Fix GDB busy loop when interrupting non-stop program (PR 26199)
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
2f4fcf00 31#include "target-connection.h"
c906108c
SS
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
400b5eca 59#include "gdbsupport/event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
06cc9596 67#include "gdbsupport/gdb_select.h"
5b6d1e4f 68#include <unordered_map>
93b54c8e 69#include "async-event.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
d83ad864
DB
77static void follow_inferior_reset_breakpoints (void);
78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
2c03e5be 81static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
82
83static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
2484c66b
UW
85static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
8550d3b3
YQ
87static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
aff4e175
AB
89static void resume (gdb_signal sig);
90
5b6d1e4f
PA
91static void wait_for_inferior (inferior *inf);
92
372316f1
PA
93/* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95static struct async_event_handler *infrun_async_inferior_event_token;
96
97/* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99static int infrun_is_async = -1;
100
101/* See infrun.h. */
102
103void
104infrun_async (int enable)
105{
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120}
121
0b333c5e
PA
122/* See infrun.h. */
123
124void
125mark_infrun_async_event_handler (void)
126{
127 mark_async_event_handler (infrun_async_inferior_event_token);
128}
129
5fbbeb29
CF
130/* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
491144b5 133bool step_stop_if_no_debug = false;
920d2a44
AC
134static void
135show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139}
5fbbeb29 140
b9f437de
PA
141/* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
96baa820 144
39f77062 145static ptid_t previous_inferior_ptid;
7a292a7a 146
07107ca6
LM
147/* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
491144b5 152static bool detach_fork = true;
6c95b8df 153
491144b5 154bool debug_displaced = false;
237fc4c9
PA
155static void
156show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160}
161
ccce17b0 162unsigned int debug_infrun = 0;
920d2a44
AC
163static void
164show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168}
527159b7 169
03583c20
UW
170
171/* Support for disabling address space randomization. */
172
491144b5 173bool disable_randomization = true;
03583c20
UW
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
eb4c3f4a 191set_disable_randomization (const char *args, int from_tty,
03583c20
UW
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
d32dc48e
PA
200/* User interface for non-stop mode. */
201
491144b5
CB
202bool non_stop = false;
203static bool non_stop_1 = false;
d32dc48e
PA
204
205static void
eb4c3f4a 206set_non_stop (const char *args, int from_tty,
d32dc48e
PA
207 struct cmd_list_element *c)
208{
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
d914c394
SS
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
491144b5
CB
231bool observer_mode = false;
232static bool observer_mode_1 = false;
d914c394
SS
233
234static void
eb4c3f4a 235set_observer_mode (const char *args, int from_tty,
d914c394
SS
236 struct cmd_list_element *c)
237{
d914c394
SS
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
491144b5 253 may_insert_fast_tracepoints = true;
d914c394
SS
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
d914c394 261 pagination_enabled = 0;
491144b5 262 non_stop = non_stop_1 = true;
d914c394
SS
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
491144b5
CB
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
d914c394
SS
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
c2c6d25f 299
c906108c
SS
300/* Tables of how to react to signals; the user sets them. */
301
adc6a863
PA
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 305
ab04a2af
TT
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 310
2455069d
UW
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
adc6a863 314static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 315
c906108c
SS
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
9b224c5e
PA
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
adc6a863 338 target_program_signals (signal_program);
9b224c5e
PA
339}
340
1777feb0 341/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 342
edb3359d 343#define RESUME_ALL minus_one_ptid
c906108c
SS
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
c906108c
SS
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
628fe4e4 351int stop_on_solib_events;
f9e14852
GB
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
eb4c3f4a
TT
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
f9e14852
GB
359{
360 update_solib_breakpoints ();
361}
362
920d2a44
AC
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
c906108c 370
c906108c
SS
371/* Nonzero after stop if current stack frame should be printed. */
372
373static int stop_print_frame;
374
5b6d1e4f
PA
375/* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378static process_stratum_target *target_last_proc_target;
39f77062 379static ptid_t target_last_wait_ptid;
e02bc4cc
DS
380static struct target_waitstatus target_last_waitstatus;
381
4e1c45ea 382void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 383
53904c9e
AC
384static const char follow_fork_mode_child[] = "child";
385static const char follow_fork_mode_parent[] = "parent";
386
40478521 387static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
ef346e04 391};
c906108c 392
53904c9e 393static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
394static void
395show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
3e43a32a
MS
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
401 value);
402}
c906108c
SS
403\f
404
d83ad864
DB
405/* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
5ab2fbf1
SM
411static bool
412follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
413{
414 int has_vforked;
79639e11 415 ptid_t parent_ptid, child_ptid;
d83ad864
DB
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
79639e11
PA
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 424 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
d83ad864
DB
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
d83ad864
DB
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
00431a78 454 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
455 }
456
f67c0c91 457 if (print_inferior_events)
d83ad864 458 {
8dd06f7a 459 /* Ensure that we have a process ptid. */
e99b03dc 460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 461
223ffa71 462 target_terminal::ours_for_output ();
d83ad864 463 fprintf_filtered (gdb_stdlog,
f67c0c91 464 _("[Detaching after %s from child %s]\n"),
6f259a23 465 has_vforked ? "vfork" : "fork",
a068643d 466 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
d83ad864
DB
472
473 /* Add process to GDB's tables. */
e99b03dc 474 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
5ed8105e 482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 483
2a00d7ce 484 set_current_inferior (child_inf);
5b6d1e4f 485 switch_to_no_thread ();
d83ad864 486 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f 487 push_target (parent_inf->process_target ());
18493a00
PA
488 thread_info *child_thr
489 = add_thread_silent (child_inf->process_target (), child_ptid);
d83ad864
DB
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
5b6d1e4f
PA
498 exec_on_vfork ();
499
d83ad864
DB
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
18493a00
PA
507
508 /* Now that the inferiors and program spaces are all
509 wired up, we can switch to the child thread (which
510 switches inferior and program space too). */
511 switch_to_thread (child_thr);
d83ad864
DB
512 }
513 else
514 {
515 child_inf->aspace = new_address_space ();
564b1e3f 516 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
517 child_inf->removable = 1;
518 set_current_program_space (child_inf->pspace);
519 clone_program_space (child_inf->pspace, parent_inf->pspace);
520
18493a00
PA
521 /* solib_create_inferior_hook relies on the current
522 thread. */
523 switch_to_thread (child_thr);
524
d83ad864
DB
525 /* Let the shared library layer (e.g., solib-svr4) learn
526 about this new process, relocate the cloned exec, pull
527 in shared libraries, and install the solib event
528 breakpoint. If a "cloned-VM" event was propagated
529 better throughout the core, this wouldn't be
530 required. */
531 solib_create_inferior_hook (0);
532 }
d83ad864
DB
533 }
534
535 if (has_vforked)
536 {
537 struct inferior *parent_inf;
538
539 parent_inf = current_inferior ();
540
541 /* If we detached from the child, then we have to be careful
542 to not insert breakpoints in the parent until the child
543 is done with the shared memory region. However, if we're
544 staying attached to the child, then we can and should
545 insert breakpoints, so that we can debug it. A
546 subsequent child exec or exit is enough to know when does
547 the child stops using the parent's address space. */
548 parent_inf->waiting_for_vfork_done = detach_fork;
549 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
550 }
551 }
552 else
553 {
554 /* Follow the child. */
555 struct inferior *parent_inf, *child_inf;
556 struct program_space *parent_pspace;
557
f67c0c91 558 if (print_inferior_events)
d83ad864 559 {
f67c0c91
SDJ
560 std::string parent_pid = target_pid_to_str (parent_ptid);
561 std::string child_pid = target_pid_to_str (child_ptid);
562
223ffa71 563 target_terminal::ours_for_output ();
6f259a23 564 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
565 _("[Attaching after %s %s to child %s]\n"),
566 parent_pid.c_str (),
6f259a23 567 has_vforked ? "vfork" : "fork",
f67c0c91 568 child_pid.c_str ());
d83ad864
DB
569 }
570
571 /* Add the new inferior first, so that the target_detach below
572 doesn't unpush the target. */
573
e99b03dc 574 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
575
576 parent_inf = current_inferior ();
577 child_inf->attach_flag = parent_inf->attach_flag;
578 copy_terminal_info (child_inf, parent_inf);
579 child_inf->gdbarch = parent_inf->gdbarch;
580 copy_inferior_target_desc_info (child_inf, parent_inf);
581
582 parent_pspace = parent_inf->pspace;
583
5b6d1e4f 584 process_stratum_target *target = parent_inf->process_target ();
d83ad864 585
5b6d1e4f
PA
586 {
587 /* Hold a strong reference to the target while (maybe)
588 detaching the parent. Otherwise detaching could close the
589 target. */
590 auto target_ref = target_ops_ref::new_reference (target);
591
592 /* If we're vforking, we want to hold on to the parent until
593 the child exits or execs. At child exec or exit time we
594 can remove the old breakpoints from the parent and detach
595 or resume debugging it. Otherwise, detach the parent now;
596 we'll want to reuse it's program/address spaces, but we
597 can't set them to the child before removing breakpoints
598 from the parent, otherwise, the breakpoints module could
599 decide to remove breakpoints from the wrong process (since
600 they'd be assigned to the same address space). */
601
602 if (has_vforked)
603 {
604 gdb_assert (child_inf->vfork_parent == NULL);
605 gdb_assert (parent_inf->vfork_child == NULL);
606 child_inf->vfork_parent = parent_inf;
607 child_inf->pending_detach = 0;
608 parent_inf->vfork_child = child_inf;
609 parent_inf->pending_detach = detach_fork;
610 parent_inf->waiting_for_vfork_done = 0;
611 }
612 else if (detach_fork)
613 {
614 if (print_inferior_events)
615 {
616 /* Ensure that we have a process ptid. */
617 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
618
619 target_terminal::ours_for_output ();
620 fprintf_filtered (gdb_stdlog,
621 _("[Detaching after fork from "
622 "parent %s]\n"),
623 target_pid_to_str (process_ptid).c_str ());
624 }
8dd06f7a 625
5b6d1e4f
PA
626 target_detach (parent_inf, 0);
627 parent_inf = NULL;
628 }
6f259a23 629
5b6d1e4f 630 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 631
5b6d1e4f
PA
632 /* Add the child thread to the appropriate lists, and switch
633 to this new thread, before cloning the program space, and
634 informing the solib layer about this new process. */
d83ad864 635
5b6d1e4f
PA
636 set_current_inferior (child_inf);
637 push_target (target);
638 }
d83ad864 639
18493a00 640 thread_info *child_thr = add_thread_silent (target, child_ptid);
d83ad864
DB
641
642 /* If this is a vfork child, then the address-space is shared
643 with the parent. If we detached from the parent, then we can
644 reuse the parent's program/address spaces. */
645 if (has_vforked || detach_fork)
646 {
647 child_inf->pspace = parent_pspace;
648 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
649
650 exec_on_vfork ();
d83ad864
DB
651 }
652 else
653 {
654 child_inf->aspace = new_address_space ();
564b1e3f 655 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
656 child_inf->removable = 1;
657 child_inf->symfile_flags = SYMFILE_NO_READ;
658 set_current_program_space (child_inf->pspace);
659 clone_program_space (child_inf->pspace, parent_pspace);
660
661 /* Let the shared library layer (e.g., solib-svr4) learn
662 about this new process, relocate the cloned exec, pull in
663 shared libraries, and install the solib event breakpoint.
664 If a "cloned-VM" event was propagated better throughout
665 the core, this wouldn't be required. */
666 solib_create_inferior_hook (0);
667 }
18493a00
PA
668
669 switch_to_thread (child_thr);
d83ad864
DB
670 }
671
672 return target_follow_fork (follow_child, detach_fork);
673}
674
e58b0e63
PA
675/* Tell the target to follow the fork we're stopped at. Returns true
676 if the inferior should be resumed; false, if the target for some
677 reason decided it's best not to resume. */
678
5ab2fbf1
SM
679static bool
680follow_fork ()
c906108c 681{
5ab2fbf1
SM
682 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
683 bool should_resume = true;
e58b0e63
PA
684 struct thread_info *tp;
685
686 /* Copy user stepping state to the new inferior thread. FIXME: the
687 followed fork child thread should have a copy of most of the
4e3990f4
DE
688 parent thread structure's run control related fields, not just these.
689 Initialized to avoid "may be used uninitialized" warnings from gcc. */
690 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 691 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
692 CORE_ADDR step_range_start = 0;
693 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
694 int current_line = 0;
695 symtab *current_symtab = NULL;
4e3990f4 696 struct frame_id step_frame_id = { 0 };
8980e177 697 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
698
699 if (!non_stop)
700 {
5b6d1e4f 701 process_stratum_target *wait_target;
e58b0e63
PA
702 ptid_t wait_ptid;
703 struct target_waitstatus wait_status;
704
705 /* Get the last target status returned by target_wait(). */
5b6d1e4f 706 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
707
708 /* If not stopped at a fork event, then there's nothing else to
709 do. */
710 if (wait_status.kind != TARGET_WAITKIND_FORKED
711 && wait_status.kind != TARGET_WAITKIND_VFORKED)
712 return 1;
713
714 /* Check if we switched over from WAIT_PTID, since the event was
715 reported. */
00431a78 716 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
717 && (current_inferior ()->process_target () != wait_target
718 || inferior_ptid != wait_ptid))
e58b0e63
PA
719 {
720 /* We did. Switch back to WAIT_PTID thread, to tell the
721 target to follow it (in either direction). We'll
722 afterwards refuse to resume, and inform the user what
723 happened. */
5b6d1e4f 724 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 725 switch_to_thread (wait_thread);
5ab2fbf1 726 should_resume = false;
e58b0e63
PA
727 }
728 }
729
730 tp = inferior_thread ();
731
732 /* If there were any forks/vforks that were caught and are now to be
733 followed, then do so now. */
734 switch (tp->pending_follow.kind)
735 {
736 case TARGET_WAITKIND_FORKED:
737 case TARGET_WAITKIND_VFORKED:
738 {
739 ptid_t parent, child;
740
741 /* If the user did a next/step, etc, over a fork call,
742 preserve the stepping state in the fork child. */
743 if (follow_child && should_resume)
744 {
8358c15c
JK
745 step_resume_breakpoint = clone_momentary_breakpoint
746 (tp->control.step_resume_breakpoint);
16c381f0
JK
747 step_range_start = tp->control.step_range_start;
748 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
749 current_line = tp->current_line;
750 current_symtab = tp->current_symtab;
16c381f0 751 step_frame_id = tp->control.step_frame_id;
186c406b
TT
752 exception_resume_breakpoint
753 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 754 thread_fsm = tp->thread_fsm;
e58b0e63
PA
755
756 /* For now, delete the parent's sr breakpoint, otherwise,
757 parent/child sr breakpoints are considered duplicates,
758 and the child version will not be installed. Remove
759 this when the breakpoints module becomes aware of
760 inferiors and address spaces. */
761 delete_step_resume_breakpoint (tp);
16c381f0
JK
762 tp->control.step_range_start = 0;
763 tp->control.step_range_end = 0;
764 tp->control.step_frame_id = null_frame_id;
186c406b 765 delete_exception_resume_breakpoint (tp);
8980e177 766 tp->thread_fsm = NULL;
e58b0e63
PA
767 }
768
769 parent = inferior_ptid;
770 child = tp->pending_follow.value.related_pid;
771
5b6d1e4f 772 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
773 /* Set up inferior(s) as specified by the caller, and tell the
774 target to do whatever is necessary to follow either parent
775 or child. */
776 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
777 {
778 /* Target refused to follow, or there's some other reason
779 we shouldn't resume. */
780 should_resume = 0;
781 }
782 else
783 {
784 /* This pending follow fork event is now handled, one way
785 or another. The previous selected thread may be gone
786 from the lists by now, but if it is still around, need
787 to clear the pending follow request. */
5b6d1e4f 788 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
789 if (tp)
790 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
791
792 /* This makes sure we don't try to apply the "Switched
793 over from WAIT_PID" logic above. */
794 nullify_last_target_wait_ptid ();
795
1777feb0 796 /* If we followed the child, switch to it... */
e58b0e63
PA
797 if (follow_child)
798 {
5b6d1e4f 799 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 800 switch_to_thread (child_thr);
e58b0e63
PA
801
802 /* ... and preserve the stepping state, in case the
803 user was stepping over the fork call. */
804 if (should_resume)
805 {
806 tp = inferior_thread ();
8358c15c
JK
807 tp->control.step_resume_breakpoint
808 = step_resume_breakpoint;
16c381f0
JK
809 tp->control.step_range_start = step_range_start;
810 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
811 tp->current_line = current_line;
812 tp->current_symtab = current_symtab;
16c381f0 813 tp->control.step_frame_id = step_frame_id;
186c406b
TT
814 tp->control.exception_resume_breakpoint
815 = exception_resume_breakpoint;
8980e177 816 tp->thread_fsm = thread_fsm;
e58b0e63
PA
817 }
818 else
819 {
820 /* If we get here, it was because we're trying to
821 resume from a fork catchpoint, but, the user
822 has switched threads away from the thread that
823 forked. In that case, the resume command
824 issued is most likely not applicable to the
825 child, so just warn, and refuse to resume. */
3e43a32a 826 warning (_("Not resuming: switched threads "
fd7dcb94 827 "before following fork child."));
e58b0e63
PA
828 }
829
830 /* Reset breakpoints in the child as appropriate. */
831 follow_inferior_reset_breakpoints ();
832 }
e58b0e63
PA
833 }
834 }
835 break;
836 case TARGET_WAITKIND_SPURIOUS:
837 /* Nothing to follow. */
838 break;
839 default:
840 internal_error (__FILE__, __LINE__,
841 "Unexpected pending_follow.kind %d\n",
842 tp->pending_follow.kind);
843 break;
844 }
c906108c 845
e58b0e63 846 return should_resume;
c906108c
SS
847}
848
d83ad864 849static void
6604731b 850follow_inferior_reset_breakpoints (void)
c906108c 851{
4e1c45ea
PA
852 struct thread_info *tp = inferior_thread ();
853
6604731b
DJ
854 /* Was there a step_resume breakpoint? (There was if the user
855 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
856 thread number. Cloned step_resume breakpoints are disabled on
857 creation, so enable it here now that it is associated with the
858 correct thread.
6604731b
DJ
859
860 step_resumes are a form of bp that are made to be per-thread.
861 Since we created the step_resume bp when the parent process
862 was being debugged, and now are switching to the child process,
863 from the breakpoint package's viewpoint, that's a switch of
864 "threads". We must update the bp's notion of which thread
865 it is for, or it'll be ignored when it triggers. */
866
8358c15c 867 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
868 {
869 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
870 tp->control.step_resume_breakpoint->loc->enabled = 1;
871 }
6604731b 872
a1aa2221 873 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 874 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
875 {
876 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
877 tp->control.exception_resume_breakpoint->loc->enabled = 1;
878 }
186c406b 879
6604731b
DJ
880 /* Reinsert all breakpoints in the child. The user may have set
881 breakpoints after catching the fork, in which case those
882 were never set in the child, but only in the parent. This makes
883 sure the inserted breakpoints match the breakpoint list. */
884
885 breakpoint_re_set ();
886 insert_breakpoints ();
c906108c 887}
c906108c 888
6c95b8df
PA
889/* The child has exited or execed: resume threads of the parent the
890 user wanted to be executing. */
891
892static int
893proceed_after_vfork_done (struct thread_info *thread,
894 void *arg)
895{
896 int pid = * (int *) arg;
897
00431a78
PA
898 if (thread->ptid.pid () == pid
899 && thread->state == THREAD_RUNNING
900 && !thread->executing
6c95b8df 901 && !thread->stop_requested
a493e3e2 902 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
903 {
904 if (debug_infrun)
905 fprintf_unfiltered (gdb_stdlog,
906 "infrun: resuming vfork parent thread %s\n",
a068643d 907 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 908
00431a78 909 switch_to_thread (thread);
70509625 910 clear_proceed_status (0);
64ce06e4 911 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
912 }
913
914 return 0;
915}
916
917/* Called whenever we notice an exec or exit event, to handle
918 detaching or resuming a vfork parent. */
919
920static void
921handle_vfork_child_exec_or_exit (int exec)
922{
923 struct inferior *inf = current_inferior ();
924
925 if (inf->vfork_parent)
926 {
927 int resume_parent = -1;
928
929 /* This exec or exit marks the end of the shared memory region
b73715df
TV
930 between the parent and the child. Break the bonds. */
931 inferior *vfork_parent = inf->vfork_parent;
932 inf->vfork_parent->vfork_child = NULL;
933 inf->vfork_parent = NULL;
6c95b8df 934
b73715df
TV
935 /* If the user wanted to detach from the parent, now is the
936 time. */
937 if (vfork_parent->pending_detach)
6c95b8df 938 {
6c95b8df
PA
939 struct program_space *pspace;
940 struct address_space *aspace;
941
1777feb0 942 /* follow-fork child, detach-on-fork on. */
6c95b8df 943
b73715df 944 vfork_parent->pending_detach = 0;
68c9da30 945
18493a00 946 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
947
948 /* We're letting loose of the parent. */
18493a00 949 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 950 switch_to_thread (tp);
6c95b8df
PA
951
952 /* We're about to detach from the parent, which implicitly
953 removes breakpoints from its address space. There's a
954 catch here: we want to reuse the spaces for the child,
955 but, parent/child are still sharing the pspace at this
956 point, although the exec in reality makes the kernel give
957 the child a fresh set of new pages. The problem here is
958 that the breakpoints module being unaware of this, would
959 likely chose the child process to write to the parent
960 address space. Swapping the child temporarily away from
961 the spaces has the desired effect. Yes, this is "sort
962 of" a hack. */
963
964 pspace = inf->pspace;
965 aspace = inf->aspace;
966 inf->aspace = NULL;
967 inf->pspace = NULL;
968
f67c0c91 969 if (print_inferior_events)
6c95b8df 970 {
a068643d 971 std::string pidstr
b73715df 972 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 973
223ffa71 974 target_terminal::ours_for_output ();
6c95b8df
PA
975
976 if (exec)
6f259a23
DB
977 {
978 fprintf_filtered (gdb_stdlog,
f67c0c91 979 _("[Detaching vfork parent %s "
a068643d 980 "after child exec]\n"), pidstr.c_str ());
6f259a23 981 }
6c95b8df 982 else
6f259a23
DB
983 {
984 fprintf_filtered (gdb_stdlog,
f67c0c91 985 _("[Detaching vfork parent %s "
a068643d 986 "after child exit]\n"), pidstr.c_str ());
6f259a23 987 }
6c95b8df
PA
988 }
989
b73715df 990 target_detach (vfork_parent, 0);
6c95b8df
PA
991
992 /* Put it back. */
993 inf->pspace = pspace;
994 inf->aspace = aspace;
6c95b8df
PA
995 }
996 else if (exec)
997 {
998 /* We're staying attached to the parent, so, really give the
999 child a new address space. */
564b1e3f 1000 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1001 inf->aspace = inf->pspace->aspace;
1002 inf->removable = 1;
1003 set_current_program_space (inf->pspace);
1004
b73715df 1005 resume_parent = vfork_parent->pid;
6c95b8df
PA
1006 }
1007 else
1008 {
6c95b8df
PA
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
18493a00 1018 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
18493a00
PA
1021 scoped_restore_current_thread restore_thread;
1022 switch_to_no_thread ();
6c95b8df 1023
53af73bf
PA
1024 inf->pspace = new program_space (maybe_new_address_space ());
1025 inf->aspace = inf->pspace->aspace;
1026 set_current_program_space (inf->pspace);
6c95b8df 1027 inf->removable = 1;
7dcd53a0 1028 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1029 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1030
b73715df 1031 resume_parent = vfork_parent->pid;
6c95b8df
PA
1032 }
1033
6c95b8df
PA
1034 gdb_assert (current_program_space == inf->pspace);
1035
1036 if (non_stop && resume_parent != -1)
1037 {
1038 /* If the user wanted the parent to be running, let it go
1039 free now. */
5ed8105e 1040 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1041
1042 if (debug_infrun)
3e43a32a
MS
1043 fprintf_unfiltered (gdb_stdlog,
1044 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1045 resume_parent);
1046
1047 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1048 }
1049 }
1050}
1051
eb6c553b 1052/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1053
1054static const char follow_exec_mode_new[] = "new";
1055static const char follow_exec_mode_same[] = "same";
40478521 1056static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1057{
1058 follow_exec_mode_new,
1059 follow_exec_mode_same,
1060 NULL,
1061};
1062
1063static const char *follow_exec_mode_string = follow_exec_mode_same;
1064static void
1065show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1066 struct cmd_list_element *c, const char *value)
1067{
1068 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1069}
1070
ecf45d2c 1071/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1072
c906108c 1073static void
4ca51187 1074follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1075{
6c95b8df 1076 struct inferior *inf = current_inferior ();
e99b03dc 1077 int pid = ptid.pid ();
94585166 1078 ptid_t process_ptid;
7a292a7a 1079
65d2b333
PW
1080 /* Switch terminal for any messages produced e.g. by
1081 breakpoint_re_set. */
1082 target_terminal::ours_for_output ();
1083
c906108c
SS
1084 /* This is an exec event that we actually wish to pay attention to.
1085 Refresh our symbol table to the newly exec'd program, remove any
1086 momentary bp's, etc.
1087
1088 If there are breakpoints, they aren't really inserted now,
1089 since the exec() transformed our inferior into a fresh set
1090 of instructions.
1091
1092 We want to preserve symbolic breakpoints on the list, since
1093 we have hopes that they can be reset after the new a.out's
1094 symbol table is read.
1095
1096 However, any "raw" breakpoints must be removed from the list
1097 (e.g., the solib bp's), since their address is probably invalid
1098 now.
1099
1100 And, we DON'T want to call delete_breakpoints() here, since
1101 that may write the bp's "shadow contents" (the instruction
85102364 1102 value that was overwritten with a TRAP instruction). Since
1777feb0 1103 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1104
1105 mark_breakpoints_out ();
1106
95e50b27
PA
1107 /* The target reports the exec event to the main thread, even if
1108 some other thread does the exec, and even if the main thread was
1109 stopped or already gone. We may still have non-leader threads of
1110 the process on our list. E.g., on targets that don't have thread
1111 exit events (like remote); or on native Linux in non-stop mode if
1112 there were only two threads in the inferior and the non-leader
1113 one is the one that execs (and nothing forces an update of the
1114 thread list up to here). When debugging remotely, it's best to
1115 avoid extra traffic, when possible, so avoid syncing the thread
1116 list with the target, and instead go ahead and delete all threads
1117 of the process but one that reported the event. Note this must
1118 be done before calling update_breakpoints_after_exec, as
1119 otherwise clearing the threads' resources would reference stale
1120 thread breakpoints -- it may have been one of these threads that
1121 stepped across the exec. We could just clear their stepping
1122 states, but as long as we're iterating, might as well delete
1123 them. Deleting them now rather than at the next user-visible
1124 stop provides a nicer sequence of events for user and MI
1125 notifications. */
08036331 1126 for (thread_info *th : all_threads_safe ())
d7e15655 1127 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1128 delete_thread (th);
95e50b27
PA
1129
1130 /* We also need to clear any left over stale state for the
1131 leader/event thread. E.g., if there was any step-resume
1132 breakpoint or similar, it's gone now. We cannot truly
1133 step-to-next statement through an exec(). */
08036331 1134 thread_info *th = inferior_thread ();
8358c15c 1135 th->control.step_resume_breakpoint = NULL;
186c406b 1136 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1137 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1138 th->control.step_range_start = 0;
1139 th->control.step_range_end = 0;
c906108c 1140
95e50b27
PA
1141 /* The user may have had the main thread held stopped in the
1142 previous image (e.g., schedlock on, or non-stop). Release
1143 it now. */
a75724bc
PA
1144 th->stop_requested = 0;
1145
95e50b27
PA
1146 update_breakpoints_after_exec ();
1147
1777feb0 1148 /* What is this a.out's name? */
f2907e49 1149 process_ptid = ptid_t (pid);
6c95b8df 1150 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1151 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1152 exec_file_target);
c906108c
SS
1153
1154 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1155 inferior has essentially been killed & reborn. */
7a292a7a 1156
6ca15a4b 1157 breakpoint_init_inferior (inf_execd);
e85a822c 1158
797bc1cb
TT
1159 gdb::unique_xmalloc_ptr<char> exec_file_host
1160 = exec_file_find (exec_file_target, NULL);
ff862be4 1161
ecf45d2c
SL
1162 /* If we were unable to map the executable target pathname onto a host
1163 pathname, tell the user that. Otherwise GDB's subsequent behavior
1164 is confusing. Maybe it would even be better to stop at this point
1165 so that the user can specify a file manually before continuing. */
1166 if (exec_file_host == NULL)
1167 warning (_("Could not load symbols for executable %s.\n"
1168 "Do you need \"set sysroot\"?"),
1169 exec_file_target);
c906108c 1170
cce9b6bf
PA
1171 /* Reset the shared library package. This ensures that we get a
1172 shlib event when the child reaches "_start", at which point the
1173 dld will have had a chance to initialize the child. */
1174 /* Also, loading a symbol file below may trigger symbol lookups, and
1175 we don't want those to be satisfied by the libraries of the
1176 previous incarnation of this process. */
1177 no_shared_libraries (NULL, 0);
1178
6c95b8df
PA
1179 if (follow_exec_mode_string == follow_exec_mode_new)
1180 {
6c95b8df
PA
1181 /* The user wants to keep the old inferior and program spaces
1182 around. Create a new fresh one, and switch to it. */
1183
35ed81d4
SM
1184 /* Do exit processing for the original inferior before setting the new
1185 inferior's pid. Having two inferiors with the same pid would confuse
1186 find_inferior_p(t)id. Transfer the terminal state and info from the
1187 old to the new inferior. */
1188 inf = add_inferior_with_spaces ();
1189 swap_terminal_info (inf, current_inferior ());
057302ce 1190 exit_inferior_silent (current_inferior ());
17d8546e 1191
94585166 1192 inf->pid = pid;
ecf45d2c 1193 target_follow_exec (inf, exec_file_target);
6c95b8df 1194
5b6d1e4f
PA
1195 inferior *org_inferior = current_inferior ();
1196 switch_to_inferior_no_thread (inf);
1197 push_target (org_inferior->process_target ());
1198 thread_info *thr = add_thread (inf->process_target (), ptid);
1199 switch_to_thread (thr);
6c95b8df 1200 }
9107fc8d
PA
1201 else
1202 {
1203 /* The old description may no longer be fit for the new image.
1204 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1205 old description; we'll read a new one below. No need to do
1206 this on "follow-exec-mode new", as the old inferior stays
1207 around (its description is later cleared/refetched on
1208 restart). */
1209 target_clear_description ();
1210 }
6c95b8df
PA
1211
1212 gdb_assert (current_program_space == inf->pspace);
1213
ecf45d2c
SL
1214 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1215 because the proper displacement for a PIE (Position Independent
1216 Executable) main symbol file will only be computed by
1217 solib_create_inferior_hook below. breakpoint_re_set would fail
1218 to insert the breakpoints with the zero displacement. */
797bc1cb 1219 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1220
9107fc8d
PA
1221 /* If the target can specify a description, read it. Must do this
1222 after flipping to the new executable (because the target supplied
1223 description must be compatible with the executable's
1224 architecture, and the old executable may e.g., be 32-bit, while
1225 the new one 64-bit), and before anything involving memory or
1226 registers. */
1227 target_find_description ();
1228
268a4a75 1229 solib_create_inferior_hook (0);
c906108c 1230
4efc6507
DE
1231 jit_inferior_created_hook ();
1232
c1e56572
JK
1233 breakpoint_re_set ();
1234
c906108c
SS
1235 /* Reinsert all breakpoints. (Those which were symbolic have
1236 been reset to the proper address in the new a.out, thanks
1777feb0 1237 to symbol_file_command...). */
c906108c
SS
1238 insert_breakpoints ();
1239
1240 /* The next resume of this inferior should bring it to the shlib
1241 startup breakpoints. (If the user had also set bp's on
1242 "main" from the old (parent) process, then they'll auto-
1777feb0 1243 matically get reset there in the new process.). */
c906108c
SS
1244}
1245
c2829269
PA
1246/* The queue of threads that need to do a step-over operation to get
1247 past e.g., a breakpoint. What technique is used to step over the
1248 breakpoint/watchpoint does not matter -- all threads end up in the
1249 same queue, to maintain rough temporal order of execution, in order
1250 to avoid starvation, otherwise, we could e.g., find ourselves
1251 constantly stepping the same couple threads past their breakpoints
1252 over and over, if the single-step finish fast enough. */
1253struct thread_info *step_over_queue_head;
1254
6c4cfb24
PA
1255/* Bit flags indicating what the thread needs to step over. */
1256
8d297bbf 1257enum step_over_what_flag
6c4cfb24
PA
1258 {
1259 /* Step over a breakpoint. */
1260 STEP_OVER_BREAKPOINT = 1,
1261
1262 /* Step past a non-continuable watchpoint, in order to let the
1263 instruction execute so we can evaluate the watchpoint
1264 expression. */
1265 STEP_OVER_WATCHPOINT = 2
1266 };
8d297bbf 1267DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1268
963f9c80 1269/* Info about an instruction that is being stepped over. */
31e77af2
PA
1270
1271struct step_over_info
1272{
963f9c80
PA
1273 /* If we're stepping past a breakpoint, this is the address space
1274 and address of the instruction the breakpoint is set at. We'll
1275 skip inserting all breakpoints here. Valid iff ASPACE is
1276 non-NULL. */
8b86c959 1277 const address_space *aspace;
31e77af2 1278 CORE_ADDR address;
963f9c80
PA
1279
1280 /* The instruction being stepped over triggers a nonsteppable
1281 watchpoint. If true, we'll skip inserting watchpoints. */
1282 int nonsteppable_watchpoint_p;
21edc42f
YQ
1283
1284 /* The thread's global number. */
1285 int thread;
31e77af2
PA
1286};
1287
1288/* The step-over info of the location that is being stepped over.
1289
1290 Note that with async/breakpoint always-inserted mode, a user might
1291 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1292 being stepped over. As setting a new breakpoint inserts all
1293 breakpoints, we need to make sure the breakpoint being stepped over
1294 isn't inserted then. We do that by only clearing the step-over
1295 info when the step-over is actually finished (or aborted).
1296
1297 Presently GDB can only step over one breakpoint at any given time.
1298 Given threads that can't run code in the same address space as the
1299 breakpoint's can't really miss the breakpoint, GDB could be taught
1300 to step-over at most one breakpoint per address space (so this info
1301 could move to the address space object if/when GDB is extended).
1302 The set of breakpoints being stepped over will normally be much
1303 smaller than the set of all breakpoints, so a flag in the
1304 breakpoint location structure would be wasteful. A separate list
1305 also saves complexity and run-time, as otherwise we'd have to go
1306 through all breakpoint locations clearing their flag whenever we
1307 start a new sequence. Similar considerations weigh against storing
1308 this info in the thread object. Plus, not all step overs actually
1309 have breakpoint locations -- e.g., stepping past a single-step
1310 breakpoint, or stepping to complete a non-continuable
1311 watchpoint. */
1312static struct step_over_info step_over_info;
1313
1314/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1315 stepping over.
1316 N.B. We record the aspace and address now, instead of say just the thread,
1317 because when we need the info later the thread may be running. */
31e77af2
PA
1318
1319static void
8b86c959 1320set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1321 int nonsteppable_watchpoint_p,
1322 int thread)
31e77af2
PA
1323{
1324 step_over_info.aspace = aspace;
1325 step_over_info.address = address;
963f9c80 1326 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1327 step_over_info.thread = thread;
31e77af2
PA
1328}
1329
1330/* Called when we're not longer stepping over a breakpoint / an
1331 instruction, so all breakpoints are free to be (re)inserted. */
1332
1333static void
1334clear_step_over_info (void)
1335{
372316f1
PA
1336 if (debug_infrun)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "infrun: clear_step_over_info\n");
31e77af2
PA
1339 step_over_info.aspace = NULL;
1340 step_over_info.address = 0;
963f9c80 1341 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1342 step_over_info.thread = -1;
31e77af2
PA
1343}
1344
7f89fd65 1345/* See infrun.h. */
31e77af2
PA
1346
1347int
1348stepping_past_instruction_at (struct address_space *aspace,
1349 CORE_ADDR address)
1350{
1351 return (step_over_info.aspace != NULL
1352 && breakpoint_address_match (aspace, address,
1353 step_over_info.aspace,
1354 step_over_info.address));
1355}
1356
963f9c80
PA
1357/* See infrun.h. */
1358
21edc42f
YQ
1359int
1360thread_is_stepping_over_breakpoint (int thread)
1361{
1362 return (step_over_info.thread != -1
1363 && thread == step_over_info.thread);
1364}
1365
1366/* See infrun.h. */
1367
963f9c80
PA
1368int
1369stepping_past_nonsteppable_watchpoint (void)
1370{
1371 return step_over_info.nonsteppable_watchpoint_p;
1372}
1373
6cc83d2a
PA
1374/* Returns true if step-over info is valid. */
1375
1376static int
1377step_over_info_valid_p (void)
1378{
963f9c80
PA
1379 return (step_over_info.aspace != NULL
1380 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1381}
1382
c906108c 1383\f
237fc4c9
PA
1384/* Displaced stepping. */
1385
1386/* In non-stop debugging mode, we must take special care to manage
1387 breakpoints properly; in particular, the traditional strategy for
1388 stepping a thread past a breakpoint it has hit is unsuitable.
1389 'Displaced stepping' is a tactic for stepping one thread past a
1390 breakpoint it has hit while ensuring that other threads running
1391 concurrently will hit the breakpoint as they should.
1392
1393 The traditional way to step a thread T off a breakpoint in a
1394 multi-threaded program in all-stop mode is as follows:
1395
1396 a0) Initially, all threads are stopped, and breakpoints are not
1397 inserted.
1398 a1) We single-step T, leaving breakpoints uninserted.
1399 a2) We insert breakpoints, and resume all threads.
1400
1401 In non-stop debugging, however, this strategy is unsuitable: we
1402 don't want to have to stop all threads in the system in order to
1403 continue or step T past a breakpoint. Instead, we use displaced
1404 stepping:
1405
1406 n0) Initially, T is stopped, other threads are running, and
1407 breakpoints are inserted.
1408 n1) We copy the instruction "under" the breakpoint to a separate
1409 location, outside the main code stream, making any adjustments
1410 to the instruction, register, and memory state as directed by
1411 T's architecture.
1412 n2) We single-step T over the instruction at its new location.
1413 n3) We adjust the resulting register and memory state as directed
1414 by T's architecture. This includes resetting T's PC to point
1415 back into the main instruction stream.
1416 n4) We resume T.
1417
1418 This approach depends on the following gdbarch methods:
1419
1420 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1421 indicate where to copy the instruction, and how much space must
1422 be reserved there. We use these in step n1.
1423
1424 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1425 address, and makes any necessary adjustments to the instruction,
1426 register contents, and memory. We use this in step n1.
1427
1428 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1429 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1430 same effect the instruction would have had if we had executed it
1431 at its original address. We use this in step n3.
1432
237fc4c9
PA
1433 The gdbarch_displaced_step_copy_insn and
1434 gdbarch_displaced_step_fixup functions must be written so that
1435 copying an instruction with gdbarch_displaced_step_copy_insn,
1436 single-stepping across the copied instruction, and then applying
1437 gdbarch_displaced_insn_fixup should have the same effects on the
1438 thread's memory and registers as stepping the instruction in place
1439 would have. Exactly which responsibilities fall to the copy and
1440 which fall to the fixup is up to the author of those functions.
1441
1442 See the comments in gdbarch.sh for details.
1443
1444 Note that displaced stepping and software single-step cannot
1445 currently be used in combination, although with some care I think
1446 they could be made to. Software single-step works by placing
1447 breakpoints on all possible subsequent instructions; if the
1448 displaced instruction is a PC-relative jump, those breakpoints
1449 could fall in very strange places --- on pages that aren't
1450 executable, or at addresses that are not proper instruction
1451 boundaries. (We do generally let other threads run while we wait
1452 to hit the software single-step breakpoint, and they might
1453 encounter such a corrupted instruction.) One way to work around
1454 this would be to have gdbarch_displaced_step_copy_insn fully
1455 simulate the effect of PC-relative instructions (and return NULL)
1456 on architectures that use software single-stepping.
1457
1458 In non-stop mode, we can have independent and simultaneous step
1459 requests, so more than one thread may need to simultaneously step
1460 over a breakpoint. The current implementation assumes there is
1461 only one scratch space per process. In this case, we have to
1462 serialize access to the scratch space. If thread A wants to step
1463 over a breakpoint, but we are currently waiting for some other
1464 thread to complete a displaced step, we leave thread A stopped and
1465 place it in the displaced_step_request_queue. Whenever a displaced
1466 step finishes, we pick the next thread in the queue and start a new
1467 displaced step operation on it. See displaced_step_prepare and
1468 displaced_step_fixup for details. */
1469
cfba9872
SM
1470/* Default destructor for displaced_step_closure. */
1471
1472displaced_step_closure::~displaced_step_closure () = default;
1473
fc1cf338
PA
1474/* Get the displaced stepping state of process PID. */
1475
39a36629 1476static displaced_step_inferior_state *
00431a78 1477get_displaced_stepping_state (inferior *inf)
fc1cf338 1478{
d20172fc 1479 return &inf->displaced_step_state;
fc1cf338
PA
1480}
1481
372316f1
PA
1482/* Returns true if any inferior has a thread doing a displaced
1483 step. */
1484
39a36629
SM
1485static bool
1486displaced_step_in_progress_any_inferior ()
372316f1 1487{
d20172fc 1488 for (inferior *i : all_inferiors ())
39a36629 1489 {
d20172fc 1490 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1491 return true;
1492 }
372316f1 1493
39a36629 1494 return false;
372316f1
PA
1495}
1496
c0987663
YQ
1497/* Return true if thread represented by PTID is doing a displaced
1498 step. */
1499
1500static int
00431a78 1501displaced_step_in_progress_thread (thread_info *thread)
c0987663 1502{
00431a78 1503 gdb_assert (thread != NULL);
c0987663 1504
d20172fc 1505 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1506}
1507
8f572e5c
PA
1508/* Return true if process PID has a thread doing a displaced step. */
1509
1510static int
00431a78 1511displaced_step_in_progress (inferior *inf)
8f572e5c 1512{
d20172fc 1513 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1514}
1515
a42244db
YQ
1516/* If inferior is in displaced stepping, and ADDR equals to starting address
1517 of copy area, return corresponding displaced_step_closure. Otherwise,
1518 return NULL. */
1519
1520struct displaced_step_closure*
1521get_displaced_step_closure_by_addr (CORE_ADDR addr)
1522{
d20172fc 1523 displaced_step_inferior_state *displaced
00431a78 1524 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1525
1526 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1527 if (displaced->step_thread != nullptr
00431a78 1528 && displaced->step_copy == addr)
d8d83535 1529 return displaced->step_closure.get ();
a42244db
YQ
1530
1531 return NULL;
1532}
1533
fc1cf338
PA
1534static void
1535infrun_inferior_exit (struct inferior *inf)
1536{
d20172fc 1537 inf->displaced_step_state.reset ();
fc1cf338 1538}
237fc4c9 1539
fff08868
HZ
1540/* If ON, and the architecture supports it, GDB will use displaced
1541 stepping to step over breakpoints. If OFF, or if the architecture
1542 doesn't support it, GDB will instead use the traditional
1543 hold-and-step approach. If AUTO (which is the default), GDB will
1544 decide which technique to use to step over breakpoints depending on
9822cb57 1545 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1546
72d0e2c5 1547static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1548
237fc4c9
PA
1549static void
1550show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1551 struct cmd_list_element *c,
1552 const char *value)
1553{
72d0e2c5 1554 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1555 fprintf_filtered (file,
1556 _("Debugger's willingness to use displaced stepping "
1557 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1558 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1559 else
3e43a32a
MS
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1563}
1564
9822cb57
SM
1565/* Return true if the gdbarch implements the required methods to use
1566 displaced stepping. */
1567
1568static bool
1569gdbarch_supports_displaced_stepping (gdbarch *arch)
1570{
1571 /* Only check for the presence of step_copy_insn. Other required methods
1572 are checked by the gdbarch validation. */
1573 return gdbarch_displaced_step_copy_insn_p (arch);
1574}
1575
fff08868 1576/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1577 over breakpoints of thread TP. */
fff08868 1578
9822cb57
SM
1579static bool
1580use_displaced_stepping (thread_info *tp)
237fc4c9 1581{
9822cb57
SM
1582 /* If the user disabled it explicitly, don't use displaced stepping. */
1583 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1584 return false;
1585
1586 /* If "auto", only use displaced stepping if the target operates in a non-stop
1587 way. */
1588 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1589 && !target_is_non_stop_p ())
1590 return false;
1591
1592 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1593
1594 /* If the architecture doesn't implement displaced stepping, don't use
1595 it. */
1596 if (!gdbarch_supports_displaced_stepping (gdbarch))
1597 return false;
1598
1599 /* If recording, don't use displaced stepping. */
1600 if (find_record_target () != nullptr)
1601 return false;
1602
d20172fc
SM
1603 displaced_step_inferior_state *displaced_state
1604 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1605
9822cb57
SM
1606 /* If displaced stepping failed before for this inferior, don't bother trying
1607 again. */
1608 if (displaced_state->failed_before)
1609 return false;
1610
1611 return true;
237fc4c9
PA
1612}
1613
d8d83535
SM
1614/* Simple function wrapper around displaced_step_inferior_state::reset. */
1615
237fc4c9 1616static void
d8d83535 1617displaced_step_reset (displaced_step_inferior_state *displaced)
237fc4c9 1618{
d8d83535 1619 displaced->reset ();
237fc4c9
PA
1620}
1621
d8d83535
SM
1622/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1623 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1624
1625using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1626
1627/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1628void
1629displaced_step_dump_bytes (struct ui_file *file,
1630 const gdb_byte *buf,
1631 size_t len)
1632{
1633 int i;
1634
1635 for (i = 0; i < len; i++)
1636 fprintf_unfiltered (file, "%02x ", buf[i]);
1637 fputs_unfiltered ("\n", file);
1638}
1639
1640/* Prepare to single-step, using displaced stepping.
1641
1642 Note that we cannot use displaced stepping when we have a signal to
1643 deliver. If we have a signal to deliver and an instruction to step
1644 over, then after the step, there will be no indication from the
1645 target whether the thread entered a signal handler or ignored the
1646 signal and stepped over the instruction successfully --- both cases
1647 result in a simple SIGTRAP. In the first case we mustn't do a
1648 fixup, and in the second case we must --- but we can't tell which.
1649 Comments in the code for 'random signals' in handle_inferior_event
1650 explain how we handle this case instead.
1651
1652 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1653 stepped now; 0 if displaced stepping this thread got queued; or -1
1654 if this instruction can't be displaced stepped. */
1655
237fc4c9 1656static int
00431a78 1657displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1658{
00431a78 1659 regcache *regcache = get_thread_regcache (tp);
ac7936df 1660 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1661 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1662 CORE_ADDR original, copy;
1663 ULONGEST len;
9e529e1d 1664 int status;
237fc4c9
PA
1665
1666 /* We should never reach this function if the architecture does not
1667 support displaced stepping. */
9822cb57 1668 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1669
c2829269
PA
1670 /* Nor if the thread isn't meant to step over a breakpoint. */
1671 gdb_assert (tp->control.trap_expected);
1672
c1e36e3e
PA
1673 /* Disable range stepping while executing in the scratch pad. We
1674 want a single-step even if executing the displaced instruction in
1675 the scratch buffer lands within the stepping range (e.g., a
1676 jump/branch). */
1677 tp->control.may_range_step = 0;
1678
fc1cf338
PA
1679 /* We have to displaced step one thread at a time, as we only have
1680 access to a single scratch space per inferior. */
237fc4c9 1681
d20172fc
SM
1682 displaced_step_inferior_state *displaced
1683 = get_displaced_stepping_state (tp->inf);
fc1cf338 1684
00431a78 1685 if (displaced->step_thread != nullptr)
237fc4c9
PA
1686 {
1687 /* Already waiting for a displaced step to finish. Defer this
1688 request and place in queue. */
237fc4c9
PA
1689
1690 if (debug_displaced)
1691 fprintf_unfiltered (gdb_stdlog,
c2829269 1692 "displaced: deferring step of %s\n",
a068643d 1693 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1694
c2829269 1695 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1696 return 0;
1697 }
1698 else
1699 {
1700 if (debug_displaced)
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: stepping %s now\n",
a068643d 1703 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1704 }
1705
d8d83535 1706 displaced_step_reset (displaced);
237fc4c9 1707
00431a78
PA
1708 scoped_restore_current_thread restore_thread;
1709
1710 switch_to_thread (tp);
ad53cd71 1711
515630c5 1712 original = regcache_read_pc (regcache);
237fc4c9
PA
1713
1714 copy = gdbarch_displaced_step_location (gdbarch);
1715 len = gdbarch_max_insn_length (gdbarch);
1716
d35ae833
PA
1717 if (breakpoint_in_range_p (aspace, copy, len))
1718 {
1719 /* There's a breakpoint set in the scratch pad location range
1720 (which is usually around the entry point). We'd either
1721 install it before resuming, which would overwrite/corrupt the
1722 scratch pad, or if it was already inserted, this displaced
1723 step would overwrite it. The latter is OK in the sense that
1724 we already assume that no thread is going to execute the code
1725 in the scratch pad range (after initial startup) anyway, but
1726 the former is unacceptable. Simply punt and fallback to
1727 stepping over this breakpoint in-line. */
1728 if (debug_displaced)
1729 {
1730 fprintf_unfiltered (gdb_stdlog,
1731 "displaced: breakpoint set in scratch pad. "
1732 "Stepping over breakpoint in-line instead.\n");
1733 }
1734
d35ae833
PA
1735 return -1;
1736 }
1737
237fc4c9 1738 /* Save the original contents of the copy area. */
d20172fc
SM
1739 displaced->step_saved_copy.resize (len);
1740 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1741 if (status != 0)
1742 throw_error (MEMORY_ERROR,
1743 _("Error accessing memory address %s (%s) for "
1744 "displaced-stepping scratch space."),
1745 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1746 if (debug_displaced)
1747 {
5af949e3
UW
1748 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1749 paddress (gdbarch, copy));
fc1cf338 1750 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1751 displaced->step_saved_copy.data (),
fc1cf338 1752 len);
237fc4c9
PA
1753 };
1754
e8217e61
SM
1755 displaced->step_closure
1756 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1757 if (displaced->step_closure == NULL)
7f03bd92
PA
1758 {
1759 /* The architecture doesn't know how or want to displaced step
1760 this instruction or instruction sequence. Fallback to
1761 stepping over the breakpoint in-line. */
7f03bd92
PA
1762 return -1;
1763 }
237fc4c9 1764
9f5a595d
UW
1765 /* Save the information we need to fix things up if the step
1766 succeeds. */
00431a78 1767 displaced->step_thread = tp;
fc1cf338 1768 displaced->step_gdbarch = gdbarch;
fc1cf338
PA
1769 displaced->step_original = original;
1770 displaced->step_copy = copy;
9f5a595d 1771
9799571e 1772 {
d8d83535 1773 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1774
9799571e
TT
1775 /* Resume execution at the copy. */
1776 regcache_write_pc (regcache, copy);
237fc4c9 1777
9799571e
TT
1778 cleanup.release ();
1779 }
ad53cd71 1780
237fc4c9 1781 if (debug_displaced)
5af949e3
UW
1782 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1783 paddress (gdbarch, copy));
237fc4c9 1784
237fc4c9
PA
1785 return 1;
1786}
1787
3fc8eb30
PA
1788/* Wrapper for displaced_step_prepare_throw that disabled further
1789 attempts at displaced stepping if we get a memory error. */
1790
1791static int
00431a78 1792displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1793{
1794 int prepared = -1;
1795
a70b8144 1796 try
3fc8eb30 1797 {
00431a78 1798 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1799 }
230d2906 1800 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1801 {
1802 struct displaced_step_inferior_state *displaced_state;
1803
16b41842
PA
1804 if (ex.error != MEMORY_ERROR
1805 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1806 throw;
3fc8eb30
PA
1807
1808 if (debug_infrun)
1809 {
1810 fprintf_unfiltered (gdb_stdlog,
1811 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1812 ex.what ());
3fc8eb30
PA
1813 }
1814
1815 /* Be verbose if "set displaced-stepping" is "on", silent if
1816 "auto". */
1817 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1818 {
fd7dcb94 1819 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1820 ex.what ());
3fc8eb30
PA
1821 }
1822
1823 /* Disable further displaced stepping attempts. */
1824 displaced_state
00431a78 1825 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1826 displaced_state->failed_before = 1;
1827 }
3fc8eb30
PA
1828
1829 return prepared;
1830}
1831
237fc4c9 1832static void
3e43a32a
MS
1833write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1834 const gdb_byte *myaddr, int len)
237fc4c9 1835{
2989a365 1836 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1837
237fc4c9
PA
1838 inferior_ptid = ptid;
1839 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1840}
1841
e2d96639
YQ
1842/* Restore the contents of the copy area for thread PTID. */
1843
1844static void
1845displaced_step_restore (struct displaced_step_inferior_state *displaced,
1846 ptid_t ptid)
1847{
1848 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1849
1850 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1851 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1852 if (debug_displaced)
1853 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1854 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1855 paddress (displaced->step_gdbarch,
1856 displaced->step_copy));
1857}
1858
372316f1
PA
1859/* If we displaced stepped an instruction successfully, adjust
1860 registers and memory to yield the same effect the instruction would
1861 have had if we had executed it at its original address, and return
1862 1. If the instruction didn't complete, relocate the PC and return
1863 -1. If the thread wasn't displaced stepping, return 0. */
1864
1865static int
00431a78 1866displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1867{
fc1cf338 1868 struct displaced_step_inferior_state *displaced
00431a78 1869 = get_displaced_stepping_state (event_thread->inf);
372316f1 1870 int ret;
fc1cf338 1871
00431a78
PA
1872 /* Was this event for the thread we displaced? */
1873 if (displaced->step_thread != event_thread)
372316f1 1874 return 0;
237fc4c9 1875
cb71640d
PA
1876 /* Fixup may need to read memory/registers. Switch to the thread
1877 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d
TBA
1878 the current thread, and displaced_step_restore performs ptid-dependent
1879 memory accesses using current_inferior() and current_top_target(). */
00431a78 1880 switch_to_thread (event_thread);
cb71640d 1881
d43b7a2d
TBA
1882 displaced_step_reset_cleanup cleanup (displaced);
1883
1884 displaced_step_restore (displaced, displaced->step_thread->ptid);
1885
237fc4c9 1886 /* Did the instruction complete successfully? */
cb71640d
PA
1887 if (signal == GDB_SIGNAL_TRAP
1888 && !(target_stopped_by_watchpoint ()
1889 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1890 || target_have_steppable_watchpoint)))
237fc4c9
PA
1891 {
1892 /* Fix up the resulting state. */
fc1cf338 1893 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
d8d83535 1894 displaced->step_closure.get (),
fc1cf338
PA
1895 displaced->step_original,
1896 displaced->step_copy,
00431a78 1897 get_thread_regcache (displaced->step_thread));
372316f1 1898 ret = 1;
237fc4c9
PA
1899 }
1900 else
1901 {
1902 /* Since the instruction didn't complete, all we can do is
1903 relocate the PC. */
00431a78 1904 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1905 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1906
fc1cf338 1907 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1908 regcache_write_pc (regcache, pc);
372316f1 1909 ret = -1;
237fc4c9
PA
1910 }
1911
372316f1 1912 return ret;
c2829269 1913}
1c5cfe86 1914
4d9d9d04
PA
1915/* Data to be passed around while handling an event. This data is
1916 discarded between events. */
1917struct execution_control_state
1918{
5b6d1e4f 1919 process_stratum_target *target;
4d9d9d04
PA
1920 ptid_t ptid;
1921 /* The thread that got the event, if this was a thread event; NULL
1922 otherwise. */
1923 struct thread_info *event_thread;
1924
1925 struct target_waitstatus ws;
1926 int stop_func_filled_in;
1927 CORE_ADDR stop_func_start;
1928 CORE_ADDR stop_func_end;
1929 const char *stop_func_name;
1930 int wait_some_more;
1931
1932 /* True if the event thread hit the single-step breakpoint of
1933 another thread. Thus the event doesn't cause a stop, the thread
1934 needs to be single-stepped past the single-step breakpoint before
1935 we can switch back to the original stepping thread. */
1936 int hit_singlestep_breakpoint;
1937};
1938
1939/* Clear ECS and set it to point at TP. */
c2829269
PA
1940
1941static void
4d9d9d04
PA
1942reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1943{
1944 memset (ecs, 0, sizeof (*ecs));
1945 ecs->event_thread = tp;
1946 ecs->ptid = tp->ptid;
1947}
1948
1949static void keep_going_pass_signal (struct execution_control_state *ecs);
1950static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1951static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1952static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1953
1954/* Are there any pending step-over requests? If so, run all we can
1955 now and return true. Otherwise, return false. */
1956
1957static int
c2829269
PA
1958start_step_over (void)
1959{
1960 struct thread_info *tp, *next;
1961
372316f1
PA
1962 /* Don't start a new step-over if we already have an in-line
1963 step-over operation ongoing. */
1964 if (step_over_info_valid_p ())
1965 return 0;
1966
c2829269 1967 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1968 {
4d9d9d04
PA
1969 struct execution_control_state ecss;
1970 struct execution_control_state *ecs = &ecss;
8d297bbf 1971 step_over_what step_what;
372316f1 1972 int must_be_in_line;
c2829269 1973
c65d6b55
PA
1974 gdb_assert (!tp->stop_requested);
1975
c2829269 1976 next = thread_step_over_chain_next (tp);
237fc4c9 1977
c2829269
PA
1978 /* If this inferior already has a displaced step in process,
1979 don't start a new one. */
00431a78 1980 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1981 continue;
1982
372316f1
PA
1983 step_what = thread_still_needs_step_over (tp);
1984 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1985 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1986 && !use_displaced_stepping (tp)));
372316f1
PA
1987
1988 /* We currently stop all threads of all processes to step-over
1989 in-line. If we need to start a new in-line step-over, let
1990 any pending displaced steps finish first. */
1991 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1992 return 0;
1993
c2829269
PA
1994 thread_step_over_chain_remove (tp);
1995
1996 if (step_over_queue_head == NULL)
1997 {
1998 if (debug_infrun)
1999 fprintf_unfiltered (gdb_stdlog,
2000 "infrun: step-over queue now empty\n");
2001 }
2002
372316f1
PA
2003 if (tp->control.trap_expected
2004 || tp->resumed
2005 || tp->executing)
ad53cd71 2006 {
4d9d9d04
PA
2007 internal_error (__FILE__, __LINE__,
2008 "[%s] has inconsistent state: "
372316f1 2009 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 2010 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 2011 tp->control.trap_expected,
372316f1 2012 tp->resumed,
4d9d9d04 2013 tp->executing);
ad53cd71 2014 }
1c5cfe86 2015
4d9d9d04
PA
2016 if (debug_infrun)
2017 fprintf_unfiltered (gdb_stdlog,
2018 "infrun: resuming [%s] for step-over\n",
a068643d 2019 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2020
2021 /* keep_going_pass_signal skips the step-over if the breakpoint
2022 is no longer inserted. In all-stop, we want to keep looking
2023 for a thread that needs a step-over instead of resuming TP,
2024 because we wouldn't be able to resume anything else until the
2025 target stops again. In non-stop, the resume always resumes
2026 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2027 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2028 continue;
8550d3b3 2029
00431a78 2030 switch_to_thread (tp);
4d9d9d04
PA
2031 reset_ecs (ecs, tp);
2032 keep_going_pass_signal (ecs);
1c5cfe86 2033
4d9d9d04
PA
2034 if (!ecs->wait_some_more)
2035 error (_("Command aborted."));
1c5cfe86 2036
372316f1
PA
2037 gdb_assert (tp->resumed);
2038
2039 /* If we started a new in-line step-over, we're done. */
2040 if (step_over_info_valid_p ())
2041 {
2042 gdb_assert (tp->control.trap_expected);
2043 return 1;
2044 }
2045
fbea99ea 2046 if (!target_is_non_stop_p ())
4d9d9d04
PA
2047 {
2048 /* On all-stop, shouldn't have resumed unless we needed a
2049 step over. */
2050 gdb_assert (tp->control.trap_expected
2051 || tp->step_after_step_resume_breakpoint);
2052
2053 /* With remote targets (at least), in all-stop, we can't
2054 issue any further remote commands until the program stops
2055 again. */
2056 return 1;
1c5cfe86 2057 }
c2829269 2058
4d9d9d04
PA
2059 /* Either the thread no longer needed a step-over, or a new
2060 displaced stepping sequence started. Even in the latter
2061 case, continue looking. Maybe we can also start another
2062 displaced step on a thread of other process. */
237fc4c9 2063 }
4d9d9d04
PA
2064
2065 return 0;
237fc4c9
PA
2066}
2067
5231c1fd
PA
2068/* Update global variables holding ptids to hold NEW_PTID if they were
2069 holding OLD_PTID. */
2070static void
2071infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2072{
d7e15655 2073 if (inferior_ptid == old_ptid)
5231c1fd 2074 inferior_ptid = new_ptid;
5231c1fd
PA
2075}
2076
237fc4c9 2077\f
c906108c 2078
53904c9e
AC
2079static const char schedlock_off[] = "off";
2080static const char schedlock_on[] = "on";
2081static const char schedlock_step[] = "step";
f2665db5 2082static const char schedlock_replay[] = "replay";
40478521 2083static const char *const scheduler_enums[] = {
ef346e04
AC
2084 schedlock_off,
2085 schedlock_on,
2086 schedlock_step,
f2665db5 2087 schedlock_replay,
ef346e04
AC
2088 NULL
2089};
f2665db5 2090static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2091static void
2092show_scheduler_mode (struct ui_file *file, int from_tty,
2093 struct cmd_list_element *c, const char *value)
2094{
3e43a32a
MS
2095 fprintf_filtered (file,
2096 _("Mode for locking scheduler "
2097 "during execution is \"%s\".\n"),
920d2a44
AC
2098 value);
2099}
c906108c
SS
2100
2101static void
eb4c3f4a 2102set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2103{
eefe576e
AC
2104 if (!target_can_lock_scheduler)
2105 {
2106 scheduler_mode = schedlock_off;
2107 error (_("Target '%s' cannot support this command."), target_shortname);
2108 }
c906108c
SS
2109}
2110
d4db2f36
PA
2111/* True if execution commands resume all threads of all processes by
2112 default; otherwise, resume only threads of the current inferior
2113 process. */
491144b5 2114bool sched_multi = false;
d4db2f36 2115
2facfe5c
DD
2116/* Try to setup for software single stepping over the specified location.
2117 Return 1 if target_resume() should use hardware single step.
2118
2119 GDBARCH the current gdbarch.
2120 PC the location to step over. */
2121
2122static int
2123maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2124{
2125 int hw_step = 1;
2126
f02253f1 2127 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2128 && gdbarch_software_single_step_p (gdbarch))
2129 hw_step = !insert_single_step_breakpoints (gdbarch);
2130
2facfe5c
DD
2131 return hw_step;
2132}
c906108c 2133
f3263aa4
PA
2134/* See infrun.h. */
2135
09cee04b
PA
2136ptid_t
2137user_visible_resume_ptid (int step)
2138{
f3263aa4 2139 ptid_t resume_ptid;
09cee04b 2140
09cee04b
PA
2141 if (non_stop)
2142 {
2143 /* With non-stop mode on, threads are always handled
2144 individually. */
2145 resume_ptid = inferior_ptid;
2146 }
2147 else if ((scheduler_mode == schedlock_on)
03d46957 2148 || (scheduler_mode == schedlock_step && step))
09cee04b 2149 {
f3263aa4
PA
2150 /* User-settable 'scheduler' mode requires solo thread
2151 resume. */
09cee04b
PA
2152 resume_ptid = inferior_ptid;
2153 }
f2665db5
MM
2154 else if ((scheduler_mode == schedlock_replay)
2155 && target_record_will_replay (minus_one_ptid, execution_direction))
2156 {
2157 /* User-settable 'scheduler' mode requires solo thread resume in replay
2158 mode. */
2159 resume_ptid = inferior_ptid;
2160 }
f3263aa4
PA
2161 else if (!sched_multi && target_supports_multi_process ())
2162 {
2163 /* Resume all threads of the current process (and none of other
2164 processes). */
e99b03dc 2165 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2166 }
2167 else
2168 {
2169 /* Resume all threads of all processes. */
2170 resume_ptid = RESUME_ALL;
2171 }
09cee04b
PA
2172
2173 return resume_ptid;
2174}
2175
5b6d1e4f
PA
2176/* See infrun.h. */
2177
2178process_stratum_target *
2179user_visible_resume_target (ptid_t resume_ptid)
2180{
2181 return (resume_ptid == minus_one_ptid && sched_multi
2182 ? NULL
2183 : current_inferior ()->process_target ());
2184}
2185
fbea99ea
PA
2186/* Return a ptid representing the set of threads that we will resume,
2187 in the perspective of the target, assuming run control handling
2188 does not require leaving some threads stopped (e.g., stepping past
2189 breakpoint). USER_STEP indicates whether we're about to start the
2190 target for a stepping command. */
2191
2192static ptid_t
2193internal_resume_ptid (int user_step)
2194{
2195 /* In non-stop, we always control threads individually. Note that
2196 the target may always work in non-stop mode even with "set
2197 non-stop off", in which case user_visible_resume_ptid could
2198 return a wildcard ptid. */
2199 if (target_is_non_stop_p ())
2200 return inferior_ptid;
2201 else
2202 return user_visible_resume_ptid (user_step);
2203}
2204
64ce06e4
PA
2205/* Wrapper for target_resume, that handles infrun-specific
2206 bookkeeping. */
2207
2208static void
2209do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2210{
2211 struct thread_info *tp = inferior_thread ();
2212
c65d6b55
PA
2213 gdb_assert (!tp->stop_requested);
2214
64ce06e4 2215 /* Install inferior's terminal modes. */
223ffa71 2216 target_terminal::inferior ();
64ce06e4
PA
2217
2218 /* Avoid confusing the next resume, if the next stop/resume
2219 happens to apply to another thread. */
2220 tp->suspend.stop_signal = GDB_SIGNAL_0;
2221
8f572e5c
PA
2222 /* Advise target which signals may be handled silently.
2223
2224 If we have removed breakpoints because we are stepping over one
2225 in-line (in any thread), we need to receive all signals to avoid
2226 accidentally skipping a breakpoint during execution of a signal
2227 handler.
2228
2229 Likewise if we're displaced stepping, otherwise a trap for a
2230 breakpoint in a signal handler might be confused with the
2231 displaced step finishing. We don't make the displaced_step_fixup
2232 step distinguish the cases instead, because:
2233
2234 - a backtrace while stopped in the signal handler would show the
2235 scratch pad as frame older than the signal handler, instead of
2236 the real mainline code.
2237
2238 - when the thread is later resumed, the signal handler would
2239 return to the scratch pad area, which would no longer be
2240 valid. */
2241 if (step_over_info_valid_p ()
00431a78 2242 || displaced_step_in_progress (tp->inf))
adc6a863 2243 target_pass_signals ({});
64ce06e4 2244 else
adc6a863 2245 target_pass_signals (signal_pass);
64ce06e4
PA
2246
2247 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2248
2249 target_commit_resume ();
5b6d1e4f
PA
2250
2251 if (target_can_async_p ())
2252 target_async (1);
64ce06e4
PA
2253}
2254
d930703d 2255/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2256 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2257 call 'resume', which handles exceptions. */
c906108c 2258
71d378ae
PA
2259static void
2260resume_1 (enum gdb_signal sig)
c906108c 2261{
515630c5 2262 struct regcache *regcache = get_current_regcache ();
ac7936df 2263 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2264 struct thread_info *tp = inferior_thread ();
8b86c959 2265 const address_space *aspace = regcache->aspace ();
b0f16a3e 2266 ptid_t resume_ptid;
856e7dd6
PA
2267 /* This represents the user's step vs continue request. When
2268 deciding whether "set scheduler-locking step" applies, it's the
2269 user's intention that counts. */
2270 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2271 /* This represents what we'll actually request the target to do.
2272 This can decay from a step to a continue, if e.g., we need to
2273 implement single-stepping with breakpoints (software
2274 single-step). */
6b403daa 2275 int step;
c7e8a53c 2276
c65d6b55 2277 gdb_assert (!tp->stop_requested);
c2829269
PA
2278 gdb_assert (!thread_is_in_step_over_chain (tp));
2279
372316f1
PA
2280 if (tp->suspend.waitstatus_pending_p)
2281 {
2282 if (debug_infrun)
2283 {
23fdd69e
SM
2284 std::string statstr
2285 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2286
372316f1 2287 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2288 "infrun: resume: thread %s has pending wait "
2289 "status %s (currently_stepping=%d).\n",
a068643d
TT
2290 target_pid_to_str (tp->ptid).c_str (),
2291 statstr.c_str (),
372316f1 2292 currently_stepping (tp));
372316f1
PA
2293 }
2294
5b6d1e4f 2295 tp->inf->process_target ()->threads_executing = true;
719546c4 2296 tp->resumed = true;
372316f1
PA
2297
2298 /* FIXME: What should we do if we are supposed to resume this
2299 thread with a signal? Maybe we should maintain a queue of
2300 pending signals to deliver. */
2301 if (sig != GDB_SIGNAL_0)
2302 {
fd7dcb94 2303 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2304 gdb_signal_to_name (sig),
2305 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2306 }
2307
2308 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2309
2310 if (target_can_async_p ())
9516f85a
AB
2311 {
2312 target_async (1);
2313 /* Tell the event loop we have an event to process. */
2314 mark_async_event_handler (infrun_async_inferior_event_token);
2315 }
372316f1
PA
2316 return;
2317 }
2318
2319 tp->stepped_breakpoint = 0;
2320
6b403daa
PA
2321 /* Depends on stepped_breakpoint. */
2322 step = currently_stepping (tp);
2323
74609e71
YQ
2324 if (current_inferior ()->waiting_for_vfork_done)
2325 {
48f9886d
PA
2326 /* Don't try to single-step a vfork parent that is waiting for
2327 the child to get out of the shared memory region (by exec'ing
2328 or exiting). This is particularly important on software
2329 single-step archs, as the child process would trip on the
2330 software single step breakpoint inserted for the parent
2331 process. Since the parent will not actually execute any
2332 instruction until the child is out of the shared region (such
2333 are vfork's semantics), it is safe to simply continue it.
2334 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2335 the parent, and tell it to `keep_going', which automatically
2336 re-sets it stepping. */
74609e71
YQ
2337 if (debug_infrun)
2338 fprintf_unfiltered (gdb_stdlog,
2339 "infrun: resume : clear step\n");
a09dd441 2340 step = 0;
74609e71
YQ
2341 }
2342
7ca9b62a
TBA
2343 CORE_ADDR pc = regcache_read_pc (regcache);
2344
527159b7 2345 if (debug_infrun)
237fc4c9 2346 fprintf_unfiltered (gdb_stdlog,
c9737c08 2347 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2348 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2349 step, gdb_signal_to_symbol_string (sig),
2350 tp->control.trap_expected,
a068643d 2351 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2352 paddress (gdbarch, pc));
c906108c 2353
c2c6d25f
JM
2354 /* Normally, by the time we reach `resume', the breakpoints are either
2355 removed or inserted, as appropriate. The exception is if we're sitting
2356 at a permanent breakpoint; we need to step over it, but permanent
2357 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2358 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2359 {
af48d08f
PA
2360 if (sig != GDB_SIGNAL_0)
2361 {
2362 /* We have a signal to pass to the inferior. The resume
2363 may, or may not take us to the signal handler. If this
2364 is a step, we'll need to stop in the signal handler, if
2365 there's one, (if the target supports stepping into
2366 handlers), or in the next mainline instruction, if
2367 there's no handler. If this is a continue, we need to be
2368 sure to run the handler with all breakpoints inserted.
2369 In all cases, set a breakpoint at the current address
2370 (where the handler returns to), and once that breakpoint
2371 is hit, resume skipping the permanent breakpoint. If
2372 that breakpoint isn't hit, then we've stepped into the
2373 signal handler (or hit some other event). We'll delete
2374 the step-resume breakpoint then. */
2375
2376 if (debug_infrun)
2377 fprintf_unfiltered (gdb_stdlog,
2378 "infrun: resume: skipping permanent breakpoint, "
2379 "deliver signal first\n");
2380
2381 clear_step_over_info ();
2382 tp->control.trap_expected = 0;
2383
2384 if (tp->control.step_resume_breakpoint == NULL)
2385 {
2386 /* Set a "high-priority" step-resume, as we don't want
2387 user breakpoints at PC to trigger (again) when this
2388 hits. */
2389 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2390 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2391
2392 tp->step_after_step_resume_breakpoint = step;
2393 }
2394
2395 insert_breakpoints ();
2396 }
2397 else
2398 {
2399 /* There's no signal to pass, we can go ahead and skip the
2400 permanent breakpoint manually. */
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog,
2403 "infrun: resume: skipping permanent breakpoint\n");
2404 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2405 /* Update pc to reflect the new address from which we will
2406 execute instructions. */
2407 pc = regcache_read_pc (regcache);
2408
2409 if (step)
2410 {
2411 /* We've already advanced the PC, so the stepping part
2412 is done. Now we need to arrange for a trap to be
2413 reported to handle_inferior_event. Set a breakpoint
2414 at the current PC, and run to it. Don't update
2415 prev_pc, because if we end in
44a1ee51
PA
2416 switch_back_to_stepped_thread, we want the "expected
2417 thread advanced also" branch to be taken. IOW, we
2418 don't want this thread to step further from PC
af48d08f 2419 (overstep). */
1ac806b8 2420 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2421 insert_single_step_breakpoint (gdbarch, aspace, pc);
2422 insert_breakpoints ();
2423
fbea99ea 2424 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2425 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2426 tp->resumed = true;
af48d08f
PA
2427 return;
2428 }
2429 }
6d350bb5 2430 }
c2c6d25f 2431
c1e36e3e
PA
2432 /* If we have a breakpoint to step over, make sure to do a single
2433 step only. Same if we have software watchpoints. */
2434 if (tp->control.trap_expected || bpstat_should_step ())
2435 tp->control.may_range_step = 0;
2436
7da6a5b9
LM
2437 /* If displaced stepping is enabled, step over breakpoints by executing a
2438 copy of the instruction at a different address.
237fc4c9
PA
2439
2440 We can't use displaced stepping when we have a signal to deliver;
2441 the comments for displaced_step_prepare explain why. The
2442 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2443 signals' explain what we do instead.
2444
2445 We can't use displaced stepping when we are waiting for vfork_done
2446 event, displaced stepping breaks the vfork child similarly as single
2447 step software breakpoint. */
3fc8eb30
PA
2448 if (tp->control.trap_expected
2449 && use_displaced_stepping (tp)
cb71640d 2450 && !step_over_info_valid_p ()
a493e3e2 2451 && sig == GDB_SIGNAL_0
74609e71 2452 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2453 {
00431a78 2454 int prepared = displaced_step_prepare (tp);
fc1cf338 2455
3fc8eb30 2456 if (prepared == 0)
d56b7306 2457 {
4d9d9d04
PA
2458 if (debug_infrun)
2459 fprintf_unfiltered (gdb_stdlog,
2460 "Got placed in step-over queue\n");
2461
2462 tp->control.trap_expected = 0;
d56b7306
VP
2463 return;
2464 }
3fc8eb30
PA
2465 else if (prepared < 0)
2466 {
2467 /* Fallback to stepping over the breakpoint in-line. */
2468
2469 if (target_is_non_stop_p ())
2470 stop_all_threads ();
2471
a01bda52 2472 set_step_over_info (regcache->aspace (),
21edc42f 2473 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2474
2475 step = maybe_software_singlestep (gdbarch, pc);
2476
2477 insert_breakpoints ();
2478 }
2479 else if (prepared > 0)
2480 {
2481 struct displaced_step_inferior_state *displaced;
99e40580 2482
3fc8eb30
PA
2483 /* Update pc to reflect the new address from which we will
2484 execute instructions due to displaced stepping. */
00431a78 2485 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2486
00431a78 2487 displaced = get_displaced_stepping_state (tp->inf);
d8d83535
SM
2488 step = gdbarch_displaced_step_hw_singlestep
2489 (gdbarch, displaced->step_closure.get ());
3fc8eb30 2490 }
237fc4c9
PA
2491 }
2492
2facfe5c 2493 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2494 else if (step)
2facfe5c 2495 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2496
30852783
UW
2497 /* Currently, our software single-step implementation leads to different
2498 results than hardware single-stepping in one situation: when stepping
2499 into delivering a signal which has an associated signal handler,
2500 hardware single-step will stop at the first instruction of the handler,
2501 while software single-step will simply skip execution of the handler.
2502
2503 For now, this difference in behavior is accepted since there is no
2504 easy way to actually implement single-stepping into a signal handler
2505 without kernel support.
2506
2507 However, there is one scenario where this difference leads to follow-on
2508 problems: if we're stepping off a breakpoint by removing all breakpoints
2509 and then single-stepping. In this case, the software single-step
2510 behavior means that even if there is a *breakpoint* in the signal
2511 handler, GDB still would not stop.
2512
2513 Fortunately, we can at least fix this particular issue. We detect
2514 here the case where we are about to deliver a signal while software
2515 single-stepping with breakpoints removed. In this situation, we
2516 revert the decisions to remove all breakpoints and insert single-
2517 step breakpoints, and instead we install a step-resume breakpoint
2518 at the current address, deliver the signal without stepping, and
2519 once we arrive back at the step-resume breakpoint, actually step
2520 over the breakpoint we originally wanted to step over. */
34b7e8a6 2521 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2522 && sig != GDB_SIGNAL_0
2523 && step_over_info_valid_p ())
30852783
UW
2524 {
2525 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2526 immediately after a handler returns, might already have
30852783
UW
2527 a step-resume breakpoint set on the earlier handler. We cannot
2528 set another step-resume breakpoint; just continue on until the
2529 original breakpoint is hit. */
2530 if (tp->control.step_resume_breakpoint == NULL)
2531 {
2c03e5be 2532 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2533 tp->step_after_step_resume_breakpoint = 1;
2534 }
2535
34b7e8a6 2536 delete_single_step_breakpoints (tp);
30852783 2537
31e77af2 2538 clear_step_over_info ();
30852783 2539 tp->control.trap_expected = 0;
31e77af2
PA
2540
2541 insert_breakpoints ();
30852783
UW
2542 }
2543
b0f16a3e
SM
2544 /* If STEP is set, it's a request to use hardware stepping
2545 facilities. But in that case, we should never
2546 use singlestep breakpoint. */
34b7e8a6 2547 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2548
fbea99ea 2549 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2550 if (tp->control.trap_expected)
b0f16a3e
SM
2551 {
2552 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2553 hit, either by single-stepping the thread with the breakpoint
2554 removed, or by displaced stepping, with the breakpoint inserted.
2555 In the former case, we need to single-step only this thread,
2556 and keep others stopped, as they can miss this breakpoint if
2557 allowed to run. That's not really a problem for displaced
2558 stepping, but, we still keep other threads stopped, in case
2559 another thread is also stopped for a breakpoint waiting for
2560 its turn in the displaced stepping queue. */
b0f16a3e
SM
2561 resume_ptid = inferior_ptid;
2562 }
fbea99ea
PA
2563 else
2564 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2565
7f5ef605
PA
2566 if (execution_direction != EXEC_REVERSE
2567 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2568 {
372316f1
PA
2569 /* There are two cases where we currently need to step a
2570 breakpoint instruction when we have a signal to deliver:
2571
2572 - See handle_signal_stop where we handle random signals that
2573 could take out us out of the stepping range. Normally, in
2574 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2575 signal handler with a breakpoint at PC, but there are cases
2576 where we should _always_ single-step, even if we have a
2577 step-resume breakpoint, like when a software watchpoint is
2578 set. Assuming single-stepping and delivering a signal at the
2579 same time would takes us to the signal handler, then we could
2580 have removed the breakpoint at PC to step over it. However,
2581 some hardware step targets (like e.g., Mac OS) can't step
2582 into signal handlers, and for those, we need to leave the
2583 breakpoint at PC inserted, as otherwise if the handler
2584 recurses and executes PC again, it'll miss the breakpoint.
2585 So we leave the breakpoint inserted anyway, but we need to
2586 record that we tried to step a breakpoint instruction, so
372316f1
PA
2587 that adjust_pc_after_break doesn't end up confused.
2588
2589 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2590 in one thread after another thread that was stepping had been
2591 momentarily paused for a step-over. When we re-resume the
2592 stepping thread, it may be resumed from that address with a
2593 breakpoint that hasn't trapped yet. Seen with
2594 gdb.threads/non-stop-fair-events.exp, on targets that don't
2595 do displaced stepping. */
2596
2597 if (debug_infrun)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2600 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2601
2602 tp->stepped_breakpoint = 1;
2603
b0f16a3e
SM
2604 /* Most targets can step a breakpoint instruction, thus
2605 executing it normally. But if this one cannot, just
2606 continue and we will hit it anyway. */
7f5ef605 2607 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2608 step = 0;
2609 }
ef5cf84e 2610
b0f16a3e 2611 if (debug_displaced
cb71640d 2612 && tp->control.trap_expected
3fc8eb30 2613 && use_displaced_stepping (tp)
cb71640d 2614 && !step_over_info_valid_p ())
b0f16a3e 2615 {
00431a78 2616 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2617 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2618 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2619 gdb_byte buf[4];
2620
2621 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2622 paddress (resume_gdbarch, actual_pc));
2623 read_memory (actual_pc, buf, sizeof (buf));
2624 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2625 }
237fc4c9 2626
b0f16a3e
SM
2627 if (tp->control.may_range_step)
2628 {
2629 /* If we're resuming a thread with the PC out of the step
2630 range, then we're doing some nested/finer run control
2631 operation, like stepping the thread out of the dynamic
2632 linker or the displaced stepping scratch pad. We
2633 shouldn't have allowed a range step then. */
2634 gdb_assert (pc_in_thread_step_range (pc, tp));
2635 }
c1e36e3e 2636
64ce06e4 2637 do_target_resume (resume_ptid, step, sig);
719546c4 2638 tp->resumed = true;
c906108c 2639}
71d378ae
PA
2640
2641/* Resume the inferior. SIG is the signal to give the inferior
2642 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2643 rolls back state on error. */
2644
aff4e175 2645static void
71d378ae
PA
2646resume (gdb_signal sig)
2647{
a70b8144 2648 try
71d378ae
PA
2649 {
2650 resume_1 (sig);
2651 }
230d2906 2652 catch (const gdb_exception &ex)
71d378ae
PA
2653 {
2654 /* If resuming is being aborted for any reason, delete any
2655 single-step breakpoint resume_1 may have created, to avoid
2656 confusing the following resumption, and to avoid leaving
2657 single-step breakpoints perturbing other threads, in case
2658 we're running in non-stop mode. */
2659 if (inferior_ptid != null_ptid)
2660 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2661 throw;
71d378ae 2662 }
71d378ae
PA
2663}
2664
c906108c 2665\f
237fc4c9 2666/* Proceeding. */
c906108c 2667
4c2f2a79
PA
2668/* See infrun.h. */
2669
2670/* Counter that tracks number of user visible stops. This can be used
2671 to tell whether a command has proceeded the inferior past the
2672 current location. This allows e.g., inferior function calls in
2673 breakpoint commands to not interrupt the command list. When the
2674 call finishes successfully, the inferior is standing at the same
2675 breakpoint as if nothing happened (and so we don't call
2676 normal_stop). */
2677static ULONGEST current_stop_id;
2678
2679/* See infrun.h. */
2680
2681ULONGEST
2682get_stop_id (void)
2683{
2684 return current_stop_id;
2685}
2686
2687/* Called when we report a user visible stop. */
2688
2689static void
2690new_stop_id (void)
2691{
2692 current_stop_id++;
2693}
2694
c906108c
SS
2695/* Clear out all variables saying what to do when inferior is continued.
2696 First do this, then set the ones you want, then call `proceed'. */
2697
a7212384
UW
2698static void
2699clear_proceed_status_thread (struct thread_info *tp)
c906108c 2700{
a7212384
UW
2701 if (debug_infrun)
2702 fprintf_unfiltered (gdb_stdlog,
2703 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2704 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2705
372316f1
PA
2706 /* If we're starting a new sequence, then the previous finished
2707 single-step is no longer relevant. */
2708 if (tp->suspend.waitstatus_pending_p)
2709 {
2710 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2711 {
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: clear_proceed_status: pending "
2715 "event of %s was a finished step. "
2716 "Discarding.\n",
a068643d 2717 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2718
2719 tp->suspend.waitstatus_pending_p = 0;
2720 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2721 }
2722 else if (debug_infrun)
2723 {
23fdd69e
SM
2724 std::string statstr
2725 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2726
372316f1
PA
2727 fprintf_unfiltered (gdb_stdlog,
2728 "infrun: clear_proceed_status_thread: thread %s "
2729 "has pending wait status %s "
2730 "(currently_stepping=%d).\n",
a068643d
TT
2731 target_pid_to_str (tp->ptid).c_str (),
2732 statstr.c_str (),
372316f1 2733 currently_stepping (tp));
372316f1
PA
2734 }
2735 }
2736
70509625
PA
2737 /* If this signal should not be seen by program, give it zero.
2738 Used for debugging signals. */
2739 if (!signal_pass_state (tp->suspend.stop_signal))
2740 tp->suspend.stop_signal = GDB_SIGNAL_0;
2741
46e3ed7f 2742 delete tp->thread_fsm;
243a9253
PA
2743 tp->thread_fsm = NULL;
2744
16c381f0
JK
2745 tp->control.trap_expected = 0;
2746 tp->control.step_range_start = 0;
2747 tp->control.step_range_end = 0;
c1e36e3e 2748 tp->control.may_range_step = 0;
16c381f0
JK
2749 tp->control.step_frame_id = null_frame_id;
2750 tp->control.step_stack_frame_id = null_frame_id;
2751 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2752 tp->control.step_start_function = NULL;
a7212384 2753 tp->stop_requested = 0;
4e1c45ea 2754
16c381f0 2755 tp->control.stop_step = 0;
32400beb 2756
16c381f0 2757 tp->control.proceed_to_finish = 0;
414c69f7 2758
856e7dd6 2759 tp->control.stepping_command = 0;
17b2616c 2760
a7212384 2761 /* Discard any remaining commands or status from previous stop. */
16c381f0 2762 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2763}
32400beb 2764
a7212384 2765void
70509625 2766clear_proceed_status (int step)
a7212384 2767{
f2665db5
MM
2768 /* With scheduler-locking replay, stop replaying other threads if we're
2769 not replaying the user-visible resume ptid.
2770
2771 This is a convenience feature to not require the user to explicitly
2772 stop replaying the other threads. We're assuming that the user's
2773 intent is to resume tracing the recorded process. */
2774 if (!non_stop && scheduler_mode == schedlock_replay
2775 && target_record_is_replaying (minus_one_ptid)
2776 && !target_record_will_replay (user_visible_resume_ptid (step),
2777 execution_direction))
2778 target_record_stop_replaying ();
2779
08036331 2780 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2781 {
08036331 2782 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2783 process_stratum_target *resume_target
2784 = user_visible_resume_target (resume_ptid);
70509625
PA
2785
2786 /* In all-stop mode, delete the per-thread status of all threads
2787 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2788 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2789 clear_proceed_status_thread (tp);
6c95b8df
PA
2790 }
2791
d7e15655 2792 if (inferior_ptid != null_ptid)
a7212384
UW
2793 {
2794 struct inferior *inferior;
2795
2796 if (non_stop)
2797 {
6c95b8df
PA
2798 /* If in non-stop mode, only delete the per-thread status of
2799 the current thread. */
a7212384
UW
2800 clear_proceed_status_thread (inferior_thread ());
2801 }
6c95b8df 2802
d6b48e9c 2803 inferior = current_inferior ();
16c381f0 2804 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2805 }
2806
76727919 2807 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2808}
2809
99619bea
PA
2810/* Returns true if TP is still stopped at a breakpoint that needs
2811 stepping-over in order to make progress. If the breakpoint is gone
2812 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2813
2814static int
6c4cfb24 2815thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2816{
2817 if (tp->stepping_over_breakpoint)
2818 {
00431a78 2819 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2820
a01bda52 2821 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2822 regcache_read_pc (regcache))
2823 == ordinary_breakpoint_here)
99619bea
PA
2824 return 1;
2825
2826 tp->stepping_over_breakpoint = 0;
2827 }
2828
2829 return 0;
2830}
2831
6c4cfb24
PA
2832/* Check whether thread TP still needs to start a step-over in order
2833 to make progress when resumed. Returns an bitwise or of enum
2834 step_over_what bits, indicating what needs to be stepped over. */
2835
8d297bbf 2836static step_over_what
6c4cfb24
PA
2837thread_still_needs_step_over (struct thread_info *tp)
2838{
8d297bbf 2839 step_over_what what = 0;
6c4cfb24
PA
2840
2841 if (thread_still_needs_step_over_bp (tp))
2842 what |= STEP_OVER_BREAKPOINT;
2843
2844 if (tp->stepping_over_watchpoint
2845 && !target_have_steppable_watchpoint)
2846 what |= STEP_OVER_WATCHPOINT;
2847
2848 return what;
2849}
2850
483805cf
PA
2851/* Returns true if scheduler locking applies. STEP indicates whether
2852 we're about to do a step/next-like command to a thread. */
2853
2854static int
856e7dd6 2855schedlock_applies (struct thread_info *tp)
483805cf
PA
2856{
2857 return (scheduler_mode == schedlock_on
2858 || (scheduler_mode == schedlock_step
f2665db5
MM
2859 && tp->control.stepping_command)
2860 || (scheduler_mode == schedlock_replay
2861 && target_record_will_replay (minus_one_ptid,
2862 execution_direction)));
483805cf
PA
2863}
2864
5b6d1e4f
PA
2865/* Calls target_commit_resume on all targets. */
2866
2867static void
2868commit_resume_all_targets ()
2869{
2870 scoped_restore_current_thread restore_thread;
2871
2872 /* Map between process_target and a representative inferior. This
2873 is to avoid committing a resume in the same target more than
2874 once. Resumptions must be idempotent, so this is an
2875 optimization. */
2876 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2877
2878 for (inferior *inf : all_non_exited_inferiors ())
2879 if (inf->has_execution ())
2880 conn_inf[inf->process_target ()] = inf;
2881
2882 for (const auto &ci : conn_inf)
2883 {
2884 inferior *inf = ci.second;
2885 switch_to_inferior_no_thread (inf);
2886 target_commit_resume ();
2887 }
2888}
2889
2f4fcf00
PA
2890/* Check that all the targets we're about to resume are in non-stop
2891 mode. Ideally, we'd only care whether all targets support
2892 target-async, but we're not there yet. E.g., stop_all_threads
2893 doesn't know how to handle all-stop targets. Also, the remote
2894 protocol in all-stop mode is synchronous, irrespective of
2895 target-async, which means that things like a breakpoint re-set
2896 triggered by one target would try to read memory from all targets
2897 and fail. */
2898
2899static void
2900check_multi_target_resumption (process_stratum_target *resume_target)
2901{
2902 if (!non_stop && resume_target == nullptr)
2903 {
2904 scoped_restore_current_thread restore_thread;
2905
2906 /* This is used to track whether we're resuming more than one
2907 target. */
2908 process_stratum_target *first_connection = nullptr;
2909
2910 /* The first inferior we see with a target that does not work in
2911 always-non-stop mode. */
2912 inferior *first_not_non_stop = nullptr;
2913
2914 for (inferior *inf : all_non_exited_inferiors (resume_target))
2915 {
2916 switch_to_inferior_no_thread (inf);
2917
2918 if (!target_has_execution)
2919 continue;
2920
2921 process_stratum_target *proc_target
2922 = current_inferior ()->process_target();
2923
2924 if (!target_is_non_stop_p ())
2925 first_not_non_stop = inf;
2926
2927 if (first_connection == nullptr)
2928 first_connection = proc_target;
2929 else if (first_connection != proc_target
2930 && first_not_non_stop != nullptr)
2931 {
2932 switch_to_inferior_no_thread (first_not_non_stop);
2933
2934 proc_target = current_inferior ()->process_target();
2935
2936 error (_("Connection %d (%s) does not support "
2937 "multi-target resumption."),
2938 proc_target->connection_number,
2939 make_target_connection_string (proc_target).c_str ());
2940 }
2941 }
2942 }
2943}
2944
c906108c
SS
2945/* Basic routine for continuing the program in various fashions.
2946
2947 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2948 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2949 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2950
2951 You should call clear_proceed_status before calling proceed. */
2952
2953void
64ce06e4 2954proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2955{
e58b0e63
PA
2956 struct regcache *regcache;
2957 struct gdbarch *gdbarch;
e58b0e63 2958 CORE_ADDR pc;
4d9d9d04
PA
2959 struct execution_control_state ecss;
2960 struct execution_control_state *ecs = &ecss;
4d9d9d04 2961 int started;
c906108c 2962
e58b0e63
PA
2963 /* If we're stopped at a fork/vfork, follow the branch set by the
2964 "set follow-fork-mode" command; otherwise, we'll just proceed
2965 resuming the current thread. */
2966 if (!follow_fork ())
2967 {
2968 /* The target for some reason decided not to resume. */
2969 normal_stop ();
f148b27e 2970 if (target_can_async_p ())
b1a35af2 2971 inferior_event_handler (INF_EXEC_COMPLETE);
e58b0e63
PA
2972 return;
2973 }
2974
842951eb
PA
2975 /* We'll update this if & when we switch to a new thread. */
2976 previous_inferior_ptid = inferior_ptid;
2977
e58b0e63 2978 regcache = get_current_regcache ();
ac7936df 2979 gdbarch = regcache->arch ();
8b86c959
YQ
2980 const address_space *aspace = regcache->aspace ();
2981
fc75c28b
TBA
2982 pc = regcache_read_pc_protected (regcache);
2983
08036331 2984 thread_info *cur_thr = inferior_thread ();
e58b0e63 2985
99619bea 2986 /* Fill in with reasonable starting values. */
08036331 2987 init_thread_stepping_state (cur_thr);
99619bea 2988
08036331 2989 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2990
5b6d1e4f
PA
2991 ptid_t resume_ptid
2992 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2993 process_stratum_target *resume_target
2994 = user_visible_resume_target (resume_ptid);
2995
2f4fcf00
PA
2996 check_multi_target_resumption (resume_target);
2997
2acceee2 2998 if (addr == (CORE_ADDR) -1)
c906108c 2999 {
08036331 3000 if (pc == cur_thr->suspend.stop_pc
af48d08f 3001 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3002 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3003 /* There is a breakpoint at the address we will resume at,
3004 step one instruction before inserting breakpoints so that
3005 we do not stop right away (and report a second hit at this
b2175913
MS
3006 breakpoint).
3007
3008 Note, we don't do this in reverse, because we won't
3009 actually be executing the breakpoint insn anyway.
3010 We'll be (un-)executing the previous instruction. */
08036331 3011 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3012 else if (gdbarch_single_step_through_delay_p (gdbarch)
3013 && gdbarch_single_step_through_delay (gdbarch,
3014 get_current_frame ()))
3352ef37
AC
3015 /* We stepped onto an instruction that needs to be stepped
3016 again before re-inserting the breakpoint, do so. */
08036331 3017 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3018 }
3019 else
3020 {
515630c5 3021 regcache_write_pc (regcache, addr);
c906108c
SS
3022 }
3023
70509625 3024 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3025 cur_thr->suspend.stop_signal = siggnal;
70509625 3026
4d9d9d04
PA
3027 /* If an exception is thrown from this point on, make sure to
3028 propagate GDB's knowledge of the executing state to the
3029 frontend/user running state. */
5b6d1e4f 3030 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3031
3032 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3033 threads (e.g., we might need to set threads stepping over
3034 breakpoints first), from the user/frontend's point of view, all
3035 threads in RESUME_PTID are now running. Unless we're calling an
3036 inferior function, as in that case we pretend the inferior
3037 doesn't run at all. */
08036331 3038 if (!cur_thr->control.in_infcall)
719546c4 3039 set_running (resume_target, resume_ptid, true);
17b2616c 3040
527159b7 3041 if (debug_infrun)
8a9de0e4 3042 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3043 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3044 paddress (gdbarch, addr),
64ce06e4 3045 gdb_signal_to_symbol_string (siggnal));
527159b7 3046
4d9d9d04
PA
3047 annotate_starting ();
3048
3049 /* Make sure that output from GDB appears before output from the
3050 inferior. */
3051 gdb_flush (gdb_stdout);
3052
d930703d
PA
3053 /* Since we've marked the inferior running, give it the terminal. A
3054 QUIT/Ctrl-C from here on is forwarded to the target (which can
3055 still detect attempts to unblock a stuck connection with repeated
3056 Ctrl-C from within target_pass_ctrlc). */
3057 target_terminal::inferior ();
3058
4d9d9d04
PA
3059 /* In a multi-threaded task we may select another thread and
3060 then continue or step.
3061
3062 But if a thread that we're resuming had stopped at a breakpoint,
3063 it will immediately cause another breakpoint stop without any
3064 execution (i.e. it will report a breakpoint hit incorrectly). So
3065 we must step over it first.
3066
3067 Look for threads other than the current (TP) that reported a
3068 breakpoint hit and haven't been resumed yet since. */
3069
3070 /* If scheduler locking applies, we can avoid iterating over all
3071 threads. */
08036331 3072 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3073 {
5b6d1e4f
PA
3074 for (thread_info *tp : all_non_exited_threads (resume_target,
3075 resume_ptid))
08036331 3076 {
f3f8ece4
PA
3077 switch_to_thread_no_regs (tp);
3078
4d9d9d04
PA
3079 /* Ignore the current thread here. It's handled
3080 afterwards. */
08036331 3081 if (tp == cur_thr)
4d9d9d04 3082 continue;
c906108c 3083
4d9d9d04
PA
3084 if (!thread_still_needs_step_over (tp))
3085 continue;
3086
3087 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3088
99619bea
PA
3089 if (debug_infrun)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "infrun: need to step-over [%s] first\n",
a068643d 3092 target_pid_to_str (tp->ptid).c_str ());
99619bea 3093
4d9d9d04 3094 thread_step_over_chain_enqueue (tp);
2adfaa28 3095 }
f3f8ece4
PA
3096
3097 switch_to_thread (cur_thr);
30852783
UW
3098 }
3099
4d9d9d04
PA
3100 /* Enqueue the current thread last, so that we move all other
3101 threads over their breakpoints first. */
08036331
PA
3102 if (cur_thr->stepping_over_breakpoint)
3103 thread_step_over_chain_enqueue (cur_thr);
30852783 3104
4d9d9d04
PA
3105 /* If the thread isn't started, we'll still need to set its prev_pc,
3106 so that switch_back_to_stepped_thread knows the thread hasn't
3107 advanced. Must do this before resuming any thread, as in
3108 all-stop/remote, once we resume we can't send any other packet
3109 until the target stops again. */
fc75c28b 3110 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3111
a9bc57b9
TT
3112 {
3113 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3114
a9bc57b9 3115 started = start_step_over ();
c906108c 3116
a9bc57b9
TT
3117 if (step_over_info_valid_p ())
3118 {
3119 /* Either this thread started a new in-line step over, or some
3120 other thread was already doing one. In either case, don't
3121 resume anything else until the step-over is finished. */
3122 }
3123 else if (started && !target_is_non_stop_p ())
3124 {
3125 /* A new displaced stepping sequence was started. In all-stop,
3126 we can't talk to the target anymore until it next stops. */
3127 }
3128 else if (!non_stop && target_is_non_stop_p ())
3129 {
3130 /* In all-stop, but the target is always in non-stop mode.
3131 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3132 for (thread_info *tp : all_non_exited_threads (resume_target,
3133 resume_ptid))
3134 {
3135 switch_to_thread_no_regs (tp);
3136
f9fac3c8
SM
3137 if (!tp->inf->has_execution ())
3138 {
3139 if (debug_infrun)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "infrun: proceed: [%s] target has "
3142 "no execution\n",
3143 target_pid_to_str (tp->ptid).c_str ());
3144 continue;
3145 }
f3f8ece4 3146
f9fac3c8
SM
3147 if (tp->resumed)
3148 {
3149 if (debug_infrun)
3150 fprintf_unfiltered (gdb_stdlog,
3151 "infrun: proceed: [%s] resumed\n",
3152 target_pid_to_str (tp->ptid).c_str ());
3153 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3154 continue;
3155 }
fbea99ea 3156
f9fac3c8
SM
3157 if (thread_is_in_step_over_chain (tp))
3158 {
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: proceed: [%s] needs step-over\n",
3162 target_pid_to_str (tp->ptid).c_str ());
3163 continue;
3164 }
fbea99ea 3165
f9fac3c8
SM
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: resuming %s\n",
3169 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3170
f9fac3c8
SM
3171 reset_ecs (ecs, tp);
3172 switch_to_thread (tp);
3173 keep_going_pass_signal (ecs);
3174 if (!ecs->wait_some_more)
3175 error (_("Command aborted."));
3176 }
a9bc57b9 3177 }
08036331 3178 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3179 {
3180 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3181 reset_ecs (ecs, cur_thr);
3182 switch_to_thread (cur_thr);
a9bc57b9
TT
3183 keep_going_pass_signal (ecs);
3184 if (!ecs->wait_some_more)
3185 error (_("Command aborted."));
3186 }
3187 }
c906108c 3188
5b6d1e4f 3189 commit_resume_all_targets ();
85ad3aaf 3190
731f534f 3191 finish_state.release ();
c906108c 3192
873657b9
PA
3193 /* If we've switched threads above, switch back to the previously
3194 current thread. We don't want the user to see a different
3195 selected thread. */
3196 switch_to_thread (cur_thr);
3197
0b333c5e
PA
3198 /* Tell the event loop to wait for it to stop. If the target
3199 supports asynchronous execution, it'll do this from within
3200 target_resume. */
362646f5 3201 if (!target_can_async_p ())
0b333c5e 3202 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3203}
c906108c
SS
3204\f
3205
3206/* Start remote-debugging of a machine over a serial link. */
96baa820 3207
c906108c 3208void
8621d6a9 3209start_remote (int from_tty)
c906108c 3210{
5b6d1e4f
PA
3211 inferior *inf = current_inferior ();
3212 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3213
1777feb0 3214 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3215 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3216 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3217 nothing is returned (instead of just blocking). Because of this,
3218 targets expecting an immediate response need to, internally, set
3219 things up so that the target_wait() is forced to eventually
1777feb0 3220 timeout. */
6426a772
JM
3221 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3222 differentiate to its caller what the state of the target is after
3223 the initial open has been performed. Here we're assuming that
3224 the target has stopped. It should be possible to eventually have
3225 target_open() return to the caller an indication that the target
3226 is currently running and GDB state should be set to the same as
1777feb0 3227 for an async run. */
5b6d1e4f 3228 wait_for_inferior (inf);
8621d6a9
DJ
3229
3230 /* Now that the inferior has stopped, do any bookkeeping like
3231 loading shared libraries. We want to do this before normal_stop,
3232 so that the displayed frame is up to date. */
8b88a78e 3233 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3234
6426a772 3235 normal_stop ();
c906108c
SS
3236}
3237
3238/* Initialize static vars when a new inferior begins. */
3239
3240void
96baa820 3241init_wait_for_inferior (void)
c906108c
SS
3242{
3243 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3244
c906108c
SS
3245 breakpoint_init_inferior (inf_starting);
3246
70509625 3247 clear_proceed_status (0);
9f976b41 3248
ab1ddbcf 3249 nullify_last_target_wait_ptid ();
237fc4c9 3250
842951eb 3251 previous_inferior_ptid = inferior_ptid;
c906108c 3252}
237fc4c9 3253
c906108c 3254\f
488f131b 3255
ec9499be 3256static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3257
568d6575
UW
3258static void handle_step_into_function (struct gdbarch *gdbarch,
3259 struct execution_control_state *ecs);
3260static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3261 struct execution_control_state *ecs);
4f5d7f63 3262static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3263static void check_exception_resume (struct execution_control_state *,
28106bc2 3264 struct frame_info *);
611c83ae 3265
bdc36728 3266static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3267static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3268static void keep_going (struct execution_control_state *ecs);
94c57d6a 3269static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3270static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3271
252fbfc8
PA
3272/* This function is attached as a "thread_stop_requested" observer.
3273 Cleanup local state that assumed the PTID was to be resumed, and
3274 report the stop to the frontend. */
3275
2c0b251b 3276static void
252fbfc8
PA
3277infrun_thread_stop_requested (ptid_t ptid)
3278{
5b6d1e4f
PA
3279 process_stratum_target *curr_target = current_inferior ()->process_target ();
3280
c65d6b55
PA
3281 /* PTID was requested to stop. If the thread was already stopped,
3282 but the user/frontend doesn't know about that yet (e.g., the
3283 thread had been temporarily paused for some step-over), set up
3284 for reporting the stop now. */
5b6d1e4f 3285 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3286 {
3287 if (tp->state != THREAD_RUNNING)
3288 continue;
3289 if (tp->executing)
3290 continue;
c65d6b55 3291
08036331
PA
3292 /* Remove matching threads from the step-over queue, so
3293 start_step_over doesn't try to resume them
3294 automatically. */
3295 if (thread_is_in_step_over_chain (tp))
3296 thread_step_over_chain_remove (tp);
c65d6b55 3297
08036331
PA
3298 /* If the thread is stopped, but the user/frontend doesn't
3299 know about that yet, queue a pending event, as if the
3300 thread had just stopped now. Unless the thread already had
3301 a pending event. */
3302 if (!tp->suspend.waitstatus_pending_p)
3303 {
3304 tp->suspend.waitstatus_pending_p = 1;
3305 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3306 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3307 }
c65d6b55 3308
08036331
PA
3309 /* Clear the inline-frame state, since we're re-processing the
3310 stop. */
5b6d1e4f 3311 clear_inline_frame_state (tp);
c65d6b55 3312
08036331
PA
3313 /* If this thread was paused because some other thread was
3314 doing an inline-step over, let that finish first. Once
3315 that happens, we'll restart all threads and consume pending
3316 stop events then. */
3317 if (step_over_info_valid_p ())
3318 continue;
3319
3320 /* Otherwise we can process the (new) pending event now. Set
3321 it so this pending event is considered by
3322 do_target_wait. */
719546c4 3323 tp->resumed = true;
08036331 3324 }
252fbfc8
PA
3325}
3326
a07daef3
PA
3327static void
3328infrun_thread_thread_exit (struct thread_info *tp, int silent)
3329{
5b6d1e4f
PA
3330 if (target_last_proc_target == tp->inf->process_target ()
3331 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3332 nullify_last_target_wait_ptid ();
3333}
3334
0cbcdb96
PA
3335/* Delete the step resume, single-step and longjmp/exception resume
3336 breakpoints of TP. */
4e1c45ea 3337
0cbcdb96
PA
3338static void
3339delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3340{
0cbcdb96
PA
3341 delete_step_resume_breakpoint (tp);
3342 delete_exception_resume_breakpoint (tp);
34b7e8a6 3343 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3344}
3345
0cbcdb96
PA
3346/* If the target still has execution, call FUNC for each thread that
3347 just stopped. In all-stop, that's all the non-exited threads; in
3348 non-stop, that's the current thread, only. */
3349
3350typedef void (*for_each_just_stopped_thread_callback_func)
3351 (struct thread_info *tp);
4e1c45ea
PA
3352
3353static void
0cbcdb96 3354for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3355{
d7e15655 3356 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3357 return;
3358
fbea99ea 3359 if (target_is_non_stop_p ())
4e1c45ea 3360 {
0cbcdb96
PA
3361 /* If in non-stop mode, only the current thread stopped. */
3362 func (inferior_thread ());
4e1c45ea
PA
3363 }
3364 else
0cbcdb96 3365 {
0cbcdb96 3366 /* In all-stop mode, all threads have stopped. */
08036331
PA
3367 for (thread_info *tp : all_non_exited_threads ())
3368 func (tp);
0cbcdb96
PA
3369 }
3370}
3371
3372/* Delete the step resume and longjmp/exception resume breakpoints of
3373 the threads that just stopped. */
3374
3375static void
3376delete_just_stopped_threads_infrun_breakpoints (void)
3377{
3378 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3379}
3380
3381/* Delete the single-step breakpoints of the threads that just
3382 stopped. */
7c16b83e 3383
34b7e8a6
PA
3384static void
3385delete_just_stopped_threads_single_step_breakpoints (void)
3386{
3387 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3388}
3389
221e1a37 3390/* See infrun.h. */
223698f8 3391
221e1a37 3392void
223698f8
DE
3393print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3394 const struct target_waitstatus *ws)
3395{
23fdd69e 3396 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3397 string_file stb;
223698f8
DE
3398
3399 /* The text is split over several lines because it was getting too long.
3400 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3401 output as a unit; we want only one timestamp printed if debug_timestamp
3402 is set. */
3403
d7e74731 3404 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3405 waiton_ptid.pid (),
e38504b3 3406 waiton_ptid.lwp (),
cc6bcb54 3407 waiton_ptid.tid ());
e99b03dc 3408 if (waiton_ptid.pid () != -1)
a068643d 3409 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3410 stb.printf (", status) =\n");
3411 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3412 result_ptid.pid (),
e38504b3 3413 result_ptid.lwp (),
cc6bcb54 3414 result_ptid.tid (),
a068643d 3415 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3416 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3417
3418 /* This uses %s in part to handle %'s in the text, but also to avoid
3419 a gcc error: the format attribute requires a string literal. */
d7e74731 3420 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3421}
3422
372316f1
PA
3423/* Select a thread at random, out of those which are resumed and have
3424 had events. */
3425
3426static struct thread_info *
5b6d1e4f 3427random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3428{
372316f1 3429 int num_events = 0;
08036331 3430
5b6d1e4f 3431 auto has_event = [&] (thread_info *tp)
08036331 3432 {
5b6d1e4f
PA
3433 return (tp->ptid.matches (waiton_ptid)
3434 && tp->resumed
08036331
PA
3435 && tp->suspend.waitstatus_pending_p);
3436 };
372316f1
PA
3437
3438 /* First see how many events we have. Count only resumed threads
3439 that have an event pending. */
5b6d1e4f 3440 for (thread_info *tp : inf->non_exited_threads ())
08036331 3441 if (has_event (tp))
372316f1
PA
3442 num_events++;
3443
3444 if (num_events == 0)
3445 return NULL;
3446
3447 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3448 int random_selector = (int) ((num_events * (double) rand ())
3449 / (RAND_MAX + 1.0));
372316f1
PA
3450
3451 if (debug_infrun && num_events > 1)
3452 fprintf_unfiltered (gdb_stdlog,
3453 "infrun: Found %d events, selecting #%d\n",
3454 num_events, random_selector);
3455
3456 /* Select the Nth thread that has had an event. */
5b6d1e4f 3457 for (thread_info *tp : inf->non_exited_threads ())
08036331 3458 if (has_event (tp))
372316f1 3459 if (random_selector-- == 0)
08036331 3460 return tp;
372316f1 3461
08036331 3462 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3463}
3464
3465/* Wrapper for target_wait that first checks whether threads have
3466 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3467 more events. INF is the inferior we're using to call target_wait
3468 on. */
372316f1
PA
3469
3470static ptid_t
5b6d1e4f
PA
3471do_target_wait_1 (inferior *inf, ptid_t ptid,
3472 target_waitstatus *status, int options)
372316f1
PA
3473{
3474 ptid_t event_ptid;
3475 struct thread_info *tp;
3476
24ed6739
AB
3477 /* We know that we are looking for an event in the target of inferior
3478 INF, but we don't know which thread the event might come from. As
3479 such we want to make sure that INFERIOR_PTID is reset so that none of
3480 the wait code relies on it - doing so is always a mistake. */
3481 switch_to_inferior_no_thread (inf);
3482
372316f1
PA
3483 /* First check if there is a resumed thread with a wait status
3484 pending. */
d7e15655 3485 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3486 {
5b6d1e4f 3487 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3488 }
3489 else
3490 {
3491 if (debug_infrun)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "infrun: Waiting for specific thread %s.\n",
a068643d 3494 target_pid_to_str (ptid).c_str ());
372316f1
PA
3495
3496 /* We have a specific thread to check. */
5b6d1e4f 3497 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3498 gdb_assert (tp != NULL);
3499 if (!tp->suspend.waitstatus_pending_p)
3500 tp = NULL;
3501 }
3502
3503 if (tp != NULL
3504 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3505 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3506 {
00431a78 3507 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3508 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3509 CORE_ADDR pc;
3510 int discard = 0;
3511
3512 pc = regcache_read_pc (regcache);
3513
3514 if (pc != tp->suspend.stop_pc)
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3519 target_pid_to_str (tp->ptid).c_str (),
defd2172 3520 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3521 paddress (gdbarch, pc));
3522 discard = 1;
3523 }
a01bda52 3524 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3525 {
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog,
3528 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3529 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3530 paddress (gdbarch, pc));
3531
3532 discard = 1;
3533 }
3534
3535 if (discard)
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: pending event of %s cancelled.\n",
a068643d 3540 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3541
3542 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3543 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3544 }
3545 }
3546
3547 if (tp != NULL)
3548 {
3549 if (debug_infrun)
3550 {
23fdd69e
SM
3551 std::string statstr
3552 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3553
372316f1
PA
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3556 statstr.c_str (),
a068643d 3557 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3558 }
3559
3560 /* Now that we've selected our final event LWP, un-adjust its PC
3561 if it was a software breakpoint (and the target doesn't
3562 always adjust the PC itself). */
3563 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3564 && !target_supports_stopped_by_sw_breakpoint ())
3565 {
3566 struct regcache *regcache;
3567 struct gdbarch *gdbarch;
3568 int decr_pc;
3569
00431a78 3570 regcache = get_thread_regcache (tp);
ac7936df 3571 gdbarch = regcache->arch ();
372316f1
PA
3572
3573 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3574 if (decr_pc != 0)
3575 {
3576 CORE_ADDR pc;
3577
3578 pc = regcache_read_pc (regcache);
3579 regcache_write_pc (regcache, pc + decr_pc);
3580 }
3581 }
3582
3583 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3584 *status = tp->suspend.waitstatus;
3585 tp->suspend.waitstatus_pending_p = 0;
3586
3587 /* Wake up the event loop again, until all pending events are
3588 processed. */
3589 if (target_is_async_p ())
3590 mark_async_event_handler (infrun_async_inferior_event_token);
3591 return tp->ptid;
3592 }
3593
3594 /* But if we don't find one, we'll have to wait. */
3595
3596 if (deprecated_target_wait_hook)
3597 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3598 else
3599 event_ptid = target_wait (ptid, status, options);
3600
3601 return event_ptid;
3602}
3603
5b6d1e4f
PA
3604/* Wrapper for target_wait that first checks whether threads have
3605 pending statuses to report before actually asking the target for
cad90433 3606 more events. Polls for events from all inferiors/targets. */
5b6d1e4f
PA
3607
3608static bool
3609do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3610{
3611 int num_inferiors = 0;
3612 int random_selector;
3613
cad90433
SM
3614 /* For fairness, we pick the first inferior/target to poll at random
3615 out of all inferiors that may report events, and then continue
3616 polling the rest of the inferior list starting from that one in a
3617 circular fashion until the whole list is polled once. */
5b6d1e4f
PA
3618
3619 auto inferior_matches = [&wait_ptid] (inferior *inf)
3620 {
3621 return (inf->process_target () != NULL
5b6d1e4f
PA
3622 && ptid_t (inf->pid).matches (wait_ptid));
3623 };
3624
cad90433 3625 /* First see how many matching inferiors we have. */
5b6d1e4f
PA
3626 for (inferior *inf : all_inferiors ())
3627 if (inferior_matches (inf))
3628 num_inferiors++;
3629
3630 if (num_inferiors == 0)
3631 {
3632 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3633 return false;
3634 }
3635
cad90433 3636 /* Now randomly pick an inferior out of those that matched. */
5b6d1e4f
PA
3637 random_selector = (int)
3638 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3639
3640 if (debug_infrun && num_inferiors > 1)
3641 fprintf_unfiltered (gdb_stdlog,
3642 "infrun: Found %d inferiors, starting at #%d\n",
3643 num_inferiors, random_selector);
3644
cad90433 3645 /* Select the Nth inferior that matched. */
5b6d1e4f
PA
3646
3647 inferior *selected = nullptr;
3648
3649 for (inferior *inf : all_inferiors ())
3650 if (inferior_matches (inf))
3651 if (random_selector-- == 0)
3652 {
3653 selected = inf;
3654 break;
3655 }
3656
cad90433 3657 /* Now poll for events out of each of the matching inferior's
5b6d1e4f
PA
3658 targets, starting from the selected one. */
3659
3660 auto do_wait = [&] (inferior *inf)
3661 {
5b6d1e4f
PA
3662 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3663 ecs->target = inf->process_target ();
3664 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3665 };
3666
cad90433
SM
3667 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3668 here spuriously after the target is all stopped and we've already
5b6d1e4f
PA
3669 reported the stop to the user, polling for events. */
3670 scoped_restore_current_thread restore_thread;
3671
3672 int inf_num = selected->num;
3673 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3674 if (inferior_matches (inf))
3675 if (do_wait (inf))
3676 return true;
3677
3678 for (inferior *inf = inferior_list;
3679 inf != NULL && inf->num < inf_num;
3680 inf = inf->next)
3681 if (inferior_matches (inf))
3682 if (do_wait (inf))
3683 return true;
3684
3685 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3686 return false;
3687}
3688
24291992
PA
3689/* Prepare and stabilize the inferior for detaching it. E.g.,
3690 detaching while a thread is displaced stepping is a recipe for
3691 crashing it, as nothing would readjust the PC out of the scratch
3692 pad. */
3693
3694void
3695prepare_for_detach (void)
3696{
3697 struct inferior *inf = current_inferior ();
f2907e49 3698 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3699
00431a78 3700 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3701
3702 /* Is any thread of this process displaced stepping? If not,
3703 there's nothing else to do. */
d20172fc 3704 if (displaced->step_thread == nullptr)
24291992
PA
3705 return;
3706
3707 if (debug_infrun)
3708 fprintf_unfiltered (gdb_stdlog,
3709 "displaced-stepping in-process while detaching");
3710
9bcb1f16 3711 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3712
00431a78 3713 while (displaced->step_thread != nullptr)
24291992 3714 {
24291992
PA
3715 struct execution_control_state ecss;
3716 struct execution_control_state *ecs;
3717
3718 ecs = &ecss;
3719 memset (ecs, 0, sizeof (*ecs));
3720
3721 overlay_cache_invalid = 1;
f15cb84a
YQ
3722 /* Flush target cache before starting to handle each event.
3723 Target was running and cache could be stale. This is just a
3724 heuristic. Running threads may modify target memory, but we
3725 don't get any event. */
3726 target_dcache_invalidate ();
24291992 3727
5b6d1e4f 3728 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3729
3730 if (debug_infrun)
3731 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3732
3733 /* If an error happens while handling the event, propagate GDB's
3734 knowledge of the executing state to the frontend/user running
3735 state. */
5b6d1e4f
PA
3736 scoped_finish_thread_state finish_state (inf->process_target (),
3737 minus_one_ptid);
24291992
PA
3738
3739 /* Now figure out what to do with the result of the result. */
3740 handle_inferior_event (ecs);
3741
3742 /* No error, don't finish the state yet. */
731f534f 3743 finish_state.release ();
24291992
PA
3744
3745 /* Breakpoints and watchpoints are not installed on the target
3746 at this point, and signals are passed directly to the
3747 inferior, so this must mean the process is gone. */
3748 if (!ecs->wait_some_more)
3749 {
9bcb1f16 3750 restore_detaching.release ();
24291992
PA
3751 error (_("Program exited while detaching"));
3752 }
3753 }
3754
9bcb1f16 3755 restore_detaching.release ();
24291992
PA
3756}
3757
cd0fc7c3 3758/* Wait for control to return from inferior to debugger.
ae123ec6 3759
cd0fc7c3
SS
3760 If inferior gets a signal, we may decide to start it up again
3761 instead of returning. That is why there is a loop in this function.
3762 When this function actually returns it means the inferior
3763 should be left stopped and GDB should read more commands. */
3764
5b6d1e4f
PA
3765static void
3766wait_for_inferior (inferior *inf)
cd0fc7c3 3767{
527159b7 3768 if (debug_infrun)
ae123ec6 3769 fprintf_unfiltered
e4c8541f 3770 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3771
4c41382a 3772 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3773
e6f5c25b
PA
3774 /* If an error happens while handling the event, propagate GDB's
3775 knowledge of the executing state to the frontend/user running
3776 state. */
5b6d1e4f
PA
3777 scoped_finish_thread_state finish_state
3778 (inf->process_target (), minus_one_ptid);
e6f5c25b 3779
c906108c
SS
3780 while (1)
3781 {
ae25568b
PA
3782 struct execution_control_state ecss;
3783 struct execution_control_state *ecs = &ecss;
29f49a6a 3784
ae25568b
PA
3785 memset (ecs, 0, sizeof (*ecs));
3786
ec9499be 3787 overlay_cache_invalid = 1;
ec9499be 3788
f15cb84a
YQ
3789 /* Flush target cache before starting to handle each event.
3790 Target was running and cache could be stale. This is just a
3791 heuristic. Running threads may modify target memory, but we
3792 don't get any event. */
3793 target_dcache_invalidate ();
3794
5b6d1e4f
PA
3795 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3796 ecs->target = inf->process_target ();
c906108c 3797
f00150c9 3798 if (debug_infrun)
5b6d1e4f 3799 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3800
cd0fc7c3
SS
3801 /* Now figure out what to do with the result of the result. */
3802 handle_inferior_event (ecs);
c906108c 3803
cd0fc7c3
SS
3804 if (!ecs->wait_some_more)
3805 break;
3806 }
4e1c45ea 3807
e6f5c25b 3808 /* No error, don't finish the state yet. */
731f534f 3809 finish_state.release ();
cd0fc7c3 3810}
c906108c 3811
d3d4baed
PA
3812/* Cleanup that reinstalls the readline callback handler, if the
3813 target is running in the background. If while handling the target
3814 event something triggered a secondary prompt, like e.g., a
3815 pagination prompt, we'll have removed the callback handler (see
3816 gdb_readline_wrapper_line). Need to do this as we go back to the
3817 event loop, ready to process further input. Note this has no
3818 effect if the handler hasn't actually been removed, because calling
3819 rl_callback_handler_install resets the line buffer, thus losing
3820 input. */
3821
3822static void
d238133d 3823reinstall_readline_callback_handler_cleanup ()
d3d4baed 3824{
3b12939d
PA
3825 struct ui *ui = current_ui;
3826
3827 if (!ui->async)
6c400b59
PA
3828 {
3829 /* We're not going back to the top level event loop yet. Don't
3830 install the readline callback, as it'd prep the terminal,
3831 readline-style (raw, noecho) (e.g., --batch). We'll install
3832 it the next time the prompt is displayed, when we're ready
3833 for input. */
3834 return;
3835 }
3836
3b12939d 3837 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3838 gdb_rl_callback_handler_reinstall ();
3839}
3840
243a9253
PA
3841/* Clean up the FSMs of threads that are now stopped. In non-stop,
3842 that's just the event thread. In all-stop, that's all threads. */
3843
3844static void
3845clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3846{
08036331
PA
3847 if (ecs->event_thread != NULL
3848 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3849 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3850
3851 if (!non_stop)
3852 {
08036331 3853 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3854 {
3855 if (thr->thread_fsm == NULL)
3856 continue;
3857 if (thr == ecs->event_thread)
3858 continue;
3859
00431a78 3860 switch_to_thread (thr);
46e3ed7f 3861 thr->thread_fsm->clean_up (thr);
243a9253
PA
3862 }
3863
3864 if (ecs->event_thread != NULL)
00431a78 3865 switch_to_thread (ecs->event_thread);
243a9253
PA
3866 }
3867}
3868
3b12939d
PA
3869/* Helper for all_uis_check_sync_execution_done that works on the
3870 current UI. */
3871
3872static void
3873check_curr_ui_sync_execution_done (void)
3874{
3875 struct ui *ui = current_ui;
3876
3877 if (ui->prompt_state == PROMPT_NEEDED
3878 && ui->async
3879 && !gdb_in_secondary_prompt_p (ui))
3880 {
223ffa71 3881 target_terminal::ours ();
76727919 3882 gdb::observers::sync_execution_done.notify ();
3eb7562a 3883 ui_register_input_event_handler (ui);
3b12939d
PA
3884 }
3885}
3886
3887/* See infrun.h. */
3888
3889void
3890all_uis_check_sync_execution_done (void)
3891{
0e454242 3892 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3893 {
3894 check_curr_ui_sync_execution_done ();
3895 }
3896}
3897
a8836c93
PA
3898/* See infrun.h. */
3899
3900void
3901all_uis_on_sync_execution_starting (void)
3902{
0e454242 3903 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3904 {
3905 if (current_ui->prompt_state == PROMPT_NEEDED)
3906 async_disable_stdin ();
3907 }
3908}
3909
1777feb0 3910/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3911 event loop whenever a change of state is detected on the file
1777feb0
MS
3912 descriptor corresponding to the target. It can be called more than
3913 once to complete a single execution command. In such cases we need
3914 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3915 that this function is called for a single execution command, then
3916 report to the user that the inferior has stopped, and do the
1777feb0 3917 necessary cleanups. */
43ff13b4
JM
3918
3919void
b1a35af2 3920fetch_inferior_event ()
43ff13b4 3921{
0d1e5fa7 3922 struct execution_control_state ecss;
a474d7c2 3923 struct execution_control_state *ecs = &ecss;
0f641c01 3924 int cmd_done = 0;
43ff13b4 3925
0d1e5fa7
PA
3926 memset (ecs, 0, sizeof (*ecs));
3927
c61db772
PA
3928 /* Events are always processed with the main UI as current UI. This
3929 way, warnings, debug output, etc. are always consistently sent to
3930 the main console. */
4b6749b9 3931 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3932
d3d4baed 3933 /* End up with readline processing input, if necessary. */
d238133d
TT
3934 {
3935 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3936
3937 /* We're handling a live event, so make sure we're doing live
3938 debugging. If we're looking at traceframes while the target is
3939 running, we're going to need to get back to that mode after
3940 handling the event. */
3941 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3942 if (non_stop)
3943 {
3944 maybe_restore_traceframe.emplace ();
3945 set_current_traceframe (-1);
3946 }
43ff13b4 3947
873657b9
PA
3948 /* The user/frontend should not notice a thread switch due to
3949 internal events. Make sure we revert to the user selected
3950 thread and frame after handling the event and running any
3951 breakpoint commands. */
3952 scoped_restore_current_thread restore_thread;
d238133d
TT
3953
3954 overlay_cache_invalid = 1;
3955 /* Flush target cache before starting to handle each event. Target
3956 was running and cache could be stale. This is just a heuristic.
3957 Running threads may modify target memory, but we don't get any
3958 event. */
3959 target_dcache_invalidate ();
3960
3961 scoped_restore save_exec_dir
3962 = make_scoped_restore (&execution_direction,
3963 target_execution_direction ());
3964
5b6d1e4f
PA
3965 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3966 return;
3967
3968 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3969
3970 /* Switch to the target that generated the event, so we can do
3971 target calls. Any inferior bound to the target will do, so we
3972 just switch to the first we find. */
3973 for (inferior *inf : all_inferiors (ecs->target))
3974 {
3975 switch_to_inferior_no_thread (inf);
3976 break;
3977 }
d238133d
TT
3978
3979 if (debug_infrun)
5b6d1e4f 3980 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3981
3982 /* If an error happens while handling the event, propagate GDB's
3983 knowledge of the executing state to the frontend/user running
3984 state. */
3985 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 3986 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 3987
979a0d13 3988 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3989 still for the thread which has thrown the exception. */
3990 auto defer_bpstat_clear
3991 = make_scope_exit (bpstat_clear_actions);
3992 auto defer_delete_threads
3993 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3994
3995 /* Now figure out what to do with the result of the result. */
3996 handle_inferior_event (ecs);
3997
3998 if (!ecs->wait_some_more)
3999 {
5b6d1e4f 4000 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
4001 int should_stop = 1;
4002 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4003
d238133d 4004 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4005
d238133d
TT
4006 if (thr != NULL)
4007 {
4008 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4009
d238133d 4010 if (thread_fsm != NULL)
46e3ed7f 4011 should_stop = thread_fsm->should_stop (thr);
d238133d 4012 }
243a9253 4013
d238133d
TT
4014 if (!should_stop)
4015 {
4016 keep_going (ecs);
4017 }
4018 else
4019 {
46e3ed7f 4020 bool should_notify_stop = true;
d238133d 4021 int proceeded = 0;
1840d81a 4022
d238133d 4023 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4024
d238133d 4025 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4026 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4027
d238133d
TT
4028 if (should_notify_stop)
4029 {
4030 /* We may not find an inferior if this was a process exit. */
4031 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4032 proceeded = normal_stop ();
4033 }
243a9253 4034
d238133d
TT
4035 if (!proceeded)
4036 {
b1a35af2 4037 inferior_event_handler (INF_EXEC_COMPLETE);
d238133d
TT
4038 cmd_done = 1;
4039 }
873657b9
PA
4040
4041 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4042 previously selected thread is gone. We have two
4043 choices - switch to no thread selected, or restore the
4044 previously selected thread (now exited). We chose the
4045 later, just because that's what GDB used to do. After
4046 this, "info threads" says "The current thread <Thread
4047 ID 2> has terminated." instead of "No thread
4048 selected.". */
4049 if (!non_stop
4050 && cmd_done
4051 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4052 restore_thread.dont_restore ();
d238133d
TT
4053 }
4054 }
4f8d22e3 4055
d238133d
TT
4056 defer_delete_threads.release ();
4057 defer_bpstat_clear.release ();
29f49a6a 4058
d238133d
TT
4059 /* No error, don't finish the thread states yet. */
4060 finish_state.release ();
731f534f 4061
d238133d
TT
4062 /* This scope is used to ensure that readline callbacks are
4063 reinstalled here. */
4064 }
4f8d22e3 4065
3b12939d
PA
4066 /* If a UI was in sync execution mode, and now isn't, restore its
4067 prompt (a synchronous execution command has finished, and we're
4068 ready for input). */
4069 all_uis_check_sync_execution_done ();
0f641c01
PA
4070
4071 if (cmd_done
0f641c01 4072 && exec_done_display_p
00431a78
PA
4073 && (inferior_ptid == null_ptid
4074 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4075 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4076}
4077
29734269
SM
4078/* See infrun.h. */
4079
edb3359d 4080void
29734269
SM
4081set_step_info (thread_info *tp, struct frame_info *frame,
4082 struct symtab_and_line sal)
edb3359d 4083{
29734269
SM
4084 /* This can be removed once this function no longer implicitly relies on the
4085 inferior_ptid value. */
4086 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4087
16c381f0
JK
4088 tp->control.step_frame_id = get_frame_id (frame);
4089 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4090
4091 tp->current_symtab = sal.symtab;
4092 tp->current_line = sal.line;
4093}
4094
0d1e5fa7
PA
4095/* Clear context switchable stepping state. */
4096
4097void
4e1c45ea 4098init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4099{
7f5ef605 4100 tss->stepped_breakpoint = 0;
0d1e5fa7 4101 tss->stepping_over_breakpoint = 0;
963f9c80 4102 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4103 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4104}
4105
ab1ddbcf 4106/* See infrun.h. */
c32c64b7 4107
6efcd9a8 4108void
5b6d1e4f
PA
4109set_last_target_status (process_stratum_target *target, ptid_t ptid,
4110 target_waitstatus status)
c32c64b7 4111{
5b6d1e4f 4112 target_last_proc_target = target;
c32c64b7
DE
4113 target_last_wait_ptid = ptid;
4114 target_last_waitstatus = status;
4115}
4116
ab1ddbcf 4117/* See infrun.h. */
e02bc4cc
DS
4118
4119void
5b6d1e4f
PA
4120get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4121 target_waitstatus *status)
e02bc4cc 4122{
5b6d1e4f
PA
4123 if (target != nullptr)
4124 *target = target_last_proc_target;
ab1ddbcf
PA
4125 if (ptid != nullptr)
4126 *ptid = target_last_wait_ptid;
4127 if (status != nullptr)
4128 *status = target_last_waitstatus;
e02bc4cc
DS
4129}
4130
ab1ddbcf
PA
4131/* See infrun.h. */
4132
ac264b3b
MS
4133void
4134nullify_last_target_wait_ptid (void)
4135{
5b6d1e4f 4136 target_last_proc_target = nullptr;
ac264b3b 4137 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4138 target_last_waitstatus = {};
ac264b3b
MS
4139}
4140
dcf4fbde 4141/* Switch thread contexts. */
dd80620e
MS
4142
4143static void
00431a78 4144context_switch (execution_control_state *ecs)
dd80620e 4145{
00431a78
PA
4146 if (debug_infrun
4147 && ecs->ptid != inferior_ptid
5b6d1e4f
PA
4148 && (inferior_ptid == null_ptid
4149 || ecs->event_thread != inferior_thread ()))
fd48f117
DJ
4150 {
4151 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 4152 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 4153 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 4154 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4155 }
4156
00431a78 4157 switch_to_thread (ecs->event_thread);
dd80620e
MS
4158}
4159
d8dd4d5f
PA
4160/* If the target can't tell whether we've hit breakpoints
4161 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4162 check whether that could have been caused by a breakpoint. If so,
4163 adjust the PC, per gdbarch_decr_pc_after_break. */
4164
4fa8626c 4165static void
d8dd4d5f
PA
4166adjust_pc_after_break (struct thread_info *thread,
4167 struct target_waitstatus *ws)
4fa8626c 4168{
24a73cce
UW
4169 struct regcache *regcache;
4170 struct gdbarch *gdbarch;
118e6252 4171 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4172
4fa8626c
DJ
4173 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4174 we aren't, just return.
9709f61c
DJ
4175
4176 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4177 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4178 implemented by software breakpoints should be handled through the normal
4179 breakpoint layer.
8fb3e588 4180
4fa8626c
DJ
4181 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4182 different signals (SIGILL or SIGEMT for instance), but it is less
4183 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4184 gdbarch_decr_pc_after_break. I don't know any specific target that
4185 generates these signals at breakpoints (the code has been in GDB since at
4186 least 1992) so I can not guess how to handle them here.
8fb3e588 4187
e6cf7916
UW
4188 In earlier versions of GDB, a target with
4189 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4190 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4191 target with both of these set in GDB history, and it seems unlikely to be
4192 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4193
d8dd4d5f 4194 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4195 return;
4196
d8dd4d5f 4197 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4198 return;
4199
4058b839
PA
4200 /* In reverse execution, when a breakpoint is hit, the instruction
4201 under it has already been de-executed. The reported PC always
4202 points at the breakpoint address, so adjusting it further would
4203 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4204 architecture:
4205
4206 B1 0x08000000 : INSN1
4207 B2 0x08000001 : INSN2
4208 0x08000002 : INSN3
4209 PC -> 0x08000003 : INSN4
4210
4211 Say you're stopped at 0x08000003 as above. Reverse continuing
4212 from that point should hit B2 as below. Reading the PC when the
4213 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4214 been de-executed already.
4215
4216 B1 0x08000000 : INSN1
4217 B2 PC -> 0x08000001 : INSN2
4218 0x08000002 : INSN3
4219 0x08000003 : INSN4
4220
4221 We can't apply the same logic as for forward execution, because
4222 we would wrongly adjust the PC to 0x08000000, since there's a
4223 breakpoint at PC - 1. We'd then report a hit on B1, although
4224 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4225 behaviour. */
4226 if (execution_direction == EXEC_REVERSE)
4227 return;
4228
1cf4d951
PA
4229 /* If the target can tell whether the thread hit a SW breakpoint,
4230 trust it. Targets that can tell also adjust the PC
4231 themselves. */
4232 if (target_supports_stopped_by_sw_breakpoint ())
4233 return;
4234
4235 /* Note that relying on whether a breakpoint is planted in memory to
4236 determine this can fail. E.g,. the breakpoint could have been
4237 removed since. Or the thread could have been told to step an
4238 instruction the size of a breakpoint instruction, and only
4239 _after_ was a breakpoint inserted at its address. */
4240
24a73cce
UW
4241 /* If this target does not decrement the PC after breakpoints, then
4242 we have nothing to do. */
00431a78 4243 regcache = get_thread_regcache (thread);
ac7936df 4244 gdbarch = regcache->arch ();
118e6252 4245
527a273a 4246 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4247 if (decr_pc == 0)
24a73cce
UW
4248 return;
4249
8b86c959 4250 const address_space *aspace = regcache->aspace ();
6c95b8df 4251
8aad930b
AC
4252 /* Find the location where (if we've hit a breakpoint) the
4253 breakpoint would be. */
118e6252 4254 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4255
1cf4d951
PA
4256 /* If the target can't tell whether a software breakpoint triggered,
4257 fallback to figuring it out based on breakpoints we think were
4258 inserted in the target, and on whether the thread was stepped or
4259 continued. */
4260
1c5cfe86
PA
4261 /* Check whether there actually is a software breakpoint inserted at
4262 that location.
4263
4264 If in non-stop mode, a race condition is possible where we've
4265 removed a breakpoint, but stop events for that breakpoint were
4266 already queued and arrive later. To suppress those spurious
4267 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4268 and retire them after a number of stop events are reported. Note
4269 this is an heuristic and can thus get confused. The real fix is
4270 to get the "stopped by SW BP and needs adjustment" info out of
4271 the target/kernel (and thus never reach here; see above). */
6c95b8df 4272 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4273 || (target_is_non_stop_p ()
4274 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4275 {
07036511 4276 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4277
8213266a 4278 if (record_full_is_used ())
07036511
TT
4279 restore_operation_disable.emplace
4280 (record_full_gdb_operation_disable_set ());
96429cc8 4281
1c0fdd0e
UW
4282 /* When using hardware single-step, a SIGTRAP is reported for both
4283 a completed single-step and a software breakpoint. Need to
4284 differentiate between the two, as the latter needs adjusting
4285 but the former does not.
4286
4287 The SIGTRAP can be due to a completed hardware single-step only if
4288 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4289 - this thread is currently being stepped
4290
4291 If any of these events did not occur, we must have stopped due
4292 to hitting a software breakpoint, and have to back up to the
4293 breakpoint address.
4294
4295 As a special case, we could have hardware single-stepped a
4296 software breakpoint. In this case (prev_pc == breakpoint_pc),
4297 we also need to back up to the breakpoint address. */
4298
d8dd4d5f
PA
4299 if (thread_has_single_step_breakpoints_set (thread)
4300 || !currently_stepping (thread)
4301 || (thread->stepped_breakpoint
4302 && thread->prev_pc == breakpoint_pc))
515630c5 4303 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4304 }
4fa8626c
DJ
4305}
4306
edb3359d
DJ
4307static int
4308stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4309{
4310 for (frame = get_prev_frame (frame);
4311 frame != NULL;
4312 frame = get_prev_frame (frame))
4313 {
4314 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4315 return 1;
4316 if (get_frame_type (frame) != INLINE_FRAME)
4317 break;
4318 }
4319
4320 return 0;
4321}
4322
4a4c04f1
BE
4323/* Look for an inline frame that is marked for skip.
4324 If PREV_FRAME is TRUE start at the previous frame,
4325 otherwise start at the current frame. Stop at the
4326 first non-inline frame, or at the frame where the
4327 step started. */
4328
4329static bool
4330inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4331{
4332 struct frame_info *frame = get_current_frame ();
4333
4334 if (prev_frame)
4335 frame = get_prev_frame (frame);
4336
4337 for (; frame != NULL; frame = get_prev_frame (frame))
4338 {
4339 const char *fn = NULL;
4340 symtab_and_line sal;
4341 struct symbol *sym;
4342
4343 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4344 break;
4345 if (get_frame_type (frame) != INLINE_FRAME)
4346 break;
4347
4348 sal = find_frame_sal (frame);
4349 sym = get_frame_function (frame);
4350
4351 if (sym != NULL)
4352 fn = sym->print_name ();
4353
4354 if (sal.line != 0
4355 && function_name_is_marked_for_skip (fn, sal))
4356 return true;
4357 }
4358
4359 return false;
4360}
4361
c65d6b55
PA
4362/* If the event thread has the stop requested flag set, pretend it
4363 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4364 target_stop). */
4365
4366static bool
4367handle_stop_requested (struct execution_control_state *ecs)
4368{
4369 if (ecs->event_thread->stop_requested)
4370 {
4371 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4372 ecs->ws.value.sig = GDB_SIGNAL_0;
4373 handle_signal_stop (ecs);
4374 return true;
4375 }
4376 return false;
4377}
4378
a96d9b2e
SDJ
4379/* Auxiliary function that handles syscall entry/return events.
4380 It returns 1 if the inferior should keep going (and GDB
4381 should ignore the event), or 0 if the event deserves to be
4382 processed. */
ca2163eb 4383
a96d9b2e 4384static int
ca2163eb 4385handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4386{
ca2163eb 4387 struct regcache *regcache;
ca2163eb
PA
4388 int syscall_number;
4389
00431a78 4390 context_switch (ecs);
ca2163eb 4391
00431a78 4392 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4393 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4394 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4395
a96d9b2e
SDJ
4396 if (catch_syscall_enabled () > 0
4397 && catching_syscall_number (syscall_number) > 0)
4398 {
4399 if (debug_infrun)
4400 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4401 syscall_number);
a96d9b2e 4402
16c381f0 4403 ecs->event_thread->control.stop_bpstat
a01bda52 4404 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4405 ecs->event_thread->suspend.stop_pc,
4406 ecs->event_thread, &ecs->ws);
ab04a2af 4407
c65d6b55
PA
4408 if (handle_stop_requested (ecs))
4409 return 0;
4410
ce12b012 4411 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4412 {
4413 /* Catchpoint hit. */
ca2163eb
PA
4414 return 0;
4415 }
a96d9b2e 4416 }
ca2163eb 4417
c65d6b55
PA
4418 if (handle_stop_requested (ecs))
4419 return 0;
4420
ca2163eb 4421 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4422 keep_going (ecs);
4423 return 1;
a96d9b2e
SDJ
4424}
4425
7e324e48
GB
4426/* Lazily fill in the execution_control_state's stop_func_* fields. */
4427
4428static void
4429fill_in_stop_func (struct gdbarch *gdbarch,
4430 struct execution_control_state *ecs)
4431{
4432 if (!ecs->stop_func_filled_in)
4433 {
98a617f8
KB
4434 const block *block;
4435
7e324e48
GB
4436 /* Don't care about return value; stop_func_start and stop_func_name
4437 will both be 0 if it doesn't work. */
98a617f8
KB
4438 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4439 &ecs->stop_func_name,
4440 &ecs->stop_func_start,
4441 &ecs->stop_func_end,
4442 &block);
4443
4444 /* The call to find_pc_partial_function, above, will set
4445 stop_func_start and stop_func_end to the start and end
4446 of the range containing the stop pc. If this range
4447 contains the entry pc for the block (which is always the
4448 case for contiguous blocks), advance stop_func_start past
4449 the function's start offset and entrypoint. Note that
4450 stop_func_start is NOT advanced when in a range of a
4451 non-contiguous block that does not contain the entry pc. */
4452 if (block != nullptr
4453 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4454 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4455 {
4456 ecs->stop_func_start
4457 += gdbarch_deprecated_function_start_offset (gdbarch);
4458
4459 if (gdbarch_skip_entrypoint_p (gdbarch))
4460 ecs->stop_func_start
4461 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4462 }
591a12a1 4463
7e324e48
GB
4464 ecs->stop_func_filled_in = 1;
4465 }
4466}
4467
4f5d7f63 4468
00431a78 4469/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4470
4471static enum stop_kind
00431a78 4472get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4473{
5b6d1e4f 4474 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4475
4476 gdb_assert (inf != NULL);
4477 return inf->control.stop_soon;
4478}
4479
5b6d1e4f
PA
4480/* Poll for one event out of the current target. Store the resulting
4481 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4482
4483static ptid_t
5b6d1e4f 4484poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4485{
4486 ptid_t event_ptid;
372316f1
PA
4487
4488 overlay_cache_invalid = 1;
4489
4490 /* Flush target cache before starting to handle each event.
4491 Target was running and cache could be stale. This is just a
4492 heuristic. Running threads may modify target memory, but we
4493 don't get any event. */
4494 target_dcache_invalidate ();
4495
4496 if (deprecated_target_wait_hook)
5b6d1e4f 4497 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4498 else
5b6d1e4f 4499 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4500
4501 if (debug_infrun)
5b6d1e4f 4502 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4503
4504 return event_ptid;
4505}
4506
5b6d1e4f
PA
4507/* An event reported by wait_one. */
4508
4509struct wait_one_event
4510{
4511 /* The target the event came out of. */
4512 process_stratum_target *target;
4513
4514 /* The PTID the event was for. */
4515 ptid_t ptid;
4516
4517 /* The waitstatus. */
4518 target_waitstatus ws;
4519};
4520
4521/* Wait for one event out of any target. */
4522
4523static wait_one_event
4524wait_one ()
4525{
4526 while (1)
4527 {
4528 for (inferior *inf : all_inferiors ())
4529 {
4530 process_stratum_target *target = inf->process_target ();
4531 if (target == NULL
4532 || !target->is_async_p ()
4533 || !target->threads_executing)
4534 continue;
4535
4536 switch_to_inferior_no_thread (inf);
4537
4538 wait_one_event event;
4539 event.target = target;
4540 event.ptid = poll_one_curr_target (&event.ws);
4541
4542 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4543 {
4544 /* If nothing is resumed, remove the target from the
4545 event loop. */
4546 target_async (0);
4547 }
4548 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4549 return event;
4550 }
4551
4552 /* Block waiting for some event. */
4553
4554 fd_set readfds;
4555 int nfds = 0;
4556
4557 FD_ZERO (&readfds);
4558
4559 for (inferior *inf : all_inferiors ())
4560 {
4561 process_stratum_target *target = inf->process_target ();
4562 if (target == NULL
4563 || !target->is_async_p ()
4564 || !target->threads_executing)
4565 continue;
4566
4567 int fd = target->async_wait_fd ();
4568 FD_SET (fd, &readfds);
4569 if (nfds <= fd)
4570 nfds = fd + 1;
4571 }
4572
4573 if (nfds == 0)
4574 {
4575 /* No waitable targets left. All must be stopped. */
4576 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4577 }
4578
4579 QUIT;
4580
4581 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4582 if (numfds < 0)
4583 {
4584 if (errno == EINTR)
4585 continue;
4586 else
4587 perror_with_name ("interruptible_select");
4588 }
4589 }
4590}
4591
372316f1
PA
4592/* Save the thread's event and stop reason to process it later. */
4593
4594static void
5b6d1e4f 4595save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4596{
372316f1
PA
4597 if (debug_infrun)
4598 {
23fdd69e 4599 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4600
372316f1
PA
4601 fprintf_unfiltered (gdb_stdlog,
4602 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4603 statstr.c_str (),
e99b03dc 4604 tp->ptid.pid (),
e38504b3 4605 tp->ptid.lwp (),
cc6bcb54 4606 tp->ptid.tid ());
372316f1
PA
4607 }
4608
4609 /* Record for later. */
4610 tp->suspend.waitstatus = *ws;
4611 tp->suspend.waitstatus_pending_p = 1;
4612
00431a78 4613 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4614 const address_space *aspace = regcache->aspace ();
372316f1
PA
4615
4616 if (ws->kind == TARGET_WAITKIND_STOPPED
4617 && ws->value.sig == GDB_SIGNAL_TRAP)
4618 {
4619 CORE_ADDR pc = regcache_read_pc (regcache);
4620
4621 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4622
18493a00
PA
4623 scoped_restore_current_thread restore_thread;
4624 switch_to_thread (tp);
4625
4626 if (target_stopped_by_watchpoint ())
372316f1
PA
4627 {
4628 tp->suspend.stop_reason
4629 = TARGET_STOPPED_BY_WATCHPOINT;
4630 }
4631 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4632 && target_stopped_by_sw_breakpoint ())
372316f1
PA
4633 {
4634 tp->suspend.stop_reason
4635 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4636 }
4637 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4638 && target_stopped_by_hw_breakpoint ())
372316f1
PA
4639 {
4640 tp->suspend.stop_reason
4641 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4642 }
4643 else if (!target_supports_stopped_by_hw_breakpoint ()
4644 && hardware_breakpoint_inserted_here_p (aspace,
4645 pc))
4646 {
4647 tp->suspend.stop_reason
4648 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4649 }
4650 else if (!target_supports_stopped_by_sw_breakpoint ()
4651 && software_breakpoint_inserted_here_p (aspace,
4652 pc))
4653 {
4654 tp->suspend.stop_reason
4655 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4656 }
4657 else if (!thread_has_single_step_breakpoints_set (tp)
4658 && currently_stepping (tp))
4659 {
4660 tp->suspend.stop_reason
4661 = TARGET_STOPPED_BY_SINGLE_STEP;
4662 }
4663 }
4664}
4665
293b3ebc
TBA
4666/* Mark the non-executing threads accordingly. In all-stop, all
4667 threads of all processes are stopped when we get any event
4668 reported. In non-stop mode, only the event thread stops. */
4669
4670static void
4671mark_non_executing_threads (process_stratum_target *target,
4672 ptid_t event_ptid,
4673 struct target_waitstatus ws)
4674{
4675 ptid_t mark_ptid;
4676
4677 if (!target_is_non_stop_p ())
4678 mark_ptid = minus_one_ptid;
4679 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4680 || ws.kind == TARGET_WAITKIND_EXITED)
4681 {
4682 /* If we're handling a process exit in non-stop mode, even
4683 though threads haven't been deleted yet, one would think
4684 that there is nothing to do, as threads of the dead process
4685 will be soon deleted, and threads of any other process were
4686 left running. However, on some targets, threads survive a
4687 process exit event. E.g., for the "checkpoint" command,
4688 when the current checkpoint/fork exits, linux-fork.c
4689 automatically switches to another fork from within
4690 target_mourn_inferior, by associating the same
4691 inferior/thread to another fork. We haven't mourned yet at
4692 this point, but we must mark any threads left in the
4693 process as not-executing so that finish_thread_state marks
4694 them stopped (in the user's perspective) if/when we present
4695 the stop to the user. */
4696 mark_ptid = ptid_t (event_ptid.pid ());
4697 }
4698 else
4699 mark_ptid = event_ptid;
4700
4701 set_executing (target, mark_ptid, false);
4702
4703 /* Likewise the resumed flag. */
4704 set_resumed (target, mark_ptid, false);
4705}
4706
6efcd9a8 4707/* See infrun.h. */
372316f1 4708
6efcd9a8 4709void
372316f1
PA
4710stop_all_threads (void)
4711{
4712 /* We may need multiple passes to discover all threads. */
4713 int pass;
4714 int iterations = 0;
372316f1 4715
53cccef1 4716 gdb_assert (exists_non_stop_target ());
372316f1
PA
4717
4718 if (debug_infrun)
4719 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4720
00431a78 4721 scoped_restore_current_thread restore_thread;
372316f1 4722
6ad82919
TBA
4723 /* Enable thread events of all targets. */
4724 for (auto *target : all_non_exited_process_targets ())
4725 {
4726 switch_to_target_no_thread (target);
4727 target_thread_events (true);
4728 }
4729
4730 SCOPE_EXIT
4731 {
4732 /* Disable thread events of all targets. */
4733 for (auto *target : all_non_exited_process_targets ())
4734 {
4735 switch_to_target_no_thread (target);
4736 target_thread_events (false);
4737 }
4738
4739 if (debug_infrun)
4740 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4741 };
65706a29 4742
372316f1
PA
4743 /* Request threads to stop, and then wait for the stops. Because
4744 threads we already know about can spawn more threads while we're
4745 trying to stop them, and we only learn about new threads when we
4746 update the thread list, do this in a loop, and keep iterating
4747 until two passes find no threads that need to be stopped. */
4748 for (pass = 0; pass < 2; pass++, iterations++)
4749 {
4750 if (debug_infrun)
4751 fprintf_unfiltered (gdb_stdlog,
4752 "infrun: stop_all_threads, pass=%d, "
4753 "iterations=%d\n", pass, iterations);
4754 while (1)
4755 {
29d6859f 4756 int waits_needed = 0;
372316f1 4757
a05575d3
TBA
4758 for (auto *target : all_non_exited_process_targets ())
4759 {
4760 switch_to_target_no_thread (target);
4761 update_thread_list ();
4762 }
372316f1
PA
4763
4764 /* Go through all threads looking for threads that we need
4765 to tell the target to stop. */
08036331 4766 for (thread_info *t : all_non_exited_threads ())
372316f1 4767 {
53cccef1
TBA
4768 /* For a single-target setting with an all-stop target,
4769 we would not even arrive here. For a multi-target
4770 setting, until GDB is able to handle a mixture of
4771 all-stop and non-stop targets, simply skip all-stop
4772 targets' threads. This should be fine due to the
4773 protection of 'check_multi_target_resumption'. */
4774
4775 switch_to_thread_no_regs (t);
4776 if (!target_is_non_stop_p ())
4777 continue;
4778
372316f1
PA
4779 if (t->executing)
4780 {
4781 /* If already stopping, don't request a stop again.
4782 We just haven't seen the notification yet. */
4783 if (!t->stop_requested)
4784 {
4785 if (debug_infrun)
4786 fprintf_unfiltered (gdb_stdlog,
4787 "infrun: %s executing, "
4788 "need stop\n",
a068643d 4789 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4790 target_stop (t->ptid);
4791 t->stop_requested = 1;
4792 }
4793 else
4794 {
4795 if (debug_infrun)
4796 fprintf_unfiltered (gdb_stdlog,
4797 "infrun: %s executing, "
4798 "already stopping\n",
a068643d 4799 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4800 }
4801
4802 if (t->stop_requested)
29d6859f 4803 waits_needed++;
372316f1
PA
4804 }
4805 else
4806 {
4807 if (debug_infrun)
4808 fprintf_unfiltered (gdb_stdlog,
4809 "infrun: %s not executing\n",
a068643d 4810 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4811
4812 /* The thread may be not executing, but still be
4813 resumed with a pending status to process. */
719546c4 4814 t->resumed = false;
372316f1
PA
4815 }
4816 }
4817
29d6859f 4818 if (waits_needed == 0)
372316f1
PA
4819 break;
4820
4821 /* If we find new threads on the second iteration, restart
4822 over. We want to see two iterations in a row with all
4823 threads stopped. */
4824 if (pass > 0)
4825 pass = -1;
4826
29d6859f 4827 for (int i = 0; i < waits_needed; i++)
c29705b7 4828 {
29d6859f 4829 wait_one_event event = wait_one ();
a05575d3 4830
29d6859f 4831 if (debug_infrun)
a05575d3 4832 {
29d6859f
LM
4833 fprintf_unfiltered (gdb_stdlog,
4834 "infrun: stop_all_threads %s %s\n",
4835 target_waitstatus_to_string (&event.ws).c_str (),
4836 target_pid_to_str (event.ptid).c_str ());
a05575d3
TBA
4837 }
4838
29d6859f 4839 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
a05575d3 4840 {
29d6859f
LM
4841 /* All resumed threads exited. */
4842 break;
a05575d3 4843 }
29d6859f
LM
4844 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4845 || event.ws.kind == TARGET_WAITKIND_EXITED
4846 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
6efcd9a8 4847 {
29d6859f 4848 /* One thread/process exited/signalled. */
6efcd9a8 4849
29d6859f 4850 thread_info *t = nullptr;
372316f1 4851
29d6859f
LM
4852 /* The target may have reported just a pid. If so, try
4853 the first non-exited thread. */
4854 if (event.ptid.is_pid ())
372316f1 4855 {
29d6859f
LM
4856 int pid = event.ptid.pid ();
4857 inferior *inf = find_inferior_pid (event.target, pid);
4858 for (thread_info *tp : inf->non_exited_threads ())
372316f1 4859 {
29d6859f
LM
4860 t = tp;
4861 break;
372316f1 4862 }
29d6859f
LM
4863
4864 /* If there is no available thread, the event would
4865 have to be appended to a per-inferior event list,
4866 which does not exist (and if it did, we'd have
4867 to adjust run control command to be able to
4868 resume such an inferior). We assert here instead
4869 of going into an infinite loop. */
4870 gdb_assert (t != nullptr);
4871
4872 if (debug_infrun)
4873 fprintf_unfiltered (gdb_stdlog,
4874 "infrun: stop_all_threads, using %s\n",
4875 target_pid_to_str (t->ptid).c_str ());
4876 }
4877 else
4878 {
4879 t = find_thread_ptid (event.target, event.ptid);
4880 /* Check if this is the first time we see this thread.
4881 Don't bother adding if it individually exited. */
4882 if (t == nullptr
4883 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4884 t = add_thread (event.target, event.ptid);
4885 }
4886
4887 if (t != nullptr)
4888 {
4889 /* Set the threads as non-executing to avoid
4890 another stop attempt on them. */
4891 switch_to_thread_no_regs (t);
4892 mark_non_executing_threads (event.target, event.ptid,
4893 event.ws);
4894 save_waitstatus (t, &event.ws);
4895 t->stop_requested = false;
372316f1
PA
4896 }
4897 }
4898 else
4899 {
29d6859f
LM
4900 thread_info *t = find_thread_ptid (event.target, event.ptid);
4901 if (t == NULL)
4902 t = add_thread (event.target, event.ptid);
372316f1 4903
29d6859f
LM
4904 t->stop_requested = 0;
4905 t->executing = 0;
4906 t->resumed = false;
4907 t->control.may_range_step = 0;
4908
4909 /* This may be the first time we see the inferior report
4910 a stop. */
4911 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4912 if (inf->needs_setup)
372316f1 4913 {
29d6859f
LM
4914 switch_to_thread_no_regs (t);
4915 setup_inferior (0);
372316f1
PA
4916 }
4917
29d6859f
LM
4918 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4919 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1 4920 {
29d6859f
LM
4921 /* We caught the event that we intended to catch, so
4922 there's no event pending. */
4923 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4924 t->suspend.waitstatus_pending_p = 0;
4925
4926 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4927 {
4928 /* Add it back to the step-over queue. */
4929 if (debug_infrun)
4930 {
4931 fprintf_unfiltered (gdb_stdlog,
4932 "infrun: displaced-step of %s "
4933 "canceled: adding back to the "
4934 "step-over queue\n",
4935 target_pid_to_str (t->ptid).c_str ());
4936 }
4937 t->control.trap_expected = 0;
4938 thread_step_over_chain_enqueue (t);
4939 }
372316f1 4940 }
29d6859f
LM
4941 else
4942 {
4943 enum gdb_signal sig;
4944 struct regcache *regcache;
372316f1 4945
29d6859f
LM
4946 if (debug_infrun)
4947 {
4948 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4949
29d6859f
LM
4950 fprintf_unfiltered (gdb_stdlog,
4951 "infrun: target_wait %s, saving "
4952 "status for %d.%ld.%ld\n",
4953 statstr.c_str (),
4954 t->ptid.pid (),
4955 t->ptid.lwp (),
4956 t->ptid.tid ());
4957 }
4958
4959 /* Record for later. */
4960 save_waitstatus (t, &event.ws);
4961
4962 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4963 ? event.ws.value.sig : GDB_SIGNAL_0);
4964
4965 if (displaced_step_fixup (t, sig) < 0)
4966 {
4967 /* Add it back to the step-over queue. */
4968 t->control.trap_expected = 0;
4969 thread_step_over_chain_enqueue (t);
4970 }
4971
4972 regcache = get_thread_regcache (t);
4973 t->suspend.stop_pc = regcache_read_pc (regcache);
4974
4975 if (debug_infrun)
4976 {
4977 fprintf_unfiltered (gdb_stdlog,
4978 "infrun: saved stop_pc=%s for %s "
4979 "(currently_stepping=%d)\n",
4980 paddress (target_gdbarch (),
4981 t->suspend.stop_pc),
4982 target_pid_to_str (t->ptid).c_str (),
4983 currently_stepping (t));
4984 }
372316f1
PA
4985 }
4986 }
4987 }
4988 }
4989 }
372316f1
PA
4990}
4991
f4836ba9
PA
4992/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4993
4994static int
4995handle_no_resumed (struct execution_control_state *ecs)
4996{
3b12939d 4997 if (target_can_async_p ())
f4836ba9 4998 {
3b12939d 4999 int any_sync = 0;
f4836ba9 5000
2dab0c7b 5001 for (ui *ui : all_uis ())
3b12939d
PA
5002 {
5003 if (ui->prompt_state == PROMPT_BLOCKED)
5004 {
5005 any_sync = 1;
5006 break;
5007 }
5008 }
5009 if (!any_sync)
5010 {
5011 /* There were no unwaited-for children left in the target, but,
5012 we're not synchronously waiting for events either. Just
5013 ignore. */
5014
5015 if (debug_infrun)
5016 fprintf_unfiltered (gdb_stdlog,
5017 "infrun: TARGET_WAITKIND_NO_RESUMED "
5018 "(ignoring: bg)\n");
5019 prepare_to_wait (ecs);
5020 return 1;
5021 }
f4836ba9
PA
5022 }
5023
5024 /* Otherwise, if we were running a synchronous execution command, we
5025 may need to cancel it and give the user back the terminal.
5026
5027 In non-stop mode, the target can't tell whether we've already
5028 consumed previous stop events, so it can end up sending us a
5029 no-resumed event like so:
5030
5031 #0 - thread 1 is left stopped
5032
5033 #1 - thread 2 is resumed and hits breakpoint
5034 -> TARGET_WAITKIND_STOPPED
5035
5036 #2 - thread 3 is resumed and exits
5037 this is the last resumed thread, so
5038 -> TARGET_WAITKIND_NO_RESUMED
5039
5040 #3 - gdb processes stop for thread 2 and decides to re-resume
5041 it.
5042
5043 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5044 thread 2 is now resumed, so the event should be ignored.
5045
5046 IOW, if the stop for thread 2 doesn't end a foreground command,
5047 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5048 event. But it could be that the event meant that thread 2 itself
5049 (or whatever other thread was the last resumed thread) exited.
5050
5051 To address this we refresh the thread list and check whether we
5052 have resumed threads _now_. In the example above, this removes
5053 thread 3 from the thread list. If thread 2 was re-resumed, we
5054 ignore this event. If we find no thread resumed, then we cancel
2ec0f7ff
PA
5055 the synchronous command and show "no unwaited-for " to the
5056 user. */
f4836ba9 5057
aecd6cb8 5058 inferior *curr_inf = current_inferior ();
2ec0f7ff 5059
aecd6cb8
PA
5060 scoped_restore_current_thread restore_thread;
5061
5062 for (auto *target : all_non_exited_process_targets ())
5063 {
5064 switch_to_target_no_thread (target);
5065 update_thread_list ();
5066 }
5067
5068 /* If:
5069
5070 - the current target has no thread executing, and
5071 - the current inferior is native, and
5072 - the current inferior is the one which has the terminal, and
5073 - we did nothing,
5074
5075 then a Ctrl-C from this point on would remain stuck in the
5076 kernel, until a thread resumes and dequeues it. That would
5077 result in the GDB CLI not reacting to Ctrl-C, not able to
5078 interrupt the program. To address this, if the current inferior
5079 no longer has any thread executing, we give the terminal to some
5080 other inferior that has at least one thread executing. */
5081 bool swap_terminal = true;
5082
5083 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5084 whether to report it to the user. */
5085 bool ignore_event = false;
2ec0f7ff
PA
5086
5087 for (thread_info *thread : all_non_exited_threads ())
f4836ba9 5088 {
aecd6cb8
PA
5089 if (swap_terminal && thread->executing)
5090 {
5091 if (thread->inf != curr_inf)
5092 {
5093 target_terminal::ours ();
5094
5095 switch_to_thread (thread);
5096 target_terminal::inferior ();
5097 }
5098 swap_terminal = false;
5099 }
5100
5101 if (!ignore_event
5102 && (thread->executing
5103 || thread->suspend.waitstatus_pending_p))
f4836ba9 5104 {
2ec0f7ff
PA
5105 /* Either there were no unwaited-for children left in the
5106 target at some point, but there are now, or some target
5107 other than the eventing one has unwaited-for children
5108 left. Just ignore. */
f4836ba9
PA
5109 if (debug_infrun)
5110 fprintf_unfiltered (gdb_stdlog,
5111 "infrun: TARGET_WAITKIND_NO_RESUMED "
5112 "(ignoring: found resumed)\n");
aecd6cb8
PA
5113
5114 ignore_event = true;
f4836ba9 5115 }
aecd6cb8
PA
5116
5117 if (ignore_event && !swap_terminal)
5118 break;
5119 }
5120
5121 if (ignore_event)
5122 {
5123 switch_to_inferior_no_thread (curr_inf);
5124 prepare_to_wait (ecs);
5125 return 1;
f4836ba9
PA
5126 }
5127
5128 /* Go ahead and report the event. */
5129 return 0;
5130}
5131
05ba8510
PA
5132/* Given an execution control state that has been freshly filled in by
5133 an event from the inferior, figure out what it means and take
5134 appropriate action.
5135
5136 The alternatives are:
5137
22bcd14b 5138 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5139 debugger.
5140
5141 2) keep_going and return; to wait for the next event (set
5142 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5143 once). */
c906108c 5144
ec9499be 5145static void
595915c1 5146handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5147{
595915c1
TT
5148 /* Make sure that all temporary struct value objects that were
5149 created during the handling of the event get deleted at the
5150 end. */
5151 scoped_value_mark free_values;
5152
d6b48e9c
PA
5153 enum stop_kind stop_soon;
5154
c29705b7
PW
5155 if (debug_infrun)
5156 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5157 target_waitstatus_to_string (&ecs->ws).c_str ());
5158
28736962
PA
5159 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5160 {
5161 /* We had an event in the inferior, but we are not interested in
5162 handling it at this level. The lower layers have already
5163 done what needs to be done, if anything.
5164
5165 One of the possible circumstances for this is when the
5166 inferior produces output for the console. The inferior has
5167 not stopped, and we are ignoring the event. Another possible
5168 circumstance is any event which the lower level knows will be
5169 reported multiple times without an intervening resume. */
28736962
PA
5170 prepare_to_wait (ecs);
5171 return;
5172 }
5173
65706a29
PA
5174 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5175 {
65706a29
PA
5176 prepare_to_wait (ecs);
5177 return;
5178 }
5179
0e5bf2a8 5180 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5181 && handle_no_resumed (ecs))
5182 return;
0e5bf2a8 5183
5b6d1e4f
PA
5184 /* Cache the last target/ptid/waitstatus. */
5185 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5186
ca005067 5187 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5188 stop_stack_dummy = STOP_NONE;
ca005067 5189
0e5bf2a8
PA
5190 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5191 {
5192 /* No unwaited-for children left. IOW, all resumed children
5193 have exited. */
0e5bf2a8 5194 stop_print_frame = 0;
22bcd14b 5195 stop_waiting (ecs);
0e5bf2a8
PA
5196 return;
5197 }
5198
8c90c137 5199 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5200 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5201 {
5b6d1e4f 5202 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5203 /* If it's a new thread, add it to the thread database. */
5204 if (ecs->event_thread == NULL)
5b6d1e4f 5205 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5206
5207 /* Disable range stepping. If the next step request could use a
5208 range, this will be end up re-enabled then. */
5209 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5210 }
88ed393a
JK
5211
5212 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5213 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5214
5215 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5216 reinit_frame_cache ();
5217
28736962
PA
5218 breakpoint_retire_moribund ();
5219
2b009048
DJ
5220 /* First, distinguish signals caused by the debugger from signals
5221 that have to do with the program's own actions. Note that
5222 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5223 on the operating system version. Here we detect when a SIGILL or
5224 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5225 something similar for SIGSEGV, since a SIGSEGV will be generated
5226 when we're trying to execute a breakpoint instruction on a
5227 non-executable stack. This happens for call dummy breakpoints
5228 for architectures like SPARC that place call dummies on the
5229 stack. */
2b009048 5230 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5231 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5232 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5233 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5234 {
00431a78 5235 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5236
a01bda52 5237 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5238 regcache_read_pc (regcache)))
5239 {
5240 if (debug_infrun)
5241 fprintf_unfiltered (gdb_stdlog,
5242 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 5243 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5244 }
2b009048
DJ
5245 }
5246
293b3ebc 5247 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5248
488f131b
JB
5249 switch (ecs->ws.kind)
5250 {
5251 case TARGET_WAITKIND_LOADED:
00431a78 5252 context_switch (ecs);
b0f4b84b
DJ
5253 /* Ignore gracefully during startup of the inferior, as it might
5254 be the shell which has just loaded some objects, otherwise
5255 add the symbols for the newly loaded objects. Also ignore at
5256 the beginning of an attach or remote session; we will query
5257 the full list of libraries once the connection is
5258 established. */
4f5d7f63 5259
00431a78 5260 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5261 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5262 {
edcc5120
TT
5263 struct regcache *regcache;
5264
00431a78 5265 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5266
5267 handle_solib_event ();
5268
5269 ecs->event_thread->control.stop_bpstat
a01bda52 5270 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5271 ecs->event_thread->suspend.stop_pc,
5272 ecs->event_thread, &ecs->ws);
ab04a2af 5273
c65d6b55
PA
5274 if (handle_stop_requested (ecs))
5275 return;
5276
ce12b012 5277 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5278 {
5279 /* A catchpoint triggered. */
94c57d6a
PA
5280 process_event_stop_test (ecs);
5281 return;
edcc5120 5282 }
488f131b 5283
b0f4b84b
DJ
5284 /* If requested, stop when the dynamic linker notifies
5285 gdb of events. This allows the user to get control
5286 and place breakpoints in initializer routines for
5287 dynamically loaded objects (among other things). */
a493e3e2 5288 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5289 if (stop_on_solib_events)
5290 {
55409f9d
DJ
5291 /* Make sure we print "Stopped due to solib-event" in
5292 normal_stop. */
5293 stop_print_frame = 1;
5294
22bcd14b 5295 stop_waiting (ecs);
b0f4b84b
DJ
5296 return;
5297 }
488f131b 5298 }
b0f4b84b
DJ
5299
5300 /* If we are skipping through a shell, or through shared library
5301 loading that we aren't interested in, resume the program. If
5c09a2c5 5302 we're running the program normally, also resume. */
b0f4b84b
DJ
5303 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5304 {
74960c60
VP
5305 /* Loading of shared libraries might have changed breakpoint
5306 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5307 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5308 insert_breakpoints ();
64ce06e4 5309 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5310 prepare_to_wait (ecs);
5311 return;
5312 }
5313
5c09a2c5
PA
5314 /* But stop if we're attaching or setting up a remote
5315 connection. */
5316 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5317 || stop_soon == STOP_QUIETLY_REMOTE)
5318 {
5319 if (debug_infrun)
5320 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5321 stop_waiting (ecs);
5c09a2c5
PA
5322 return;
5323 }
5324
5325 internal_error (__FILE__, __LINE__,
5326 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5327
488f131b 5328 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5329 if (handle_stop_requested (ecs))
5330 return;
00431a78 5331 context_switch (ecs);
64ce06e4 5332 resume (GDB_SIGNAL_0);
488f131b
JB
5333 prepare_to_wait (ecs);
5334 return;
c5aa993b 5335
65706a29 5336 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5337 if (handle_stop_requested (ecs))
5338 return;
00431a78 5339 context_switch (ecs);
65706a29
PA
5340 if (!switch_back_to_stepped_thread (ecs))
5341 keep_going (ecs);
5342 return;
5343
488f131b 5344 case TARGET_WAITKIND_EXITED:
940c3c06 5345 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5346 {
5347 /* Depending on the system, ecs->ptid may point to a thread or
5348 to a process. On some targets, target_mourn_inferior may
5349 need to have access to the just-exited thread. That is the
5350 case of GNU/Linux's "checkpoint" support, for example.
5351 Call the switch_to_xxx routine as appropriate. */
5352 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5353 if (thr != nullptr)
5354 switch_to_thread (thr);
5355 else
5356 {
5357 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5358 switch_to_inferior_no_thread (inf);
5359 }
5360 }
6c95b8df 5361 handle_vfork_child_exec_or_exit (0);
223ffa71 5362 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5363
0c557179
SDJ
5364 /* Clearing any previous state of convenience variables. */
5365 clear_exit_convenience_vars ();
5366
940c3c06
PA
5367 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5368 {
5369 /* Record the exit code in the convenience variable $_exitcode, so
5370 that the user can inspect this again later. */
5371 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5372 (LONGEST) ecs->ws.value.integer);
5373
5374 /* Also record this in the inferior itself. */
5375 current_inferior ()->has_exit_code = 1;
5376 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5377
98eb56a4
PA
5378 /* Support the --return-child-result option. */
5379 return_child_result_value = ecs->ws.value.integer;
5380
76727919 5381 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5382 }
5383 else
0c557179 5384 {
00431a78 5385 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5386
5387 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5388 {
5389 /* Set the value of the internal variable $_exitsignal,
5390 which holds the signal uncaught by the inferior. */
5391 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5392 gdbarch_gdb_signal_to_target (gdbarch,
5393 ecs->ws.value.sig));
5394 }
5395 else
5396 {
5397 /* We don't have access to the target's method used for
5398 converting between signal numbers (GDB's internal
5399 representation <-> target's representation).
5400 Therefore, we cannot do a good job at displaying this
5401 information to the user. It's better to just warn
5402 her about it (if infrun debugging is enabled), and
5403 give up. */
5404 if (debug_infrun)
5405 fprintf_filtered (gdb_stdlog, _("\
5406Cannot fill $_exitsignal with the correct signal number.\n"));
5407 }
5408
76727919 5409 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5410 }
8cf64490 5411
488f131b 5412 gdb_flush (gdb_stdout);
bc1e6c81 5413 target_mourn_inferior (inferior_ptid);
488f131b 5414 stop_print_frame = 0;
22bcd14b 5415 stop_waiting (ecs);
488f131b 5416 return;
c5aa993b 5417
488f131b 5418 case TARGET_WAITKIND_FORKED:
deb3b17b 5419 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5420 /* Check whether the inferior is displaced stepping. */
5421 {
00431a78 5422 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5423 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5424
5425 /* If checking displaced stepping is supported, and thread
5426 ecs->ptid is displaced stepping. */
00431a78 5427 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5428 {
5429 struct inferior *parent_inf
5b6d1e4f 5430 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5431 struct regcache *child_regcache;
5432 CORE_ADDR parent_pc;
5433
d8d83535
SM
5434 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5435 {
5436 struct displaced_step_inferior_state *displaced
5437 = get_displaced_stepping_state (parent_inf);
5438
5439 /* Restore scratch pad for child process. */
5440 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5441 }
5442
e2d96639
YQ
5443 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5444 indicating that the displaced stepping of syscall instruction
5445 has been done. Perform cleanup for parent process here. Note
5446 that this operation also cleans up the child process for vfork,
5447 because their pages are shared. */
00431a78 5448 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5449 /* Start a new step-over in another thread if there's one
5450 that needs it. */
5451 start_step_over ();
e2d96639 5452
e2d96639
YQ
5453 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5454 the child's PC is also within the scratchpad. Set the child's PC
5455 to the parent's PC value, which has already been fixed up.
5456 FIXME: we use the parent's aspace here, although we're touching
5457 the child, because the child hasn't been added to the inferior
5458 list yet at this point. */
5459
5460 child_regcache
5b6d1e4f
PA
5461 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5462 ecs->ws.value.related_pid,
e2d96639
YQ
5463 gdbarch,
5464 parent_inf->aspace);
5465 /* Read PC value of parent process. */
5466 parent_pc = regcache_read_pc (regcache);
5467
5468 if (debug_displaced)
5469 fprintf_unfiltered (gdb_stdlog,
5470 "displaced: write child pc from %s to %s\n",
5471 paddress (gdbarch,
5472 regcache_read_pc (child_regcache)),
5473 paddress (gdbarch, parent_pc));
5474
5475 regcache_write_pc (child_regcache, parent_pc);
5476 }
5477 }
5478
00431a78 5479 context_switch (ecs);
5a2901d9 5480
b242c3c2
PA
5481 /* Immediately detach breakpoints from the child before there's
5482 any chance of letting the user delete breakpoints from the
5483 breakpoint lists. If we don't do this early, it's easy to
5484 leave left over traps in the child, vis: "break foo; catch
5485 fork; c; <fork>; del; c; <child calls foo>". We only follow
5486 the fork on the last `continue', and by that time the
5487 breakpoint at "foo" is long gone from the breakpoint table.
5488 If we vforked, then we don't need to unpatch here, since both
5489 parent and child are sharing the same memory pages; we'll
5490 need to unpatch at follow/detach time instead to be certain
5491 that new breakpoints added between catchpoint hit time and
5492 vfork follow are detached. */
5493 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5494 {
b242c3c2
PA
5495 /* This won't actually modify the breakpoint list, but will
5496 physically remove the breakpoints from the child. */
d80ee84f 5497 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5498 }
5499
34b7e8a6 5500 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5501
e58b0e63
PA
5502 /* In case the event is caught by a catchpoint, remember that
5503 the event is to be followed at the next resume of the thread,
5504 and not immediately. */
5505 ecs->event_thread->pending_follow = ecs->ws;
5506
f2ffa92b
PA
5507 ecs->event_thread->suspend.stop_pc
5508 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5509
16c381f0 5510 ecs->event_thread->control.stop_bpstat
a01bda52 5511 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5512 ecs->event_thread->suspend.stop_pc,
5513 ecs->event_thread, &ecs->ws);
675bf4cb 5514
c65d6b55
PA
5515 if (handle_stop_requested (ecs))
5516 return;
5517
ce12b012
PA
5518 /* If no catchpoint triggered for this, then keep going. Note
5519 that we're interested in knowing the bpstat actually causes a
5520 stop, not just if it may explain the signal. Software
5521 watchpoints, for example, always appear in the bpstat. */
5522 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5523 {
5ab2fbf1 5524 bool follow_child
3e43a32a 5525 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5526
a493e3e2 5527 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5528
5b6d1e4f
PA
5529 process_stratum_target *targ
5530 = ecs->event_thread->inf->process_target ();
5531
5ab2fbf1 5532 bool should_resume = follow_fork ();
e58b0e63 5533
5b6d1e4f
PA
5534 /* Note that one of these may be an invalid pointer,
5535 depending on detach_fork. */
00431a78 5536 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5537 thread_info *child
5538 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5539
a2077e25
PA
5540 /* At this point, the parent is marked running, and the
5541 child is marked stopped. */
5542
5543 /* If not resuming the parent, mark it stopped. */
5544 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5545 parent->set_running (false);
a2077e25
PA
5546
5547 /* If resuming the child, mark it running. */
5548 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5549 child->set_running (true);
a2077e25 5550
6c95b8df 5551 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5552 if (!detach_fork && (non_stop
5553 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5554 {
5555 if (follow_child)
5556 switch_to_thread (parent);
5557 else
5558 switch_to_thread (child);
5559
5560 ecs->event_thread = inferior_thread ();
5561 ecs->ptid = inferior_ptid;
5562 keep_going (ecs);
5563 }
5564
5565 if (follow_child)
5566 switch_to_thread (child);
5567 else
5568 switch_to_thread (parent);
5569
e58b0e63
PA
5570 ecs->event_thread = inferior_thread ();
5571 ecs->ptid = inferior_ptid;
5572
5573 if (should_resume)
5574 keep_going (ecs);
5575 else
22bcd14b 5576 stop_waiting (ecs);
04e68871
DJ
5577 return;
5578 }
94c57d6a
PA
5579 process_event_stop_test (ecs);
5580 return;
488f131b 5581
6c95b8df
PA
5582 case TARGET_WAITKIND_VFORK_DONE:
5583 /* Done with the shared memory region. Re-insert breakpoints in
5584 the parent, and keep going. */
5585
00431a78 5586 context_switch (ecs);
6c95b8df
PA
5587
5588 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5589 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5590
5591 if (handle_stop_requested (ecs))
5592 return;
5593
6c95b8df
PA
5594 /* This also takes care of reinserting breakpoints in the
5595 previously locked inferior. */
5596 keep_going (ecs);
5597 return;
5598
488f131b 5599 case TARGET_WAITKIND_EXECD:
488f131b 5600
cbd2b4e3
PA
5601 /* Note we can't read registers yet (the stop_pc), because we
5602 don't yet know the inferior's post-exec architecture.
5603 'stop_pc' is explicitly read below instead. */
00431a78 5604 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5605
6c95b8df
PA
5606 /* Do whatever is necessary to the parent branch of the vfork. */
5607 handle_vfork_child_exec_or_exit (1);
5608
795e548f
PA
5609 /* This causes the eventpoints and symbol table to be reset.
5610 Must do this now, before trying to determine whether to
5611 stop. */
71b43ef8 5612 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5613
17d8546e
DB
5614 /* In follow_exec we may have deleted the original thread and
5615 created a new one. Make sure that the event thread is the
5616 execd thread for that case (this is a nop otherwise). */
5617 ecs->event_thread = inferior_thread ();
5618
f2ffa92b
PA
5619 ecs->event_thread->suspend.stop_pc
5620 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5621
16c381f0 5622 ecs->event_thread->control.stop_bpstat
a01bda52 5623 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5624 ecs->event_thread->suspend.stop_pc,
5625 ecs->event_thread, &ecs->ws);
795e548f 5626
71b43ef8
PA
5627 /* Note that this may be referenced from inside
5628 bpstat_stop_status above, through inferior_has_execd. */
5629 xfree (ecs->ws.value.execd_pathname);
5630 ecs->ws.value.execd_pathname = NULL;
5631
c65d6b55
PA
5632 if (handle_stop_requested (ecs))
5633 return;
5634
04e68871 5635 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5636 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5637 {
a493e3e2 5638 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5639 keep_going (ecs);
5640 return;
5641 }
94c57d6a
PA
5642 process_event_stop_test (ecs);
5643 return;
488f131b 5644
b4dc5ffa
MK
5645 /* Be careful not to try to gather much state about a thread
5646 that's in a syscall. It's frequently a losing proposition. */
488f131b 5647 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5648 /* Getting the current syscall number. */
94c57d6a
PA
5649 if (handle_syscall_event (ecs) == 0)
5650 process_event_stop_test (ecs);
5651 return;
c906108c 5652
488f131b
JB
5653 /* Before examining the threads further, step this thread to
5654 get it entirely out of the syscall. (We get notice of the
5655 event when the thread is just on the verge of exiting a
5656 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5657 into user code.) */
488f131b 5658 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5659 if (handle_syscall_event (ecs) == 0)
5660 process_event_stop_test (ecs);
5661 return;
c906108c 5662
488f131b 5663 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5664 handle_signal_stop (ecs);
5665 return;
c906108c 5666
b2175913
MS
5667 case TARGET_WAITKIND_NO_HISTORY:
5668 /* Reverse execution: target ran out of history info. */
eab402df 5669
d1988021 5670 /* Switch to the stopped thread. */
00431a78 5671 context_switch (ecs);
d1988021
MM
5672 if (debug_infrun)
5673 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5674
34b7e8a6 5675 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5676 ecs->event_thread->suspend.stop_pc
5677 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5678
5679 if (handle_stop_requested (ecs))
5680 return;
5681
76727919 5682 gdb::observers::no_history.notify ();
22bcd14b 5683 stop_waiting (ecs);
b2175913 5684 return;
488f131b 5685 }
4f5d7f63
PA
5686}
5687
372316f1
PA
5688/* Restart threads back to what they were trying to do back when we
5689 paused them for an in-line step-over. The EVENT_THREAD thread is
5690 ignored. */
4d9d9d04
PA
5691
5692static void
372316f1
PA
5693restart_threads (struct thread_info *event_thread)
5694{
372316f1
PA
5695 /* In case the instruction just stepped spawned a new thread. */
5696 update_thread_list ();
5697
08036331 5698 for (thread_info *tp : all_non_exited_threads ())
372316f1 5699 {
f3f8ece4
PA
5700 switch_to_thread_no_regs (tp);
5701
372316f1
PA
5702 if (tp == event_thread)
5703 {
5704 if (debug_infrun)
5705 fprintf_unfiltered (gdb_stdlog,
5706 "infrun: restart threads: "
5707 "[%s] is event thread\n",
a068643d 5708 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5709 continue;
5710 }
5711
5712 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5713 {
5714 if (debug_infrun)
5715 fprintf_unfiltered (gdb_stdlog,
5716 "infrun: restart threads: "
5717 "[%s] not meant to be running\n",
a068643d 5718 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5719 continue;
5720 }
5721
5722 if (tp->resumed)
5723 {
5724 if (debug_infrun)
5725 fprintf_unfiltered (gdb_stdlog,
5726 "infrun: restart threads: [%s] resumed\n",
a068643d 5727 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5728 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5729 continue;
5730 }
5731
5732 if (thread_is_in_step_over_chain (tp))
5733 {
5734 if (debug_infrun)
5735 fprintf_unfiltered (gdb_stdlog,
5736 "infrun: restart threads: "
5737 "[%s] needs step-over\n",
a068643d 5738 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5739 gdb_assert (!tp->resumed);
5740 continue;
5741 }
5742
5743
5744 if (tp->suspend.waitstatus_pending_p)
5745 {
5746 if (debug_infrun)
5747 fprintf_unfiltered (gdb_stdlog,
5748 "infrun: restart threads: "
5749 "[%s] has pending status\n",
a068643d 5750 target_pid_to_str (tp->ptid).c_str ());
719546c4 5751 tp->resumed = true;
372316f1
PA
5752 continue;
5753 }
5754
c65d6b55
PA
5755 gdb_assert (!tp->stop_requested);
5756
372316f1
PA
5757 /* If some thread needs to start a step-over at this point, it
5758 should still be in the step-over queue, and thus skipped
5759 above. */
5760 if (thread_still_needs_step_over (tp))
5761 {
5762 internal_error (__FILE__, __LINE__,
5763 "thread [%s] needs a step-over, but not in "
5764 "step-over queue\n",
a068643d 5765 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5766 }
5767
5768 if (currently_stepping (tp))
5769 {
5770 if (debug_infrun)
5771 fprintf_unfiltered (gdb_stdlog,
5772 "infrun: restart threads: [%s] was stepping\n",
a068643d 5773 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5774 keep_going_stepped_thread (tp);
5775 }
5776 else
5777 {
5778 struct execution_control_state ecss;
5779 struct execution_control_state *ecs = &ecss;
5780
5781 if (debug_infrun)
5782 fprintf_unfiltered (gdb_stdlog,
5783 "infrun: restart threads: [%s] continuing\n",
a068643d 5784 target_pid_to_str (tp->ptid).c_str ());
372316f1 5785 reset_ecs (ecs, tp);
00431a78 5786 switch_to_thread (tp);
372316f1
PA
5787 keep_going_pass_signal (ecs);
5788 }
5789 }
5790}
5791
5792/* Callback for iterate_over_threads. Find a resumed thread that has
5793 a pending waitstatus. */
5794
5795static int
5796resumed_thread_with_pending_status (struct thread_info *tp,
5797 void *arg)
5798{
5799 return (tp->resumed
5800 && tp->suspend.waitstatus_pending_p);
5801}
5802
5803/* Called when we get an event that may finish an in-line or
5804 out-of-line (displaced stepping) step-over started previously.
5805 Return true if the event is processed and we should go back to the
5806 event loop; false if the caller should continue processing the
5807 event. */
5808
5809static int
4d9d9d04
PA
5810finish_step_over (struct execution_control_state *ecs)
5811{
372316f1
PA
5812 int had_step_over_info;
5813
00431a78 5814 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5815 ecs->event_thread->suspend.stop_signal);
5816
372316f1
PA
5817 had_step_over_info = step_over_info_valid_p ();
5818
5819 if (had_step_over_info)
4d9d9d04
PA
5820 {
5821 /* If we're stepping over a breakpoint with all threads locked,
5822 then only the thread that was stepped should be reporting
5823 back an event. */
5824 gdb_assert (ecs->event_thread->control.trap_expected);
5825
c65d6b55 5826 clear_step_over_info ();
4d9d9d04
PA
5827 }
5828
fbea99ea 5829 if (!target_is_non_stop_p ())
372316f1 5830 return 0;
4d9d9d04
PA
5831
5832 /* Start a new step-over in another thread if there's one that
5833 needs it. */
5834 start_step_over ();
372316f1
PA
5835
5836 /* If we were stepping over a breakpoint before, and haven't started
5837 a new in-line step-over sequence, then restart all other threads
5838 (except the event thread). We can't do this in all-stop, as then
5839 e.g., we wouldn't be able to issue any other remote packet until
5840 these other threads stop. */
5841 if (had_step_over_info && !step_over_info_valid_p ())
5842 {
5843 struct thread_info *pending;
5844
5845 /* If we only have threads with pending statuses, the restart
5846 below won't restart any thread and so nothing re-inserts the
5847 breakpoint we just stepped over. But we need it inserted
5848 when we later process the pending events, otherwise if
5849 another thread has a pending event for this breakpoint too,
5850 we'd discard its event (because the breakpoint that
5851 originally caused the event was no longer inserted). */
00431a78 5852 context_switch (ecs);
372316f1
PA
5853 insert_breakpoints ();
5854
5855 restart_threads (ecs->event_thread);
5856
5857 /* If we have events pending, go through handle_inferior_event
5858 again, picking up a pending event at random. This avoids
5859 thread starvation. */
5860
5861 /* But not if we just stepped over a watchpoint in order to let
5862 the instruction execute so we can evaluate its expression.
5863 The set of watchpoints that triggered is recorded in the
5864 breakpoint objects themselves (see bp->watchpoint_triggered).
5865 If we processed another event first, that other event could
5866 clobber this info. */
5867 if (ecs->event_thread->stepping_over_watchpoint)
5868 return 0;
5869
5870 pending = iterate_over_threads (resumed_thread_with_pending_status,
5871 NULL);
5872 if (pending != NULL)
5873 {
5874 struct thread_info *tp = ecs->event_thread;
5875 struct regcache *regcache;
5876
5877 if (debug_infrun)
5878 {
5879 fprintf_unfiltered (gdb_stdlog,
5880 "infrun: found resumed threads with "
5881 "pending events, saving status\n");
5882 }
5883
5884 gdb_assert (pending != tp);
5885
5886 /* Record the event thread's event for later. */
5887 save_waitstatus (tp, &ecs->ws);
5888 /* This was cleared early, by handle_inferior_event. Set it
5889 so this pending event is considered by
5890 do_target_wait. */
719546c4 5891 tp->resumed = true;
372316f1
PA
5892
5893 gdb_assert (!tp->executing);
5894
00431a78 5895 regcache = get_thread_regcache (tp);
372316f1
PA
5896 tp->suspend.stop_pc = regcache_read_pc (regcache);
5897
5898 if (debug_infrun)
5899 {
5900 fprintf_unfiltered (gdb_stdlog,
5901 "infrun: saved stop_pc=%s for %s "
5902 "(currently_stepping=%d)\n",
5903 paddress (target_gdbarch (),
5904 tp->suspend.stop_pc),
a068643d 5905 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5906 currently_stepping (tp));
5907 }
5908
5909 /* This in-line step-over finished; clear this so we won't
5910 start a new one. This is what handle_signal_stop would
5911 do, if we returned false. */
5912 tp->stepping_over_breakpoint = 0;
5913
5914 /* Wake up the event loop again. */
5915 mark_async_event_handler (infrun_async_inferior_event_token);
5916
5917 prepare_to_wait (ecs);
5918 return 1;
5919 }
5920 }
5921
5922 return 0;
4d9d9d04
PA
5923}
5924
4f5d7f63
PA
5925/* Come here when the program has stopped with a signal. */
5926
5927static void
5928handle_signal_stop (struct execution_control_state *ecs)
5929{
5930 struct frame_info *frame;
5931 struct gdbarch *gdbarch;
5932 int stopped_by_watchpoint;
5933 enum stop_kind stop_soon;
5934 int random_signal;
c906108c 5935
f0407826
DE
5936 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5937
c65d6b55
PA
5938 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5939
f0407826
DE
5940 /* Do we need to clean up the state of a thread that has
5941 completed a displaced single-step? (Doing so usually affects
5942 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5943 if (finish_step_over (ecs))
5944 return;
f0407826
DE
5945
5946 /* If we either finished a single-step or hit a breakpoint, but
5947 the user wanted this thread to be stopped, pretend we got a
5948 SIG0 (generic unsignaled stop). */
5949 if (ecs->event_thread->stop_requested
5950 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5951 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5952
f2ffa92b
PA
5953 ecs->event_thread->suspend.stop_pc
5954 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5955
527159b7 5956 if (debug_infrun)
237fc4c9 5957 {
00431a78 5958 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5959 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5960
f3f8ece4 5961 switch_to_thread (ecs->event_thread);
5af949e3
UW
5962
5963 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5964 paddress (reg_gdbarch,
f2ffa92b 5965 ecs->event_thread->suspend.stop_pc));
d92524f1 5966 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5967 {
5968 CORE_ADDR addr;
abbb1732 5969
237fc4c9
PA
5970 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5971
8b88a78e 5972 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5973 fprintf_unfiltered (gdb_stdlog,
5af949e3 5974 "infrun: stopped data address = %s\n",
b926417a 5975 paddress (reg_gdbarch, addr));
237fc4c9
PA
5976 else
5977 fprintf_unfiltered (gdb_stdlog,
5978 "infrun: (no data address available)\n");
5979 }
5980 }
527159b7 5981
36fa8042
PA
5982 /* This is originated from start_remote(), start_inferior() and
5983 shared libraries hook functions. */
00431a78 5984 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5985 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5986 {
00431a78 5987 context_switch (ecs);
36fa8042
PA
5988 if (debug_infrun)
5989 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5990 stop_print_frame = 1;
22bcd14b 5991 stop_waiting (ecs);
36fa8042
PA
5992 return;
5993 }
5994
36fa8042
PA
5995 /* This originates from attach_command(). We need to overwrite
5996 the stop_signal here, because some kernels don't ignore a
5997 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5998 See more comments in inferior.h. On the other hand, if we
5999 get a non-SIGSTOP, report it to the user - assume the backend
6000 will handle the SIGSTOP if it should show up later.
6001
6002 Also consider that the attach is complete when we see a
6003 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6004 target extended-remote report it instead of a SIGSTOP
6005 (e.g. gdbserver). We already rely on SIGTRAP being our
6006 signal, so this is no exception.
6007
6008 Also consider that the attach is complete when we see a
6009 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6010 the target to stop all threads of the inferior, in case the
6011 low level attach operation doesn't stop them implicitly. If
6012 they weren't stopped implicitly, then the stub will report a
6013 GDB_SIGNAL_0, meaning: stopped for no particular reason
6014 other than GDB's request. */
6015 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6016 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
6017 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6018 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
6019 {
6020 stop_print_frame = 1;
22bcd14b 6021 stop_waiting (ecs);
36fa8042
PA
6022 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6023 return;
6024 }
6025
488f131b 6026 /* See if something interesting happened to the non-current thread. If
b40c7d58 6027 so, then switch to that thread. */
d7e15655 6028 if (ecs->ptid != inferior_ptid)
488f131b 6029 {
527159b7 6030 if (debug_infrun)
8a9de0e4 6031 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 6032
00431a78 6033 context_switch (ecs);
c5aa993b 6034
9a4105ab 6035 if (deprecated_context_hook)
00431a78 6036 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 6037 }
c906108c 6038
568d6575
UW
6039 /* At this point, get hold of the now-current thread's frame. */
6040 frame = get_current_frame ();
6041 gdbarch = get_frame_arch (frame);
6042
2adfaa28 6043 /* Pull the single step breakpoints out of the target. */
af48d08f 6044 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 6045 {
af48d08f 6046 struct regcache *regcache;
af48d08f 6047 CORE_ADDR pc;
2adfaa28 6048
00431a78 6049 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
6050 const address_space *aspace = regcache->aspace ();
6051
af48d08f 6052 pc = regcache_read_pc (regcache);
34b7e8a6 6053
af48d08f
PA
6054 /* However, before doing so, if this single-step breakpoint was
6055 actually for another thread, set this thread up for moving
6056 past it. */
6057 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6058 aspace, pc))
6059 {
6060 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
6061 {
6062 if (debug_infrun)
6063 {
6064 fprintf_unfiltered (gdb_stdlog,
af48d08f 6065 "infrun: [%s] hit another thread's "
34b7e8a6 6066 "single-step breakpoint\n",
a068643d 6067 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 6068 }
af48d08f
PA
6069 ecs->hit_singlestep_breakpoint = 1;
6070 }
6071 }
6072 else
6073 {
6074 if (debug_infrun)
6075 {
6076 fprintf_unfiltered (gdb_stdlog,
6077 "infrun: [%s] hit its "
6078 "single-step breakpoint\n",
a068643d 6079 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
6080 }
6081 }
488f131b 6082 }
af48d08f 6083 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 6084
963f9c80
PA
6085 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6086 && ecs->event_thread->control.trap_expected
6087 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
6088 stopped_by_watchpoint = 0;
6089 else
6090 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6091
6092 /* If necessary, step over this watchpoint. We'll be back to display
6093 it in a moment. */
6094 if (stopped_by_watchpoint
d92524f1 6095 && (target_have_steppable_watchpoint
568d6575 6096 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6097 {
488f131b
JB
6098 /* At this point, we are stopped at an instruction which has
6099 attempted to write to a piece of memory under control of
6100 a watchpoint. The instruction hasn't actually executed
6101 yet. If we were to evaluate the watchpoint expression
6102 now, we would get the old value, and therefore no change
6103 would seem to have occurred.
6104
6105 In order to make watchpoints work `right', we really need
6106 to complete the memory write, and then evaluate the
d983da9c
DJ
6107 watchpoint expression. We do this by single-stepping the
6108 target.
6109
7f89fd65 6110 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6111 it. For example, the PA can (with some kernel cooperation)
6112 single step over a watchpoint without disabling the watchpoint.
6113
6114 It is far more common to need to disable a watchpoint to step
6115 the inferior over it. If we have non-steppable watchpoints,
6116 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6117 disable all watchpoints.
6118
6119 Any breakpoint at PC must also be stepped over -- if there's
6120 one, it will have already triggered before the watchpoint
6121 triggered, and we either already reported it to the user, or
6122 it didn't cause a stop and we called keep_going. In either
6123 case, if there was a breakpoint at PC, we must be trying to
6124 step past it. */
6125 ecs->event_thread->stepping_over_watchpoint = 1;
6126 keep_going (ecs);
488f131b
JB
6127 return;
6128 }
6129
4e1c45ea 6130 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6131 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6132 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6133 ecs->event_thread->control.stop_step = 0;
488f131b 6134 stop_print_frame = 1;
488f131b 6135 stopped_by_random_signal = 0;
ddfe970e 6136 bpstat stop_chain = NULL;
488f131b 6137
edb3359d
DJ
6138 /* Hide inlined functions starting here, unless we just performed stepi or
6139 nexti. After stepi and nexti, always show the innermost frame (not any
6140 inline function call sites). */
16c381f0 6141 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6142 {
00431a78
PA
6143 const address_space *aspace
6144 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6145
6146 /* skip_inline_frames is expensive, so we avoid it if we can
6147 determine that the address is one where functions cannot have
6148 been inlined. This improves performance with inferiors that
6149 load a lot of shared libraries, because the solib event
6150 breakpoint is defined as the address of a function (i.e. not
6151 inline). Note that we have to check the previous PC as well
6152 as the current one to catch cases when we have just
6153 single-stepped off a breakpoint prior to reinstating it.
6154 Note that we're assuming that the code we single-step to is
6155 not inline, but that's not definitive: there's nothing
6156 preventing the event breakpoint function from containing
6157 inlined code, and the single-step ending up there. If the
6158 user had set a breakpoint on that inlined code, the missing
6159 skip_inline_frames call would break things. Fortunately
6160 that's an extremely unlikely scenario. */
f2ffa92b
PA
6161 if (!pc_at_non_inline_function (aspace,
6162 ecs->event_thread->suspend.stop_pc,
6163 &ecs->ws)
a210c238
MR
6164 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6165 && ecs->event_thread->control.trap_expected
6166 && pc_at_non_inline_function (aspace,
6167 ecs->event_thread->prev_pc,
09ac7c10 6168 &ecs->ws)))
1c5a993e 6169 {
f2ffa92b
PA
6170 stop_chain = build_bpstat_chain (aspace,
6171 ecs->event_thread->suspend.stop_pc,
6172 &ecs->ws);
00431a78 6173 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6174
6175 /* Re-fetch current thread's frame in case that invalidated
6176 the frame cache. */
6177 frame = get_current_frame ();
6178 gdbarch = get_frame_arch (frame);
6179 }
0574c78f 6180 }
edb3359d 6181
a493e3e2 6182 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6183 && ecs->event_thread->control.trap_expected
568d6575 6184 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6185 && currently_stepping (ecs->event_thread))
3352ef37 6186 {
b50d7442 6187 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6188 also on an instruction that needs to be stepped multiple
1777feb0 6189 times before it's been fully executing. E.g., architectures
3352ef37
AC
6190 with a delay slot. It needs to be stepped twice, once for
6191 the instruction and once for the delay slot. */
6192 int step_through_delay
568d6575 6193 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6194
527159b7 6195 if (debug_infrun && step_through_delay)
8a9de0e4 6196 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
6197 if (ecs->event_thread->control.step_range_end == 0
6198 && step_through_delay)
3352ef37
AC
6199 {
6200 /* The user issued a continue when stopped at a breakpoint.
6201 Set up for another trap and get out of here. */
4e1c45ea 6202 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6203 keep_going (ecs);
6204 return;
6205 }
6206 else if (step_through_delay)
6207 {
6208 /* The user issued a step when stopped at a breakpoint.
6209 Maybe we should stop, maybe we should not - the delay
6210 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6211 case, don't decide that here, just set
6212 ecs->stepping_over_breakpoint, making sure we
6213 single-step again before breakpoints are re-inserted. */
4e1c45ea 6214 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6215 }
6216 }
6217
ab04a2af
TT
6218 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6219 handles this event. */
6220 ecs->event_thread->control.stop_bpstat
a01bda52 6221 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6222 ecs->event_thread->suspend.stop_pc,
6223 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6224
ab04a2af
TT
6225 /* Following in case break condition called a
6226 function. */
6227 stop_print_frame = 1;
73dd234f 6228
ab04a2af
TT
6229 /* This is where we handle "moribund" watchpoints. Unlike
6230 software breakpoints traps, hardware watchpoint traps are
6231 always distinguishable from random traps. If no high-level
6232 watchpoint is associated with the reported stop data address
6233 anymore, then the bpstat does not explain the signal ---
6234 simply make sure to ignore it if `stopped_by_watchpoint' is
6235 set. */
6236
6237 if (debug_infrun
6238 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6239 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6240 GDB_SIGNAL_TRAP)
ab04a2af
TT
6241 && stopped_by_watchpoint)
6242 fprintf_unfiltered (gdb_stdlog,
6243 "infrun: no user watchpoint explains "
6244 "watchpoint SIGTRAP, ignoring\n");
73dd234f 6245
bac7d97b 6246 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6247 at one stage in the past included checks for an inferior
6248 function call's call dummy's return breakpoint. The original
6249 comment, that went with the test, read:
03cebad2 6250
ab04a2af
TT
6251 ``End of a stack dummy. Some systems (e.g. Sony news) give
6252 another signal besides SIGTRAP, so check here as well as
6253 above.''
73dd234f 6254
ab04a2af
TT
6255 If someone ever tries to get call dummys on a
6256 non-executable stack to work (where the target would stop
6257 with something like a SIGSEGV), then those tests might need
6258 to be re-instated. Given, however, that the tests were only
6259 enabled when momentary breakpoints were not being used, I
6260 suspect that it won't be the case.
488f131b 6261
ab04a2af
TT
6262 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6263 be necessary for call dummies on a non-executable stack on
6264 SPARC. */
488f131b 6265
bac7d97b 6266 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6267 random_signal
6268 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6269 ecs->event_thread->suspend.stop_signal);
bac7d97b 6270
1cf4d951
PA
6271 /* Maybe this was a trap for a software breakpoint that has since
6272 been removed. */
6273 if (random_signal && target_stopped_by_sw_breakpoint ())
6274 {
5133a315
LM
6275 if (gdbarch_program_breakpoint_here_p (gdbarch,
6276 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6277 {
6278 struct regcache *regcache;
6279 int decr_pc;
6280
6281 /* Re-adjust PC to what the program would see if GDB was not
6282 debugging it. */
00431a78 6283 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6284 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6285 if (decr_pc != 0)
6286 {
07036511
TT
6287 gdb::optional<scoped_restore_tmpl<int>>
6288 restore_operation_disable;
1cf4d951
PA
6289
6290 if (record_full_is_used ())
07036511
TT
6291 restore_operation_disable.emplace
6292 (record_full_gdb_operation_disable_set ());
1cf4d951 6293
f2ffa92b
PA
6294 regcache_write_pc (regcache,
6295 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6296 }
6297 }
6298 else
6299 {
6300 /* A delayed software breakpoint event. Ignore the trap. */
6301 if (debug_infrun)
6302 fprintf_unfiltered (gdb_stdlog,
6303 "infrun: delayed software breakpoint "
6304 "trap, ignoring\n");
6305 random_signal = 0;
6306 }
6307 }
6308
6309 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6310 has since been removed. */
6311 if (random_signal && target_stopped_by_hw_breakpoint ())
6312 {
6313 /* A delayed hardware breakpoint event. Ignore the trap. */
6314 if (debug_infrun)
6315 fprintf_unfiltered (gdb_stdlog,
6316 "infrun: delayed hardware breakpoint/watchpoint "
6317 "trap, ignoring\n");
6318 random_signal = 0;
6319 }
6320
bac7d97b
PA
6321 /* If not, perhaps stepping/nexting can. */
6322 if (random_signal)
6323 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6324 && currently_stepping (ecs->event_thread));
ab04a2af 6325
2adfaa28
PA
6326 /* Perhaps the thread hit a single-step breakpoint of _another_
6327 thread. Single-step breakpoints are transparent to the
6328 breakpoints module. */
6329 if (random_signal)
6330 random_signal = !ecs->hit_singlestep_breakpoint;
6331
bac7d97b
PA
6332 /* No? Perhaps we got a moribund watchpoint. */
6333 if (random_signal)
6334 random_signal = !stopped_by_watchpoint;
ab04a2af 6335
c65d6b55
PA
6336 /* Always stop if the user explicitly requested this thread to
6337 remain stopped. */
6338 if (ecs->event_thread->stop_requested)
6339 {
6340 random_signal = 1;
6341 if (debug_infrun)
6342 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6343 }
6344
488f131b
JB
6345 /* For the program's own signals, act according to
6346 the signal handling tables. */
6347
ce12b012 6348 if (random_signal)
488f131b
JB
6349 {
6350 /* Signal not for debugging purposes. */
5b6d1e4f 6351 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6352 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6353
527159b7 6354 if (debug_infrun)
c9737c08
PA
6355 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6356 gdb_signal_to_symbol_string (stop_signal));
527159b7 6357
488f131b
JB
6358 stopped_by_random_signal = 1;
6359
252fbfc8
PA
6360 /* Always stop on signals if we're either just gaining control
6361 of the program, or the user explicitly requested this thread
6362 to remain stopped. */
d6b48e9c 6363 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6364 || ecs->event_thread->stop_requested
24291992 6365 || (!inf->detaching
16c381f0 6366 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6367 {
22bcd14b 6368 stop_waiting (ecs);
488f131b
JB
6369 return;
6370 }
b57bacec
PA
6371
6372 /* Notify observers the signal has "handle print" set. Note we
6373 returned early above if stopping; normal_stop handles the
6374 printing in that case. */
6375 if (signal_print[ecs->event_thread->suspend.stop_signal])
6376 {
6377 /* The signal table tells us to print about this signal. */
223ffa71 6378 target_terminal::ours_for_output ();
76727919 6379 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6380 target_terminal::inferior ();
b57bacec 6381 }
488f131b
JB
6382
6383 /* Clear the signal if it should not be passed. */
16c381f0 6384 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6385 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6386
f2ffa92b 6387 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6388 && ecs->event_thread->control.trap_expected
8358c15c 6389 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6390 {
6391 /* We were just starting a new sequence, attempting to
6392 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6393 Instead this signal arrives. This signal will take us out
68f53502
AC
6394 of the stepping range so GDB needs to remember to, when
6395 the signal handler returns, resume stepping off that
6396 breakpoint. */
6397 /* To simplify things, "continue" is forced to use the same
6398 code paths as single-step - set a breakpoint at the
6399 signal return address and then, once hit, step off that
6400 breakpoint. */
237fc4c9
PA
6401 if (debug_infrun)
6402 fprintf_unfiltered (gdb_stdlog,
6403 "infrun: signal arrived while stepping over "
6404 "breakpoint\n");
d3169d93 6405
2c03e5be 6406 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6407 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6408 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6409 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6410
6411 /* If we were nexting/stepping some other thread, switch to
6412 it, so that we don't continue it, losing control. */
6413 if (!switch_back_to_stepped_thread (ecs))
6414 keep_going (ecs);
9d799f85 6415 return;
68f53502 6416 }
9d799f85 6417
e5f8a7cc 6418 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6419 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6420 ecs->event_thread)
e5f8a7cc 6421 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6422 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6423 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6424 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6425 {
6426 /* The inferior is about to take a signal that will take it
6427 out of the single step range. Set a breakpoint at the
6428 current PC (which is presumably where the signal handler
6429 will eventually return) and then allow the inferior to
6430 run free.
6431
6432 Note that this is only needed for a signal delivered
6433 while in the single-step range. Nested signals aren't a
6434 problem as they eventually all return. */
237fc4c9
PA
6435 if (debug_infrun)
6436 fprintf_unfiltered (gdb_stdlog,
6437 "infrun: signal may take us out of "
6438 "single-step range\n");
6439
372316f1 6440 clear_step_over_info ();
2c03e5be 6441 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6442 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6443 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6444 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6445 keep_going (ecs);
6446 return;
d303a6c7 6447 }
9d799f85 6448
85102364 6449 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6450 when either there's a nested signal, or when there's a
6451 pending signal enabled just as the signal handler returns
6452 (leaving the inferior at the step-resume-breakpoint without
6453 actually executing it). Either way continue until the
6454 breakpoint is really hit. */
c447ac0b
PA
6455
6456 if (!switch_back_to_stepped_thread (ecs))
6457 {
6458 if (debug_infrun)
6459 fprintf_unfiltered (gdb_stdlog,
6460 "infrun: random signal, keep going\n");
6461
6462 keep_going (ecs);
6463 }
6464 return;
488f131b 6465 }
94c57d6a
PA
6466
6467 process_event_stop_test (ecs);
6468}
6469
6470/* Come here when we've got some debug event / signal we can explain
6471 (IOW, not a random signal), and test whether it should cause a
6472 stop, or whether we should resume the inferior (transparently).
6473 E.g., could be a breakpoint whose condition evaluates false; we
6474 could be still stepping within the line; etc. */
6475
6476static void
6477process_event_stop_test (struct execution_control_state *ecs)
6478{
6479 struct symtab_and_line stop_pc_sal;
6480 struct frame_info *frame;
6481 struct gdbarch *gdbarch;
cdaa5b73
PA
6482 CORE_ADDR jmp_buf_pc;
6483 struct bpstat_what what;
94c57d6a 6484
cdaa5b73 6485 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6486
cdaa5b73
PA
6487 frame = get_current_frame ();
6488 gdbarch = get_frame_arch (frame);
fcf3daef 6489
cdaa5b73 6490 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6491
cdaa5b73
PA
6492 if (what.call_dummy)
6493 {
6494 stop_stack_dummy = what.call_dummy;
6495 }
186c406b 6496
243a9253
PA
6497 /* A few breakpoint types have callbacks associated (e.g.,
6498 bp_jit_event). Run them now. */
6499 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6500
cdaa5b73
PA
6501 /* If we hit an internal event that triggers symbol changes, the
6502 current frame will be invalidated within bpstat_what (e.g., if we
6503 hit an internal solib event). Re-fetch it. */
6504 frame = get_current_frame ();
6505 gdbarch = get_frame_arch (frame);
e2e4d78b 6506
cdaa5b73
PA
6507 switch (what.main_action)
6508 {
6509 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6510 /* If we hit the breakpoint at longjmp while stepping, we
6511 install a momentary breakpoint at the target of the
6512 jmp_buf. */
186c406b 6513
cdaa5b73
PA
6514 if (debug_infrun)
6515 fprintf_unfiltered (gdb_stdlog,
6516 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6517
cdaa5b73 6518 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6519
cdaa5b73
PA
6520 if (what.is_longjmp)
6521 {
6522 struct value *arg_value;
6523
6524 /* If we set the longjmp breakpoint via a SystemTap probe,
6525 then use it to extract the arguments. The destination PC
6526 is the third argument to the probe. */
6527 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6528 if (arg_value)
8fa0c4f8
AA
6529 {
6530 jmp_buf_pc = value_as_address (arg_value);
6531 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6532 }
cdaa5b73
PA
6533 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6534 || !gdbarch_get_longjmp_target (gdbarch,
6535 frame, &jmp_buf_pc))
e2e4d78b 6536 {
cdaa5b73
PA
6537 if (debug_infrun)
6538 fprintf_unfiltered (gdb_stdlog,
6539 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6540 "(!gdbarch_get_longjmp_target)\n");
6541 keep_going (ecs);
6542 return;
e2e4d78b 6543 }
e2e4d78b 6544
cdaa5b73
PA
6545 /* Insert a breakpoint at resume address. */
6546 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6547 }
6548 else
6549 check_exception_resume (ecs, frame);
6550 keep_going (ecs);
6551 return;
e81a37f7 6552
cdaa5b73
PA
6553 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6554 {
6555 struct frame_info *init_frame;
e81a37f7 6556
cdaa5b73 6557 /* There are several cases to consider.
c906108c 6558
cdaa5b73
PA
6559 1. The initiating frame no longer exists. In this case we
6560 must stop, because the exception or longjmp has gone too
6561 far.
2c03e5be 6562
cdaa5b73
PA
6563 2. The initiating frame exists, and is the same as the
6564 current frame. We stop, because the exception or longjmp
6565 has been caught.
2c03e5be 6566
cdaa5b73
PA
6567 3. The initiating frame exists and is different from the
6568 current frame. This means the exception or longjmp has
6569 been caught beneath the initiating frame, so keep going.
c906108c 6570
cdaa5b73
PA
6571 4. longjmp breakpoint has been placed just to protect
6572 against stale dummy frames and user is not interested in
6573 stopping around longjmps. */
c5aa993b 6574
cdaa5b73
PA
6575 if (debug_infrun)
6576 fprintf_unfiltered (gdb_stdlog,
6577 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6578
cdaa5b73
PA
6579 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6580 != NULL);
6581 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6582
cdaa5b73
PA
6583 if (what.is_longjmp)
6584 {
b67a2c6f 6585 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6586
cdaa5b73 6587 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6588 {
cdaa5b73
PA
6589 /* Case 4. */
6590 keep_going (ecs);
6591 return;
e5ef252a 6592 }
cdaa5b73 6593 }
c5aa993b 6594
cdaa5b73 6595 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6596
cdaa5b73
PA
6597 if (init_frame)
6598 {
6599 struct frame_id current_id
6600 = get_frame_id (get_current_frame ());
6601 if (frame_id_eq (current_id,
6602 ecs->event_thread->initiating_frame))
6603 {
6604 /* Case 2. Fall through. */
6605 }
6606 else
6607 {
6608 /* Case 3. */
6609 keep_going (ecs);
6610 return;
6611 }
68f53502 6612 }
488f131b 6613
cdaa5b73
PA
6614 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6615 exists. */
6616 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6617
bdc36728 6618 end_stepping_range (ecs);
cdaa5b73
PA
6619 }
6620 return;
e5ef252a 6621
cdaa5b73
PA
6622 case BPSTAT_WHAT_SINGLE:
6623 if (debug_infrun)
6624 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6625 ecs->event_thread->stepping_over_breakpoint = 1;
6626 /* Still need to check other stuff, at least the case where we
6627 are stepping and step out of the right range. */
6628 break;
e5ef252a 6629
cdaa5b73
PA
6630 case BPSTAT_WHAT_STEP_RESUME:
6631 if (debug_infrun)
6632 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6633
cdaa5b73
PA
6634 delete_step_resume_breakpoint (ecs->event_thread);
6635 if (ecs->event_thread->control.proceed_to_finish
6636 && execution_direction == EXEC_REVERSE)
6637 {
6638 struct thread_info *tp = ecs->event_thread;
6639
6640 /* We are finishing a function in reverse, and just hit the
6641 step-resume breakpoint at the start address of the
6642 function, and we're almost there -- just need to back up
6643 by one more single-step, which should take us back to the
6644 function call. */
6645 tp->control.step_range_start = tp->control.step_range_end = 1;
6646 keep_going (ecs);
e5ef252a 6647 return;
cdaa5b73
PA
6648 }
6649 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6650 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6651 && execution_direction == EXEC_REVERSE)
6652 {
6653 /* We are stepping over a function call in reverse, and just
6654 hit the step-resume breakpoint at the start address of
6655 the function. Go back to single-stepping, which should
6656 take us back to the function call. */
6657 ecs->event_thread->stepping_over_breakpoint = 1;
6658 keep_going (ecs);
6659 return;
6660 }
6661 break;
e5ef252a 6662
cdaa5b73
PA
6663 case BPSTAT_WHAT_STOP_NOISY:
6664 if (debug_infrun)
6665 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6666 stop_print_frame = 1;
e5ef252a 6667
99619bea
PA
6668 /* Assume the thread stopped for a breapoint. We'll still check
6669 whether a/the breakpoint is there when the thread is next
6670 resumed. */
6671 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6672
22bcd14b 6673 stop_waiting (ecs);
cdaa5b73 6674 return;
e5ef252a 6675
cdaa5b73
PA
6676 case BPSTAT_WHAT_STOP_SILENT:
6677 if (debug_infrun)
6678 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6679 stop_print_frame = 0;
e5ef252a 6680
99619bea
PA
6681 /* Assume the thread stopped for a breapoint. We'll still check
6682 whether a/the breakpoint is there when the thread is next
6683 resumed. */
6684 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6685 stop_waiting (ecs);
cdaa5b73
PA
6686 return;
6687
6688 case BPSTAT_WHAT_HP_STEP_RESUME:
6689 if (debug_infrun)
6690 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6691
6692 delete_step_resume_breakpoint (ecs->event_thread);
6693 if (ecs->event_thread->step_after_step_resume_breakpoint)
6694 {
6695 /* Back when the step-resume breakpoint was inserted, we
6696 were trying to single-step off a breakpoint. Go back to
6697 doing that. */
6698 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6699 ecs->event_thread->stepping_over_breakpoint = 1;
6700 keep_going (ecs);
6701 return;
e5ef252a 6702 }
cdaa5b73
PA
6703 break;
6704
6705 case BPSTAT_WHAT_KEEP_CHECKING:
6706 break;
e5ef252a 6707 }
c906108c 6708
af48d08f
PA
6709 /* If we stepped a permanent breakpoint and we had a high priority
6710 step-resume breakpoint for the address we stepped, but we didn't
6711 hit it, then we must have stepped into the signal handler. The
6712 step-resume was only necessary to catch the case of _not_
6713 stepping into the handler, so delete it, and fall through to
6714 checking whether the step finished. */
6715 if (ecs->event_thread->stepped_breakpoint)
6716 {
6717 struct breakpoint *sr_bp
6718 = ecs->event_thread->control.step_resume_breakpoint;
6719
8d707a12
PA
6720 if (sr_bp != NULL
6721 && sr_bp->loc->permanent
af48d08f
PA
6722 && sr_bp->type == bp_hp_step_resume
6723 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6724 {
6725 if (debug_infrun)
6726 fprintf_unfiltered (gdb_stdlog,
6727 "infrun: stepped permanent breakpoint, stopped in "
6728 "handler\n");
6729 delete_step_resume_breakpoint (ecs->event_thread);
6730 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6731 }
6732 }
6733
cdaa5b73
PA
6734 /* We come here if we hit a breakpoint but should not stop for it.
6735 Possibly we also were stepping and should stop for that. So fall
6736 through and test for stepping. But, if not stepping, do not
6737 stop. */
c906108c 6738
a7212384
UW
6739 /* In all-stop mode, if we're currently stepping but have stopped in
6740 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6741 if (switch_back_to_stepped_thread (ecs))
6742 return;
776f04fa 6743
8358c15c 6744 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6745 {
527159b7 6746 if (debug_infrun)
d3169d93
DJ
6747 fprintf_unfiltered (gdb_stdlog,
6748 "infrun: step-resume breakpoint is inserted\n");
527159b7 6749
488f131b
JB
6750 /* Having a step-resume breakpoint overrides anything
6751 else having to do with stepping commands until
6752 that breakpoint is reached. */
488f131b
JB
6753 keep_going (ecs);
6754 return;
6755 }
c5aa993b 6756
16c381f0 6757 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6758 {
527159b7 6759 if (debug_infrun)
8a9de0e4 6760 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6761 /* Likewise if we aren't even stepping. */
488f131b
JB
6762 keep_going (ecs);
6763 return;
6764 }
c5aa993b 6765
4b7703ad
JB
6766 /* Re-fetch current thread's frame in case the code above caused
6767 the frame cache to be re-initialized, making our FRAME variable
6768 a dangling pointer. */
6769 frame = get_current_frame ();
628fe4e4 6770 gdbarch = get_frame_arch (frame);
7e324e48 6771 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6772
488f131b 6773 /* If stepping through a line, keep going if still within it.
c906108c 6774
488f131b
JB
6775 Note that step_range_end is the address of the first instruction
6776 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6777 within it!
6778
6779 Note also that during reverse execution, we may be stepping
6780 through a function epilogue and therefore must detect when
6781 the current-frame changes in the middle of a line. */
6782
f2ffa92b
PA
6783 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6784 ecs->event_thread)
31410e84 6785 && (execution_direction != EXEC_REVERSE
388a8562 6786 || frame_id_eq (get_frame_id (frame),
16c381f0 6787 ecs->event_thread->control.step_frame_id)))
488f131b 6788 {
527159b7 6789 if (debug_infrun)
5af949e3
UW
6790 fprintf_unfiltered
6791 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6792 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6793 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6794
c1e36e3e
PA
6795 /* Tentatively re-enable range stepping; `resume' disables it if
6796 necessary (e.g., if we're stepping over a breakpoint or we
6797 have software watchpoints). */
6798 ecs->event_thread->control.may_range_step = 1;
6799
b2175913
MS
6800 /* When stepping backward, stop at beginning of line range
6801 (unless it's the function entry point, in which case
6802 keep going back to the call point). */
f2ffa92b 6803 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6804 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6805 && stop_pc != ecs->stop_func_start
6806 && execution_direction == EXEC_REVERSE)
bdc36728 6807 end_stepping_range (ecs);
b2175913
MS
6808 else
6809 keep_going (ecs);
6810
488f131b
JB
6811 return;
6812 }
c5aa993b 6813
488f131b 6814 /* We stepped out of the stepping range. */
c906108c 6815
488f131b 6816 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6817 loader dynamic symbol resolution code...
6818
6819 EXEC_FORWARD: we keep on single stepping until we exit the run
6820 time loader code and reach the callee's address.
6821
6822 EXEC_REVERSE: we've already executed the callee (backward), and
6823 the runtime loader code is handled just like any other
6824 undebuggable function call. Now we need only keep stepping
6825 backward through the trampoline code, and that's handled further
6826 down, so there is nothing for us to do here. */
6827
6828 if (execution_direction != EXEC_REVERSE
16c381f0 6829 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6830 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6831 {
4c8c40e6 6832 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6833 gdbarch_skip_solib_resolver (gdbarch,
6834 ecs->event_thread->suspend.stop_pc);
c906108c 6835
527159b7 6836 if (debug_infrun)
3e43a32a
MS
6837 fprintf_unfiltered (gdb_stdlog,
6838 "infrun: stepped into dynsym resolve code\n");
527159b7 6839
488f131b
JB
6840 if (pc_after_resolver)
6841 {
6842 /* Set up a step-resume breakpoint at the address
6843 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6844 symtab_and_line sr_sal;
488f131b 6845 sr_sal.pc = pc_after_resolver;
6c95b8df 6846 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6847
a6d9a66e
UW
6848 insert_step_resume_breakpoint_at_sal (gdbarch,
6849 sr_sal, null_frame_id);
c5aa993b 6850 }
c906108c 6851
488f131b
JB
6852 keep_going (ecs);
6853 return;
6854 }
c906108c 6855
1d509aa6
MM
6856 /* Step through an indirect branch thunk. */
6857 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6858 && gdbarch_in_indirect_branch_thunk (gdbarch,
6859 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6860 {
6861 if (debug_infrun)
6862 fprintf_unfiltered (gdb_stdlog,
6863 "infrun: stepped into indirect branch thunk\n");
6864 keep_going (ecs);
6865 return;
6866 }
6867
16c381f0
JK
6868 if (ecs->event_thread->control.step_range_end != 1
6869 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6870 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6871 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6872 {
527159b7 6873 if (debug_infrun)
3e43a32a
MS
6874 fprintf_unfiltered (gdb_stdlog,
6875 "infrun: stepped into signal trampoline\n");
42edda50 6876 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6877 a signal trampoline (either by a signal being delivered or by
6878 the signal handler returning). Just single-step until the
6879 inferior leaves the trampoline (either by calling the handler
6880 or returning). */
488f131b
JB
6881 keep_going (ecs);
6882 return;
6883 }
c906108c 6884
14132e89
MR
6885 /* If we're in the return path from a shared library trampoline,
6886 we want to proceed through the trampoline when stepping. */
6887 /* macro/2012-04-25: This needs to come before the subroutine
6888 call check below as on some targets return trampolines look
6889 like subroutine calls (MIPS16 return thunks). */
6890 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6891 ecs->event_thread->suspend.stop_pc,
6892 ecs->stop_func_name)
14132e89
MR
6893 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6894 {
6895 /* Determine where this trampoline returns. */
f2ffa92b
PA
6896 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6897 CORE_ADDR real_stop_pc
6898 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6899
6900 if (debug_infrun)
6901 fprintf_unfiltered (gdb_stdlog,
6902 "infrun: stepped into solib return tramp\n");
6903
6904 /* Only proceed through if we know where it's going. */
6905 if (real_stop_pc)
6906 {
6907 /* And put the step-breakpoint there and go until there. */
51abb421 6908 symtab_and_line sr_sal;
14132e89
MR
6909 sr_sal.pc = real_stop_pc;
6910 sr_sal.section = find_pc_overlay (sr_sal.pc);
6911 sr_sal.pspace = get_frame_program_space (frame);
6912
6913 /* Do not specify what the fp should be when we stop since
6914 on some machines the prologue is where the new fp value
6915 is established. */
6916 insert_step_resume_breakpoint_at_sal (gdbarch,
6917 sr_sal, null_frame_id);
6918
6919 /* Restart without fiddling with the step ranges or
6920 other state. */
6921 keep_going (ecs);
6922 return;
6923 }
6924 }
6925
c17eaafe
DJ
6926 /* Check for subroutine calls. The check for the current frame
6927 equalling the step ID is not necessary - the check of the
6928 previous frame's ID is sufficient - but it is a common case and
6929 cheaper than checking the previous frame's ID.
14e60db5
DJ
6930
6931 NOTE: frame_id_eq will never report two invalid frame IDs as
6932 being equal, so to get into this block, both the current and
6933 previous frame must have valid frame IDs. */
005ca36a
JB
6934 /* The outer_frame_id check is a heuristic to detect stepping
6935 through startup code. If we step over an instruction which
6936 sets the stack pointer from an invalid value to a valid value,
6937 we may detect that as a subroutine call from the mythical
6938 "outermost" function. This could be fixed by marking
6939 outermost frames as !stack_p,code_p,special_p. Then the
6940 initial outermost frame, before sp was valid, would
ce6cca6d 6941 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6942 for more. */
edb3359d 6943 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6944 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6945 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6946 ecs->event_thread->control.step_stack_frame_id)
6947 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6948 outer_frame_id)
885eeb5b 6949 || (ecs->event_thread->control.step_start_function
f2ffa92b 6950 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6951 {
f2ffa92b 6952 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6953 CORE_ADDR real_stop_pc;
8fb3e588 6954
527159b7 6955 if (debug_infrun)
8a9de0e4 6956 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6957
b7a084be 6958 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6959 {
6960 /* I presume that step_over_calls is only 0 when we're
6961 supposed to be stepping at the assembly language level
6962 ("stepi"). Just stop. */
388a8562 6963 /* And this works the same backward as frontward. MVS */
bdc36728 6964 end_stepping_range (ecs);
95918acb
AC
6965 return;
6966 }
8fb3e588 6967
388a8562
MS
6968 /* Reverse stepping through solib trampolines. */
6969
6970 if (execution_direction == EXEC_REVERSE
16c381f0 6971 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6972 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6973 || (ecs->stop_func_start == 0
6974 && in_solib_dynsym_resolve_code (stop_pc))))
6975 {
6976 /* Any solib trampoline code can be handled in reverse
6977 by simply continuing to single-step. We have already
6978 executed the solib function (backwards), and a few
6979 steps will take us back through the trampoline to the
6980 caller. */
6981 keep_going (ecs);
6982 return;
6983 }
6984
16c381f0 6985 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6986 {
b2175913
MS
6987 /* We're doing a "next".
6988
6989 Normal (forward) execution: set a breakpoint at the
6990 callee's return address (the address at which the caller
6991 will resume).
6992
6993 Reverse (backward) execution. set the step-resume
6994 breakpoint at the start of the function that we just
6995 stepped into (backwards), and continue to there. When we
6130d0b7 6996 get there, we'll need to single-step back to the caller. */
b2175913
MS
6997
6998 if (execution_direction == EXEC_REVERSE)
6999 {
acf9414f
JK
7000 /* If we're already at the start of the function, we've either
7001 just stepped backward into a single instruction function,
7002 or stepped back out of a signal handler to the first instruction
7003 of the function. Just keep going, which will single-step back
7004 to the caller. */
58c48e72 7005 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 7006 {
acf9414f 7007 /* Normal function call return (static or dynamic). */
51abb421 7008 symtab_and_line sr_sal;
acf9414f
JK
7009 sr_sal.pc = ecs->stop_func_start;
7010 sr_sal.pspace = get_frame_program_space (frame);
7011 insert_step_resume_breakpoint_at_sal (gdbarch,
7012 sr_sal, null_frame_id);
7013 }
b2175913
MS
7014 }
7015 else
568d6575 7016 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7017
8567c30f
AC
7018 keep_going (ecs);
7019 return;
7020 }
a53c66de 7021
95918acb 7022 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
7023 calling routine and the real function), locate the real
7024 function. That's what tells us (a) whether we want to step
7025 into it at all, and (b) what prologue we want to run to the
7026 end of, if we do step into it. */
568d6575 7027 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 7028 if (real_stop_pc == 0)
568d6575 7029 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
7030 if (real_stop_pc != 0)
7031 ecs->stop_func_start = real_stop_pc;
8fb3e588 7032
db5f024e 7033 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 7034 {
51abb421 7035 symtab_and_line sr_sal;
1b2bfbb9 7036 sr_sal.pc = ecs->stop_func_start;
6c95b8df 7037 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 7038
a6d9a66e
UW
7039 insert_step_resume_breakpoint_at_sal (gdbarch,
7040 sr_sal, null_frame_id);
8fb3e588
AC
7041 keep_going (ecs);
7042 return;
1b2bfbb9
RC
7043 }
7044
95918acb 7045 /* If we have line number information for the function we are
1bfeeb0f
JL
7046 thinking of stepping into and the function isn't on the skip
7047 list, step into it.
95918acb 7048
8fb3e588
AC
7049 If there are several symtabs at that PC (e.g. with include
7050 files), just want to know whether *any* of them have line
7051 numbers. find_pc_line handles this. */
95918acb
AC
7052 {
7053 struct symtab_and_line tmp_sal;
8fb3e588 7054
95918acb 7055 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 7056 if (tmp_sal.line != 0
85817405 7057 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
7058 tmp_sal)
7059 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 7060 {
b2175913 7061 if (execution_direction == EXEC_REVERSE)
568d6575 7062 handle_step_into_function_backward (gdbarch, ecs);
b2175913 7063 else
568d6575 7064 handle_step_into_function (gdbarch, ecs);
95918acb
AC
7065 return;
7066 }
7067 }
7068
7069 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
7070 set, we stop the step so that the user has a chance to switch
7071 in assembly mode. */
16c381f0 7072 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 7073 && step_stop_if_no_debug)
95918acb 7074 {
bdc36728 7075 end_stepping_range (ecs);
95918acb
AC
7076 return;
7077 }
7078
b2175913
MS
7079 if (execution_direction == EXEC_REVERSE)
7080 {
acf9414f
JK
7081 /* If we're already at the start of the function, we've either just
7082 stepped backward into a single instruction function without line
7083 number info, or stepped back out of a signal handler to the first
7084 instruction of the function without line number info. Just keep
7085 going, which will single-step back to the caller. */
7086 if (ecs->stop_func_start != stop_pc)
7087 {
7088 /* Set a breakpoint at callee's start address.
7089 From there we can step once and be back in the caller. */
51abb421 7090 symtab_and_line sr_sal;
acf9414f
JK
7091 sr_sal.pc = ecs->stop_func_start;
7092 sr_sal.pspace = get_frame_program_space (frame);
7093 insert_step_resume_breakpoint_at_sal (gdbarch,
7094 sr_sal, null_frame_id);
7095 }
b2175913
MS
7096 }
7097 else
7098 /* Set a breakpoint at callee's return address (the address
7099 at which the caller will resume). */
568d6575 7100 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7101
95918acb 7102 keep_going (ecs);
488f131b 7103 return;
488f131b 7104 }
c906108c 7105
fdd654f3
MS
7106 /* Reverse stepping through solib trampolines. */
7107
7108 if (execution_direction == EXEC_REVERSE
16c381f0 7109 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7110 {
f2ffa92b
PA
7111 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7112
fdd654f3
MS
7113 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7114 || (ecs->stop_func_start == 0
7115 && in_solib_dynsym_resolve_code (stop_pc)))
7116 {
7117 /* Any solib trampoline code can be handled in reverse
7118 by simply continuing to single-step. We have already
7119 executed the solib function (backwards), and a few
7120 steps will take us back through the trampoline to the
7121 caller. */
7122 keep_going (ecs);
7123 return;
7124 }
7125 else if (in_solib_dynsym_resolve_code (stop_pc))
7126 {
7127 /* Stepped backward into the solib dynsym resolver.
7128 Set a breakpoint at its start and continue, then
7129 one more step will take us out. */
51abb421 7130 symtab_and_line sr_sal;
fdd654f3 7131 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7132 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7133 insert_step_resume_breakpoint_at_sal (gdbarch,
7134 sr_sal, null_frame_id);
7135 keep_going (ecs);
7136 return;
7137 }
7138 }
7139
8c95582d
AB
7140 /* This always returns the sal for the inner-most frame when we are in a
7141 stack of inlined frames, even if GDB actually believes that it is in a
7142 more outer frame. This is checked for below by calls to
7143 inline_skipped_frames. */
f2ffa92b 7144 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7145
1b2bfbb9
RC
7146 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7147 the trampoline processing logic, however, there are some trampolines
7148 that have no names, so we should do trampoline handling first. */
16c381f0 7149 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7150 && ecs->stop_func_name == NULL
2afb61aa 7151 && stop_pc_sal.line == 0)
1b2bfbb9 7152 {
527159b7 7153 if (debug_infrun)
3e43a32a
MS
7154 fprintf_unfiltered (gdb_stdlog,
7155 "infrun: stepped into undebuggable function\n");
527159b7 7156
1b2bfbb9 7157 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
7158 undebuggable function (where there is no debugging information
7159 and no line number corresponding to the address where the
1b2bfbb9
RC
7160 inferior stopped). Since we want to skip this kind of code,
7161 we keep going until the inferior returns from this
14e60db5
DJ
7162 function - unless the user has asked us not to (via
7163 set step-mode) or we no longer know how to get back
7164 to the call site. */
7165 if (step_stop_if_no_debug
c7ce8faa 7166 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7167 {
7168 /* If we have no line number and the step-stop-if-no-debug
7169 is set, we stop the step so that the user has a chance to
7170 switch in assembly mode. */
bdc36728 7171 end_stepping_range (ecs);
1b2bfbb9
RC
7172 return;
7173 }
7174 else
7175 {
7176 /* Set a breakpoint at callee's return address (the address
7177 at which the caller will resume). */
568d6575 7178 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7179 keep_going (ecs);
7180 return;
7181 }
7182 }
7183
16c381f0 7184 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7185 {
7186 /* It is stepi or nexti. We always want to stop stepping after
7187 one instruction. */
527159b7 7188 if (debug_infrun)
8a9de0e4 7189 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 7190 end_stepping_range (ecs);
1b2bfbb9
RC
7191 return;
7192 }
7193
2afb61aa 7194 if (stop_pc_sal.line == 0)
488f131b
JB
7195 {
7196 /* We have no line number information. That means to stop
7197 stepping (does this always happen right after one instruction,
7198 when we do "s" in a function with no line numbers,
7199 or can this happen as a result of a return or longjmp?). */
527159b7 7200 if (debug_infrun)
8a9de0e4 7201 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 7202 end_stepping_range (ecs);
488f131b
JB
7203 return;
7204 }
c906108c 7205
edb3359d
DJ
7206 /* Look for "calls" to inlined functions, part one. If the inline
7207 frame machinery detected some skipped call sites, we have entered
7208 a new inline function. */
7209
7210 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7211 ecs->event_thread->control.step_frame_id)
00431a78 7212 && inline_skipped_frames (ecs->event_thread))
edb3359d 7213 {
edb3359d
DJ
7214 if (debug_infrun)
7215 fprintf_unfiltered (gdb_stdlog,
7216 "infrun: stepped into inlined function\n");
7217
51abb421 7218 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7219
16c381f0 7220 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7221 {
7222 /* For "step", we're going to stop. But if the call site
7223 for this inlined function is on the same source line as
7224 we were previously stepping, go down into the function
7225 first. Otherwise stop at the call site. */
7226
7227 if (call_sal.line == ecs->event_thread->current_line
7228 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7229 {
7230 step_into_inline_frame (ecs->event_thread);
7231 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7232 {
7233 keep_going (ecs);
7234 return;
7235 }
7236 }
edb3359d 7237
bdc36728 7238 end_stepping_range (ecs);
edb3359d
DJ
7239 return;
7240 }
7241 else
7242 {
7243 /* For "next", we should stop at the call site if it is on a
7244 different source line. Otherwise continue through the
7245 inlined function. */
7246 if (call_sal.line == ecs->event_thread->current_line
7247 && call_sal.symtab == ecs->event_thread->current_symtab)
7248 keep_going (ecs);
7249 else
bdc36728 7250 end_stepping_range (ecs);
edb3359d
DJ
7251 return;
7252 }
7253 }
7254
7255 /* Look for "calls" to inlined functions, part two. If we are still
7256 in the same real function we were stepping through, but we have
7257 to go further up to find the exact frame ID, we are stepping
7258 through a more inlined call beyond its call site. */
7259
7260 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7261 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7262 ecs->event_thread->control.step_frame_id)
edb3359d 7263 && stepped_in_from (get_current_frame (),
16c381f0 7264 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
7265 {
7266 if (debug_infrun)
7267 fprintf_unfiltered (gdb_stdlog,
7268 "infrun: stepping through inlined function\n");
7269
4a4c04f1
BE
7270 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7271 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7272 keep_going (ecs);
7273 else
bdc36728 7274 end_stepping_range (ecs);
edb3359d
DJ
7275 return;
7276 }
7277
8c95582d 7278 bool refresh_step_info = true;
f2ffa92b 7279 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7280 && (ecs->event_thread->current_line != stop_pc_sal.line
7281 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7282 {
8c95582d
AB
7283 if (stop_pc_sal.is_stmt)
7284 {
7285 /* We are at the start of a different line. So stop. Note that
7286 we don't stop if we step into the middle of a different line.
7287 That is said to make things like for (;;) statements work
7288 better. */
7289 if (debug_infrun)
7290 fprintf_unfiltered (gdb_stdlog,
7291 "infrun: stepped to a different line\n");
7292 end_stepping_range (ecs);
7293 return;
7294 }
7295 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7296 ecs->event_thread->control.step_frame_id))
7297 {
7298 /* We are at the start of a different line, however, this line is
7299 not marked as a statement, and we have not changed frame. We
7300 ignore this line table entry, and continue stepping forward,
7301 looking for a better place to stop. */
7302 refresh_step_info = false;
7303 if (debug_infrun)
7304 fprintf_unfiltered (gdb_stdlog,
7305 "infrun: stepped to a different line, but "
7306 "it's not the start of a statement\n");
7307 }
488f131b 7308 }
c906108c 7309
488f131b 7310 /* We aren't done stepping.
c906108c 7311
488f131b
JB
7312 Optimize by setting the stepping range to the line.
7313 (We might not be in the original line, but if we entered a
7314 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7315 things like for(;;) statements work better.)
7316
7317 If we entered a SAL that indicates a non-statement line table entry,
7318 then we update the stepping range, but we don't update the step info,
7319 which includes things like the line number we are stepping away from.
7320 This means we will stop when we find a line table entry that is marked
7321 as is-statement, even if it matches the non-statement one we just
7322 stepped into. */
c906108c 7323
16c381f0
JK
7324 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7325 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7326 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7327 if (refresh_step_info)
7328 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7329
527159b7 7330 if (debug_infrun)
8a9de0e4 7331 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7332 keep_going (ecs);
104c1213
JM
7333}
7334
c447ac0b
PA
7335/* In all-stop mode, if we're currently stepping but have stopped in
7336 some other thread, we may need to switch back to the stepped
7337 thread. Returns true we set the inferior running, false if we left
7338 it stopped (and the event needs further processing). */
7339
7340static int
7341switch_back_to_stepped_thread (struct execution_control_state *ecs)
7342{
fbea99ea 7343 if (!target_is_non_stop_p ())
c447ac0b 7344 {
99619bea
PA
7345 struct thread_info *stepping_thread;
7346
7347 /* If any thread is blocked on some internal breakpoint, and we
7348 simply need to step over that breakpoint to get it going
7349 again, do that first. */
7350
7351 /* However, if we see an event for the stepping thread, then we
7352 know all other threads have been moved past their breakpoints
7353 already. Let the caller check whether the step is finished,
7354 etc., before deciding to move it past a breakpoint. */
7355 if (ecs->event_thread->control.step_range_end != 0)
7356 return 0;
7357
7358 /* Check if the current thread is blocked on an incomplete
7359 step-over, interrupted by a random signal. */
7360 if (ecs->event_thread->control.trap_expected
7361 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7362 {
99619bea
PA
7363 if (debug_infrun)
7364 {
7365 fprintf_unfiltered (gdb_stdlog,
7366 "infrun: need to finish step-over of [%s]\n",
a068643d 7367 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7368 }
7369 keep_going (ecs);
7370 return 1;
7371 }
2adfaa28 7372
99619bea
PA
7373 /* Check if the current thread is blocked by a single-step
7374 breakpoint of another thread. */
7375 if (ecs->hit_singlestep_breakpoint)
7376 {
7377 if (debug_infrun)
7378 {
7379 fprintf_unfiltered (gdb_stdlog,
7380 "infrun: need to step [%s] over single-step "
7381 "breakpoint\n",
a068643d 7382 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7383 }
7384 keep_going (ecs);
7385 return 1;
7386 }
7387
4d9d9d04
PA
7388 /* If this thread needs yet another step-over (e.g., stepping
7389 through a delay slot), do it first before moving on to
7390 another thread. */
7391 if (thread_still_needs_step_over (ecs->event_thread))
7392 {
7393 if (debug_infrun)
7394 {
7395 fprintf_unfiltered (gdb_stdlog,
7396 "infrun: thread [%s] still needs step-over\n",
a068643d 7397 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7398 }
7399 keep_going (ecs);
7400 return 1;
7401 }
70509625 7402
483805cf
PA
7403 /* If scheduler locking applies even if not stepping, there's no
7404 need to walk over threads. Above we've checked whether the
7405 current thread is stepping. If some other thread not the
7406 event thread is stepping, then it must be that scheduler
7407 locking is not in effect. */
856e7dd6 7408 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7409 return 0;
7410
4d9d9d04
PA
7411 /* Otherwise, we no longer expect a trap in the current thread.
7412 Clear the trap_expected flag before switching back -- this is
7413 what keep_going does as well, if we call it. */
7414 ecs->event_thread->control.trap_expected = 0;
7415
7416 /* Likewise, clear the signal if it should not be passed. */
7417 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7418 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7419
7420 /* Do all pending step-overs before actually proceeding with
483805cf 7421 step/next/etc. */
4d9d9d04
PA
7422 if (start_step_over ())
7423 {
7424 prepare_to_wait (ecs);
7425 return 1;
7426 }
7427
7428 /* Look for the stepping/nexting thread. */
483805cf 7429 stepping_thread = NULL;
4d9d9d04 7430
08036331 7431 for (thread_info *tp : all_non_exited_threads ())
483805cf 7432 {
f3f8ece4
PA
7433 switch_to_thread_no_regs (tp);
7434
fbea99ea
PA
7435 /* Ignore threads of processes the caller is not
7436 resuming. */
483805cf 7437 if (!sched_multi
5b6d1e4f
PA
7438 && (tp->inf->process_target () != ecs->target
7439 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7440 continue;
7441
7442 /* When stepping over a breakpoint, we lock all threads
7443 except the one that needs to move past the breakpoint.
7444 If a non-event thread has this set, the "incomplete
7445 step-over" check above should have caught it earlier. */
372316f1
PA
7446 if (tp->control.trap_expected)
7447 {
7448 internal_error (__FILE__, __LINE__,
7449 "[%s] has inconsistent state: "
7450 "trap_expected=%d\n",
a068643d 7451 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7452 tp->control.trap_expected);
7453 }
483805cf
PA
7454
7455 /* Did we find the stepping thread? */
7456 if (tp->control.step_range_end)
7457 {
7458 /* Yep. There should only one though. */
7459 gdb_assert (stepping_thread == NULL);
7460
7461 /* The event thread is handled at the top, before we
7462 enter this loop. */
7463 gdb_assert (tp != ecs->event_thread);
7464
7465 /* If some thread other than the event thread is
7466 stepping, then scheduler locking can't be in effect,
7467 otherwise we wouldn't have resumed the current event
7468 thread in the first place. */
856e7dd6 7469 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7470
7471 stepping_thread = tp;
7472 }
99619bea
PA
7473 }
7474
483805cf 7475 if (stepping_thread != NULL)
99619bea 7476 {
c447ac0b
PA
7477 if (debug_infrun)
7478 fprintf_unfiltered (gdb_stdlog,
7479 "infrun: switching back to stepped thread\n");
7480
2ac7589c
PA
7481 if (keep_going_stepped_thread (stepping_thread))
7482 {
7483 prepare_to_wait (ecs);
7484 return 1;
7485 }
7486 }
f3f8ece4
PA
7487
7488 switch_to_thread (ecs->event_thread);
2ac7589c 7489 }
2adfaa28 7490
2ac7589c
PA
7491 return 0;
7492}
2adfaa28 7493
2ac7589c
PA
7494/* Set a previously stepped thread back to stepping. Returns true on
7495 success, false if the resume is not possible (e.g., the thread
7496 vanished). */
7497
7498static int
7499keep_going_stepped_thread (struct thread_info *tp)
7500{
7501 struct frame_info *frame;
2ac7589c
PA
7502 struct execution_control_state ecss;
7503 struct execution_control_state *ecs = &ecss;
2adfaa28 7504
2ac7589c
PA
7505 /* If the stepping thread exited, then don't try to switch back and
7506 resume it, which could fail in several different ways depending
7507 on the target. Instead, just keep going.
2adfaa28 7508
2ac7589c
PA
7509 We can find a stepping dead thread in the thread list in two
7510 cases:
2adfaa28 7511
2ac7589c
PA
7512 - The target supports thread exit events, and when the target
7513 tries to delete the thread from the thread list, inferior_ptid
7514 pointed at the exiting thread. In such case, calling
7515 delete_thread does not really remove the thread from the list;
7516 instead, the thread is left listed, with 'exited' state.
64ce06e4 7517
2ac7589c
PA
7518 - The target's debug interface does not support thread exit
7519 events, and so we have no idea whatsoever if the previously
7520 stepping thread is still alive. For that reason, we need to
7521 synchronously query the target now. */
2adfaa28 7522
00431a78 7523 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7524 {
7525 if (debug_infrun)
7526 fprintf_unfiltered (gdb_stdlog,
7527 "infrun: not resuming previously "
7528 "stepped thread, it has vanished\n");
7529
00431a78 7530 delete_thread (tp);
2ac7589c 7531 return 0;
c447ac0b 7532 }
2ac7589c
PA
7533
7534 if (debug_infrun)
7535 fprintf_unfiltered (gdb_stdlog,
7536 "infrun: resuming previously stepped thread\n");
7537
7538 reset_ecs (ecs, tp);
00431a78 7539 switch_to_thread (tp);
2ac7589c 7540
f2ffa92b 7541 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7542 frame = get_current_frame ();
2ac7589c
PA
7543
7544 /* If the PC of the thread we were trying to single-step has
7545 changed, then that thread has trapped or been signaled, but the
7546 event has not been reported to GDB yet. Re-poll the target
7547 looking for this particular thread's event (i.e. temporarily
7548 enable schedlock) by:
7549
7550 - setting a break at the current PC
7551 - resuming that particular thread, only (by setting trap
7552 expected)
7553
7554 This prevents us continuously moving the single-step breakpoint
7555 forward, one instruction at a time, overstepping. */
7556
f2ffa92b 7557 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7558 {
7559 ptid_t resume_ptid;
7560
7561 if (debug_infrun)
7562 fprintf_unfiltered (gdb_stdlog,
7563 "infrun: expected thread advanced also (%s -> %s)\n",
7564 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7565 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7566
7567 /* Clear the info of the previous step-over, as it's no longer
7568 valid (if the thread was trying to step over a breakpoint, it
7569 has already succeeded). It's what keep_going would do too,
7570 if we called it. Do this before trying to insert the sss
7571 breakpoint, otherwise if we were previously trying to step
7572 over this exact address in another thread, the breakpoint is
7573 skipped. */
7574 clear_step_over_info ();
7575 tp->control.trap_expected = 0;
7576
7577 insert_single_step_breakpoint (get_frame_arch (frame),
7578 get_frame_address_space (frame),
f2ffa92b 7579 tp->suspend.stop_pc);
2ac7589c 7580
719546c4 7581 tp->resumed = true;
fbea99ea 7582 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7583 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7584 }
7585 else
7586 {
7587 if (debug_infrun)
7588 fprintf_unfiltered (gdb_stdlog,
7589 "infrun: expected thread still hasn't advanced\n");
7590
7591 keep_going_pass_signal (ecs);
7592 }
7593 return 1;
c447ac0b
PA
7594}
7595
8b061563
PA
7596/* Is thread TP in the middle of (software or hardware)
7597 single-stepping? (Note the result of this function must never be
7598 passed directly as target_resume's STEP parameter.) */
104c1213 7599
a289b8f6 7600static int
b3444185 7601currently_stepping (struct thread_info *tp)
a7212384 7602{
8358c15c
JK
7603 return ((tp->control.step_range_end
7604 && tp->control.step_resume_breakpoint == NULL)
7605 || tp->control.trap_expected
af48d08f 7606 || tp->stepped_breakpoint
8358c15c 7607 || bpstat_should_step ());
a7212384
UW
7608}
7609
b2175913
MS
7610/* Inferior has stepped into a subroutine call with source code that
7611 we should not step over. Do step to the first line of code in
7612 it. */
c2c6d25f
JM
7613
7614static void
568d6575
UW
7615handle_step_into_function (struct gdbarch *gdbarch,
7616 struct execution_control_state *ecs)
c2c6d25f 7617{
7e324e48
GB
7618 fill_in_stop_func (gdbarch, ecs);
7619
f2ffa92b
PA
7620 compunit_symtab *cust
7621 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7622 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7623 ecs->stop_func_start
7624 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7625
51abb421 7626 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7627 /* Use the step_resume_break to step until the end of the prologue,
7628 even if that involves jumps (as it seems to on the vax under
7629 4.2). */
7630 /* If the prologue ends in the middle of a source line, continue to
7631 the end of that source line (if it is still within the function).
7632 Otherwise, just go to end of prologue. */
2afb61aa
PA
7633 if (stop_func_sal.end
7634 && stop_func_sal.pc != ecs->stop_func_start
7635 && stop_func_sal.end < ecs->stop_func_end)
7636 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7637
2dbd5e30
KB
7638 /* Architectures which require breakpoint adjustment might not be able
7639 to place a breakpoint at the computed address. If so, the test
7640 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7641 ecs->stop_func_start to an address at which a breakpoint may be
7642 legitimately placed.
8fb3e588 7643
2dbd5e30
KB
7644 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7645 made, GDB will enter an infinite loop when stepping through
7646 optimized code consisting of VLIW instructions which contain
7647 subinstructions corresponding to different source lines. On
7648 FR-V, it's not permitted to place a breakpoint on any but the
7649 first subinstruction of a VLIW instruction. When a breakpoint is
7650 set, GDB will adjust the breakpoint address to the beginning of
7651 the VLIW instruction. Thus, we need to make the corresponding
7652 adjustment here when computing the stop address. */
8fb3e588 7653
568d6575 7654 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7655 {
7656 ecs->stop_func_start
568d6575 7657 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7658 ecs->stop_func_start);
2dbd5e30
KB
7659 }
7660
f2ffa92b 7661 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7662 {
7663 /* We are already there: stop now. */
bdc36728 7664 end_stepping_range (ecs);
c2c6d25f
JM
7665 return;
7666 }
7667 else
7668 {
7669 /* Put the step-breakpoint there and go until there. */
51abb421 7670 symtab_and_line sr_sal;
c2c6d25f
JM
7671 sr_sal.pc = ecs->stop_func_start;
7672 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7673 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7674
c2c6d25f 7675 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7676 some machines the prologue is where the new fp value is
7677 established. */
a6d9a66e 7678 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7679
7680 /* And make sure stepping stops right away then. */
16c381f0
JK
7681 ecs->event_thread->control.step_range_end
7682 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7683 }
7684 keep_going (ecs);
7685}
d4f3574e 7686
b2175913
MS
7687/* Inferior has stepped backward into a subroutine call with source
7688 code that we should not step over. Do step to the beginning of the
7689 last line of code in it. */
7690
7691static void
568d6575
UW
7692handle_step_into_function_backward (struct gdbarch *gdbarch,
7693 struct execution_control_state *ecs)
b2175913 7694{
43f3e411 7695 struct compunit_symtab *cust;
167e4384 7696 struct symtab_and_line stop_func_sal;
b2175913 7697
7e324e48
GB
7698 fill_in_stop_func (gdbarch, ecs);
7699
f2ffa92b 7700 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7701 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7702 ecs->stop_func_start
7703 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7704
f2ffa92b 7705 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7706
7707 /* OK, we're just going to keep stepping here. */
f2ffa92b 7708 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7709 {
7710 /* We're there already. Just stop stepping now. */
bdc36728 7711 end_stepping_range (ecs);
b2175913
MS
7712 }
7713 else
7714 {
7715 /* Else just reset the step range and keep going.
7716 No step-resume breakpoint, they don't work for
7717 epilogues, which can have multiple entry paths. */
16c381f0
JK
7718 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7719 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7720 keep_going (ecs);
7721 }
7722 return;
7723}
7724
d3169d93 7725/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7726 This is used to both functions and to skip over code. */
7727
7728static void
2c03e5be
PA
7729insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7730 struct symtab_and_line sr_sal,
7731 struct frame_id sr_id,
7732 enum bptype sr_type)
44cbf7b5 7733{
611c83ae
PA
7734 /* There should never be more than one step-resume or longjmp-resume
7735 breakpoint per thread, so we should never be setting a new
44cbf7b5 7736 step_resume_breakpoint when one is already active. */
8358c15c 7737 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7738 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7739
7740 if (debug_infrun)
7741 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7742 "infrun: inserting step-resume breakpoint at %s\n",
7743 paddress (gdbarch, sr_sal.pc));
d3169d93 7744
8358c15c 7745 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7746 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7747}
7748
9da8c2a0 7749void
2c03e5be
PA
7750insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7751 struct symtab_and_line sr_sal,
7752 struct frame_id sr_id)
7753{
7754 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7755 sr_sal, sr_id,
7756 bp_step_resume);
44cbf7b5 7757}
7ce450bd 7758
2c03e5be
PA
7759/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7760 This is used to skip a potential signal handler.
7ce450bd 7761
14e60db5
DJ
7762 This is called with the interrupted function's frame. The signal
7763 handler, when it returns, will resume the interrupted function at
7764 RETURN_FRAME.pc. */
d303a6c7
AC
7765
7766static void
2c03e5be 7767insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7768{
f4c1edd8 7769 gdb_assert (return_frame != NULL);
d303a6c7 7770
51abb421
PA
7771 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7772
7773 symtab_and_line sr_sal;
568d6575 7774 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7775 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7776 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7777
2c03e5be
PA
7778 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7779 get_stack_frame_id (return_frame),
7780 bp_hp_step_resume);
d303a6c7
AC
7781}
7782
2c03e5be
PA
7783/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7784 is used to skip a function after stepping into it (for "next" or if
7785 the called function has no debugging information).
14e60db5
DJ
7786
7787 The current function has almost always been reached by single
7788 stepping a call or return instruction. NEXT_FRAME belongs to the
7789 current function, and the breakpoint will be set at the caller's
7790 resume address.
7791
7792 This is a separate function rather than reusing
2c03e5be 7793 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7794 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7795 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7796
7797static void
7798insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7799{
14e60db5
DJ
7800 /* We shouldn't have gotten here if we don't know where the call site
7801 is. */
c7ce8faa 7802 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7803
51abb421 7804 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7805
51abb421 7806 symtab_and_line sr_sal;
c7ce8faa
DJ
7807 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7808 frame_unwind_caller_pc (next_frame));
14e60db5 7809 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7810 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7811
a6d9a66e 7812 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7813 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7814}
7815
611c83ae
PA
7816/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7817 new breakpoint at the target of a jmp_buf. The handling of
7818 longjmp-resume uses the same mechanisms used for handling
7819 "step-resume" breakpoints. */
7820
7821static void
a6d9a66e 7822insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7823{
e81a37f7
TT
7824 /* There should never be more than one longjmp-resume breakpoint per
7825 thread, so we should never be setting a new
611c83ae 7826 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7827 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7828
7829 if (debug_infrun)
7830 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7831 "infrun: inserting longjmp-resume breakpoint at %s\n",
7832 paddress (gdbarch, pc));
611c83ae 7833
e81a37f7 7834 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7835 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7836}
7837
186c406b
TT
7838/* Insert an exception resume breakpoint. TP is the thread throwing
7839 the exception. The block B is the block of the unwinder debug hook
7840 function. FRAME is the frame corresponding to the call to this
7841 function. SYM is the symbol of the function argument holding the
7842 target PC of the exception. */
7843
7844static void
7845insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7846 const struct block *b,
186c406b
TT
7847 struct frame_info *frame,
7848 struct symbol *sym)
7849{
a70b8144 7850 try
186c406b 7851 {
63e43d3a 7852 struct block_symbol vsym;
186c406b
TT
7853 struct value *value;
7854 CORE_ADDR handler;
7855 struct breakpoint *bp;
7856
987012b8 7857 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7858 b, VAR_DOMAIN);
63e43d3a 7859 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7860 /* If the value was optimized out, revert to the old behavior. */
7861 if (! value_optimized_out (value))
7862 {
7863 handler = value_as_address (value);
7864
7865 if (debug_infrun)
7866 fprintf_unfiltered (gdb_stdlog,
7867 "infrun: exception resume at %lx\n",
7868 (unsigned long) handler);
7869
7870 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7871 handler,
7872 bp_exception_resume).release ();
c70a6932
JK
7873
7874 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7875 frame = NULL;
7876
5d5658a1 7877 bp->thread = tp->global_num;
186c406b
TT
7878 inferior_thread ()->control.exception_resume_breakpoint = bp;
7879 }
7880 }
230d2906 7881 catch (const gdb_exception_error &e)
492d29ea
PA
7882 {
7883 /* We want to ignore errors here. */
7884 }
186c406b
TT
7885}
7886
28106bc2
SDJ
7887/* A helper for check_exception_resume that sets an
7888 exception-breakpoint based on a SystemTap probe. */
7889
7890static void
7891insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7892 const struct bound_probe *probe,
28106bc2
SDJ
7893 struct frame_info *frame)
7894{
7895 struct value *arg_value;
7896 CORE_ADDR handler;
7897 struct breakpoint *bp;
7898
7899 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7900 if (!arg_value)
7901 return;
7902
7903 handler = value_as_address (arg_value);
7904
7905 if (debug_infrun)
7906 fprintf_unfiltered (gdb_stdlog,
7907 "infrun: exception resume at %s\n",
08feed99 7908 paddress (probe->objfile->arch (),
28106bc2
SDJ
7909 handler));
7910
7911 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7912 handler, bp_exception_resume).release ();
5d5658a1 7913 bp->thread = tp->global_num;
28106bc2
SDJ
7914 inferior_thread ()->control.exception_resume_breakpoint = bp;
7915}
7916
186c406b
TT
7917/* This is called when an exception has been intercepted. Check to
7918 see whether the exception's destination is of interest, and if so,
7919 set an exception resume breakpoint there. */
7920
7921static void
7922check_exception_resume (struct execution_control_state *ecs,
28106bc2 7923 struct frame_info *frame)
186c406b 7924{
729662a5 7925 struct bound_probe probe;
28106bc2
SDJ
7926 struct symbol *func;
7927
7928 /* First see if this exception unwinding breakpoint was set via a
7929 SystemTap probe point. If so, the probe has two arguments: the
7930 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7931 set a breakpoint there. */
6bac7473 7932 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7933 if (probe.prob)
28106bc2 7934 {
729662a5 7935 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7936 return;
7937 }
7938
7939 func = get_frame_function (frame);
7940 if (!func)
7941 return;
186c406b 7942
a70b8144 7943 try
186c406b 7944 {
3977b71f 7945 const struct block *b;
8157b174 7946 struct block_iterator iter;
186c406b
TT
7947 struct symbol *sym;
7948 int argno = 0;
7949
7950 /* The exception breakpoint is a thread-specific breakpoint on
7951 the unwinder's debug hook, declared as:
7952
7953 void _Unwind_DebugHook (void *cfa, void *handler);
7954
7955 The CFA argument indicates the frame to which control is
7956 about to be transferred. HANDLER is the destination PC.
7957
7958 We ignore the CFA and set a temporary breakpoint at HANDLER.
7959 This is not extremely efficient but it avoids issues in gdb
7960 with computing the DWARF CFA, and it also works even in weird
7961 cases such as throwing an exception from inside a signal
7962 handler. */
7963
7964 b = SYMBOL_BLOCK_VALUE (func);
7965 ALL_BLOCK_SYMBOLS (b, iter, sym)
7966 {
7967 if (!SYMBOL_IS_ARGUMENT (sym))
7968 continue;
7969
7970 if (argno == 0)
7971 ++argno;
7972 else
7973 {
7974 insert_exception_resume_breakpoint (ecs->event_thread,
7975 b, frame, sym);
7976 break;
7977 }
7978 }
7979 }
230d2906 7980 catch (const gdb_exception_error &e)
492d29ea
PA
7981 {
7982 }
186c406b
TT
7983}
7984
104c1213 7985static void
22bcd14b 7986stop_waiting (struct execution_control_state *ecs)
104c1213 7987{
527159b7 7988 if (debug_infrun)
22bcd14b 7989 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7990
cd0fc7c3
SS
7991 /* Let callers know we don't want to wait for the inferior anymore. */
7992 ecs->wait_some_more = 0;
fbea99ea 7993
53cccef1 7994 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7995 threads now that we're presenting the stop to the user. */
53cccef1 7996 if (!non_stop && exists_non_stop_target ())
fbea99ea 7997 stop_all_threads ();
cd0fc7c3
SS
7998}
7999
4d9d9d04
PA
8000/* Like keep_going, but passes the signal to the inferior, even if the
8001 signal is set to nopass. */
d4f3574e
SS
8002
8003static void
4d9d9d04 8004keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 8005{
d7e15655 8006 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 8007 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 8008
d4f3574e 8009 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 8010 ecs->event_thread->prev_pc
fc75c28b 8011 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 8012
4d9d9d04 8013 if (ecs->event_thread->control.trap_expected)
d4f3574e 8014 {
4d9d9d04
PA
8015 struct thread_info *tp = ecs->event_thread;
8016
8017 if (debug_infrun)
8018 fprintf_unfiltered (gdb_stdlog,
8019 "infrun: %s has trap_expected set, "
8020 "resuming to collect trap\n",
a068643d 8021 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 8022
a9ba6bae
PA
8023 /* We haven't yet gotten our trap, and either: intercepted a
8024 non-signal event (e.g., a fork); or took a signal which we
8025 are supposed to pass through to the inferior. Simply
8026 continue. */
64ce06e4 8027 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 8028 }
372316f1
PA
8029 else if (step_over_info_valid_p ())
8030 {
8031 /* Another thread is stepping over a breakpoint in-line. If
8032 this thread needs a step-over too, queue the request. In
8033 either case, this resume must be deferred for later. */
8034 struct thread_info *tp = ecs->event_thread;
8035
8036 if (ecs->hit_singlestep_breakpoint
8037 || thread_still_needs_step_over (tp))
8038 {
8039 if (debug_infrun)
8040 fprintf_unfiltered (gdb_stdlog,
8041 "infrun: step-over already in progress: "
8042 "step-over for %s deferred\n",
a068643d 8043 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
8044 thread_step_over_chain_enqueue (tp);
8045 }
8046 else
8047 {
8048 if (debug_infrun)
8049 fprintf_unfiltered (gdb_stdlog,
8050 "infrun: step-over in progress: "
8051 "resume of %s deferred\n",
a068643d 8052 target_pid_to_str (tp->ptid).c_str ());
372316f1 8053 }
372316f1 8054 }
d4f3574e
SS
8055 else
8056 {
31e77af2 8057 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
8058 int remove_bp;
8059 int remove_wps;
8d297bbf 8060 step_over_what step_what;
31e77af2 8061
d4f3574e 8062 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
8063 anyway (if we got a signal, the user asked it be passed to
8064 the child)
8065 -- or --
8066 We got our expected trap, but decided we should resume from
8067 it.
d4f3574e 8068
a9ba6bae 8069 We're going to run this baby now!
d4f3574e 8070
c36b740a
VP
8071 Note that insert_breakpoints won't try to re-insert
8072 already inserted breakpoints. Therefore, we don't
8073 care if breakpoints were already inserted, or not. */
a9ba6bae 8074
31e77af2
PA
8075 /* If we need to step over a breakpoint, and we're not using
8076 displaced stepping to do so, insert all breakpoints
8077 (watchpoints, etc.) but the one we're stepping over, step one
8078 instruction, and then re-insert the breakpoint when that step
8079 is finished. */
963f9c80 8080
6c4cfb24
PA
8081 step_what = thread_still_needs_step_over (ecs->event_thread);
8082
963f9c80 8083 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
8084 || (step_what & STEP_OVER_BREAKPOINT));
8085 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 8086
cb71640d
PA
8087 /* We can't use displaced stepping if we need to step past a
8088 watchpoint. The instruction copied to the scratch pad would
8089 still trigger the watchpoint. */
8090 if (remove_bp
3fc8eb30 8091 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8092 {
a01bda52 8093 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8094 regcache_read_pc (regcache), remove_wps,
8095 ecs->event_thread->global_num);
45e8c884 8096 }
963f9c80 8097 else if (remove_wps)
21edc42f 8098 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8099
8100 /* If we now need to do an in-line step-over, we need to stop
8101 all other threads. Note this must be done before
8102 insert_breakpoints below, because that removes the breakpoint
8103 we're about to step over, otherwise other threads could miss
8104 it. */
fbea99ea 8105 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 8106 stop_all_threads ();
abbb1732 8107
31e77af2 8108 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8109 try
31e77af2
PA
8110 {
8111 insert_breakpoints ();
8112 }
230d2906 8113 catch (const gdb_exception_error &e)
31e77af2
PA
8114 {
8115 exception_print (gdb_stderr, e);
22bcd14b 8116 stop_waiting (ecs);
bdf2a94a 8117 clear_step_over_info ();
31e77af2 8118 return;
d4f3574e
SS
8119 }
8120
963f9c80 8121 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8122
64ce06e4 8123 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
8124 }
8125
488f131b 8126 prepare_to_wait (ecs);
d4f3574e
SS
8127}
8128
4d9d9d04
PA
8129/* Called when we should continue running the inferior, because the
8130 current event doesn't cause a user visible stop. This does the
8131 resuming part; waiting for the next event is done elsewhere. */
8132
8133static void
8134keep_going (struct execution_control_state *ecs)
8135{
8136 if (ecs->event_thread->control.trap_expected
8137 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8138 ecs->event_thread->control.trap_expected = 0;
8139
8140 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8141 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8142 keep_going_pass_signal (ecs);
8143}
8144
104c1213
JM
8145/* This function normally comes after a resume, before
8146 handle_inferior_event exits. It takes care of any last bits of
8147 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8148
104c1213
JM
8149static void
8150prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8151{
527159b7 8152 if (debug_infrun)
8a9de0e4 8153 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 8154
104c1213 8155 ecs->wait_some_more = 1;
0b333c5e 8156
0e2dba2d
PA
8157 /* If the target can't async, emulate it by marking the infrun event
8158 handler such that as soon as we get back to the event-loop, we
8159 immediately end up in fetch_inferior_event again calling
8160 target_wait. */
8161 if (!target_can_async_p ())
0b333c5e 8162 mark_infrun_async_event_handler ();
c906108c 8163}
11cf8741 8164
fd664c91 8165/* We are done with the step range of a step/next/si/ni command.
b57bacec 8166 Called once for each n of a "step n" operation. */
fd664c91
PA
8167
8168static void
bdc36728 8169end_stepping_range (struct execution_control_state *ecs)
fd664c91 8170{
bdc36728 8171 ecs->event_thread->control.stop_step = 1;
bdc36728 8172 stop_waiting (ecs);
fd664c91
PA
8173}
8174
33d62d64
JK
8175/* Several print_*_reason functions to print why the inferior has stopped.
8176 We always print something when the inferior exits, or receives a signal.
8177 The rest of the cases are dealt with later on in normal_stop and
8178 print_it_typical. Ideally there should be a call to one of these
8179 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8180 stop_waiting is called.
33d62d64 8181
fd664c91
PA
8182 Note that we don't call these directly, instead we delegate that to
8183 the interpreters, through observers. Interpreters then call these
8184 with whatever uiout is right. */
33d62d64 8185
fd664c91
PA
8186void
8187print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8188{
fd664c91 8189 /* For CLI-like interpreters, print nothing. */
33d62d64 8190
112e8700 8191 if (uiout->is_mi_like_p ())
fd664c91 8192 {
112e8700 8193 uiout->field_string ("reason",
fd664c91
PA
8194 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8195 }
8196}
33d62d64 8197
fd664c91
PA
8198void
8199print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8200{
33d62d64 8201 annotate_signalled ();
112e8700
SM
8202 if (uiout->is_mi_like_p ())
8203 uiout->field_string
8204 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8205 uiout->text ("\nProgram terminated with signal ");
33d62d64 8206 annotate_signal_name ();
112e8700 8207 uiout->field_string ("signal-name",
2ea28649 8208 gdb_signal_to_name (siggnal));
33d62d64 8209 annotate_signal_name_end ();
112e8700 8210 uiout->text (", ");
33d62d64 8211 annotate_signal_string ();
112e8700 8212 uiout->field_string ("signal-meaning",
2ea28649 8213 gdb_signal_to_string (siggnal));
33d62d64 8214 annotate_signal_string_end ();
112e8700
SM
8215 uiout->text (".\n");
8216 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8217}
8218
fd664c91
PA
8219void
8220print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8221{
fda326dd 8222 struct inferior *inf = current_inferior ();
a068643d 8223 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8224
33d62d64
JK
8225 annotate_exited (exitstatus);
8226 if (exitstatus)
8227 {
112e8700
SM
8228 if (uiout->is_mi_like_p ())
8229 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8230 std::string exit_code_str
8231 = string_printf ("0%o", (unsigned int) exitstatus);
8232 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8233 plongest (inf->num), pidstr.c_str (),
8234 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8235 }
8236 else
11cf8741 8237 {
112e8700
SM
8238 if (uiout->is_mi_like_p ())
8239 uiout->field_string
8240 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8241 uiout->message ("[Inferior %s (%s) exited normally]\n",
8242 plongest (inf->num), pidstr.c_str ());
33d62d64 8243 }
33d62d64
JK
8244}
8245
012b3a21
WT
8246/* Some targets/architectures can do extra processing/display of
8247 segmentation faults. E.g., Intel MPX boundary faults.
8248 Call the architecture dependent function to handle the fault. */
8249
8250static void
8251handle_segmentation_fault (struct ui_out *uiout)
8252{
8253 struct regcache *regcache = get_current_regcache ();
ac7936df 8254 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8255
8256 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8257 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8258}
8259
fd664c91
PA
8260void
8261print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8262{
f303dbd6
PA
8263 struct thread_info *thr = inferior_thread ();
8264
33d62d64
JK
8265 annotate_signal ();
8266
112e8700 8267 if (uiout->is_mi_like_p ())
f303dbd6
PA
8268 ;
8269 else if (show_thread_that_caused_stop ())
33d62d64 8270 {
f303dbd6 8271 const char *name;
33d62d64 8272
112e8700 8273 uiout->text ("\nThread ");
33eca680 8274 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8275
8276 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8277 if (name != NULL)
8278 {
112e8700 8279 uiout->text (" \"");
33eca680 8280 uiout->field_string ("name", name);
112e8700 8281 uiout->text ("\"");
f303dbd6 8282 }
33d62d64 8283 }
f303dbd6 8284 else
112e8700 8285 uiout->text ("\nProgram");
f303dbd6 8286
112e8700
SM
8287 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8288 uiout->text (" stopped");
33d62d64
JK
8289 else
8290 {
112e8700 8291 uiout->text (" received signal ");
8b93c638 8292 annotate_signal_name ();
112e8700
SM
8293 if (uiout->is_mi_like_p ())
8294 uiout->field_string
8295 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8296 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8297 annotate_signal_name_end ();
112e8700 8298 uiout->text (", ");
8b93c638 8299 annotate_signal_string ();
112e8700 8300 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8301
8302 if (siggnal == GDB_SIGNAL_SEGV)
8303 handle_segmentation_fault (uiout);
8304
8b93c638 8305 annotate_signal_string_end ();
33d62d64 8306 }
112e8700 8307 uiout->text (".\n");
33d62d64 8308}
252fbfc8 8309
fd664c91
PA
8310void
8311print_no_history_reason (struct ui_out *uiout)
33d62d64 8312{
112e8700 8313 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8314}
43ff13b4 8315
0c7e1a46
PA
8316/* Print current location without a level number, if we have changed
8317 functions or hit a breakpoint. Print source line if we have one.
8318 bpstat_print contains the logic deciding in detail what to print,
8319 based on the event(s) that just occurred. */
8320
243a9253
PA
8321static void
8322print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8323{
8324 int bpstat_ret;
f486487f 8325 enum print_what source_flag;
0c7e1a46
PA
8326 int do_frame_printing = 1;
8327 struct thread_info *tp = inferior_thread ();
8328
8329 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8330 switch (bpstat_ret)
8331 {
8332 case PRINT_UNKNOWN:
8333 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8334 should) carry around the function and does (or should) use
8335 that when doing a frame comparison. */
8336 if (tp->control.stop_step
8337 && frame_id_eq (tp->control.step_frame_id,
8338 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8339 && (tp->control.step_start_function
8340 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8341 {
8342 /* Finished step, just print source line. */
8343 source_flag = SRC_LINE;
8344 }
8345 else
8346 {
8347 /* Print location and source line. */
8348 source_flag = SRC_AND_LOC;
8349 }
8350 break;
8351 case PRINT_SRC_AND_LOC:
8352 /* Print location and source line. */
8353 source_flag = SRC_AND_LOC;
8354 break;
8355 case PRINT_SRC_ONLY:
8356 source_flag = SRC_LINE;
8357 break;
8358 case PRINT_NOTHING:
8359 /* Something bogus. */
8360 source_flag = SRC_LINE;
8361 do_frame_printing = 0;
8362 break;
8363 default:
8364 internal_error (__FILE__, __LINE__, _("Unknown value."));
8365 }
8366
8367 /* The behavior of this routine with respect to the source
8368 flag is:
8369 SRC_LINE: Print only source line
8370 LOCATION: Print only location
8371 SRC_AND_LOC: Print location and source line. */
8372 if (do_frame_printing)
8373 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8374}
8375
243a9253
PA
8376/* See infrun.h. */
8377
8378void
4c7d57e7 8379print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8380{
243a9253 8381 struct target_waitstatus last;
243a9253
PA
8382 struct thread_info *tp;
8383
5b6d1e4f 8384 get_last_target_status (nullptr, nullptr, &last);
243a9253 8385
67ad9399
TT
8386 {
8387 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8388
67ad9399 8389 print_stop_location (&last);
243a9253 8390
67ad9399 8391 /* Display the auto-display expressions. */
4c7d57e7
TT
8392 if (displays)
8393 do_displays ();
67ad9399 8394 }
243a9253
PA
8395
8396 tp = inferior_thread ();
8397 if (tp->thread_fsm != NULL
46e3ed7f 8398 && tp->thread_fsm->finished_p ())
243a9253
PA
8399 {
8400 struct return_value_info *rv;
8401
46e3ed7f 8402 rv = tp->thread_fsm->return_value ();
243a9253
PA
8403 if (rv != NULL)
8404 print_return_value (uiout, rv);
8405 }
0c7e1a46
PA
8406}
8407
388a7084
PA
8408/* See infrun.h. */
8409
8410void
8411maybe_remove_breakpoints (void)
8412{
8413 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8414 {
8415 if (remove_breakpoints ())
8416 {
223ffa71 8417 target_terminal::ours_for_output ();
388a7084
PA
8418 printf_filtered (_("Cannot remove breakpoints because "
8419 "program is no longer writable.\nFurther "
8420 "execution is probably impossible.\n"));
8421 }
8422 }
8423}
8424
4c2f2a79
PA
8425/* The execution context that just caused a normal stop. */
8426
8427struct stop_context
8428{
2d844eaf
TT
8429 stop_context ();
8430 ~stop_context ();
8431
8432 DISABLE_COPY_AND_ASSIGN (stop_context);
8433
8434 bool changed () const;
8435
4c2f2a79
PA
8436 /* The stop ID. */
8437 ULONGEST stop_id;
c906108c 8438
4c2f2a79 8439 /* The event PTID. */
c906108c 8440
4c2f2a79
PA
8441 ptid_t ptid;
8442
8443 /* If stopp for a thread event, this is the thread that caused the
8444 stop. */
8445 struct thread_info *thread;
8446
8447 /* The inferior that caused the stop. */
8448 int inf_num;
8449};
8450
2d844eaf 8451/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8452 takes a strong reference to the thread. */
8453
2d844eaf 8454stop_context::stop_context ()
4c2f2a79 8455{
2d844eaf
TT
8456 stop_id = get_stop_id ();
8457 ptid = inferior_ptid;
8458 inf_num = current_inferior ()->num;
4c2f2a79 8459
d7e15655 8460 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8461 {
8462 /* Take a strong reference so that the thread can't be deleted
8463 yet. */
2d844eaf
TT
8464 thread = inferior_thread ();
8465 thread->incref ();
4c2f2a79
PA
8466 }
8467 else
2d844eaf 8468 thread = NULL;
4c2f2a79
PA
8469}
8470
8471/* Release a stop context previously created with save_stop_context.
8472 Releases the strong reference to the thread as well. */
8473
2d844eaf 8474stop_context::~stop_context ()
4c2f2a79 8475{
2d844eaf
TT
8476 if (thread != NULL)
8477 thread->decref ();
4c2f2a79
PA
8478}
8479
8480/* Return true if the current context no longer matches the saved stop
8481 context. */
8482
2d844eaf
TT
8483bool
8484stop_context::changed () const
8485{
8486 if (ptid != inferior_ptid)
8487 return true;
8488 if (inf_num != current_inferior ()->num)
8489 return true;
8490 if (thread != NULL && thread->state != THREAD_STOPPED)
8491 return true;
8492 if (get_stop_id () != stop_id)
8493 return true;
8494 return false;
4c2f2a79
PA
8495}
8496
8497/* See infrun.h. */
8498
8499int
96baa820 8500normal_stop (void)
c906108c 8501{
73b65bb0 8502 struct target_waitstatus last;
73b65bb0 8503
5b6d1e4f 8504 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8505
4c2f2a79
PA
8506 new_stop_id ();
8507
29f49a6a
PA
8508 /* If an exception is thrown from this point on, make sure to
8509 propagate GDB's knowledge of the executing state to the
8510 frontend/user running state. A QUIT is an easy exception to see
8511 here, so do this before any filtered output. */
731f534f 8512
5b6d1e4f 8513 ptid_t finish_ptid = null_ptid;
731f534f 8514
c35b1492 8515 if (!non_stop)
5b6d1e4f 8516 finish_ptid = minus_one_ptid;
e1316e60
PA
8517 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8518 || last.kind == TARGET_WAITKIND_EXITED)
8519 {
8520 /* On some targets, we may still have live threads in the
8521 inferior when we get a process exit event. E.g., for
8522 "checkpoint", when the current checkpoint/fork exits,
8523 linux-fork.c automatically switches to another fork from
8524 within target_mourn_inferior. */
731f534f 8525 if (inferior_ptid != null_ptid)
5b6d1e4f 8526 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8527 }
8528 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8529 finish_ptid = inferior_ptid;
8530
8531 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8532 if (finish_ptid != null_ptid)
8533 {
8534 maybe_finish_thread_state.emplace
8535 (user_visible_resume_target (finish_ptid), finish_ptid);
8536 }
29f49a6a 8537
b57bacec
PA
8538 /* As we're presenting a stop, and potentially removing breakpoints,
8539 update the thread list so we can tell whether there are threads
8540 running on the target. With target remote, for example, we can
8541 only learn about new threads when we explicitly update the thread
8542 list. Do this before notifying the interpreters about signal
8543 stops, end of stepping ranges, etc., so that the "new thread"
8544 output is emitted before e.g., "Program received signal FOO",
8545 instead of after. */
8546 update_thread_list ();
8547
8548 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8549 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8550
c906108c
SS
8551 /* As with the notification of thread events, we want to delay
8552 notifying the user that we've switched thread context until
8553 the inferior actually stops.
8554
73b65bb0
DJ
8555 There's no point in saying anything if the inferior has exited.
8556 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8557 "received a signal".
8558
8559 Also skip saying anything in non-stop mode. In that mode, as we
8560 don't want GDB to switch threads behind the user's back, to avoid
8561 races where the user is typing a command to apply to thread x,
8562 but GDB switches to thread y before the user finishes entering
8563 the command, fetch_inferior_event installs a cleanup to restore
8564 the current thread back to the thread the user had selected right
8565 after this event is handled, so we're not really switching, only
8566 informing of a stop. */
4f8d22e3 8567 if (!non_stop
731f534f 8568 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8569 && target_has_execution
8570 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8571 && last.kind != TARGET_WAITKIND_EXITED
8572 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8573 {
0e454242 8574 SWITCH_THRU_ALL_UIS ()
3b12939d 8575 {
223ffa71 8576 target_terminal::ours_for_output ();
3b12939d 8577 printf_filtered (_("[Switching to %s]\n"),
a068643d 8578 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8579 annotate_thread_changed ();
8580 }
39f77062 8581 previous_inferior_ptid = inferior_ptid;
c906108c 8582 }
c906108c 8583
0e5bf2a8
PA
8584 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8585 {
0e454242 8586 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8587 if (current_ui->prompt_state == PROMPT_BLOCKED)
8588 {
223ffa71 8589 target_terminal::ours_for_output ();
3b12939d
PA
8590 printf_filtered (_("No unwaited-for children left.\n"));
8591 }
0e5bf2a8
PA
8592 }
8593
b57bacec 8594 /* Note: this depends on the update_thread_list call above. */
388a7084 8595 maybe_remove_breakpoints ();
c906108c 8596
c906108c
SS
8597 /* If an auto-display called a function and that got a signal,
8598 delete that auto-display to avoid an infinite recursion. */
8599
8600 if (stopped_by_random_signal)
8601 disable_current_display ();
8602
0e454242 8603 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8604 {
8605 async_enable_stdin ();
8606 }
c906108c 8607
388a7084 8608 /* Let the user/frontend see the threads as stopped. */
731f534f 8609 maybe_finish_thread_state.reset ();
388a7084
PA
8610
8611 /* Select innermost stack frame - i.e., current frame is frame 0,
8612 and current location is based on that. Handle the case where the
8613 dummy call is returning after being stopped. E.g. the dummy call
8614 previously hit a breakpoint. (If the dummy call returns
8615 normally, we won't reach here.) Do this before the stop hook is
8616 run, so that it doesn't get to see the temporary dummy frame,
8617 which is not where we'll present the stop. */
8618 if (has_stack_frames ())
8619 {
8620 if (stop_stack_dummy == STOP_STACK_DUMMY)
8621 {
8622 /* Pop the empty frame that contains the stack dummy. This
8623 also restores inferior state prior to the call (struct
8624 infcall_suspend_state). */
8625 struct frame_info *frame = get_current_frame ();
8626
8627 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8628 frame_pop (frame);
8629 /* frame_pop calls reinit_frame_cache as the last thing it
8630 does which means there's now no selected frame. */
8631 }
8632
8633 select_frame (get_current_frame ());
8634
8635 /* Set the current source location. */
8636 set_current_sal_from_frame (get_current_frame ());
8637 }
dd7e2d2b
PA
8638
8639 /* Look up the hook_stop and run it (CLI internally handles problem
8640 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8641 if (stop_command != NULL)
8642 {
2d844eaf 8643 stop_context saved_context;
4c2f2a79 8644
a70b8144 8645 try
bf469271
PA
8646 {
8647 execute_cmd_pre_hook (stop_command);
8648 }
230d2906 8649 catch (const gdb_exception &ex)
bf469271
PA
8650 {
8651 exception_fprintf (gdb_stderr, ex,
8652 "Error while running hook_stop:\n");
8653 }
4c2f2a79
PA
8654
8655 /* If the stop hook resumes the target, then there's no point in
8656 trying to notify about the previous stop; its context is
8657 gone. Likewise if the command switches thread or inferior --
8658 the observers would print a stop for the wrong
8659 thread/inferior. */
2d844eaf
TT
8660 if (saved_context.changed ())
8661 return 1;
4c2f2a79 8662 }
dd7e2d2b 8663
388a7084
PA
8664 /* Notify observers about the stop. This is where the interpreters
8665 print the stop event. */
d7e15655 8666 if (inferior_ptid != null_ptid)
76727919 8667 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8668 stop_print_frame);
8669 else
76727919 8670 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8671
243a9253
PA
8672 annotate_stopped ();
8673
48844aa6
PA
8674 if (target_has_execution)
8675 {
8676 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8677 && last.kind != TARGET_WAITKIND_EXITED
8678 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8679 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8680 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8681 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8682 }
6c95b8df
PA
8683
8684 /* Try to get rid of automatically added inferiors that are no
8685 longer needed. Keeping those around slows down things linearly.
8686 Note that this never removes the current inferior. */
8687 prune_inferiors ();
4c2f2a79
PA
8688
8689 return 0;
c906108c 8690}
c906108c 8691\f
c5aa993b 8692int
96baa820 8693signal_stop_state (int signo)
c906108c 8694{
d6b48e9c 8695 return signal_stop[signo];
c906108c
SS
8696}
8697
c5aa993b 8698int
96baa820 8699signal_print_state (int signo)
c906108c
SS
8700{
8701 return signal_print[signo];
8702}
8703
c5aa993b 8704int
96baa820 8705signal_pass_state (int signo)
c906108c
SS
8706{
8707 return signal_program[signo];
8708}
8709
2455069d
UW
8710static void
8711signal_cache_update (int signo)
8712{
8713 if (signo == -1)
8714 {
a493e3e2 8715 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8716 signal_cache_update (signo);
8717
8718 return;
8719 }
8720
8721 signal_pass[signo] = (signal_stop[signo] == 0
8722 && signal_print[signo] == 0
ab04a2af
TT
8723 && signal_program[signo] == 1
8724 && signal_catch[signo] == 0);
2455069d
UW
8725}
8726
488f131b 8727int
7bda5e4a 8728signal_stop_update (int signo, int state)
d4f3574e
SS
8729{
8730 int ret = signal_stop[signo];
abbb1732 8731
d4f3574e 8732 signal_stop[signo] = state;
2455069d 8733 signal_cache_update (signo);
d4f3574e
SS
8734 return ret;
8735}
8736
488f131b 8737int
7bda5e4a 8738signal_print_update (int signo, int state)
d4f3574e
SS
8739{
8740 int ret = signal_print[signo];
abbb1732 8741
d4f3574e 8742 signal_print[signo] = state;
2455069d 8743 signal_cache_update (signo);
d4f3574e
SS
8744 return ret;
8745}
8746
488f131b 8747int
7bda5e4a 8748signal_pass_update (int signo, int state)
d4f3574e
SS
8749{
8750 int ret = signal_program[signo];
abbb1732 8751
d4f3574e 8752 signal_program[signo] = state;
2455069d 8753 signal_cache_update (signo);
d4f3574e
SS
8754 return ret;
8755}
8756
ab04a2af
TT
8757/* Update the global 'signal_catch' from INFO and notify the
8758 target. */
8759
8760void
8761signal_catch_update (const unsigned int *info)
8762{
8763 int i;
8764
8765 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8766 signal_catch[i] = info[i] > 0;
8767 signal_cache_update (-1);
adc6a863 8768 target_pass_signals (signal_pass);
ab04a2af
TT
8769}
8770
c906108c 8771static void
96baa820 8772sig_print_header (void)
c906108c 8773{
3e43a32a
MS
8774 printf_filtered (_("Signal Stop\tPrint\tPass "
8775 "to program\tDescription\n"));
c906108c
SS
8776}
8777
8778static void
2ea28649 8779sig_print_info (enum gdb_signal oursig)
c906108c 8780{
2ea28649 8781 const char *name = gdb_signal_to_name (oursig);
c906108c 8782 int name_padding = 13 - strlen (name);
96baa820 8783
c906108c
SS
8784 if (name_padding <= 0)
8785 name_padding = 0;
8786
8787 printf_filtered ("%s", name);
488f131b 8788 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8789 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8790 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8791 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8792 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8793}
8794
8795/* Specify how various signals in the inferior should be handled. */
8796
8797static void
0b39b52e 8798handle_command (const char *args, int from_tty)
c906108c 8799{
c906108c 8800 int digits, wordlen;
b926417a 8801 int sigfirst, siglast;
2ea28649 8802 enum gdb_signal oursig;
c906108c 8803 int allsigs;
c906108c
SS
8804
8805 if (args == NULL)
8806 {
e2e0b3e5 8807 error_no_arg (_("signal to handle"));
c906108c
SS
8808 }
8809
1777feb0 8810 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8811
adc6a863
PA
8812 const size_t nsigs = GDB_SIGNAL_LAST;
8813 unsigned char sigs[nsigs] {};
c906108c 8814
1777feb0 8815 /* Break the command line up into args. */
c906108c 8816
773a1edc 8817 gdb_argv built_argv (args);
c906108c
SS
8818
8819 /* Walk through the args, looking for signal oursigs, signal names, and
8820 actions. Signal numbers and signal names may be interspersed with
8821 actions, with the actions being performed for all signals cumulatively
1777feb0 8822 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8823
773a1edc 8824 for (char *arg : built_argv)
c906108c 8825 {
773a1edc
TT
8826 wordlen = strlen (arg);
8827 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8828 {;
8829 }
8830 allsigs = 0;
8831 sigfirst = siglast = -1;
8832
773a1edc 8833 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8834 {
8835 /* Apply action to all signals except those used by the
1777feb0 8836 debugger. Silently skip those. */
c906108c
SS
8837 allsigs = 1;
8838 sigfirst = 0;
8839 siglast = nsigs - 1;
8840 }
773a1edc 8841 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8842 {
8843 SET_SIGS (nsigs, sigs, signal_stop);
8844 SET_SIGS (nsigs, sigs, signal_print);
8845 }
773a1edc 8846 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8847 {
8848 UNSET_SIGS (nsigs, sigs, signal_program);
8849 }
773a1edc 8850 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8851 {
8852 SET_SIGS (nsigs, sigs, signal_print);
8853 }
773a1edc 8854 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8855 {
8856 SET_SIGS (nsigs, sigs, signal_program);
8857 }
773a1edc 8858 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8859 {
8860 UNSET_SIGS (nsigs, sigs, signal_stop);
8861 }
773a1edc 8862 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8863 {
8864 SET_SIGS (nsigs, sigs, signal_program);
8865 }
773a1edc 8866 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8867 {
8868 UNSET_SIGS (nsigs, sigs, signal_print);
8869 UNSET_SIGS (nsigs, sigs, signal_stop);
8870 }
773a1edc 8871 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8872 {
8873 UNSET_SIGS (nsigs, sigs, signal_program);
8874 }
8875 else if (digits > 0)
8876 {
8877 /* It is numeric. The numeric signal refers to our own
8878 internal signal numbering from target.h, not to host/target
8879 signal number. This is a feature; users really should be
8880 using symbolic names anyway, and the common ones like
8881 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8882
8883 sigfirst = siglast = (int)
773a1edc
TT
8884 gdb_signal_from_command (atoi (arg));
8885 if (arg[digits] == '-')
c906108c
SS
8886 {
8887 siglast = (int)
773a1edc 8888 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8889 }
8890 if (sigfirst > siglast)
8891 {
1777feb0 8892 /* Bet he didn't figure we'd think of this case... */
b926417a 8893 std::swap (sigfirst, siglast);
c906108c
SS
8894 }
8895 }
8896 else
8897 {
773a1edc 8898 oursig = gdb_signal_from_name (arg);
a493e3e2 8899 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8900 {
8901 sigfirst = siglast = (int) oursig;
8902 }
8903 else
8904 {
8905 /* Not a number and not a recognized flag word => complain. */
773a1edc 8906 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8907 }
8908 }
8909
8910 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8911 which signals to apply actions to. */
c906108c 8912
b926417a 8913 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8914 {
2ea28649 8915 switch ((enum gdb_signal) signum)
c906108c 8916 {
a493e3e2
PA
8917 case GDB_SIGNAL_TRAP:
8918 case GDB_SIGNAL_INT:
c906108c
SS
8919 if (!allsigs && !sigs[signum])
8920 {
9e2f0ad4 8921 if (query (_("%s is used by the debugger.\n\
3e43a32a 8922Are you sure you want to change it? "),
2ea28649 8923 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8924 {
8925 sigs[signum] = 1;
8926 }
8927 else
c119e040 8928 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8929 }
8930 break;
a493e3e2
PA
8931 case GDB_SIGNAL_0:
8932 case GDB_SIGNAL_DEFAULT:
8933 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8934 /* Make sure that "all" doesn't print these. */
8935 break;
8936 default:
8937 sigs[signum] = 1;
8938 break;
8939 }
8940 }
c906108c
SS
8941 }
8942
b926417a 8943 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8944 if (sigs[signum])
8945 {
2455069d 8946 signal_cache_update (-1);
adc6a863
PA
8947 target_pass_signals (signal_pass);
8948 target_program_signals (signal_program);
c906108c 8949
3a031f65
PA
8950 if (from_tty)
8951 {
8952 /* Show the results. */
8953 sig_print_header ();
8954 for (; signum < nsigs; signum++)
8955 if (sigs[signum])
aead7601 8956 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8957 }
8958
8959 break;
8960 }
c906108c
SS
8961}
8962
de0bea00
MF
8963/* Complete the "handle" command. */
8964
eb3ff9a5 8965static void
de0bea00 8966handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8967 completion_tracker &tracker,
6f937416 8968 const char *text, const char *word)
de0bea00 8969{
de0bea00
MF
8970 static const char * const keywords[] =
8971 {
8972 "all",
8973 "stop",
8974 "ignore",
8975 "print",
8976 "pass",
8977 "nostop",
8978 "noignore",
8979 "noprint",
8980 "nopass",
8981 NULL,
8982 };
8983
eb3ff9a5
PA
8984 signal_completer (ignore, tracker, text, word);
8985 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8986}
8987
2ea28649
PA
8988enum gdb_signal
8989gdb_signal_from_command (int num)
ed01b82c
PA
8990{
8991 if (num >= 1 && num <= 15)
2ea28649 8992 return (enum gdb_signal) num;
ed01b82c
PA
8993 error (_("Only signals 1-15 are valid as numeric signals.\n\
8994Use \"info signals\" for a list of symbolic signals."));
8995}
8996
c906108c
SS
8997/* Print current contents of the tables set by the handle command.
8998 It is possible we should just be printing signals actually used
8999 by the current target (but for things to work right when switching
9000 targets, all signals should be in the signal tables). */
9001
9002static void
1d12d88f 9003info_signals_command (const char *signum_exp, int from_tty)
c906108c 9004{
2ea28649 9005 enum gdb_signal oursig;
abbb1732 9006
c906108c
SS
9007 sig_print_header ();
9008
9009 if (signum_exp)
9010 {
9011 /* First see if this is a symbol name. */
2ea28649 9012 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 9013 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
9014 {
9015 /* No, try numeric. */
9016 oursig =
2ea28649 9017 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
9018 }
9019 sig_print_info (oursig);
9020 return;
9021 }
9022
9023 printf_filtered ("\n");
9024 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
9025 for (oursig = GDB_SIGNAL_FIRST;
9026 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 9027 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
9028 {
9029 QUIT;
9030
a493e3e2
PA
9031 if (oursig != GDB_SIGNAL_UNKNOWN
9032 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
9033 sig_print_info (oursig);
9034 }
9035
3e43a32a
MS
9036 printf_filtered (_("\nUse the \"handle\" command "
9037 "to change these tables.\n"));
c906108c 9038}
4aa995e1
PA
9039
9040/* The $_siginfo convenience variable is a bit special. We don't know
9041 for sure the type of the value until we actually have a chance to
7a9dd1b2 9042 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
9043 also dependent on which thread you have selected.
9044
9045 1. making $_siginfo be an internalvar that creates a new value on
9046 access.
9047
9048 2. making the value of $_siginfo be an lval_computed value. */
9049
9050/* This function implements the lval_computed support for reading a
9051 $_siginfo value. */
9052
9053static void
9054siginfo_value_read (struct value *v)
9055{
9056 LONGEST transferred;
9057
a911d87a
PA
9058 /* If we can access registers, so can we access $_siginfo. Likewise
9059 vice versa. */
9060 validate_registers_access ();
c709acd1 9061
4aa995e1 9062 transferred =
8b88a78e 9063 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
9064 NULL,
9065 value_contents_all_raw (v),
9066 value_offset (v),
9067 TYPE_LENGTH (value_type (v)));
9068
9069 if (transferred != TYPE_LENGTH (value_type (v)))
9070 error (_("Unable to read siginfo"));
9071}
9072
9073/* This function implements the lval_computed support for writing a
9074 $_siginfo value. */
9075
9076static void
9077siginfo_value_write (struct value *v, struct value *fromval)
9078{
9079 LONGEST transferred;
9080
a911d87a
PA
9081 /* If we can access registers, so can we access $_siginfo. Likewise
9082 vice versa. */
9083 validate_registers_access ();
c709acd1 9084
8b88a78e 9085 transferred = target_write (current_top_target (),
4aa995e1
PA
9086 TARGET_OBJECT_SIGNAL_INFO,
9087 NULL,
9088 value_contents_all_raw (fromval),
9089 value_offset (v),
9090 TYPE_LENGTH (value_type (fromval)));
9091
9092 if (transferred != TYPE_LENGTH (value_type (fromval)))
9093 error (_("Unable to write siginfo"));
9094}
9095
c8f2448a 9096static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9097 {
9098 siginfo_value_read,
9099 siginfo_value_write
9100 };
9101
9102/* Return a new value with the correct type for the siginfo object of
78267919
UW
9103 the current thread using architecture GDBARCH. Return a void value
9104 if there's no object available. */
4aa995e1 9105
2c0b251b 9106static struct value *
22d2b532
SDJ
9107siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9108 void *ignore)
4aa995e1 9109{
4aa995e1 9110 if (target_has_stack
d7e15655 9111 && inferior_ptid != null_ptid
78267919 9112 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9113 {
78267919 9114 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9115
78267919 9116 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9117 }
9118
78267919 9119 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9120}
9121
c906108c 9122\f
16c381f0
JK
9123/* infcall_suspend_state contains state about the program itself like its
9124 registers and any signal it received when it last stopped.
9125 This state must be restored regardless of how the inferior function call
9126 ends (either successfully, or after it hits a breakpoint or signal)
9127 if the program is to properly continue where it left off. */
9128
6bf78e29 9129class infcall_suspend_state
7a292a7a 9130{
6bf78e29
AB
9131public:
9132 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9133 once the inferior function call has finished. */
9134 infcall_suspend_state (struct gdbarch *gdbarch,
9135 const struct thread_info *tp,
9136 struct regcache *regcache)
9137 : m_thread_suspend (tp->suspend),
9138 m_registers (new readonly_detached_regcache (*regcache))
9139 {
9140 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9141
9142 if (gdbarch_get_siginfo_type_p (gdbarch))
9143 {
9144 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9145 size_t len = TYPE_LENGTH (type);
9146
9147 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9148
9149 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9150 siginfo_data.get (), 0, len) != len)
9151 {
9152 /* Errors ignored. */
9153 siginfo_data.reset (nullptr);
9154 }
9155 }
9156
9157 if (siginfo_data)
9158 {
9159 m_siginfo_gdbarch = gdbarch;
9160 m_siginfo_data = std::move (siginfo_data);
9161 }
9162 }
9163
9164 /* Return a pointer to the stored register state. */
16c381f0 9165
6bf78e29
AB
9166 readonly_detached_regcache *registers () const
9167 {
9168 return m_registers.get ();
9169 }
9170
9171 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9172
9173 void restore (struct gdbarch *gdbarch,
9174 struct thread_info *tp,
9175 struct regcache *regcache) const
9176 {
9177 tp->suspend = m_thread_suspend;
9178
9179 if (m_siginfo_gdbarch == gdbarch)
9180 {
9181 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9182
9183 /* Errors ignored. */
9184 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9185 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9186 }
9187
9188 /* The inferior can be gone if the user types "print exit(0)"
9189 (and perhaps other times). */
9190 if (target_has_execution)
9191 /* NB: The register write goes through to the target. */
9192 regcache->restore (registers ());
9193 }
9194
9195private:
9196 /* How the current thread stopped before the inferior function call was
9197 executed. */
9198 struct thread_suspend_state m_thread_suspend;
9199
9200 /* The registers before the inferior function call was executed. */
9201 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9202
35515841 9203 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9204 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9205
9206 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9207 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9208 content would be invalid. */
6bf78e29 9209 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9210};
9211
cb524840
TT
9212infcall_suspend_state_up
9213save_infcall_suspend_state ()
b89667eb 9214{
b89667eb 9215 struct thread_info *tp = inferior_thread ();
1736ad11 9216 struct regcache *regcache = get_current_regcache ();
ac7936df 9217 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9218
6bf78e29
AB
9219 infcall_suspend_state_up inf_state
9220 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9221
6bf78e29
AB
9222 /* Having saved the current state, adjust the thread state, discarding
9223 any stop signal information. The stop signal is not useful when
9224 starting an inferior function call, and run_inferior_call will not use
9225 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9226 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9227
b89667eb
DE
9228 return inf_state;
9229}
9230
9231/* Restore inferior session state to INF_STATE. */
9232
9233void
16c381f0 9234restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9235{
9236 struct thread_info *tp = inferior_thread ();
1736ad11 9237 struct regcache *regcache = get_current_regcache ();
ac7936df 9238 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9239
6bf78e29 9240 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9241 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9242}
9243
b89667eb 9244void
16c381f0 9245discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9246{
dd848631 9247 delete inf_state;
b89667eb
DE
9248}
9249
daf6667d 9250readonly_detached_regcache *
16c381f0 9251get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9252{
6bf78e29 9253 return inf_state->registers ();
b89667eb
DE
9254}
9255
16c381f0
JK
9256/* infcall_control_state contains state regarding gdb's control of the
9257 inferior itself like stepping control. It also contains session state like
9258 the user's currently selected frame. */
b89667eb 9259
16c381f0 9260struct infcall_control_state
b89667eb 9261{
16c381f0
JK
9262 struct thread_control_state thread_control;
9263 struct inferior_control_state inferior_control;
d82142e2
JK
9264
9265 /* Other fields: */
ee841dd8
TT
9266 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9267 int stopped_by_random_signal = 0;
7a292a7a 9268
b89667eb 9269 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9270 struct frame_id selected_frame_id {};
7a292a7a
SS
9271};
9272
c906108c 9273/* Save all of the information associated with the inferior<==>gdb
b89667eb 9274 connection. */
c906108c 9275
cb524840
TT
9276infcall_control_state_up
9277save_infcall_control_state ()
c906108c 9278{
cb524840 9279 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9280 struct thread_info *tp = inferior_thread ();
d6b48e9c 9281 struct inferior *inf = current_inferior ();
7a292a7a 9282
16c381f0
JK
9283 inf_status->thread_control = tp->control;
9284 inf_status->inferior_control = inf->control;
d82142e2 9285
8358c15c 9286 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9287 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9288
16c381f0
JK
9289 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9290 chain. If caller's caller is walking the chain, they'll be happier if we
9291 hand them back the original chain when restore_infcall_control_state is
9292 called. */
9293 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9294
9295 /* Other fields: */
9296 inf_status->stop_stack_dummy = stop_stack_dummy;
9297 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9298
206415a3 9299 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9300
7a292a7a 9301 return inf_status;
c906108c
SS
9302}
9303
bf469271
PA
9304static void
9305restore_selected_frame (const frame_id &fid)
c906108c 9306{
bf469271 9307 frame_info *frame = frame_find_by_id (fid);
c906108c 9308
aa0cd9c1
AC
9309 /* If inf_status->selected_frame_id is NULL, there was no previously
9310 selected frame. */
101dcfbe 9311 if (frame == NULL)
c906108c 9312 {
8a3fe4f8 9313 warning (_("Unable to restore previously selected frame."));
bf469271 9314 return;
c906108c
SS
9315 }
9316
0f7d239c 9317 select_frame (frame);
c906108c
SS
9318}
9319
b89667eb
DE
9320/* Restore inferior session state to INF_STATUS. */
9321
c906108c 9322void
16c381f0 9323restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9324{
4e1c45ea 9325 struct thread_info *tp = inferior_thread ();
d6b48e9c 9326 struct inferior *inf = current_inferior ();
4e1c45ea 9327
8358c15c
JK
9328 if (tp->control.step_resume_breakpoint)
9329 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9330
5b79abe7
TT
9331 if (tp->control.exception_resume_breakpoint)
9332 tp->control.exception_resume_breakpoint->disposition
9333 = disp_del_at_next_stop;
9334
d82142e2 9335 /* Handle the bpstat_copy of the chain. */
16c381f0 9336 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9337
16c381f0
JK
9338 tp->control = inf_status->thread_control;
9339 inf->control = inf_status->inferior_control;
d82142e2
JK
9340
9341 /* Other fields: */
9342 stop_stack_dummy = inf_status->stop_stack_dummy;
9343 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9344
b89667eb 9345 if (target_has_stack)
c906108c 9346 {
bf469271 9347 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9348 walking the stack might encounter a garbage pointer and
9349 error() trying to dereference it. */
a70b8144 9350 try
bf469271
PA
9351 {
9352 restore_selected_frame (inf_status->selected_frame_id);
9353 }
230d2906 9354 catch (const gdb_exception_error &ex)
bf469271
PA
9355 {
9356 exception_fprintf (gdb_stderr, ex,
9357 "Unable to restore previously selected frame:\n");
9358 /* Error in restoring the selected frame. Select the
9359 innermost frame. */
9360 select_frame (get_current_frame ());
9361 }
c906108c 9362 }
c906108c 9363
ee841dd8 9364 delete inf_status;
7a292a7a 9365}
c906108c
SS
9366
9367void
16c381f0 9368discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9369{
8358c15c
JK
9370 if (inf_status->thread_control.step_resume_breakpoint)
9371 inf_status->thread_control.step_resume_breakpoint->disposition
9372 = disp_del_at_next_stop;
9373
5b79abe7
TT
9374 if (inf_status->thread_control.exception_resume_breakpoint)
9375 inf_status->thread_control.exception_resume_breakpoint->disposition
9376 = disp_del_at_next_stop;
9377
1777feb0 9378 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9379 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9380
ee841dd8 9381 delete inf_status;
7a292a7a 9382}
b89667eb 9383\f
7f89fd65 9384/* See infrun.h. */
0c557179
SDJ
9385
9386void
9387clear_exit_convenience_vars (void)
9388{
9389 clear_internalvar (lookup_internalvar ("_exitsignal"));
9390 clear_internalvar (lookup_internalvar ("_exitcode"));
9391}
c5aa993b 9392\f
488f131b 9393
b2175913
MS
9394/* User interface for reverse debugging:
9395 Set exec-direction / show exec-direction commands
9396 (returns error unless target implements to_set_exec_direction method). */
9397
170742de 9398enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9399static const char exec_forward[] = "forward";
9400static const char exec_reverse[] = "reverse";
9401static const char *exec_direction = exec_forward;
40478521 9402static const char *const exec_direction_names[] = {
b2175913
MS
9403 exec_forward,
9404 exec_reverse,
9405 NULL
9406};
9407
9408static void
eb4c3f4a 9409set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9410 struct cmd_list_element *cmd)
9411{
9412 if (target_can_execute_reverse)
9413 {
9414 if (!strcmp (exec_direction, exec_forward))
9415 execution_direction = EXEC_FORWARD;
9416 else if (!strcmp (exec_direction, exec_reverse))
9417 execution_direction = EXEC_REVERSE;
9418 }
8bbed405
MS
9419 else
9420 {
9421 exec_direction = exec_forward;
9422 error (_("Target does not support this operation."));
9423 }
b2175913
MS
9424}
9425
9426static void
9427show_exec_direction_func (struct ui_file *out, int from_tty,
9428 struct cmd_list_element *cmd, const char *value)
9429{
9430 switch (execution_direction) {
9431 case EXEC_FORWARD:
9432 fprintf_filtered (out, _("Forward.\n"));
9433 break;
9434 case EXEC_REVERSE:
9435 fprintf_filtered (out, _("Reverse.\n"));
9436 break;
b2175913 9437 default:
d8b34453
PA
9438 internal_error (__FILE__, __LINE__,
9439 _("bogus execution_direction value: %d"),
9440 (int) execution_direction);
b2175913
MS
9441 }
9442}
9443
d4db2f36
PA
9444static void
9445show_schedule_multiple (struct ui_file *file, int from_tty,
9446 struct cmd_list_element *c, const char *value)
9447{
3e43a32a
MS
9448 fprintf_filtered (file, _("Resuming the execution of threads "
9449 "of all processes is %s.\n"), value);
d4db2f36 9450}
ad52ddc6 9451
22d2b532
SDJ
9452/* Implementation of `siginfo' variable. */
9453
9454static const struct internalvar_funcs siginfo_funcs =
9455{
9456 siginfo_make_value,
9457 NULL,
9458 NULL
9459};
9460
372316f1
PA
9461/* Callback for infrun's target events source. This is marked when a
9462 thread has a pending status to process. */
9463
9464static void
9465infrun_async_inferior_event_handler (gdb_client_data data)
9466{
b1a35af2 9467 inferior_event_handler (INF_REG_EVENT);
372316f1
PA
9468}
9469
6c265988 9470void _initialize_infrun ();
c906108c 9471void
6c265988 9472_initialize_infrun ()
c906108c 9473{
de0bea00 9474 struct cmd_list_element *c;
c906108c 9475
372316f1
PA
9476 /* Register extra event sources in the event loop. */
9477 infrun_async_inferior_event_token
9478 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9479
11db9430 9480 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9481What debugger does when program gets various signals.\n\
9482Specify a signal as argument to print info on that signal only."));
c906108c
SS
9483 add_info_alias ("handle", "signals", 0);
9484
de0bea00 9485 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9486Specify how to handle signals.\n\
486c7739 9487Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9488Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9489If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9490will be displayed instead.\n\
9491\n\
c906108c
SS
9492Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9493from 1-15 are allowed for compatibility with old versions of GDB.\n\
9494Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9495The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9496used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9497\n\
1bedd215 9498Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9499\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9500Stop means reenter debugger if this signal happens (implies print).\n\
9501Print means print a message if this signal happens.\n\
9502Pass means let program see this signal; otherwise program doesn't know.\n\
9503Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9504Pass and Stop may be combined.\n\
9505\n\
9506Multiple signals may be specified. Signal numbers and signal names\n\
9507may be interspersed with actions, with the actions being performed for\n\
9508all signals cumulatively specified."));
de0bea00 9509 set_cmd_completer (c, handle_completer);
486c7739 9510
c906108c 9511 if (!dbx_commands)
1a966eab
AC
9512 stop_command = add_cmd ("stop", class_obscure,
9513 not_just_help_class_command, _("\
9514There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9515This allows you to set a list of commands to be run each time execution\n\
1a966eab 9516of the program stops."), &cmdlist);
c906108c 9517
ccce17b0 9518 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9519Set inferior debugging."), _("\
9520Show inferior debugging."), _("\
9521When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9522 NULL,
9523 show_debug_infrun,
9524 &setdebuglist, &showdebuglist);
527159b7 9525
3e43a32a
MS
9526 add_setshow_boolean_cmd ("displaced", class_maintenance,
9527 &debug_displaced, _("\
237fc4c9
PA
9528Set displaced stepping debugging."), _("\
9529Show displaced stepping debugging."), _("\
9530When non-zero, displaced stepping specific debugging is enabled."),
9531 NULL,
9532 show_debug_displaced,
9533 &setdebuglist, &showdebuglist);
9534
ad52ddc6
PA
9535 add_setshow_boolean_cmd ("non-stop", no_class,
9536 &non_stop_1, _("\
9537Set whether gdb controls the inferior in non-stop mode."), _("\
9538Show whether gdb controls the inferior in non-stop mode."), _("\
9539When debugging a multi-threaded program and this setting is\n\
9540off (the default, also called all-stop mode), when one thread stops\n\
9541(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9542all other threads in the program while you interact with the thread of\n\
9543interest. When you continue or step a thread, you can allow the other\n\
9544threads to run, or have them remain stopped, but while you inspect any\n\
9545thread's state, all threads stop.\n\
9546\n\
9547In non-stop mode, when one thread stops, other threads can continue\n\
9548to run freely. You'll be able to step each thread independently,\n\
9549leave it stopped or free to run as needed."),
9550 set_non_stop,
9551 show_non_stop,
9552 &setlist,
9553 &showlist);
9554
adc6a863 9555 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9556 {
9557 signal_stop[i] = 1;
9558 signal_print[i] = 1;
9559 signal_program[i] = 1;
ab04a2af 9560 signal_catch[i] = 0;
c906108c
SS
9561 }
9562
4d9d9d04
PA
9563 /* Signals caused by debugger's own actions should not be given to
9564 the program afterwards.
9565
9566 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9567 explicitly specifies that it should be delivered to the target
9568 program. Typically, that would occur when a user is debugging a
9569 target monitor on a simulator: the target monitor sets a
9570 breakpoint; the simulator encounters this breakpoint and halts
9571 the simulation handing control to GDB; GDB, noting that the stop
9572 address doesn't map to any known breakpoint, returns control back
9573 to the simulator; the simulator then delivers the hardware
9574 equivalent of a GDB_SIGNAL_TRAP to the program being
9575 debugged. */
a493e3e2
PA
9576 signal_program[GDB_SIGNAL_TRAP] = 0;
9577 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9578
9579 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9580 signal_stop[GDB_SIGNAL_ALRM] = 0;
9581 signal_print[GDB_SIGNAL_ALRM] = 0;
9582 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9583 signal_print[GDB_SIGNAL_VTALRM] = 0;
9584 signal_stop[GDB_SIGNAL_PROF] = 0;
9585 signal_print[GDB_SIGNAL_PROF] = 0;
9586 signal_stop[GDB_SIGNAL_CHLD] = 0;
9587 signal_print[GDB_SIGNAL_CHLD] = 0;
9588 signal_stop[GDB_SIGNAL_IO] = 0;
9589 signal_print[GDB_SIGNAL_IO] = 0;
9590 signal_stop[GDB_SIGNAL_POLL] = 0;
9591 signal_print[GDB_SIGNAL_POLL] = 0;
9592 signal_stop[GDB_SIGNAL_URG] = 0;
9593 signal_print[GDB_SIGNAL_URG] = 0;
9594 signal_stop[GDB_SIGNAL_WINCH] = 0;
9595 signal_print[GDB_SIGNAL_WINCH] = 0;
9596 signal_stop[GDB_SIGNAL_PRIO] = 0;
9597 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9598
cd0fc7c3
SS
9599 /* These signals are used internally by user-level thread
9600 implementations. (See signal(5) on Solaris.) Like the above
9601 signals, a healthy program receives and handles them as part of
9602 its normal operation. */
a493e3e2
PA
9603 signal_stop[GDB_SIGNAL_LWP] = 0;
9604 signal_print[GDB_SIGNAL_LWP] = 0;
9605 signal_stop[GDB_SIGNAL_WAITING] = 0;
9606 signal_print[GDB_SIGNAL_WAITING] = 0;
9607 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9608 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9609 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9610 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9611
2455069d
UW
9612 /* Update cached state. */
9613 signal_cache_update (-1);
9614
85c07804
AC
9615 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9616 &stop_on_solib_events, _("\
9617Set stopping for shared library events."), _("\
9618Show stopping for shared library events."), _("\
c906108c
SS
9619If nonzero, gdb will give control to the user when the dynamic linker\n\
9620notifies gdb of shared library events. The most common event of interest\n\
85c07804 9621to the user would be loading/unloading of a new library."),
f9e14852 9622 set_stop_on_solib_events,
920d2a44 9623 show_stop_on_solib_events,
85c07804 9624 &setlist, &showlist);
c906108c 9625
7ab04401
AC
9626 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9627 follow_fork_mode_kind_names,
9628 &follow_fork_mode_string, _("\
9629Set debugger response to a program call of fork or vfork."), _("\
9630Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9631A fork or vfork creates a new process. follow-fork-mode can be:\n\
9632 parent - the original process is debugged after a fork\n\
9633 child - the new process is debugged after a fork\n\
ea1dd7bc 9634The unfollowed process will continue to run.\n\
7ab04401
AC
9635By default, the debugger will follow the parent process."),
9636 NULL,
920d2a44 9637 show_follow_fork_mode_string,
7ab04401
AC
9638 &setlist, &showlist);
9639
6c95b8df
PA
9640 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9641 follow_exec_mode_names,
9642 &follow_exec_mode_string, _("\
9643Set debugger response to a program call of exec."), _("\
9644Show debugger response to a program call of exec."), _("\
9645An exec call replaces the program image of a process.\n\
9646\n\
9647follow-exec-mode can be:\n\
9648\n\
cce7e648 9649 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9650to this new inferior. The program the process was running before\n\
9651the exec call can be restarted afterwards by restarting the original\n\
9652inferior.\n\
9653\n\
9654 same - the debugger keeps the process bound to the same inferior.\n\
9655The new executable image replaces the previous executable loaded in\n\
9656the inferior. Restarting the inferior after the exec call restarts\n\
9657the executable the process was running after the exec call.\n\
9658\n\
9659By default, the debugger will use the same inferior."),
9660 NULL,
9661 show_follow_exec_mode_string,
9662 &setlist, &showlist);
9663
7ab04401
AC
9664 add_setshow_enum_cmd ("scheduler-locking", class_run,
9665 scheduler_enums, &scheduler_mode, _("\
9666Set mode for locking scheduler during execution."), _("\
9667Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9668off == no locking (threads may preempt at any time)\n\
9669on == full locking (no thread except the current thread may run)\n\
9670 This applies to both normal execution and replay mode.\n\
9671step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9672 In this mode, other threads may run during other commands.\n\
9673 This applies to both normal execution and replay mode.\n\
9674replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9675 set_schedlock_func, /* traps on target vector */
920d2a44 9676 show_scheduler_mode,
7ab04401 9677 &setlist, &showlist);
5fbbeb29 9678
d4db2f36
PA
9679 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9680Set mode for resuming threads of all processes."), _("\
9681Show mode for resuming threads of all processes."), _("\
9682When on, execution commands (such as 'continue' or 'next') resume all\n\
9683threads of all processes. When off (which is the default), execution\n\
9684commands only resume the threads of the current process. The set of\n\
9685threads that are resumed is further refined by the scheduler-locking\n\
9686mode (see help set scheduler-locking)."),
9687 NULL,
9688 show_schedule_multiple,
9689 &setlist, &showlist);
9690
5bf193a2
AC
9691 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9692Set mode of the step operation."), _("\
9693Show mode of the step operation."), _("\
9694When set, doing a step over a function without debug line information\n\
9695will stop at the first instruction of that function. Otherwise, the\n\
9696function is skipped and the step command stops at a different source line."),
9697 NULL,
920d2a44 9698 show_step_stop_if_no_debug,
5bf193a2 9699 &setlist, &showlist);
ca6724c1 9700
72d0e2c5
YQ
9701 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9702 &can_use_displaced_stepping, _("\
237fc4c9
PA
9703Set debugger's willingness to use displaced stepping."), _("\
9704Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9705If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9706supported by the target architecture. If off, gdb will not use displaced\n\
9707stepping to step over breakpoints, even if such is supported by the target\n\
9708architecture. If auto (which is the default), gdb will use displaced stepping\n\
9709if the target architecture supports it and non-stop mode is active, but will not\n\
9710use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9711 NULL,
9712 show_can_use_displaced_stepping,
9713 &setlist, &showlist);
237fc4c9 9714
b2175913
MS
9715 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9716 &exec_direction, _("Set direction of execution.\n\
9717Options are 'forward' or 'reverse'."),
9718 _("Show direction of execution (forward/reverse)."),
9719 _("Tells gdb whether to execute forward or backward."),
9720 set_exec_direction_func, show_exec_direction_func,
9721 &setlist, &showlist);
9722
6c95b8df
PA
9723 /* Set/show detach-on-fork: user-settable mode. */
9724
9725 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9726Set whether gdb will detach the child of a fork."), _("\
9727Show whether gdb will detach the child of a fork."), _("\
9728Tells gdb whether to detach the child of a fork."),
9729 NULL, NULL, &setlist, &showlist);
9730
03583c20
UW
9731 /* Set/show disable address space randomization mode. */
9732
9733 add_setshow_boolean_cmd ("disable-randomization", class_support,
9734 &disable_randomization, _("\
9735Set disabling of debuggee's virtual address space randomization."), _("\
9736Show disabling of debuggee's virtual address space randomization."), _("\
9737When this mode is on (which is the default), randomization of the virtual\n\
9738address space is disabled. Standalone programs run with the randomization\n\
9739enabled by default on some platforms."),
9740 &set_disable_randomization,
9741 &show_disable_randomization,
9742 &setlist, &showlist);
9743
ca6724c1 9744 /* ptid initializations */
ca6724c1
KB
9745 inferior_ptid = null_ptid;
9746 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9747
76727919
TT
9748 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9749 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9750 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9751 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9752
9753 /* Explicitly create without lookup, since that tries to create a
9754 value with a void typed value, and when we get here, gdbarch
9755 isn't initialized yet. At this point, we're quite sure there
9756 isn't another convenience variable of the same name. */
22d2b532 9757 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9758
9759 add_setshow_boolean_cmd ("observer", no_class,
9760 &observer_mode_1, _("\
9761Set whether gdb controls the inferior in observer mode."), _("\
9762Show whether gdb controls the inferior in observer mode."), _("\
9763In observer mode, GDB can get data from the inferior, but not\n\
9764affect its execution. Registers and memory may not be changed,\n\
9765breakpoints may not be set, and the program cannot be interrupted\n\
9766or signalled."),
9767 set_observer_mode,
9768 show_observer_mode,
9769 &setlist,
9770 &showlist);
c906108c 9771}
This page took 2.819236 seconds and 4 git commands to generate.