gdb: don't require displaced step copy_insn to be implemented in prepare/finish are
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
9844051a 22#include "displaced-stepping.h"
edbcda09
SM
23#include "gdbsupport/common-defs.h"
24#include "gdbsupport/common-utils.h"
45741a9c 25#include "infrun.h"
c906108c
SS
26#include <ctype.h>
27#include "symtab.h"
28#include "frame.h"
29#include "inferior.h"
30#include "breakpoint.h"
c906108c
SS
31#include "gdbcore.h"
32#include "gdbcmd.h"
33#include "target.h"
2f4fcf00 34#include "target-connection.h"
c906108c
SS
35#include "gdbthread.h"
36#include "annotate.h"
1adeb98a 37#include "symfile.h"
7a292a7a 38#include "top.h"
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
9844051a 41#include "utils.h"
fd0407d6 42#include "value.h"
76727919 43#include "observable.h"
f636b87d 44#include "language.h"
a77053c2 45#include "solib.h"
f17517ea 46#include "main.h"
186c406b 47#include "block.h"
034dad6f 48#include "mi/mi-common.h"
4f8d22e3 49#include "event-top.h"
96429cc8 50#include "record.h"
d02ed0bb 51#include "record-full.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
1bfeeb0f 55#include "skip.h"
28106bc2
SDJ
56#include "probe.h"
57#include "objfiles.h"
de0bea00 58#include "completer.h"
9107fc8d 59#include "target-descriptions.h"
f15cb84a 60#include "target-dcache.h"
d83ad864 61#include "terminal.h"
ff862be4 62#include "solist.h"
400b5eca 63#include "gdbsupport/event-loop.h"
243a9253 64#include "thread-fsm.h"
268a13a5 65#include "gdbsupport/enum-flags.h"
5ed8105e 66#include "progspace-and-thread.h"
268a13a5 67#include "gdbsupport/gdb_optional.h"
46a62268 68#include "arch-utils.h"
268a13a5
TT
69#include "gdbsupport/scope-exit.h"
70#include "gdbsupport/forward-scope-exit.h"
06cc9596 71#include "gdbsupport/gdb_select.h"
5b6d1e4f 72#include <unordered_map>
93b54c8e 73#include "async-event.h"
c906108c
SS
74
75/* Prototypes for local functions */
76
2ea28649 77static void sig_print_info (enum gdb_signal);
c906108c 78
96baa820 79static void sig_print_header (void);
c906108c 80
d83ad864
DB
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
2c03e5be 85static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
86
87static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
2484c66b
UW
89static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
8550d3b3
YQ
91static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
aff4e175
AB
93static void resume (gdb_signal sig);
94
5b6d1e4f
PA
95static void wait_for_inferior (inferior *inf);
96
372316f1
PA
97/* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99static struct async_event_handler *infrun_async_inferior_event_token;
100
101/* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103static int infrun_is_async = -1;
104
edbcda09
SM
105#define infrun_log_debug(fmt, args...) \
106 infrun_log_debug_1 (__LINE__, __func__, fmt, ##args)
107
108static void ATTRIBUTE_PRINTF(3, 4)
109infrun_log_debug_1 (int line, const char *func,
110 const char *fmt, ...)
111{
112 if (debug_infrun)
113 {
114 va_list args;
115 va_start (args, fmt);
116 std::string msg = string_vprintf (fmt, args);
117 va_end (args);
118
119 fprintf_unfiltered (gdb_stdout, "infrun: %s: %s\n", func, msg.c_str ());
120 }
121}
122
372316f1
PA
123/* See infrun.h. */
124
125void
126infrun_async (int enable)
127{
128 if (infrun_is_async != enable)
129 {
130 infrun_is_async = enable;
131
edbcda09 132 infrun_log_debug ("enable=%d", enable);
372316f1
PA
133
134 if (enable)
135 mark_async_event_handler (infrun_async_inferior_event_token);
136 else
137 clear_async_event_handler (infrun_async_inferior_event_token);
138 }
139}
140
0b333c5e
PA
141/* See infrun.h. */
142
143void
144mark_infrun_async_event_handler (void)
145{
146 mark_async_event_handler (infrun_async_inferior_event_token);
147}
148
5fbbeb29
CF
149/* When set, stop the 'step' command if we enter a function which has
150 no line number information. The normal behavior is that we step
151 over such function. */
491144b5 152bool step_stop_if_no_debug = false;
920d2a44
AC
153static void
154show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
157 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
158}
5fbbeb29 159
b9f437de
PA
160/* proceed and normal_stop use this to notify the user when the
161 inferior stopped in a different thread than it had been running
162 in. */
96baa820 163
39f77062 164static ptid_t previous_inferior_ptid;
7a292a7a 165
07107ca6
LM
166/* If set (default for legacy reasons), when following a fork, GDB
167 will detach from one of the fork branches, child or parent.
168 Exactly which branch is detached depends on 'set follow-fork-mode'
169 setting. */
170
491144b5 171static bool detach_fork = true;
6c95b8df 172
491144b5 173bool debug_displaced = false;
237fc4c9
PA
174static void
175show_debug_displaced (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177{
178 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
179}
180
ccce17b0 181unsigned int debug_infrun = 0;
920d2a44
AC
182static void
183show_debug_infrun (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185{
186 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
187}
527159b7 188
03583c20
UW
189
190/* Support for disabling address space randomization. */
191
491144b5 192bool disable_randomization = true;
03583c20
UW
193
194static void
195show_disable_randomization (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197{
198 if (target_supports_disable_randomization ())
199 fprintf_filtered (file,
200 _("Disabling randomization of debuggee's "
201 "virtual address space is %s.\n"),
202 value);
203 else
204 fputs_filtered (_("Disabling randomization of debuggee's "
205 "virtual address space is unsupported on\n"
206 "this platform.\n"), file);
207}
208
209static void
eb4c3f4a 210set_disable_randomization (const char *args, int from_tty,
03583c20
UW
211 struct cmd_list_element *c)
212{
213 if (!target_supports_disable_randomization ())
214 error (_("Disabling randomization of debuggee's "
215 "virtual address space is unsupported on\n"
216 "this platform."));
217}
218
d32dc48e
PA
219/* User interface for non-stop mode. */
220
491144b5
CB
221bool non_stop = false;
222static bool non_stop_1 = false;
d32dc48e
PA
223
224static void
eb4c3f4a 225set_non_stop (const char *args, int from_tty,
d32dc48e
PA
226 struct cmd_list_element *c)
227{
228 if (target_has_execution)
229 {
230 non_stop_1 = non_stop;
231 error (_("Cannot change this setting while the inferior is running."));
232 }
233
234 non_stop = non_stop_1;
235}
236
237static void
238show_non_stop (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240{
241 fprintf_filtered (file,
242 _("Controlling the inferior in non-stop mode is %s.\n"),
243 value);
244}
245
d914c394
SS
246/* "Observer mode" is somewhat like a more extreme version of
247 non-stop, in which all GDB operations that might affect the
248 target's execution have been disabled. */
249
491144b5
CB
250bool observer_mode = false;
251static bool observer_mode_1 = false;
d914c394
SS
252
253static void
eb4c3f4a 254set_observer_mode (const char *args, int from_tty,
d914c394
SS
255 struct cmd_list_element *c)
256{
d914c394
SS
257 if (target_has_execution)
258 {
259 observer_mode_1 = observer_mode;
260 error (_("Cannot change this setting while the inferior is running."));
261 }
262
263 observer_mode = observer_mode_1;
264
265 may_write_registers = !observer_mode;
266 may_write_memory = !observer_mode;
267 may_insert_breakpoints = !observer_mode;
268 may_insert_tracepoints = !observer_mode;
269 /* We can insert fast tracepoints in or out of observer mode,
270 but enable them if we're going into this mode. */
271 if (observer_mode)
491144b5 272 may_insert_fast_tracepoints = true;
d914c394
SS
273 may_stop = !observer_mode;
274 update_target_permissions ();
275
276 /* Going *into* observer mode we must force non-stop, then
277 going out we leave it that way. */
278 if (observer_mode)
279 {
d914c394 280 pagination_enabled = 0;
491144b5 281 non_stop = non_stop_1 = true;
d914c394
SS
282 }
283
284 if (from_tty)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (observer_mode ? "on" : "off"));
287}
288
289static void
290show_observer_mode (struct ui_file *file, int from_tty,
291 struct cmd_list_element *c, const char *value)
292{
293 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
294}
295
296/* This updates the value of observer mode based on changes in
297 permissions. Note that we are deliberately ignoring the values of
298 may-write-registers and may-write-memory, since the user may have
299 reason to enable these during a session, for instance to turn on a
300 debugging-related global. */
301
302void
303update_observer_mode (void)
304{
491144b5
CB
305 bool newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
d914c394
SS
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
c2c6d25f 318
c906108c
SS
319/* Tables of how to react to signals; the user sets them. */
320
adc6a863
PA
321static unsigned char signal_stop[GDB_SIGNAL_LAST];
322static unsigned char signal_print[GDB_SIGNAL_LAST];
323static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 324
ab04a2af
TT
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
327 signal" command. */
328static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 329
2455069d
UW
330/* Table of signals that the target may silently handle.
331 This is automatically determined from the flags above,
332 and simply cached here. */
adc6a863 333static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 334
c906108c
SS
335#define SET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 1; \
341 } while (0)
342
343#define UNSET_SIGS(nsigs,sigs,flags) \
344 do { \
345 int signum = (nsigs); \
346 while (signum-- > 0) \
347 if ((sigs)[signum]) \
348 (flags)[signum] = 0; \
349 } while (0)
350
9b224c5e
PA
351/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
352 this function is to avoid exporting `signal_program'. */
353
354void
355update_signals_program_target (void)
356{
adc6a863 357 target_program_signals (signal_program);
9b224c5e
PA
358}
359
1777feb0 360/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 361
edb3359d 362#define RESUME_ALL minus_one_ptid
c906108c
SS
363
364/* Command list pointer for the "stop" placeholder. */
365
366static struct cmd_list_element *stop_command;
367
c906108c
SS
368/* Nonzero if we want to give control to the user when we're notified
369 of shared library events by the dynamic linker. */
628fe4e4 370int stop_on_solib_events;
f9e14852
GB
371
372/* Enable or disable optional shared library event breakpoints
373 as appropriate when the above flag is changed. */
374
375static void
eb4c3f4a
TT
376set_stop_on_solib_events (const char *args,
377 int from_tty, struct cmd_list_element *c)
f9e14852
GB
378{
379 update_solib_breakpoints ();
380}
381
920d2a44
AC
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
c906108c 389
c906108c
SS
390/* Nonzero after stop if current stack frame should be printed. */
391
392static int stop_print_frame;
393
5b6d1e4f
PA
394/* This is a cached copy of the target/ptid/waitstatus of the last
395 event returned by target_wait()/deprecated_target_wait_hook().
396 This information is returned by get_last_target_status(). */
397static process_stratum_target *target_last_proc_target;
39f77062 398static ptid_t target_last_wait_ptid;
e02bc4cc
DS
399static struct target_waitstatus target_last_waitstatus;
400
4e1c45ea 401void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 402
53904c9e
AC
403static const char follow_fork_mode_child[] = "child";
404static const char follow_fork_mode_parent[] = "parent";
405
40478521 406static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
407 follow_fork_mode_child,
408 follow_fork_mode_parent,
409 NULL
ef346e04 410};
c906108c 411
53904c9e 412static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
413static void
414show_follow_fork_mode_string (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c, const char *value)
416{
3e43a32a
MS
417 fprintf_filtered (file,
418 _("Debugger response to a program "
419 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
420 value);
421}
c906108c
SS
422\f
423
d83ad864
DB
424/* Handle changes to the inferior list based on the type of fork,
425 which process is being followed, and whether the other process
426 should be detached. On entry inferior_ptid must be the ptid of
427 the fork parent. At return inferior_ptid is the ptid of the
428 followed inferior. */
429
5ab2fbf1
SM
430static bool
431follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
432{
433 int has_vforked;
79639e11 434 ptid_t parent_ptid, child_ptid;
d83ad864
DB
435
436 has_vforked = (inferior_thread ()->pending_follow.kind
437 == TARGET_WAITKIND_VFORKED);
79639e11
PA
438 parent_ptid = inferior_ptid;
439 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
440
441 if (has_vforked
442 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 443 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
444 && !(follow_child || detach_fork || sched_multi))
445 {
446 /* The parent stays blocked inside the vfork syscall until the
447 child execs or exits. If we don't let the child run, then
448 the parent stays blocked. If we're telling the parent to run
449 in the foreground, the user will not be able to ctrl-c to get
450 back the terminal, effectively hanging the debug session. */
451 fprintf_filtered (gdb_stderr, _("\
452Can not resume the parent process over vfork in the foreground while\n\
453holding the child stopped. Try \"set detach-on-fork\" or \
454\"set schedule-multiple\".\n"));
d83ad864
DB
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
d83ad864
DB
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
00431a78 473 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
474 }
475
f67c0c91 476 if (print_inferior_events)
d83ad864 477 {
8dd06f7a 478 /* Ensure that we have a process ptid. */
e99b03dc 479 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 480
223ffa71 481 target_terminal::ours_for_output ();
d83ad864 482 fprintf_filtered (gdb_stdlog,
f67c0c91 483 _("[Detaching after %s from child %s]\n"),
6f259a23 484 has_vforked ? "vfork" : "fork",
a068643d 485 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
d83ad864
DB
491
492 /* Add process to GDB's tables. */
e99b03dc 493 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
5ed8105e 501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 502
2a00d7ce 503 set_current_inferior (child_inf);
5b6d1e4f 504 switch_to_no_thread ();
d83ad864 505 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f 506 push_target (parent_inf->process_target ());
18493a00
PA
507 thread_info *child_thr
508 = add_thread_silent (child_inf->process_target (), child_ptid);
d83ad864
DB
509
510 /* If this is a vfork child, then the address-space is
511 shared with the parent. */
512 if (has_vforked)
513 {
514 child_inf->pspace = parent_inf->pspace;
515 child_inf->aspace = parent_inf->aspace;
516
5b6d1e4f
PA
517 exec_on_vfork ();
518
d83ad864
DB
519 /* The parent will be frozen until the child is done
520 with the shared region. Keep track of the
521 parent. */
522 child_inf->vfork_parent = parent_inf;
523 child_inf->pending_detach = 0;
524 parent_inf->vfork_child = child_inf;
525 parent_inf->pending_detach = 0;
18493a00
PA
526
527 /* Now that the inferiors and program spaces are all
528 wired up, we can switch to the child thread (which
529 switches inferior and program space too). */
530 switch_to_thread (child_thr);
d83ad864
DB
531 }
532 else
533 {
534 child_inf->aspace = new_address_space ();
564b1e3f 535 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
536 child_inf->removable = 1;
537 set_current_program_space (child_inf->pspace);
538 clone_program_space (child_inf->pspace, parent_inf->pspace);
539
18493a00
PA
540 /* solib_create_inferior_hook relies on the current
541 thread. */
542 switch_to_thread (child_thr);
543
d83ad864
DB
544 /* Let the shared library layer (e.g., solib-svr4) learn
545 about this new process, relocate the cloned exec, pull
546 in shared libraries, and install the solib event
547 breakpoint. If a "cloned-VM" event was propagated
548 better throughout the core, this wouldn't be
549 required. */
550 solib_create_inferior_hook (0);
551 }
d83ad864
DB
552 }
553
554 if (has_vforked)
555 {
556 struct inferior *parent_inf;
557
558 parent_inf = current_inferior ();
559
560 /* If we detached from the child, then we have to be careful
561 to not insert breakpoints in the parent until the child
562 is done with the shared memory region. However, if we're
563 staying attached to the child, then we can and should
564 insert breakpoints, so that we can debug it. A
565 subsequent child exec or exit is enough to know when does
566 the child stops using the parent's address space. */
567 parent_inf->waiting_for_vfork_done = detach_fork;
568 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
569 }
570 }
571 else
572 {
573 /* Follow the child. */
574 struct inferior *parent_inf, *child_inf;
575 struct program_space *parent_pspace;
576
f67c0c91 577 if (print_inferior_events)
d83ad864 578 {
f67c0c91
SDJ
579 std::string parent_pid = target_pid_to_str (parent_ptid);
580 std::string child_pid = target_pid_to_str (child_ptid);
581
223ffa71 582 target_terminal::ours_for_output ();
6f259a23 583 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
584 _("[Attaching after %s %s to child %s]\n"),
585 parent_pid.c_str (),
6f259a23 586 has_vforked ? "vfork" : "fork",
f67c0c91 587 child_pid.c_str ());
d83ad864
DB
588 }
589
590 /* Add the new inferior first, so that the target_detach below
591 doesn't unpush the target. */
592
e99b03dc 593 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
594
595 parent_inf = current_inferior ();
596 child_inf->attach_flag = parent_inf->attach_flag;
597 copy_terminal_info (child_inf, parent_inf);
598 child_inf->gdbarch = parent_inf->gdbarch;
599 copy_inferior_target_desc_info (child_inf, parent_inf);
600
601 parent_pspace = parent_inf->pspace;
602
5b6d1e4f 603 process_stratum_target *target = parent_inf->process_target ();
d83ad864 604
5b6d1e4f
PA
605 {
606 /* Hold a strong reference to the target while (maybe)
607 detaching the parent. Otherwise detaching could close the
608 target. */
609 auto target_ref = target_ops_ref::new_reference (target);
610
611 /* If we're vforking, we want to hold on to the parent until
612 the child exits or execs. At child exec or exit time we
613 can remove the old breakpoints from the parent and detach
614 or resume debugging it. Otherwise, detach the parent now;
615 we'll want to reuse it's program/address spaces, but we
616 can't set them to the child before removing breakpoints
617 from the parent, otherwise, the breakpoints module could
618 decide to remove breakpoints from the wrong process (since
619 they'd be assigned to the same address space). */
620
621 if (has_vforked)
622 {
623 gdb_assert (child_inf->vfork_parent == NULL);
624 gdb_assert (parent_inf->vfork_child == NULL);
625 child_inf->vfork_parent = parent_inf;
626 child_inf->pending_detach = 0;
627 parent_inf->vfork_child = child_inf;
628 parent_inf->pending_detach = detach_fork;
629 parent_inf->waiting_for_vfork_done = 0;
630 }
631 else if (detach_fork)
632 {
633 if (print_inferior_events)
634 {
635 /* Ensure that we have a process ptid. */
636 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
637
638 target_terminal::ours_for_output ();
639 fprintf_filtered (gdb_stdlog,
640 _("[Detaching after fork from "
641 "parent %s]\n"),
642 target_pid_to_str (process_ptid).c_str ());
643 }
8dd06f7a 644
5b6d1e4f
PA
645 target_detach (parent_inf, 0);
646 parent_inf = NULL;
647 }
6f259a23 648
5b6d1e4f 649 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 650
5b6d1e4f
PA
651 /* Add the child thread to the appropriate lists, and switch
652 to this new thread, before cloning the program space, and
653 informing the solib layer about this new process. */
d83ad864 654
5b6d1e4f
PA
655 set_current_inferior (child_inf);
656 push_target (target);
657 }
d83ad864 658
18493a00 659 thread_info *child_thr = add_thread_silent (target, child_ptid);
d83ad864
DB
660
661 /* If this is a vfork child, then the address-space is shared
662 with the parent. If we detached from the parent, then we can
663 reuse the parent's program/address spaces. */
664 if (has_vforked || detach_fork)
665 {
666 child_inf->pspace = parent_pspace;
667 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
668
669 exec_on_vfork ();
d83ad864
DB
670 }
671 else
672 {
673 child_inf->aspace = new_address_space ();
564b1e3f 674 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
675 child_inf->removable = 1;
676 child_inf->symfile_flags = SYMFILE_NO_READ;
677 set_current_program_space (child_inf->pspace);
678 clone_program_space (child_inf->pspace, parent_pspace);
679
680 /* Let the shared library layer (e.g., solib-svr4) learn
681 about this new process, relocate the cloned exec, pull in
682 shared libraries, and install the solib event breakpoint.
683 If a "cloned-VM" event was propagated better throughout
684 the core, this wouldn't be required. */
685 solib_create_inferior_hook (0);
686 }
18493a00
PA
687
688 switch_to_thread (child_thr);
d83ad864
DB
689 }
690
691 return target_follow_fork (follow_child, detach_fork);
692}
693
e58b0e63
PA
694/* Tell the target to follow the fork we're stopped at. Returns true
695 if the inferior should be resumed; false, if the target for some
696 reason decided it's best not to resume. */
697
5ab2fbf1
SM
698static bool
699follow_fork ()
c906108c 700{
5ab2fbf1
SM
701 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
702 bool should_resume = true;
e58b0e63
PA
703 struct thread_info *tp;
704
705 /* Copy user stepping state to the new inferior thread. FIXME: the
706 followed fork child thread should have a copy of most of the
4e3990f4
DE
707 parent thread structure's run control related fields, not just these.
708 Initialized to avoid "may be used uninitialized" warnings from gcc. */
709 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 710 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
711 CORE_ADDR step_range_start = 0;
712 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
713 int current_line = 0;
714 symtab *current_symtab = NULL;
4e3990f4 715 struct frame_id step_frame_id = { 0 };
8980e177 716 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
717
718 if (!non_stop)
719 {
5b6d1e4f 720 process_stratum_target *wait_target;
e58b0e63
PA
721 ptid_t wait_ptid;
722 struct target_waitstatus wait_status;
723
724 /* Get the last target status returned by target_wait(). */
5b6d1e4f 725 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
726
727 /* If not stopped at a fork event, then there's nothing else to
728 do. */
729 if (wait_status.kind != TARGET_WAITKIND_FORKED
730 && wait_status.kind != TARGET_WAITKIND_VFORKED)
731 return 1;
732
733 /* Check if we switched over from WAIT_PTID, since the event was
734 reported. */
00431a78 735 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
736 && (current_inferior ()->process_target () != wait_target
737 || inferior_ptid != wait_ptid))
e58b0e63
PA
738 {
739 /* We did. Switch back to WAIT_PTID thread, to tell the
740 target to follow it (in either direction). We'll
741 afterwards refuse to resume, and inform the user what
742 happened. */
5b6d1e4f 743 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 744 switch_to_thread (wait_thread);
5ab2fbf1 745 should_resume = false;
e58b0e63
PA
746 }
747 }
748
749 tp = inferior_thread ();
750
751 /* If there were any forks/vforks that were caught and are now to be
752 followed, then do so now. */
753 switch (tp->pending_follow.kind)
754 {
755 case TARGET_WAITKIND_FORKED:
756 case TARGET_WAITKIND_VFORKED:
757 {
758 ptid_t parent, child;
759
760 /* If the user did a next/step, etc, over a fork call,
761 preserve the stepping state in the fork child. */
762 if (follow_child && should_resume)
763 {
8358c15c
JK
764 step_resume_breakpoint = clone_momentary_breakpoint
765 (tp->control.step_resume_breakpoint);
16c381f0
JK
766 step_range_start = tp->control.step_range_start;
767 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
768 current_line = tp->current_line;
769 current_symtab = tp->current_symtab;
16c381f0 770 step_frame_id = tp->control.step_frame_id;
186c406b
TT
771 exception_resume_breakpoint
772 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 773 thread_fsm = tp->thread_fsm;
e58b0e63
PA
774
775 /* For now, delete the parent's sr breakpoint, otherwise,
776 parent/child sr breakpoints are considered duplicates,
777 and the child version will not be installed. Remove
778 this when the breakpoints module becomes aware of
779 inferiors and address spaces. */
780 delete_step_resume_breakpoint (tp);
16c381f0
JK
781 tp->control.step_range_start = 0;
782 tp->control.step_range_end = 0;
783 tp->control.step_frame_id = null_frame_id;
186c406b 784 delete_exception_resume_breakpoint (tp);
8980e177 785 tp->thread_fsm = NULL;
e58b0e63
PA
786 }
787
788 parent = inferior_ptid;
789 child = tp->pending_follow.value.related_pid;
790
5b6d1e4f 791 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
792 /* Set up inferior(s) as specified by the caller, and tell the
793 target to do whatever is necessary to follow either parent
794 or child. */
795 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
796 {
797 /* Target refused to follow, or there's some other reason
798 we shouldn't resume. */
799 should_resume = 0;
800 }
801 else
802 {
803 /* This pending follow fork event is now handled, one way
804 or another. The previous selected thread may be gone
805 from the lists by now, but if it is still around, need
806 to clear the pending follow request. */
5b6d1e4f 807 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
808 if (tp)
809 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
810
811 /* This makes sure we don't try to apply the "Switched
812 over from WAIT_PID" logic above. */
813 nullify_last_target_wait_ptid ();
814
1777feb0 815 /* If we followed the child, switch to it... */
e58b0e63
PA
816 if (follow_child)
817 {
5b6d1e4f 818 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 819 switch_to_thread (child_thr);
e58b0e63
PA
820
821 /* ... and preserve the stepping state, in case the
822 user was stepping over the fork call. */
823 if (should_resume)
824 {
825 tp = inferior_thread ();
8358c15c
JK
826 tp->control.step_resume_breakpoint
827 = step_resume_breakpoint;
16c381f0
JK
828 tp->control.step_range_start = step_range_start;
829 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
830 tp->current_line = current_line;
831 tp->current_symtab = current_symtab;
16c381f0 832 tp->control.step_frame_id = step_frame_id;
186c406b
TT
833 tp->control.exception_resume_breakpoint
834 = exception_resume_breakpoint;
8980e177 835 tp->thread_fsm = thread_fsm;
e58b0e63
PA
836 }
837 else
838 {
839 /* If we get here, it was because we're trying to
840 resume from a fork catchpoint, but, the user
841 has switched threads away from the thread that
842 forked. In that case, the resume command
843 issued is most likely not applicable to the
844 child, so just warn, and refuse to resume. */
3e43a32a 845 warning (_("Not resuming: switched threads "
fd7dcb94 846 "before following fork child."));
e58b0e63
PA
847 }
848
849 /* Reset breakpoints in the child as appropriate. */
850 follow_inferior_reset_breakpoints ();
851 }
e58b0e63
PA
852 }
853 }
854 break;
855 case TARGET_WAITKIND_SPURIOUS:
856 /* Nothing to follow. */
857 break;
858 default:
859 internal_error (__FILE__, __LINE__,
860 "Unexpected pending_follow.kind %d\n",
861 tp->pending_follow.kind);
862 break;
863 }
c906108c 864
e58b0e63 865 return should_resume;
c906108c
SS
866}
867
d83ad864 868static void
6604731b 869follow_inferior_reset_breakpoints (void)
c906108c 870{
4e1c45ea
PA
871 struct thread_info *tp = inferior_thread ();
872
6604731b
DJ
873 /* Was there a step_resume breakpoint? (There was if the user
874 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
875 thread number. Cloned step_resume breakpoints are disabled on
876 creation, so enable it here now that it is associated with the
877 correct thread.
6604731b
DJ
878
879 step_resumes are a form of bp that are made to be per-thread.
880 Since we created the step_resume bp when the parent process
881 was being debugged, and now are switching to the child process,
882 from the breakpoint package's viewpoint, that's a switch of
883 "threads". We must update the bp's notion of which thread
884 it is for, or it'll be ignored when it triggers. */
885
8358c15c 886 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
887 {
888 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
889 tp->control.step_resume_breakpoint->loc->enabled = 1;
890 }
6604731b 891
a1aa2221 892 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 893 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
894 {
895 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
896 tp->control.exception_resume_breakpoint->loc->enabled = 1;
897 }
186c406b 898
6604731b
DJ
899 /* Reinsert all breakpoints in the child. The user may have set
900 breakpoints after catching the fork, in which case those
901 were never set in the child, but only in the parent. This makes
902 sure the inserted breakpoints match the breakpoint list. */
903
904 breakpoint_re_set ();
905 insert_breakpoints ();
c906108c 906}
c906108c 907
6c95b8df
PA
908/* The child has exited or execed: resume threads of the parent the
909 user wanted to be executing. */
910
911static int
912proceed_after_vfork_done (struct thread_info *thread,
913 void *arg)
914{
915 int pid = * (int *) arg;
916
00431a78
PA
917 if (thread->ptid.pid () == pid
918 && thread->state == THREAD_RUNNING
919 && !thread->executing
6c95b8df 920 && !thread->stop_requested
a493e3e2 921 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df 922 {
edbcda09
SM
923 infrun_log_debug ("resuming vfork parent thread %s",
924 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 925
00431a78 926 switch_to_thread (thread);
70509625 927 clear_proceed_status (0);
64ce06e4 928 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
929 }
930
931 return 0;
932}
933
934/* Called whenever we notice an exec or exit event, to handle
935 detaching or resuming a vfork parent. */
936
937static void
938handle_vfork_child_exec_or_exit (int exec)
939{
940 struct inferior *inf = current_inferior ();
941
942 if (inf->vfork_parent)
943 {
944 int resume_parent = -1;
945
946 /* This exec or exit marks the end of the shared memory region
b73715df
TV
947 between the parent and the child. Break the bonds. */
948 inferior *vfork_parent = inf->vfork_parent;
949 inf->vfork_parent->vfork_child = NULL;
950 inf->vfork_parent = NULL;
6c95b8df 951
b73715df
TV
952 /* If the user wanted to detach from the parent, now is the
953 time. */
954 if (vfork_parent->pending_detach)
6c95b8df 955 {
6c95b8df
PA
956 struct program_space *pspace;
957 struct address_space *aspace;
958
1777feb0 959 /* follow-fork child, detach-on-fork on. */
6c95b8df 960
b73715df 961 vfork_parent->pending_detach = 0;
68c9da30 962
18493a00 963 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
964
965 /* We're letting loose of the parent. */
18493a00 966 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 967 switch_to_thread (tp);
6c95b8df
PA
968
969 /* We're about to detach from the parent, which implicitly
970 removes breakpoints from its address space. There's a
971 catch here: we want to reuse the spaces for the child,
972 but, parent/child are still sharing the pspace at this
973 point, although the exec in reality makes the kernel give
974 the child a fresh set of new pages. The problem here is
975 that the breakpoints module being unaware of this, would
976 likely chose the child process to write to the parent
977 address space. Swapping the child temporarily away from
978 the spaces has the desired effect. Yes, this is "sort
979 of" a hack. */
980
981 pspace = inf->pspace;
982 aspace = inf->aspace;
983 inf->aspace = NULL;
984 inf->pspace = NULL;
985
f67c0c91 986 if (print_inferior_events)
6c95b8df 987 {
a068643d 988 std::string pidstr
b73715df 989 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 990
223ffa71 991 target_terminal::ours_for_output ();
6c95b8df
PA
992
993 if (exec)
6f259a23
DB
994 {
995 fprintf_filtered (gdb_stdlog,
f67c0c91 996 _("[Detaching vfork parent %s "
a068643d 997 "after child exec]\n"), pidstr.c_str ());
6f259a23 998 }
6c95b8df 999 else
6f259a23
DB
1000 {
1001 fprintf_filtered (gdb_stdlog,
f67c0c91 1002 _("[Detaching vfork parent %s "
a068643d 1003 "after child exit]\n"), pidstr.c_str ());
6f259a23 1004 }
6c95b8df
PA
1005 }
1006
b73715df 1007 target_detach (vfork_parent, 0);
6c95b8df
PA
1008
1009 /* Put it back. */
1010 inf->pspace = pspace;
1011 inf->aspace = aspace;
6c95b8df
PA
1012 }
1013 else if (exec)
1014 {
1015 /* We're staying attached to the parent, so, really give the
1016 child a new address space. */
564b1e3f 1017 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1018 inf->aspace = inf->pspace->aspace;
1019 inf->removable = 1;
1020 set_current_program_space (inf->pspace);
1021
b73715df 1022 resume_parent = vfork_parent->pid;
6c95b8df
PA
1023 }
1024 else
1025 {
6c95b8df
PA
1026 /* If this is a vfork child exiting, then the pspace and
1027 aspaces were shared with the parent. Since we're
1028 reporting the process exit, we'll be mourning all that is
1029 found in the address space, and switching to null_ptid,
1030 preparing to start a new inferior. But, since we don't
1031 want to clobber the parent's address/program spaces, we
1032 go ahead and create a new one for this exiting
1033 inferior. */
1034
18493a00 1035 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1036 that clone_program_space doesn't want to read the
1037 selected frame of a dead process. */
18493a00
PA
1038 scoped_restore_current_thread restore_thread;
1039 switch_to_no_thread ();
6c95b8df 1040
53af73bf
PA
1041 inf->pspace = new program_space (maybe_new_address_space ());
1042 inf->aspace = inf->pspace->aspace;
1043 set_current_program_space (inf->pspace);
6c95b8df 1044 inf->removable = 1;
7dcd53a0 1045 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1046 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1047
b73715df 1048 resume_parent = vfork_parent->pid;
6c95b8df
PA
1049 }
1050
6c95b8df
PA
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
5ed8105e 1057 scoped_restore_current_thread restore_thread;
6c95b8df 1058
edbcda09
SM
1059 infrun_log_debug ("resuming vfork parent process %d",
1060 resume_parent);
6c95b8df
PA
1061
1062 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1063 }
1064 }
1065}
1066
eb6c553b 1067/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1068
1069static const char follow_exec_mode_new[] = "new";
1070static const char follow_exec_mode_same[] = "same";
40478521 1071static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1072{
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076};
1077
1078static const char *follow_exec_mode_string = follow_exec_mode_same;
1079static void
1080show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082{
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084}
1085
ecf45d2c 1086/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1087
c906108c 1088static void
4ca51187 1089follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1090{
6c95b8df 1091 struct inferior *inf = current_inferior ();
e99b03dc 1092 int pid = ptid.pid ();
94585166 1093 ptid_t process_ptid;
7a292a7a 1094
65d2b333
PW
1095 /* Switch terminal for any messages produced e.g. by
1096 breakpoint_re_set. */
1097 target_terminal::ours_for_output ();
1098
c906108c
SS
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
85102364 1117 value that was overwritten with a TRAP instruction). Since
1777feb0 1118 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1119
1120 mark_breakpoints_out ();
1121
95e50b27
PA
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
08036331 1141 for (thread_info *th : all_threads_safe ())
d7e15655 1142 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1143 delete_thread (th);
95e50b27
PA
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
08036331 1149 thread_info *th = inferior_thread ();
8358c15c 1150 th->control.step_resume_breakpoint = NULL;
186c406b 1151 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1152 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
c906108c 1155
95e50b27
PA
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
a75724bc
PA
1159 th->stop_requested = 0;
1160
95e50b27
PA
1161 update_breakpoints_after_exec ();
1162
1777feb0 1163 /* What is this a.out's name? */
f2907e49 1164 process_ptid = ptid_t (pid);
6c95b8df 1165 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1166 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1167 exec_file_target);
c906108c
SS
1168
1169 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1170 inferior has essentially been killed & reborn. */
7a292a7a 1171
6ca15a4b 1172 breakpoint_init_inferior (inf_execd);
e85a822c 1173
797bc1cb
TT
1174 gdb::unique_xmalloc_ptr<char> exec_file_host
1175 = exec_file_find (exec_file_target, NULL);
ff862be4 1176
ecf45d2c
SL
1177 /* If we were unable to map the executable target pathname onto a host
1178 pathname, tell the user that. Otherwise GDB's subsequent behavior
1179 is confusing. Maybe it would even be better to stop at this point
1180 so that the user can specify a file manually before continuing. */
1181 if (exec_file_host == NULL)
1182 warning (_("Could not load symbols for executable %s.\n"
1183 "Do you need \"set sysroot\"?"),
1184 exec_file_target);
c906108c 1185
cce9b6bf
PA
1186 /* Reset the shared library package. This ensures that we get a
1187 shlib event when the child reaches "_start", at which point the
1188 dld will have had a chance to initialize the child. */
1189 /* Also, loading a symbol file below may trigger symbol lookups, and
1190 we don't want those to be satisfied by the libraries of the
1191 previous incarnation of this process. */
1192 no_shared_libraries (NULL, 0);
1193
6c95b8df
PA
1194 if (follow_exec_mode_string == follow_exec_mode_new)
1195 {
6c95b8df
PA
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
35ed81d4
SM
1199 /* Do exit processing for the original inferior before setting the new
1200 inferior's pid. Having two inferiors with the same pid would confuse
1201 find_inferior_p(t)id. Transfer the terminal state and info from the
1202 old to the new inferior. */
1203 inf = add_inferior_with_spaces ();
1204 swap_terminal_info (inf, current_inferior ());
057302ce 1205 exit_inferior_silent (current_inferior ());
17d8546e 1206
94585166 1207 inf->pid = pid;
ecf45d2c 1208 target_follow_exec (inf, exec_file_target);
6c95b8df 1209
5b6d1e4f
PA
1210 inferior *org_inferior = current_inferior ();
1211 switch_to_inferior_no_thread (inf);
1212 push_target (org_inferior->process_target ());
1213 thread_info *thr = add_thread (inf->process_target (), ptid);
1214 switch_to_thread (thr);
6c95b8df 1215 }
9107fc8d
PA
1216 else
1217 {
1218 /* The old description may no longer be fit for the new image.
1219 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1220 old description; we'll read a new one below. No need to do
1221 this on "follow-exec-mode new", as the old inferior stays
1222 around (its description is later cleared/refetched on
1223 restart). */
1224 target_clear_description ();
1225 }
6c95b8df
PA
1226
1227 gdb_assert (current_program_space == inf->pspace);
1228
ecf45d2c
SL
1229 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1230 because the proper displacement for a PIE (Position Independent
1231 Executable) main symbol file will only be computed by
1232 solib_create_inferior_hook below. breakpoint_re_set would fail
1233 to insert the breakpoints with the zero displacement. */
797bc1cb 1234 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1235
9107fc8d
PA
1236 /* If the target can specify a description, read it. Must do this
1237 after flipping to the new executable (because the target supplied
1238 description must be compatible with the executable's
1239 architecture, and the old executable may e.g., be 32-bit, while
1240 the new one 64-bit), and before anything involving memory or
1241 registers. */
1242 target_find_description ();
1243
268a4a75 1244 solib_create_inferior_hook (0);
c906108c 1245
4efc6507
DE
1246 jit_inferior_created_hook ();
1247
c1e56572
JK
1248 breakpoint_re_set ();
1249
c906108c
SS
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1777feb0 1252 to symbol_file_command...). */
c906108c
SS
1253 insert_breakpoints ();
1254
0dda35b4
SM
1255 gdb::observers::inferior_execd.notify (inf);
1256
c906108c
SS
1257 /* The next resume of this inferior should bring it to the shlib
1258 startup breakpoints. (If the user had also set bp's on
1259 "main" from the old (parent) process, then they'll auto-
1777feb0 1260 matically get reset there in the new process.). */
c906108c
SS
1261}
1262
c2829269
PA
1263/* The queue of threads that need to do a step-over operation to get
1264 past e.g., a breakpoint. What technique is used to step over the
1265 breakpoint/watchpoint does not matter -- all threads end up in the
1266 same queue, to maintain rough temporal order of execution, in order
1267 to avoid starvation, otherwise, we could e.g., find ourselves
1268 constantly stepping the same couple threads past their breakpoints
1269 over and over, if the single-step finish fast enough. */
7bd43605 1270struct thread_info *global_thread_step_over_chain_head;
c2829269 1271
6c4cfb24
PA
1272/* Bit flags indicating what the thread needs to step over. */
1273
8d297bbf 1274enum step_over_what_flag
6c4cfb24
PA
1275 {
1276 /* Step over a breakpoint. */
1277 STEP_OVER_BREAKPOINT = 1,
1278
1279 /* Step past a non-continuable watchpoint, in order to let the
1280 instruction execute so we can evaluate the watchpoint
1281 expression. */
1282 STEP_OVER_WATCHPOINT = 2
1283 };
8d297bbf 1284DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1285
963f9c80 1286/* Info about an instruction that is being stepped over. */
31e77af2
PA
1287
1288struct step_over_info
1289{
963f9c80
PA
1290 /* If we're stepping past a breakpoint, this is the address space
1291 and address of the instruction the breakpoint is set at. We'll
1292 skip inserting all breakpoints here. Valid iff ASPACE is
1293 non-NULL. */
8b86c959 1294 const address_space *aspace;
31e77af2 1295 CORE_ADDR address;
963f9c80
PA
1296
1297 /* The instruction being stepped over triggers a nonsteppable
1298 watchpoint. If true, we'll skip inserting watchpoints. */
1299 int nonsteppable_watchpoint_p;
21edc42f
YQ
1300
1301 /* The thread's global number. */
1302 int thread;
31e77af2
PA
1303};
1304
1305/* The step-over info of the location that is being stepped over.
1306
1307 Note that with async/breakpoint always-inserted mode, a user might
1308 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1309 being stepped over. As setting a new breakpoint inserts all
1310 breakpoints, we need to make sure the breakpoint being stepped over
1311 isn't inserted then. We do that by only clearing the step-over
1312 info when the step-over is actually finished (or aborted).
1313
1314 Presently GDB can only step over one breakpoint at any given time.
1315 Given threads that can't run code in the same address space as the
1316 breakpoint's can't really miss the breakpoint, GDB could be taught
1317 to step-over at most one breakpoint per address space (so this info
1318 could move to the address space object if/when GDB is extended).
1319 The set of breakpoints being stepped over will normally be much
1320 smaller than the set of all breakpoints, so a flag in the
1321 breakpoint location structure would be wasteful. A separate list
1322 also saves complexity and run-time, as otherwise we'd have to go
1323 through all breakpoint locations clearing their flag whenever we
1324 start a new sequence. Similar considerations weigh against storing
1325 this info in the thread object. Plus, not all step overs actually
1326 have breakpoint locations -- e.g., stepping past a single-step
1327 breakpoint, or stepping to complete a non-continuable
1328 watchpoint. */
1329static struct step_over_info step_over_info;
1330
1331/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1332 stepping over.
1333 N.B. We record the aspace and address now, instead of say just the thread,
1334 because when we need the info later the thread may be running. */
31e77af2
PA
1335
1336static void
8b86c959 1337set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1338 int nonsteppable_watchpoint_p,
1339 int thread)
31e77af2
PA
1340{
1341 step_over_info.aspace = aspace;
1342 step_over_info.address = address;
963f9c80 1343 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1344 step_over_info.thread = thread;
31e77af2
PA
1345}
1346
1347/* Called when we're not longer stepping over a breakpoint / an
1348 instruction, so all breakpoints are free to be (re)inserted. */
1349
1350static void
1351clear_step_over_info (void)
1352{
edbcda09 1353 infrun_log_debug ("clearing step over info");
31e77af2
PA
1354 step_over_info.aspace = NULL;
1355 step_over_info.address = 0;
963f9c80 1356 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1357 step_over_info.thread = -1;
31e77af2
PA
1358}
1359
7f89fd65 1360/* See infrun.h. */
31e77af2
PA
1361
1362int
1363stepping_past_instruction_at (struct address_space *aspace,
1364 CORE_ADDR address)
1365{
1366 return (step_over_info.aspace != NULL
1367 && breakpoint_address_match (aspace, address,
1368 step_over_info.aspace,
1369 step_over_info.address));
1370}
1371
963f9c80
PA
1372/* See infrun.h. */
1373
21edc42f
YQ
1374int
1375thread_is_stepping_over_breakpoint (int thread)
1376{
1377 return (step_over_info.thread != -1
1378 && thread == step_over_info.thread);
1379}
1380
1381/* See infrun.h. */
1382
963f9c80
PA
1383int
1384stepping_past_nonsteppable_watchpoint (void)
1385{
1386 return step_over_info.nonsteppable_watchpoint_p;
1387}
1388
6cc83d2a
PA
1389/* Returns true if step-over info is valid. */
1390
1391static int
1392step_over_info_valid_p (void)
1393{
963f9c80
PA
1394 return (step_over_info.aspace != NULL
1395 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1396}
1397
c906108c 1398\f
237fc4c9
PA
1399/* Displaced stepping. */
1400
1401/* In non-stop debugging mode, we must take special care to manage
1402 breakpoints properly; in particular, the traditional strategy for
1403 stepping a thread past a breakpoint it has hit is unsuitable.
1404 'Displaced stepping' is a tactic for stepping one thread past a
1405 breakpoint it has hit while ensuring that other threads running
1406 concurrently will hit the breakpoint as they should.
1407
1408 The traditional way to step a thread T off a breakpoint in a
1409 multi-threaded program in all-stop mode is as follows:
1410
1411 a0) Initially, all threads are stopped, and breakpoints are not
1412 inserted.
1413 a1) We single-step T, leaving breakpoints uninserted.
1414 a2) We insert breakpoints, and resume all threads.
1415
1416 In non-stop debugging, however, this strategy is unsuitable: we
1417 don't want to have to stop all threads in the system in order to
1418 continue or step T past a breakpoint. Instead, we use displaced
1419 stepping:
1420
1421 n0) Initially, T is stopped, other threads are running, and
1422 breakpoints are inserted.
1423 n1) We copy the instruction "under" the breakpoint to a separate
1424 location, outside the main code stream, making any adjustments
1425 to the instruction, register, and memory state as directed by
1426 T's architecture.
1427 n2) We single-step T over the instruction at its new location.
1428 n3) We adjust the resulting register and memory state as directed
1429 by T's architecture. This includes resetting T's PC to point
1430 back into the main instruction stream.
1431 n4) We resume T.
1432
1433 This approach depends on the following gdbarch methods:
1434
1435 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1436 indicate where to copy the instruction, and how much space must
1437 be reserved there. We use these in step n1.
1438
1439 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1440 address, and makes any necessary adjustments to the instruction,
1441 register contents, and memory. We use this in step n1.
1442
1443 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1444 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1445 same effect the instruction would have had if we had executed it
1446 at its original address. We use this in step n3.
1447
237fc4c9
PA
1448 The gdbarch_displaced_step_copy_insn and
1449 gdbarch_displaced_step_fixup functions must be written so that
1450 copying an instruction with gdbarch_displaced_step_copy_insn,
1451 single-stepping across the copied instruction, and then applying
1452 gdbarch_displaced_insn_fixup should have the same effects on the
1453 thread's memory and registers as stepping the instruction in place
1454 would have. Exactly which responsibilities fall to the copy and
1455 which fall to the fixup is up to the author of those functions.
1456
1457 See the comments in gdbarch.sh for details.
1458
1459 Note that displaced stepping and software single-step cannot
1460 currently be used in combination, although with some care I think
1461 they could be made to. Software single-step works by placing
1462 breakpoints on all possible subsequent instructions; if the
1463 displaced instruction is a PC-relative jump, those breakpoints
1464 could fall in very strange places --- on pages that aren't
1465 executable, or at addresses that are not proper instruction
1466 boundaries. (We do generally let other threads run while we wait
1467 to hit the software single-step breakpoint, and they might
1468 encounter such a corrupted instruction.) One way to work around
1469 this would be to have gdbarch_displaced_step_copy_insn fully
1470 simulate the effect of PC-relative instructions (and return NULL)
1471 on architectures that use software single-stepping.
1472
1473 In non-stop mode, we can have independent and simultaneous step
1474 requests, so more than one thread may need to simultaneously step
1475 over a breakpoint. The current implementation assumes there is
1476 only one scratch space per process. In this case, we have to
1477 serialize access to the scratch space. If thread A wants to step
1478 over a breakpoint, but we are currently waiting for some other
1479 thread to complete a displaced step, we leave thread A stopped and
1480 place it in the displaced_step_request_queue. Whenever a displaced
1481 step finishes, we pick the next thread in the queue and start a new
1482 displaced step operation on it. See displaced_step_prepare and
1483 displaced_step_fixup for details. */
1484
9844051a 1485/* Get the displaced stepping state of inferior INF. */
fc1cf338 1486
39a36629 1487static displaced_step_inferior_state *
00431a78 1488get_displaced_stepping_state (inferior *inf)
fc1cf338 1489{
d20172fc 1490 return &inf->displaced_step_state;
fc1cf338
PA
1491}
1492
9844051a 1493/* Get the displaced stepping state of thread THREAD. */
372316f1 1494
9844051a
SM
1495static displaced_step_thread_state *
1496get_displaced_stepping_state (thread_info *thread)
372316f1 1497{
9844051a 1498 return &thread->displaced_step_state;
372316f1
PA
1499}
1500
9844051a 1501/* Return true if the given thread is doing a displaced step. */
c0987663 1502
9844051a
SM
1503static bool
1504displaced_step_in_progress (thread_info *thread)
c0987663 1505{
00431a78 1506 gdb_assert (thread != NULL);
c0987663 1507
9844051a 1508 return get_displaced_stepping_state (thread)->in_progress ();
c0987663
YQ
1509}
1510
9844051a 1511/* Return true if any thread of this inferior is doing a displaced step. */
8f572e5c 1512
9844051a 1513static bool
00431a78 1514displaced_step_in_progress (inferior *inf)
8f572e5c 1515{
9844051a
SM
1516 for (thread_info *thread : inf->non_exited_threads ())
1517 {
1518 if (displaced_step_in_progress (thread))
1519 return true;
1520 }
1521
1522 return false;
1523}
1524
1525/* Return true if any thread is doing a displaced step. */
1526
1527static bool
1528displaced_step_in_progress_any_thread ()
1529{
1530 for (thread_info *thread : all_non_exited_threads ())
1531 {
1532 if (displaced_step_in_progress (thread))
1533 return true;
1534 }
1535
1536 return false;
fc1cf338
PA
1537}
1538
a42244db 1539/* If inferior is in displaced stepping, and ADDR equals to starting address
7ccba087 1540 of copy area, return corresponding displaced_step_copy_insn_closure. Otherwise,
a42244db
YQ
1541 return NULL. */
1542
7ccba087
SM
1543struct displaced_step_copy_insn_closure *
1544get_displaced_step_copy_insn_closure_by_addr (CORE_ADDR addr)
a42244db 1545{
9844051a
SM
1546// FIXME: implement me (only needed on ARM).
1547// displaced_step_inferior_state *displaced
1548// = get_displaced_stepping_state (current_inferior ());
1549//
1550// /* If checking the mode of displaced instruction in copy area. */
1551// if (displaced->step_thread != nullptr
1552// && displaced->step_copy == addr)
1553// return displaced->step_closure.get ();
1554//
a42244db
YQ
1555 return NULL;
1556}
1557
fc1cf338
PA
1558static void
1559infrun_inferior_exit (struct inferior *inf)
1560{
d20172fc 1561 inf->displaced_step_state.reset ();
fc1cf338 1562}
237fc4c9 1563
fff08868
HZ
1564/* If ON, and the architecture supports it, GDB will use displaced
1565 stepping to step over breakpoints. If OFF, or if the architecture
1566 doesn't support it, GDB will instead use the traditional
1567 hold-and-step approach. If AUTO (which is the default), GDB will
1568 decide which technique to use to step over breakpoints depending on
9822cb57 1569 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1570
72d0e2c5 1571static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1572
237fc4c9
PA
1573static void
1574show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1575 struct cmd_list_element *c,
1576 const char *value)
1577{
72d0e2c5 1578 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1579 fprintf_filtered (file,
1580 _("Debugger's willingness to use displaced stepping "
1581 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1582 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1583 else
3e43a32a
MS
1584 fprintf_filtered (file,
1585 _("Debugger's willingness to use displaced stepping "
1586 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1587}
1588
9822cb57
SM
1589/* Return true if the gdbarch implements the required methods to use
1590 displaced stepping. */
1591
1592static bool
1593gdbarch_supports_displaced_stepping (gdbarch *arch)
1594{
ab994d4a
SM
1595 /* Only check for the presence of `prepare`. `finish` is required by the
1596 gdbarch verification to be provided if `prepare` is provided. */
1597 return gdbarch_displaced_step_prepare_p (arch);
9822cb57
SM
1598}
1599
fff08868 1600/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1601 over breakpoints of thread TP. */
fff08868 1602
9822cb57
SM
1603static bool
1604use_displaced_stepping (thread_info *tp)
237fc4c9 1605{
9822cb57
SM
1606 /* If the user disabled it explicitly, don't use displaced stepping. */
1607 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1608 return false;
1609
1610 /* If "auto", only use displaced stepping if the target operates in a non-stop
1611 way. */
1612 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1613 && !target_is_non_stop_p ())
1614 return false;
1615
1616 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1617
1618 /* If the architecture doesn't implement displaced stepping, don't use
1619 it. */
1620 if (!gdbarch_supports_displaced_stepping (gdbarch))
1621 return false;
1622
1623 /* If recording, don't use displaced stepping. */
1624 if (find_record_target () != nullptr)
1625 return false;
1626
d20172fc
SM
1627 displaced_step_inferior_state *displaced_state
1628 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1629
9822cb57
SM
1630 /* If displaced stepping failed before for this inferior, don't bother trying
1631 again. */
1632 if (displaced_state->failed_before)
1633 return false;
1634
1635 return true;
237fc4c9
PA
1636}
1637
9844051a 1638/* Simple function wrapper around displaced_step_thread_state::reset. */
d8d83535 1639
237fc4c9 1640static void
9844051a 1641displaced_step_reset (displaced_step_thread_state *displaced)
237fc4c9 1642{
d8d83535 1643 displaced->reset ();
237fc4c9
PA
1644}
1645
d8d83535
SM
1646/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1647 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1648
1649using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1650
1651/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1652void
1653displaced_step_dump_bytes (struct ui_file *file,
1654 const gdb_byte *buf,
1655 size_t len)
1656{
1657 int i;
1658
1659 for (i = 0; i < len; i++)
1660 fprintf_unfiltered (file, "%02x ", buf[i]);
1661 fputs_unfiltered ("\n", file);
1662}
1663
1664/* Prepare to single-step, using displaced stepping.
1665
1666 Note that we cannot use displaced stepping when we have a signal to
1667 deliver. If we have a signal to deliver and an instruction to step
1668 over, then after the step, there will be no indication from the
1669 target whether the thread entered a signal handler or ignored the
1670 signal and stepped over the instruction successfully --- both cases
1671 result in a simple SIGTRAP. In the first case we mustn't do a
1672 fixup, and in the second case we must --- but we can't tell which.
1673 Comments in the code for 'random signals' in handle_inferior_event
1674 explain how we handle this case instead.
1675
1676 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1677 stepped now; 0 if displaced stepping this thread got queued; or -1
1678 if this instruction can't be displaced stepped. */
1679
9844051a 1680static displaced_step_prepare_status
00431a78 1681displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1682{
00431a78 1683 regcache *regcache = get_thread_regcache (tp);
ac7936df 1684 struct gdbarch *gdbarch = regcache->arch ();
9844051a
SM
1685 displaced_step_thread_state *thread_disp_step_state
1686 = get_displaced_stepping_state (tp);
237fc4c9
PA
1687
1688 /* We should never reach this function if the architecture does not
1689 support displaced stepping. */
9822cb57 1690 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1691
c2829269
PA
1692 /* Nor if the thread isn't meant to step over a breakpoint. */
1693 gdb_assert (tp->control.trap_expected);
1694
c1e36e3e
PA
1695 /* Disable range stepping while executing in the scratch pad. We
1696 want a single-step even if executing the displaced instruction in
1697 the scratch buffer lands within the stepping range (e.g., a
1698 jump/branch). */
1699 tp->control.may_range_step = 0;
1700
9844051a
SM
1701 /* We are about to start a displaced step for this thread, if one is already
1702 in progress, we goofed up somewhere. */
1703 gdb_assert (!thread_disp_step_state->in_progress ());
237fc4c9 1704
9844051a 1705 scoped_restore_current_thread restore_thread;
fc1cf338 1706
9844051a
SM
1707 switch_to_thread (tp);
1708
1709 CORE_ADDR original_pc = regcache_read_pc (regcache);
1710
1711 displaced_step_prepare_status status =
768e1fd2 1712 tp->inf->top_target ()->displaced_step_prepare (tp);
237fc4c9 1713
9844051a
SM
1714 if (status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
1715 {
237fc4c9
PA
1716 if (debug_displaced)
1717 fprintf_unfiltered (gdb_stdlog,
9844051a 1718 "displaced: failed to prepare (%s)",
a068643d 1719 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1720
9844051a 1721 return DISPLACED_STEP_PREPARE_STATUS_ERROR;
237fc4c9 1722 }
9844051a 1723 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
237fc4c9 1724 {
9844051a
SM
1725 /* Not enough displaced stepping resources available, defer this
1726 request by placing it the queue. */
1727
237fc4c9
PA
1728 if (debug_displaced)
1729 fprintf_unfiltered (gdb_stdlog,
9844051a
SM
1730 "displaced: not enough resources available, "
1731 "deferring step of %s\n",
a068643d 1732 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1733
9844051a 1734 global_thread_step_over_chain_enqueue (tp);
effb9843 1735 tp->inf->displaced_step_state.unavailable = true;
d35ae833 1736
9844051a 1737 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
d35ae833
PA
1738 }
1739
9844051a
SM
1740 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1741
1742// FIXME: Should probably replicated in the arch implementation now.
1743//
1744// if (breakpoint_in_range_p (aspace, copy, len))
1745// {
1746// /* There's a breakpoint set in the scratch pad location range
1747// (which is usually around the entry point). We'd either
1748// install it before resuming, which would overwrite/corrupt the
1749// scratch pad, or if it was already inserted, this displaced
1750// step would overwrite it. The latter is OK in the sense that
1751// we already assume that no thread is going to execute the code
1752// in the scratch pad range (after initial startup) anyway, but
1753// the former is unacceptable. Simply punt and fallback to
1754// stepping over this breakpoint in-line. */
1755// if (debug_displaced)
1756// {
1757// fprintf_unfiltered (gdb_stdlog,
1758// "displaced: breakpoint set in scratch pad. "
1759// "Stepping over breakpoint in-line instead.\n");
1760// }
1761//
1762// gdb_assert (false);
1763// gdbarch_displaced_step_release_location (gdbarch, copy);
1764//
1765// return -1;
1766// }
237fc4c9 1767
9f5a595d
UW
1768 /* Save the information we need to fix things up if the step
1769 succeeds. */
9844051a 1770 thread_disp_step_state->set (gdbarch);
9f5a595d 1771
9844051a
SM
1772 // FIXME: get it from _prepare?
1773 CORE_ADDR displaced_pc = 0;
ad53cd71 1774
237fc4c9 1775 if (debug_displaced)
9844051a
SM
1776 fprintf_unfiltered (gdb_stdlog,
1777 "displaced: prepared successfully thread=%s, "
1778 "original_pc=%s, displaced_pc=%s\n",
1779 target_pid_to_str (tp->ptid).c_str (),
1780 paddress (gdbarch, original_pc),
1781 paddress (gdbarch, displaced_pc));
1782
1783 return DISPLACED_STEP_PREPARE_STATUS_OK;
237fc4c9
PA
1784}
1785
3fc8eb30
PA
1786/* Wrapper for displaced_step_prepare_throw that disabled further
1787 attempts at displaced stepping if we get a memory error. */
1788
9844051a 1789static displaced_step_prepare_status
00431a78 1790displaced_step_prepare (thread_info *thread)
3fc8eb30 1791{
9844051a
SM
1792 displaced_step_prepare_status status
1793 = DISPLACED_STEP_PREPARE_STATUS_ERROR;
3fc8eb30 1794
a70b8144 1795 try
3fc8eb30 1796 {
9844051a 1797 status = displaced_step_prepare_throw (thread);
3fc8eb30 1798 }
230d2906 1799 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1800 {
1801 struct displaced_step_inferior_state *displaced_state;
1802
16b41842
PA
1803 if (ex.error != MEMORY_ERROR
1804 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1805 throw;
3fc8eb30 1806
edbcda09
SM
1807 infrun_log_debug ("caught exception, disabling displaced stepping: %s",
1808 ex.what ());
3fc8eb30
PA
1809
1810 /* Be verbose if "set displaced-stepping" is "on", silent if
1811 "auto". */
1812 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1813 {
fd7dcb94 1814 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1815 ex.what ());
3fc8eb30
PA
1816 }
1817
1818 /* Disable further displaced stepping attempts. */
1819 displaced_state
00431a78 1820 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1821 displaced_state->failed_before = 1;
1822 }
3fc8eb30 1823
9844051a 1824 return status;
e2d96639
YQ
1825}
1826
372316f1
PA
1827/* If we displaced stepped an instruction successfully, adjust
1828 registers and memory to yield the same effect the instruction would
1829 have had if we had executed it at its original address, and return
1830 1. If the instruction didn't complete, relocate the PC and return
1831 -1. If the thread wasn't displaced stepping, return 0. */
1832
1833static int
9844051a 1834displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1835{
9844051a
SM
1836 displaced_step_thread_state *displaced
1837 = get_displaced_stepping_state (event_thread);
fc1cf338 1838
9844051a
SM
1839 /* Was this thread performing a displaced step? */
1840 if (!displaced->in_progress ())
372316f1 1841 return 0;
237fc4c9 1842
9844051a
SM
1843 displaced_step_reset_cleanup cleanup (displaced);
1844
cb71640d
PA
1845 /* Fixup may need to read memory/registers. Switch to the thread
1846 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d
TBA
1847 the current thread, and displaced_step_restore performs ptid-dependent
1848 memory accesses using current_inferior() and current_top_target(). */
00431a78 1849 switch_to_thread (event_thread);
cb71640d 1850
9844051a
SM
1851 /* Do the fixup, and release the resources acquired to do the displaced
1852 step. */
1853 displaced_step_finish_status finish_status =
768e1fd2
SM
1854 event_thread->inf->top_target ()->displaced_step_finish (event_thread,
1855 signal);
d43b7a2d 1856
9844051a
SM
1857 if (finish_status == DISPLACED_STEP_FINISH_STATUS_OK)
1858 return 1;
237fc4c9 1859 else
9844051a 1860 return -1;
c2829269 1861}
1c5cfe86 1862
4d9d9d04
PA
1863/* Data to be passed around while handling an event. This data is
1864 discarded between events. */
1865struct execution_control_state
1866{
5b6d1e4f 1867 process_stratum_target *target;
4d9d9d04
PA
1868 ptid_t ptid;
1869 /* The thread that got the event, if this was a thread event; NULL
1870 otherwise. */
1871 struct thread_info *event_thread;
1872
1873 struct target_waitstatus ws;
1874 int stop_func_filled_in;
1875 CORE_ADDR stop_func_start;
1876 CORE_ADDR stop_func_end;
1877 const char *stop_func_name;
1878 int wait_some_more;
1879
1880 /* True if the event thread hit the single-step breakpoint of
1881 another thread. Thus the event doesn't cause a stop, the thread
1882 needs to be single-stepped past the single-step breakpoint before
1883 we can switch back to the original stepping thread. */
1884 int hit_singlestep_breakpoint;
1885};
1886
1887/* Clear ECS and set it to point at TP. */
c2829269
PA
1888
1889static void
4d9d9d04
PA
1890reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1891{
1892 memset (ecs, 0, sizeof (*ecs));
1893 ecs->event_thread = tp;
1894 ecs->ptid = tp->ptid;
1895}
1896
1897static void keep_going_pass_signal (struct execution_control_state *ecs);
1898static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1899static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1900static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1901
1902/* Are there any pending step-over requests? If so, run all we can
1903 now and return true. Otherwise, return false. */
1904
1905static int
c2829269
PA
1906start_step_over (void)
1907{
1908 struct thread_info *tp, *next;
9844051a 1909 int started = 0;
c2829269 1910
372316f1
PA
1911 /* Don't start a new step-over if we already have an in-line
1912 step-over operation ongoing. */
1913 if (step_over_info_valid_p ())
9844051a
SM
1914 return started;
1915
1916 /* Steal the global thread step over chain. */
1917 thread_info *threads_to_step = global_thread_step_over_chain_head;
1918 global_thread_step_over_chain_head = NULL;
1919
1920 if (debug_infrun)
1921 fprintf_unfiltered (gdb_stdlog,
1922 "infrun: stealing list of %d threads to step from global queue\n",
1923 thread_step_over_chain_length (threads_to_step));
372316f1 1924
effb9843
SM
1925 for (inferior *inf : all_inferiors ())
1926 inf->displaced_step_state.unavailable = false;
1927
9844051a 1928 for (tp = threads_to_step; tp != NULL; tp = next)
237fc4c9 1929 {
4d9d9d04
PA
1930 struct execution_control_state ecss;
1931 struct execution_control_state *ecs = &ecss;
8d297bbf 1932 step_over_what step_what;
372316f1 1933 int must_be_in_line;
c2829269 1934
c65d6b55
PA
1935 gdb_assert (!tp->stop_requested);
1936
9844051a 1937 next = thread_step_over_chain_next (threads_to_step, tp);
c2829269 1938
372316f1
PA
1939 step_what = thread_still_needs_step_over (tp);
1940 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1941 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1942 && !use_displaced_stepping (tp)));
372316f1
PA
1943
1944 /* We currently stop all threads of all processes to step-over
1945 in-line. If we need to start a new in-line step-over, let
1946 any pending displaced steps finish first. */
9844051a
SM
1947 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1948 continue;
c2829269 1949
9844051a 1950 thread_step_over_chain_remove (&threads_to_step, tp);
c2829269 1951
372316f1
PA
1952 if (tp->control.trap_expected
1953 || tp->resumed
1954 || tp->executing)
ad53cd71 1955 {
4d9d9d04
PA
1956 internal_error (__FILE__, __LINE__,
1957 "[%s] has inconsistent state: "
372316f1 1958 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1959 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1960 tp->control.trap_expected,
372316f1 1961 tp->resumed,
4d9d9d04 1962 tp->executing);
ad53cd71 1963 }
1c5cfe86 1964
edbcda09
SM
1965 infrun_log_debug ("resuming [%s] for step-over",
1966 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1967
1968 /* keep_going_pass_signal skips the step-over if the breakpoint
1969 is no longer inserted. In all-stop, we want to keep looking
1970 for a thread that needs a step-over instead of resuming TP,
1971 because we wouldn't be able to resume anything else until the
1972 target stops again. In non-stop, the resume always resumes
1973 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1974 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1975 continue;
8550d3b3 1976
effb9843
SM
1977 if (tp->inf->displaced_step_state.unavailable)
1978 {
1979 global_thread_step_over_chain_enqueue (tp);
1980 continue;
1981 }
1982
00431a78 1983 switch_to_thread (tp);
4d9d9d04
PA
1984 reset_ecs (ecs, tp);
1985 keep_going_pass_signal (ecs);
1c5cfe86 1986
4d9d9d04
PA
1987 if (!ecs->wait_some_more)
1988 error (_("Command aborted."));
1c5cfe86 1989
9844051a
SM
1990 /* If the thread's step over could not be initiated, it was re-added
1991 to the global step over chain. */
1992 if (tp->resumed)
1993 {
1994 infrun_log_debug ("start_step_over: [%s] was resumed.\n",
1995 target_pid_to_str (tp->ptid).c_str ());
1996 gdb_assert (!thread_is_in_step_over_chain (tp));
1997 }
1998 else
1999 {
2000 infrun_log_debug ("infrun: start_step_over: [%s] was NOT resumed.\n",
2001 target_pid_to_str (tp->ptid).c_str ());
2002 gdb_assert (thread_is_in_step_over_chain (tp));
2003
2004 }
372316f1
PA
2005
2006 /* If we started a new in-line step-over, we're done. */
2007 if (step_over_info_valid_p ())
2008 {
2009 gdb_assert (tp->control.trap_expected);
9844051a
SM
2010 started = 1;
2011 break;
372316f1
PA
2012 }
2013
fbea99ea 2014 if (!target_is_non_stop_p ())
4d9d9d04
PA
2015 {
2016 /* On all-stop, shouldn't have resumed unless we needed a
2017 step over. */
2018 gdb_assert (tp->control.trap_expected
2019 || tp->step_after_step_resume_breakpoint);
2020
2021 /* With remote targets (at least), in all-stop, we can't
2022 issue any further remote commands until the program stops
2023 again. */
9844051a
SM
2024 started = 1;
2025 break;
1c5cfe86 2026 }
c2829269 2027
4d9d9d04
PA
2028 /* Either the thread no longer needed a step-over, or a new
2029 displaced stepping sequence started. Even in the latter
2030 case, continue looking. Maybe we can also start another
2031 displaced step on a thread of other process. */
237fc4c9 2032 }
4d9d9d04 2033
9844051a
SM
2034 /* If there are threads left in the THREADS_TO_STEP list, but we have
2035 detected that we can't start anything more, put back these threads
2036 in the global list. */
2037 if (threads_to_step == NULL)
2038 {
2039 if (debug_infrun)
2040 fprintf_unfiltered (gdb_stdlog,
2041 "infrun: step-over queue now empty\n");
2042 }
2043 else
2044 {
2045 if (debug_infrun)
2046 fprintf_unfiltered (gdb_stdlog,
2047 "infrun: putting back %d threads to step in global queue\n",
2048 thread_step_over_chain_length (threads_to_step));
2049 while (threads_to_step != nullptr)
2050 {
2051 thread_info *thread = threads_to_step;
2052
2053 /* Remove from that list. */
2054 thread_step_over_chain_remove (&threads_to_step, thread);
2055
2056 /* Add to global list. */
2057 global_thread_step_over_chain_enqueue (thread);
2058
2059 }
2060 }
2061
2062 return started;
237fc4c9
PA
2063}
2064
5231c1fd
PA
2065/* Update global variables holding ptids to hold NEW_PTID if they were
2066 holding OLD_PTID. */
2067static void
2068infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2069{
d7e15655 2070 if (inferior_ptid == old_ptid)
5231c1fd 2071 inferior_ptid = new_ptid;
5231c1fd
PA
2072}
2073
237fc4c9 2074\f
c906108c 2075
53904c9e
AC
2076static const char schedlock_off[] = "off";
2077static const char schedlock_on[] = "on";
2078static const char schedlock_step[] = "step";
f2665db5 2079static const char schedlock_replay[] = "replay";
40478521 2080static const char *const scheduler_enums[] = {
ef346e04
AC
2081 schedlock_off,
2082 schedlock_on,
2083 schedlock_step,
f2665db5 2084 schedlock_replay,
ef346e04
AC
2085 NULL
2086};
f2665db5 2087static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2088static void
2089show_scheduler_mode (struct ui_file *file, int from_tty,
2090 struct cmd_list_element *c, const char *value)
2091{
3e43a32a
MS
2092 fprintf_filtered (file,
2093 _("Mode for locking scheduler "
2094 "during execution is \"%s\".\n"),
920d2a44
AC
2095 value);
2096}
c906108c
SS
2097
2098static void
eb4c3f4a 2099set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2100{
eefe576e
AC
2101 if (!target_can_lock_scheduler)
2102 {
2103 scheduler_mode = schedlock_off;
2104 error (_("Target '%s' cannot support this command."), target_shortname);
2105 }
c906108c
SS
2106}
2107
d4db2f36
PA
2108/* True if execution commands resume all threads of all processes by
2109 default; otherwise, resume only threads of the current inferior
2110 process. */
491144b5 2111bool sched_multi = false;
d4db2f36 2112
2facfe5c
DD
2113/* Try to setup for software single stepping over the specified location.
2114 Return 1 if target_resume() should use hardware single step.
2115
2116 GDBARCH the current gdbarch.
2117 PC the location to step over. */
2118
2119static int
2120maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2121{
2122 int hw_step = 1;
2123
f02253f1 2124 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2125 && gdbarch_software_single_step_p (gdbarch))
2126 hw_step = !insert_single_step_breakpoints (gdbarch);
2127
2facfe5c
DD
2128 return hw_step;
2129}
c906108c 2130
f3263aa4
PA
2131/* See infrun.h. */
2132
09cee04b
PA
2133ptid_t
2134user_visible_resume_ptid (int step)
2135{
f3263aa4 2136 ptid_t resume_ptid;
09cee04b 2137
09cee04b
PA
2138 if (non_stop)
2139 {
2140 /* With non-stop mode on, threads are always handled
2141 individually. */
2142 resume_ptid = inferior_ptid;
2143 }
2144 else if ((scheduler_mode == schedlock_on)
03d46957 2145 || (scheduler_mode == schedlock_step && step))
09cee04b 2146 {
f3263aa4
PA
2147 /* User-settable 'scheduler' mode requires solo thread
2148 resume. */
09cee04b
PA
2149 resume_ptid = inferior_ptid;
2150 }
f2665db5
MM
2151 else if ((scheduler_mode == schedlock_replay)
2152 && target_record_will_replay (minus_one_ptid, execution_direction))
2153 {
2154 /* User-settable 'scheduler' mode requires solo thread resume in replay
2155 mode. */
2156 resume_ptid = inferior_ptid;
2157 }
f3263aa4
PA
2158 else if (!sched_multi && target_supports_multi_process ())
2159 {
2160 /* Resume all threads of the current process (and none of other
2161 processes). */
e99b03dc 2162 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2163 }
2164 else
2165 {
2166 /* Resume all threads of all processes. */
2167 resume_ptid = RESUME_ALL;
2168 }
09cee04b
PA
2169
2170 return resume_ptid;
2171}
2172
5b6d1e4f
PA
2173/* See infrun.h. */
2174
2175process_stratum_target *
2176user_visible_resume_target (ptid_t resume_ptid)
2177{
2178 return (resume_ptid == minus_one_ptid && sched_multi
2179 ? NULL
2180 : current_inferior ()->process_target ());
2181}
2182
fbea99ea
PA
2183/* Return a ptid representing the set of threads that we will resume,
2184 in the perspective of the target, assuming run control handling
2185 does not require leaving some threads stopped (e.g., stepping past
2186 breakpoint). USER_STEP indicates whether we're about to start the
2187 target for a stepping command. */
2188
2189static ptid_t
2190internal_resume_ptid (int user_step)
2191{
2192 /* In non-stop, we always control threads individually. Note that
2193 the target may always work in non-stop mode even with "set
2194 non-stop off", in which case user_visible_resume_ptid could
2195 return a wildcard ptid. */
2196 if (target_is_non_stop_p ())
2197 return inferior_ptid;
2198 else
2199 return user_visible_resume_ptid (user_step);
2200}
2201
64ce06e4
PA
2202/* Wrapper for target_resume, that handles infrun-specific
2203 bookkeeping. */
2204
2205static void
2206do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2207{
2208 struct thread_info *tp = inferior_thread ();
2209
c65d6b55
PA
2210 gdb_assert (!tp->stop_requested);
2211
64ce06e4 2212 /* Install inferior's terminal modes. */
223ffa71 2213 target_terminal::inferior ();
64ce06e4
PA
2214
2215 /* Avoid confusing the next resume, if the next stop/resume
2216 happens to apply to another thread. */
2217 tp->suspend.stop_signal = GDB_SIGNAL_0;
2218
8f572e5c
PA
2219 /* Advise target which signals may be handled silently.
2220
2221 If we have removed breakpoints because we are stepping over one
2222 in-line (in any thread), we need to receive all signals to avoid
2223 accidentally skipping a breakpoint during execution of a signal
2224 handler.
2225
2226 Likewise if we're displaced stepping, otherwise a trap for a
2227 breakpoint in a signal handler might be confused with the
2228 displaced step finishing. We don't make the displaced_step_fixup
2229 step distinguish the cases instead, because:
2230
2231 - a backtrace while stopped in the signal handler would show the
2232 scratch pad as frame older than the signal handler, instead of
2233 the real mainline code.
2234
2235 - when the thread is later resumed, the signal handler would
2236 return to the scratch pad area, which would no longer be
2237 valid. */
2238 if (step_over_info_valid_p ()
00431a78 2239 || displaced_step_in_progress (tp->inf))
adc6a863 2240 target_pass_signals ({});
64ce06e4 2241 else
adc6a863 2242 target_pass_signals (signal_pass);
64ce06e4
PA
2243
2244 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2245
2246 target_commit_resume ();
5b6d1e4f
PA
2247
2248 if (target_can_async_p ())
2249 target_async (1);
64ce06e4
PA
2250}
2251
d930703d 2252/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2253 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2254 call 'resume', which handles exceptions. */
c906108c 2255
71d378ae
PA
2256static void
2257resume_1 (enum gdb_signal sig)
c906108c 2258{
515630c5 2259 struct regcache *regcache = get_current_regcache ();
ac7936df 2260 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2261 struct thread_info *tp = inferior_thread ();
8b86c959 2262 const address_space *aspace = regcache->aspace ();
b0f16a3e 2263 ptid_t resume_ptid;
856e7dd6
PA
2264 /* This represents the user's step vs continue request. When
2265 deciding whether "set scheduler-locking step" applies, it's the
2266 user's intention that counts. */
2267 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2268 /* This represents what we'll actually request the target to do.
2269 This can decay from a step to a continue, if e.g., we need to
2270 implement single-stepping with breakpoints (software
2271 single-step). */
6b403daa 2272 int step;
c7e8a53c 2273
c65d6b55 2274 gdb_assert (!tp->stop_requested);
c2829269
PA
2275 gdb_assert (!thread_is_in_step_over_chain (tp));
2276
372316f1
PA
2277 if (tp->suspend.waitstatus_pending_p)
2278 {
edbcda09
SM
2279 infrun_log_debug
2280 ("thread %s has pending wait "
2281 "status %s (currently_stepping=%d).",
2282 target_pid_to_str (tp->ptid).c_str (),
2283 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2284 currently_stepping (tp));
372316f1 2285
5b6d1e4f 2286 tp->inf->process_target ()->threads_executing = true;
719546c4 2287 tp->resumed = true;
372316f1
PA
2288
2289 /* FIXME: What should we do if we are supposed to resume this
2290 thread with a signal? Maybe we should maintain a queue of
2291 pending signals to deliver. */
2292 if (sig != GDB_SIGNAL_0)
2293 {
fd7dcb94 2294 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2295 gdb_signal_to_name (sig),
2296 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2297 }
2298
2299 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2300
2301 if (target_can_async_p ())
9516f85a
AB
2302 {
2303 target_async (1);
2304 /* Tell the event loop we have an event to process. */
2305 mark_async_event_handler (infrun_async_inferior_event_token);
2306 }
372316f1
PA
2307 return;
2308 }
2309
2310 tp->stepped_breakpoint = 0;
2311
6b403daa
PA
2312 /* Depends on stepped_breakpoint. */
2313 step = currently_stepping (tp);
2314
74609e71
YQ
2315 if (current_inferior ()->waiting_for_vfork_done)
2316 {
48f9886d
PA
2317 /* Don't try to single-step a vfork parent that is waiting for
2318 the child to get out of the shared memory region (by exec'ing
2319 or exiting). This is particularly important on software
2320 single-step archs, as the child process would trip on the
2321 software single step breakpoint inserted for the parent
2322 process. Since the parent will not actually execute any
2323 instruction until the child is out of the shared region (such
2324 are vfork's semantics), it is safe to simply continue it.
2325 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2326 the parent, and tell it to `keep_going', which automatically
2327 re-sets it stepping. */
edbcda09 2328 infrun_log_debug ("resume : clear step");
a09dd441 2329 step = 0;
74609e71
YQ
2330 }
2331
7ca9b62a
TBA
2332 CORE_ADDR pc = regcache_read_pc (regcache);
2333
edbcda09
SM
2334 infrun_log_debug ("step=%d, signal=%s, trap_expected=%d, "
2335 "current thread [%s] at %s",
2336 step, gdb_signal_to_symbol_string (sig),
2337 tp->control.trap_expected,
2338 target_pid_to_str (inferior_ptid).c_str (),
2339 paddress (gdbarch, pc));
c906108c 2340
c2c6d25f
JM
2341 /* Normally, by the time we reach `resume', the breakpoints are either
2342 removed or inserted, as appropriate. The exception is if we're sitting
2343 at a permanent breakpoint; we need to step over it, but permanent
2344 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2345 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2346 {
af48d08f
PA
2347 if (sig != GDB_SIGNAL_0)
2348 {
2349 /* We have a signal to pass to the inferior. The resume
2350 may, or may not take us to the signal handler. If this
2351 is a step, we'll need to stop in the signal handler, if
2352 there's one, (if the target supports stepping into
2353 handlers), or in the next mainline instruction, if
2354 there's no handler. If this is a continue, we need to be
2355 sure to run the handler with all breakpoints inserted.
2356 In all cases, set a breakpoint at the current address
2357 (where the handler returns to), and once that breakpoint
2358 is hit, resume skipping the permanent breakpoint. If
2359 that breakpoint isn't hit, then we've stepped into the
2360 signal handler (or hit some other event). We'll delete
2361 the step-resume breakpoint then. */
2362
edbcda09
SM
2363 infrun_log_debug ("resume: skipping permanent breakpoint, "
2364 "deliver signal first");
af48d08f
PA
2365
2366 clear_step_over_info ();
2367 tp->control.trap_expected = 0;
2368
2369 if (tp->control.step_resume_breakpoint == NULL)
2370 {
2371 /* Set a "high-priority" step-resume, as we don't want
2372 user breakpoints at PC to trigger (again) when this
2373 hits. */
2374 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2375 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2376
2377 tp->step_after_step_resume_breakpoint = step;
2378 }
2379
2380 insert_breakpoints ();
2381 }
2382 else
2383 {
2384 /* There's no signal to pass, we can go ahead and skip the
2385 permanent breakpoint manually. */
edbcda09 2386 infrun_log_debug ("skipping permanent breakpoint");
af48d08f
PA
2387 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2388 /* Update pc to reflect the new address from which we will
2389 execute instructions. */
2390 pc = regcache_read_pc (regcache);
2391
2392 if (step)
2393 {
2394 /* We've already advanced the PC, so the stepping part
2395 is done. Now we need to arrange for a trap to be
2396 reported to handle_inferior_event. Set a breakpoint
2397 at the current PC, and run to it. Don't update
2398 prev_pc, because if we end in
44a1ee51
PA
2399 switch_back_to_stepped_thread, we want the "expected
2400 thread advanced also" branch to be taken. IOW, we
2401 don't want this thread to step further from PC
af48d08f 2402 (overstep). */
1ac806b8 2403 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2404 insert_single_step_breakpoint (gdbarch, aspace, pc);
2405 insert_breakpoints ();
2406
fbea99ea 2407 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2408 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2409 tp->resumed = true;
af48d08f
PA
2410 return;
2411 }
2412 }
6d350bb5 2413 }
c2c6d25f 2414
c1e36e3e
PA
2415 /* If we have a breakpoint to step over, make sure to do a single
2416 step only. Same if we have software watchpoints. */
2417 if (tp->control.trap_expected || bpstat_should_step ())
2418 tp->control.may_range_step = 0;
2419
7da6a5b9
LM
2420 /* If displaced stepping is enabled, step over breakpoints by executing a
2421 copy of the instruction at a different address.
237fc4c9
PA
2422
2423 We can't use displaced stepping when we have a signal to deliver;
2424 the comments for displaced_step_prepare explain why. The
2425 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2426 signals' explain what we do instead.
2427
2428 We can't use displaced stepping when we are waiting for vfork_done
2429 event, displaced stepping breaks the vfork child similarly as single
2430 step software breakpoint. */
3fc8eb30
PA
2431 if (tp->control.trap_expected
2432 && use_displaced_stepping (tp)
cb71640d 2433 && !step_over_info_valid_p ()
a493e3e2 2434 && sig == GDB_SIGNAL_0
74609e71 2435 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2436 {
9844051a
SM
2437 displaced_step_prepare_status prepare_status
2438 = displaced_step_prepare (tp);
fc1cf338 2439
9844051a 2440 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
d56b7306 2441 {
edbcda09 2442 infrun_log_debug ("Got placed in step-over queue");
4d9d9d04
PA
2443
2444 tp->control.trap_expected = 0;
d56b7306
VP
2445 return;
2446 }
9844051a 2447 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
3fc8eb30
PA
2448 {
2449 /* Fallback to stepping over the breakpoint in-line. */
2450
2451 if (target_is_non_stop_p ())
2452 stop_all_threads ();
2453
a01bda52 2454 set_step_over_info (regcache->aspace (),
21edc42f 2455 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2456
2457 step = maybe_software_singlestep (gdbarch, pc);
2458
2459 insert_breakpoints ();
2460 }
9844051a 2461 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
3fc8eb30 2462 {
9844051a 2463 step = gdbarch_displaced_step_hw_singlestep (gdbarch, NULL);
3fc8eb30 2464 }
9844051a
SM
2465 else
2466 gdb_assert_not_reached ("invalid displaced_step_prepare_status value");
237fc4c9
PA
2467 }
2468
2facfe5c 2469 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2470 else if (step)
2facfe5c 2471 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2472
30852783
UW
2473 /* Currently, our software single-step implementation leads to different
2474 results than hardware single-stepping in one situation: when stepping
2475 into delivering a signal which has an associated signal handler,
2476 hardware single-step will stop at the first instruction of the handler,
2477 while software single-step will simply skip execution of the handler.
2478
2479 For now, this difference in behavior is accepted since there is no
2480 easy way to actually implement single-stepping into a signal handler
2481 without kernel support.
2482
2483 However, there is one scenario where this difference leads to follow-on
2484 problems: if we're stepping off a breakpoint by removing all breakpoints
2485 and then single-stepping. In this case, the software single-step
2486 behavior means that even if there is a *breakpoint* in the signal
2487 handler, GDB still would not stop.
2488
2489 Fortunately, we can at least fix this particular issue. We detect
2490 here the case where we are about to deliver a signal while software
2491 single-stepping with breakpoints removed. In this situation, we
2492 revert the decisions to remove all breakpoints and insert single-
2493 step breakpoints, and instead we install a step-resume breakpoint
2494 at the current address, deliver the signal without stepping, and
2495 once we arrive back at the step-resume breakpoint, actually step
2496 over the breakpoint we originally wanted to step over. */
34b7e8a6 2497 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2498 && sig != GDB_SIGNAL_0
2499 && step_over_info_valid_p ())
30852783
UW
2500 {
2501 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2502 immediately after a handler returns, might already have
30852783
UW
2503 a step-resume breakpoint set on the earlier handler. We cannot
2504 set another step-resume breakpoint; just continue on until the
2505 original breakpoint is hit. */
2506 if (tp->control.step_resume_breakpoint == NULL)
2507 {
2c03e5be 2508 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2509 tp->step_after_step_resume_breakpoint = 1;
2510 }
2511
34b7e8a6 2512 delete_single_step_breakpoints (tp);
30852783 2513
31e77af2 2514 clear_step_over_info ();
30852783 2515 tp->control.trap_expected = 0;
31e77af2
PA
2516
2517 insert_breakpoints ();
30852783
UW
2518 }
2519
b0f16a3e
SM
2520 /* If STEP is set, it's a request to use hardware stepping
2521 facilities. But in that case, we should never
2522 use singlestep breakpoint. */
34b7e8a6 2523 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2524
fbea99ea 2525 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2526 if (tp->control.trap_expected)
b0f16a3e
SM
2527 {
2528 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2529 hit, either by single-stepping the thread with the breakpoint
2530 removed, or by displaced stepping, with the breakpoint inserted.
2531 In the former case, we need to single-step only this thread,
2532 and keep others stopped, as they can miss this breakpoint if
2533 allowed to run. That's not really a problem for displaced
2534 stepping, but, we still keep other threads stopped, in case
2535 another thread is also stopped for a breakpoint waiting for
2536 its turn in the displaced stepping queue. */
b0f16a3e
SM
2537 resume_ptid = inferior_ptid;
2538 }
fbea99ea
PA
2539 else
2540 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2541
7f5ef605
PA
2542 if (execution_direction != EXEC_REVERSE
2543 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2544 {
372316f1
PA
2545 /* There are two cases where we currently need to step a
2546 breakpoint instruction when we have a signal to deliver:
2547
2548 - See handle_signal_stop where we handle random signals that
2549 could take out us out of the stepping range. Normally, in
2550 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2551 signal handler with a breakpoint at PC, but there are cases
2552 where we should _always_ single-step, even if we have a
2553 step-resume breakpoint, like when a software watchpoint is
2554 set. Assuming single-stepping and delivering a signal at the
2555 same time would takes us to the signal handler, then we could
2556 have removed the breakpoint at PC to step over it. However,
2557 some hardware step targets (like e.g., Mac OS) can't step
2558 into signal handlers, and for those, we need to leave the
2559 breakpoint at PC inserted, as otherwise if the handler
2560 recurses and executes PC again, it'll miss the breakpoint.
2561 So we leave the breakpoint inserted anyway, but we need to
2562 record that we tried to step a breakpoint instruction, so
372316f1
PA
2563 that adjust_pc_after_break doesn't end up confused.
2564
2565 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2566 in one thread after another thread that was stepping had been
2567 momentarily paused for a step-over. When we re-resume the
2568 stepping thread, it may be resumed from that address with a
2569 breakpoint that hasn't trapped yet. Seen with
2570 gdb.threads/non-stop-fair-events.exp, on targets that don't
2571 do displaced stepping. */
2572
edbcda09
SM
2573 infrun_log_debug ("resume: [%s] stepped breakpoint",
2574 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2575
2576 tp->stepped_breakpoint = 1;
2577
b0f16a3e
SM
2578 /* Most targets can step a breakpoint instruction, thus
2579 executing it normally. But if this one cannot, just
2580 continue and we will hit it anyway. */
7f5ef605 2581 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2582 step = 0;
2583 }
ef5cf84e 2584
b0f16a3e 2585 if (debug_displaced
cb71640d 2586 && tp->control.trap_expected
3fc8eb30 2587 && use_displaced_stepping (tp)
cb71640d 2588 && !step_over_info_valid_p ())
b0f16a3e 2589 {
00431a78 2590 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2591 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2592 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2593 gdb_byte buf[4];
2594
2595 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2596 paddress (resume_gdbarch, actual_pc));
2597 read_memory (actual_pc, buf, sizeof (buf));
2598 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2599 }
237fc4c9 2600
b0f16a3e
SM
2601 if (tp->control.may_range_step)
2602 {
2603 /* If we're resuming a thread with the PC out of the step
2604 range, then we're doing some nested/finer run control
2605 operation, like stepping the thread out of the dynamic
2606 linker or the displaced stepping scratch pad. We
2607 shouldn't have allowed a range step then. */
2608 gdb_assert (pc_in_thread_step_range (pc, tp));
2609 }
c1e36e3e 2610
64ce06e4 2611 do_target_resume (resume_ptid, step, sig);
719546c4 2612 tp->resumed = true;
c906108c 2613}
71d378ae
PA
2614
2615/* Resume the inferior. SIG is the signal to give the inferior
2616 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2617 rolls back state on error. */
2618
aff4e175 2619static void
71d378ae
PA
2620resume (gdb_signal sig)
2621{
a70b8144 2622 try
71d378ae
PA
2623 {
2624 resume_1 (sig);
2625 }
230d2906 2626 catch (const gdb_exception &ex)
71d378ae
PA
2627 {
2628 /* If resuming is being aborted for any reason, delete any
2629 single-step breakpoint resume_1 may have created, to avoid
2630 confusing the following resumption, and to avoid leaving
2631 single-step breakpoints perturbing other threads, in case
2632 we're running in non-stop mode. */
2633 if (inferior_ptid != null_ptid)
2634 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2635 throw;
71d378ae 2636 }
71d378ae
PA
2637}
2638
c906108c 2639\f
237fc4c9 2640/* Proceeding. */
c906108c 2641
4c2f2a79
PA
2642/* See infrun.h. */
2643
2644/* Counter that tracks number of user visible stops. This can be used
2645 to tell whether a command has proceeded the inferior past the
2646 current location. This allows e.g., inferior function calls in
2647 breakpoint commands to not interrupt the command list. When the
2648 call finishes successfully, the inferior is standing at the same
2649 breakpoint as if nothing happened (and so we don't call
2650 normal_stop). */
2651static ULONGEST current_stop_id;
2652
2653/* See infrun.h. */
2654
2655ULONGEST
2656get_stop_id (void)
2657{
2658 return current_stop_id;
2659}
2660
2661/* Called when we report a user visible stop. */
2662
2663static void
2664new_stop_id (void)
2665{
2666 current_stop_id++;
2667}
2668
c906108c
SS
2669/* Clear out all variables saying what to do when inferior is continued.
2670 First do this, then set the ones you want, then call `proceed'. */
2671
a7212384
UW
2672static void
2673clear_proceed_status_thread (struct thread_info *tp)
c906108c 2674{
edbcda09 2675 infrun_log_debug ("%s", target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2676
372316f1
PA
2677 /* If we're starting a new sequence, then the previous finished
2678 single-step is no longer relevant. */
2679 if (tp->suspend.waitstatus_pending_p)
2680 {
2681 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2682 {
edbcda09
SM
2683 infrun_log_debug ("pending event of %s was a finished step. "
2684 "Discarding.",
2685 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2686
2687 tp->suspend.waitstatus_pending_p = 0;
2688 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2689 }
edbcda09 2690 else
372316f1 2691 {
edbcda09
SM
2692 infrun_log_debug
2693 ("thread %s has pending wait status %s (currently_stepping=%d).",
2694 target_pid_to_str (tp->ptid).c_str (),
2695 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2696 currently_stepping (tp));
372316f1
PA
2697 }
2698 }
2699
70509625
PA
2700 /* If this signal should not be seen by program, give it zero.
2701 Used for debugging signals. */
2702 if (!signal_pass_state (tp->suspend.stop_signal))
2703 tp->suspend.stop_signal = GDB_SIGNAL_0;
2704
46e3ed7f 2705 delete tp->thread_fsm;
243a9253
PA
2706 tp->thread_fsm = NULL;
2707
16c381f0
JK
2708 tp->control.trap_expected = 0;
2709 tp->control.step_range_start = 0;
2710 tp->control.step_range_end = 0;
c1e36e3e 2711 tp->control.may_range_step = 0;
16c381f0
JK
2712 tp->control.step_frame_id = null_frame_id;
2713 tp->control.step_stack_frame_id = null_frame_id;
2714 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2715 tp->control.step_start_function = NULL;
a7212384 2716 tp->stop_requested = 0;
4e1c45ea 2717
16c381f0 2718 tp->control.stop_step = 0;
32400beb 2719
16c381f0 2720 tp->control.proceed_to_finish = 0;
414c69f7 2721
856e7dd6 2722 tp->control.stepping_command = 0;
17b2616c 2723
a7212384 2724 /* Discard any remaining commands or status from previous stop. */
16c381f0 2725 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2726}
32400beb 2727
a7212384 2728void
70509625 2729clear_proceed_status (int step)
a7212384 2730{
f2665db5
MM
2731 /* With scheduler-locking replay, stop replaying other threads if we're
2732 not replaying the user-visible resume ptid.
2733
2734 This is a convenience feature to not require the user to explicitly
2735 stop replaying the other threads. We're assuming that the user's
2736 intent is to resume tracing the recorded process. */
2737 if (!non_stop && scheduler_mode == schedlock_replay
2738 && target_record_is_replaying (minus_one_ptid)
2739 && !target_record_will_replay (user_visible_resume_ptid (step),
2740 execution_direction))
2741 target_record_stop_replaying ();
2742
08036331 2743 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2744 {
08036331 2745 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2746 process_stratum_target *resume_target
2747 = user_visible_resume_target (resume_ptid);
70509625
PA
2748
2749 /* In all-stop mode, delete the per-thread status of all threads
2750 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2751 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2752 clear_proceed_status_thread (tp);
6c95b8df
PA
2753 }
2754
d7e15655 2755 if (inferior_ptid != null_ptid)
a7212384
UW
2756 {
2757 struct inferior *inferior;
2758
2759 if (non_stop)
2760 {
6c95b8df
PA
2761 /* If in non-stop mode, only delete the per-thread status of
2762 the current thread. */
a7212384
UW
2763 clear_proceed_status_thread (inferior_thread ());
2764 }
6c95b8df 2765
d6b48e9c 2766 inferior = current_inferior ();
16c381f0 2767 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2768 }
2769
76727919 2770 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2771}
2772
99619bea
PA
2773/* Returns true if TP is still stopped at a breakpoint that needs
2774 stepping-over in order to make progress. If the breakpoint is gone
2775 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2776
2777static int
6c4cfb24 2778thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2779{
2780 if (tp->stepping_over_breakpoint)
2781 {
00431a78 2782 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2783
a01bda52 2784 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2785 regcache_read_pc (regcache))
2786 == ordinary_breakpoint_here)
99619bea
PA
2787 return 1;
2788
2789 tp->stepping_over_breakpoint = 0;
2790 }
2791
2792 return 0;
2793}
2794
6c4cfb24
PA
2795/* Check whether thread TP still needs to start a step-over in order
2796 to make progress when resumed. Returns an bitwise or of enum
2797 step_over_what bits, indicating what needs to be stepped over. */
2798
8d297bbf 2799static step_over_what
6c4cfb24
PA
2800thread_still_needs_step_over (struct thread_info *tp)
2801{
8d297bbf 2802 step_over_what what = 0;
6c4cfb24
PA
2803
2804 if (thread_still_needs_step_over_bp (tp))
2805 what |= STEP_OVER_BREAKPOINT;
2806
2807 if (tp->stepping_over_watchpoint
2808 && !target_have_steppable_watchpoint)
2809 what |= STEP_OVER_WATCHPOINT;
2810
2811 return what;
2812}
2813
483805cf
PA
2814/* Returns true if scheduler locking applies. STEP indicates whether
2815 we're about to do a step/next-like command to a thread. */
2816
2817static int
856e7dd6 2818schedlock_applies (struct thread_info *tp)
483805cf
PA
2819{
2820 return (scheduler_mode == schedlock_on
2821 || (scheduler_mode == schedlock_step
f2665db5
MM
2822 && tp->control.stepping_command)
2823 || (scheduler_mode == schedlock_replay
2824 && target_record_will_replay (minus_one_ptid,
2825 execution_direction)));
483805cf
PA
2826}
2827
5b6d1e4f
PA
2828/* Calls target_commit_resume on all targets. */
2829
2830static void
2831commit_resume_all_targets ()
2832{
2833 scoped_restore_current_thread restore_thread;
2834
2835 /* Map between process_target and a representative inferior. This
2836 is to avoid committing a resume in the same target more than
2837 once. Resumptions must be idempotent, so this is an
2838 optimization. */
2839 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2840
2841 for (inferior *inf : all_non_exited_inferiors ())
2842 if (inf->has_execution ())
2843 conn_inf[inf->process_target ()] = inf;
2844
2845 for (const auto &ci : conn_inf)
2846 {
2847 inferior *inf = ci.second;
2848 switch_to_inferior_no_thread (inf);
2849 target_commit_resume ();
2850 }
2851}
2852
2f4fcf00
PA
2853/* Check that all the targets we're about to resume are in non-stop
2854 mode. Ideally, we'd only care whether all targets support
2855 target-async, but we're not there yet. E.g., stop_all_threads
2856 doesn't know how to handle all-stop targets. Also, the remote
2857 protocol in all-stop mode is synchronous, irrespective of
2858 target-async, which means that things like a breakpoint re-set
2859 triggered by one target would try to read memory from all targets
2860 and fail. */
2861
2862static void
2863check_multi_target_resumption (process_stratum_target *resume_target)
2864{
2865 if (!non_stop && resume_target == nullptr)
2866 {
2867 scoped_restore_current_thread restore_thread;
2868
2869 /* This is used to track whether we're resuming more than one
2870 target. */
2871 process_stratum_target *first_connection = nullptr;
2872
2873 /* The first inferior we see with a target that does not work in
2874 always-non-stop mode. */
2875 inferior *first_not_non_stop = nullptr;
2876
2877 for (inferior *inf : all_non_exited_inferiors (resume_target))
2878 {
2879 switch_to_inferior_no_thread (inf);
2880
2881 if (!target_has_execution)
2882 continue;
2883
2884 process_stratum_target *proc_target
2885 = current_inferior ()->process_target();
2886
2887 if (!target_is_non_stop_p ())
2888 first_not_non_stop = inf;
2889
2890 if (first_connection == nullptr)
2891 first_connection = proc_target;
2892 else if (first_connection != proc_target
2893 && first_not_non_stop != nullptr)
2894 {
2895 switch_to_inferior_no_thread (first_not_non_stop);
2896
2897 proc_target = current_inferior ()->process_target();
2898
2899 error (_("Connection %d (%s) does not support "
2900 "multi-target resumption."),
2901 proc_target->connection_number,
2902 make_target_connection_string (proc_target).c_str ());
2903 }
2904 }
2905 }
2906}
2907
c906108c
SS
2908/* Basic routine for continuing the program in various fashions.
2909
2910 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2911 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2912 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2913
2914 You should call clear_proceed_status before calling proceed. */
2915
2916void
64ce06e4 2917proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2918{
e58b0e63
PA
2919 struct regcache *regcache;
2920 struct gdbarch *gdbarch;
e58b0e63 2921 CORE_ADDR pc;
4d9d9d04
PA
2922 struct execution_control_state ecss;
2923 struct execution_control_state *ecs = &ecss;
4d9d9d04 2924 int started;
c906108c 2925
e58b0e63
PA
2926 /* If we're stopped at a fork/vfork, follow the branch set by the
2927 "set follow-fork-mode" command; otherwise, we'll just proceed
2928 resuming the current thread. */
2929 if (!follow_fork ())
2930 {
2931 /* The target for some reason decided not to resume. */
2932 normal_stop ();
f148b27e 2933 if (target_can_async_p ())
b1a35af2 2934 inferior_event_handler (INF_EXEC_COMPLETE);
e58b0e63
PA
2935 return;
2936 }
2937
842951eb
PA
2938 /* We'll update this if & when we switch to a new thread. */
2939 previous_inferior_ptid = inferior_ptid;
2940
e58b0e63 2941 regcache = get_current_regcache ();
ac7936df 2942 gdbarch = regcache->arch ();
8b86c959
YQ
2943 const address_space *aspace = regcache->aspace ();
2944
fc75c28b
TBA
2945 pc = regcache_read_pc_protected (regcache);
2946
08036331 2947 thread_info *cur_thr = inferior_thread ();
e58b0e63 2948
99619bea 2949 /* Fill in with reasonable starting values. */
08036331 2950 init_thread_stepping_state (cur_thr);
99619bea 2951
08036331 2952 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2953
5b6d1e4f
PA
2954 ptid_t resume_ptid
2955 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2956 process_stratum_target *resume_target
2957 = user_visible_resume_target (resume_ptid);
2958
2f4fcf00
PA
2959 check_multi_target_resumption (resume_target);
2960
2acceee2 2961 if (addr == (CORE_ADDR) -1)
c906108c 2962 {
08036331 2963 if (pc == cur_thr->suspend.stop_pc
af48d08f 2964 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2965 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2966 /* There is a breakpoint at the address we will resume at,
2967 step one instruction before inserting breakpoints so that
2968 we do not stop right away (and report a second hit at this
b2175913
MS
2969 breakpoint).
2970
2971 Note, we don't do this in reverse, because we won't
2972 actually be executing the breakpoint insn anyway.
2973 We'll be (un-)executing the previous instruction. */
08036331 2974 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2975 else if (gdbarch_single_step_through_delay_p (gdbarch)
2976 && gdbarch_single_step_through_delay (gdbarch,
2977 get_current_frame ()))
3352ef37
AC
2978 /* We stepped onto an instruction that needs to be stepped
2979 again before re-inserting the breakpoint, do so. */
08036331 2980 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2981 }
2982 else
2983 {
515630c5 2984 regcache_write_pc (regcache, addr);
c906108c
SS
2985 }
2986
70509625 2987 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2988 cur_thr->suspend.stop_signal = siggnal;
70509625 2989
4d9d9d04
PA
2990 /* If an exception is thrown from this point on, make sure to
2991 propagate GDB's knowledge of the executing state to the
2992 frontend/user running state. */
5b6d1e4f 2993 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
2994
2995 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2996 threads (e.g., we might need to set threads stepping over
2997 breakpoints first), from the user/frontend's point of view, all
2998 threads in RESUME_PTID are now running. Unless we're calling an
2999 inferior function, as in that case we pretend the inferior
3000 doesn't run at all. */
08036331 3001 if (!cur_thr->control.in_infcall)
719546c4 3002 set_running (resume_target, resume_ptid, true);
17b2616c 3003
edbcda09
SM
3004 infrun_log_debug ("addr=%s, signal=%s", paddress (gdbarch, addr),
3005 gdb_signal_to_symbol_string (siggnal));
527159b7 3006
4d9d9d04
PA
3007 annotate_starting ();
3008
3009 /* Make sure that output from GDB appears before output from the
3010 inferior. */
3011 gdb_flush (gdb_stdout);
3012
d930703d
PA
3013 /* Since we've marked the inferior running, give it the terminal. A
3014 QUIT/Ctrl-C from here on is forwarded to the target (which can
3015 still detect attempts to unblock a stuck connection with repeated
3016 Ctrl-C from within target_pass_ctrlc). */
3017 target_terminal::inferior ();
3018
4d9d9d04
PA
3019 /* In a multi-threaded task we may select another thread and
3020 then continue or step.
3021
3022 But if a thread that we're resuming had stopped at a breakpoint,
3023 it will immediately cause another breakpoint stop without any
3024 execution (i.e. it will report a breakpoint hit incorrectly). So
3025 we must step over it first.
3026
3027 Look for threads other than the current (TP) that reported a
3028 breakpoint hit and haven't been resumed yet since. */
3029
3030 /* If scheduler locking applies, we can avoid iterating over all
3031 threads. */
08036331 3032 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3033 {
5b6d1e4f
PA
3034 for (thread_info *tp : all_non_exited_threads (resume_target,
3035 resume_ptid))
08036331 3036 {
f3f8ece4
PA
3037 switch_to_thread_no_regs (tp);
3038
4d9d9d04
PA
3039 /* Ignore the current thread here. It's handled
3040 afterwards. */
08036331 3041 if (tp == cur_thr)
4d9d9d04 3042 continue;
c906108c 3043
4d9d9d04
PA
3044 if (!thread_still_needs_step_over (tp))
3045 continue;
3046
3047 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3048
edbcda09
SM
3049 infrun_log_debug ("need to step-over [%s] first",
3050 target_pid_to_str (tp->ptid).c_str ());
99619bea 3051
7bd43605 3052 global_thread_step_over_chain_enqueue (tp);
2adfaa28 3053 }
f3f8ece4
PA
3054
3055 switch_to_thread (cur_thr);
30852783
UW
3056 }
3057
4d9d9d04
PA
3058 /* Enqueue the current thread last, so that we move all other
3059 threads over their breakpoints first. */
08036331 3060 if (cur_thr->stepping_over_breakpoint)
7bd43605 3061 global_thread_step_over_chain_enqueue (cur_thr);
30852783 3062
4d9d9d04
PA
3063 /* If the thread isn't started, we'll still need to set its prev_pc,
3064 so that switch_back_to_stepped_thread knows the thread hasn't
3065 advanced. Must do this before resuming any thread, as in
3066 all-stop/remote, once we resume we can't send any other packet
3067 until the target stops again. */
fc75c28b 3068 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3069
a9bc57b9
TT
3070 {
3071 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3072
a9bc57b9 3073 started = start_step_over ();
c906108c 3074
a9bc57b9
TT
3075 if (step_over_info_valid_p ())
3076 {
3077 /* Either this thread started a new in-line step over, or some
3078 other thread was already doing one. In either case, don't
3079 resume anything else until the step-over is finished. */
3080 }
3081 else if (started && !target_is_non_stop_p ())
3082 {
3083 /* A new displaced stepping sequence was started. In all-stop,
3084 we can't talk to the target anymore until it next stops. */
3085 }
3086 else if (!non_stop && target_is_non_stop_p ())
3087 {
3088 /* In all-stop, but the target is always in non-stop mode.
3089 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3090 for (thread_info *tp : all_non_exited_threads (resume_target,
3091 resume_ptid))
3092 {
3093 switch_to_thread_no_regs (tp);
3094
f9fac3c8
SM
3095 if (!tp->inf->has_execution ())
3096 {
edbcda09
SM
3097 infrun_log_debug ("[%s] target has no execution",
3098 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3099 continue;
3100 }
f3f8ece4 3101
f9fac3c8
SM
3102 if (tp->resumed)
3103 {
edbcda09
SM
3104 infrun_log_debug ("[%s] resumed",
3105 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3106 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3107 continue;
3108 }
fbea99ea 3109
f9fac3c8
SM
3110 if (thread_is_in_step_over_chain (tp))
3111 {
edbcda09
SM
3112 infrun_log_debug ("[%s] needs step-over",
3113 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3114 continue;
3115 }
fbea99ea 3116
edbcda09
SM
3117 infrun_log_debug ("resuming %s",
3118 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3119
f9fac3c8
SM
3120 reset_ecs (ecs, tp);
3121 switch_to_thread (tp);
3122 keep_going_pass_signal (ecs);
3123 if (!ecs->wait_some_more)
3124 error (_("Command aborted."));
3125 }
a9bc57b9 3126 }
08036331 3127 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3128 {
3129 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3130 reset_ecs (ecs, cur_thr);
3131 switch_to_thread (cur_thr);
a9bc57b9
TT
3132 keep_going_pass_signal (ecs);
3133 if (!ecs->wait_some_more)
3134 error (_("Command aborted."));
3135 }
3136 }
c906108c 3137
5b6d1e4f 3138 commit_resume_all_targets ();
85ad3aaf 3139
731f534f 3140 finish_state.release ();
c906108c 3141
873657b9
PA
3142 /* If we've switched threads above, switch back to the previously
3143 current thread. We don't want the user to see a different
3144 selected thread. */
3145 switch_to_thread (cur_thr);
3146
0b333c5e
PA
3147 /* Tell the event loop to wait for it to stop. If the target
3148 supports asynchronous execution, it'll do this from within
3149 target_resume. */
362646f5 3150 if (!target_can_async_p ())
0b333c5e 3151 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3152}
c906108c
SS
3153\f
3154
3155/* Start remote-debugging of a machine over a serial link. */
96baa820 3156
c906108c 3157void
8621d6a9 3158start_remote (int from_tty)
c906108c 3159{
5b6d1e4f
PA
3160 inferior *inf = current_inferior ();
3161 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3162
1777feb0 3163 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3164 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3165 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3166 nothing is returned (instead of just blocking). Because of this,
3167 targets expecting an immediate response need to, internally, set
3168 things up so that the target_wait() is forced to eventually
1777feb0 3169 timeout. */
6426a772
JM
3170 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3171 differentiate to its caller what the state of the target is after
3172 the initial open has been performed. Here we're assuming that
3173 the target has stopped. It should be possible to eventually have
3174 target_open() return to the caller an indication that the target
3175 is currently running and GDB state should be set to the same as
1777feb0 3176 for an async run. */
5b6d1e4f 3177 wait_for_inferior (inf);
8621d6a9
DJ
3178
3179 /* Now that the inferior has stopped, do any bookkeeping like
3180 loading shared libraries. We want to do this before normal_stop,
3181 so that the displayed frame is up to date. */
8b88a78e 3182 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3183
6426a772 3184 normal_stop ();
c906108c
SS
3185}
3186
3187/* Initialize static vars when a new inferior begins. */
3188
3189void
96baa820 3190init_wait_for_inferior (void)
c906108c
SS
3191{
3192 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3193
c906108c
SS
3194 breakpoint_init_inferior (inf_starting);
3195
70509625 3196 clear_proceed_status (0);
9f976b41 3197
ab1ddbcf 3198 nullify_last_target_wait_ptid ();
237fc4c9 3199
842951eb 3200 previous_inferior_ptid = inferior_ptid;
c906108c 3201}
237fc4c9 3202
c906108c 3203\f
488f131b 3204
ec9499be 3205static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3206
568d6575
UW
3207static void handle_step_into_function (struct gdbarch *gdbarch,
3208 struct execution_control_state *ecs);
3209static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3210 struct execution_control_state *ecs);
4f5d7f63 3211static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3212static void check_exception_resume (struct execution_control_state *,
28106bc2 3213 struct frame_info *);
611c83ae 3214
bdc36728 3215static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3216static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3217static void keep_going (struct execution_control_state *ecs);
94c57d6a 3218static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3219static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3220
252fbfc8
PA
3221/* This function is attached as a "thread_stop_requested" observer.
3222 Cleanup local state that assumed the PTID was to be resumed, and
3223 report the stop to the frontend. */
3224
2c0b251b 3225static void
252fbfc8
PA
3226infrun_thread_stop_requested (ptid_t ptid)
3227{
5b6d1e4f
PA
3228 process_stratum_target *curr_target = current_inferior ()->process_target ();
3229
c65d6b55
PA
3230 /* PTID was requested to stop. If the thread was already stopped,
3231 but the user/frontend doesn't know about that yet (e.g., the
3232 thread had been temporarily paused for some step-over), set up
3233 for reporting the stop now. */
5b6d1e4f 3234 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3235 {
3236 if (tp->state != THREAD_RUNNING)
3237 continue;
3238 if (tp->executing)
3239 continue;
c65d6b55 3240
08036331
PA
3241 /* Remove matching threads from the step-over queue, so
3242 start_step_over doesn't try to resume them
3243 automatically. */
3244 if (thread_is_in_step_over_chain (tp))
7bd43605 3245 global_thread_step_over_chain_remove (tp);
c65d6b55 3246
08036331
PA
3247 /* If the thread is stopped, but the user/frontend doesn't
3248 know about that yet, queue a pending event, as if the
3249 thread had just stopped now. Unless the thread already had
3250 a pending event. */
3251 if (!tp->suspend.waitstatus_pending_p)
3252 {
3253 tp->suspend.waitstatus_pending_p = 1;
3254 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3255 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3256 }
c65d6b55 3257
08036331
PA
3258 /* Clear the inline-frame state, since we're re-processing the
3259 stop. */
5b6d1e4f 3260 clear_inline_frame_state (tp);
c65d6b55 3261
08036331
PA
3262 /* If this thread was paused because some other thread was
3263 doing an inline-step over, let that finish first. Once
3264 that happens, we'll restart all threads and consume pending
3265 stop events then. */
3266 if (step_over_info_valid_p ())
3267 continue;
3268
3269 /* Otherwise we can process the (new) pending event now. Set
3270 it so this pending event is considered by
3271 do_target_wait. */
719546c4 3272 tp->resumed = true;
08036331 3273 }
252fbfc8
PA
3274}
3275
a07daef3
PA
3276static void
3277infrun_thread_thread_exit (struct thread_info *tp, int silent)
3278{
5b6d1e4f
PA
3279 if (target_last_proc_target == tp->inf->process_target ()
3280 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3281 nullify_last_target_wait_ptid ();
3282}
3283
0cbcdb96
PA
3284/* Delete the step resume, single-step and longjmp/exception resume
3285 breakpoints of TP. */
4e1c45ea 3286
0cbcdb96
PA
3287static void
3288delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3289{
0cbcdb96
PA
3290 delete_step_resume_breakpoint (tp);
3291 delete_exception_resume_breakpoint (tp);
34b7e8a6 3292 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3293}
3294
0cbcdb96
PA
3295/* If the target still has execution, call FUNC for each thread that
3296 just stopped. In all-stop, that's all the non-exited threads; in
3297 non-stop, that's the current thread, only. */
3298
3299typedef void (*for_each_just_stopped_thread_callback_func)
3300 (struct thread_info *tp);
4e1c45ea
PA
3301
3302static void
0cbcdb96 3303for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3304{
d7e15655 3305 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3306 return;
3307
fbea99ea 3308 if (target_is_non_stop_p ())
4e1c45ea 3309 {
0cbcdb96
PA
3310 /* If in non-stop mode, only the current thread stopped. */
3311 func (inferior_thread ());
4e1c45ea
PA
3312 }
3313 else
0cbcdb96 3314 {
0cbcdb96 3315 /* In all-stop mode, all threads have stopped. */
08036331
PA
3316 for (thread_info *tp : all_non_exited_threads ())
3317 func (tp);
0cbcdb96
PA
3318 }
3319}
3320
3321/* Delete the step resume and longjmp/exception resume breakpoints of
3322 the threads that just stopped. */
3323
3324static void
3325delete_just_stopped_threads_infrun_breakpoints (void)
3326{
3327 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3328}
3329
3330/* Delete the single-step breakpoints of the threads that just
3331 stopped. */
7c16b83e 3332
34b7e8a6
PA
3333static void
3334delete_just_stopped_threads_single_step_breakpoints (void)
3335{
3336 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3337}
3338
221e1a37 3339/* See infrun.h. */
223698f8 3340
221e1a37 3341void
223698f8
DE
3342print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3343 const struct target_waitstatus *ws)
3344{
23fdd69e 3345 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3346 string_file stb;
223698f8
DE
3347
3348 /* The text is split over several lines because it was getting too long.
3349 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3350 output as a unit; we want only one timestamp printed if debug_timestamp
3351 is set. */
3352
d7e74731 3353 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3354 waiton_ptid.pid (),
e38504b3 3355 waiton_ptid.lwp (),
cc6bcb54 3356 waiton_ptid.tid ());
e99b03dc 3357 if (waiton_ptid.pid () != -1)
a068643d 3358 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3359 stb.printf (", status) =\n");
3360 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3361 result_ptid.pid (),
e38504b3 3362 result_ptid.lwp (),
cc6bcb54 3363 result_ptid.tid (),
a068643d 3364 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3365 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3366
3367 /* This uses %s in part to handle %'s in the text, but also to avoid
3368 a gcc error: the format attribute requires a string literal. */
d7e74731 3369 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3370}
3371
372316f1
PA
3372/* Select a thread at random, out of those which are resumed and have
3373 had events. */
3374
3375static struct thread_info *
5b6d1e4f 3376random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3377{
372316f1 3378 int num_events = 0;
08036331 3379
5b6d1e4f 3380 auto has_event = [&] (thread_info *tp)
08036331 3381 {
5b6d1e4f
PA
3382 return (tp->ptid.matches (waiton_ptid)
3383 && tp->resumed
08036331
PA
3384 && tp->suspend.waitstatus_pending_p);
3385 };
372316f1
PA
3386
3387 /* First see how many events we have. Count only resumed threads
3388 that have an event pending. */
5b6d1e4f 3389 for (thread_info *tp : inf->non_exited_threads ())
08036331 3390 if (has_event (tp))
372316f1
PA
3391 num_events++;
3392
3393 if (num_events == 0)
3394 return NULL;
3395
3396 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3397 int random_selector = (int) ((num_events * (double) rand ())
3398 / (RAND_MAX + 1.0));
372316f1 3399
edbcda09
SM
3400 if (num_events > 1)
3401 infrun_log_debug ("Found %d events, selecting #%d",
3402 num_events, random_selector);
372316f1
PA
3403
3404 /* Select the Nth thread that has had an event. */
5b6d1e4f 3405 for (thread_info *tp : inf->non_exited_threads ())
08036331 3406 if (has_event (tp))
372316f1 3407 if (random_selector-- == 0)
08036331 3408 return tp;
372316f1 3409
08036331 3410 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3411}
3412
3413/* Wrapper for target_wait that first checks whether threads have
3414 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3415 more events. INF is the inferior we're using to call target_wait
3416 on. */
372316f1
PA
3417
3418static ptid_t
5b6d1e4f
PA
3419do_target_wait_1 (inferior *inf, ptid_t ptid,
3420 target_waitstatus *status, int options)
372316f1
PA
3421{
3422 ptid_t event_ptid;
3423 struct thread_info *tp;
3424
24ed6739
AB
3425 /* We know that we are looking for an event in the target of inferior
3426 INF, but we don't know which thread the event might come from. As
3427 such we want to make sure that INFERIOR_PTID is reset so that none of
3428 the wait code relies on it - doing so is always a mistake. */
3429 switch_to_inferior_no_thread (inf);
3430
372316f1
PA
3431 /* First check if there is a resumed thread with a wait status
3432 pending. */
d7e15655 3433 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3434 {
5b6d1e4f 3435 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3436 }
3437 else
3438 {
edbcda09
SM
3439 infrun_log_debug ("Waiting for specific thread %s.",
3440 target_pid_to_str (ptid).c_str ());
372316f1
PA
3441
3442 /* We have a specific thread to check. */
5b6d1e4f 3443 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3444 gdb_assert (tp != NULL);
3445 if (!tp->suspend.waitstatus_pending_p)
3446 tp = NULL;
3447 }
3448
3449 if (tp != NULL
3450 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3451 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3452 {
00431a78 3453 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3454 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3455 CORE_ADDR pc;
3456 int discard = 0;
3457
3458 pc = regcache_read_pc (regcache);
3459
3460 if (pc != tp->suspend.stop_pc)
3461 {
edbcda09
SM
3462 infrun_log_debug ("PC of %s changed. was=%s, now=%s",
3463 target_pid_to_str (tp->ptid).c_str (),
3464 paddress (gdbarch, tp->suspend.stop_pc),
3465 paddress (gdbarch, pc));
372316f1
PA
3466 discard = 1;
3467 }
a01bda52 3468 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1 3469 {
edbcda09
SM
3470 infrun_log_debug ("previous breakpoint of %s, at %s gone",
3471 target_pid_to_str (tp->ptid).c_str (),
3472 paddress (gdbarch, pc));
372316f1
PA
3473
3474 discard = 1;
3475 }
3476
3477 if (discard)
3478 {
edbcda09
SM
3479 infrun_log_debug ("pending event of %s cancelled.",
3480 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3481
3482 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3483 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3484 }
3485 }
3486
3487 if (tp != NULL)
3488 {
edbcda09
SM
3489 infrun_log_debug ("Using pending wait status %s for %s.",
3490 target_waitstatus_to_string
3491 (&tp->suspend.waitstatus).c_str (),
3492 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3493
3494 /* Now that we've selected our final event LWP, un-adjust its PC
3495 if it was a software breakpoint (and the target doesn't
3496 always adjust the PC itself). */
3497 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3498 && !target_supports_stopped_by_sw_breakpoint ())
3499 {
3500 struct regcache *regcache;
3501 struct gdbarch *gdbarch;
3502 int decr_pc;
3503
00431a78 3504 regcache = get_thread_regcache (tp);
ac7936df 3505 gdbarch = regcache->arch ();
372316f1
PA
3506
3507 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3508 if (decr_pc != 0)
3509 {
3510 CORE_ADDR pc;
3511
3512 pc = regcache_read_pc (regcache);
3513 regcache_write_pc (regcache, pc + decr_pc);
3514 }
3515 }
3516
3517 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3518 *status = tp->suspend.waitstatus;
3519 tp->suspend.waitstatus_pending_p = 0;
3520
3521 /* Wake up the event loop again, until all pending events are
3522 processed. */
3523 if (target_is_async_p ())
3524 mark_async_event_handler (infrun_async_inferior_event_token);
3525 return tp->ptid;
3526 }
3527
3528 /* But if we don't find one, we'll have to wait. */
3529
3530 if (deprecated_target_wait_hook)
3531 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3532 else
3533 event_ptid = target_wait (ptid, status, options);
3534
3535 return event_ptid;
3536}
3537
5b6d1e4f
PA
3538/* Wrapper for target_wait that first checks whether threads have
3539 pending statuses to report before actually asking the target for
cad90433 3540 more events. Polls for events from all inferiors/targets. */
5b6d1e4f
PA
3541
3542static bool
3543do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3544{
3545 int num_inferiors = 0;
3546 int random_selector;
3547
cad90433
SM
3548 /* For fairness, we pick the first inferior/target to poll at random
3549 out of all inferiors that may report events, and then continue
3550 polling the rest of the inferior list starting from that one in a
3551 circular fashion until the whole list is polled once. */
5b6d1e4f
PA
3552
3553 auto inferior_matches = [&wait_ptid] (inferior *inf)
3554 {
3555 return (inf->process_target () != NULL
5b6d1e4f
PA
3556 && ptid_t (inf->pid).matches (wait_ptid));
3557 };
3558
cad90433 3559 /* First see how many matching inferiors we have. */
5b6d1e4f
PA
3560 for (inferior *inf : all_inferiors ())
3561 if (inferior_matches (inf))
3562 num_inferiors++;
3563
3564 if (num_inferiors == 0)
3565 {
3566 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3567 return false;
3568 }
3569
cad90433 3570 /* Now randomly pick an inferior out of those that matched. */
5b6d1e4f
PA
3571 random_selector = (int)
3572 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3573
edbcda09
SM
3574 if (num_inferiors > 1)
3575 infrun_log_debug ("Found %d inferiors, starting at #%d",
3576 num_inferiors, random_selector);
5b6d1e4f 3577
cad90433 3578 /* Select the Nth inferior that matched. */
5b6d1e4f
PA
3579
3580 inferior *selected = nullptr;
3581
3582 for (inferior *inf : all_inferiors ())
3583 if (inferior_matches (inf))
3584 if (random_selector-- == 0)
3585 {
3586 selected = inf;
3587 break;
3588 }
3589
cad90433 3590 /* Now poll for events out of each of the matching inferior's
5b6d1e4f
PA
3591 targets, starting from the selected one. */
3592
3593 auto do_wait = [&] (inferior *inf)
3594 {
5b6d1e4f
PA
3595 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3596 ecs->target = inf->process_target ();
3597 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3598 };
3599
cad90433
SM
3600 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3601 here spuriously after the target is all stopped and we've already
5b6d1e4f
PA
3602 reported the stop to the user, polling for events. */
3603 scoped_restore_current_thread restore_thread;
3604
3605 int inf_num = selected->num;
3606 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3607 if (inferior_matches (inf))
3608 if (do_wait (inf))
3609 return true;
3610
3611 for (inferior *inf = inferior_list;
3612 inf != NULL && inf->num < inf_num;
3613 inf = inf->next)
3614 if (inferior_matches (inf))
3615 if (do_wait (inf))
3616 return true;
3617
3618 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3619 return false;
3620}
3621
24291992
PA
3622/* Prepare and stabilize the inferior for detaching it. E.g.,
3623 detaching while a thread is displaced stepping is a recipe for
3624 crashing it, as nothing would readjust the PC out of the scratch
3625 pad. */
3626
3627void
3628prepare_for_detach (void)
3629{
3630 struct inferior *inf = current_inferior ();
f2907e49 3631 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3632
9844051a 3633 // displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3634
3635 /* Is any thread of this process displaced stepping? If not,
3636 there's nothing else to do. */
9844051a 3637 if (displaced_step_in_progress (inf))
24291992
PA
3638 return;
3639
edbcda09 3640 infrun_log_debug ("displaced-stepping in-process while detaching");
24291992 3641
9bcb1f16 3642 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3643
9844051a
SM
3644 // FIXME
3645 while (false)
24291992 3646 {
24291992
PA
3647 struct execution_control_state ecss;
3648 struct execution_control_state *ecs;
3649
3650 ecs = &ecss;
3651 memset (ecs, 0, sizeof (*ecs));
3652
3653 overlay_cache_invalid = 1;
f15cb84a
YQ
3654 /* Flush target cache before starting to handle each event.
3655 Target was running and cache could be stale. This is just a
3656 heuristic. Running threads may modify target memory, but we
3657 don't get any event. */
3658 target_dcache_invalidate ();
24291992 3659
5b6d1e4f 3660 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3661
3662 if (debug_infrun)
3663 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3664
3665 /* If an error happens while handling the event, propagate GDB's
3666 knowledge of the executing state to the frontend/user running
3667 state. */
5b6d1e4f
PA
3668 scoped_finish_thread_state finish_state (inf->process_target (),
3669 minus_one_ptid);
24291992
PA
3670
3671 /* Now figure out what to do with the result of the result. */
3672 handle_inferior_event (ecs);
3673
3674 /* No error, don't finish the state yet. */
731f534f 3675 finish_state.release ();
24291992
PA
3676
3677 /* Breakpoints and watchpoints are not installed on the target
3678 at this point, and signals are passed directly to the
3679 inferior, so this must mean the process is gone. */
3680 if (!ecs->wait_some_more)
3681 {
9bcb1f16 3682 restore_detaching.release ();
24291992
PA
3683 error (_("Program exited while detaching"));
3684 }
3685 }
3686
9bcb1f16 3687 restore_detaching.release ();
24291992
PA
3688}
3689
cd0fc7c3 3690/* Wait for control to return from inferior to debugger.
ae123ec6 3691
cd0fc7c3
SS
3692 If inferior gets a signal, we may decide to start it up again
3693 instead of returning. That is why there is a loop in this function.
3694 When this function actually returns it means the inferior
3695 should be left stopped and GDB should read more commands. */
3696
5b6d1e4f
PA
3697static void
3698wait_for_inferior (inferior *inf)
cd0fc7c3 3699{
edbcda09 3700 infrun_log_debug ("wait_for_inferior ()");
527159b7 3701
4c41382a 3702 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3703
e6f5c25b
PA
3704 /* If an error happens while handling the event, propagate GDB's
3705 knowledge of the executing state to the frontend/user running
3706 state. */
5b6d1e4f
PA
3707 scoped_finish_thread_state finish_state
3708 (inf->process_target (), minus_one_ptid);
e6f5c25b 3709
c906108c
SS
3710 while (1)
3711 {
ae25568b
PA
3712 struct execution_control_state ecss;
3713 struct execution_control_state *ecs = &ecss;
29f49a6a 3714
ae25568b
PA
3715 memset (ecs, 0, sizeof (*ecs));
3716
ec9499be 3717 overlay_cache_invalid = 1;
ec9499be 3718
f15cb84a
YQ
3719 /* Flush target cache before starting to handle each event.
3720 Target was running and cache could be stale. This is just a
3721 heuristic. Running threads may modify target memory, but we
3722 don't get any event. */
3723 target_dcache_invalidate ();
3724
5b6d1e4f
PA
3725 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3726 ecs->target = inf->process_target ();
c906108c 3727
f00150c9 3728 if (debug_infrun)
5b6d1e4f 3729 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3730
cd0fc7c3
SS
3731 /* Now figure out what to do with the result of the result. */
3732 handle_inferior_event (ecs);
c906108c 3733
cd0fc7c3
SS
3734 if (!ecs->wait_some_more)
3735 break;
3736 }
4e1c45ea 3737
e6f5c25b 3738 /* No error, don't finish the state yet. */
731f534f 3739 finish_state.release ();
cd0fc7c3 3740}
c906108c 3741
d3d4baed
PA
3742/* Cleanup that reinstalls the readline callback handler, if the
3743 target is running in the background. If while handling the target
3744 event something triggered a secondary prompt, like e.g., a
3745 pagination prompt, we'll have removed the callback handler (see
3746 gdb_readline_wrapper_line). Need to do this as we go back to the
3747 event loop, ready to process further input. Note this has no
3748 effect if the handler hasn't actually been removed, because calling
3749 rl_callback_handler_install resets the line buffer, thus losing
3750 input. */
3751
3752static void
d238133d 3753reinstall_readline_callback_handler_cleanup ()
d3d4baed 3754{
3b12939d
PA
3755 struct ui *ui = current_ui;
3756
3757 if (!ui->async)
6c400b59
PA
3758 {
3759 /* We're not going back to the top level event loop yet. Don't
3760 install the readline callback, as it'd prep the terminal,
3761 readline-style (raw, noecho) (e.g., --batch). We'll install
3762 it the next time the prompt is displayed, when we're ready
3763 for input. */
3764 return;
3765 }
3766
3b12939d 3767 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3768 gdb_rl_callback_handler_reinstall ();
3769}
3770
243a9253
PA
3771/* Clean up the FSMs of threads that are now stopped. In non-stop,
3772 that's just the event thread. In all-stop, that's all threads. */
3773
3774static void
3775clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3776{
08036331
PA
3777 if (ecs->event_thread != NULL
3778 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3779 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3780
3781 if (!non_stop)
3782 {
08036331 3783 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3784 {
3785 if (thr->thread_fsm == NULL)
3786 continue;
3787 if (thr == ecs->event_thread)
3788 continue;
3789
00431a78 3790 switch_to_thread (thr);
46e3ed7f 3791 thr->thread_fsm->clean_up (thr);
243a9253
PA
3792 }
3793
3794 if (ecs->event_thread != NULL)
00431a78 3795 switch_to_thread (ecs->event_thread);
243a9253
PA
3796 }
3797}
3798
3b12939d
PA
3799/* Helper for all_uis_check_sync_execution_done that works on the
3800 current UI. */
3801
3802static void
3803check_curr_ui_sync_execution_done (void)
3804{
3805 struct ui *ui = current_ui;
3806
3807 if (ui->prompt_state == PROMPT_NEEDED
3808 && ui->async
3809 && !gdb_in_secondary_prompt_p (ui))
3810 {
223ffa71 3811 target_terminal::ours ();
76727919 3812 gdb::observers::sync_execution_done.notify ();
3eb7562a 3813 ui_register_input_event_handler (ui);
3b12939d
PA
3814 }
3815}
3816
3817/* See infrun.h. */
3818
3819void
3820all_uis_check_sync_execution_done (void)
3821{
0e454242 3822 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3823 {
3824 check_curr_ui_sync_execution_done ();
3825 }
3826}
3827
a8836c93
PA
3828/* See infrun.h. */
3829
3830void
3831all_uis_on_sync_execution_starting (void)
3832{
0e454242 3833 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3834 {
3835 if (current_ui->prompt_state == PROMPT_NEEDED)
3836 async_disable_stdin ();
3837 }
3838}
3839
1777feb0 3840/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3841 event loop whenever a change of state is detected on the file
1777feb0
MS
3842 descriptor corresponding to the target. It can be called more than
3843 once to complete a single execution command. In such cases we need
3844 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3845 that this function is called for a single execution command, then
3846 report to the user that the inferior has stopped, and do the
1777feb0 3847 necessary cleanups. */
43ff13b4
JM
3848
3849void
b1a35af2 3850fetch_inferior_event ()
43ff13b4 3851{
0d1e5fa7 3852 struct execution_control_state ecss;
a474d7c2 3853 struct execution_control_state *ecs = &ecss;
0f641c01 3854 int cmd_done = 0;
43ff13b4 3855
0d1e5fa7
PA
3856 memset (ecs, 0, sizeof (*ecs));
3857
c61db772
PA
3858 /* Events are always processed with the main UI as current UI. This
3859 way, warnings, debug output, etc. are always consistently sent to
3860 the main console. */
4b6749b9 3861 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3862
d3d4baed 3863 /* End up with readline processing input, if necessary. */
d238133d
TT
3864 {
3865 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3866
3867 /* We're handling a live event, so make sure we're doing live
3868 debugging. If we're looking at traceframes while the target is
3869 running, we're going to need to get back to that mode after
3870 handling the event. */
3871 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3872 if (non_stop)
3873 {
3874 maybe_restore_traceframe.emplace ();
3875 set_current_traceframe (-1);
3876 }
43ff13b4 3877
873657b9
PA
3878 /* The user/frontend should not notice a thread switch due to
3879 internal events. Make sure we revert to the user selected
3880 thread and frame after handling the event and running any
3881 breakpoint commands. */
3882 scoped_restore_current_thread restore_thread;
d238133d
TT
3883
3884 overlay_cache_invalid = 1;
3885 /* Flush target cache before starting to handle each event. Target
3886 was running and cache could be stale. This is just a heuristic.
3887 Running threads may modify target memory, but we don't get any
3888 event. */
3889 target_dcache_invalidate ();
3890
3891 scoped_restore save_exec_dir
3892 = make_scoped_restore (&execution_direction,
3893 target_execution_direction ());
3894
5b6d1e4f
PA
3895 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3896 return;
3897
3898 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3899
3900 /* Switch to the target that generated the event, so we can do
3901 target calls. Any inferior bound to the target will do, so we
3902 just switch to the first we find. */
3903 for (inferior *inf : all_inferiors (ecs->target))
3904 {
3905 switch_to_inferior_no_thread (inf);
3906 break;
3907 }
d238133d
TT
3908
3909 if (debug_infrun)
5b6d1e4f 3910 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3911
3912 /* If an error happens while handling the event, propagate GDB's
3913 knowledge of the executing state to the frontend/user running
3914 state. */
3915 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 3916 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 3917
979a0d13 3918 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3919 still for the thread which has thrown the exception. */
3920 auto defer_bpstat_clear
3921 = make_scope_exit (bpstat_clear_actions);
3922 auto defer_delete_threads
3923 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3924
3925 /* Now figure out what to do with the result of the result. */
3926 handle_inferior_event (ecs);
3927
3928 if (!ecs->wait_some_more)
3929 {
5b6d1e4f 3930 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
3931 int should_stop = 1;
3932 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3933
d238133d 3934 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3935
d238133d
TT
3936 if (thr != NULL)
3937 {
3938 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3939
d238133d 3940 if (thread_fsm != NULL)
46e3ed7f 3941 should_stop = thread_fsm->should_stop (thr);
d238133d 3942 }
243a9253 3943
d238133d
TT
3944 if (!should_stop)
3945 {
3946 keep_going (ecs);
3947 }
3948 else
3949 {
46e3ed7f 3950 bool should_notify_stop = true;
d238133d 3951 int proceeded = 0;
1840d81a 3952
d238133d 3953 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3954
d238133d 3955 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3956 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3957
d238133d
TT
3958 if (should_notify_stop)
3959 {
3960 /* We may not find an inferior if this was a process exit. */
3961 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3962 proceeded = normal_stop ();
3963 }
243a9253 3964
d238133d
TT
3965 if (!proceeded)
3966 {
b1a35af2 3967 inferior_event_handler (INF_EXEC_COMPLETE);
d238133d
TT
3968 cmd_done = 1;
3969 }
873657b9
PA
3970
3971 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3972 previously selected thread is gone. We have two
3973 choices - switch to no thread selected, or restore the
3974 previously selected thread (now exited). We chose the
3975 later, just because that's what GDB used to do. After
3976 this, "info threads" says "The current thread <Thread
3977 ID 2> has terminated." instead of "No thread
3978 selected.". */
3979 if (!non_stop
3980 && cmd_done
3981 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3982 restore_thread.dont_restore ();
d238133d
TT
3983 }
3984 }
4f8d22e3 3985
d238133d
TT
3986 defer_delete_threads.release ();
3987 defer_bpstat_clear.release ();
29f49a6a 3988
d238133d
TT
3989 /* No error, don't finish the thread states yet. */
3990 finish_state.release ();
731f534f 3991
d238133d
TT
3992 /* This scope is used to ensure that readline callbacks are
3993 reinstalled here. */
3994 }
4f8d22e3 3995
3b12939d
PA
3996 /* If a UI was in sync execution mode, and now isn't, restore its
3997 prompt (a synchronous execution command has finished, and we're
3998 ready for input). */
3999 all_uis_check_sync_execution_done ();
0f641c01
PA
4000
4001 if (cmd_done
0f641c01 4002 && exec_done_display_p
00431a78
PA
4003 && (inferior_ptid == null_ptid
4004 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4005 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4006}
4007
29734269
SM
4008/* See infrun.h. */
4009
edb3359d 4010void
29734269
SM
4011set_step_info (thread_info *tp, struct frame_info *frame,
4012 struct symtab_and_line sal)
edb3359d 4013{
29734269
SM
4014 /* This can be removed once this function no longer implicitly relies on the
4015 inferior_ptid value. */
4016 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4017
16c381f0
JK
4018 tp->control.step_frame_id = get_frame_id (frame);
4019 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4020
4021 tp->current_symtab = sal.symtab;
4022 tp->current_line = sal.line;
4023}
4024
0d1e5fa7
PA
4025/* Clear context switchable stepping state. */
4026
4027void
4e1c45ea 4028init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4029{
7f5ef605 4030 tss->stepped_breakpoint = 0;
0d1e5fa7 4031 tss->stepping_over_breakpoint = 0;
963f9c80 4032 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4033 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4034}
4035
ab1ddbcf 4036/* See infrun.h. */
c32c64b7 4037
6efcd9a8 4038void
5b6d1e4f
PA
4039set_last_target_status (process_stratum_target *target, ptid_t ptid,
4040 target_waitstatus status)
c32c64b7 4041{
5b6d1e4f 4042 target_last_proc_target = target;
c32c64b7
DE
4043 target_last_wait_ptid = ptid;
4044 target_last_waitstatus = status;
4045}
4046
ab1ddbcf 4047/* See infrun.h. */
e02bc4cc
DS
4048
4049void
5b6d1e4f
PA
4050get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4051 target_waitstatus *status)
e02bc4cc 4052{
5b6d1e4f
PA
4053 if (target != nullptr)
4054 *target = target_last_proc_target;
ab1ddbcf
PA
4055 if (ptid != nullptr)
4056 *ptid = target_last_wait_ptid;
4057 if (status != nullptr)
4058 *status = target_last_waitstatus;
e02bc4cc
DS
4059}
4060
ab1ddbcf
PA
4061/* See infrun.h. */
4062
ac264b3b
MS
4063void
4064nullify_last_target_wait_ptid (void)
4065{
5b6d1e4f 4066 target_last_proc_target = nullptr;
ac264b3b 4067 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4068 target_last_waitstatus = {};
ac264b3b
MS
4069}
4070
dcf4fbde 4071/* Switch thread contexts. */
dd80620e
MS
4072
4073static void
00431a78 4074context_switch (execution_control_state *ecs)
dd80620e 4075{
edbcda09 4076 if (ecs->ptid != inferior_ptid
5b6d1e4f
PA
4077 && (inferior_ptid == null_ptid
4078 || ecs->event_thread != inferior_thread ()))
fd48f117 4079 {
edbcda09
SM
4080 infrun_log_debug ("Switching context from %s to %s",
4081 target_pid_to_str (inferior_ptid).c_str (),
4082 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4083 }
4084
00431a78 4085 switch_to_thread (ecs->event_thread);
dd80620e
MS
4086}
4087
d8dd4d5f
PA
4088/* If the target can't tell whether we've hit breakpoints
4089 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4090 check whether that could have been caused by a breakpoint. If so,
4091 adjust the PC, per gdbarch_decr_pc_after_break. */
4092
4fa8626c 4093static void
d8dd4d5f
PA
4094adjust_pc_after_break (struct thread_info *thread,
4095 struct target_waitstatus *ws)
4fa8626c 4096{
24a73cce
UW
4097 struct regcache *regcache;
4098 struct gdbarch *gdbarch;
118e6252 4099 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4100
4fa8626c
DJ
4101 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4102 we aren't, just return.
9709f61c
DJ
4103
4104 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4105 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4106 implemented by software breakpoints should be handled through the normal
4107 breakpoint layer.
8fb3e588 4108
4fa8626c
DJ
4109 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4110 different signals (SIGILL or SIGEMT for instance), but it is less
4111 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4112 gdbarch_decr_pc_after_break. I don't know any specific target that
4113 generates these signals at breakpoints (the code has been in GDB since at
4114 least 1992) so I can not guess how to handle them here.
8fb3e588 4115
e6cf7916
UW
4116 In earlier versions of GDB, a target with
4117 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4118 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4119 target with both of these set in GDB history, and it seems unlikely to be
4120 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4121
d8dd4d5f 4122 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4123 return;
4124
d8dd4d5f 4125 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4126 return;
4127
4058b839
PA
4128 /* In reverse execution, when a breakpoint is hit, the instruction
4129 under it has already been de-executed. The reported PC always
4130 points at the breakpoint address, so adjusting it further would
4131 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4132 architecture:
4133
4134 B1 0x08000000 : INSN1
4135 B2 0x08000001 : INSN2
4136 0x08000002 : INSN3
4137 PC -> 0x08000003 : INSN4
4138
4139 Say you're stopped at 0x08000003 as above. Reverse continuing
4140 from that point should hit B2 as below. Reading the PC when the
4141 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4142 been de-executed already.
4143
4144 B1 0x08000000 : INSN1
4145 B2 PC -> 0x08000001 : INSN2
4146 0x08000002 : INSN3
4147 0x08000003 : INSN4
4148
4149 We can't apply the same logic as for forward execution, because
4150 we would wrongly adjust the PC to 0x08000000, since there's a
4151 breakpoint at PC - 1. We'd then report a hit on B1, although
4152 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4153 behaviour. */
4154 if (execution_direction == EXEC_REVERSE)
4155 return;
4156
1cf4d951
PA
4157 /* If the target can tell whether the thread hit a SW breakpoint,
4158 trust it. Targets that can tell also adjust the PC
4159 themselves. */
4160 if (target_supports_stopped_by_sw_breakpoint ())
4161 return;
4162
4163 /* Note that relying on whether a breakpoint is planted in memory to
4164 determine this can fail. E.g,. the breakpoint could have been
4165 removed since. Or the thread could have been told to step an
4166 instruction the size of a breakpoint instruction, and only
4167 _after_ was a breakpoint inserted at its address. */
4168
24a73cce
UW
4169 /* If this target does not decrement the PC after breakpoints, then
4170 we have nothing to do. */
00431a78 4171 regcache = get_thread_regcache (thread);
ac7936df 4172 gdbarch = regcache->arch ();
118e6252 4173
527a273a 4174 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4175 if (decr_pc == 0)
24a73cce
UW
4176 return;
4177
8b86c959 4178 const address_space *aspace = regcache->aspace ();
6c95b8df 4179
8aad930b
AC
4180 /* Find the location where (if we've hit a breakpoint) the
4181 breakpoint would be. */
118e6252 4182 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4183
1cf4d951
PA
4184 /* If the target can't tell whether a software breakpoint triggered,
4185 fallback to figuring it out based on breakpoints we think were
4186 inserted in the target, and on whether the thread was stepped or
4187 continued. */
4188
1c5cfe86
PA
4189 /* Check whether there actually is a software breakpoint inserted at
4190 that location.
4191
4192 If in non-stop mode, a race condition is possible where we've
4193 removed a breakpoint, but stop events for that breakpoint were
4194 already queued and arrive later. To suppress those spurious
4195 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4196 and retire them after a number of stop events are reported. Note
4197 this is an heuristic and can thus get confused. The real fix is
4198 to get the "stopped by SW BP and needs adjustment" info out of
4199 the target/kernel (and thus never reach here; see above). */
6c95b8df 4200 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4201 || (target_is_non_stop_p ()
4202 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4203 {
07036511 4204 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4205
8213266a 4206 if (record_full_is_used ())
07036511
TT
4207 restore_operation_disable.emplace
4208 (record_full_gdb_operation_disable_set ());
96429cc8 4209
1c0fdd0e
UW
4210 /* When using hardware single-step, a SIGTRAP is reported for both
4211 a completed single-step and a software breakpoint. Need to
4212 differentiate between the two, as the latter needs adjusting
4213 but the former does not.
4214
4215 The SIGTRAP can be due to a completed hardware single-step only if
4216 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4217 - this thread is currently being stepped
4218
4219 If any of these events did not occur, we must have stopped due
4220 to hitting a software breakpoint, and have to back up to the
4221 breakpoint address.
4222
4223 As a special case, we could have hardware single-stepped a
4224 software breakpoint. In this case (prev_pc == breakpoint_pc),
4225 we also need to back up to the breakpoint address. */
4226
d8dd4d5f
PA
4227 if (thread_has_single_step_breakpoints_set (thread)
4228 || !currently_stepping (thread)
4229 || (thread->stepped_breakpoint
4230 && thread->prev_pc == breakpoint_pc))
515630c5 4231 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4232 }
4fa8626c
DJ
4233}
4234
edb3359d
DJ
4235static int
4236stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4237{
4238 for (frame = get_prev_frame (frame);
4239 frame != NULL;
4240 frame = get_prev_frame (frame))
4241 {
4242 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4243 return 1;
4244 if (get_frame_type (frame) != INLINE_FRAME)
4245 break;
4246 }
4247
4248 return 0;
4249}
4250
4a4c04f1
BE
4251/* Look for an inline frame that is marked for skip.
4252 If PREV_FRAME is TRUE start at the previous frame,
4253 otherwise start at the current frame. Stop at the
4254 first non-inline frame, or at the frame where the
4255 step started. */
4256
4257static bool
4258inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4259{
4260 struct frame_info *frame = get_current_frame ();
4261
4262 if (prev_frame)
4263 frame = get_prev_frame (frame);
4264
4265 for (; frame != NULL; frame = get_prev_frame (frame))
4266 {
4267 const char *fn = NULL;
4268 symtab_and_line sal;
4269 struct symbol *sym;
4270
4271 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4272 break;
4273 if (get_frame_type (frame) != INLINE_FRAME)
4274 break;
4275
4276 sal = find_frame_sal (frame);
4277 sym = get_frame_function (frame);
4278
4279 if (sym != NULL)
4280 fn = sym->print_name ();
4281
4282 if (sal.line != 0
4283 && function_name_is_marked_for_skip (fn, sal))
4284 return true;
4285 }
4286
4287 return false;
4288}
4289
c65d6b55
PA
4290/* If the event thread has the stop requested flag set, pretend it
4291 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4292 target_stop). */
4293
4294static bool
4295handle_stop_requested (struct execution_control_state *ecs)
4296{
4297 if (ecs->event_thread->stop_requested)
4298 {
4299 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4300 ecs->ws.value.sig = GDB_SIGNAL_0;
4301 handle_signal_stop (ecs);
4302 return true;
4303 }
4304 return false;
4305}
4306
a96d9b2e
SDJ
4307/* Auxiliary function that handles syscall entry/return events.
4308 It returns 1 if the inferior should keep going (and GDB
4309 should ignore the event), or 0 if the event deserves to be
4310 processed. */
ca2163eb 4311
a96d9b2e 4312static int
ca2163eb 4313handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4314{
ca2163eb 4315 struct regcache *regcache;
ca2163eb
PA
4316 int syscall_number;
4317
00431a78 4318 context_switch (ecs);
ca2163eb 4319
00431a78 4320 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4321 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4322 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4323
a96d9b2e
SDJ
4324 if (catch_syscall_enabled () > 0
4325 && catching_syscall_number (syscall_number) > 0)
4326 {
edbcda09 4327 infrun_log_debug ("syscall number=%d", syscall_number);
a96d9b2e 4328
16c381f0 4329 ecs->event_thread->control.stop_bpstat
a01bda52 4330 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4331 ecs->event_thread->suspend.stop_pc,
4332 ecs->event_thread, &ecs->ws);
ab04a2af 4333
c65d6b55
PA
4334 if (handle_stop_requested (ecs))
4335 return 0;
4336
ce12b012 4337 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4338 {
4339 /* Catchpoint hit. */
ca2163eb
PA
4340 return 0;
4341 }
a96d9b2e 4342 }
ca2163eb 4343
c65d6b55
PA
4344 if (handle_stop_requested (ecs))
4345 return 0;
4346
ca2163eb 4347 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4348 keep_going (ecs);
4349 return 1;
a96d9b2e
SDJ
4350}
4351
7e324e48
GB
4352/* Lazily fill in the execution_control_state's stop_func_* fields. */
4353
4354static void
4355fill_in_stop_func (struct gdbarch *gdbarch,
4356 struct execution_control_state *ecs)
4357{
4358 if (!ecs->stop_func_filled_in)
4359 {
98a617f8
KB
4360 const block *block;
4361
7e324e48
GB
4362 /* Don't care about return value; stop_func_start and stop_func_name
4363 will both be 0 if it doesn't work. */
98a617f8
KB
4364 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4365 &ecs->stop_func_name,
4366 &ecs->stop_func_start,
4367 &ecs->stop_func_end,
4368 &block);
4369
4370 /* The call to find_pc_partial_function, above, will set
4371 stop_func_start and stop_func_end to the start and end
4372 of the range containing the stop pc. If this range
4373 contains the entry pc for the block (which is always the
4374 case for contiguous blocks), advance stop_func_start past
4375 the function's start offset and entrypoint. Note that
4376 stop_func_start is NOT advanced when in a range of a
4377 non-contiguous block that does not contain the entry pc. */
4378 if (block != nullptr
4379 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4380 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4381 {
4382 ecs->stop_func_start
4383 += gdbarch_deprecated_function_start_offset (gdbarch);
4384
4385 if (gdbarch_skip_entrypoint_p (gdbarch))
4386 ecs->stop_func_start
4387 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4388 }
591a12a1 4389
7e324e48
GB
4390 ecs->stop_func_filled_in = 1;
4391 }
4392}
4393
4f5d7f63 4394
00431a78 4395/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4396
4397static enum stop_kind
00431a78 4398get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4399{
5b6d1e4f 4400 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4401
4402 gdb_assert (inf != NULL);
4403 return inf->control.stop_soon;
4404}
4405
5b6d1e4f
PA
4406/* Poll for one event out of the current target. Store the resulting
4407 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4408
4409static ptid_t
5b6d1e4f 4410poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4411{
4412 ptid_t event_ptid;
372316f1
PA
4413
4414 overlay_cache_invalid = 1;
4415
4416 /* Flush target cache before starting to handle each event.
4417 Target was running and cache could be stale. This is just a
4418 heuristic. Running threads may modify target memory, but we
4419 don't get any event. */
4420 target_dcache_invalidate ();
4421
4422 if (deprecated_target_wait_hook)
5b6d1e4f 4423 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4424 else
5b6d1e4f 4425 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4426
4427 if (debug_infrun)
5b6d1e4f 4428 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4429
4430 return event_ptid;
4431}
4432
5b6d1e4f
PA
4433/* An event reported by wait_one. */
4434
4435struct wait_one_event
4436{
4437 /* The target the event came out of. */
4438 process_stratum_target *target;
4439
4440 /* The PTID the event was for. */
4441 ptid_t ptid;
4442
4443 /* The waitstatus. */
4444 target_waitstatus ws;
4445};
4446
4447/* Wait for one event out of any target. */
4448
4449static wait_one_event
4450wait_one ()
4451{
4452 while (1)
4453 {
4454 for (inferior *inf : all_inferiors ())
4455 {
4456 process_stratum_target *target = inf->process_target ();
4457 if (target == NULL
4458 || !target->is_async_p ()
4459 || !target->threads_executing)
4460 continue;
4461
4462 switch_to_inferior_no_thread (inf);
4463
4464 wait_one_event event;
4465 event.target = target;
4466 event.ptid = poll_one_curr_target (&event.ws);
4467
4468 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4469 {
4470 /* If nothing is resumed, remove the target from the
4471 event loop. */
4472 target_async (0);
4473 }
4474 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4475 return event;
4476 }
4477
4478 /* Block waiting for some event. */
4479
4480 fd_set readfds;
4481 int nfds = 0;
4482
4483 FD_ZERO (&readfds);
4484
4485 for (inferior *inf : all_inferiors ())
4486 {
4487 process_stratum_target *target = inf->process_target ();
4488 if (target == NULL
4489 || !target->is_async_p ()
4490 || !target->threads_executing)
4491 continue;
4492
4493 int fd = target->async_wait_fd ();
4494 FD_SET (fd, &readfds);
4495 if (nfds <= fd)
4496 nfds = fd + 1;
4497 }
4498
4499 if (nfds == 0)
4500 {
4501 /* No waitable targets left. All must be stopped. */
4502 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4503 }
4504
4505 QUIT;
4506
4507 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4508 if (numfds < 0)
4509 {
4510 if (errno == EINTR)
4511 continue;
4512 else
4513 perror_with_name ("interruptible_select");
4514 }
4515 }
4516}
4517
372316f1
PA
4518/* Save the thread's event and stop reason to process it later. */
4519
4520static void
5b6d1e4f 4521save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4522{
edbcda09
SM
4523 infrun_log_debug ("saving status %s for %d.%ld.%ld",
4524 target_waitstatus_to_string (ws).c_str (),
4525 tp->ptid.pid (),
4526 tp->ptid.lwp (),
4527 tp->ptid.tid ());
372316f1
PA
4528
4529 /* Record for later. */
4530 tp->suspend.waitstatus = *ws;
4531 tp->suspend.waitstatus_pending_p = 1;
4532
00431a78 4533 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4534 const address_space *aspace = regcache->aspace ();
372316f1
PA
4535
4536 if (ws->kind == TARGET_WAITKIND_STOPPED
4537 && ws->value.sig == GDB_SIGNAL_TRAP)
4538 {
4539 CORE_ADDR pc = regcache_read_pc (regcache);
4540
4541 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4542
18493a00
PA
4543 scoped_restore_current_thread restore_thread;
4544 switch_to_thread (tp);
4545
4546 if (target_stopped_by_watchpoint ())
372316f1
PA
4547 {
4548 tp->suspend.stop_reason
4549 = TARGET_STOPPED_BY_WATCHPOINT;
4550 }
4551 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4552 && target_stopped_by_sw_breakpoint ())
372316f1
PA
4553 {
4554 tp->suspend.stop_reason
4555 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4556 }
4557 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4558 && target_stopped_by_hw_breakpoint ())
372316f1
PA
4559 {
4560 tp->suspend.stop_reason
4561 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4562 }
4563 else if (!target_supports_stopped_by_hw_breakpoint ()
4564 && hardware_breakpoint_inserted_here_p (aspace,
4565 pc))
4566 {
4567 tp->suspend.stop_reason
4568 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4569 }
4570 else if (!target_supports_stopped_by_sw_breakpoint ()
4571 && software_breakpoint_inserted_here_p (aspace,
4572 pc))
4573 {
4574 tp->suspend.stop_reason
4575 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4576 }
4577 else if (!thread_has_single_step_breakpoints_set (tp)
4578 && currently_stepping (tp))
4579 {
4580 tp->suspend.stop_reason
4581 = TARGET_STOPPED_BY_SINGLE_STEP;
4582 }
4583 }
4584}
4585
293b3ebc
TBA
4586/* Mark the non-executing threads accordingly. In all-stop, all
4587 threads of all processes are stopped when we get any event
4588 reported. In non-stop mode, only the event thread stops. */
4589
4590static void
4591mark_non_executing_threads (process_stratum_target *target,
4592 ptid_t event_ptid,
4593 struct target_waitstatus ws)
4594{
4595 ptid_t mark_ptid;
4596
4597 if (!target_is_non_stop_p ())
4598 mark_ptid = minus_one_ptid;
4599 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4600 || ws.kind == TARGET_WAITKIND_EXITED)
4601 {
4602 /* If we're handling a process exit in non-stop mode, even
4603 though threads haven't been deleted yet, one would think
4604 that there is nothing to do, as threads of the dead process
4605 will be soon deleted, and threads of any other process were
4606 left running. However, on some targets, threads survive a
4607 process exit event. E.g., for the "checkpoint" command,
4608 when the current checkpoint/fork exits, linux-fork.c
4609 automatically switches to another fork from within
4610 target_mourn_inferior, by associating the same
4611 inferior/thread to another fork. We haven't mourned yet at
4612 this point, but we must mark any threads left in the
4613 process as not-executing so that finish_thread_state marks
4614 them stopped (in the user's perspective) if/when we present
4615 the stop to the user. */
4616 mark_ptid = ptid_t (event_ptid.pid ());
4617 }
4618 else
4619 mark_ptid = event_ptid;
4620
4621 set_executing (target, mark_ptid, false);
4622
4623 /* Likewise the resumed flag. */
4624 set_resumed (target, mark_ptid, false);
4625}
4626
6efcd9a8 4627/* See infrun.h. */
372316f1 4628
6efcd9a8 4629void
372316f1
PA
4630stop_all_threads (void)
4631{
4632 /* We may need multiple passes to discover all threads. */
4633 int pass;
4634 int iterations = 0;
372316f1 4635
53cccef1 4636 gdb_assert (exists_non_stop_target ());
372316f1 4637
edbcda09 4638 infrun_log_debug ("stop_all_threads");
372316f1 4639
00431a78 4640 scoped_restore_current_thread restore_thread;
372316f1 4641
6ad82919
TBA
4642 /* Enable thread events of all targets. */
4643 for (auto *target : all_non_exited_process_targets ())
4644 {
4645 switch_to_target_no_thread (target);
4646 target_thread_events (true);
4647 }
4648
4649 SCOPE_EXIT
4650 {
4651 /* Disable thread events of all targets. */
4652 for (auto *target : all_non_exited_process_targets ())
4653 {
4654 switch_to_target_no_thread (target);
4655 target_thread_events (false);
4656 }
4657
edbcda09
SM
4658
4659 infrun_log_debug ("stop_all_threads done");
6ad82919 4660 };
65706a29 4661
372316f1
PA
4662 /* Request threads to stop, and then wait for the stops. Because
4663 threads we already know about can spawn more threads while we're
4664 trying to stop them, and we only learn about new threads when we
4665 update the thread list, do this in a loop, and keep iterating
4666 until two passes find no threads that need to be stopped. */
4667 for (pass = 0; pass < 2; pass++, iterations++)
4668 {
edbcda09
SM
4669 infrun_log_debug ("stop_all_threads, pass=%d, iterations=%d",
4670 pass, iterations);
372316f1
PA
4671 while (1)
4672 {
29d6859f 4673 int waits_needed = 0;
372316f1 4674
a05575d3
TBA
4675 for (auto *target : all_non_exited_process_targets ())
4676 {
4677 switch_to_target_no_thread (target);
4678 update_thread_list ();
4679 }
372316f1
PA
4680
4681 /* Go through all threads looking for threads that we need
4682 to tell the target to stop. */
08036331 4683 for (thread_info *t : all_non_exited_threads ())
372316f1 4684 {
53cccef1
TBA
4685 /* For a single-target setting with an all-stop target,
4686 we would not even arrive here. For a multi-target
4687 setting, until GDB is able to handle a mixture of
4688 all-stop and non-stop targets, simply skip all-stop
4689 targets' threads. This should be fine due to the
4690 protection of 'check_multi_target_resumption'. */
4691
4692 switch_to_thread_no_regs (t);
4693 if (!target_is_non_stop_p ())
4694 continue;
4695
372316f1
PA
4696 if (t->executing)
4697 {
4698 /* If already stopping, don't request a stop again.
4699 We just haven't seen the notification yet. */
4700 if (!t->stop_requested)
4701 {
edbcda09
SM
4702 infrun_log_debug (" %s executing, need stop",
4703 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4704 target_stop (t->ptid);
4705 t->stop_requested = 1;
4706 }
4707 else
4708 {
edbcda09
SM
4709 infrun_log_debug (" %s executing, already stopping",
4710 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4711 }
4712
4713 if (t->stop_requested)
29d6859f 4714 waits_needed++;
372316f1
PA
4715 }
4716 else
4717 {
edbcda09
SM
4718 infrun_log_debug (" %s not executing",
4719 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4720
4721 /* The thread may be not executing, but still be
4722 resumed with a pending status to process. */
719546c4 4723 t->resumed = false;
372316f1
PA
4724 }
4725 }
4726
29d6859f 4727 if (waits_needed == 0)
372316f1
PA
4728 break;
4729
4730 /* If we find new threads on the second iteration, restart
4731 over. We want to see two iterations in a row with all
4732 threads stopped. */
4733 if (pass > 0)
4734 pass = -1;
4735
29d6859f 4736 for (int i = 0; i < waits_needed; i++)
c29705b7 4737 {
29d6859f 4738 wait_one_event event = wait_one ();
a05575d3 4739
edbcda09
SM
4740 infrun_log_debug ("%s %s\n",
4741 target_waitstatus_to_string (&event.ws).c_str (),
4742 target_pid_to_str (event.ptid).c_str ());
a05575d3 4743
29d6859f 4744 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
a05575d3 4745 {
29d6859f
LM
4746 /* All resumed threads exited. */
4747 break;
a05575d3 4748 }
29d6859f
LM
4749 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4750 || event.ws.kind == TARGET_WAITKIND_EXITED
4751 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
6efcd9a8 4752 {
29d6859f 4753 /* One thread/process exited/signalled. */
6efcd9a8 4754
29d6859f 4755 thread_info *t = nullptr;
372316f1 4756
29d6859f
LM
4757 /* The target may have reported just a pid. If so, try
4758 the first non-exited thread. */
4759 if (event.ptid.is_pid ())
372316f1 4760 {
29d6859f
LM
4761 int pid = event.ptid.pid ();
4762 inferior *inf = find_inferior_pid (event.target, pid);
4763 for (thread_info *tp : inf->non_exited_threads ())
372316f1 4764 {
29d6859f
LM
4765 t = tp;
4766 break;
372316f1 4767 }
29d6859f
LM
4768
4769 /* If there is no available thread, the event would
4770 have to be appended to a per-inferior event list,
4771 which does not exist (and if it did, we'd have
4772 to adjust run control command to be able to
4773 resume such an inferior). We assert here instead
4774 of going into an infinite loop. */
4775 gdb_assert (t != nullptr);
4776
edbcda09
SM
4777 infrun_log_debug ("using %s\n",
4778 target_pid_to_str (t->ptid).c_str ());
29d6859f
LM
4779 }
4780 else
4781 {
4782 t = find_thread_ptid (event.target, event.ptid);
4783 /* Check if this is the first time we see this thread.
4784 Don't bother adding if it individually exited. */
4785 if (t == nullptr
4786 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4787 t = add_thread (event.target, event.ptid);
4788 }
4789
4790 if (t != nullptr)
4791 {
4792 /* Set the threads as non-executing to avoid
4793 another stop attempt on them. */
4794 switch_to_thread_no_regs (t);
4795 mark_non_executing_threads (event.target, event.ptid,
4796 event.ws);
4797 save_waitstatus (t, &event.ws);
4798 t->stop_requested = false;
372316f1
PA
4799 }
4800 }
4801 else
4802 {
29d6859f
LM
4803 thread_info *t = find_thread_ptid (event.target, event.ptid);
4804 if (t == NULL)
4805 t = add_thread (event.target, event.ptid);
372316f1 4806
29d6859f
LM
4807 t->stop_requested = 0;
4808 t->executing = 0;
4809 t->resumed = false;
4810 t->control.may_range_step = 0;
4811
4812 /* This may be the first time we see the inferior report
4813 a stop. */
4814 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4815 if (inf->needs_setup)
372316f1 4816 {
29d6859f
LM
4817 switch_to_thread_no_regs (t);
4818 setup_inferior (0);
372316f1
PA
4819 }
4820
29d6859f
LM
4821 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4822 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1 4823 {
29d6859f
LM
4824 /* We caught the event that we intended to catch, so
4825 there's no event pending. */
4826 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4827 t->suspend.waitstatus_pending_p = 0;
4828
9844051a 4829 if (displaced_step_finish (t, GDB_SIGNAL_0) < 0)
29d6859f
LM
4830 {
4831 /* Add it back to the step-over queue. */
edbcda09
SM
4832 infrun_log_debug ("displaced-step of %s "
4833 "canceled: adding back to the "
4834 "step-over queue\n",
4835 target_pid_to_str (t->ptid).c_str ());
4836
29d6859f 4837 t->control.trap_expected = 0;
7bd43605 4838 global_thread_step_over_chain_enqueue (t);
29d6859f 4839 }
372316f1 4840 }
29d6859f
LM
4841 else
4842 {
4843 enum gdb_signal sig;
4844 struct regcache *regcache;
372316f1 4845
29d6859f
LM
4846 if (debug_infrun)
4847 {
4848 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4849
edbcda09
SM
4850 infrun_log_debug ("target_wait %s, saving "
4851 "status for %d.%ld.%ld\n",
4852 statstr.c_str (),
4853 t->ptid.pid (),
4854 t->ptid.lwp (),
4855 t->ptid.tid ());
29d6859f
LM
4856 }
4857
4858 /* Record for later. */
4859 save_waitstatus (t, &event.ws);
4860
4861 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4862 ? event.ws.value.sig : GDB_SIGNAL_0);
4863
9844051a 4864 if (displaced_step_finish (t, sig) < 0)
29d6859f
LM
4865 {
4866 /* Add it back to the step-over queue. */
4867 t->control.trap_expected = 0;
7bd43605 4868 global_thread_step_over_chain_enqueue (t);
29d6859f
LM
4869 }
4870
4871 regcache = get_thread_regcache (t);
4872 t->suspend.stop_pc = regcache_read_pc (regcache);
4873
edbcda09
SM
4874 infrun_log_debug ("saved stop_pc=%s for %s "
4875 "(currently_stepping=%d)\n",
4876 paddress (target_gdbarch (),
4877 t->suspend.stop_pc),
4878 target_pid_to_str (t->ptid).c_str (),
4879 currently_stepping (t));
372316f1
PA
4880 }
4881 }
4882 }
4883 }
4884 }
372316f1
PA
4885}
4886
f4836ba9
PA
4887/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4888
4889static int
4890handle_no_resumed (struct execution_control_state *ecs)
4891{
3b12939d 4892 if (target_can_async_p ())
f4836ba9 4893 {
3b12939d 4894 int any_sync = 0;
f4836ba9 4895
2dab0c7b 4896 for (ui *ui : all_uis ())
3b12939d
PA
4897 {
4898 if (ui->prompt_state == PROMPT_BLOCKED)
4899 {
4900 any_sync = 1;
4901 break;
4902 }
4903 }
4904 if (!any_sync)
4905 {
4906 /* There were no unwaited-for children left in the target, but,
4907 we're not synchronously waiting for events either. Just
4908 ignore. */
4909
edbcda09 4910 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
3b12939d
PA
4911 prepare_to_wait (ecs);
4912 return 1;
4913 }
f4836ba9
PA
4914 }
4915
4916 /* Otherwise, if we were running a synchronous execution command, we
4917 may need to cancel it and give the user back the terminal.
4918
4919 In non-stop mode, the target can't tell whether we've already
4920 consumed previous stop events, so it can end up sending us a
4921 no-resumed event like so:
4922
4923 #0 - thread 1 is left stopped
4924
4925 #1 - thread 2 is resumed and hits breakpoint
4926 -> TARGET_WAITKIND_STOPPED
4927
4928 #2 - thread 3 is resumed and exits
4929 this is the last resumed thread, so
4930 -> TARGET_WAITKIND_NO_RESUMED
4931
4932 #3 - gdb processes stop for thread 2 and decides to re-resume
4933 it.
4934
4935 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4936 thread 2 is now resumed, so the event should be ignored.
4937
4938 IOW, if the stop for thread 2 doesn't end a foreground command,
4939 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4940 event. But it could be that the event meant that thread 2 itself
4941 (or whatever other thread was the last resumed thread) exited.
4942
4943 To address this we refresh the thread list and check whether we
4944 have resumed threads _now_. In the example above, this removes
4945 thread 3 from the thread list. If thread 2 was re-resumed, we
4946 ignore this event. If we find no thread resumed, then we cancel
2ec0f7ff
PA
4947 the synchronous command and show "no unwaited-for " to the
4948 user. */
f4836ba9 4949
aecd6cb8 4950 inferior *curr_inf = current_inferior ();
2ec0f7ff 4951
aecd6cb8
PA
4952 scoped_restore_current_thread restore_thread;
4953
4954 for (auto *target : all_non_exited_process_targets ())
4955 {
4956 switch_to_target_no_thread (target);
4957 update_thread_list ();
4958 }
4959
4960 /* If:
4961
4962 - the current target has no thread executing, and
4963 - the current inferior is native, and
4964 - the current inferior is the one which has the terminal, and
4965 - we did nothing,
4966
4967 then a Ctrl-C from this point on would remain stuck in the
4968 kernel, until a thread resumes and dequeues it. That would
4969 result in the GDB CLI not reacting to Ctrl-C, not able to
4970 interrupt the program. To address this, if the current inferior
4971 no longer has any thread executing, we give the terminal to some
4972 other inferior that has at least one thread executing. */
4973 bool swap_terminal = true;
4974
4975 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4976 whether to report it to the user. */
4977 bool ignore_event = false;
2ec0f7ff
PA
4978
4979 for (thread_info *thread : all_non_exited_threads ())
f4836ba9 4980 {
aecd6cb8
PA
4981 if (swap_terminal && thread->executing)
4982 {
4983 if (thread->inf != curr_inf)
4984 {
4985 target_terminal::ours ();
4986
4987 switch_to_thread (thread);
4988 target_terminal::inferior ();
4989 }
4990 swap_terminal = false;
4991 }
4992
4993 if (!ignore_event
4994 && (thread->executing
4995 || thread->suspend.waitstatus_pending_p))
f4836ba9 4996 {
2ec0f7ff
PA
4997 /* Either there were no unwaited-for children left in the
4998 target at some point, but there are now, or some target
4999 other than the eventing one has unwaited-for children
5000 left. Just ignore. */
edbcda09
SM
5001 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED "
5002 "(ignoring: found resumed)\n");
aecd6cb8
PA
5003
5004 ignore_event = true;
f4836ba9 5005 }
aecd6cb8
PA
5006
5007 if (ignore_event && !swap_terminal)
5008 break;
5009 }
5010
5011 if (ignore_event)
5012 {
5013 switch_to_inferior_no_thread (curr_inf);
5014 prepare_to_wait (ecs);
5015 return 1;
f4836ba9
PA
5016 }
5017
5018 /* Go ahead and report the event. */
5019 return 0;
5020}
5021
05ba8510
PA
5022/* Given an execution control state that has been freshly filled in by
5023 an event from the inferior, figure out what it means and take
5024 appropriate action.
5025
5026 The alternatives are:
5027
22bcd14b 5028 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5029 debugger.
5030
5031 2) keep_going and return; to wait for the next event (set
5032 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5033 once). */
c906108c 5034
ec9499be 5035static void
595915c1 5036handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5037{
595915c1
TT
5038 /* Make sure that all temporary struct value objects that were
5039 created during the handling of the event get deleted at the
5040 end. */
5041 scoped_value_mark free_values;
5042
d6b48e9c
PA
5043 enum stop_kind stop_soon;
5044
edbcda09 5045 infrun_log_debug ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
c29705b7 5046
28736962
PA
5047 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5048 {
5049 /* We had an event in the inferior, but we are not interested in
5050 handling it at this level. The lower layers have already
5051 done what needs to be done, if anything.
5052
5053 One of the possible circumstances for this is when the
5054 inferior produces output for the console. The inferior has
5055 not stopped, and we are ignoring the event. Another possible
5056 circumstance is any event which the lower level knows will be
5057 reported multiple times without an intervening resume. */
28736962
PA
5058 prepare_to_wait (ecs);
5059 return;
5060 }
5061
65706a29
PA
5062 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5063 {
65706a29
PA
5064 prepare_to_wait (ecs);
5065 return;
5066 }
5067
0e5bf2a8 5068 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5069 && handle_no_resumed (ecs))
5070 return;
0e5bf2a8 5071
5b6d1e4f
PA
5072 /* Cache the last target/ptid/waitstatus. */
5073 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5074
ca005067 5075 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5076 stop_stack_dummy = STOP_NONE;
ca005067 5077
0e5bf2a8
PA
5078 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5079 {
5080 /* No unwaited-for children left. IOW, all resumed children
5081 have exited. */
0e5bf2a8 5082 stop_print_frame = 0;
22bcd14b 5083 stop_waiting (ecs);
0e5bf2a8
PA
5084 return;
5085 }
5086
8c90c137 5087 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5088 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5089 {
5b6d1e4f 5090 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5091 /* If it's a new thread, add it to the thread database. */
5092 if (ecs->event_thread == NULL)
5b6d1e4f 5093 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5094
5095 /* Disable range stepping. If the next step request could use a
5096 range, this will be end up re-enabled then. */
5097 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5098 }
88ed393a
JK
5099
5100 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5101 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5102
5103 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5104 reinit_frame_cache ();
5105
28736962
PA
5106 breakpoint_retire_moribund ();
5107
2b009048
DJ
5108 /* First, distinguish signals caused by the debugger from signals
5109 that have to do with the program's own actions. Note that
5110 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5111 on the operating system version. Here we detect when a SIGILL or
5112 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5113 something similar for SIGSEGV, since a SIGSEGV will be generated
5114 when we're trying to execute a breakpoint instruction on a
5115 non-executable stack. This happens for call dummy breakpoints
5116 for architectures like SPARC that place call dummies on the
5117 stack. */
2b009048 5118 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5119 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5120 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5121 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5122 {
00431a78 5123 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5124
a01bda52 5125 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5126 regcache_read_pc (regcache)))
5127 {
edbcda09 5128 infrun_log_debug ("Treating signal as SIGTRAP");
a493e3e2 5129 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5130 }
2b009048
DJ
5131 }
5132
293b3ebc 5133 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5134
488f131b
JB
5135 switch (ecs->ws.kind)
5136 {
5137 case TARGET_WAITKIND_LOADED:
00431a78 5138 context_switch (ecs);
b0f4b84b
DJ
5139 /* Ignore gracefully during startup of the inferior, as it might
5140 be the shell which has just loaded some objects, otherwise
5141 add the symbols for the newly loaded objects. Also ignore at
5142 the beginning of an attach or remote session; we will query
5143 the full list of libraries once the connection is
5144 established. */
4f5d7f63 5145
00431a78 5146 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5147 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5148 {
edcc5120
TT
5149 struct regcache *regcache;
5150
00431a78 5151 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5152
5153 handle_solib_event ();
5154
5155 ecs->event_thread->control.stop_bpstat
a01bda52 5156 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5157 ecs->event_thread->suspend.stop_pc,
5158 ecs->event_thread, &ecs->ws);
ab04a2af 5159
c65d6b55
PA
5160 if (handle_stop_requested (ecs))
5161 return;
5162
ce12b012 5163 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5164 {
5165 /* A catchpoint triggered. */
94c57d6a
PA
5166 process_event_stop_test (ecs);
5167 return;
edcc5120 5168 }
488f131b 5169
b0f4b84b
DJ
5170 /* If requested, stop when the dynamic linker notifies
5171 gdb of events. This allows the user to get control
5172 and place breakpoints in initializer routines for
5173 dynamically loaded objects (among other things). */
a493e3e2 5174 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5175 if (stop_on_solib_events)
5176 {
55409f9d
DJ
5177 /* Make sure we print "Stopped due to solib-event" in
5178 normal_stop. */
5179 stop_print_frame = 1;
5180
22bcd14b 5181 stop_waiting (ecs);
b0f4b84b
DJ
5182 return;
5183 }
488f131b 5184 }
b0f4b84b
DJ
5185
5186 /* If we are skipping through a shell, or through shared library
5187 loading that we aren't interested in, resume the program. If
5c09a2c5 5188 we're running the program normally, also resume. */
b0f4b84b
DJ
5189 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5190 {
74960c60
VP
5191 /* Loading of shared libraries might have changed breakpoint
5192 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5193 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5194 insert_breakpoints ();
64ce06e4 5195 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5196 prepare_to_wait (ecs);
5197 return;
5198 }
5199
5c09a2c5
PA
5200 /* But stop if we're attaching or setting up a remote
5201 connection. */
5202 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5203 || stop_soon == STOP_QUIETLY_REMOTE)
5204 {
edbcda09 5205 infrun_log_debug ("quietly stopped");
22bcd14b 5206 stop_waiting (ecs);
5c09a2c5
PA
5207 return;
5208 }
5209
5210 internal_error (__FILE__, __LINE__,
5211 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5212
488f131b 5213 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5214 if (handle_stop_requested (ecs))
5215 return;
00431a78 5216 context_switch (ecs);
64ce06e4 5217 resume (GDB_SIGNAL_0);
488f131b
JB
5218 prepare_to_wait (ecs);
5219 return;
c5aa993b 5220
65706a29 5221 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5222 if (handle_stop_requested (ecs))
5223 return;
00431a78 5224 context_switch (ecs);
65706a29
PA
5225 if (!switch_back_to_stepped_thread (ecs))
5226 keep_going (ecs);
5227 return;
5228
488f131b 5229 case TARGET_WAITKIND_EXITED:
940c3c06 5230 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5231 {
5232 /* Depending on the system, ecs->ptid may point to a thread or
5233 to a process. On some targets, target_mourn_inferior may
5234 need to have access to the just-exited thread. That is the
5235 case of GNU/Linux's "checkpoint" support, for example.
5236 Call the switch_to_xxx routine as appropriate. */
5237 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5238 if (thr != nullptr)
5239 switch_to_thread (thr);
5240 else
5241 {
5242 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5243 switch_to_inferior_no_thread (inf);
5244 }
5245 }
6c95b8df 5246 handle_vfork_child_exec_or_exit (0);
223ffa71 5247 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5248
0c557179
SDJ
5249 /* Clearing any previous state of convenience variables. */
5250 clear_exit_convenience_vars ();
5251
940c3c06
PA
5252 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5253 {
5254 /* Record the exit code in the convenience variable $_exitcode, so
5255 that the user can inspect this again later. */
5256 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5257 (LONGEST) ecs->ws.value.integer);
5258
5259 /* Also record this in the inferior itself. */
5260 current_inferior ()->has_exit_code = 1;
5261 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5262
98eb56a4
PA
5263 /* Support the --return-child-result option. */
5264 return_child_result_value = ecs->ws.value.integer;
5265
76727919 5266 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5267 }
5268 else
0c557179 5269 {
00431a78 5270 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5271
5272 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5273 {
5274 /* Set the value of the internal variable $_exitsignal,
5275 which holds the signal uncaught by the inferior. */
5276 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5277 gdbarch_gdb_signal_to_target (gdbarch,
5278 ecs->ws.value.sig));
5279 }
5280 else
5281 {
5282 /* We don't have access to the target's method used for
5283 converting between signal numbers (GDB's internal
5284 representation <-> target's representation).
5285 Therefore, we cannot do a good job at displaying this
5286 information to the user. It's better to just warn
5287 her about it (if infrun debugging is enabled), and
5288 give up. */
edbcda09
SM
5289 infrun_log_debug ("Cannot fill $_exitsignal with the correct "
5290 "signal number.");
0c557179
SDJ
5291 }
5292
76727919 5293 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5294 }
8cf64490 5295
488f131b 5296 gdb_flush (gdb_stdout);
bc1e6c81 5297 target_mourn_inferior (inferior_ptid);
488f131b 5298 stop_print_frame = 0;
22bcd14b 5299 stop_waiting (ecs);
488f131b 5300 return;
c5aa993b 5301
488f131b 5302 case TARGET_WAITKIND_FORKED:
deb3b17b 5303 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5304 /* Check whether the inferior is displaced stepping. */
5305 {
00431a78 5306 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5307 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5308
5309 /* If checking displaced stepping is supported, and thread
5310 ecs->ptid is displaced stepping. */
9844051a 5311 if (displaced_step_in_progress (ecs->event_thread))
e2d96639
YQ
5312 {
5313 struct inferior *parent_inf
5b6d1e4f 5314 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5315 struct regcache *child_regcache;
5316 CORE_ADDR parent_pc;
5317
d8d83535
SM
5318 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5319 {
9844051a
SM
5320 // struct displaced_step_inferior_state *displaced
5321 // = get_displaced_stepping_state (parent_inf);
d8d83535
SM
5322
5323 /* Restore scratch pad for child process. */
9844051a
SM
5324 //displaced_step_restore (displaced, ecs->ws.value.related_pid);
5325 // FIXME: we should restore all the buffers that were currently in use
d8d83535
SM
5326 }
5327
e2d96639
YQ
5328 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5329 indicating that the displaced stepping of syscall instruction
5330 has been done. Perform cleanup for parent process here. Note
5331 that this operation also cleans up the child process for vfork,
5332 because their pages are shared. */
9844051a 5333 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5334 /* Start a new step-over in another thread if there's one
5335 that needs it. */
5336 start_step_over ();
e2d96639 5337
e2d96639
YQ
5338 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5339 the child's PC is also within the scratchpad. Set the child's PC
5340 to the parent's PC value, which has already been fixed up.
5341 FIXME: we use the parent's aspace here, although we're touching
5342 the child, because the child hasn't been added to the inferior
5343 list yet at this point. */
5344
5345 child_regcache
5b6d1e4f
PA
5346 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5347 ecs->ws.value.related_pid,
e2d96639
YQ
5348 gdbarch,
5349 parent_inf->aspace);
5350 /* Read PC value of parent process. */
5351 parent_pc = regcache_read_pc (regcache);
5352
5353 if (debug_displaced)
5354 fprintf_unfiltered (gdb_stdlog,
5355 "displaced: write child pc from %s to %s\n",
5356 paddress (gdbarch,
5357 regcache_read_pc (child_regcache)),
5358 paddress (gdbarch, parent_pc));
5359
5360 regcache_write_pc (child_regcache, parent_pc);
5361 }
5362 }
5363
00431a78 5364 context_switch (ecs);
5a2901d9 5365
b242c3c2
PA
5366 /* Immediately detach breakpoints from the child before there's
5367 any chance of letting the user delete breakpoints from the
5368 breakpoint lists. If we don't do this early, it's easy to
5369 leave left over traps in the child, vis: "break foo; catch
5370 fork; c; <fork>; del; c; <child calls foo>". We only follow
5371 the fork on the last `continue', and by that time the
5372 breakpoint at "foo" is long gone from the breakpoint table.
5373 If we vforked, then we don't need to unpatch here, since both
5374 parent and child are sharing the same memory pages; we'll
5375 need to unpatch at follow/detach time instead to be certain
5376 that new breakpoints added between catchpoint hit time and
5377 vfork follow are detached. */
5378 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5379 {
b242c3c2
PA
5380 /* This won't actually modify the breakpoint list, but will
5381 physically remove the breakpoints from the child. */
d80ee84f 5382 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5383 }
5384
34b7e8a6 5385 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5386
e58b0e63
PA
5387 /* In case the event is caught by a catchpoint, remember that
5388 the event is to be followed at the next resume of the thread,
5389 and not immediately. */
5390 ecs->event_thread->pending_follow = ecs->ws;
5391
f2ffa92b
PA
5392 ecs->event_thread->suspend.stop_pc
5393 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5394
16c381f0 5395 ecs->event_thread->control.stop_bpstat
a01bda52 5396 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5397 ecs->event_thread->suspend.stop_pc,
5398 ecs->event_thread, &ecs->ws);
675bf4cb 5399
c65d6b55
PA
5400 if (handle_stop_requested (ecs))
5401 return;
5402
ce12b012
PA
5403 /* If no catchpoint triggered for this, then keep going. Note
5404 that we're interested in knowing the bpstat actually causes a
5405 stop, not just if it may explain the signal. Software
5406 watchpoints, for example, always appear in the bpstat. */
5407 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5408 {
5ab2fbf1 5409 bool follow_child
3e43a32a 5410 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5411
a493e3e2 5412 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5413
5b6d1e4f
PA
5414 process_stratum_target *targ
5415 = ecs->event_thread->inf->process_target ();
5416
5ab2fbf1 5417 bool should_resume = follow_fork ();
e58b0e63 5418
5b6d1e4f
PA
5419 /* Note that one of these may be an invalid pointer,
5420 depending on detach_fork. */
00431a78 5421 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5422 thread_info *child
5423 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5424
a2077e25
PA
5425 /* At this point, the parent is marked running, and the
5426 child is marked stopped. */
5427
5428 /* If not resuming the parent, mark it stopped. */
5429 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5430 parent->set_running (false);
a2077e25
PA
5431
5432 /* If resuming the child, mark it running. */
5433 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5434 child->set_running (true);
a2077e25 5435
6c95b8df 5436 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5437 if (!detach_fork && (non_stop
5438 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5439 {
5440 if (follow_child)
5441 switch_to_thread (parent);
5442 else
5443 switch_to_thread (child);
5444
5445 ecs->event_thread = inferior_thread ();
5446 ecs->ptid = inferior_ptid;
5447 keep_going (ecs);
5448 }
5449
5450 if (follow_child)
5451 switch_to_thread (child);
5452 else
5453 switch_to_thread (parent);
5454
e58b0e63
PA
5455 ecs->event_thread = inferior_thread ();
5456 ecs->ptid = inferior_ptid;
5457
5458 if (should_resume)
5459 keep_going (ecs);
5460 else
22bcd14b 5461 stop_waiting (ecs);
04e68871
DJ
5462 return;
5463 }
94c57d6a
PA
5464 process_event_stop_test (ecs);
5465 return;
488f131b 5466
6c95b8df
PA
5467 case TARGET_WAITKIND_VFORK_DONE:
5468 /* Done with the shared memory region. Re-insert breakpoints in
5469 the parent, and keep going. */
5470
00431a78 5471 context_switch (ecs);
6c95b8df
PA
5472
5473 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5474 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5475
5476 if (handle_stop_requested (ecs))
5477 return;
5478
6c95b8df
PA
5479 /* This also takes care of reinserting breakpoints in the
5480 previously locked inferior. */
5481 keep_going (ecs);
5482 return;
5483
488f131b 5484 case TARGET_WAITKIND_EXECD:
488f131b 5485
cbd2b4e3
PA
5486 /* Note we can't read registers yet (the stop_pc), because we
5487 don't yet know the inferior's post-exec architecture.
5488 'stop_pc' is explicitly read below instead. */
00431a78 5489 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5490
6c95b8df
PA
5491 /* Do whatever is necessary to the parent branch of the vfork. */
5492 handle_vfork_child_exec_or_exit (1);
5493
795e548f
PA
5494 /* This causes the eventpoints and symbol table to be reset.
5495 Must do this now, before trying to determine whether to
5496 stop. */
71b43ef8 5497 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5498
17d8546e
DB
5499 /* In follow_exec we may have deleted the original thread and
5500 created a new one. Make sure that the event thread is the
5501 execd thread for that case (this is a nop otherwise). */
5502 ecs->event_thread = inferior_thread ();
5503
f2ffa92b
PA
5504 ecs->event_thread->suspend.stop_pc
5505 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5506
16c381f0 5507 ecs->event_thread->control.stop_bpstat
a01bda52 5508 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5509 ecs->event_thread->suspend.stop_pc,
5510 ecs->event_thread, &ecs->ws);
795e548f 5511
71b43ef8
PA
5512 /* Note that this may be referenced from inside
5513 bpstat_stop_status above, through inferior_has_execd. */
5514 xfree (ecs->ws.value.execd_pathname);
5515 ecs->ws.value.execd_pathname = NULL;
5516
c65d6b55
PA
5517 if (handle_stop_requested (ecs))
5518 return;
5519
04e68871 5520 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5521 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5522 {
a493e3e2 5523 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5524 keep_going (ecs);
5525 return;
5526 }
94c57d6a
PA
5527 process_event_stop_test (ecs);
5528 return;
488f131b 5529
b4dc5ffa
MK
5530 /* Be careful not to try to gather much state about a thread
5531 that's in a syscall. It's frequently a losing proposition. */
488f131b 5532 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5533 /* Getting the current syscall number. */
94c57d6a
PA
5534 if (handle_syscall_event (ecs) == 0)
5535 process_event_stop_test (ecs);
5536 return;
c906108c 5537
488f131b
JB
5538 /* Before examining the threads further, step this thread to
5539 get it entirely out of the syscall. (We get notice of the
5540 event when the thread is just on the verge of exiting a
5541 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5542 into user code.) */
488f131b 5543 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5544 if (handle_syscall_event (ecs) == 0)
5545 process_event_stop_test (ecs);
5546 return;
c906108c 5547
488f131b 5548 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5549 handle_signal_stop (ecs);
5550 return;
c906108c 5551
b2175913
MS
5552 case TARGET_WAITKIND_NO_HISTORY:
5553 /* Reverse execution: target ran out of history info. */
eab402df 5554
d1988021 5555 /* Switch to the stopped thread. */
00431a78 5556 context_switch (ecs);
edbcda09 5557 infrun_log_debug ("stopped");
d1988021 5558
34b7e8a6 5559 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5560 ecs->event_thread->suspend.stop_pc
5561 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5562
5563 if (handle_stop_requested (ecs))
5564 return;
5565
76727919 5566 gdb::observers::no_history.notify ();
22bcd14b 5567 stop_waiting (ecs);
b2175913 5568 return;
488f131b 5569 }
4f5d7f63
PA
5570}
5571
372316f1
PA
5572/* Restart threads back to what they were trying to do back when we
5573 paused them for an in-line step-over. The EVENT_THREAD thread is
5574 ignored. */
4d9d9d04
PA
5575
5576static void
372316f1
PA
5577restart_threads (struct thread_info *event_thread)
5578{
372316f1
PA
5579 /* In case the instruction just stepped spawned a new thread. */
5580 update_thread_list ();
5581
08036331 5582 for (thread_info *tp : all_non_exited_threads ())
372316f1 5583 {
f3f8ece4
PA
5584 switch_to_thread_no_regs (tp);
5585
372316f1
PA
5586 if (tp == event_thread)
5587 {
edbcda09
SM
5588 infrun_log_debug ("restart threads: [%s] is event thread",
5589 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5590 continue;
5591 }
5592
5593 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5594 {
edbcda09
SM
5595 infrun_log_debug ("restart threads: [%s] not meant to be running",
5596 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5597 continue;
5598 }
5599
5600 if (tp->resumed)
5601 {
edbcda09
SM
5602 infrun_log_debug ("restart threads: [%s] resumed",
5603 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5604 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5605 continue;
5606 }
5607
5608 if (thread_is_in_step_over_chain (tp))
5609 {
edbcda09
SM
5610 infrun_log_debug ("restart threads: [%s] needs step-over",
5611 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5612 gdb_assert (!tp->resumed);
5613 continue;
5614 }
5615
5616
5617 if (tp->suspend.waitstatus_pending_p)
5618 {
edbcda09
SM
5619 infrun_log_debug ("restart threads: [%s] has pending status",
5620 target_pid_to_str (tp->ptid).c_str ());
719546c4 5621 tp->resumed = true;
372316f1
PA
5622 continue;
5623 }
5624
c65d6b55
PA
5625 gdb_assert (!tp->stop_requested);
5626
372316f1
PA
5627 /* If some thread needs to start a step-over at this point, it
5628 should still be in the step-over queue, and thus skipped
5629 above. */
5630 if (thread_still_needs_step_over (tp))
5631 {
5632 internal_error (__FILE__, __LINE__,
5633 "thread [%s] needs a step-over, but not in "
5634 "step-over queue\n",
a068643d 5635 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5636 }
5637
5638 if (currently_stepping (tp))
5639 {
edbcda09
SM
5640 infrun_log_debug ("restart threads: [%s] was stepping",
5641 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5642 keep_going_stepped_thread (tp);
5643 }
5644 else
5645 {
5646 struct execution_control_state ecss;
5647 struct execution_control_state *ecs = &ecss;
5648
edbcda09
SM
5649 infrun_log_debug ("restart threads: [%s] continuing",
5650 target_pid_to_str (tp->ptid).c_str ());
372316f1 5651 reset_ecs (ecs, tp);
00431a78 5652 switch_to_thread (tp);
372316f1
PA
5653 keep_going_pass_signal (ecs);
5654 }
5655 }
5656}
5657
5658/* Callback for iterate_over_threads. Find a resumed thread that has
5659 a pending waitstatus. */
5660
5661static int
5662resumed_thread_with_pending_status (struct thread_info *tp,
5663 void *arg)
5664{
5665 return (tp->resumed
5666 && tp->suspend.waitstatus_pending_p);
5667}
5668
5669/* Called when we get an event that may finish an in-line or
5670 out-of-line (displaced stepping) step-over started previously.
5671 Return true if the event is processed and we should go back to the
5672 event loop; false if the caller should continue processing the
5673 event. */
5674
5675static int
4d9d9d04
PA
5676finish_step_over (struct execution_control_state *ecs)
5677{
372316f1
PA
5678 int had_step_over_info;
5679
9844051a
SM
5680 displaced_step_finish (ecs->event_thread,
5681 ecs->event_thread->suspend.stop_signal);
4d9d9d04 5682
372316f1
PA
5683 had_step_over_info = step_over_info_valid_p ();
5684
5685 if (had_step_over_info)
4d9d9d04
PA
5686 {
5687 /* If we're stepping over a breakpoint with all threads locked,
5688 then only the thread that was stepped should be reporting
5689 back an event. */
5690 gdb_assert (ecs->event_thread->control.trap_expected);
5691
c65d6b55 5692 clear_step_over_info ();
4d9d9d04
PA
5693 }
5694
fbea99ea 5695 if (!target_is_non_stop_p ())
372316f1 5696 return 0;
4d9d9d04
PA
5697
5698 /* Start a new step-over in another thread if there's one that
5699 needs it. */
5700 start_step_over ();
372316f1
PA
5701
5702 /* If we were stepping over a breakpoint before, and haven't started
5703 a new in-line step-over sequence, then restart all other threads
5704 (except the event thread). We can't do this in all-stop, as then
5705 e.g., we wouldn't be able to issue any other remote packet until
5706 these other threads stop. */
5707 if (had_step_over_info && !step_over_info_valid_p ())
5708 {
5709 struct thread_info *pending;
5710
5711 /* If we only have threads with pending statuses, the restart
5712 below won't restart any thread and so nothing re-inserts the
5713 breakpoint we just stepped over. But we need it inserted
5714 when we later process the pending events, otherwise if
5715 another thread has a pending event for this breakpoint too,
5716 we'd discard its event (because the breakpoint that
5717 originally caused the event was no longer inserted). */
00431a78 5718 context_switch (ecs);
372316f1
PA
5719 insert_breakpoints ();
5720
5721 restart_threads (ecs->event_thread);
5722
5723 /* If we have events pending, go through handle_inferior_event
5724 again, picking up a pending event at random. This avoids
5725 thread starvation. */
5726
5727 /* But not if we just stepped over a watchpoint in order to let
5728 the instruction execute so we can evaluate its expression.
5729 The set of watchpoints that triggered is recorded in the
5730 breakpoint objects themselves (see bp->watchpoint_triggered).
5731 If we processed another event first, that other event could
5732 clobber this info. */
5733 if (ecs->event_thread->stepping_over_watchpoint)
5734 return 0;
5735
5736 pending = iterate_over_threads (resumed_thread_with_pending_status,
5737 NULL);
5738 if (pending != NULL)
5739 {
5740 struct thread_info *tp = ecs->event_thread;
5741 struct regcache *regcache;
5742
edbcda09
SM
5743 infrun_log_debug ("found resumed threads with "
5744 "pending events, saving status");
372316f1
PA
5745
5746 gdb_assert (pending != tp);
5747
5748 /* Record the event thread's event for later. */
5749 save_waitstatus (tp, &ecs->ws);
5750 /* This was cleared early, by handle_inferior_event. Set it
5751 so this pending event is considered by
5752 do_target_wait. */
719546c4 5753 tp->resumed = true;
372316f1
PA
5754
5755 gdb_assert (!tp->executing);
5756
00431a78 5757 regcache = get_thread_regcache (tp);
372316f1
PA
5758 tp->suspend.stop_pc = regcache_read_pc (regcache);
5759
edbcda09
SM
5760 infrun_log_debug ("saved stop_pc=%s for %s "
5761 "(currently_stepping=%d)\n",
5762 paddress (target_gdbarch (),
5763 tp->suspend.stop_pc),
5764 target_pid_to_str (tp->ptid).c_str (),
5765 currently_stepping (tp));
372316f1
PA
5766
5767 /* This in-line step-over finished; clear this so we won't
5768 start a new one. This is what handle_signal_stop would
5769 do, if we returned false. */
5770 tp->stepping_over_breakpoint = 0;
5771
5772 /* Wake up the event loop again. */
5773 mark_async_event_handler (infrun_async_inferior_event_token);
5774
5775 prepare_to_wait (ecs);
5776 return 1;
5777 }
5778 }
5779
5780 return 0;
4d9d9d04
PA
5781}
5782
4f5d7f63
PA
5783/* Come here when the program has stopped with a signal. */
5784
5785static void
5786handle_signal_stop (struct execution_control_state *ecs)
5787{
5788 struct frame_info *frame;
5789 struct gdbarch *gdbarch;
5790 int stopped_by_watchpoint;
5791 enum stop_kind stop_soon;
5792 int random_signal;
c906108c 5793
f0407826
DE
5794 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5795
c65d6b55
PA
5796 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5797
f0407826
DE
5798 /* Do we need to clean up the state of a thread that has
5799 completed a displaced single-step? (Doing so usually affects
5800 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5801 if (finish_step_over (ecs))
5802 return;
f0407826
DE
5803
5804 /* If we either finished a single-step or hit a breakpoint, but
5805 the user wanted this thread to be stopped, pretend we got a
5806 SIG0 (generic unsignaled stop). */
5807 if (ecs->event_thread->stop_requested
5808 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5809 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5810
f2ffa92b
PA
5811 ecs->event_thread->suspend.stop_pc
5812 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5813
527159b7 5814 if (debug_infrun)
237fc4c9 5815 {
00431a78 5816 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5817 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5818
f3f8ece4 5819 switch_to_thread (ecs->event_thread);
5af949e3 5820
edbcda09
SM
5821 infrun_log_debug ("stop_pc=%s",
5822 paddress (reg_gdbarch,
5823 ecs->event_thread->suspend.stop_pc));
d92524f1 5824 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5825 {
5826 CORE_ADDR addr;
abbb1732 5827
edbcda09 5828 infrun_log_debug ("stopped by watchpoint");
237fc4c9 5829
8b88a78e 5830 if (target_stopped_data_address (current_top_target (), &addr))
edbcda09
SM
5831 infrun_log_debug ("stopped data address=%s",
5832 paddress (reg_gdbarch, addr));
237fc4c9 5833 else
edbcda09 5834 infrun_log_debug ("(no data address available)");
237fc4c9
PA
5835 }
5836 }
527159b7 5837
36fa8042
PA
5838 /* This is originated from start_remote(), start_inferior() and
5839 shared libraries hook functions. */
00431a78 5840 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5841 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5842 {
00431a78 5843 context_switch (ecs);
edbcda09 5844 infrun_log_debug ("quietly stopped");
36fa8042 5845 stop_print_frame = 1;
22bcd14b 5846 stop_waiting (ecs);
36fa8042
PA
5847 return;
5848 }
5849
36fa8042
PA
5850 /* This originates from attach_command(). We need to overwrite
5851 the stop_signal here, because some kernels don't ignore a
5852 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5853 See more comments in inferior.h. On the other hand, if we
5854 get a non-SIGSTOP, report it to the user - assume the backend
5855 will handle the SIGSTOP if it should show up later.
5856
5857 Also consider that the attach is complete when we see a
5858 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5859 target extended-remote report it instead of a SIGSTOP
5860 (e.g. gdbserver). We already rely on SIGTRAP being our
5861 signal, so this is no exception.
5862
5863 Also consider that the attach is complete when we see a
5864 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5865 the target to stop all threads of the inferior, in case the
5866 low level attach operation doesn't stop them implicitly. If
5867 they weren't stopped implicitly, then the stub will report a
5868 GDB_SIGNAL_0, meaning: stopped for no particular reason
5869 other than GDB's request. */
5870 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5871 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5872 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5873 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5874 {
5875 stop_print_frame = 1;
22bcd14b 5876 stop_waiting (ecs);
36fa8042
PA
5877 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5878 return;
5879 }
5880
488f131b 5881 /* See if something interesting happened to the non-current thread. If
b40c7d58 5882 so, then switch to that thread. */
d7e15655 5883 if (ecs->ptid != inferior_ptid)
488f131b 5884 {
edbcda09 5885 infrun_log_debug ("context switch");
527159b7 5886
00431a78 5887 context_switch (ecs);
c5aa993b 5888
9a4105ab 5889 if (deprecated_context_hook)
00431a78 5890 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5891 }
c906108c 5892
568d6575
UW
5893 /* At this point, get hold of the now-current thread's frame. */
5894 frame = get_current_frame ();
5895 gdbarch = get_frame_arch (frame);
5896
2adfaa28 5897 /* Pull the single step breakpoints out of the target. */
af48d08f 5898 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5899 {
af48d08f 5900 struct regcache *regcache;
af48d08f 5901 CORE_ADDR pc;
2adfaa28 5902
00431a78 5903 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5904 const address_space *aspace = regcache->aspace ();
5905
af48d08f 5906 pc = regcache_read_pc (regcache);
34b7e8a6 5907
af48d08f
PA
5908 /* However, before doing so, if this single-step breakpoint was
5909 actually for another thread, set this thread up for moving
5910 past it. */
5911 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5912 aspace, pc))
5913 {
5914 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28 5915 {
edbcda09
SM
5916 infrun_log_debug ("[%s] hit another thread's single-step "
5917 "breakpoint",
5918 target_pid_to_str (ecs->ptid).c_str ());
af48d08f
PA
5919 ecs->hit_singlestep_breakpoint = 1;
5920 }
5921 }
5922 else
5923 {
edbcda09
SM
5924 infrun_log_debug ("[%s] hit its single-step breakpoint",
5925 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5926 }
488f131b 5927 }
af48d08f 5928 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5929
963f9c80
PA
5930 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5931 && ecs->event_thread->control.trap_expected
5932 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5933 stopped_by_watchpoint = 0;
5934 else
5935 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5936
5937 /* If necessary, step over this watchpoint. We'll be back to display
5938 it in a moment. */
5939 if (stopped_by_watchpoint
d92524f1 5940 && (target_have_steppable_watchpoint
568d6575 5941 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5942 {
488f131b
JB
5943 /* At this point, we are stopped at an instruction which has
5944 attempted to write to a piece of memory under control of
5945 a watchpoint. The instruction hasn't actually executed
5946 yet. If we were to evaluate the watchpoint expression
5947 now, we would get the old value, and therefore no change
5948 would seem to have occurred.
5949
5950 In order to make watchpoints work `right', we really need
5951 to complete the memory write, and then evaluate the
d983da9c
DJ
5952 watchpoint expression. We do this by single-stepping the
5953 target.
5954
7f89fd65 5955 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5956 it. For example, the PA can (with some kernel cooperation)
5957 single step over a watchpoint without disabling the watchpoint.
5958
5959 It is far more common to need to disable a watchpoint to step
5960 the inferior over it. If we have non-steppable watchpoints,
5961 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5962 disable all watchpoints.
5963
5964 Any breakpoint at PC must also be stepped over -- if there's
5965 one, it will have already triggered before the watchpoint
5966 triggered, and we either already reported it to the user, or
5967 it didn't cause a stop and we called keep_going. In either
5968 case, if there was a breakpoint at PC, we must be trying to
5969 step past it. */
5970 ecs->event_thread->stepping_over_watchpoint = 1;
5971 keep_going (ecs);
488f131b
JB
5972 return;
5973 }
5974
4e1c45ea 5975 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5976 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5977 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5978 ecs->event_thread->control.stop_step = 0;
488f131b 5979 stop_print_frame = 1;
488f131b 5980 stopped_by_random_signal = 0;
ddfe970e 5981 bpstat stop_chain = NULL;
488f131b 5982
edb3359d
DJ
5983 /* Hide inlined functions starting here, unless we just performed stepi or
5984 nexti. After stepi and nexti, always show the innermost frame (not any
5985 inline function call sites). */
16c381f0 5986 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5987 {
00431a78
PA
5988 const address_space *aspace
5989 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5990
5991 /* skip_inline_frames is expensive, so we avoid it if we can
5992 determine that the address is one where functions cannot have
5993 been inlined. This improves performance with inferiors that
5994 load a lot of shared libraries, because the solib event
5995 breakpoint is defined as the address of a function (i.e. not
5996 inline). Note that we have to check the previous PC as well
5997 as the current one to catch cases when we have just
5998 single-stepped off a breakpoint prior to reinstating it.
5999 Note that we're assuming that the code we single-step to is
6000 not inline, but that's not definitive: there's nothing
6001 preventing the event breakpoint function from containing
6002 inlined code, and the single-step ending up there. If the
6003 user had set a breakpoint on that inlined code, the missing
6004 skip_inline_frames call would break things. Fortunately
6005 that's an extremely unlikely scenario. */
f2ffa92b
PA
6006 if (!pc_at_non_inline_function (aspace,
6007 ecs->event_thread->suspend.stop_pc,
6008 &ecs->ws)
a210c238
MR
6009 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6010 && ecs->event_thread->control.trap_expected
6011 && pc_at_non_inline_function (aspace,
6012 ecs->event_thread->prev_pc,
09ac7c10 6013 &ecs->ws)))
1c5a993e 6014 {
f2ffa92b
PA
6015 stop_chain = build_bpstat_chain (aspace,
6016 ecs->event_thread->suspend.stop_pc,
6017 &ecs->ws);
00431a78 6018 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6019
6020 /* Re-fetch current thread's frame in case that invalidated
6021 the frame cache. */
6022 frame = get_current_frame ();
6023 gdbarch = get_frame_arch (frame);
6024 }
0574c78f 6025 }
edb3359d 6026
a493e3e2 6027 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6028 && ecs->event_thread->control.trap_expected
568d6575 6029 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6030 && currently_stepping (ecs->event_thread))
3352ef37 6031 {
b50d7442 6032 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6033 also on an instruction that needs to be stepped multiple
1777feb0 6034 times before it's been fully executing. E.g., architectures
3352ef37
AC
6035 with a delay slot. It needs to be stepped twice, once for
6036 the instruction and once for the delay slot. */
6037 int step_through_delay
568d6575 6038 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6039
edbcda09
SM
6040 if (step_through_delay)
6041 infrun_log_debug ("step through delay");
6042
16c381f0
JK
6043 if (ecs->event_thread->control.step_range_end == 0
6044 && step_through_delay)
3352ef37
AC
6045 {
6046 /* The user issued a continue when stopped at a breakpoint.
6047 Set up for another trap and get out of here. */
4e1c45ea 6048 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6049 keep_going (ecs);
6050 return;
6051 }
6052 else if (step_through_delay)
6053 {
6054 /* The user issued a step when stopped at a breakpoint.
6055 Maybe we should stop, maybe we should not - the delay
6056 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6057 case, don't decide that here, just set
6058 ecs->stepping_over_breakpoint, making sure we
6059 single-step again before breakpoints are re-inserted. */
4e1c45ea 6060 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6061 }
6062 }
6063
ab04a2af
TT
6064 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6065 handles this event. */
6066 ecs->event_thread->control.stop_bpstat
a01bda52 6067 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6068 ecs->event_thread->suspend.stop_pc,
6069 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6070
ab04a2af
TT
6071 /* Following in case break condition called a
6072 function. */
6073 stop_print_frame = 1;
73dd234f 6074
ab04a2af
TT
6075 /* This is where we handle "moribund" watchpoints. Unlike
6076 software breakpoints traps, hardware watchpoint traps are
6077 always distinguishable from random traps. If no high-level
6078 watchpoint is associated with the reported stop data address
6079 anymore, then the bpstat does not explain the signal ---
6080 simply make sure to ignore it if `stopped_by_watchpoint' is
6081 set. */
6082
edbcda09 6083 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6084 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6085 GDB_SIGNAL_TRAP)
ab04a2af 6086 && stopped_by_watchpoint)
edbcda09
SM
6087 {
6088 infrun_log_debug ("no user watchpoint explains watchpoint SIGTRAP, "
6089 "ignoring");
6090 }
73dd234f 6091
bac7d97b 6092 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6093 at one stage in the past included checks for an inferior
6094 function call's call dummy's return breakpoint. The original
6095 comment, that went with the test, read:
03cebad2 6096
ab04a2af
TT
6097 ``End of a stack dummy. Some systems (e.g. Sony news) give
6098 another signal besides SIGTRAP, so check here as well as
6099 above.''
73dd234f 6100
ab04a2af
TT
6101 If someone ever tries to get call dummys on a
6102 non-executable stack to work (where the target would stop
6103 with something like a SIGSEGV), then those tests might need
6104 to be re-instated. Given, however, that the tests were only
6105 enabled when momentary breakpoints were not being used, I
6106 suspect that it won't be the case.
488f131b 6107
ab04a2af
TT
6108 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6109 be necessary for call dummies on a non-executable stack on
6110 SPARC. */
488f131b 6111
bac7d97b 6112 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6113 random_signal
6114 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6115 ecs->event_thread->suspend.stop_signal);
bac7d97b 6116
1cf4d951
PA
6117 /* Maybe this was a trap for a software breakpoint that has since
6118 been removed. */
6119 if (random_signal && target_stopped_by_sw_breakpoint ())
6120 {
5133a315
LM
6121 if (gdbarch_program_breakpoint_here_p (gdbarch,
6122 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6123 {
6124 struct regcache *regcache;
6125 int decr_pc;
6126
6127 /* Re-adjust PC to what the program would see if GDB was not
6128 debugging it. */
00431a78 6129 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6130 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6131 if (decr_pc != 0)
6132 {
07036511
TT
6133 gdb::optional<scoped_restore_tmpl<int>>
6134 restore_operation_disable;
1cf4d951
PA
6135
6136 if (record_full_is_used ())
07036511
TT
6137 restore_operation_disable.emplace
6138 (record_full_gdb_operation_disable_set ());
1cf4d951 6139
f2ffa92b
PA
6140 regcache_write_pc (regcache,
6141 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6142 }
6143 }
6144 else
6145 {
6146 /* A delayed software breakpoint event. Ignore the trap. */
edbcda09 6147 infrun_log_debug ("delayed software breakpoint trap, ignoring");
1cf4d951
PA
6148 random_signal = 0;
6149 }
6150 }
6151
6152 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6153 has since been removed. */
6154 if (random_signal && target_stopped_by_hw_breakpoint ())
6155 {
6156 /* A delayed hardware breakpoint event. Ignore the trap. */
edbcda09
SM
6157 infrun_log_debug ("delayed hardware breakpoint/watchpoint "
6158 "trap, ignoring");
1cf4d951
PA
6159 random_signal = 0;
6160 }
6161
bac7d97b
PA
6162 /* If not, perhaps stepping/nexting can. */
6163 if (random_signal)
6164 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6165 && currently_stepping (ecs->event_thread));
ab04a2af 6166
2adfaa28
PA
6167 /* Perhaps the thread hit a single-step breakpoint of _another_
6168 thread. Single-step breakpoints are transparent to the
6169 breakpoints module. */
6170 if (random_signal)
6171 random_signal = !ecs->hit_singlestep_breakpoint;
6172
bac7d97b
PA
6173 /* No? Perhaps we got a moribund watchpoint. */
6174 if (random_signal)
6175 random_signal = !stopped_by_watchpoint;
ab04a2af 6176
c65d6b55
PA
6177 /* Always stop if the user explicitly requested this thread to
6178 remain stopped. */
6179 if (ecs->event_thread->stop_requested)
6180 {
6181 random_signal = 1;
edbcda09 6182 infrun_log_debug ("user-requested stop");
c65d6b55
PA
6183 }
6184
488f131b
JB
6185 /* For the program's own signals, act according to
6186 the signal handling tables. */
6187
ce12b012 6188 if (random_signal)
488f131b
JB
6189 {
6190 /* Signal not for debugging purposes. */
5b6d1e4f 6191 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6192 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6193
edbcda09
SM
6194 infrun_log_debug ("random signal (%s)",
6195 gdb_signal_to_symbol_string (stop_signal));
527159b7 6196
488f131b
JB
6197 stopped_by_random_signal = 1;
6198
252fbfc8
PA
6199 /* Always stop on signals if we're either just gaining control
6200 of the program, or the user explicitly requested this thread
6201 to remain stopped. */
d6b48e9c 6202 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6203 || ecs->event_thread->stop_requested
24291992 6204 || (!inf->detaching
16c381f0 6205 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6206 {
22bcd14b 6207 stop_waiting (ecs);
488f131b
JB
6208 return;
6209 }
b57bacec
PA
6210
6211 /* Notify observers the signal has "handle print" set. Note we
6212 returned early above if stopping; normal_stop handles the
6213 printing in that case. */
6214 if (signal_print[ecs->event_thread->suspend.stop_signal])
6215 {
6216 /* The signal table tells us to print about this signal. */
223ffa71 6217 target_terminal::ours_for_output ();
76727919 6218 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6219 target_terminal::inferior ();
b57bacec 6220 }
488f131b
JB
6221
6222 /* Clear the signal if it should not be passed. */
16c381f0 6223 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6224 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6225
f2ffa92b 6226 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6227 && ecs->event_thread->control.trap_expected
8358c15c 6228 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6229 {
6230 /* We were just starting a new sequence, attempting to
6231 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6232 Instead this signal arrives. This signal will take us out
68f53502
AC
6233 of the stepping range so GDB needs to remember to, when
6234 the signal handler returns, resume stepping off that
6235 breakpoint. */
6236 /* To simplify things, "continue" is forced to use the same
6237 code paths as single-step - set a breakpoint at the
6238 signal return address and then, once hit, step off that
6239 breakpoint. */
edbcda09 6240 infrun_log_debug ("signal arrived while stepping over breakpoint");
d3169d93 6241
2c03e5be 6242 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6243 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6244 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6245 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6246
6247 /* If we were nexting/stepping some other thread, switch to
6248 it, so that we don't continue it, losing control. */
6249 if (!switch_back_to_stepped_thread (ecs))
6250 keep_going (ecs);
9d799f85 6251 return;
68f53502 6252 }
9d799f85 6253
e5f8a7cc 6254 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6255 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6256 ecs->event_thread)
e5f8a7cc 6257 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6258 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6259 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6260 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6261 {
6262 /* The inferior is about to take a signal that will take it
6263 out of the single step range. Set a breakpoint at the
6264 current PC (which is presumably where the signal handler
6265 will eventually return) and then allow the inferior to
6266 run free.
6267
6268 Note that this is only needed for a signal delivered
6269 while in the single-step range. Nested signals aren't a
6270 problem as they eventually all return. */
edbcda09 6271 infrun_log_debug ("signal may take us out of single-step range");
237fc4c9 6272
372316f1 6273 clear_step_over_info ();
2c03e5be 6274 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6275 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6276 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6277 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6278 keep_going (ecs);
6279 return;
d303a6c7 6280 }
9d799f85 6281
85102364 6282 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6283 when either there's a nested signal, or when there's a
6284 pending signal enabled just as the signal handler returns
6285 (leaving the inferior at the step-resume-breakpoint without
6286 actually executing it). Either way continue until the
6287 breakpoint is really hit. */
c447ac0b
PA
6288
6289 if (!switch_back_to_stepped_thread (ecs))
6290 {
edbcda09 6291 infrun_log_debug ("random signal, keep going");
c447ac0b
PA
6292
6293 keep_going (ecs);
6294 }
6295 return;
488f131b 6296 }
94c57d6a
PA
6297
6298 process_event_stop_test (ecs);
6299}
6300
6301/* Come here when we've got some debug event / signal we can explain
6302 (IOW, not a random signal), and test whether it should cause a
6303 stop, or whether we should resume the inferior (transparently).
6304 E.g., could be a breakpoint whose condition evaluates false; we
6305 could be still stepping within the line; etc. */
6306
6307static void
6308process_event_stop_test (struct execution_control_state *ecs)
6309{
6310 struct symtab_and_line stop_pc_sal;
6311 struct frame_info *frame;
6312 struct gdbarch *gdbarch;
cdaa5b73
PA
6313 CORE_ADDR jmp_buf_pc;
6314 struct bpstat_what what;
94c57d6a 6315
cdaa5b73 6316 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6317
cdaa5b73
PA
6318 frame = get_current_frame ();
6319 gdbarch = get_frame_arch (frame);
fcf3daef 6320
cdaa5b73 6321 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6322
cdaa5b73
PA
6323 if (what.call_dummy)
6324 {
6325 stop_stack_dummy = what.call_dummy;
6326 }
186c406b 6327
243a9253
PA
6328 /* A few breakpoint types have callbacks associated (e.g.,
6329 bp_jit_event). Run them now. */
6330 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6331
cdaa5b73
PA
6332 /* If we hit an internal event that triggers symbol changes, the
6333 current frame will be invalidated within bpstat_what (e.g., if we
6334 hit an internal solib event). Re-fetch it. */
6335 frame = get_current_frame ();
6336 gdbarch = get_frame_arch (frame);
e2e4d78b 6337
cdaa5b73
PA
6338 switch (what.main_action)
6339 {
6340 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6341 /* If we hit the breakpoint at longjmp while stepping, we
6342 install a momentary breakpoint at the target of the
6343 jmp_buf. */
186c406b 6344
edbcda09 6345 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
186c406b 6346
cdaa5b73 6347 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6348
cdaa5b73
PA
6349 if (what.is_longjmp)
6350 {
6351 struct value *arg_value;
6352
6353 /* If we set the longjmp breakpoint via a SystemTap probe,
6354 then use it to extract the arguments. The destination PC
6355 is the third argument to the probe. */
6356 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6357 if (arg_value)
8fa0c4f8
AA
6358 {
6359 jmp_buf_pc = value_as_address (arg_value);
6360 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6361 }
cdaa5b73
PA
6362 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6363 || !gdbarch_get_longjmp_target (gdbarch,
6364 frame, &jmp_buf_pc))
e2e4d78b 6365 {
edbcda09
SM
6366 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6367 "(!gdbarch_get_longjmp_target)");
cdaa5b73
PA
6368 keep_going (ecs);
6369 return;
e2e4d78b 6370 }
e2e4d78b 6371
cdaa5b73
PA
6372 /* Insert a breakpoint at resume address. */
6373 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6374 }
6375 else
6376 check_exception_resume (ecs, frame);
6377 keep_going (ecs);
6378 return;
e81a37f7 6379
cdaa5b73
PA
6380 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6381 {
6382 struct frame_info *init_frame;
e81a37f7 6383
cdaa5b73 6384 /* There are several cases to consider.
c906108c 6385
cdaa5b73
PA
6386 1. The initiating frame no longer exists. In this case we
6387 must stop, because the exception or longjmp has gone too
6388 far.
2c03e5be 6389
cdaa5b73
PA
6390 2. The initiating frame exists, and is the same as the
6391 current frame. We stop, because the exception or longjmp
6392 has been caught.
2c03e5be 6393
cdaa5b73
PA
6394 3. The initiating frame exists and is different from the
6395 current frame. This means the exception or longjmp has
6396 been caught beneath the initiating frame, so keep going.
c906108c 6397
cdaa5b73
PA
6398 4. longjmp breakpoint has been placed just to protect
6399 against stale dummy frames and user is not interested in
6400 stopping around longjmps. */
c5aa993b 6401
edbcda09 6402 infrun_log_debug ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
c5aa993b 6403
cdaa5b73
PA
6404 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6405 != NULL);
6406 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6407
cdaa5b73
PA
6408 if (what.is_longjmp)
6409 {
b67a2c6f 6410 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6411
cdaa5b73 6412 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6413 {
cdaa5b73
PA
6414 /* Case 4. */
6415 keep_going (ecs);
6416 return;
e5ef252a 6417 }
cdaa5b73 6418 }
c5aa993b 6419
cdaa5b73 6420 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6421
cdaa5b73
PA
6422 if (init_frame)
6423 {
6424 struct frame_id current_id
6425 = get_frame_id (get_current_frame ());
6426 if (frame_id_eq (current_id,
6427 ecs->event_thread->initiating_frame))
6428 {
6429 /* Case 2. Fall through. */
6430 }
6431 else
6432 {
6433 /* Case 3. */
6434 keep_going (ecs);
6435 return;
6436 }
68f53502 6437 }
488f131b 6438
cdaa5b73
PA
6439 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6440 exists. */
6441 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6442
bdc36728 6443 end_stepping_range (ecs);
cdaa5b73
PA
6444 }
6445 return;
e5ef252a 6446
cdaa5b73 6447 case BPSTAT_WHAT_SINGLE:
edbcda09 6448 infrun_log_debug ("BPSTAT_WHAT_SINGLE");
cdaa5b73
PA
6449 ecs->event_thread->stepping_over_breakpoint = 1;
6450 /* Still need to check other stuff, at least the case where we
6451 are stepping and step out of the right range. */
6452 break;
e5ef252a 6453
cdaa5b73 6454 case BPSTAT_WHAT_STEP_RESUME:
edbcda09 6455 infrun_log_debug ("BPSTAT_WHAT_STEP_RESUME");
e5ef252a 6456
cdaa5b73
PA
6457 delete_step_resume_breakpoint (ecs->event_thread);
6458 if (ecs->event_thread->control.proceed_to_finish
6459 && execution_direction == EXEC_REVERSE)
6460 {
6461 struct thread_info *tp = ecs->event_thread;
6462
6463 /* We are finishing a function in reverse, and just hit the
6464 step-resume breakpoint at the start address of the
6465 function, and we're almost there -- just need to back up
6466 by one more single-step, which should take us back to the
6467 function call. */
6468 tp->control.step_range_start = tp->control.step_range_end = 1;
6469 keep_going (ecs);
e5ef252a 6470 return;
cdaa5b73
PA
6471 }
6472 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6473 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6474 && execution_direction == EXEC_REVERSE)
6475 {
6476 /* We are stepping over a function call in reverse, and just
6477 hit the step-resume breakpoint at the start address of
6478 the function. Go back to single-stepping, which should
6479 take us back to the function call. */
6480 ecs->event_thread->stepping_over_breakpoint = 1;
6481 keep_going (ecs);
6482 return;
6483 }
6484 break;
e5ef252a 6485
cdaa5b73 6486 case BPSTAT_WHAT_STOP_NOISY:
edbcda09 6487 infrun_log_debug ("BPSTAT_WHAT_STOP_NOISY");
cdaa5b73 6488 stop_print_frame = 1;
e5ef252a 6489
99619bea
PA
6490 /* Assume the thread stopped for a breapoint. We'll still check
6491 whether a/the breakpoint is there when the thread is next
6492 resumed. */
6493 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6494
22bcd14b 6495 stop_waiting (ecs);
cdaa5b73 6496 return;
e5ef252a 6497
cdaa5b73 6498 case BPSTAT_WHAT_STOP_SILENT:
edbcda09 6499 infrun_log_debug ("BPSTAT_WHAT_STOP_SILENT");
cdaa5b73 6500 stop_print_frame = 0;
e5ef252a 6501
99619bea
PA
6502 /* Assume the thread stopped for a breapoint. We'll still check
6503 whether a/the breakpoint is there when the thread is next
6504 resumed. */
6505 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6506 stop_waiting (ecs);
cdaa5b73
PA
6507 return;
6508
6509 case BPSTAT_WHAT_HP_STEP_RESUME:
edbcda09 6510 infrun_log_debug ("BPSTAT_WHAT_HP_STEP_RESUME");
cdaa5b73
PA
6511
6512 delete_step_resume_breakpoint (ecs->event_thread);
6513 if (ecs->event_thread->step_after_step_resume_breakpoint)
6514 {
6515 /* Back when the step-resume breakpoint was inserted, we
6516 were trying to single-step off a breakpoint. Go back to
6517 doing that. */
6518 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6519 ecs->event_thread->stepping_over_breakpoint = 1;
6520 keep_going (ecs);
6521 return;
e5ef252a 6522 }
cdaa5b73
PA
6523 break;
6524
6525 case BPSTAT_WHAT_KEEP_CHECKING:
6526 break;
e5ef252a 6527 }
c906108c 6528
af48d08f
PA
6529 /* If we stepped a permanent breakpoint and we had a high priority
6530 step-resume breakpoint for the address we stepped, but we didn't
6531 hit it, then we must have stepped into the signal handler. The
6532 step-resume was only necessary to catch the case of _not_
6533 stepping into the handler, so delete it, and fall through to
6534 checking whether the step finished. */
6535 if (ecs->event_thread->stepped_breakpoint)
6536 {
6537 struct breakpoint *sr_bp
6538 = ecs->event_thread->control.step_resume_breakpoint;
6539
8d707a12
PA
6540 if (sr_bp != NULL
6541 && sr_bp->loc->permanent
af48d08f
PA
6542 && sr_bp->type == bp_hp_step_resume
6543 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6544 {
edbcda09 6545 infrun_log_debug ("stepped permanent breakpoint, stopped in handler");
af48d08f
PA
6546 delete_step_resume_breakpoint (ecs->event_thread);
6547 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6548 }
6549 }
6550
cdaa5b73
PA
6551 /* We come here if we hit a breakpoint but should not stop for it.
6552 Possibly we also were stepping and should stop for that. So fall
6553 through and test for stepping. But, if not stepping, do not
6554 stop. */
c906108c 6555
a7212384
UW
6556 /* In all-stop mode, if we're currently stepping but have stopped in
6557 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6558 if (switch_back_to_stepped_thread (ecs))
6559 return;
776f04fa 6560
8358c15c 6561 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6562 {
edbcda09 6563 infrun_log_debug ("step-resume breakpoint is inserted");
527159b7 6564
488f131b
JB
6565 /* Having a step-resume breakpoint overrides anything
6566 else having to do with stepping commands until
6567 that breakpoint is reached. */
488f131b
JB
6568 keep_going (ecs);
6569 return;
6570 }
c5aa993b 6571
16c381f0 6572 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6573 {
edbcda09 6574 infrun_log_debug ("no stepping, continue");
488f131b 6575 /* Likewise if we aren't even stepping. */
488f131b
JB
6576 keep_going (ecs);
6577 return;
6578 }
c5aa993b 6579
4b7703ad
JB
6580 /* Re-fetch current thread's frame in case the code above caused
6581 the frame cache to be re-initialized, making our FRAME variable
6582 a dangling pointer. */
6583 frame = get_current_frame ();
628fe4e4 6584 gdbarch = get_frame_arch (frame);
7e324e48 6585 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6586
488f131b 6587 /* If stepping through a line, keep going if still within it.
c906108c 6588
488f131b
JB
6589 Note that step_range_end is the address of the first instruction
6590 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6591 within it!
6592
6593 Note also that during reverse execution, we may be stepping
6594 through a function epilogue and therefore must detect when
6595 the current-frame changes in the middle of a line. */
6596
f2ffa92b
PA
6597 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6598 ecs->event_thread)
31410e84 6599 && (execution_direction != EXEC_REVERSE
388a8562 6600 || frame_id_eq (get_frame_id (frame),
16c381f0 6601 ecs->event_thread->control.step_frame_id)))
488f131b 6602 {
edbcda09
SM
6603 infrun_log_debug
6604 ("stepping inside range [%s-%s]",
6605 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6606 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6607
c1e36e3e
PA
6608 /* Tentatively re-enable range stepping; `resume' disables it if
6609 necessary (e.g., if we're stepping over a breakpoint or we
6610 have software watchpoints). */
6611 ecs->event_thread->control.may_range_step = 1;
6612
b2175913
MS
6613 /* When stepping backward, stop at beginning of line range
6614 (unless it's the function entry point, in which case
6615 keep going back to the call point). */
f2ffa92b 6616 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6617 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6618 && stop_pc != ecs->stop_func_start
6619 && execution_direction == EXEC_REVERSE)
bdc36728 6620 end_stepping_range (ecs);
b2175913
MS
6621 else
6622 keep_going (ecs);
6623
488f131b
JB
6624 return;
6625 }
c5aa993b 6626
488f131b 6627 /* We stepped out of the stepping range. */
c906108c 6628
488f131b 6629 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6630 loader dynamic symbol resolution code...
6631
6632 EXEC_FORWARD: we keep on single stepping until we exit the run
6633 time loader code and reach the callee's address.
6634
6635 EXEC_REVERSE: we've already executed the callee (backward), and
6636 the runtime loader code is handled just like any other
6637 undebuggable function call. Now we need only keep stepping
6638 backward through the trampoline code, and that's handled further
6639 down, so there is nothing for us to do here. */
6640
6641 if (execution_direction != EXEC_REVERSE
16c381f0 6642 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6643 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6644 {
4c8c40e6 6645 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6646 gdbarch_skip_solib_resolver (gdbarch,
6647 ecs->event_thread->suspend.stop_pc);
c906108c 6648
edbcda09 6649 infrun_log_debug ("stepped into dynsym resolve code");
527159b7 6650
488f131b
JB
6651 if (pc_after_resolver)
6652 {
6653 /* Set up a step-resume breakpoint at the address
6654 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6655 symtab_and_line sr_sal;
488f131b 6656 sr_sal.pc = pc_after_resolver;
6c95b8df 6657 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6658
a6d9a66e
UW
6659 insert_step_resume_breakpoint_at_sal (gdbarch,
6660 sr_sal, null_frame_id);
c5aa993b 6661 }
c906108c 6662
488f131b
JB
6663 keep_going (ecs);
6664 return;
6665 }
c906108c 6666
1d509aa6
MM
6667 /* Step through an indirect branch thunk. */
6668 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6669 && gdbarch_in_indirect_branch_thunk (gdbarch,
6670 ecs->event_thread->suspend.stop_pc))
1d509aa6 6671 {
edbcda09 6672 infrun_log_debug ("stepped into indirect branch thunk");
1d509aa6
MM
6673 keep_going (ecs);
6674 return;
6675 }
6676
16c381f0
JK
6677 if (ecs->event_thread->control.step_range_end != 1
6678 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6679 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6680 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6681 {
edbcda09 6682 infrun_log_debug ("stepped into signal trampoline");
42edda50 6683 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6684 a signal trampoline (either by a signal being delivered or by
6685 the signal handler returning). Just single-step until the
6686 inferior leaves the trampoline (either by calling the handler
6687 or returning). */
488f131b
JB
6688 keep_going (ecs);
6689 return;
6690 }
c906108c 6691
14132e89
MR
6692 /* If we're in the return path from a shared library trampoline,
6693 we want to proceed through the trampoline when stepping. */
6694 /* macro/2012-04-25: This needs to come before the subroutine
6695 call check below as on some targets return trampolines look
6696 like subroutine calls (MIPS16 return thunks). */
6697 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6698 ecs->event_thread->suspend.stop_pc,
6699 ecs->stop_func_name)
14132e89
MR
6700 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6701 {
6702 /* Determine where this trampoline returns. */
f2ffa92b
PA
6703 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6704 CORE_ADDR real_stop_pc
6705 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89 6706
edbcda09 6707 infrun_log_debug ("stepped into solib return tramp");
14132e89
MR
6708
6709 /* Only proceed through if we know where it's going. */
6710 if (real_stop_pc)
6711 {
6712 /* And put the step-breakpoint there and go until there. */
51abb421 6713 symtab_and_line sr_sal;
14132e89
MR
6714 sr_sal.pc = real_stop_pc;
6715 sr_sal.section = find_pc_overlay (sr_sal.pc);
6716 sr_sal.pspace = get_frame_program_space (frame);
6717
6718 /* Do not specify what the fp should be when we stop since
6719 on some machines the prologue is where the new fp value
6720 is established. */
6721 insert_step_resume_breakpoint_at_sal (gdbarch,
6722 sr_sal, null_frame_id);
6723
6724 /* Restart without fiddling with the step ranges or
6725 other state. */
6726 keep_going (ecs);
6727 return;
6728 }
6729 }
6730
c17eaafe
DJ
6731 /* Check for subroutine calls. The check for the current frame
6732 equalling the step ID is not necessary - the check of the
6733 previous frame's ID is sufficient - but it is a common case and
6734 cheaper than checking the previous frame's ID.
14e60db5
DJ
6735
6736 NOTE: frame_id_eq will never report two invalid frame IDs as
6737 being equal, so to get into this block, both the current and
6738 previous frame must have valid frame IDs. */
005ca36a
JB
6739 /* The outer_frame_id check is a heuristic to detect stepping
6740 through startup code. If we step over an instruction which
6741 sets the stack pointer from an invalid value to a valid value,
6742 we may detect that as a subroutine call from the mythical
6743 "outermost" function. This could be fixed by marking
6744 outermost frames as !stack_p,code_p,special_p. Then the
6745 initial outermost frame, before sp was valid, would
ce6cca6d 6746 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6747 for more. */
edb3359d 6748 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6749 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6750 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6751 ecs->event_thread->control.step_stack_frame_id)
6752 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6753 outer_frame_id)
885eeb5b 6754 || (ecs->event_thread->control.step_start_function
f2ffa92b 6755 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6756 {
f2ffa92b 6757 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6758 CORE_ADDR real_stop_pc;
8fb3e588 6759
edbcda09 6760 infrun_log_debug ("stepped into subroutine");
527159b7 6761
b7a084be 6762 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6763 {
6764 /* I presume that step_over_calls is only 0 when we're
6765 supposed to be stepping at the assembly language level
6766 ("stepi"). Just stop. */
388a8562 6767 /* And this works the same backward as frontward. MVS */
bdc36728 6768 end_stepping_range (ecs);
95918acb
AC
6769 return;
6770 }
8fb3e588 6771
388a8562
MS
6772 /* Reverse stepping through solib trampolines. */
6773
6774 if (execution_direction == EXEC_REVERSE
16c381f0 6775 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6776 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6777 || (ecs->stop_func_start == 0
6778 && in_solib_dynsym_resolve_code (stop_pc))))
6779 {
6780 /* Any solib trampoline code can be handled in reverse
6781 by simply continuing to single-step. We have already
6782 executed the solib function (backwards), and a few
6783 steps will take us back through the trampoline to the
6784 caller. */
6785 keep_going (ecs);
6786 return;
6787 }
6788
16c381f0 6789 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6790 {
b2175913
MS
6791 /* We're doing a "next".
6792
6793 Normal (forward) execution: set a breakpoint at the
6794 callee's return address (the address at which the caller
6795 will resume).
6796
6797 Reverse (backward) execution. set the step-resume
6798 breakpoint at the start of the function that we just
6799 stepped into (backwards), and continue to there. When we
6130d0b7 6800 get there, we'll need to single-step back to the caller. */
b2175913
MS
6801
6802 if (execution_direction == EXEC_REVERSE)
6803 {
acf9414f
JK
6804 /* If we're already at the start of the function, we've either
6805 just stepped backward into a single instruction function,
6806 or stepped back out of a signal handler to the first instruction
6807 of the function. Just keep going, which will single-step back
6808 to the caller. */
58c48e72 6809 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6810 {
acf9414f 6811 /* Normal function call return (static or dynamic). */
51abb421 6812 symtab_and_line sr_sal;
acf9414f
JK
6813 sr_sal.pc = ecs->stop_func_start;
6814 sr_sal.pspace = get_frame_program_space (frame);
6815 insert_step_resume_breakpoint_at_sal (gdbarch,
6816 sr_sal, null_frame_id);
6817 }
b2175913
MS
6818 }
6819 else
568d6575 6820 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6821
8567c30f
AC
6822 keep_going (ecs);
6823 return;
6824 }
a53c66de 6825
95918acb 6826 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6827 calling routine and the real function), locate the real
6828 function. That's what tells us (a) whether we want to step
6829 into it at all, and (b) what prologue we want to run to the
6830 end of, if we do step into it. */
568d6575 6831 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6832 if (real_stop_pc == 0)
568d6575 6833 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6834 if (real_stop_pc != 0)
6835 ecs->stop_func_start = real_stop_pc;
8fb3e588 6836
db5f024e 6837 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6838 {
51abb421 6839 symtab_and_line sr_sal;
1b2bfbb9 6840 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6841 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6842
a6d9a66e
UW
6843 insert_step_resume_breakpoint_at_sal (gdbarch,
6844 sr_sal, null_frame_id);
8fb3e588
AC
6845 keep_going (ecs);
6846 return;
1b2bfbb9
RC
6847 }
6848
95918acb 6849 /* If we have line number information for the function we are
1bfeeb0f
JL
6850 thinking of stepping into and the function isn't on the skip
6851 list, step into it.
95918acb 6852
8fb3e588
AC
6853 If there are several symtabs at that PC (e.g. with include
6854 files), just want to know whether *any* of them have line
6855 numbers. find_pc_line handles this. */
95918acb
AC
6856 {
6857 struct symtab_and_line tmp_sal;
8fb3e588 6858
95918acb 6859 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6860 if (tmp_sal.line != 0
85817405 6861 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6862 tmp_sal)
6863 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6864 {
b2175913 6865 if (execution_direction == EXEC_REVERSE)
568d6575 6866 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6867 else
568d6575 6868 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6869 return;
6870 }
6871 }
6872
6873 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6874 set, we stop the step so that the user has a chance to switch
6875 in assembly mode. */
16c381f0 6876 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6877 && step_stop_if_no_debug)
95918acb 6878 {
bdc36728 6879 end_stepping_range (ecs);
95918acb
AC
6880 return;
6881 }
6882
b2175913
MS
6883 if (execution_direction == EXEC_REVERSE)
6884 {
acf9414f
JK
6885 /* If we're already at the start of the function, we've either just
6886 stepped backward into a single instruction function without line
6887 number info, or stepped back out of a signal handler to the first
6888 instruction of the function without line number info. Just keep
6889 going, which will single-step back to the caller. */
6890 if (ecs->stop_func_start != stop_pc)
6891 {
6892 /* Set a breakpoint at callee's start address.
6893 From there we can step once and be back in the caller. */
51abb421 6894 symtab_and_line sr_sal;
acf9414f
JK
6895 sr_sal.pc = ecs->stop_func_start;
6896 sr_sal.pspace = get_frame_program_space (frame);
6897 insert_step_resume_breakpoint_at_sal (gdbarch,
6898 sr_sal, null_frame_id);
6899 }
b2175913
MS
6900 }
6901 else
6902 /* Set a breakpoint at callee's return address (the address
6903 at which the caller will resume). */
568d6575 6904 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6905
95918acb 6906 keep_going (ecs);
488f131b 6907 return;
488f131b 6908 }
c906108c 6909
fdd654f3
MS
6910 /* Reverse stepping through solib trampolines. */
6911
6912 if (execution_direction == EXEC_REVERSE
16c381f0 6913 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6914 {
f2ffa92b
PA
6915 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6916
fdd654f3
MS
6917 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6918 || (ecs->stop_func_start == 0
6919 && in_solib_dynsym_resolve_code (stop_pc)))
6920 {
6921 /* Any solib trampoline code can be handled in reverse
6922 by simply continuing to single-step. We have already
6923 executed the solib function (backwards), and a few
6924 steps will take us back through the trampoline to the
6925 caller. */
6926 keep_going (ecs);
6927 return;
6928 }
6929 else if (in_solib_dynsym_resolve_code (stop_pc))
6930 {
6931 /* Stepped backward into the solib dynsym resolver.
6932 Set a breakpoint at its start and continue, then
6933 one more step will take us out. */
51abb421 6934 symtab_and_line sr_sal;
fdd654f3 6935 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6936 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6937 insert_step_resume_breakpoint_at_sal (gdbarch,
6938 sr_sal, null_frame_id);
6939 keep_going (ecs);
6940 return;
6941 }
6942 }
6943
8c95582d
AB
6944 /* This always returns the sal for the inner-most frame when we are in a
6945 stack of inlined frames, even if GDB actually believes that it is in a
6946 more outer frame. This is checked for below by calls to
6947 inline_skipped_frames. */
f2ffa92b 6948 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6949
1b2bfbb9
RC
6950 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6951 the trampoline processing logic, however, there are some trampolines
6952 that have no names, so we should do trampoline handling first. */
16c381f0 6953 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6954 && ecs->stop_func_name == NULL
2afb61aa 6955 && stop_pc_sal.line == 0)
1b2bfbb9 6956 {
edbcda09 6957 infrun_log_debug ("stepped into undebuggable function");
527159b7 6958
1b2bfbb9 6959 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6960 undebuggable function (where there is no debugging information
6961 and no line number corresponding to the address where the
1b2bfbb9
RC
6962 inferior stopped). Since we want to skip this kind of code,
6963 we keep going until the inferior returns from this
14e60db5
DJ
6964 function - unless the user has asked us not to (via
6965 set step-mode) or we no longer know how to get back
6966 to the call site. */
6967 if (step_stop_if_no_debug
c7ce8faa 6968 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6969 {
6970 /* If we have no line number and the step-stop-if-no-debug
6971 is set, we stop the step so that the user has a chance to
6972 switch in assembly mode. */
bdc36728 6973 end_stepping_range (ecs);
1b2bfbb9
RC
6974 return;
6975 }
6976 else
6977 {
6978 /* Set a breakpoint at callee's return address (the address
6979 at which the caller will resume). */
568d6575 6980 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6981 keep_going (ecs);
6982 return;
6983 }
6984 }
6985
16c381f0 6986 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6987 {
6988 /* It is stepi or nexti. We always want to stop stepping after
6989 one instruction. */
edbcda09 6990 infrun_log_debug ("stepi/nexti");
bdc36728 6991 end_stepping_range (ecs);
1b2bfbb9
RC
6992 return;
6993 }
6994
2afb61aa 6995 if (stop_pc_sal.line == 0)
488f131b
JB
6996 {
6997 /* We have no line number information. That means to stop
6998 stepping (does this always happen right after one instruction,
6999 when we do "s" in a function with no line numbers,
7000 or can this happen as a result of a return or longjmp?). */
edbcda09 7001 infrun_log_debug ("line number info");
bdc36728 7002 end_stepping_range (ecs);
488f131b
JB
7003 return;
7004 }
c906108c 7005
edb3359d
DJ
7006 /* Look for "calls" to inlined functions, part one. If the inline
7007 frame machinery detected some skipped call sites, we have entered
7008 a new inline function. */
7009
7010 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7011 ecs->event_thread->control.step_frame_id)
00431a78 7012 && inline_skipped_frames (ecs->event_thread))
edb3359d 7013 {
edbcda09 7014 infrun_log_debug ("stepped into inlined function");
edb3359d 7015
51abb421 7016 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7017
16c381f0 7018 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7019 {
7020 /* For "step", we're going to stop. But if the call site
7021 for this inlined function is on the same source line as
7022 we were previously stepping, go down into the function
7023 first. Otherwise stop at the call site. */
7024
7025 if (call_sal.line == ecs->event_thread->current_line
7026 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7027 {
7028 step_into_inline_frame (ecs->event_thread);
7029 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7030 {
7031 keep_going (ecs);
7032 return;
7033 }
7034 }
edb3359d 7035
bdc36728 7036 end_stepping_range (ecs);
edb3359d
DJ
7037 return;
7038 }
7039 else
7040 {
7041 /* For "next", we should stop at the call site if it is on a
7042 different source line. Otherwise continue through the
7043 inlined function. */
7044 if (call_sal.line == ecs->event_thread->current_line
7045 && call_sal.symtab == ecs->event_thread->current_symtab)
7046 keep_going (ecs);
7047 else
bdc36728 7048 end_stepping_range (ecs);
edb3359d
DJ
7049 return;
7050 }
7051 }
7052
7053 /* Look for "calls" to inlined functions, part two. If we are still
7054 in the same real function we were stepping through, but we have
7055 to go further up to find the exact frame ID, we are stepping
7056 through a more inlined call beyond its call site. */
7057
7058 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7059 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7060 ecs->event_thread->control.step_frame_id)
edb3359d 7061 && stepped_in_from (get_current_frame (),
16c381f0 7062 ecs->event_thread->control.step_frame_id))
edb3359d 7063 {
edbcda09 7064 infrun_log_debug ("stepping through inlined function");
edb3359d 7065
4a4c04f1
BE
7066 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7067 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7068 keep_going (ecs);
7069 else
bdc36728 7070 end_stepping_range (ecs);
edb3359d
DJ
7071 return;
7072 }
7073
8c95582d 7074 bool refresh_step_info = true;
f2ffa92b 7075 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7076 && (ecs->event_thread->current_line != stop_pc_sal.line
7077 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7078 {
8c95582d
AB
7079 if (stop_pc_sal.is_stmt)
7080 {
7081 /* We are at the start of a different line. So stop. Note that
7082 we don't stop if we step into the middle of a different line.
7083 That is said to make things like for (;;) statements work
7084 better. */
edbcda09 7085 infrun_log_debug ("infrun: stepped to a different line\n");
8c95582d
AB
7086 end_stepping_range (ecs);
7087 return;
7088 }
7089 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7090 ecs->event_thread->control.step_frame_id))
7091 {
7092 /* We are at the start of a different line, however, this line is
7093 not marked as a statement, and we have not changed frame. We
7094 ignore this line table entry, and continue stepping forward,
7095 looking for a better place to stop. */
7096 refresh_step_info = false;
edbcda09
SM
7097 infrun_log_debug ("infrun: stepped to a different line, but "
7098 "it's not the start of a statement\n");
8c95582d 7099 }
488f131b 7100 }
c906108c 7101
488f131b 7102 /* We aren't done stepping.
c906108c 7103
488f131b
JB
7104 Optimize by setting the stepping range to the line.
7105 (We might not be in the original line, but if we entered a
7106 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7107 things like for(;;) statements work better.)
7108
7109 If we entered a SAL that indicates a non-statement line table entry,
7110 then we update the stepping range, but we don't update the step info,
7111 which includes things like the line number we are stepping away from.
7112 This means we will stop when we find a line table entry that is marked
7113 as is-statement, even if it matches the non-statement one we just
7114 stepped into. */
c906108c 7115
16c381f0
JK
7116 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7117 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7118 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7119 if (refresh_step_info)
7120 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7121
edbcda09 7122 infrun_log_debug ("keep going");
488f131b 7123 keep_going (ecs);
104c1213
JM
7124}
7125
c447ac0b
PA
7126/* In all-stop mode, if we're currently stepping but have stopped in
7127 some other thread, we may need to switch back to the stepped
7128 thread. Returns true we set the inferior running, false if we left
7129 it stopped (and the event needs further processing). */
7130
7131static int
7132switch_back_to_stepped_thread (struct execution_control_state *ecs)
7133{
fbea99ea 7134 if (!target_is_non_stop_p ())
c447ac0b 7135 {
99619bea
PA
7136 struct thread_info *stepping_thread;
7137
7138 /* If any thread is blocked on some internal breakpoint, and we
7139 simply need to step over that breakpoint to get it going
7140 again, do that first. */
7141
7142 /* However, if we see an event for the stepping thread, then we
7143 know all other threads have been moved past their breakpoints
7144 already. Let the caller check whether the step is finished,
7145 etc., before deciding to move it past a breakpoint. */
7146 if (ecs->event_thread->control.step_range_end != 0)
7147 return 0;
7148
7149 /* Check if the current thread is blocked on an incomplete
7150 step-over, interrupted by a random signal. */
7151 if (ecs->event_thread->control.trap_expected
7152 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7153 {
edbcda09
SM
7154 infrun_log_debug ("need to finish step-over of [%s]",
7155 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7156 keep_going (ecs);
7157 return 1;
7158 }
2adfaa28 7159
99619bea
PA
7160 /* Check if the current thread is blocked by a single-step
7161 breakpoint of another thread. */
7162 if (ecs->hit_singlestep_breakpoint)
7163 {
edbcda09
SM
7164 infrun_log_debug ("need to step [%s] over single-step breakpoint",
7165 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7166 keep_going (ecs);
7167 return 1;
7168 }
7169
4d9d9d04
PA
7170 /* If this thread needs yet another step-over (e.g., stepping
7171 through a delay slot), do it first before moving on to
7172 another thread. */
7173 if (thread_still_needs_step_over (ecs->event_thread))
7174 {
edbcda09
SM
7175 infrun_log_debug
7176 ("thread [%s] still needs step-over",
7177 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7178 keep_going (ecs);
7179 return 1;
7180 }
70509625 7181
483805cf
PA
7182 /* If scheduler locking applies even if not stepping, there's no
7183 need to walk over threads. Above we've checked whether the
7184 current thread is stepping. If some other thread not the
7185 event thread is stepping, then it must be that scheduler
7186 locking is not in effect. */
856e7dd6 7187 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7188 return 0;
7189
4d9d9d04
PA
7190 /* Otherwise, we no longer expect a trap in the current thread.
7191 Clear the trap_expected flag before switching back -- this is
7192 what keep_going does as well, if we call it. */
7193 ecs->event_thread->control.trap_expected = 0;
7194
7195 /* Likewise, clear the signal if it should not be passed. */
7196 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7197 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7198
7199 /* Do all pending step-overs before actually proceeding with
483805cf 7200 step/next/etc. */
4d9d9d04
PA
7201 if (start_step_over ())
7202 {
7203 prepare_to_wait (ecs);
7204 return 1;
7205 }
7206
7207 /* Look for the stepping/nexting thread. */
483805cf 7208 stepping_thread = NULL;
4d9d9d04 7209
08036331 7210 for (thread_info *tp : all_non_exited_threads ())
483805cf 7211 {
f3f8ece4
PA
7212 switch_to_thread_no_regs (tp);
7213
fbea99ea
PA
7214 /* Ignore threads of processes the caller is not
7215 resuming. */
483805cf 7216 if (!sched_multi
5b6d1e4f
PA
7217 && (tp->inf->process_target () != ecs->target
7218 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7219 continue;
7220
7221 /* When stepping over a breakpoint, we lock all threads
7222 except the one that needs to move past the breakpoint.
7223 If a non-event thread has this set, the "incomplete
7224 step-over" check above should have caught it earlier. */
372316f1
PA
7225 if (tp->control.trap_expected)
7226 {
7227 internal_error (__FILE__, __LINE__,
7228 "[%s] has inconsistent state: "
7229 "trap_expected=%d\n",
a068643d 7230 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7231 tp->control.trap_expected);
7232 }
483805cf
PA
7233
7234 /* Did we find the stepping thread? */
7235 if (tp->control.step_range_end)
7236 {
7237 /* Yep. There should only one though. */
7238 gdb_assert (stepping_thread == NULL);
7239
7240 /* The event thread is handled at the top, before we
7241 enter this loop. */
7242 gdb_assert (tp != ecs->event_thread);
7243
7244 /* If some thread other than the event thread is
7245 stepping, then scheduler locking can't be in effect,
7246 otherwise we wouldn't have resumed the current event
7247 thread in the first place. */
856e7dd6 7248 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7249
7250 stepping_thread = tp;
7251 }
99619bea
PA
7252 }
7253
483805cf 7254 if (stepping_thread != NULL)
99619bea 7255 {
edbcda09 7256 infrun_log_debug ("switching back to stepped thread");
c447ac0b 7257
2ac7589c
PA
7258 if (keep_going_stepped_thread (stepping_thread))
7259 {
7260 prepare_to_wait (ecs);
7261 return 1;
7262 }
7263 }
f3f8ece4
PA
7264
7265 switch_to_thread (ecs->event_thread);
2ac7589c 7266 }
2adfaa28 7267
2ac7589c
PA
7268 return 0;
7269}
2adfaa28 7270
2ac7589c
PA
7271/* Set a previously stepped thread back to stepping. Returns true on
7272 success, false if the resume is not possible (e.g., the thread
7273 vanished). */
7274
7275static int
7276keep_going_stepped_thread (struct thread_info *tp)
7277{
7278 struct frame_info *frame;
2ac7589c
PA
7279 struct execution_control_state ecss;
7280 struct execution_control_state *ecs = &ecss;
2adfaa28 7281
2ac7589c
PA
7282 /* If the stepping thread exited, then don't try to switch back and
7283 resume it, which could fail in several different ways depending
7284 on the target. Instead, just keep going.
2adfaa28 7285
2ac7589c
PA
7286 We can find a stepping dead thread in the thread list in two
7287 cases:
2adfaa28 7288
2ac7589c
PA
7289 - The target supports thread exit events, and when the target
7290 tries to delete the thread from the thread list, inferior_ptid
7291 pointed at the exiting thread. In such case, calling
7292 delete_thread does not really remove the thread from the list;
7293 instead, the thread is left listed, with 'exited' state.
64ce06e4 7294
2ac7589c
PA
7295 - The target's debug interface does not support thread exit
7296 events, and so we have no idea whatsoever if the previously
7297 stepping thread is still alive. For that reason, we need to
7298 synchronously query the target now. */
2adfaa28 7299
00431a78 7300 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c 7301 {
edbcda09
SM
7302 infrun_log_debug ("not resuming previously stepped thread, it has "
7303 "vanished");
2ac7589c 7304
00431a78 7305 delete_thread (tp);
2ac7589c 7306 return 0;
c447ac0b 7307 }
2ac7589c 7308
edbcda09 7309 infrun_log_debug ("resuming previously stepped thread");
2ac7589c
PA
7310
7311 reset_ecs (ecs, tp);
00431a78 7312 switch_to_thread (tp);
2ac7589c 7313
f2ffa92b 7314 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7315 frame = get_current_frame ();
2ac7589c
PA
7316
7317 /* If the PC of the thread we were trying to single-step has
7318 changed, then that thread has trapped or been signaled, but the
7319 event has not been reported to GDB yet. Re-poll the target
7320 looking for this particular thread's event (i.e. temporarily
7321 enable schedlock) by:
7322
7323 - setting a break at the current PC
7324 - resuming that particular thread, only (by setting trap
7325 expected)
7326
7327 This prevents us continuously moving the single-step breakpoint
7328 forward, one instruction at a time, overstepping. */
7329
f2ffa92b 7330 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7331 {
7332 ptid_t resume_ptid;
7333
edbcda09
SM
7334 infrun_log_debug ("expected thread advanced also (%s -> %s)",
7335 paddress (target_gdbarch (), tp->prev_pc),
7336 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7337
7338 /* Clear the info of the previous step-over, as it's no longer
7339 valid (if the thread was trying to step over a breakpoint, it
7340 has already succeeded). It's what keep_going would do too,
7341 if we called it. Do this before trying to insert the sss
7342 breakpoint, otherwise if we were previously trying to step
7343 over this exact address in another thread, the breakpoint is
7344 skipped. */
7345 clear_step_over_info ();
7346 tp->control.trap_expected = 0;
7347
7348 insert_single_step_breakpoint (get_frame_arch (frame),
7349 get_frame_address_space (frame),
f2ffa92b 7350 tp->suspend.stop_pc);
2ac7589c 7351
719546c4 7352 tp->resumed = true;
fbea99ea 7353 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7354 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7355 }
7356 else
7357 {
edbcda09 7358 infrun_log_debug ("expected thread still hasn't advanced");
2ac7589c
PA
7359
7360 keep_going_pass_signal (ecs);
7361 }
7362 return 1;
c447ac0b
PA
7363}
7364
8b061563
PA
7365/* Is thread TP in the middle of (software or hardware)
7366 single-stepping? (Note the result of this function must never be
7367 passed directly as target_resume's STEP parameter.) */
104c1213 7368
a289b8f6 7369static int
b3444185 7370currently_stepping (struct thread_info *tp)
a7212384 7371{
8358c15c
JK
7372 return ((tp->control.step_range_end
7373 && tp->control.step_resume_breakpoint == NULL)
7374 || tp->control.trap_expected
af48d08f 7375 || tp->stepped_breakpoint
8358c15c 7376 || bpstat_should_step ());
a7212384
UW
7377}
7378
b2175913
MS
7379/* Inferior has stepped into a subroutine call with source code that
7380 we should not step over. Do step to the first line of code in
7381 it. */
c2c6d25f
JM
7382
7383static void
568d6575
UW
7384handle_step_into_function (struct gdbarch *gdbarch,
7385 struct execution_control_state *ecs)
c2c6d25f 7386{
7e324e48
GB
7387 fill_in_stop_func (gdbarch, ecs);
7388
f2ffa92b
PA
7389 compunit_symtab *cust
7390 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7391 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7392 ecs->stop_func_start
7393 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7394
51abb421 7395 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7396 /* Use the step_resume_break to step until the end of the prologue,
7397 even if that involves jumps (as it seems to on the vax under
7398 4.2). */
7399 /* If the prologue ends in the middle of a source line, continue to
7400 the end of that source line (if it is still within the function).
7401 Otherwise, just go to end of prologue. */
2afb61aa
PA
7402 if (stop_func_sal.end
7403 && stop_func_sal.pc != ecs->stop_func_start
7404 && stop_func_sal.end < ecs->stop_func_end)
7405 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7406
2dbd5e30
KB
7407 /* Architectures which require breakpoint adjustment might not be able
7408 to place a breakpoint at the computed address. If so, the test
7409 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7410 ecs->stop_func_start to an address at which a breakpoint may be
7411 legitimately placed.
8fb3e588 7412
2dbd5e30
KB
7413 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7414 made, GDB will enter an infinite loop when stepping through
7415 optimized code consisting of VLIW instructions which contain
7416 subinstructions corresponding to different source lines. On
7417 FR-V, it's not permitted to place a breakpoint on any but the
7418 first subinstruction of a VLIW instruction. When a breakpoint is
7419 set, GDB will adjust the breakpoint address to the beginning of
7420 the VLIW instruction. Thus, we need to make the corresponding
7421 adjustment here when computing the stop address. */
8fb3e588 7422
568d6575 7423 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7424 {
7425 ecs->stop_func_start
568d6575 7426 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7427 ecs->stop_func_start);
2dbd5e30
KB
7428 }
7429
f2ffa92b 7430 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7431 {
7432 /* We are already there: stop now. */
bdc36728 7433 end_stepping_range (ecs);
c2c6d25f
JM
7434 return;
7435 }
7436 else
7437 {
7438 /* Put the step-breakpoint there and go until there. */
51abb421 7439 symtab_and_line sr_sal;
c2c6d25f
JM
7440 sr_sal.pc = ecs->stop_func_start;
7441 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7442 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7443
c2c6d25f 7444 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7445 some machines the prologue is where the new fp value is
7446 established. */
a6d9a66e 7447 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7448
7449 /* And make sure stepping stops right away then. */
16c381f0
JK
7450 ecs->event_thread->control.step_range_end
7451 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7452 }
7453 keep_going (ecs);
7454}
d4f3574e 7455
b2175913
MS
7456/* Inferior has stepped backward into a subroutine call with source
7457 code that we should not step over. Do step to the beginning of the
7458 last line of code in it. */
7459
7460static void
568d6575
UW
7461handle_step_into_function_backward (struct gdbarch *gdbarch,
7462 struct execution_control_state *ecs)
b2175913 7463{
43f3e411 7464 struct compunit_symtab *cust;
167e4384 7465 struct symtab_and_line stop_func_sal;
b2175913 7466
7e324e48
GB
7467 fill_in_stop_func (gdbarch, ecs);
7468
f2ffa92b 7469 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7470 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7471 ecs->stop_func_start
7472 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7473
f2ffa92b 7474 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7475
7476 /* OK, we're just going to keep stepping here. */
f2ffa92b 7477 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7478 {
7479 /* We're there already. Just stop stepping now. */
bdc36728 7480 end_stepping_range (ecs);
b2175913
MS
7481 }
7482 else
7483 {
7484 /* Else just reset the step range and keep going.
7485 No step-resume breakpoint, they don't work for
7486 epilogues, which can have multiple entry paths. */
16c381f0
JK
7487 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7488 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7489 keep_going (ecs);
7490 }
7491 return;
7492}
7493
d3169d93 7494/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7495 This is used to both functions and to skip over code. */
7496
7497static void
2c03e5be
PA
7498insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7499 struct symtab_and_line sr_sal,
7500 struct frame_id sr_id,
7501 enum bptype sr_type)
44cbf7b5 7502{
611c83ae
PA
7503 /* There should never be more than one step-resume or longjmp-resume
7504 breakpoint per thread, so we should never be setting a new
44cbf7b5 7505 step_resume_breakpoint when one is already active. */
8358c15c 7506 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7507 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93 7508
edbcda09
SM
7509 infrun_log_debug ("inserting step-resume breakpoint at %s",
7510 paddress (gdbarch, sr_sal.pc));
d3169d93 7511
8358c15c 7512 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7513 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7514}
7515
9da8c2a0 7516void
2c03e5be
PA
7517insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7518 struct symtab_and_line sr_sal,
7519 struct frame_id sr_id)
7520{
7521 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7522 sr_sal, sr_id,
7523 bp_step_resume);
44cbf7b5 7524}
7ce450bd 7525
2c03e5be
PA
7526/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7527 This is used to skip a potential signal handler.
7ce450bd 7528
14e60db5
DJ
7529 This is called with the interrupted function's frame. The signal
7530 handler, when it returns, will resume the interrupted function at
7531 RETURN_FRAME.pc. */
d303a6c7
AC
7532
7533static void
2c03e5be 7534insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7535{
f4c1edd8 7536 gdb_assert (return_frame != NULL);
d303a6c7 7537
51abb421
PA
7538 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7539
7540 symtab_and_line sr_sal;
568d6575 7541 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7542 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7543 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7544
2c03e5be
PA
7545 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7546 get_stack_frame_id (return_frame),
7547 bp_hp_step_resume);
d303a6c7
AC
7548}
7549
2c03e5be
PA
7550/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7551 is used to skip a function after stepping into it (for "next" or if
7552 the called function has no debugging information).
14e60db5
DJ
7553
7554 The current function has almost always been reached by single
7555 stepping a call or return instruction. NEXT_FRAME belongs to the
7556 current function, and the breakpoint will be set at the caller's
7557 resume address.
7558
7559 This is a separate function rather than reusing
2c03e5be 7560 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7561 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7562 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7563
7564static void
7565insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7566{
14e60db5
DJ
7567 /* We shouldn't have gotten here if we don't know where the call site
7568 is. */
c7ce8faa 7569 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7570
51abb421 7571 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7572
51abb421 7573 symtab_and_line sr_sal;
c7ce8faa
DJ
7574 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7575 frame_unwind_caller_pc (next_frame));
14e60db5 7576 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7577 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7578
a6d9a66e 7579 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7580 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7581}
7582
611c83ae
PA
7583/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7584 new breakpoint at the target of a jmp_buf. The handling of
7585 longjmp-resume uses the same mechanisms used for handling
7586 "step-resume" breakpoints. */
7587
7588static void
a6d9a66e 7589insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7590{
e81a37f7
TT
7591 /* There should never be more than one longjmp-resume breakpoint per
7592 thread, so we should never be setting a new
611c83ae 7593 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7594 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae 7595
edbcda09
SM
7596 infrun_log_debug ("inserting longjmp-resume breakpoint at %s",
7597 paddress (gdbarch, pc));
611c83ae 7598
e81a37f7 7599 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7600 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7601}
7602
186c406b
TT
7603/* Insert an exception resume breakpoint. TP is the thread throwing
7604 the exception. The block B is the block of the unwinder debug hook
7605 function. FRAME is the frame corresponding to the call to this
7606 function. SYM is the symbol of the function argument holding the
7607 target PC of the exception. */
7608
7609static void
7610insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7611 const struct block *b,
186c406b
TT
7612 struct frame_info *frame,
7613 struct symbol *sym)
7614{
a70b8144 7615 try
186c406b 7616 {
63e43d3a 7617 struct block_symbol vsym;
186c406b
TT
7618 struct value *value;
7619 CORE_ADDR handler;
7620 struct breakpoint *bp;
7621
987012b8 7622 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7623 b, VAR_DOMAIN);
63e43d3a 7624 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7625 /* If the value was optimized out, revert to the old behavior. */
7626 if (! value_optimized_out (value))
7627 {
7628 handler = value_as_address (value);
7629
edbcda09
SM
7630 infrun_log_debug ("exception resume at %lx",
7631 (unsigned long) handler);
186c406b
TT
7632
7633 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7634 handler,
7635 bp_exception_resume).release ();
c70a6932
JK
7636
7637 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7638 frame = NULL;
7639
5d5658a1 7640 bp->thread = tp->global_num;
186c406b
TT
7641 inferior_thread ()->control.exception_resume_breakpoint = bp;
7642 }
7643 }
230d2906 7644 catch (const gdb_exception_error &e)
492d29ea
PA
7645 {
7646 /* We want to ignore errors here. */
7647 }
186c406b
TT
7648}
7649
28106bc2
SDJ
7650/* A helper for check_exception_resume that sets an
7651 exception-breakpoint based on a SystemTap probe. */
7652
7653static void
7654insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7655 const struct bound_probe *probe,
28106bc2
SDJ
7656 struct frame_info *frame)
7657{
7658 struct value *arg_value;
7659 CORE_ADDR handler;
7660 struct breakpoint *bp;
7661
7662 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7663 if (!arg_value)
7664 return;
7665
7666 handler = value_as_address (arg_value);
7667
edbcda09
SM
7668 infrun_log_debug ("exception resume at %s",
7669 paddress (probe->objfile->arch (), handler));
28106bc2
SDJ
7670
7671 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7672 handler, bp_exception_resume).release ();
5d5658a1 7673 bp->thread = tp->global_num;
28106bc2
SDJ
7674 inferior_thread ()->control.exception_resume_breakpoint = bp;
7675}
7676
186c406b
TT
7677/* This is called when an exception has been intercepted. Check to
7678 see whether the exception's destination is of interest, and if so,
7679 set an exception resume breakpoint there. */
7680
7681static void
7682check_exception_resume (struct execution_control_state *ecs,
28106bc2 7683 struct frame_info *frame)
186c406b 7684{
729662a5 7685 struct bound_probe probe;
28106bc2
SDJ
7686 struct symbol *func;
7687
7688 /* First see if this exception unwinding breakpoint was set via a
7689 SystemTap probe point. If so, the probe has two arguments: the
7690 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7691 set a breakpoint there. */
6bac7473 7692 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7693 if (probe.prob)
28106bc2 7694 {
729662a5 7695 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7696 return;
7697 }
7698
7699 func = get_frame_function (frame);
7700 if (!func)
7701 return;
186c406b 7702
a70b8144 7703 try
186c406b 7704 {
3977b71f 7705 const struct block *b;
8157b174 7706 struct block_iterator iter;
186c406b
TT
7707 struct symbol *sym;
7708 int argno = 0;
7709
7710 /* The exception breakpoint is a thread-specific breakpoint on
7711 the unwinder's debug hook, declared as:
7712
7713 void _Unwind_DebugHook (void *cfa, void *handler);
7714
7715 The CFA argument indicates the frame to which control is
7716 about to be transferred. HANDLER is the destination PC.
7717
7718 We ignore the CFA and set a temporary breakpoint at HANDLER.
7719 This is not extremely efficient but it avoids issues in gdb
7720 with computing the DWARF CFA, and it also works even in weird
7721 cases such as throwing an exception from inside a signal
7722 handler. */
7723
7724 b = SYMBOL_BLOCK_VALUE (func);
7725 ALL_BLOCK_SYMBOLS (b, iter, sym)
7726 {
7727 if (!SYMBOL_IS_ARGUMENT (sym))
7728 continue;
7729
7730 if (argno == 0)
7731 ++argno;
7732 else
7733 {
7734 insert_exception_resume_breakpoint (ecs->event_thread,
7735 b, frame, sym);
7736 break;
7737 }
7738 }
7739 }
230d2906 7740 catch (const gdb_exception_error &e)
492d29ea
PA
7741 {
7742 }
186c406b
TT
7743}
7744
104c1213 7745static void
22bcd14b 7746stop_waiting (struct execution_control_state *ecs)
104c1213 7747{
edbcda09 7748 infrun_log_debug ("stop_waiting");
527159b7 7749
cd0fc7c3
SS
7750 /* Let callers know we don't want to wait for the inferior anymore. */
7751 ecs->wait_some_more = 0;
fbea99ea 7752
53cccef1 7753 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7754 threads now that we're presenting the stop to the user. */
53cccef1 7755 if (!non_stop && exists_non_stop_target ())
fbea99ea 7756 stop_all_threads ();
cd0fc7c3
SS
7757}
7758
4d9d9d04
PA
7759/* Like keep_going, but passes the signal to the inferior, even if the
7760 signal is set to nopass. */
d4f3574e
SS
7761
7762static void
4d9d9d04 7763keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7764{
d7e15655 7765 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7766 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7767
d4f3574e 7768 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7769 ecs->event_thread->prev_pc
fc75c28b 7770 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 7771
4d9d9d04 7772 if (ecs->event_thread->control.trap_expected)
d4f3574e 7773 {
4d9d9d04
PA
7774 struct thread_info *tp = ecs->event_thread;
7775
edbcda09
SM
7776 infrun_log_debug ("%s has trap_expected set, "
7777 "resuming to collect trap",
7778 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7779
a9ba6bae
PA
7780 /* We haven't yet gotten our trap, and either: intercepted a
7781 non-signal event (e.g., a fork); or took a signal which we
7782 are supposed to pass through to the inferior. Simply
7783 continue. */
64ce06e4 7784 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7785 }
372316f1
PA
7786 else if (step_over_info_valid_p ())
7787 {
7788 /* Another thread is stepping over a breakpoint in-line. If
7789 this thread needs a step-over too, queue the request. In
7790 either case, this resume must be deferred for later. */
7791 struct thread_info *tp = ecs->event_thread;
7792
7793 if (ecs->hit_singlestep_breakpoint
7794 || thread_still_needs_step_over (tp))
7795 {
edbcda09
SM
7796 infrun_log_debug ("step-over already in progress: "
7797 "step-over for %s deferred",
7798 target_pid_to_str (tp->ptid).c_str ());
7bd43605 7799 global_thread_step_over_chain_enqueue (tp);
372316f1
PA
7800 }
7801 else
7802 {
edbcda09
SM
7803 infrun_log_debug ("step-over in progress: resume of %s deferred",
7804 target_pid_to_str (tp->ptid).c_str ());
372316f1 7805 }
372316f1 7806 }
d4f3574e
SS
7807 else
7808 {
31e77af2 7809 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7810 int remove_bp;
7811 int remove_wps;
8d297bbf 7812 step_over_what step_what;
31e77af2 7813
d4f3574e 7814 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7815 anyway (if we got a signal, the user asked it be passed to
7816 the child)
7817 -- or --
7818 We got our expected trap, but decided we should resume from
7819 it.
d4f3574e 7820
a9ba6bae 7821 We're going to run this baby now!
d4f3574e 7822
c36b740a
VP
7823 Note that insert_breakpoints won't try to re-insert
7824 already inserted breakpoints. Therefore, we don't
7825 care if breakpoints were already inserted, or not. */
a9ba6bae 7826
31e77af2
PA
7827 /* If we need to step over a breakpoint, and we're not using
7828 displaced stepping to do so, insert all breakpoints
7829 (watchpoints, etc.) but the one we're stepping over, step one
7830 instruction, and then re-insert the breakpoint when that step
7831 is finished. */
963f9c80 7832
6c4cfb24
PA
7833 step_what = thread_still_needs_step_over (ecs->event_thread);
7834
963f9c80 7835 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7836 || (step_what & STEP_OVER_BREAKPOINT));
7837 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7838
cb71640d
PA
7839 /* We can't use displaced stepping if we need to step past a
7840 watchpoint. The instruction copied to the scratch pad would
7841 still trigger the watchpoint. */
7842 if (remove_bp
3fc8eb30 7843 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7844 {
a01bda52 7845 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7846 regcache_read_pc (regcache), remove_wps,
7847 ecs->event_thread->global_num);
45e8c884 7848 }
963f9c80 7849 else if (remove_wps)
21edc42f 7850 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7851
7852 /* If we now need to do an in-line step-over, we need to stop
7853 all other threads. Note this must be done before
7854 insert_breakpoints below, because that removes the breakpoint
7855 we're about to step over, otherwise other threads could miss
7856 it. */
fbea99ea 7857 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7858 stop_all_threads ();
abbb1732 7859
31e77af2 7860 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7861 try
31e77af2
PA
7862 {
7863 insert_breakpoints ();
7864 }
230d2906 7865 catch (const gdb_exception_error &e)
31e77af2
PA
7866 {
7867 exception_print (gdb_stderr, e);
22bcd14b 7868 stop_waiting (ecs);
bdf2a94a 7869 clear_step_over_info ();
31e77af2 7870 return;
d4f3574e
SS
7871 }
7872
963f9c80 7873 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7874
64ce06e4 7875 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7876 }
7877
488f131b 7878 prepare_to_wait (ecs);
d4f3574e
SS
7879}
7880
4d9d9d04
PA
7881/* Called when we should continue running the inferior, because the
7882 current event doesn't cause a user visible stop. This does the
7883 resuming part; waiting for the next event is done elsewhere. */
7884
7885static void
7886keep_going (struct execution_control_state *ecs)
7887{
7888 if (ecs->event_thread->control.trap_expected
7889 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7890 ecs->event_thread->control.trap_expected = 0;
7891
7892 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7893 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7894 keep_going_pass_signal (ecs);
7895}
7896
104c1213
JM
7897/* This function normally comes after a resume, before
7898 handle_inferior_event exits. It takes care of any last bits of
7899 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7900
104c1213
JM
7901static void
7902prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7903{
edbcda09 7904 infrun_log_debug ("prepare_to_wait");
104c1213 7905
104c1213 7906 ecs->wait_some_more = 1;
0b333c5e 7907
0e2dba2d
PA
7908 /* If the target can't async, emulate it by marking the infrun event
7909 handler such that as soon as we get back to the event-loop, we
7910 immediately end up in fetch_inferior_event again calling
7911 target_wait. */
7912 if (!target_can_async_p ())
0b333c5e 7913 mark_infrun_async_event_handler ();
c906108c 7914}
11cf8741 7915
fd664c91 7916/* We are done with the step range of a step/next/si/ni command.
b57bacec 7917 Called once for each n of a "step n" operation. */
fd664c91
PA
7918
7919static void
bdc36728 7920end_stepping_range (struct execution_control_state *ecs)
fd664c91 7921{
bdc36728 7922 ecs->event_thread->control.stop_step = 1;
bdc36728 7923 stop_waiting (ecs);
fd664c91
PA
7924}
7925
33d62d64
JK
7926/* Several print_*_reason functions to print why the inferior has stopped.
7927 We always print something when the inferior exits, or receives a signal.
7928 The rest of the cases are dealt with later on in normal_stop and
7929 print_it_typical. Ideally there should be a call to one of these
7930 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7931 stop_waiting is called.
33d62d64 7932
fd664c91
PA
7933 Note that we don't call these directly, instead we delegate that to
7934 the interpreters, through observers. Interpreters then call these
7935 with whatever uiout is right. */
33d62d64 7936
fd664c91
PA
7937void
7938print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7939{
fd664c91 7940 /* For CLI-like interpreters, print nothing. */
33d62d64 7941
112e8700 7942 if (uiout->is_mi_like_p ())
fd664c91 7943 {
112e8700 7944 uiout->field_string ("reason",
fd664c91
PA
7945 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7946 }
7947}
33d62d64 7948
fd664c91
PA
7949void
7950print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7951{
33d62d64 7952 annotate_signalled ();
112e8700
SM
7953 if (uiout->is_mi_like_p ())
7954 uiout->field_string
7955 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7956 uiout->text ("\nProgram terminated with signal ");
33d62d64 7957 annotate_signal_name ();
112e8700 7958 uiout->field_string ("signal-name",
2ea28649 7959 gdb_signal_to_name (siggnal));
33d62d64 7960 annotate_signal_name_end ();
112e8700 7961 uiout->text (", ");
33d62d64 7962 annotate_signal_string ();
112e8700 7963 uiout->field_string ("signal-meaning",
2ea28649 7964 gdb_signal_to_string (siggnal));
33d62d64 7965 annotate_signal_string_end ();
112e8700
SM
7966 uiout->text (".\n");
7967 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7968}
7969
fd664c91
PA
7970void
7971print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7972{
fda326dd 7973 struct inferior *inf = current_inferior ();
a068643d 7974 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7975
33d62d64
JK
7976 annotate_exited (exitstatus);
7977 if (exitstatus)
7978 {
112e8700
SM
7979 if (uiout->is_mi_like_p ())
7980 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7981 std::string exit_code_str
7982 = string_printf ("0%o", (unsigned int) exitstatus);
7983 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7984 plongest (inf->num), pidstr.c_str (),
7985 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
7986 }
7987 else
11cf8741 7988 {
112e8700
SM
7989 if (uiout->is_mi_like_p ())
7990 uiout->field_string
7991 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
7992 uiout->message ("[Inferior %s (%s) exited normally]\n",
7993 plongest (inf->num), pidstr.c_str ());
33d62d64 7994 }
33d62d64
JK
7995}
7996
012b3a21
WT
7997/* Some targets/architectures can do extra processing/display of
7998 segmentation faults. E.g., Intel MPX boundary faults.
7999 Call the architecture dependent function to handle the fault. */
8000
8001static void
8002handle_segmentation_fault (struct ui_out *uiout)
8003{
8004 struct regcache *regcache = get_current_regcache ();
ac7936df 8005 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8006
8007 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8008 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8009}
8010
fd664c91
PA
8011void
8012print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8013{
f303dbd6
PA
8014 struct thread_info *thr = inferior_thread ();
8015
33d62d64
JK
8016 annotate_signal ();
8017
112e8700 8018 if (uiout->is_mi_like_p ())
f303dbd6
PA
8019 ;
8020 else if (show_thread_that_caused_stop ())
33d62d64 8021 {
f303dbd6 8022 const char *name;
33d62d64 8023
112e8700 8024 uiout->text ("\nThread ");
33eca680 8025 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8026
8027 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8028 if (name != NULL)
8029 {
112e8700 8030 uiout->text (" \"");
33eca680 8031 uiout->field_string ("name", name);
112e8700 8032 uiout->text ("\"");
f303dbd6 8033 }
33d62d64 8034 }
f303dbd6 8035 else
112e8700 8036 uiout->text ("\nProgram");
f303dbd6 8037
112e8700
SM
8038 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8039 uiout->text (" stopped");
33d62d64
JK
8040 else
8041 {
112e8700 8042 uiout->text (" received signal ");
8b93c638 8043 annotate_signal_name ();
112e8700
SM
8044 if (uiout->is_mi_like_p ())
8045 uiout->field_string
8046 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8047 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8048 annotate_signal_name_end ();
112e8700 8049 uiout->text (", ");
8b93c638 8050 annotate_signal_string ();
112e8700 8051 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8052
8053 if (siggnal == GDB_SIGNAL_SEGV)
8054 handle_segmentation_fault (uiout);
8055
8b93c638 8056 annotate_signal_string_end ();
33d62d64 8057 }
112e8700 8058 uiout->text (".\n");
33d62d64 8059}
252fbfc8 8060
fd664c91
PA
8061void
8062print_no_history_reason (struct ui_out *uiout)
33d62d64 8063{
112e8700 8064 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8065}
43ff13b4 8066
0c7e1a46
PA
8067/* Print current location without a level number, if we have changed
8068 functions or hit a breakpoint. Print source line if we have one.
8069 bpstat_print contains the logic deciding in detail what to print,
8070 based on the event(s) that just occurred. */
8071
243a9253
PA
8072static void
8073print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8074{
8075 int bpstat_ret;
f486487f 8076 enum print_what source_flag;
0c7e1a46
PA
8077 int do_frame_printing = 1;
8078 struct thread_info *tp = inferior_thread ();
8079
8080 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8081 switch (bpstat_ret)
8082 {
8083 case PRINT_UNKNOWN:
8084 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8085 should) carry around the function and does (or should) use
8086 that when doing a frame comparison. */
8087 if (tp->control.stop_step
8088 && frame_id_eq (tp->control.step_frame_id,
8089 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8090 && (tp->control.step_start_function
8091 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8092 {
8093 /* Finished step, just print source line. */
8094 source_flag = SRC_LINE;
8095 }
8096 else
8097 {
8098 /* Print location and source line. */
8099 source_flag = SRC_AND_LOC;
8100 }
8101 break;
8102 case PRINT_SRC_AND_LOC:
8103 /* Print location and source line. */
8104 source_flag = SRC_AND_LOC;
8105 break;
8106 case PRINT_SRC_ONLY:
8107 source_flag = SRC_LINE;
8108 break;
8109 case PRINT_NOTHING:
8110 /* Something bogus. */
8111 source_flag = SRC_LINE;
8112 do_frame_printing = 0;
8113 break;
8114 default:
8115 internal_error (__FILE__, __LINE__, _("Unknown value."));
8116 }
8117
8118 /* The behavior of this routine with respect to the source
8119 flag is:
8120 SRC_LINE: Print only source line
8121 LOCATION: Print only location
8122 SRC_AND_LOC: Print location and source line. */
8123 if (do_frame_printing)
8124 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8125}
8126
243a9253
PA
8127/* See infrun.h. */
8128
8129void
4c7d57e7 8130print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8131{
243a9253 8132 struct target_waitstatus last;
243a9253
PA
8133 struct thread_info *tp;
8134
5b6d1e4f 8135 get_last_target_status (nullptr, nullptr, &last);
243a9253 8136
67ad9399
TT
8137 {
8138 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8139
67ad9399 8140 print_stop_location (&last);
243a9253 8141
67ad9399 8142 /* Display the auto-display expressions. */
4c7d57e7
TT
8143 if (displays)
8144 do_displays ();
67ad9399 8145 }
243a9253
PA
8146
8147 tp = inferior_thread ();
8148 if (tp->thread_fsm != NULL
46e3ed7f 8149 && tp->thread_fsm->finished_p ())
243a9253
PA
8150 {
8151 struct return_value_info *rv;
8152
46e3ed7f 8153 rv = tp->thread_fsm->return_value ();
243a9253
PA
8154 if (rv != NULL)
8155 print_return_value (uiout, rv);
8156 }
0c7e1a46
PA
8157}
8158
388a7084
PA
8159/* See infrun.h. */
8160
8161void
8162maybe_remove_breakpoints (void)
8163{
8164 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8165 {
8166 if (remove_breakpoints ())
8167 {
223ffa71 8168 target_terminal::ours_for_output ();
388a7084
PA
8169 printf_filtered (_("Cannot remove breakpoints because "
8170 "program is no longer writable.\nFurther "
8171 "execution is probably impossible.\n"));
8172 }
8173 }
8174}
8175
4c2f2a79
PA
8176/* The execution context that just caused a normal stop. */
8177
8178struct stop_context
8179{
2d844eaf
TT
8180 stop_context ();
8181 ~stop_context ();
8182
8183 DISABLE_COPY_AND_ASSIGN (stop_context);
8184
8185 bool changed () const;
8186
4c2f2a79
PA
8187 /* The stop ID. */
8188 ULONGEST stop_id;
c906108c 8189
4c2f2a79 8190 /* The event PTID. */
c906108c 8191
4c2f2a79
PA
8192 ptid_t ptid;
8193
8194 /* If stopp for a thread event, this is the thread that caused the
8195 stop. */
8196 struct thread_info *thread;
8197
8198 /* The inferior that caused the stop. */
8199 int inf_num;
8200};
8201
2d844eaf 8202/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8203 takes a strong reference to the thread. */
8204
2d844eaf 8205stop_context::stop_context ()
4c2f2a79 8206{
2d844eaf
TT
8207 stop_id = get_stop_id ();
8208 ptid = inferior_ptid;
8209 inf_num = current_inferior ()->num;
4c2f2a79 8210
d7e15655 8211 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8212 {
8213 /* Take a strong reference so that the thread can't be deleted
8214 yet. */
2d844eaf
TT
8215 thread = inferior_thread ();
8216 thread->incref ();
4c2f2a79
PA
8217 }
8218 else
2d844eaf 8219 thread = NULL;
4c2f2a79
PA
8220}
8221
8222/* Release a stop context previously created with save_stop_context.
8223 Releases the strong reference to the thread as well. */
8224
2d844eaf 8225stop_context::~stop_context ()
4c2f2a79 8226{
2d844eaf
TT
8227 if (thread != NULL)
8228 thread->decref ();
4c2f2a79
PA
8229}
8230
8231/* Return true if the current context no longer matches the saved stop
8232 context. */
8233
2d844eaf
TT
8234bool
8235stop_context::changed () const
8236{
8237 if (ptid != inferior_ptid)
8238 return true;
8239 if (inf_num != current_inferior ()->num)
8240 return true;
8241 if (thread != NULL && thread->state != THREAD_STOPPED)
8242 return true;
8243 if (get_stop_id () != stop_id)
8244 return true;
8245 return false;
4c2f2a79
PA
8246}
8247
8248/* See infrun.h. */
8249
8250int
96baa820 8251normal_stop (void)
c906108c 8252{
73b65bb0 8253 struct target_waitstatus last;
73b65bb0 8254
5b6d1e4f 8255 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8256
4c2f2a79
PA
8257 new_stop_id ();
8258
29f49a6a
PA
8259 /* If an exception is thrown from this point on, make sure to
8260 propagate GDB's knowledge of the executing state to the
8261 frontend/user running state. A QUIT is an easy exception to see
8262 here, so do this before any filtered output. */
731f534f 8263
5b6d1e4f 8264 ptid_t finish_ptid = null_ptid;
731f534f 8265
c35b1492 8266 if (!non_stop)
5b6d1e4f 8267 finish_ptid = minus_one_ptid;
e1316e60
PA
8268 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8269 || last.kind == TARGET_WAITKIND_EXITED)
8270 {
8271 /* On some targets, we may still have live threads in the
8272 inferior when we get a process exit event. E.g., for
8273 "checkpoint", when the current checkpoint/fork exits,
8274 linux-fork.c automatically switches to another fork from
8275 within target_mourn_inferior. */
731f534f 8276 if (inferior_ptid != null_ptid)
5b6d1e4f 8277 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8278 }
8279 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8280 finish_ptid = inferior_ptid;
8281
8282 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8283 if (finish_ptid != null_ptid)
8284 {
8285 maybe_finish_thread_state.emplace
8286 (user_visible_resume_target (finish_ptid), finish_ptid);
8287 }
29f49a6a 8288
b57bacec
PA
8289 /* As we're presenting a stop, and potentially removing breakpoints,
8290 update the thread list so we can tell whether there are threads
8291 running on the target. With target remote, for example, we can
8292 only learn about new threads when we explicitly update the thread
8293 list. Do this before notifying the interpreters about signal
8294 stops, end of stepping ranges, etc., so that the "new thread"
8295 output is emitted before e.g., "Program received signal FOO",
8296 instead of after. */
8297 update_thread_list ();
8298
8299 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8300 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8301
c906108c
SS
8302 /* As with the notification of thread events, we want to delay
8303 notifying the user that we've switched thread context until
8304 the inferior actually stops.
8305
73b65bb0
DJ
8306 There's no point in saying anything if the inferior has exited.
8307 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8308 "received a signal".
8309
8310 Also skip saying anything in non-stop mode. In that mode, as we
8311 don't want GDB to switch threads behind the user's back, to avoid
8312 races where the user is typing a command to apply to thread x,
8313 but GDB switches to thread y before the user finishes entering
8314 the command, fetch_inferior_event installs a cleanup to restore
8315 the current thread back to the thread the user had selected right
8316 after this event is handled, so we're not really switching, only
8317 informing of a stop. */
4f8d22e3 8318 if (!non_stop
731f534f 8319 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8320 && target_has_execution
8321 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8322 && last.kind != TARGET_WAITKIND_EXITED
8323 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8324 {
0e454242 8325 SWITCH_THRU_ALL_UIS ()
3b12939d 8326 {
223ffa71 8327 target_terminal::ours_for_output ();
3b12939d 8328 printf_filtered (_("[Switching to %s]\n"),
a068643d 8329 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8330 annotate_thread_changed ();
8331 }
39f77062 8332 previous_inferior_ptid = inferior_ptid;
c906108c 8333 }
c906108c 8334
0e5bf2a8
PA
8335 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8336 {
0e454242 8337 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8338 if (current_ui->prompt_state == PROMPT_BLOCKED)
8339 {
223ffa71 8340 target_terminal::ours_for_output ();
3b12939d
PA
8341 printf_filtered (_("No unwaited-for children left.\n"));
8342 }
0e5bf2a8
PA
8343 }
8344
b57bacec 8345 /* Note: this depends on the update_thread_list call above. */
388a7084 8346 maybe_remove_breakpoints ();
c906108c 8347
c906108c
SS
8348 /* If an auto-display called a function and that got a signal,
8349 delete that auto-display to avoid an infinite recursion. */
8350
8351 if (stopped_by_random_signal)
8352 disable_current_display ();
8353
0e454242 8354 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8355 {
8356 async_enable_stdin ();
8357 }
c906108c 8358
388a7084 8359 /* Let the user/frontend see the threads as stopped. */
731f534f 8360 maybe_finish_thread_state.reset ();
388a7084
PA
8361
8362 /* Select innermost stack frame - i.e., current frame is frame 0,
8363 and current location is based on that. Handle the case where the
8364 dummy call is returning after being stopped. E.g. the dummy call
8365 previously hit a breakpoint. (If the dummy call returns
8366 normally, we won't reach here.) Do this before the stop hook is
8367 run, so that it doesn't get to see the temporary dummy frame,
8368 which is not where we'll present the stop. */
8369 if (has_stack_frames ())
8370 {
8371 if (stop_stack_dummy == STOP_STACK_DUMMY)
8372 {
8373 /* Pop the empty frame that contains the stack dummy. This
8374 also restores inferior state prior to the call (struct
8375 infcall_suspend_state). */
8376 struct frame_info *frame = get_current_frame ();
8377
8378 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8379 frame_pop (frame);
8380 /* frame_pop calls reinit_frame_cache as the last thing it
8381 does which means there's now no selected frame. */
8382 }
8383
8384 select_frame (get_current_frame ());
8385
8386 /* Set the current source location. */
8387 set_current_sal_from_frame (get_current_frame ());
8388 }
dd7e2d2b
PA
8389
8390 /* Look up the hook_stop and run it (CLI internally handles problem
8391 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8392 if (stop_command != NULL)
8393 {
2d844eaf 8394 stop_context saved_context;
4c2f2a79 8395
a70b8144 8396 try
bf469271
PA
8397 {
8398 execute_cmd_pre_hook (stop_command);
8399 }
230d2906 8400 catch (const gdb_exception &ex)
bf469271
PA
8401 {
8402 exception_fprintf (gdb_stderr, ex,
8403 "Error while running hook_stop:\n");
8404 }
4c2f2a79
PA
8405
8406 /* If the stop hook resumes the target, then there's no point in
8407 trying to notify about the previous stop; its context is
8408 gone. Likewise if the command switches thread or inferior --
8409 the observers would print a stop for the wrong
8410 thread/inferior. */
2d844eaf
TT
8411 if (saved_context.changed ())
8412 return 1;
4c2f2a79 8413 }
dd7e2d2b 8414
388a7084
PA
8415 /* Notify observers about the stop. This is where the interpreters
8416 print the stop event. */
d7e15655 8417 if (inferior_ptid != null_ptid)
76727919 8418 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8419 stop_print_frame);
8420 else
76727919 8421 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8422
243a9253
PA
8423 annotate_stopped ();
8424
48844aa6
PA
8425 if (target_has_execution)
8426 {
8427 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8428 && last.kind != TARGET_WAITKIND_EXITED
8429 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8430 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8431 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8432 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8433 }
6c95b8df
PA
8434
8435 /* Try to get rid of automatically added inferiors that are no
8436 longer needed. Keeping those around slows down things linearly.
8437 Note that this never removes the current inferior. */
8438 prune_inferiors ();
4c2f2a79
PA
8439
8440 return 0;
c906108c 8441}
c906108c 8442\f
c5aa993b 8443int
96baa820 8444signal_stop_state (int signo)
c906108c 8445{
d6b48e9c 8446 return signal_stop[signo];
c906108c
SS
8447}
8448
c5aa993b 8449int
96baa820 8450signal_print_state (int signo)
c906108c
SS
8451{
8452 return signal_print[signo];
8453}
8454
c5aa993b 8455int
96baa820 8456signal_pass_state (int signo)
c906108c
SS
8457{
8458 return signal_program[signo];
8459}
8460
2455069d
UW
8461static void
8462signal_cache_update (int signo)
8463{
8464 if (signo == -1)
8465 {
a493e3e2 8466 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8467 signal_cache_update (signo);
8468
8469 return;
8470 }
8471
8472 signal_pass[signo] = (signal_stop[signo] == 0
8473 && signal_print[signo] == 0
ab04a2af
TT
8474 && signal_program[signo] == 1
8475 && signal_catch[signo] == 0);
2455069d
UW
8476}
8477
488f131b 8478int
7bda5e4a 8479signal_stop_update (int signo, int state)
d4f3574e
SS
8480{
8481 int ret = signal_stop[signo];
abbb1732 8482
d4f3574e 8483 signal_stop[signo] = state;
2455069d 8484 signal_cache_update (signo);
d4f3574e
SS
8485 return ret;
8486}
8487
488f131b 8488int
7bda5e4a 8489signal_print_update (int signo, int state)
d4f3574e
SS
8490{
8491 int ret = signal_print[signo];
abbb1732 8492
d4f3574e 8493 signal_print[signo] = state;
2455069d 8494 signal_cache_update (signo);
d4f3574e
SS
8495 return ret;
8496}
8497
488f131b 8498int
7bda5e4a 8499signal_pass_update (int signo, int state)
d4f3574e
SS
8500{
8501 int ret = signal_program[signo];
abbb1732 8502
d4f3574e 8503 signal_program[signo] = state;
2455069d 8504 signal_cache_update (signo);
d4f3574e
SS
8505 return ret;
8506}
8507
ab04a2af
TT
8508/* Update the global 'signal_catch' from INFO and notify the
8509 target. */
8510
8511void
8512signal_catch_update (const unsigned int *info)
8513{
8514 int i;
8515
8516 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8517 signal_catch[i] = info[i] > 0;
8518 signal_cache_update (-1);
adc6a863 8519 target_pass_signals (signal_pass);
ab04a2af
TT
8520}
8521
c906108c 8522static void
96baa820 8523sig_print_header (void)
c906108c 8524{
3e43a32a
MS
8525 printf_filtered (_("Signal Stop\tPrint\tPass "
8526 "to program\tDescription\n"));
c906108c
SS
8527}
8528
8529static void
2ea28649 8530sig_print_info (enum gdb_signal oursig)
c906108c 8531{
2ea28649 8532 const char *name = gdb_signal_to_name (oursig);
c906108c 8533 int name_padding = 13 - strlen (name);
96baa820 8534
c906108c
SS
8535 if (name_padding <= 0)
8536 name_padding = 0;
8537
8538 printf_filtered ("%s", name);
488f131b 8539 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8540 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8541 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8542 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8543 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8544}
8545
8546/* Specify how various signals in the inferior should be handled. */
8547
8548static void
0b39b52e 8549handle_command (const char *args, int from_tty)
c906108c 8550{
c906108c 8551 int digits, wordlen;
b926417a 8552 int sigfirst, siglast;
2ea28649 8553 enum gdb_signal oursig;
c906108c 8554 int allsigs;
c906108c
SS
8555
8556 if (args == NULL)
8557 {
e2e0b3e5 8558 error_no_arg (_("signal to handle"));
c906108c
SS
8559 }
8560
1777feb0 8561 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8562
adc6a863
PA
8563 const size_t nsigs = GDB_SIGNAL_LAST;
8564 unsigned char sigs[nsigs] {};
c906108c 8565
1777feb0 8566 /* Break the command line up into args. */
c906108c 8567
773a1edc 8568 gdb_argv built_argv (args);
c906108c
SS
8569
8570 /* Walk through the args, looking for signal oursigs, signal names, and
8571 actions. Signal numbers and signal names may be interspersed with
8572 actions, with the actions being performed for all signals cumulatively
1777feb0 8573 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8574
773a1edc 8575 for (char *arg : built_argv)
c906108c 8576 {
773a1edc
TT
8577 wordlen = strlen (arg);
8578 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8579 {;
8580 }
8581 allsigs = 0;
8582 sigfirst = siglast = -1;
8583
773a1edc 8584 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8585 {
8586 /* Apply action to all signals except those used by the
1777feb0 8587 debugger. Silently skip those. */
c906108c
SS
8588 allsigs = 1;
8589 sigfirst = 0;
8590 siglast = nsigs - 1;
8591 }
773a1edc 8592 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8593 {
8594 SET_SIGS (nsigs, sigs, signal_stop);
8595 SET_SIGS (nsigs, sigs, signal_print);
8596 }
773a1edc 8597 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8598 {
8599 UNSET_SIGS (nsigs, sigs, signal_program);
8600 }
773a1edc 8601 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8602 {
8603 SET_SIGS (nsigs, sigs, signal_print);
8604 }
773a1edc 8605 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8606 {
8607 SET_SIGS (nsigs, sigs, signal_program);
8608 }
773a1edc 8609 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8610 {
8611 UNSET_SIGS (nsigs, sigs, signal_stop);
8612 }
773a1edc 8613 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8614 {
8615 SET_SIGS (nsigs, sigs, signal_program);
8616 }
773a1edc 8617 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8618 {
8619 UNSET_SIGS (nsigs, sigs, signal_print);
8620 UNSET_SIGS (nsigs, sigs, signal_stop);
8621 }
773a1edc 8622 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8623 {
8624 UNSET_SIGS (nsigs, sigs, signal_program);
8625 }
8626 else if (digits > 0)
8627 {
8628 /* It is numeric. The numeric signal refers to our own
8629 internal signal numbering from target.h, not to host/target
8630 signal number. This is a feature; users really should be
8631 using symbolic names anyway, and the common ones like
8632 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8633
8634 sigfirst = siglast = (int)
773a1edc
TT
8635 gdb_signal_from_command (atoi (arg));
8636 if (arg[digits] == '-')
c906108c
SS
8637 {
8638 siglast = (int)
773a1edc 8639 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8640 }
8641 if (sigfirst > siglast)
8642 {
1777feb0 8643 /* Bet he didn't figure we'd think of this case... */
b926417a 8644 std::swap (sigfirst, siglast);
c906108c
SS
8645 }
8646 }
8647 else
8648 {
773a1edc 8649 oursig = gdb_signal_from_name (arg);
a493e3e2 8650 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8651 {
8652 sigfirst = siglast = (int) oursig;
8653 }
8654 else
8655 {
8656 /* Not a number and not a recognized flag word => complain. */
773a1edc 8657 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8658 }
8659 }
8660
8661 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8662 which signals to apply actions to. */
c906108c 8663
b926417a 8664 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8665 {
2ea28649 8666 switch ((enum gdb_signal) signum)
c906108c 8667 {
a493e3e2
PA
8668 case GDB_SIGNAL_TRAP:
8669 case GDB_SIGNAL_INT:
c906108c
SS
8670 if (!allsigs && !sigs[signum])
8671 {
9e2f0ad4 8672 if (query (_("%s is used by the debugger.\n\
3e43a32a 8673Are you sure you want to change it? "),
2ea28649 8674 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8675 {
8676 sigs[signum] = 1;
8677 }
8678 else
c119e040 8679 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8680 }
8681 break;
a493e3e2
PA
8682 case GDB_SIGNAL_0:
8683 case GDB_SIGNAL_DEFAULT:
8684 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8685 /* Make sure that "all" doesn't print these. */
8686 break;
8687 default:
8688 sigs[signum] = 1;
8689 break;
8690 }
8691 }
c906108c
SS
8692 }
8693
b926417a 8694 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8695 if (sigs[signum])
8696 {
2455069d 8697 signal_cache_update (-1);
adc6a863
PA
8698 target_pass_signals (signal_pass);
8699 target_program_signals (signal_program);
c906108c 8700
3a031f65
PA
8701 if (from_tty)
8702 {
8703 /* Show the results. */
8704 sig_print_header ();
8705 for (; signum < nsigs; signum++)
8706 if (sigs[signum])
aead7601 8707 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8708 }
8709
8710 break;
8711 }
c906108c
SS
8712}
8713
de0bea00
MF
8714/* Complete the "handle" command. */
8715
eb3ff9a5 8716static void
de0bea00 8717handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8718 completion_tracker &tracker,
6f937416 8719 const char *text, const char *word)
de0bea00 8720{
de0bea00
MF
8721 static const char * const keywords[] =
8722 {
8723 "all",
8724 "stop",
8725 "ignore",
8726 "print",
8727 "pass",
8728 "nostop",
8729 "noignore",
8730 "noprint",
8731 "nopass",
8732 NULL,
8733 };
8734
eb3ff9a5
PA
8735 signal_completer (ignore, tracker, text, word);
8736 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8737}
8738
2ea28649
PA
8739enum gdb_signal
8740gdb_signal_from_command (int num)
ed01b82c
PA
8741{
8742 if (num >= 1 && num <= 15)
2ea28649 8743 return (enum gdb_signal) num;
ed01b82c
PA
8744 error (_("Only signals 1-15 are valid as numeric signals.\n\
8745Use \"info signals\" for a list of symbolic signals."));
8746}
8747
c906108c
SS
8748/* Print current contents of the tables set by the handle command.
8749 It is possible we should just be printing signals actually used
8750 by the current target (but for things to work right when switching
8751 targets, all signals should be in the signal tables). */
8752
8753static void
1d12d88f 8754info_signals_command (const char *signum_exp, int from_tty)
c906108c 8755{
2ea28649 8756 enum gdb_signal oursig;
abbb1732 8757
c906108c
SS
8758 sig_print_header ();
8759
8760 if (signum_exp)
8761 {
8762 /* First see if this is a symbol name. */
2ea28649 8763 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8764 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8765 {
8766 /* No, try numeric. */
8767 oursig =
2ea28649 8768 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8769 }
8770 sig_print_info (oursig);
8771 return;
8772 }
8773
8774 printf_filtered ("\n");
8775 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8776 for (oursig = GDB_SIGNAL_FIRST;
8777 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8778 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8779 {
8780 QUIT;
8781
a493e3e2
PA
8782 if (oursig != GDB_SIGNAL_UNKNOWN
8783 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8784 sig_print_info (oursig);
8785 }
8786
3e43a32a
MS
8787 printf_filtered (_("\nUse the \"handle\" command "
8788 "to change these tables.\n"));
c906108c 8789}
4aa995e1
PA
8790
8791/* The $_siginfo convenience variable is a bit special. We don't know
8792 for sure the type of the value until we actually have a chance to
7a9dd1b2 8793 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8794 also dependent on which thread you have selected.
8795
8796 1. making $_siginfo be an internalvar that creates a new value on
8797 access.
8798
8799 2. making the value of $_siginfo be an lval_computed value. */
8800
8801/* This function implements the lval_computed support for reading a
8802 $_siginfo value. */
8803
8804static void
8805siginfo_value_read (struct value *v)
8806{
8807 LONGEST transferred;
8808
a911d87a
PA
8809 /* If we can access registers, so can we access $_siginfo. Likewise
8810 vice versa. */
8811 validate_registers_access ();
c709acd1 8812
4aa995e1 8813 transferred =
8b88a78e 8814 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8815 NULL,
8816 value_contents_all_raw (v),
8817 value_offset (v),
8818 TYPE_LENGTH (value_type (v)));
8819
8820 if (transferred != TYPE_LENGTH (value_type (v)))
8821 error (_("Unable to read siginfo"));
8822}
8823
8824/* This function implements the lval_computed support for writing a
8825 $_siginfo value. */
8826
8827static void
8828siginfo_value_write (struct value *v, struct value *fromval)
8829{
8830 LONGEST transferred;
8831
a911d87a
PA
8832 /* If we can access registers, so can we access $_siginfo. Likewise
8833 vice versa. */
8834 validate_registers_access ();
c709acd1 8835
8b88a78e 8836 transferred = target_write (current_top_target (),
4aa995e1
PA
8837 TARGET_OBJECT_SIGNAL_INFO,
8838 NULL,
8839 value_contents_all_raw (fromval),
8840 value_offset (v),
8841 TYPE_LENGTH (value_type (fromval)));
8842
8843 if (transferred != TYPE_LENGTH (value_type (fromval)))
8844 error (_("Unable to write siginfo"));
8845}
8846
c8f2448a 8847static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8848 {
8849 siginfo_value_read,
8850 siginfo_value_write
8851 };
8852
8853/* Return a new value with the correct type for the siginfo object of
78267919
UW
8854 the current thread using architecture GDBARCH. Return a void value
8855 if there's no object available. */
4aa995e1 8856
2c0b251b 8857static struct value *
22d2b532
SDJ
8858siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8859 void *ignore)
4aa995e1 8860{
4aa995e1 8861 if (target_has_stack
d7e15655 8862 && inferior_ptid != null_ptid
78267919 8863 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8864 {
78267919 8865 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8866
78267919 8867 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8868 }
8869
78267919 8870 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8871}
8872
c906108c 8873\f
16c381f0
JK
8874/* infcall_suspend_state contains state about the program itself like its
8875 registers and any signal it received when it last stopped.
8876 This state must be restored regardless of how the inferior function call
8877 ends (either successfully, or after it hits a breakpoint or signal)
8878 if the program is to properly continue where it left off. */
8879
6bf78e29 8880class infcall_suspend_state
7a292a7a 8881{
6bf78e29
AB
8882public:
8883 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8884 once the inferior function call has finished. */
8885 infcall_suspend_state (struct gdbarch *gdbarch,
8886 const struct thread_info *tp,
8887 struct regcache *regcache)
8888 : m_thread_suspend (tp->suspend),
8889 m_registers (new readonly_detached_regcache (*regcache))
8890 {
8891 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8892
8893 if (gdbarch_get_siginfo_type_p (gdbarch))
8894 {
8895 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8896 size_t len = TYPE_LENGTH (type);
8897
8898 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8899
8900 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8901 siginfo_data.get (), 0, len) != len)
8902 {
8903 /* Errors ignored. */
8904 siginfo_data.reset (nullptr);
8905 }
8906 }
8907
8908 if (siginfo_data)
8909 {
8910 m_siginfo_gdbarch = gdbarch;
8911 m_siginfo_data = std::move (siginfo_data);
8912 }
8913 }
8914
8915 /* Return a pointer to the stored register state. */
16c381f0 8916
6bf78e29
AB
8917 readonly_detached_regcache *registers () const
8918 {
8919 return m_registers.get ();
8920 }
8921
8922 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8923
8924 void restore (struct gdbarch *gdbarch,
8925 struct thread_info *tp,
8926 struct regcache *regcache) const
8927 {
8928 tp->suspend = m_thread_suspend;
8929
8930 if (m_siginfo_gdbarch == gdbarch)
8931 {
8932 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8933
8934 /* Errors ignored. */
8935 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8936 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8937 }
8938
8939 /* The inferior can be gone if the user types "print exit(0)"
8940 (and perhaps other times). */
8941 if (target_has_execution)
8942 /* NB: The register write goes through to the target. */
8943 regcache->restore (registers ());
8944 }
8945
8946private:
8947 /* How the current thread stopped before the inferior function call was
8948 executed. */
8949 struct thread_suspend_state m_thread_suspend;
8950
8951 /* The registers before the inferior function call was executed. */
8952 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8953
35515841 8954 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8955 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8956
8957 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8958 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8959 content would be invalid. */
6bf78e29 8960 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8961};
8962
cb524840
TT
8963infcall_suspend_state_up
8964save_infcall_suspend_state ()
b89667eb 8965{
b89667eb 8966 struct thread_info *tp = inferior_thread ();
1736ad11 8967 struct regcache *regcache = get_current_regcache ();
ac7936df 8968 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8969
6bf78e29
AB
8970 infcall_suspend_state_up inf_state
8971 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8972
6bf78e29
AB
8973 /* Having saved the current state, adjust the thread state, discarding
8974 any stop signal information. The stop signal is not useful when
8975 starting an inferior function call, and run_inferior_call will not use
8976 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8977 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8978
b89667eb
DE
8979 return inf_state;
8980}
8981
8982/* Restore inferior session state to INF_STATE. */
8983
8984void
16c381f0 8985restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8986{
8987 struct thread_info *tp = inferior_thread ();
1736ad11 8988 struct regcache *regcache = get_current_regcache ();
ac7936df 8989 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8990
6bf78e29 8991 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8992 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8993}
8994
b89667eb 8995void
16c381f0 8996discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8997{
dd848631 8998 delete inf_state;
b89667eb
DE
8999}
9000
daf6667d 9001readonly_detached_regcache *
16c381f0 9002get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9003{
6bf78e29 9004 return inf_state->registers ();
b89667eb
DE
9005}
9006
16c381f0
JK
9007/* infcall_control_state contains state regarding gdb's control of the
9008 inferior itself like stepping control. It also contains session state like
9009 the user's currently selected frame. */
b89667eb 9010
16c381f0 9011struct infcall_control_state
b89667eb 9012{
16c381f0
JK
9013 struct thread_control_state thread_control;
9014 struct inferior_control_state inferior_control;
d82142e2
JK
9015
9016 /* Other fields: */
ee841dd8
TT
9017 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9018 int stopped_by_random_signal = 0;
7a292a7a 9019
b89667eb 9020 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9021 struct frame_id selected_frame_id {};
7a292a7a
SS
9022};
9023
c906108c 9024/* Save all of the information associated with the inferior<==>gdb
b89667eb 9025 connection. */
c906108c 9026
cb524840
TT
9027infcall_control_state_up
9028save_infcall_control_state ()
c906108c 9029{
cb524840 9030 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9031 struct thread_info *tp = inferior_thread ();
d6b48e9c 9032 struct inferior *inf = current_inferior ();
7a292a7a 9033
16c381f0
JK
9034 inf_status->thread_control = tp->control;
9035 inf_status->inferior_control = inf->control;
d82142e2 9036
8358c15c 9037 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9038 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9039
16c381f0
JK
9040 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9041 chain. If caller's caller is walking the chain, they'll be happier if we
9042 hand them back the original chain when restore_infcall_control_state is
9043 called. */
9044 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9045
9046 /* Other fields: */
9047 inf_status->stop_stack_dummy = stop_stack_dummy;
9048 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9049
206415a3 9050 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9051
7a292a7a 9052 return inf_status;
c906108c
SS
9053}
9054
bf469271
PA
9055static void
9056restore_selected_frame (const frame_id &fid)
c906108c 9057{
bf469271 9058 frame_info *frame = frame_find_by_id (fid);
c906108c 9059
aa0cd9c1
AC
9060 /* If inf_status->selected_frame_id is NULL, there was no previously
9061 selected frame. */
101dcfbe 9062 if (frame == NULL)
c906108c 9063 {
8a3fe4f8 9064 warning (_("Unable to restore previously selected frame."));
bf469271 9065 return;
c906108c
SS
9066 }
9067
0f7d239c 9068 select_frame (frame);
c906108c
SS
9069}
9070
b89667eb
DE
9071/* Restore inferior session state to INF_STATUS. */
9072
c906108c 9073void
16c381f0 9074restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9075{
4e1c45ea 9076 struct thread_info *tp = inferior_thread ();
d6b48e9c 9077 struct inferior *inf = current_inferior ();
4e1c45ea 9078
8358c15c
JK
9079 if (tp->control.step_resume_breakpoint)
9080 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9081
5b79abe7
TT
9082 if (tp->control.exception_resume_breakpoint)
9083 tp->control.exception_resume_breakpoint->disposition
9084 = disp_del_at_next_stop;
9085
d82142e2 9086 /* Handle the bpstat_copy of the chain. */
16c381f0 9087 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9088
16c381f0
JK
9089 tp->control = inf_status->thread_control;
9090 inf->control = inf_status->inferior_control;
d82142e2
JK
9091
9092 /* Other fields: */
9093 stop_stack_dummy = inf_status->stop_stack_dummy;
9094 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9095
b89667eb 9096 if (target_has_stack)
c906108c 9097 {
bf469271 9098 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9099 walking the stack might encounter a garbage pointer and
9100 error() trying to dereference it. */
a70b8144 9101 try
bf469271
PA
9102 {
9103 restore_selected_frame (inf_status->selected_frame_id);
9104 }
230d2906 9105 catch (const gdb_exception_error &ex)
bf469271
PA
9106 {
9107 exception_fprintf (gdb_stderr, ex,
9108 "Unable to restore previously selected frame:\n");
9109 /* Error in restoring the selected frame. Select the
9110 innermost frame. */
9111 select_frame (get_current_frame ());
9112 }
c906108c 9113 }
c906108c 9114
ee841dd8 9115 delete inf_status;
7a292a7a 9116}
c906108c
SS
9117
9118void
16c381f0 9119discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9120{
8358c15c
JK
9121 if (inf_status->thread_control.step_resume_breakpoint)
9122 inf_status->thread_control.step_resume_breakpoint->disposition
9123 = disp_del_at_next_stop;
9124
5b79abe7
TT
9125 if (inf_status->thread_control.exception_resume_breakpoint)
9126 inf_status->thread_control.exception_resume_breakpoint->disposition
9127 = disp_del_at_next_stop;
9128
1777feb0 9129 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9130 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9131
ee841dd8 9132 delete inf_status;
7a292a7a 9133}
b89667eb 9134\f
7f89fd65 9135/* See infrun.h. */
0c557179
SDJ
9136
9137void
9138clear_exit_convenience_vars (void)
9139{
9140 clear_internalvar (lookup_internalvar ("_exitsignal"));
9141 clear_internalvar (lookup_internalvar ("_exitcode"));
9142}
c5aa993b 9143\f
488f131b 9144
b2175913
MS
9145/* User interface for reverse debugging:
9146 Set exec-direction / show exec-direction commands
9147 (returns error unless target implements to_set_exec_direction method). */
9148
170742de 9149enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9150static const char exec_forward[] = "forward";
9151static const char exec_reverse[] = "reverse";
9152static const char *exec_direction = exec_forward;
40478521 9153static const char *const exec_direction_names[] = {
b2175913
MS
9154 exec_forward,
9155 exec_reverse,
9156 NULL
9157};
9158
9159static void
eb4c3f4a 9160set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9161 struct cmd_list_element *cmd)
9162{
9163 if (target_can_execute_reverse)
9164 {
9165 if (!strcmp (exec_direction, exec_forward))
9166 execution_direction = EXEC_FORWARD;
9167 else if (!strcmp (exec_direction, exec_reverse))
9168 execution_direction = EXEC_REVERSE;
9169 }
8bbed405
MS
9170 else
9171 {
9172 exec_direction = exec_forward;
9173 error (_("Target does not support this operation."));
9174 }
b2175913
MS
9175}
9176
9177static void
9178show_exec_direction_func (struct ui_file *out, int from_tty,
9179 struct cmd_list_element *cmd, const char *value)
9180{
9181 switch (execution_direction) {
9182 case EXEC_FORWARD:
9183 fprintf_filtered (out, _("Forward.\n"));
9184 break;
9185 case EXEC_REVERSE:
9186 fprintf_filtered (out, _("Reverse.\n"));
9187 break;
b2175913 9188 default:
d8b34453
PA
9189 internal_error (__FILE__, __LINE__,
9190 _("bogus execution_direction value: %d"),
9191 (int) execution_direction);
b2175913
MS
9192 }
9193}
9194
d4db2f36
PA
9195static void
9196show_schedule_multiple (struct ui_file *file, int from_tty,
9197 struct cmd_list_element *c, const char *value)
9198{
3e43a32a
MS
9199 fprintf_filtered (file, _("Resuming the execution of threads "
9200 "of all processes is %s.\n"), value);
d4db2f36 9201}
ad52ddc6 9202
22d2b532
SDJ
9203/* Implementation of `siginfo' variable. */
9204
9205static const struct internalvar_funcs siginfo_funcs =
9206{
9207 siginfo_make_value,
9208 NULL,
9209 NULL
9210};
9211
372316f1
PA
9212/* Callback for infrun's target events source. This is marked when a
9213 thread has a pending status to process. */
9214
9215static void
9216infrun_async_inferior_event_handler (gdb_client_data data)
9217{
b1a35af2 9218 inferior_event_handler (INF_REG_EVENT);
372316f1
PA
9219}
9220
6c265988 9221void _initialize_infrun ();
c906108c 9222void
6c265988 9223_initialize_infrun ()
c906108c 9224{
de0bea00 9225 struct cmd_list_element *c;
c906108c 9226
372316f1
PA
9227 /* Register extra event sources in the event loop. */
9228 infrun_async_inferior_event_token
9229 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9230
11db9430 9231 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9232What debugger does when program gets various signals.\n\
9233Specify a signal as argument to print info on that signal only."));
c906108c
SS
9234 add_info_alias ("handle", "signals", 0);
9235
de0bea00 9236 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9237Specify how to handle signals.\n\
486c7739 9238Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9239Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9240If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9241will be displayed instead.\n\
9242\n\
c906108c
SS
9243Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9244from 1-15 are allowed for compatibility with old versions of GDB.\n\
9245Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9246The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9247used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9248\n\
1bedd215 9249Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9250\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9251Stop means reenter debugger if this signal happens (implies print).\n\
9252Print means print a message if this signal happens.\n\
9253Pass means let program see this signal; otherwise program doesn't know.\n\
9254Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9255Pass and Stop may be combined.\n\
9256\n\
9257Multiple signals may be specified. Signal numbers and signal names\n\
9258may be interspersed with actions, with the actions being performed for\n\
9259all signals cumulatively specified."));
de0bea00 9260 set_cmd_completer (c, handle_completer);
486c7739 9261
c906108c 9262 if (!dbx_commands)
1a966eab
AC
9263 stop_command = add_cmd ("stop", class_obscure,
9264 not_just_help_class_command, _("\
9265There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9266This allows you to set a list of commands to be run each time execution\n\
1a966eab 9267of the program stops."), &cmdlist);
c906108c 9268
ccce17b0 9269 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9270Set inferior debugging."), _("\
9271Show inferior debugging."), _("\
9272When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9273 NULL,
9274 show_debug_infrun,
9275 &setdebuglist, &showdebuglist);
527159b7 9276
3e43a32a
MS
9277 add_setshow_boolean_cmd ("displaced", class_maintenance,
9278 &debug_displaced, _("\
237fc4c9
PA
9279Set displaced stepping debugging."), _("\
9280Show displaced stepping debugging."), _("\
9281When non-zero, displaced stepping specific debugging is enabled."),
9282 NULL,
9283 show_debug_displaced,
9284 &setdebuglist, &showdebuglist);
9285
ad52ddc6
PA
9286 add_setshow_boolean_cmd ("non-stop", no_class,
9287 &non_stop_1, _("\
9288Set whether gdb controls the inferior in non-stop mode."), _("\
9289Show whether gdb controls the inferior in non-stop mode."), _("\
9290When debugging a multi-threaded program and this setting is\n\
9291off (the default, also called all-stop mode), when one thread stops\n\
9292(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9293all other threads in the program while you interact with the thread of\n\
9294interest. When you continue or step a thread, you can allow the other\n\
9295threads to run, or have them remain stopped, but while you inspect any\n\
9296thread's state, all threads stop.\n\
9297\n\
9298In non-stop mode, when one thread stops, other threads can continue\n\
9299to run freely. You'll be able to step each thread independently,\n\
9300leave it stopped or free to run as needed."),
9301 set_non_stop,
9302 show_non_stop,
9303 &setlist,
9304 &showlist);
9305
adc6a863 9306 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9307 {
9308 signal_stop[i] = 1;
9309 signal_print[i] = 1;
9310 signal_program[i] = 1;
ab04a2af 9311 signal_catch[i] = 0;
c906108c
SS
9312 }
9313
4d9d9d04
PA
9314 /* Signals caused by debugger's own actions should not be given to
9315 the program afterwards.
9316
9317 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9318 explicitly specifies that it should be delivered to the target
9319 program. Typically, that would occur when a user is debugging a
9320 target monitor on a simulator: the target monitor sets a
9321 breakpoint; the simulator encounters this breakpoint and halts
9322 the simulation handing control to GDB; GDB, noting that the stop
9323 address doesn't map to any known breakpoint, returns control back
9324 to the simulator; the simulator then delivers the hardware
9325 equivalent of a GDB_SIGNAL_TRAP to the program being
9326 debugged. */
a493e3e2
PA
9327 signal_program[GDB_SIGNAL_TRAP] = 0;
9328 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9329
9330 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9331 signal_stop[GDB_SIGNAL_ALRM] = 0;
9332 signal_print[GDB_SIGNAL_ALRM] = 0;
9333 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9334 signal_print[GDB_SIGNAL_VTALRM] = 0;
9335 signal_stop[GDB_SIGNAL_PROF] = 0;
9336 signal_print[GDB_SIGNAL_PROF] = 0;
9337 signal_stop[GDB_SIGNAL_CHLD] = 0;
9338 signal_print[GDB_SIGNAL_CHLD] = 0;
9339 signal_stop[GDB_SIGNAL_IO] = 0;
9340 signal_print[GDB_SIGNAL_IO] = 0;
9341 signal_stop[GDB_SIGNAL_POLL] = 0;
9342 signal_print[GDB_SIGNAL_POLL] = 0;
9343 signal_stop[GDB_SIGNAL_URG] = 0;
9344 signal_print[GDB_SIGNAL_URG] = 0;
9345 signal_stop[GDB_SIGNAL_WINCH] = 0;
9346 signal_print[GDB_SIGNAL_WINCH] = 0;
9347 signal_stop[GDB_SIGNAL_PRIO] = 0;
9348 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9349
cd0fc7c3
SS
9350 /* These signals are used internally by user-level thread
9351 implementations. (See signal(5) on Solaris.) Like the above
9352 signals, a healthy program receives and handles them as part of
9353 its normal operation. */
a493e3e2
PA
9354 signal_stop[GDB_SIGNAL_LWP] = 0;
9355 signal_print[GDB_SIGNAL_LWP] = 0;
9356 signal_stop[GDB_SIGNAL_WAITING] = 0;
9357 signal_print[GDB_SIGNAL_WAITING] = 0;
9358 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9359 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9360 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9361 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9362
2455069d
UW
9363 /* Update cached state. */
9364 signal_cache_update (-1);
9365
85c07804
AC
9366 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9367 &stop_on_solib_events, _("\
9368Set stopping for shared library events."), _("\
9369Show stopping for shared library events."), _("\
c906108c
SS
9370If nonzero, gdb will give control to the user when the dynamic linker\n\
9371notifies gdb of shared library events. The most common event of interest\n\
85c07804 9372to the user would be loading/unloading of a new library."),
f9e14852 9373 set_stop_on_solib_events,
920d2a44 9374 show_stop_on_solib_events,
85c07804 9375 &setlist, &showlist);
c906108c 9376
7ab04401
AC
9377 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9378 follow_fork_mode_kind_names,
9379 &follow_fork_mode_string, _("\
9380Set debugger response to a program call of fork or vfork."), _("\
9381Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9382A fork or vfork creates a new process. follow-fork-mode can be:\n\
9383 parent - the original process is debugged after a fork\n\
9384 child - the new process is debugged after a fork\n\
ea1dd7bc 9385The unfollowed process will continue to run.\n\
7ab04401
AC
9386By default, the debugger will follow the parent process."),
9387 NULL,
920d2a44 9388 show_follow_fork_mode_string,
7ab04401
AC
9389 &setlist, &showlist);
9390
6c95b8df
PA
9391 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9392 follow_exec_mode_names,
9393 &follow_exec_mode_string, _("\
9394Set debugger response to a program call of exec."), _("\
9395Show debugger response to a program call of exec."), _("\
9396An exec call replaces the program image of a process.\n\
9397\n\
9398follow-exec-mode can be:\n\
9399\n\
cce7e648 9400 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9401to this new inferior. The program the process was running before\n\
9402the exec call can be restarted afterwards by restarting the original\n\
9403inferior.\n\
9404\n\
9405 same - the debugger keeps the process bound to the same inferior.\n\
9406The new executable image replaces the previous executable loaded in\n\
9407the inferior. Restarting the inferior after the exec call restarts\n\
9408the executable the process was running after the exec call.\n\
9409\n\
9410By default, the debugger will use the same inferior."),
9411 NULL,
9412 show_follow_exec_mode_string,
9413 &setlist, &showlist);
9414
7ab04401
AC
9415 add_setshow_enum_cmd ("scheduler-locking", class_run,
9416 scheduler_enums, &scheduler_mode, _("\
9417Set mode for locking scheduler during execution."), _("\
9418Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9419off == no locking (threads may preempt at any time)\n\
9420on == full locking (no thread except the current thread may run)\n\
9421 This applies to both normal execution and replay mode.\n\
9422step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9423 In this mode, other threads may run during other commands.\n\
9424 This applies to both normal execution and replay mode.\n\
9425replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9426 set_schedlock_func, /* traps on target vector */
920d2a44 9427 show_scheduler_mode,
7ab04401 9428 &setlist, &showlist);
5fbbeb29 9429
d4db2f36
PA
9430 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9431Set mode for resuming threads of all processes."), _("\
9432Show mode for resuming threads of all processes."), _("\
9433When on, execution commands (such as 'continue' or 'next') resume all\n\
9434threads of all processes. When off (which is the default), execution\n\
9435commands only resume the threads of the current process. The set of\n\
9436threads that are resumed is further refined by the scheduler-locking\n\
9437mode (see help set scheduler-locking)."),
9438 NULL,
9439 show_schedule_multiple,
9440 &setlist, &showlist);
9441
5bf193a2
AC
9442 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9443Set mode of the step operation."), _("\
9444Show mode of the step operation."), _("\
9445When set, doing a step over a function without debug line information\n\
9446will stop at the first instruction of that function. Otherwise, the\n\
9447function is skipped and the step command stops at a different source line."),
9448 NULL,
920d2a44 9449 show_step_stop_if_no_debug,
5bf193a2 9450 &setlist, &showlist);
ca6724c1 9451
72d0e2c5
YQ
9452 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9453 &can_use_displaced_stepping, _("\
237fc4c9
PA
9454Set debugger's willingness to use displaced stepping."), _("\
9455Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9456If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9457supported by the target architecture. If off, gdb will not use displaced\n\
9458stepping to step over breakpoints, even if such is supported by the target\n\
9459architecture. If auto (which is the default), gdb will use displaced stepping\n\
9460if the target architecture supports it and non-stop mode is active, but will not\n\
9461use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9462 NULL,
9463 show_can_use_displaced_stepping,
9464 &setlist, &showlist);
237fc4c9 9465
b2175913
MS
9466 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9467 &exec_direction, _("Set direction of execution.\n\
9468Options are 'forward' or 'reverse'."),
9469 _("Show direction of execution (forward/reverse)."),
9470 _("Tells gdb whether to execute forward or backward."),
9471 set_exec_direction_func, show_exec_direction_func,
9472 &setlist, &showlist);
9473
6c95b8df
PA
9474 /* Set/show detach-on-fork: user-settable mode. */
9475
9476 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9477Set whether gdb will detach the child of a fork."), _("\
9478Show whether gdb will detach the child of a fork."), _("\
9479Tells gdb whether to detach the child of a fork."),
9480 NULL, NULL, &setlist, &showlist);
9481
03583c20
UW
9482 /* Set/show disable address space randomization mode. */
9483
9484 add_setshow_boolean_cmd ("disable-randomization", class_support,
9485 &disable_randomization, _("\
9486Set disabling of debuggee's virtual address space randomization."), _("\
9487Show disabling of debuggee's virtual address space randomization."), _("\
9488When this mode is on (which is the default), randomization of the virtual\n\
9489address space is disabled. Standalone programs run with the randomization\n\
9490enabled by default on some platforms."),
9491 &set_disable_randomization,
9492 &show_disable_randomization,
9493 &setlist, &showlist);
9494
ca6724c1 9495 /* ptid initializations */
ca6724c1
KB
9496 inferior_ptid = null_ptid;
9497 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9498
76727919
TT
9499 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9500 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9501 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9502 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9503
9504 /* Explicitly create without lookup, since that tries to create a
9505 value with a void typed value, and when we get here, gdbarch
9506 isn't initialized yet. At this point, we're quite sure there
9507 isn't another convenience variable of the same name. */
22d2b532 9508 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9509
9510 add_setshow_boolean_cmd ("observer", no_class,
9511 &observer_mode_1, _("\
9512Set whether gdb controls the inferior in observer mode."), _("\
9513Show whether gdb controls the inferior in observer mode."), _("\
9514In observer mode, GDB can get data from the inferior, but not\n\
9515affect its execution. Registers and memory may not be changed,\n\
9516breakpoints may not be set, and the program cannot be interrupted\n\
9517or signalled."),
9518 set_observer_mode,
9519 show_observer_mode,
9520 &setlist,
9521 &showlist);
c906108c 9522}
This page took 3.448432 seconds and 4 git commands to generate.