
8847siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8848 void *ignore)
4aa995e1 8849{
4aa995e1 8850 if (target_has_stack
d7e15655 8851 && inferior_ptid != null_ptid
78267919 8852 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8853 {
78267919 8854 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8855
78267919 8856 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8857 }
8858
78267919 8859 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8860}
8861
c906108c 8862\f
16c381f0
JK
8863/* infcall_suspend_state contains state about the program itself like its
8864 registers and any signal it received when it last stopped.
8865 This state must be restored regardless of how the inferior function call
8866 ends (either successfully, or after it hits a breakpoint or signal)
8867 if the program is to properly continue where it left off. */
8868
6bf78e29 8869class infcall_suspend_state
7a292a7a 8870{
6bf78e29
AB
8871public:
8872 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8873 once the inferior function call has finished. */
8874 infcall_suspend_state (struct gdbarch *gdbarch,
8875 const struct thread_info *tp,
8876 struct regcache *regcache)
8877 : m_thread_suspend (tp->suspend),
8878 m_registers (new readonly_detached_regcache (*regcache))
8879 {
8880 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8881
8882 if (gdbarch_get_siginfo_type_p (gdbarch))
8883 {
8884 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8885 size_t len = TYPE_LENGTH (type);
8886
8887 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8888
8889 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8890 siginfo_data.get (), 0, len) != len)
8891 {
8892 /* Errors ignored. */
8893 siginfo_data.reset (nullptr);
8894 }
8895 }
8896
8897 if (siginfo_data)
8898 {
8899 m_siginfo_gdbarch = gdbarch;
8900 m_siginfo_data = std::move (siginfo_data);
8901 }
8902 }
8903
8904 /* Return a pointer to the stored register state. */
16c381f0 8905
6bf78e29
AB
8906 readonly_detached_regcache *registers () const
8907 {
8908 return m_registers.get ();
8909 }
8910
8911 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8912
8913 void restore (struct gdbarch *gdbarch,
8914 struct thread_info *tp,
8915 struct regcache *regcache) const
8916 {
8917 tp->suspend = m_thread_suspend;
8918
8919 if (m_siginfo_gdbarch == gdbarch)
8920 {
8921 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8922
8923 /* Errors ignored. */
8924 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8925 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8926 }
8927
8928 /* The inferior can be gone if the user types "print exit(0)"
8929 (and perhaps other times). */
8930 if (target_has_execution)
8931 /* NB: The register write goes through to the target. */
8932 regcache->restore (registers ());
8933 }
8934
8935private:
8936 /* How the current thread stopped before the inferior function call was
8937 executed. */
8938 struct thread_suspend_state m_thread_suspend;
8939
8940 /* The registers before the inferior function call was executed. */
8941 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8942
35515841 8943 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8944 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8945
8946 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8947 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8948 content would be invalid. */
6bf78e29 8949 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8950};
8951
cb524840
TT
8952infcall_suspend_state_up
8953save_infcall_suspend_state ()
b89667eb 8954{
b89667eb 8955 struct thread_info *tp = inferior_thread ();
1736ad11 8956 struct regcache *regcache = get_current_regcache ();
ac7936df 8957 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8958
6bf78e29
AB
8959 infcall_suspend_state_up inf_state
8960 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8961
6bf78e29
AB
8962 /* Having saved the current state, adjust the thread state, discarding
8963 any stop signal information. The stop signal is not useful when
8964 starting an inferior function call, and run_inferior_call will not use
8965 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8966 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8967
b89667eb
DE
8968 return inf_state;
8969}
8970
8971/* Restore inferior session state to INF_STATE. */
8972
8973void
16c381f0 8974restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8975{
8976 struct thread_info *tp = inferior_thread ();
1736ad11 8977 struct regcache *regcache = get_current_regcache ();
ac7936df 8978 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8979
6bf78e29 8980 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8981 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8982}
8983
b89667eb 8984void
16c381f0 8985discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8986{
dd848631 8987 delete inf_state;
b89667eb
DE
8988}
8989
daf6667d 8990readonly_detached_regcache *
16c381f0 8991get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8992{
6bf78e29 8993 return inf_state->registers ();
b89667eb
DE
8994}
8995
16c381f0
JK
8996/* infcall_control_state contains state regarding gdb's control of the
8997 inferior itself like stepping control. It also contains session state like
8998 the user's currently selected frame. */
b89667eb 8999
16c381f0 9000struct infcall_control_state
b89667eb 9001{
16c381f0
JK
9002 struct thread_control_state thread_control;
9003 struct inferior_control_state inferior_control;
d82142e2
JK
9004
9005 /* Other fields: */
ee841dd8
TT
9006 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9007 int stopped_by_random_signal = 0;
7a292a7a 9008
b89667eb 9009 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9010 struct frame_id selected_frame_id {};
7a292a7a
SS
9011};
9012
c906108c 9013/* Save all of the information associated with the inferior<==>gdb
b89667eb 9014 connection. */
c906108c 9015
cb524840
TT
9016infcall_control_state_up
9017save_infcall_control_state ()
c906108c 9018{
cb524840 9019 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9020 struct thread_info *tp = inferior_thread ();
d6b48e9c 9021 struct inferior *inf = current_inferior ();
7a292a7a 9022
16c381f0
JK
9023 inf_status->thread_control = tp->control;
9024 inf_status->inferior_control = inf->control;
d82142e2 9025
8358c15c 9026 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9027 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9028
16c381f0
JK
9029 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9030 chain. If caller's caller is walking the chain, they'll be happier if we
9031 hand them back the original chain when restore_infcall_control_state is
9032 called. */
9033 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9034
9035 /* Other fields: */
9036 inf_status->stop_stack_dummy = stop_stack_dummy;
9037 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9038
206415a3 9039 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9040
7a292a7a 9041 return inf_status;
c906108c
SS
9042}
9043
bf469271
PA
9044static void
9045restore_selected_frame (const frame_id &fid)
c906108c 9046{
bf469271 9047 frame_info *frame = frame_find_by_id (fid);
c906108c 9048
aa0cd9c1
AC
9049 /* If inf_status->selected_frame_id is NULL, there was no previously
9050 selected frame. */
101dcfbe 9051 if (frame == NULL)
c906108c 9052 {
8a3fe4f8 9053 warning (_("Unable to restore previously selected frame."));
bf469271 9054 return;
c906108c
SS
9055 }
9056
0f7d239c 9057 select_frame (frame);
c906108c
SS
9058}
9059
b89667eb
DE
9060/* Restore inferior session state to INF_STATUS. */
9061
c906108c 9062void
16c381f0 9063restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9064{
4e1c45ea 9065 struct thread_info *tp = inferior_thread ();
d6b48e9c 9066 struct inferior *inf = current_inferior ();
4e1c45ea 9067
8358c15c
JK
9068 if (tp->control.step_resume_breakpoint)
9069 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9070
5b79abe7
TT
9071 if (tp->control.exception_resume_breakpoint)
9072 tp->control.exception_resume_breakpoint->disposition
9073 = disp_del_at_next_stop;
9074
d82142e2 9075 /* Handle the bpstat_copy of the chain. */
16c381f0 9076 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9077
16c381f0
JK
9078 tp->control = inf_status->thread_control;
9079 inf->control = inf_status->inferior_control;
d82142e2
JK
9080
9081 /* Other fields: */
9082 stop_stack_dummy = inf_status->stop_stack_dummy;
9083 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9084
b89667eb 9085 if (target_has_stack)
c906108c 9086 {
bf469271 9087 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9088 walking the stack might encounter a garbage pointer and
9089 error() trying to dereference it. */
a70b8144 9090 try
bf469271
PA
9091 {
9092 restore_selected_frame (inf_status->selected_frame_id);
9093 }
230d2906 9094 catch (const gdb_exception_error &ex)
bf469271
PA
9095 {
9096 exception_fprintf (gdb_stderr, ex,
9097 "Unable to restore previously selected frame:\n");
9098 /* Error in restoring the selected frame. Select the
9099 innermost frame. */
9100 select_frame (get_current_frame ());
9101 }
c906108c 9102 }
c906108c 9103
ee841dd8 9104 delete inf_status;
7a292a7a 9105}
c906108c
SS
9106
9107void
16c381f0 9108discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9109{
8358c15c
JK
9110 if (inf_status->thread_control.step_resume_breakpoint)
9111 inf_status->thread_control.step_resume_breakpoint->disposition
9112 = disp_del_at_next_stop;
9113
5b79abe7
TT
9114 if (inf_status->thread_control.exception_resume_breakpoint)
9115 inf_status->thread_control.exception_resume_breakpoint->disposition
9116 = disp_del_at_next_stop;
9117
1777feb0 9118 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9119 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9120
ee841dd8 9121 delete inf_status;
7a292a7a 9122}
b89667eb 9123\f
7f89fd65 9124/* See infrun.h. */
0c557179
SDJ
9125
9126void
9127clear_exit_convenience_vars (void)
9128{
9129 clear_internalvar (lookup_internalvar ("_exitsignal"));
9130 clear_internalvar (lookup_internalvar ("_exitcode"));
9131}
c5aa993b 9132\f
488f131b 9133
b2175913
MS
9134/* User interface for reverse debugging:
9135 Set exec-direction / show exec-direction commands
9136 (returns error unless target implements to_set_exec_direction method). */
9137
170742de 9138enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9139static const char exec_forward[] = "forward";
9140static const char exec_reverse[] = "reverse";
9141static const char *exec_direction = exec_forward;
40478521 9142static const char *const exec_direction_names[] = {
b2175913
MS
9143 exec_forward,
9144 exec_reverse,
9145 NULL
9146};
9147
9148static void
eb4c3f4a 9149set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9150 struct cmd_list_element *cmd)
9151{
9152 if (target_can_execute_reverse)
9153 {
9154 if (!strcmp (exec_direction, exec_forward))
9155 execution_direction = EXEC_FORWARD;
9156 else if (!strcmp (exec_direction, exec_reverse))
9157 execution_direction = EXEC_REVERSE;
9158 }
8bbed405
MS
9159 else
9160 {
9161 exec_direction = exec_forward;
9162 error (_("Target does not support this operation."));
9163 }
b2175913
MS
9164}
9165
9166static void
9167show_exec_direction_func (struct ui_file *out, int from_tty,
9168 struct cmd_list_element *cmd, const char *value)
9169{
9170 switch (execution_direction) {
9171 case EXEC_FORWARD:
9172 fprintf_filtered (out, _("Forward.\n"));
9173 break;
9174 case EXEC_REVERSE:
9175 fprintf_filtered (out, _("Reverse.\n"));
9176 break;
b2175913 9177 default:
d8b34453
PA
9178 internal_error (__FILE__, __LINE__,
9179 _("bogus execution_direction value: %d"),
9180 (int) execution_direction);
b2175913
MS
9181 }
9182}
9183
d4db2f36
PA
9184static void
9185show_schedule_multiple (struct ui_file *file, int from_tty,
9186 struct cmd_list_element *c, const char *value)
9187{
3e43a32a
MS
9188 fprintf_filtered (file, _("Resuming the execution of threads "
9189 "of all processes is %s.\n"), value);
d4db2f36 9190}
ad52ddc6 9191
22d2b532
SDJ
9192/* Implementation of `siginfo' variable. */
9193
9194static const struct internalvar_funcs siginfo_funcs =
9195{
9196 siginfo_make_value,
9197 NULL,
9198 NULL
9199};
9200
372316f1
PA
9201/* Callback for infrun's target events source. This is marked when a
9202 thread has a pending status to process. */
9203
9204static void
9205infrun_async_inferior_event_handler (gdb_client_data data)
9206{
b1a35af2 9207 inferior_event_handler (INF_REG_EVENT);
372316f1
PA
9208}
9209
6c265988 9210void _initialize_infrun ();
c906108c 9211void
6c265988 9212_initialize_infrun ()
c906108c 9213{
de0bea00 9214 struct cmd_list_element *c;
c906108c 9215
372316f1
PA
9216 /* Register extra event sources in the event loop. */
9217 infrun_async_inferior_event_token
9218 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9219
11db9430 9220 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9221What debugger does when program gets various signals.\n\
9222Specify a signal as argument to print info on that signal only."));
c906108c
SS
9223 add_info_alias ("handle", "signals", 0);
9224
de0bea00 9225 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9226Specify how to handle signals.\n\
486c7739 9227Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9228Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9229If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9230will be displayed instead.\n\
9231\n\
c906108c
SS
9232Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9233from 1-15 are allowed for compatibility with old versions of GDB.\n\
9234Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9235The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9236used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9237\n\
1bedd215 9238Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9239\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9240Stop means reenter debugger if this signal happens (implies print).\n\
9241Print means print a message if this signal happens.\n\
9242Pass means let program see this signal; otherwise program doesn't know.\n\
9243Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9244Pass and Stop may be combined.\n\
9245\n\
9246Multiple signals may be specified. Signal numbers and signal names\n\
9247may be interspersed with actions, with the actions being performed for\n\
9248all signals cumulatively specified."));
de0bea00 9249 set_cmd_completer (c, handle_completer);
486c7739 9250
c906108c 9251 if (!dbx_commands)
1a966eab
AC
9252 stop_command = add_cmd ("stop", class_obscure,
9253 not_just_help_class_command, _("\
9254There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9255This allows you to set a list of commands to be run each time execution\n\
1a966eab 9256of the program stops."), &cmdlist);
c906108c 9257
ccce17b0 9258 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9259Set inferior debugging."), _("\
9260Show inferior debugging."), _("\
9261When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9262 NULL,
9263 show_debug_infrun,
9264 &setdebuglist, &showdebuglist);
527159b7 9265
3e43a32a
MS
9266 add_setshow_boolean_cmd ("displaced", class_maintenance,
9267 &debug_displaced, _("\
237fc4c9
PA
9268Set displaced stepping debugging."), _("\
9269Show displaced stepping debugging."), _("\
9270When non-zero, displaced stepping specific debugging is enabled."),
9271 NULL,
9272 show_debug_displaced,
9273 &setdebuglist, &showdebuglist);
9274
ad52ddc6
PA
9275 add_setshow_boolean_cmd ("non-stop", no_class,
9276 &non_stop_1, _("\
9277Set whether gdb controls the inferior in non-stop mode."), _("\
9278Show whether gdb controls the inferior in non-stop mode."), _("\
9279When debugging a multi-threaded program and this setting is\n\
9280off (the default, also called all-stop mode), when one thread stops\n\
9281(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9282all other threads in the program while you interact with the thread of\n\
9283interest. When you continue or step a thread, you can allow the other\n\
9284threads to run, or have them remain stopped, but while you inspect any\n\
9285thread's state, all threads stop.\n\
9286\n\
9287In non-stop mode, when one thread stops, other threads can continue\n\
9288to run freely. You'll be able to step each thread independently,\n\
9289leave it stopped or free to run as needed."),
9290 set_non_stop,
9291 show_non_stop,
9292 &setlist,
9293 &showlist);
9294
adc6a863 9295 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9296 {
9297 signal_stop[i] = 1;
9298 signal_print[i] = 1;
9299 signal_program[i] = 1;
ab04a2af 9300 signal_catch[i] = 0;
c906108c
SS
9301 }
9302
4d9d9d04
PA
9303 /* Signals caused by debugger's own actions should not be given to
9304 the program afterwards.
9305
9306 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9307 explicitly specifies that it should be delivered to the target
9308 program. Typically, that would occur when a user is debugging a
9309 target monitor on a simulator: the target monitor sets a
9310 breakpoint; the simulator encounters this breakpoint and halts
9311 the simulation handing control to GDB; GDB, noting that the stop
9312 address doesn't map to any known breakpoint, returns control back
9313 to the simulator; the simulator then delivers the hardware
9314 equivalent of a GDB_SIGNAL_TRAP to the program being
9315 debugged. */
a493e3e2
PA
9316 signal_program[GDB_SIGNAL_TRAP] = 0;
9317 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9318
9319 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9320 signal_stop[GDB_SIGNAL_ALRM] = 0;
9321 signal_print[GDB_SIGNAL_ALRM] = 0;
9322 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9323 signal_print[GDB_SIGNAL_VTALRM] = 0;
9324 signal_stop[GDB_SIGNAL_PROF] = 0;
9325 signal_print[GDB_SIGNAL_PROF] = 0;
9326 signal_stop[GDB_SIGNAL_CHLD] = 0;
9327 signal_print[GDB_SIGNAL_CHLD] = 0;
9328 signal_stop[GDB_SIGNAL_IO] = 0;
9329 signal_print[GDB_SIGNAL_IO] = 0;
9330 signal_stop[GDB_SIGNAL_POLL] = 0;
9331 signal_print[GDB_SIGNAL_POLL] = 0;
9332 signal_stop[GDB_SIGNAL_URG] = 0;
9333 signal_print[GDB_SIGNAL_URG] = 0;
9334 signal_stop[GDB_SIGNAL_WINCH] = 0;
9335 signal_print[GDB_SIGNAL_WINCH] = 0;
9336 signal_stop[GDB_SIGNAL_PRIO] = 0;
9337 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9338
cd0fc7c3
SS
9339 /* These signals are used internally by user-level thread
9340 implementations. (See signal(5) on Solaris.) Like the above
9341 signals, a healthy program receives and handles them as part of
9342 its normal operation. */
a493e3e2
PA
9343 signal_stop[GDB_SIGNAL_LWP] = 0;
9344 signal_print[GDB_SIGNAL_LWP] = 0;
9345 signal_stop[GDB_SIGNAL_WAITING] = 0;
9346 signal_print[GDB_SIGNAL_WAITING] = 0;
9347 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9348 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9349 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9350 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9351
2455069d
UW
9352 /* Update cached state. */
9353 signal_cache_update (-1);
9354
85c07804
AC
9355 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9356 &stop_on_solib_events, _("\
9357Set stopping for shared library events."), _("\
9358Show stopping for shared library events."), _("\
c906108c
SS
9359If nonzero, gdb will give control to the user when the dynamic linker\n\
9360notifies gdb of shared library events. The most common event of interest\n\
85c07804 9361to the user would be loading/unloading of a new library."),
f9e14852 9362 set_stop_on_solib_events,
920d2a44 9363 show_stop_on_solib_events,
85c07804 9364 &setlist, &showlist);
c906108c 9365
7ab04401
AC
9366 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9367 follow_fork_mode_kind_names,
9368 &follow_fork_mode_string, _("\
9369Set debugger response to a program call of fork or vfork."), _("\
9370Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9371A fork or vfork creates a new process. follow-fork-mode can be:\n\
9372 parent - the original process is debugged after a fork\n\
9373 child - the new process is debugged after a fork\n\
ea1dd7bc 9374The unfollowed process will continue to run.\n\
7ab04401
AC
9375By default, the debugger will follow the parent process."),
9376 NULL,
920d2a44 9377 show_follow_fork_mode_string,
7ab04401
AC
9378 &setlist, &showlist);
9379
6c95b8df
PA
9380 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9381 follow_exec_mode_names,
9382 &follow_exec_mode_string, _("\
9383Set debugger response to a program call of exec."), _("\
9384Show debugger response to a program call of exec."), _("\
9385An exec call replaces the program image of a process.\n\
9386\n\
9387follow-exec-mode can be:\n\
9388\n\
cce7e648 9389 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9390to this new inferior. The program the process was running before\n\
9391the exec call can be restarted afterwards by restarting the original\n\
9392inferior.\n\
9393\n\
9394 same - the debugger keeps the process bound to the same inferior.\n\
9395The new executable image replaces the previous executable loaded in\n\
9396the inferior. Restarting the inferior after the exec call restarts\n\
9397the executable the process was running after the exec call.\n\
9398\n\
9399By default, the debugger will use the same inferior."),
9400 NULL,
9401 show_follow_exec_mode_string,
9402 &setlist, &showlist);
9403
7ab04401
AC
9404 add_setshow_enum_cmd ("scheduler-locking", class_run,
9405 scheduler_enums, &scheduler_mode, _("\
9406Set mode for locking scheduler during execution."), _("\
9407Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9408off == no locking (threads may preempt at any time)\n\
9409on == full locking (no thread except the current thread may run)\n\
9410 This applies to both normal execution and replay mode.\n\
9411step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9412 In this mode, other threads may run during other commands.\n\
9413 This applies to both normal execution and replay mode.\n\
9414replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9415 set_schedlock_func, /* traps on target vector */
920d2a44 9416 show_scheduler_mode,
7ab04401 9417 &setlist, &showlist);
5fbbeb29 9418
d4db2f36
PA
9419 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9420Set mode for resuming threads of all processes."), _("\
9421Show mode for resuming threads of all processes."), _("\
9422When on, execution commands (such as 'continue' or 'next') resume all\n\
9423threads of all processes. When off (which is the default), execution\n\
9424commands only resume the threads of the current process. The set of\n\
9425threads that are resumed is further refined by the scheduler-locking\n\
9426mode (see help set scheduler-locking)."),
9427 NULL,
9428 show_schedule_multiple,
9429 &setlist, &showlist);
9430
5bf193a2
AC
9431 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9432Set mode of the step operation."), _("\
9433Show mode of the step operation."), _("\
9434When set, doing a step over a function without debug line information\n\
9435will stop at the first instruction of that function. Otherwise, the\n\
9436function is skipped and the step command stops at a different source line."),
9437 NULL,
920d2a44 9438 show_step_stop_if_no_debug,
5bf193a2 9439 &setlist, &showlist);
ca6724c1 9440
72d0e2c5
YQ
9441 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9442 &can_use_displaced_stepping, _("\
237fc4c9
PA
9443Set debugger's willingness to use displaced stepping."), _("\
9444Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9445If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9446supported by the target architecture. If off, gdb will not use displaced\n\
9447stepping to step over breakpoints, even if such is supported by the target\n\
9448architecture. If auto (which is the default), gdb will use displaced stepping\n\
9449if the target architecture supports it and non-stop mode is active, but will not\n\
9450use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9451 NULL,
9452 show_can_use_displaced_stepping,
9453 &setlist, &showlist);
237fc4c9 9454
b2175913
MS
9455 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9456 &exec_direction, _("Set direction of execution.\n\
9457Options are 'forward' or 'reverse'."),
9458 _("Show direction of execution (forward/reverse)."),
9459 _("Tells gdb whether to execute forward or backward."),
9460 set_exec_direction_func, show_exec_direction_func,
9461 &setlist, &showlist);
9462
6c95b8df
PA
9463 /* Set/show detach-on-fork: user-settable mode. */
9464
9465 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9466Set whether gdb will detach the child of a fork."), _("\
9467Show whether gdb will detach the child of a fork."), _("\
9468Tells gdb whether to detach the child of a fork."),
9469 NULL, NULL, &setlist, &showlist);
9470
03583c20
UW
9471 /* Set/show disable address space randomization mode. */
9472
9473 add_setshow_boolean_cmd ("disable-randomization", class_support,
9474 &disable_randomization, _("\
9475Set disabling of debuggee's virtual address space randomization."), _("\
9476Show disabling of debuggee's virtual address space randomization."), _("\
9477When this mode is on (which is the default), randomization of the virtual\n\
9478address space is disabled. Standalone programs run with the randomization\n\
9479enabled by default on some platforms."),
9480 &set_disable_randomization,
9481 &show_disable_randomization,
9482 &setlist, &showlist);
9483
ca6724c1 9484 /* ptid initializations */
ca6724c1
KB
9485 inferior_ptid = null_ptid;
9486 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9487
76727919
TT
9488 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9489 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9490 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9491 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9492
9493 /* Explicitly create without lookup, since that tries to create a
9494 value with a void typed value, and when we get here, gdbarch
9495 isn't initialized yet. At this point, we're quite sure there
9496 isn't another convenience variable of the same name. */
22d2b532 9497 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9498
9499 add_setshow_boolean_cmd ("observer", no_class,
9500 &observer_mode_1, _("\
9501Set whether gdb controls the inferior in observer mode."), _("\
9502Show whether gdb controls the inferior in observer mode."), _("\
9503In observer mode, GDB can get data from the inferior, but not\n\
9504affect its execution. Registers and memory may not be changed,\n\
9505breakpoints may not be set, and the program cannot be interrupted\n\
9506or signalled."),
9507 set_observer_mode,
9508 show_observer_mode,
9509 &setlist,
9510 &showlist);
c906108c 9511}
This page took 3.449225 seconds and 4 git commands to generate.