mm: mark mm-inline functions as __always_inline
[deliverable/linux.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
01fc0ac1 18#include <generated/bounds.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
35fca53e 33 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
47118af0
MN
38enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
60 MIGRATE_ISOLATE, /* can't allocate from here */
61 MIGRATE_TYPES
62};
63
64#ifdef CONFIG_CMA
65# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
49f223a9 66# define cma_wmark_pages(zone) zone->min_cma_pages
47118af0
MN
67#else
68# define is_migrate_cma(migratetype) false
49f223a9 69# define cma_wmark_pages(zone) 0
47118af0 70#endif
b2a0ac88
MG
71
72#define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
467c996c
MG
76extern int page_group_by_mobility_disabled;
77
78static inline int get_pageblock_migratetype(struct page *page)
79{
467c996c
MG
80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81}
82
1da177e4 83struct free_area {
b2a0ac88 84 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
85 unsigned long nr_free;
86};
87
88struct pglist_data;
89
90/*
91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92 * So add a wild amount of padding here to ensure that they fall into separate
93 * cachelines. There are very few zone structures in the machine, so space
94 * consumption is not a concern here.
95 */
96#if defined(CONFIG_SMP)
97struct zone_padding {
98 char x[0];
22fc6ecc 99} ____cacheline_internodealigned_in_smp;
1da177e4
LT
100#define ZONE_PADDING(name) struct zone_padding name;
101#else
102#define ZONE_PADDING(name)
103#endif
104
2244b95a 105enum zone_stat_item {
51ed4491 106 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 107 NR_FREE_PAGES,
b69408e8 108 NR_LRU_BASE,
4f98a2fe
RR
109 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
110 NR_ACTIVE_ANON, /* " " " " " */
111 NR_INACTIVE_FILE, /* " " " " " */
112 NR_ACTIVE_FILE, /* " " " " " */
894bc310 113 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 114 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
115 NR_ANON_PAGES, /* Mapped anonymous pages */
116 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 117 only modified from process context */
347ce434 118 NR_FILE_PAGES,
b1e7a8fd 119 NR_FILE_DIRTY,
ce866b34 120 NR_WRITEBACK,
51ed4491
CL
121 NR_SLAB_RECLAIMABLE,
122 NR_SLAB_UNRECLAIMABLE,
123 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
124 NR_KERNEL_STACK,
125 /* Second 128 byte cacheline */
fd39fc85 126 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 127 NR_BOUNCE,
e129b5c2 128 NR_VMSCAN_WRITE,
49ea7eb6 129 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
fc3ba692 130 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
131 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
132 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 133 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
134 NR_DIRTIED, /* page dirtyings since bootup */
135 NR_WRITTEN, /* page writings since bootup */
ca889e6c
CL
136#ifdef CONFIG_NUMA
137 NUMA_HIT, /* allocated in intended node */
138 NUMA_MISS, /* allocated in non intended node */
139 NUMA_FOREIGN, /* was intended here, hit elsewhere */
140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
141 NUMA_LOCAL, /* allocation from local node */
142 NUMA_OTHER, /* allocation from other node */
143#endif
79134171 144 NR_ANON_TRANSPARENT_HUGEPAGES,
2244b95a
CL
145 NR_VM_ZONE_STAT_ITEMS };
146
4f98a2fe
RR
147/*
148 * We do arithmetic on the LRU lists in various places in the code,
149 * so it is important to keep the active lists LRU_ACTIVE higher in
150 * the array than the corresponding inactive lists, and to keep
151 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
152 *
153 * This has to be kept in sync with the statistics in zone_stat_item
154 * above and the descriptions in vmstat_text in mm/vmstat.c
155 */
156#define LRU_BASE 0
157#define LRU_ACTIVE 1
158#define LRU_FILE 2
159
b69408e8 160enum lru_list {
4f98a2fe
RR
161 LRU_INACTIVE_ANON = LRU_BASE,
162 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
163 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
164 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 165 LRU_UNEVICTABLE,
894bc310
LS
166 NR_LRU_LISTS
167};
b69408e8 168
4111304d 169#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 170
4111304d 171#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 172
4111304d 173static inline int is_file_lru(enum lru_list lru)
4f98a2fe 174{
4111304d 175 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
176}
177
4111304d 178static inline int is_active_lru(enum lru_list lru)
b69408e8 179{
4111304d 180 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
181}
182
4111304d 183static inline int is_unevictable_lru(enum lru_list lru)
894bc310 184{
4111304d 185 return (lru == LRU_UNEVICTABLE);
894bc310
LS
186}
187
89abfab1
HD
188struct zone_reclaim_stat {
189 /*
190 * The pageout code in vmscan.c keeps track of how many of the
191 * mem/swap backed and file backed pages are refeferenced.
192 * The higher the rotated/scanned ratio, the more valuable
193 * that cache is.
194 *
195 * The anon LRU stats live in [0], file LRU stats in [1]
196 */
197 unsigned long recent_rotated[2];
198 unsigned long recent_scanned[2];
199};
200
6290df54
JW
201struct lruvec {
202 struct list_head lists[NR_LRU_LISTS];
89abfab1 203 struct zone_reclaim_stat reclaim_stat;
6290df54
JW
204};
205
bb2a0de9
KH
206/* Mask used at gathering information at once (see memcontrol.c) */
207#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
208#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
209#define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
210#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
211
4356f21d
MK
212/* Isolate inactive pages */
213#define ISOLATE_INACTIVE ((__force isolate_mode_t)0x1)
214/* Isolate active pages */
215#define ISOLATE_ACTIVE ((__force isolate_mode_t)0x2)
39deaf85
MK
216/* Isolate clean file */
217#define ISOLATE_CLEAN ((__force isolate_mode_t)0x4)
f80c0673
MK
218/* Isolate unmapped file */
219#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x8)
c8244935
MG
220/* Isolate for asynchronous migration */
221#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x10)
4356f21d
MK
222
223/* LRU Isolation modes. */
224typedef unsigned __bitwise__ isolate_mode_t;
225
41858966
MG
226enum zone_watermarks {
227 WMARK_MIN,
228 WMARK_LOW,
229 WMARK_HIGH,
230 NR_WMARK
231};
232
233#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
234#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
235#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
236
1da177e4
LT
237struct per_cpu_pages {
238 int count; /* number of pages in the list */
1da177e4
LT
239 int high; /* high watermark, emptying needed */
240 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
241
242 /* Lists of pages, one per migrate type stored on the pcp-lists */
243 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
244};
245
246struct per_cpu_pageset {
3dfa5721 247 struct per_cpu_pages pcp;
4037d452
CL
248#ifdef CONFIG_NUMA
249 s8 expire;
250#endif
2244b95a 251#ifdef CONFIG_SMP
df9ecaba 252 s8 stat_threshold;
2244b95a
CL
253 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
254#endif
99dcc3e5 255};
e7c8d5c9 256
97965478
CL
257#endif /* !__GENERATING_BOUNDS.H */
258
2f1b6248 259enum zone_type {
4b51d669 260#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
261 /*
262 * ZONE_DMA is used when there are devices that are not able
263 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
264 * carve out the portion of memory that is needed for these devices.
265 * The range is arch specific.
266 *
267 * Some examples
268 *
269 * Architecture Limit
270 * ---------------------------
271 * parisc, ia64, sparc <4G
272 * s390 <2G
2f1b6248
CL
273 * arm Various
274 * alpha Unlimited or 0-16MB.
275 *
276 * i386, x86_64 and multiple other arches
277 * <16M.
278 */
279 ZONE_DMA,
4b51d669 280#endif
fb0e7942 281#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
282 /*
283 * x86_64 needs two ZONE_DMAs because it supports devices that are
284 * only able to do DMA to the lower 16M but also 32 bit devices that
285 * can only do DMA areas below 4G.
286 */
287 ZONE_DMA32,
fb0e7942 288#endif
2f1b6248
CL
289 /*
290 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
291 * performed on pages in ZONE_NORMAL if the DMA devices support
292 * transfers to all addressable memory.
293 */
294 ZONE_NORMAL,
e53ef38d 295#ifdef CONFIG_HIGHMEM
2f1b6248
CL
296 /*
297 * A memory area that is only addressable by the kernel through
298 * mapping portions into its own address space. This is for example
299 * used by i386 to allow the kernel to address the memory beyond
300 * 900MB. The kernel will set up special mappings (page
301 * table entries on i386) for each page that the kernel needs to
302 * access.
303 */
304 ZONE_HIGHMEM,
e53ef38d 305#endif
2a1e274a 306 ZONE_MOVABLE,
97965478 307 __MAX_NR_ZONES
2f1b6248 308};
1da177e4 309
97965478
CL
310#ifndef __GENERATING_BOUNDS_H
311
1da177e4
LT
312/*
313 * When a memory allocation must conform to specific limitations (such
314 * as being suitable for DMA) the caller will pass in hints to the
315 * allocator in the gfp_mask, in the zone modifier bits. These bits
316 * are used to select a priority ordered list of memory zones which
19655d34 317 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 318 */
fb0e7942 319
97965478 320#if MAX_NR_ZONES < 2
4b51d669 321#define ZONES_SHIFT 0
97965478 322#elif MAX_NR_ZONES <= 2
19655d34 323#define ZONES_SHIFT 1
97965478 324#elif MAX_NR_ZONES <= 4
19655d34 325#define ZONES_SHIFT 2
4b51d669
CL
326#else
327#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 328#endif
1da177e4 329
1da177e4
LT
330struct zone {
331 /* Fields commonly accessed by the page allocator */
41858966
MG
332
333 /* zone watermarks, access with *_wmark_pages(zone) macros */
334 unsigned long watermark[NR_WMARK];
335
aa454840
CL
336 /*
337 * When free pages are below this point, additional steps are taken
338 * when reading the number of free pages to avoid per-cpu counter
339 * drift allowing watermarks to be breached
340 */
341 unsigned long percpu_drift_mark;
342
1da177e4
LT
343 /*
344 * We don't know if the memory that we're going to allocate will be freeable
345 * or/and it will be released eventually, so to avoid totally wasting several
346 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
347 * to run OOM on the lower zones despite there's tons of freeable ram
348 * on the higher zones). This array is recalculated at runtime if the
349 * sysctl_lowmem_reserve_ratio sysctl changes.
350 */
351 unsigned long lowmem_reserve[MAX_NR_ZONES];
352
ab8fabd4
JW
353 /*
354 * This is a per-zone reserve of pages that should not be
355 * considered dirtyable memory.
356 */
357 unsigned long dirty_balance_reserve;
358
e7c8d5c9 359#ifdef CONFIG_NUMA
d5f541ed 360 int node;
9614634f
CL
361 /*
362 * zone reclaim becomes active if more unmapped pages exist.
363 */
8417bba4 364 unsigned long min_unmapped_pages;
0ff38490 365 unsigned long min_slab_pages;
e7c8d5c9 366#endif
43cf38eb 367 struct per_cpu_pageset __percpu *pageset;
1da177e4
LT
368 /*
369 * free areas of different sizes
370 */
371 spinlock_t lock;
93e4a89a 372 int all_unreclaimable; /* All pages pinned */
bdc8cb98
DH
373#ifdef CONFIG_MEMORY_HOTPLUG
374 /* see spanned/present_pages for more description */
375 seqlock_t span_seqlock;
49f223a9
MS
376#endif
377#ifdef CONFIG_CMA
378 /*
379 * CMA needs to increase watermark levels during the allocation
380 * process to make sure that the system is not starved.
381 */
382 unsigned long min_cma_pages;
bdc8cb98 383#endif
1da177e4
LT
384 struct free_area free_area[MAX_ORDER];
385
835c134e
MG
386#ifndef CONFIG_SPARSEMEM
387 /*
d9c23400 388 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
389 * In SPARSEMEM, this map is stored in struct mem_section
390 */
391 unsigned long *pageblock_flags;
392#endif /* CONFIG_SPARSEMEM */
393
4f92e258
MG
394#ifdef CONFIG_COMPACTION
395 /*
396 * On compaction failure, 1<<compact_defer_shift compactions
397 * are skipped before trying again. The number attempted since
398 * last failure is tracked with compact_considered.
399 */
400 unsigned int compact_considered;
401 unsigned int compact_defer_shift;
aff62249 402 int compact_order_failed;
4f92e258 403#endif
1da177e4
LT
404
405 ZONE_PADDING(_pad1_)
406
407 /* Fields commonly accessed by the page reclaim scanner */
6290df54
JW
408 spinlock_t lru_lock;
409 struct lruvec lruvec;
4f98a2fe 410
1da177e4 411 unsigned long pages_scanned; /* since last reclaim */
e815af95 412 unsigned long flags; /* zone flags, see below */
753ee728 413
2244b95a
CL
414 /* Zone statistics */
415 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 416
556adecb
RR
417 /*
418 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
419 * this zone's LRU. Maintained by the pageout code.
420 */
421 unsigned int inactive_ratio;
422
1da177e4
LT
423
424 ZONE_PADDING(_pad2_)
425 /* Rarely used or read-mostly fields */
426
427 /*
428 * wait_table -- the array holding the hash table
02b694de 429 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
430 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
431 *
432 * The purpose of all these is to keep track of the people
433 * waiting for a page to become available and make them
434 * runnable again when possible. The trouble is that this
435 * consumes a lot of space, especially when so few things
436 * wait on pages at a given time. So instead of using
437 * per-page waitqueues, we use a waitqueue hash table.
438 *
439 * The bucket discipline is to sleep on the same queue when
440 * colliding and wake all in that wait queue when removing.
441 * When something wakes, it must check to be sure its page is
442 * truly available, a la thundering herd. The cost of a
443 * collision is great, but given the expected load of the
444 * table, they should be so rare as to be outweighed by the
445 * benefits from the saved space.
446 *
447 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
448 * primary users of these fields, and in mm/page_alloc.c
449 * free_area_init_core() performs the initialization of them.
450 */
451 wait_queue_head_t * wait_table;
02b694de 452 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
453 unsigned long wait_table_bits;
454
455 /*
456 * Discontig memory support fields.
457 */
458 struct pglist_data *zone_pgdat;
1da177e4
LT
459 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
460 unsigned long zone_start_pfn;
461
bdc8cb98
DH
462 /*
463 * zone_start_pfn, spanned_pages and present_pages are all
464 * protected by span_seqlock. It is a seqlock because it has
465 * to be read outside of zone->lock, and it is done in the main
466 * allocator path. But, it is written quite infrequently.
467 *
468 * The lock is declared along with zone->lock because it is
469 * frequently read in proximity to zone->lock. It's good to
470 * give them a chance of being in the same cacheline.
471 */
1da177e4
LT
472 unsigned long spanned_pages; /* total size, including holes */
473 unsigned long present_pages; /* amount of memory (excluding holes) */
474
475 /*
476 * rarely used fields:
477 */
15ad7cdc 478 const char *name;
22fc6ecc 479} ____cacheline_internodealigned_in_smp;
1da177e4 480
e815af95 481typedef enum {
e815af95 482 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 483 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
0e093d99
MG
484 ZONE_CONGESTED, /* zone has many dirty pages backed by
485 * a congested BDI
486 */
e815af95
DR
487} zone_flags_t;
488
489static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
490{
491 set_bit(flag, &zone->flags);
492}
d773ed6b
DR
493
494static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
495{
496 return test_and_set_bit(flag, &zone->flags);
497}
498
e815af95
DR
499static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
500{
501 clear_bit(flag, &zone->flags);
502}
503
0e093d99
MG
504static inline int zone_is_reclaim_congested(const struct zone *zone)
505{
506 return test_bit(ZONE_CONGESTED, &zone->flags);
507}
508
e815af95
DR
509static inline int zone_is_reclaim_locked(const struct zone *zone)
510{
511 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
512}
d773ed6b 513
098d7f12
DR
514static inline int zone_is_oom_locked(const struct zone *zone)
515{
516 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
517}
e815af95 518
1da177e4
LT
519/*
520 * The "priority" of VM scanning is how much of the queues we will scan in one
521 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
522 * queues ("queue_length >> 12") during an aging round.
523 */
524#define DEF_PRIORITY 12
525
9276b1bc
PJ
526/* Maximum number of zones on a zonelist */
527#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
528
529#ifdef CONFIG_NUMA
523b9458
CL
530
531/*
25a64ec1 532 * The NUMA zonelists are doubled because we need zonelists that restrict the
523b9458
CL
533 * allocations to a single node for GFP_THISNODE.
534 *
54a6eb5c
MG
535 * [0] : Zonelist with fallback
536 * [1] : No fallback (GFP_THISNODE)
523b9458 537 */
54a6eb5c 538#define MAX_ZONELISTS 2
523b9458
CL
539
540
9276b1bc
PJ
541/*
542 * We cache key information from each zonelist for smaller cache
543 * footprint when scanning for free pages in get_page_from_freelist().
544 *
545 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
546 * up short of free memory since the last time (last_fullzone_zap)
547 * we zero'd fullzones.
548 * 2) The array z_to_n[] maps each zone in the zonelist to its node
549 * id, so that we can efficiently evaluate whether that node is
550 * set in the current tasks mems_allowed.
551 *
552 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
553 * indexed by a zones offset in the zonelist zones[] array.
554 *
555 * The get_page_from_freelist() routine does two scans. During the
556 * first scan, we skip zones whose corresponding bit in 'fullzones'
557 * is set or whose corresponding node in current->mems_allowed (which
558 * comes from cpusets) is not set. During the second scan, we bypass
559 * this zonelist_cache, to ensure we look methodically at each zone.
560 *
561 * Once per second, we zero out (zap) fullzones, forcing us to
562 * reconsider nodes that might have regained more free memory.
563 * The field last_full_zap is the time we last zapped fullzones.
564 *
565 * This mechanism reduces the amount of time we waste repeatedly
566 * reexaming zones for free memory when they just came up low on
567 * memory momentarilly ago.
568 *
569 * The zonelist_cache struct members logically belong in struct
570 * zonelist. However, the mempolicy zonelists constructed for
571 * MPOL_BIND are intentionally variable length (and usually much
572 * shorter). A general purpose mechanism for handling structs with
573 * multiple variable length members is more mechanism than we want
574 * here. We resort to some special case hackery instead.
575 *
576 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
577 * part because they are shorter), so we put the fixed length stuff
578 * at the front of the zonelist struct, ending in a variable length
579 * zones[], as is needed by MPOL_BIND.
580 *
581 * Then we put the optional zonelist cache on the end of the zonelist
582 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
583 * the fixed length portion at the front of the struct. This pointer
584 * both enables us to find the zonelist cache, and in the case of
585 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
586 * to know that the zonelist cache is not there.
587 *
588 * The end result is that struct zonelists come in two flavors:
589 * 1) The full, fixed length version, shown below, and
590 * 2) The custom zonelists for MPOL_BIND.
591 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
592 *
593 * Even though there may be multiple CPU cores on a node modifying
594 * fullzones or last_full_zap in the same zonelist_cache at the same
595 * time, we don't lock it. This is just hint data - if it is wrong now
596 * and then, the allocator will still function, perhaps a bit slower.
597 */
598
599
600struct zonelist_cache {
9276b1bc 601 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 602 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
603 unsigned long last_full_zap; /* when last zap'd (jiffies) */
604};
605#else
54a6eb5c 606#define MAX_ZONELISTS 1
9276b1bc
PJ
607struct zonelist_cache;
608#endif
609
dd1a239f
MG
610/*
611 * This struct contains information about a zone in a zonelist. It is stored
612 * here to avoid dereferences into large structures and lookups of tables
613 */
614struct zoneref {
615 struct zone *zone; /* Pointer to actual zone */
616 int zone_idx; /* zone_idx(zoneref->zone) */
617};
618
1da177e4
LT
619/*
620 * One allocation request operates on a zonelist. A zonelist
621 * is a list of zones, the first one is the 'goal' of the
622 * allocation, the other zones are fallback zones, in decreasing
623 * priority.
624 *
9276b1bc
PJ
625 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
626 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
627 * *
628 * To speed the reading of the zonelist, the zonerefs contain the zone index
629 * of the entry being read. Helper functions to access information given
630 * a struct zoneref are
631 *
632 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
633 * zonelist_zone_idx() - Return the index of the zone for an entry
634 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
635 */
636struct zonelist {
9276b1bc 637 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 638 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
639#ifdef CONFIG_NUMA
640 struct zonelist_cache zlcache; // optional ...
641#endif
1da177e4
LT
642};
643
0ee332c1 644#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
645struct node_active_region {
646 unsigned long start_pfn;
647 unsigned long end_pfn;
648 int nid;
649};
0ee332c1 650#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1da177e4 651
5b99cd0e
HC
652#ifndef CONFIG_DISCONTIGMEM
653/* The array of struct pages - for discontigmem use pgdat->lmem_map */
654extern struct page *mem_map;
655#endif
656
1da177e4
LT
657/*
658 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
659 * (mostly NUMA machines?) to denote a higher-level memory zone than the
660 * zone denotes.
661 *
662 * On NUMA machines, each NUMA node would have a pg_data_t to describe
663 * it's memory layout.
664 *
665 * Memory statistics and page replacement data structures are maintained on a
666 * per-zone basis.
667 */
668struct bootmem_data;
669typedef struct pglist_data {
670 struct zone node_zones[MAX_NR_ZONES];
523b9458 671 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 672 int nr_zones;
52d4b9ac 673#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 674 struct page *node_mem_map;
52d4b9ac
KH
675#ifdef CONFIG_CGROUP_MEM_RES_CTLR
676 struct page_cgroup *node_page_cgroup;
677#endif
d41dee36 678#endif
08677214 679#ifndef CONFIG_NO_BOOTMEM
1da177e4 680 struct bootmem_data *bdata;
08677214 681#endif
208d54e5
DH
682#ifdef CONFIG_MEMORY_HOTPLUG
683 /*
684 * Must be held any time you expect node_start_pfn, node_present_pages
685 * or node_spanned_pages stay constant. Holding this will also
686 * guarantee that any pfn_valid() stays that way.
687 *
688 * Nests above zone->lock and zone->size_seqlock.
689 */
690 spinlock_t node_size_lock;
691#endif
1da177e4
LT
692 unsigned long node_start_pfn;
693 unsigned long node_present_pages; /* total number of physical pages */
694 unsigned long node_spanned_pages; /* total size of physical page
695 range, including holes */
696 int node_id;
1da177e4
LT
697 wait_queue_head_t kswapd_wait;
698 struct task_struct *kswapd;
699 int kswapd_max_order;
99504748 700 enum zone_type classzone_idx;
1da177e4
LT
701} pg_data_t;
702
703#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
704#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 705#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 706#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
707#else
708#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
709#endif
408fde81 710#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 711
c6830c22
KH
712#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
713
714#define node_end_pfn(nid) ({\
715 pg_data_t *__pgdat = NODE_DATA(nid);\
716 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
717})
718
208d54e5
DH
719#include <linux/memory_hotplug.h>
720
4eaf3f64 721extern struct mutex zonelists_mutex;
1f522509 722void build_all_zonelists(void *data);
99504748 723void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
88f5acf8
MG
724bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
725 int classzone_idx, int alloc_flags);
726bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
7fb1d9fc 727 int classzone_idx, int alloc_flags);
a2f3aa02
DH
728enum memmap_context {
729 MEMMAP_EARLY,
730 MEMMAP_HOTPLUG,
731};
718127cc 732extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
733 unsigned long size,
734 enum memmap_context context);
718127cc 735
1da177e4
LT
736#ifdef CONFIG_HAVE_MEMORY_PRESENT
737void memory_present(int nid, unsigned long start, unsigned long end);
738#else
739static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
740#endif
741
7aac7898
LS
742#ifdef CONFIG_HAVE_MEMORYLESS_NODES
743int local_memory_node(int node_id);
744#else
745static inline int local_memory_node(int node_id) { return node_id; };
746#endif
747
1da177e4
LT
748#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
749unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
750#endif
751
752/*
753 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
754 */
755#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
756
f3fe6512
CK
757static inline int populated_zone(struct zone *zone)
758{
759 return (!!zone->present_pages);
760}
761
2a1e274a
MG
762extern int movable_zone;
763
764static inline int zone_movable_is_highmem(void)
765{
0ee332c1 766#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
2a1e274a
MG
767 return movable_zone == ZONE_HIGHMEM;
768#else
769 return 0;
770#endif
771}
772
2f1b6248 773static inline int is_highmem_idx(enum zone_type idx)
1da177e4 774{
e53ef38d 775#ifdef CONFIG_HIGHMEM
2a1e274a
MG
776 return (idx == ZONE_HIGHMEM ||
777 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
778#else
779 return 0;
780#endif
1da177e4
LT
781}
782
2f1b6248 783static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
784{
785 return (idx == ZONE_NORMAL);
786}
9328b8fa 787
1da177e4
LT
788/**
789 * is_highmem - helper function to quickly check if a struct zone is a
790 * highmem zone or not. This is an attempt to keep references
791 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
792 * @zone - pointer to struct zone variable
793 */
794static inline int is_highmem(struct zone *zone)
795{
e53ef38d 796#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
797 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
798 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
799 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
800 zone_movable_is_highmem());
e53ef38d
CL
801#else
802 return 0;
803#endif
1da177e4
LT
804}
805
806static inline int is_normal(struct zone *zone)
807{
808 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
809}
810
9328b8fa
NP
811static inline int is_dma32(struct zone *zone)
812{
fb0e7942 813#ifdef CONFIG_ZONE_DMA32
9328b8fa 814 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
815#else
816 return 0;
817#endif
9328b8fa
NP
818}
819
820static inline int is_dma(struct zone *zone)
821{
4b51d669 822#ifdef CONFIG_ZONE_DMA
9328b8fa 823 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
824#else
825 return 0;
826#endif
9328b8fa
NP
827}
828
1da177e4
LT
829/* These two functions are used to setup the per zone pages min values */
830struct ctl_table;
8d65af78 831int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
832 void __user *, size_t *, loff_t *);
833extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 834int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 835 void __user *, size_t *, loff_t *);
8d65af78 836int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 837 void __user *, size_t *, loff_t *);
9614634f 838int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 839 void __user *, size_t *, loff_t *);
0ff38490 840int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 841 void __user *, size_t *, loff_t *);
1da177e4 842
f0c0b2b8 843extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 844 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
845extern char numa_zonelist_order[];
846#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
847
93b7504e 848#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
849
850extern struct pglist_data contig_page_data;
851#define NODE_DATA(nid) (&contig_page_data)
852#define NODE_MEM_MAP(nid) mem_map
1da177e4 853
93b7504e 854#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
855
856#include <asm/mmzone.h>
857
93b7504e 858#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 859
95144c78
KH
860extern struct pglist_data *first_online_pgdat(void);
861extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
862extern struct zone *next_zone(struct zone *zone);
8357f869
KH
863
864/**
12d15f0d 865 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
866 * @pgdat - pointer to a pg_data_t variable
867 */
868#define for_each_online_pgdat(pgdat) \
869 for (pgdat = first_online_pgdat(); \
870 pgdat; \
871 pgdat = next_online_pgdat(pgdat))
8357f869
KH
872/**
873 * for_each_zone - helper macro to iterate over all memory zones
874 * @zone - pointer to struct zone variable
875 *
876 * The user only needs to declare the zone variable, for_each_zone
877 * fills it in.
878 */
879#define for_each_zone(zone) \
880 for (zone = (first_online_pgdat())->node_zones; \
881 zone; \
882 zone = next_zone(zone))
883
ee99c71c
KM
884#define for_each_populated_zone(zone) \
885 for (zone = (first_online_pgdat())->node_zones; \
886 zone; \
887 zone = next_zone(zone)) \
888 if (!populated_zone(zone)) \
889 ; /* do nothing */ \
890 else
891
dd1a239f
MG
892static inline struct zone *zonelist_zone(struct zoneref *zoneref)
893{
894 return zoneref->zone;
895}
896
897static inline int zonelist_zone_idx(struct zoneref *zoneref)
898{
899 return zoneref->zone_idx;
900}
901
902static inline int zonelist_node_idx(struct zoneref *zoneref)
903{
904#ifdef CONFIG_NUMA
905 /* zone_to_nid not available in this context */
906 return zoneref->zone->node;
907#else
908 return 0;
909#endif /* CONFIG_NUMA */
910}
911
19770b32
MG
912/**
913 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
914 * @z - The cursor used as a starting point for the search
915 * @highest_zoneidx - The zone index of the highest zone to return
916 * @nodes - An optional nodemask to filter the zonelist with
917 * @zone - The first suitable zone found is returned via this parameter
918 *
919 * This function returns the next zone at or below a given zone index that is
920 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
921 * search. The zoneref returned is a cursor that represents the current zone
922 * being examined. It should be advanced by one before calling
923 * next_zones_zonelist again.
19770b32
MG
924 */
925struct zoneref *next_zones_zonelist(struct zoneref *z,
926 enum zone_type highest_zoneidx,
927 nodemask_t *nodes,
928 struct zone **zone);
dd1a239f 929
19770b32
MG
930/**
931 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
932 * @zonelist - The zonelist to search for a suitable zone
933 * @highest_zoneidx - The zone index of the highest zone to return
934 * @nodes - An optional nodemask to filter the zonelist with
935 * @zone - The first suitable zone found is returned via this parameter
936 *
937 * This function returns the first zone at or below a given zone index that is
938 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
939 * used to iterate the zonelist with next_zones_zonelist by advancing it by
940 * one before calling.
19770b32 941 */
dd1a239f 942static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
943 enum zone_type highest_zoneidx,
944 nodemask_t *nodes,
945 struct zone **zone)
54a6eb5c 946{
19770b32
MG
947 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
948 zone);
54a6eb5c
MG
949}
950
19770b32
MG
951/**
952 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
953 * @zone - The current zone in the iterator
954 * @z - The current pointer within zonelist->zones being iterated
955 * @zlist - The zonelist being iterated
956 * @highidx - The zone index of the highest zone to return
957 * @nodemask - Nodemask allowed by the allocator
958 *
959 * This iterator iterates though all zones at or below a given zone index and
960 * within a given nodemask
961 */
962#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
963 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
964 zone; \
5bead2a0 965 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
966
967/**
968 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
969 * @zone - The current zone in the iterator
970 * @z - The current pointer within zonelist->zones being iterated
971 * @zlist - The zonelist being iterated
972 * @highidx - The zone index of the highest zone to return
973 *
974 * This iterator iterates though all zones at or below a given zone index.
975 */
976#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 977 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 978
d41dee36
AW
979#ifdef CONFIG_SPARSEMEM
980#include <asm/sparsemem.h>
981#endif
982
c713216d 983#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 984 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
985static inline unsigned long early_pfn_to_nid(unsigned long pfn)
986{
987 return 0;
988}
b159d43f
AW
989#endif
990
2bdaf115
AW
991#ifdef CONFIG_FLATMEM
992#define pfn_to_nid(pfn) (0)
993#endif
994
d41dee36
AW
995#ifdef CONFIG_SPARSEMEM
996
997/*
998 * SECTION_SHIFT #bits space required to store a section #
999 *
1000 * PA_SECTION_SHIFT physical address to/from section number
1001 * PFN_SECTION_SHIFT pfn to/from section number
1002 */
1003#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1004
1005#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1006#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1007
1008#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1009
1010#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1011#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1012
835c134e 1013#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1014 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1015
d41dee36
AW
1016#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1017#error Allocator MAX_ORDER exceeds SECTION_SIZE
1018#endif
1019
e3c40f37
DK
1020#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1021#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1022
a539f353
DK
1023#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1024#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1025
d41dee36 1026struct page;
52d4b9ac 1027struct page_cgroup;
d41dee36 1028struct mem_section {
29751f69
AW
1029 /*
1030 * This is, logically, a pointer to an array of struct
1031 * pages. However, it is stored with some other magic.
1032 * (see sparse.c::sparse_init_one_section())
1033 *
30c253e6
AW
1034 * Additionally during early boot we encode node id of
1035 * the location of the section here to guide allocation.
1036 * (see sparse.c::memory_present())
1037 *
29751f69
AW
1038 * Making it a UL at least makes someone do a cast
1039 * before using it wrong.
1040 */
1041 unsigned long section_mem_map;
5c0e3066
MG
1042
1043 /* See declaration of similar field in struct zone */
1044 unsigned long *pageblock_flags;
52d4b9ac
KH
1045#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1046 /*
1047 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1048 * section. (see memcontrol.h/page_cgroup.h about this.)
1049 */
1050 struct page_cgroup *page_cgroup;
1051 unsigned long pad;
1052#endif
d41dee36
AW
1053};
1054
3e347261
BP
1055#ifdef CONFIG_SPARSEMEM_EXTREME
1056#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1057#else
1058#define SECTIONS_PER_ROOT 1
1059#endif
802f192e 1060
3e347261 1061#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1062#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1063#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1064
3e347261
BP
1065#ifdef CONFIG_SPARSEMEM_EXTREME
1066extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1067#else
3e347261
BP
1068extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1069#endif
d41dee36 1070
29751f69
AW
1071static inline struct mem_section *__nr_to_section(unsigned long nr)
1072{
3e347261
BP
1073 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1074 return NULL;
1075 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1076}
4ca644d9 1077extern int __section_nr(struct mem_section* ms);
04753278 1078extern unsigned long usemap_size(void);
29751f69
AW
1079
1080/*
1081 * We use the lower bits of the mem_map pointer to store
1082 * a little bit of information. There should be at least
1083 * 3 bits here due to 32-bit alignment.
1084 */
1085#define SECTION_MARKED_PRESENT (1UL<<0)
1086#define SECTION_HAS_MEM_MAP (1UL<<1)
1087#define SECTION_MAP_LAST_BIT (1UL<<2)
1088#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1089#define SECTION_NID_SHIFT 2
29751f69
AW
1090
1091static inline struct page *__section_mem_map_addr(struct mem_section *section)
1092{
1093 unsigned long map = section->section_mem_map;
1094 map &= SECTION_MAP_MASK;
1095 return (struct page *)map;
1096}
1097
540557b9 1098static inline int present_section(struct mem_section *section)
29751f69 1099{
802f192e 1100 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1101}
1102
540557b9
AW
1103static inline int present_section_nr(unsigned long nr)
1104{
1105 return present_section(__nr_to_section(nr));
1106}
1107
1108static inline int valid_section(struct mem_section *section)
29751f69 1109{
802f192e 1110 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1111}
1112
1113static inline int valid_section_nr(unsigned long nr)
1114{
1115 return valid_section(__nr_to_section(nr));
1116}
1117
d41dee36
AW
1118static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1119{
29751f69 1120 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1121}
1122
7b7bf499 1123#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1124static inline int pfn_valid(unsigned long pfn)
1125{
1126 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1127 return 0;
29751f69 1128 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1129}
7b7bf499 1130#endif
d41dee36 1131
540557b9
AW
1132static inline int pfn_present(unsigned long pfn)
1133{
1134 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1135 return 0;
1136 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1137}
1138
d41dee36
AW
1139/*
1140 * These are _only_ used during initialisation, therefore they
1141 * can use __initdata ... They could have names to indicate
1142 * this restriction.
1143 */
1144#ifdef CONFIG_NUMA
161599ff
AW
1145#define pfn_to_nid(pfn) \
1146({ \
1147 unsigned long __pfn_to_nid_pfn = (pfn); \
1148 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1149})
2bdaf115
AW
1150#else
1151#define pfn_to_nid(pfn) (0)
d41dee36
AW
1152#endif
1153
d41dee36
AW
1154#define early_pfn_valid(pfn) pfn_valid(pfn)
1155void sparse_init(void);
1156#else
1157#define sparse_init() do {} while (0)
28ae55c9 1158#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1159#endif /* CONFIG_SPARSEMEM */
1160
75167957 1161#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1162bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1163#else
1164#define early_pfn_in_nid(pfn, nid) (1)
1165#endif
1166
d41dee36
AW
1167#ifndef early_pfn_valid
1168#define early_pfn_valid(pfn) (1)
1169#endif
1170
1171void memory_present(int nid, unsigned long start, unsigned long end);
1172unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1173
14e07298
AW
1174/*
1175 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1176 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1177 * pfn_valid_within() should be used in this case; we optimise this away
1178 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1179 */
1180#ifdef CONFIG_HOLES_IN_ZONE
1181#define pfn_valid_within(pfn) pfn_valid(pfn)
1182#else
1183#define pfn_valid_within(pfn) (1)
1184#endif
1185
eb33575c
MG
1186#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1187/*
1188 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1189 * associated with it or not. In FLATMEM, it is expected that holes always
1190 * have valid memmap as long as there is valid PFNs either side of the hole.
1191 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1192 * entire section.
1193 *
1194 * However, an ARM, and maybe other embedded architectures in the future
1195 * free memmap backing holes to save memory on the assumption the memmap is
1196 * never used. The page_zone linkages are then broken even though pfn_valid()
1197 * returns true. A walker of the full memmap must then do this additional
1198 * check to ensure the memmap they are looking at is sane by making sure
1199 * the zone and PFN linkages are still valid. This is expensive, but walkers
1200 * of the full memmap are extremely rare.
1201 */
1202int memmap_valid_within(unsigned long pfn,
1203 struct page *page, struct zone *zone);
1204#else
1205static inline int memmap_valid_within(unsigned long pfn,
1206 struct page *page, struct zone *zone)
1207{
1208 return 1;
1209}
1210#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1211
97965478 1212#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1213#endif /* !__ASSEMBLY__ */
1da177e4 1214#endif /* _LINUX_MMZONE_H */
This page took 1.103428 seconds and 5 git commands to generate.