ipv6: sit: add GSO/TSO support
[deliverable/linux.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4 17#include <linux/kernel.h>
fe55f6d5 18#include <linux/kmemcheck.h>
1da177e4
LT
19#include <linux/compiler.h>
20#include <linux/time.h>
187f1882 21#include <linux/bug.h>
1da177e4
LT
22#include <linux/cache.h>
23
60063497 24#include <linux/atomic.h>
1da177e4
LT
25#include <asm/types.h>
26#include <linux/spinlock.h>
1da177e4 27#include <linux/net.h>
3fc7e8a6 28#include <linux/textsearch.h>
1da177e4 29#include <net/checksum.h>
a80958f4 30#include <linux/rcupdate.h>
97fc2f08 31#include <linux/dmaengine.h>
b7aa0bf7 32#include <linux/hrtimer.h>
131ea667 33#include <linux/dma-mapping.h>
c8f44aff 34#include <linux/netdev_features.h>
5203cd28 35#include <net/flow_keys.h>
1da177e4 36
60476372 37/* Don't change this without changing skb_csum_unnecessary! */
1da177e4 38#define CHECKSUM_NONE 0
60476372
HX
39#define CHECKSUM_UNNECESSARY 1
40#define CHECKSUM_COMPLETE 2
41#define CHECKSUM_PARTIAL 3
1da177e4
LT
42
43#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
44 ~(SMP_CACHE_BYTES - 1))
fc910a27 45#define SKB_WITH_OVERHEAD(X) \
deea84b0 46 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
47#define SKB_MAX_ORDER(X, ORDER) \
48 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
49#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
50#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
51
87fb4b7b
ED
52/* return minimum truesize of one skb containing X bytes of data */
53#define SKB_TRUESIZE(X) ((X) + \
54 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
55 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
56
1da177e4
LT
57/* A. Checksumming of received packets by device.
58 *
59 * NONE: device failed to checksum this packet.
60 * skb->csum is undefined.
61 *
62 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
63 * skb->csum is undefined.
64 * It is bad option, but, unfortunately, many of vendors do this.
65 * Apparently with secret goal to sell you new device, when you
66 * will add new protocol to your host. F.e. IPv6. 8)
67 *
84fa7933 68 * COMPLETE: the most generic way. Device supplied checksum of _all_
1da177e4
LT
69 * the packet as seen by netif_rx in skb->csum.
70 * NOTE: Even if device supports only some protocols, but
84fa7933 71 * is able to produce some skb->csum, it MUST use COMPLETE,
1da177e4
LT
72 * not UNNECESSARY.
73 *
c6c6e3e0
HX
74 * PARTIAL: identical to the case for output below. This may occur
75 * on a packet received directly from another Linux OS, e.g.,
76 * a virtualised Linux kernel on the same host. The packet can
77 * be treated in the same way as UNNECESSARY except that on
78 * output (i.e., forwarding) the checksum must be filled in
79 * by the OS or the hardware.
80 *
1da177e4
LT
81 * B. Checksumming on output.
82 *
83 * NONE: skb is checksummed by protocol or csum is not required.
84 *
84fa7933 85 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
c6c6e3e0
HX
86 * from skb->csum_start to the end and to record the checksum
87 * at skb->csum_start + skb->csum_offset.
1da177e4
LT
88 *
89 * Device must show its capabilities in dev->features, set
90 * at device setup time.
91 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
92 * everything.
1da177e4
LT
93 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
94 * TCP/UDP over IPv4. Sigh. Vendors like this
95 * way by an unknown reason. Though, see comment above
96 * about CHECKSUM_UNNECESSARY. 8)
c6c6e3e0 97 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
1da177e4 98 *
3af79302
YZ
99 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
100 * that do not want net to perform the checksum calculation should use
101 * this flag in their outgoing skbs.
102 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
103 * offload. Correspondingly, the FCoE protocol driver
104 * stack should use CHECKSUM_UNNECESSARY.
105 *
1da177e4
LT
106 * Any questions? No questions, good. --ANK
107 */
108
1da177e4 109struct net_device;
716ea3a7 110struct scatterlist;
9c55e01c 111struct pipe_inode_info;
1da177e4 112
5f79e0f9 113#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
114struct nf_conntrack {
115 atomic_t use;
1da177e4 116};
5f79e0f9 117#endif
1da177e4
LT
118
119#ifdef CONFIG_BRIDGE_NETFILTER
120struct nf_bridge_info {
bf1ac5ca
ED
121 atomic_t use;
122 unsigned int mask;
123 struct net_device *physindev;
124 struct net_device *physoutdev;
125 unsigned long data[32 / sizeof(unsigned long)];
1da177e4
LT
126};
127#endif
128
1da177e4
LT
129struct sk_buff_head {
130 /* These two members must be first. */
131 struct sk_buff *next;
132 struct sk_buff *prev;
133
134 __u32 qlen;
135 spinlock_t lock;
136};
137
138struct sk_buff;
139
9d4dde52
IC
140/* To allow 64K frame to be packed as single skb without frag_list we
141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
142 * buffers which do not start on a page boundary.
143 *
144 * Since GRO uses frags we allocate at least 16 regardless of page
145 * size.
a715dea3 146 */
9d4dde52 147#if (65536/PAGE_SIZE + 1) < 16
eec00954 148#define MAX_SKB_FRAGS 16UL
a715dea3 149#else
9d4dde52 150#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 151#endif
1da177e4
LT
152
153typedef struct skb_frag_struct skb_frag_t;
154
155struct skb_frag_struct {
a8605c60
IC
156 struct {
157 struct page *p;
158 } page;
cb4dfe56 159#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
160 __u32 page_offset;
161 __u32 size;
cb4dfe56
ED
162#else
163 __u16 page_offset;
164 __u16 size;
165#endif
1da177e4
LT
166};
167
9e903e08
ED
168static inline unsigned int skb_frag_size(const skb_frag_t *frag)
169{
170 return frag->size;
171}
172
173static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
174{
175 frag->size = size;
176}
177
178static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
179{
180 frag->size += delta;
181}
182
183static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
184{
185 frag->size -= delta;
186}
187
ac45f602
PO
188#define HAVE_HW_TIME_STAMP
189
190/**
d3a21be8 191 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
192 * @hwtstamp: hardware time stamp transformed into duration
193 * since arbitrary point in time
194 * @syststamp: hwtstamp transformed to system time base
195 *
196 * Software time stamps generated by ktime_get_real() are stored in
197 * skb->tstamp. The relation between the different kinds of time
198 * stamps is as follows:
199 *
200 * syststamp and tstamp can be compared against each other in
201 * arbitrary combinations. The accuracy of a
202 * syststamp/tstamp/"syststamp from other device" comparison is
203 * limited by the accuracy of the transformation into system time
204 * base. This depends on the device driver and its underlying
205 * hardware.
206 *
207 * hwtstamps can only be compared against other hwtstamps from
208 * the same device.
209 *
210 * This structure is attached to packets as part of the
211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
212 */
213struct skb_shared_hwtstamps {
214 ktime_t hwtstamp;
215 ktime_t syststamp;
216};
217
2244d07b
OH
218/* Definitions for tx_flags in struct skb_shared_info */
219enum {
220 /* generate hardware time stamp */
221 SKBTX_HW_TSTAMP = 1 << 0,
222
223 /* generate software time stamp */
224 SKBTX_SW_TSTAMP = 1 << 1,
225
226 /* device driver is going to provide hardware time stamp */
227 SKBTX_IN_PROGRESS = 1 << 2,
228
a6686f2f 229 /* device driver supports TX zero-copy buffers */
62b1a8ab 230 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
231
232 /* generate wifi status information (where possible) */
62b1a8ab 233 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
234
235 /* This indicates at least one fragment might be overwritten
236 * (as in vmsplice(), sendfile() ...)
237 * If we need to compute a TX checksum, we'll need to copy
238 * all frags to avoid possible bad checksum
239 */
240 SKBTX_SHARED_FRAG = 1 << 5,
a6686f2f
SM
241};
242
243/*
244 * The callback notifies userspace to release buffers when skb DMA is done in
245 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
246 * The zerocopy_success argument is true if zero copy transmit occurred,
247 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
248 * The ctx field is used to track device context.
249 * The desc field is used to track userspace buffer index.
a6686f2f
SM
250 */
251struct ubuf_info {
e19d6763 252 void (*callback)(struct ubuf_info *, bool zerocopy_success);
ca8f4fb2 253 void *ctx;
a6686f2f 254 unsigned long desc;
ac45f602
PO
255};
256
1da177e4
LT
257/* This data is invariant across clones and lives at
258 * the end of the header data, ie. at skb->end.
259 */
260struct skb_shared_info {
9f42f126
IC
261 unsigned char nr_frags;
262 __u8 tx_flags;
7967168c
HX
263 unsigned short gso_size;
264 /* Warning: this field is not always filled in (UFO)! */
265 unsigned short gso_segs;
266 unsigned short gso_type;
1da177e4 267 struct sk_buff *frag_list;
ac45f602 268 struct skb_shared_hwtstamps hwtstamps;
9f42f126 269 __be32 ip6_frag_id;
ec7d2f2c
ED
270
271 /*
272 * Warning : all fields before dataref are cleared in __alloc_skb()
273 */
274 atomic_t dataref;
275
69e3c75f
JB
276 /* Intermediate layers must ensure that destructor_arg
277 * remains valid until skb destructor */
278 void * destructor_arg;
a6686f2f 279
fed66381
ED
280 /* must be last field, see pskb_expand_head() */
281 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
282};
283
284/* We divide dataref into two halves. The higher 16 bits hold references
285 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
286 * the entire skb->data. A clone of a headerless skb holds the length of
287 * the header in skb->hdr_len.
1da177e4
LT
288 *
289 * All users must obey the rule that the skb->data reference count must be
290 * greater than or equal to the payload reference count.
291 *
292 * Holding a reference to the payload part means that the user does not
293 * care about modifications to the header part of skb->data.
294 */
295#define SKB_DATAREF_SHIFT 16
296#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
297
d179cd12
DM
298
299enum {
300 SKB_FCLONE_UNAVAILABLE,
301 SKB_FCLONE_ORIG,
302 SKB_FCLONE_CLONE,
303};
304
7967168c
HX
305enum {
306 SKB_GSO_TCPV4 = 1 << 0,
f83ef8c0 307 SKB_GSO_UDP = 1 << 1,
576a30eb
HX
308
309 /* This indicates the skb is from an untrusted source. */
310 SKB_GSO_DODGY = 1 << 2,
b0da8537
MC
311
312 /* This indicates the tcp segment has CWR set. */
f83ef8c0
HX
313 SKB_GSO_TCP_ECN = 1 << 3,
314
315 SKB_GSO_TCPV6 = 1 << 4,
01d5b2fc
CL
316
317 SKB_GSO_FCOE = 1 << 5,
68c33163
PS
318
319 SKB_GSO_GRE = 1 << 6,
73136267 320
cb32f511 321 SKB_GSO_IPIP = 1 << 7,
0d89d203 322
61c1db7f 323 SKB_GSO_SIT = 1 << 8,
cb32f511 324
61c1db7f
ED
325 SKB_GSO_UDP_TUNNEL = 1 << 9,
326
327 SKB_GSO_MPLS = 1 << 10,
7967168c
HX
328};
329
2e07fa9c
ACM
330#if BITS_PER_LONG > 32
331#define NET_SKBUFF_DATA_USES_OFFSET 1
332#endif
333
334#ifdef NET_SKBUFF_DATA_USES_OFFSET
335typedef unsigned int sk_buff_data_t;
336#else
337typedef unsigned char *sk_buff_data_t;
338#endif
339
2fc72c7b
KK
340#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
341 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
342#define NET_SKBUFF_NF_DEFRAG_NEEDED 1
343#endif
344
1da177e4
LT
345/**
346 * struct sk_buff - socket buffer
347 * @next: Next buffer in list
348 * @prev: Previous buffer in list
325ed823 349 * @tstamp: Time we arrived
d84e0bd7 350 * @sk: Socket we are owned by
1da177e4 351 * @dev: Device we arrived on/are leaving by
d84e0bd7 352 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 353 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 354 * @sp: the security path, used for xfrm
1da177e4
LT
355 * @len: Length of actual data
356 * @data_len: Data length
357 * @mac_len: Length of link layer header
334a8132 358 * @hdr_len: writable header length of cloned skb
663ead3b
HX
359 * @csum: Checksum (must include start/offset pair)
360 * @csum_start: Offset from skb->head where checksumming should start
361 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 362 * @priority: Packet queueing priority
67be2dd1 363 * @local_df: allow local fragmentation
1da177e4 364 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 365 * @ip_summed: Driver fed us an IP checksum
1da177e4 366 * @nohdr: Payload reference only, must not modify header
d84e0bd7 367 * @nfctinfo: Relationship of this skb to the connection
1da177e4 368 * @pkt_type: Packet class
c83c2486 369 * @fclone: skbuff clone status
c83c2486 370 * @ipvs_property: skbuff is owned by ipvs
31729363
RD
371 * @peeked: this packet has been seen already, so stats have been
372 * done for it, don't do them again
ba9dda3a 373 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
374 * @protocol: Packet protocol from driver
375 * @destructor: Destruct function
376 * @nfct: Associated connection, if any
461ddf3b 377 * @nfct_reasm: netfilter conntrack re-assembly pointer
1da177e4 378 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 379 * @skb_iif: ifindex of device we arrived on
1da177e4
LT
380 * @tc_index: Traffic control index
381 * @tc_verd: traffic control verdict
d84e0bd7
DB
382 * @rxhash: the packet hash computed on receive
383 * @queue_mapping: Queue mapping for multiqueue devices
553a5672 384 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 385 * @ooo_okay: allow the mapping of a socket to a queue to be changed
4ca2462e
CG
386 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
387 * ports.
6e3e939f
JB
388 * @wifi_acked_valid: wifi_acked was set
389 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 390 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
f4b8ea78
RD
391 * @dma_cookie: a cookie to one of several possible DMA operations
392 * done by skb DMA functions
06021292 393 * @napi_id: id of the NAPI struct this skb came from
984bc16c 394 * @secmark: security marking
d84e0bd7
DB
395 * @mark: Generic packet mark
396 * @dropcount: total number of sk_receive_queue overflows
86a9bad3 397 * @vlan_proto: vlan encapsulation protocol
6aa895b0 398 * @vlan_tci: vlan tag control information
0d89d203 399 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
400 * @inner_transport_header: Inner transport layer header (encapsulation)
401 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 402 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
403 * @transport_header: Transport layer header
404 * @network_header: Network layer header
405 * @mac_header: Link layer header
406 * @tail: Tail pointer
407 * @end: End pointer
408 * @head: Head of buffer
409 * @data: Data head pointer
410 * @truesize: Buffer size
411 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
412 */
413
414struct sk_buff {
415 /* These two members must be first. */
416 struct sk_buff *next;
417 struct sk_buff *prev;
418
b7aa0bf7 419 ktime_t tstamp;
da3f5cf1
FF
420
421 struct sock *sk;
1da177e4 422 struct net_device *dev;
1da177e4 423
1da177e4
LT
424 /*
425 * This is the control buffer. It is free to use for every
426 * layer. Please put your private variables there. If you
427 * want to keep them across layers you have to do a skb_clone()
428 * first. This is owned by whoever has the skb queued ATM.
429 */
da3f5cf1 430 char cb[48] __aligned(8);
1da177e4 431
7fee226a 432 unsigned long _skb_refdst;
da3f5cf1
FF
433#ifdef CONFIG_XFRM
434 struct sec_path *sp;
435#endif
1da177e4 436 unsigned int len,
334a8132
PM
437 data_len;
438 __u16 mac_len,
439 hdr_len;
ff1dcadb
AV
440 union {
441 __wsum csum;
663ead3b
HX
442 struct {
443 __u16 csum_start;
444 __u16 csum_offset;
445 };
ff1dcadb 446 };
1da177e4 447 __u32 priority;
fe55f6d5 448 kmemcheck_bitfield_begin(flags1);
1cbb3380
TG
449 __u8 local_df:1,
450 cloned:1,
451 ip_summed:2,
6869c4d8
HW
452 nohdr:1,
453 nfctinfo:3;
d179cd12 454 __u8 pkt_type:3,
b84f4cc9 455 fclone:2,
ba9dda3a 456 ipvs_property:1,
a59322be 457 peeked:1,
ba9dda3a 458 nf_trace:1;
fe55f6d5 459 kmemcheck_bitfield_end(flags1);
4ab408de 460 __be16 protocol;
1da177e4
LT
461
462 void (*destructor)(struct sk_buff *skb);
9fb9cbb1 463#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 464 struct nf_conntrack *nfct;
2fc72c7b
KK
465#endif
466#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
9fb9cbb1
YK
467 struct sk_buff *nfct_reasm;
468#endif
1da177e4
LT
469#ifdef CONFIG_BRIDGE_NETFILTER
470 struct nf_bridge_info *nf_bridge;
471#endif
f25f4e44 472
8964be4a 473 int skb_iif;
4031ae6e
AD
474
475 __u32 rxhash;
476
86a9bad3 477 __be16 vlan_proto;
4031ae6e
AD
478 __u16 vlan_tci;
479
1da177e4 480#ifdef CONFIG_NET_SCHED
b6b99eb5 481 __u16 tc_index; /* traffic control index */
1da177e4 482#ifdef CONFIG_NET_CLS_ACT
b6b99eb5 483 __u16 tc_verd; /* traffic control verdict */
1da177e4 484#endif
1da177e4 485#endif
fe55f6d5 486
0a14842f 487 __u16 queue_mapping;
fe55f6d5 488 kmemcheck_bitfield_begin(flags2);
de357cc0 489#ifdef CONFIG_IPV6_NDISC_NODETYPE
8a4eb573 490 __u8 ndisc_nodetype:2;
d0f09804 491#endif
c93bdd0e 492 __u8 pfmemalloc:1;
3853b584 493 __u8 ooo_okay:1;
bdeab991 494 __u8 l4_rxhash:1;
6e3e939f
JB
495 __u8 wifi_acked_valid:1;
496 __u8 wifi_acked:1;
3bdc0eba 497 __u8 no_fcs:1;
d3836f21 498 __u8 head_frag:1;
6a674e9c
JG
499 /* Encapsulation protocol and NIC drivers should use
500 * this flag to indicate to each other if the skb contains
501 * encapsulated packet or not and maybe use the inner packet
502 * headers if needed
503 */
504 __u8 encapsulation:1;
45906723 505 /* 6/8 bit hole (depending on ndisc_nodetype presence) */
fe55f6d5
VN
506 kmemcheck_bitfield_end(flags2);
507
e0d1095a 508#if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
06021292
ET
509 union {
510 unsigned int napi_id;
511 dma_cookie_t dma_cookie;
512 };
97fc2f08 513#endif
984bc16c
JM
514#ifdef CONFIG_NETWORK_SECMARK
515 __u32 secmark;
516#endif
3b885787
NH
517 union {
518 __u32 mark;
519 __u32 dropcount;
16fad69c 520 __u32 reserved_tailroom;
3b885787 521 };
1da177e4 522
0d89d203 523 __be16 inner_protocol;
1a37e412
SH
524 __u16 inner_transport_header;
525 __u16 inner_network_header;
526 __u16 inner_mac_header;
527 __u16 transport_header;
528 __u16 network_header;
529 __u16 mac_header;
1da177e4 530 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 531 sk_buff_data_t tail;
4305b541 532 sk_buff_data_t end;
1da177e4 533 unsigned char *head,
4305b541 534 *data;
27a884dc
ACM
535 unsigned int truesize;
536 atomic_t users;
1da177e4
LT
537};
538
539#ifdef __KERNEL__
540/*
541 * Handling routines are only of interest to the kernel
542 */
543#include <linux/slab.h>
544
1da177e4 545
c93bdd0e
MG
546#define SKB_ALLOC_FCLONE 0x01
547#define SKB_ALLOC_RX 0x02
548
549/* Returns true if the skb was allocated from PFMEMALLOC reserves */
550static inline bool skb_pfmemalloc(const struct sk_buff *skb)
551{
552 return unlikely(skb->pfmemalloc);
553}
554
7fee226a
ED
555/*
556 * skb might have a dst pointer attached, refcounted or not.
557 * _skb_refdst low order bit is set if refcount was _not_ taken
558 */
559#define SKB_DST_NOREF 1UL
560#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
561
562/**
563 * skb_dst - returns skb dst_entry
564 * @skb: buffer
565 *
566 * Returns skb dst_entry, regardless of reference taken or not.
567 */
adf30907
ED
568static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
569{
7fee226a
ED
570 /* If refdst was not refcounted, check we still are in a
571 * rcu_read_lock section
572 */
573 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
574 !rcu_read_lock_held() &&
575 !rcu_read_lock_bh_held());
576 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
577}
578
7fee226a
ED
579/**
580 * skb_dst_set - sets skb dst
581 * @skb: buffer
582 * @dst: dst entry
583 *
584 * Sets skb dst, assuming a reference was taken on dst and should
585 * be released by skb_dst_drop()
586 */
adf30907
ED
587static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
588{
7fee226a
ED
589 skb->_skb_refdst = (unsigned long)dst;
590}
591
7965bd4d
JP
592void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
593 bool force);
932bc4d7
JA
594
595/**
596 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
597 * @skb: buffer
598 * @dst: dst entry
599 *
600 * Sets skb dst, assuming a reference was not taken on dst.
601 * If dst entry is cached, we do not take reference and dst_release
602 * will be avoided by refdst_drop. If dst entry is not cached, we take
603 * reference, so that last dst_release can destroy the dst immediately.
604 */
605static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
606{
607 __skb_dst_set_noref(skb, dst, false);
608}
609
610/**
611 * skb_dst_set_noref_force - sets skb dst, without taking reference
612 * @skb: buffer
613 * @dst: dst entry
614 *
615 * Sets skb dst, assuming a reference was not taken on dst.
616 * No reference is taken and no dst_release will be called. While for
617 * cached dsts deferred reclaim is a basic feature, for entries that are
618 * not cached it is caller's job to guarantee that last dst_release for
619 * provided dst happens when nobody uses it, eg. after a RCU grace period.
620 */
621static inline void skb_dst_set_noref_force(struct sk_buff *skb,
622 struct dst_entry *dst)
623{
624 __skb_dst_set_noref(skb, dst, true);
625}
7fee226a
ED
626
627/**
25985edc 628 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
629 * @skb: buffer
630 */
631static inline bool skb_dst_is_noref(const struct sk_buff *skb)
632{
633 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
634}
635
511c3f92
ED
636static inline struct rtable *skb_rtable(const struct sk_buff *skb)
637{
adf30907 638 return (struct rtable *)skb_dst(skb);
511c3f92
ED
639}
640
7965bd4d
JP
641void kfree_skb(struct sk_buff *skb);
642void kfree_skb_list(struct sk_buff *segs);
643void skb_tx_error(struct sk_buff *skb);
644void consume_skb(struct sk_buff *skb);
645void __kfree_skb(struct sk_buff *skb);
d7e8883c 646extern struct kmem_cache *skbuff_head_cache;
bad43ca8 647
7965bd4d
JP
648void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
649bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
650 bool *fragstolen, int *delta_truesize);
bad43ca8 651
7965bd4d
JP
652struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
653 int node);
654struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 655static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 656 gfp_t priority)
d179cd12 657{
564824b0 658 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
659}
660
661static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 662 gfp_t priority)
d179cd12 663{
c93bdd0e 664 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
665}
666
7965bd4d 667struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
0ebd0ac5
PM
668static inline struct sk_buff *alloc_skb_head(gfp_t priority)
669{
670 return __alloc_skb_head(priority, -1);
671}
672
7965bd4d
JP
673struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
674int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
675struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
676struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
677struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask);
678
679int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
680struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
681 unsigned int headroom);
682struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
683 int newtailroom, gfp_t priority);
684int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
685 int len);
686int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
687int skb_pad(struct sk_buff *skb, int pad);
ead2ceb0 688#define dev_kfree_skb(a) consume_skb(a)
1da177e4 689
7965bd4d
JP
690int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
691 int getfrag(void *from, char *to, int offset,
692 int len, int odd, struct sk_buff *skb),
693 void *from, int length);
e89e9cf5 694
d94d9fee 695struct skb_seq_state {
677e90ed
TG
696 __u32 lower_offset;
697 __u32 upper_offset;
698 __u32 frag_idx;
699 __u32 stepped_offset;
700 struct sk_buff *root_skb;
701 struct sk_buff *cur_skb;
702 __u8 *frag_data;
703};
704
7965bd4d
JP
705void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
706 unsigned int to, struct skb_seq_state *st);
707unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
708 struct skb_seq_state *st);
709void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 710
7965bd4d
JP
711unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
712 unsigned int to, struct ts_config *config,
713 struct ts_state *state);
3fc7e8a6 714
7965bd4d 715void __skb_get_rxhash(struct sk_buff *skb);
bfb564e7
KK
716static inline __u32 skb_get_rxhash(struct sk_buff *skb)
717{
ecd5cf5d 718 if (!skb->l4_rxhash)
bdeab991 719 __skb_get_rxhash(skb);
bfb564e7
KK
720
721 return skb->rxhash;
722}
723
4305b541
ACM
724#ifdef NET_SKBUFF_DATA_USES_OFFSET
725static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
726{
727 return skb->head + skb->end;
728}
ec47ea82
AD
729
730static inline unsigned int skb_end_offset(const struct sk_buff *skb)
731{
732 return skb->end;
733}
4305b541
ACM
734#else
735static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
736{
737 return skb->end;
738}
ec47ea82
AD
739
740static inline unsigned int skb_end_offset(const struct sk_buff *skb)
741{
742 return skb->end - skb->head;
743}
4305b541
ACM
744#endif
745
1da177e4 746/* Internal */
4305b541 747#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 748
ac45f602
PO
749static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
750{
751 return &skb_shinfo(skb)->hwtstamps;
752}
753
1da177e4
LT
754/**
755 * skb_queue_empty - check if a queue is empty
756 * @list: queue head
757 *
758 * Returns true if the queue is empty, false otherwise.
759 */
760static inline int skb_queue_empty(const struct sk_buff_head *list)
761{
762 return list->next == (struct sk_buff *)list;
763}
764
fc7ebb21
DM
765/**
766 * skb_queue_is_last - check if skb is the last entry in the queue
767 * @list: queue head
768 * @skb: buffer
769 *
770 * Returns true if @skb is the last buffer on the list.
771 */
772static inline bool skb_queue_is_last(const struct sk_buff_head *list,
773 const struct sk_buff *skb)
774{
a02cec21 775 return skb->next == (struct sk_buff *)list;
fc7ebb21
DM
776}
777
832d11c5
IJ
778/**
779 * skb_queue_is_first - check if skb is the first entry in the queue
780 * @list: queue head
781 * @skb: buffer
782 *
783 * Returns true if @skb is the first buffer on the list.
784 */
785static inline bool skb_queue_is_first(const struct sk_buff_head *list,
786 const struct sk_buff *skb)
787{
a02cec21 788 return skb->prev == (struct sk_buff *)list;
832d11c5
IJ
789}
790
249c8b42
DM
791/**
792 * skb_queue_next - return the next packet in the queue
793 * @list: queue head
794 * @skb: current buffer
795 *
796 * Return the next packet in @list after @skb. It is only valid to
797 * call this if skb_queue_is_last() evaluates to false.
798 */
799static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
800 const struct sk_buff *skb)
801{
802 /* This BUG_ON may seem severe, but if we just return then we
803 * are going to dereference garbage.
804 */
805 BUG_ON(skb_queue_is_last(list, skb));
806 return skb->next;
807}
808
832d11c5
IJ
809/**
810 * skb_queue_prev - return the prev packet in the queue
811 * @list: queue head
812 * @skb: current buffer
813 *
814 * Return the prev packet in @list before @skb. It is only valid to
815 * call this if skb_queue_is_first() evaluates to false.
816 */
817static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
818 const struct sk_buff *skb)
819{
820 /* This BUG_ON may seem severe, but if we just return then we
821 * are going to dereference garbage.
822 */
823 BUG_ON(skb_queue_is_first(list, skb));
824 return skb->prev;
825}
826
1da177e4
LT
827/**
828 * skb_get - reference buffer
829 * @skb: buffer to reference
830 *
831 * Makes another reference to a socket buffer and returns a pointer
832 * to the buffer.
833 */
834static inline struct sk_buff *skb_get(struct sk_buff *skb)
835{
836 atomic_inc(&skb->users);
837 return skb;
838}
839
840/*
841 * If users == 1, we are the only owner and are can avoid redundant
842 * atomic change.
843 */
844
1da177e4
LT
845/**
846 * skb_cloned - is the buffer a clone
847 * @skb: buffer to check
848 *
849 * Returns true if the buffer was generated with skb_clone() and is
850 * one of multiple shared copies of the buffer. Cloned buffers are
851 * shared data so must not be written to under normal circumstances.
852 */
853static inline int skb_cloned(const struct sk_buff *skb)
854{
855 return skb->cloned &&
856 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
857}
858
14bbd6a5
PS
859static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
860{
861 might_sleep_if(pri & __GFP_WAIT);
862
863 if (skb_cloned(skb))
864 return pskb_expand_head(skb, 0, 0, pri);
865
866 return 0;
867}
868
1da177e4
LT
869/**
870 * skb_header_cloned - is the header a clone
871 * @skb: buffer to check
872 *
873 * Returns true if modifying the header part of the buffer requires
874 * the data to be copied.
875 */
876static inline int skb_header_cloned(const struct sk_buff *skb)
877{
878 int dataref;
879
880 if (!skb->cloned)
881 return 0;
882
883 dataref = atomic_read(&skb_shinfo(skb)->dataref);
884 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
885 return dataref != 1;
886}
887
888/**
889 * skb_header_release - release reference to header
890 * @skb: buffer to operate on
891 *
892 * Drop a reference to the header part of the buffer. This is done
893 * by acquiring a payload reference. You must not read from the header
894 * part of skb->data after this.
895 */
896static inline void skb_header_release(struct sk_buff *skb)
897{
898 BUG_ON(skb->nohdr);
899 skb->nohdr = 1;
900 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
901}
902
903/**
904 * skb_shared - is the buffer shared
905 * @skb: buffer to check
906 *
907 * Returns true if more than one person has a reference to this
908 * buffer.
909 */
910static inline int skb_shared(const struct sk_buff *skb)
911{
912 return atomic_read(&skb->users) != 1;
913}
914
915/**
916 * skb_share_check - check if buffer is shared and if so clone it
917 * @skb: buffer to check
918 * @pri: priority for memory allocation
919 *
920 * If the buffer is shared the buffer is cloned and the old copy
921 * drops a reference. A new clone with a single reference is returned.
922 * If the buffer is not shared the original buffer is returned. When
923 * being called from interrupt status or with spinlocks held pri must
924 * be GFP_ATOMIC.
925 *
926 * NULL is returned on a memory allocation failure.
927 */
47061bc4 928static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4
LT
929{
930 might_sleep_if(pri & __GFP_WAIT);
931 if (skb_shared(skb)) {
932 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
933
934 if (likely(nskb))
935 consume_skb(skb);
936 else
937 kfree_skb(skb);
1da177e4
LT
938 skb = nskb;
939 }
940 return skb;
941}
942
943/*
944 * Copy shared buffers into a new sk_buff. We effectively do COW on
945 * packets to handle cases where we have a local reader and forward
946 * and a couple of other messy ones. The normal one is tcpdumping
947 * a packet thats being forwarded.
948 */
949
950/**
951 * skb_unshare - make a copy of a shared buffer
952 * @skb: buffer to check
953 * @pri: priority for memory allocation
954 *
955 * If the socket buffer is a clone then this function creates a new
956 * copy of the data, drops a reference count on the old copy and returns
957 * the new copy with the reference count at 1. If the buffer is not a clone
958 * the original buffer is returned. When called with a spinlock held or
959 * from interrupt state @pri must be %GFP_ATOMIC
960 *
961 * %NULL is returned on a memory allocation failure.
962 */
e2bf521d 963static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 964 gfp_t pri)
1da177e4
LT
965{
966 might_sleep_if(pri & __GFP_WAIT);
967 if (skb_cloned(skb)) {
968 struct sk_buff *nskb = skb_copy(skb, pri);
969 kfree_skb(skb); /* Free our shared copy */
970 skb = nskb;
971 }
972 return skb;
973}
974
975/**
1a5778aa 976 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
977 * @list_: list to peek at
978 *
979 * Peek an &sk_buff. Unlike most other operations you _MUST_
980 * be careful with this one. A peek leaves the buffer on the
981 * list and someone else may run off with it. You must hold
982 * the appropriate locks or have a private queue to do this.
983 *
984 * Returns %NULL for an empty list or a pointer to the head element.
985 * The reference count is not incremented and the reference is therefore
986 * volatile. Use with caution.
987 */
05bdd2f1 988static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 989{
18d07000
ED
990 struct sk_buff *skb = list_->next;
991
992 if (skb == (struct sk_buff *)list_)
993 skb = NULL;
994 return skb;
1da177e4
LT
995}
996
da5ef6e5
PE
997/**
998 * skb_peek_next - peek skb following the given one from a queue
999 * @skb: skb to start from
1000 * @list_: list to peek at
1001 *
1002 * Returns %NULL when the end of the list is met or a pointer to the
1003 * next element. The reference count is not incremented and the
1004 * reference is therefore volatile. Use with caution.
1005 */
1006static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1007 const struct sk_buff_head *list_)
1008{
1009 struct sk_buff *next = skb->next;
18d07000 1010
da5ef6e5
PE
1011 if (next == (struct sk_buff *)list_)
1012 next = NULL;
1013 return next;
1014}
1015
1da177e4 1016/**
1a5778aa 1017 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1018 * @list_: list to peek at
1019 *
1020 * Peek an &sk_buff. Unlike most other operations you _MUST_
1021 * be careful with this one. A peek leaves the buffer on the
1022 * list and someone else may run off with it. You must hold
1023 * the appropriate locks or have a private queue to do this.
1024 *
1025 * Returns %NULL for an empty list or a pointer to the tail element.
1026 * The reference count is not incremented and the reference is therefore
1027 * volatile. Use with caution.
1028 */
05bdd2f1 1029static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1030{
18d07000
ED
1031 struct sk_buff *skb = list_->prev;
1032
1033 if (skb == (struct sk_buff *)list_)
1034 skb = NULL;
1035 return skb;
1036
1da177e4
LT
1037}
1038
1039/**
1040 * skb_queue_len - get queue length
1041 * @list_: list to measure
1042 *
1043 * Return the length of an &sk_buff queue.
1044 */
1045static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1046{
1047 return list_->qlen;
1048}
1049
67fed459
DM
1050/**
1051 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1052 * @list: queue to initialize
1053 *
1054 * This initializes only the list and queue length aspects of
1055 * an sk_buff_head object. This allows to initialize the list
1056 * aspects of an sk_buff_head without reinitializing things like
1057 * the spinlock. It can also be used for on-stack sk_buff_head
1058 * objects where the spinlock is known to not be used.
1059 */
1060static inline void __skb_queue_head_init(struct sk_buff_head *list)
1061{
1062 list->prev = list->next = (struct sk_buff *)list;
1063 list->qlen = 0;
1064}
1065
76f10ad0
AV
1066/*
1067 * This function creates a split out lock class for each invocation;
1068 * this is needed for now since a whole lot of users of the skb-queue
1069 * infrastructure in drivers have different locking usage (in hardirq)
1070 * than the networking core (in softirq only). In the long run either the
1071 * network layer or drivers should need annotation to consolidate the
1072 * main types of usage into 3 classes.
1073 */
1da177e4
LT
1074static inline void skb_queue_head_init(struct sk_buff_head *list)
1075{
1076 spin_lock_init(&list->lock);
67fed459 1077 __skb_queue_head_init(list);
1da177e4
LT
1078}
1079
c2ecba71
PE
1080static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1081 struct lock_class_key *class)
1082{
1083 skb_queue_head_init(list);
1084 lockdep_set_class(&list->lock, class);
1085}
1086
1da177e4 1087/*
bf299275 1088 * Insert an sk_buff on a list.
1da177e4
LT
1089 *
1090 * The "__skb_xxxx()" functions are the non-atomic ones that
1091 * can only be called with interrupts disabled.
1092 */
7965bd4d
JP
1093void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1094 struct sk_buff_head *list);
bf299275
GR
1095static inline void __skb_insert(struct sk_buff *newsk,
1096 struct sk_buff *prev, struct sk_buff *next,
1097 struct sk_buff_head *list)
1098{
1099 newsk->next = next;
1100 newsk->prev = prev;
1101 next->prev = prev->next = newsk;
1102 list->qlen++;
1103}
1da177e4 1104
67fed459
DM
1105static inline void __skb_queue_splice(const struct sk_buff_head *list,
1106 struct sk_buff *prev,
1107 struct sk_buff *next)
1108{
1109 struct sk_buff *first = list->next;
1110 struct sk_buff *last = list->prev;
1111
1112 first->prev = prev;
1113 prev->next = first;
1114
1115 last->next = next;
1116 next->prev = last;
1117}
1118
1119/**
1120 * skb_queue_splice - join two skb lists, this is designed for stacks
1121 * @list: the new list to add
1122 * @head: the place to add it in the first list
1123 */
1124static inline void skb_queue_splice(const struct sk_buff_head *list,
1125 struct sk_buff_head *head)
1126{
1127 if (!skb_queue_empty(list)) {
1128 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1129 head->qlen += list->qlen;
67fed459
DM
1130 }
1131}
1132
1133/**
d9619496 1134 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1135 * @list: the new list to add
1136 * @head: the place to add it in the first list
1137 *
1138 * The list at @list is reinitialised
1139 */
1140static inline void skb_queue_splice_init(struct sk_buff_head *list,
1141 struct sk_buff_head *head)
1142{
1143 if (!skb_queue_empty(list)) {
1144 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1145 head->qlen += list->qlen;
67fed459
DM
1146 __skb_queue_head_init(list);
1147 }
1148}
1149
1150/**
1151 * skb_queue_splice_tail - join two skb lists, each list being a queue
1152 * @list: the new list to add
1153 * @head: the place to add it in the first list
1154 */
1155static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1156 struct sk_buff_head *head)
1157{
1158 if (!skb_queue_empty(list)) {
1159 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1160 head->qlen += list->qlen;
67fed459
DM
1161 }
1162}
1163
1164/**
d9619496 1165 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1166 * @list: the new list to add
1167 * @head: the place to add it in the first list
1168 *
1169 * Each of the lists is a queue.
1170 * The list at @list is reinitialised
1171 */
1172static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1173 struct sk_buff_head *head)
1174{
1175 if (!skb_queue_empty(list)) {
1176 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1177 head->qlen += list->qlen;
67fed459
DM
1178 __skb_queue_head_init(list);
1179 }
1180}
1181
1da177e4 1182/**
300ce174 1183 * __skb_queue_after - queue a buffer at the list head
1da177e4 1184 * @list: list to use
300ce174 1185 * @prev: place after this buffer
1da177e4
LT
1186 * @newsk: buffer to queue
1187 *
300ce174 1188 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1189 * and you must therefore hold required locks before calling it.
1190 *
1191 * A buffer cannot be placed on two lists at the same time.
1192 */
300ce174
SH
1193static inline void __skb_queue_after(struct sk_buff_head *list,
1194 struct sk_buff *prev,
1195 struct sk_buff *newsk)
1da177e4 1196{
bf299275 1197 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1198}
1199
7965bd4d
JP
1200void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1201 struct sk_buff_head *list);
7de6c033 1202
f5572855
GR
1203static inline void __skb_queue_before(struct sk_buff_head *list,
1204 struct sk_buff *next,
1205 struct sk_buff *newsk)
1206{
1207 __skb_insert(newsk, next->prev, next, list);
1208}
1209
300ce174
SH
1210/**
1211 * __skb_queue_head - queue a buffer at the list head
1212 * @list: list to use
1213 * @newsk: buffer to queue
1214 *
1215 * Queue a buffer at the start of a list. This function takes no locks
1216 * and you must therefore hold required locks before calling it.
1217 *
1218 * A buffer cannot be placed on two lists at the same time.
1219 */
7965bd4d 1220void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1221static inline void __skb_queue_head(struct sk_buff_head *list,
1222 struct sk_buff *newsk)
1223{
1224 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1225}
1226
1da177e4
LT
1227/**
1228 * __skb_queue_tail - queue a buffer at the list tail
1229 * @list: list to use
1230 * @newsk: buffer to queue
1231 *
1232 * Queue a buffer at the end of a list. This function takes no locks
1233 * and you must therefore hold required locks before calling it.
1234 *
1235 * A buffer cannot be placed on two lists at the same time.
1236 */
7965bd4d 1237void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1238static inline void __skb_queue_tail(struct sk_buff_head *list,
1239 struct sk_buff *newsk)
1240{
f5572855 1241 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1242}
1243
1da177e4
LT
1244/*
1245 * remove sk_buff from list. _Must_ be called atomically, and with
1246 * the list known..
1247 */
7965bd4d 1248void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1249static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1250{
1251 struct sk_buff *next, *prev;
1252
1253 list->qlen--;
1254 next = skb->next;
1255 prev = skb->prev;
1256 skb->next = skb->prev = NULL;
1da177e4
LT
1257 next->prev = prev;
1258 prev->next = next;
1259}
1260
f525c06d
GR
1261/**
1262 * __skb_dequeue - remove from the head of the queue
1263 * @list: list to dequeue from
1264 *
1265 * Remove the head of the list. This function does not take any locks
1266 * so must be used with appropriate locks held only. The head item is
1267 * returned or %NULL if the list is empty.
1268 */
7965bd4d 1269struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1270static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1271{
1272 struct sk_buff *skb = skb_peek(list);
1273 if (skb)
1274 __skb_unlink(skb, list);
1275 return skb;
1276}
1da177e4
LT
1277
1278/**
1279 * __skb_dequeue_tail - remove from the tail of the queue
1280 * @list: list to dequeue from
1281 *
1282 * Remove the tail of the list. This function does not take any locks
1283 * so must be used with appropriate locks held only. The tail item is
1284 * returned or %NULL if the list is empty.
1285 */
7965bd4d 1286struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1287static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1288{
1289 struct sk_buff *skb = skb_peek_tail(list);
1290 if (skb)
1291 __skb_unlink(skb, list);
1292 return skb;
1293}
1294
1295
bdcc0924 1296static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1297{
1298 return skb->data_len;
1299}
1300
1301static inline unsigned int skb_headlen(const struct sk_buff *skb)
1302{
1303 return skb->len - skb->data_len;
1304}
1305
1306static inline int skb_pagelen(const struct sk_buff *skb)
1307{
1308 int i, len = 0;
1309
1310 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
9e903e08 1311 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1da177e4
LT
1312 return len + skb_headlen(skb);
1313}
1314
131ea667
IC
1315/**
1316 * __skb_fill_page_desc - initialise a paged fragment in an skb
1317 * @skb: buffer containing fragment to be initialised
1318 * @i: paged fragment index to initialise
1319 * @page: the page to use for this fragment
1320 * @off: the offset to the data with @page
1321 * @size: the length of the data
1322 *
1323 * Initialises the @i'th fragment of @skb to point to &size bytes at
1324 * offset @off within @page.
1325 *
1326 * Does not take any additional reference on the fragment.
1327 */
1328static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1329 struct page *page, int off, int size)
1da177e4
LT
1330{
1331 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1332
c48a11c7
MG
1333 /*
1334 * Propagate page->pfmemalloc to the skb if we can. The problem is
1335 * that not all callers have unique ownership of the page. If
1336 * pfmemalloc is set, we check the mapping as a mapping implies
1337 * page->index is set (index and pfmemalloc share space).
1338 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1339 * do not lose pfmemalloc information as the pages would not be
1340 * allocated using __GFP_MEMALLOC.
1341 */
a8605c60 1342 frag->page.p = page;
1da177e4 1343 frag->page_offset = off;
9e903e08 1344 skb_frag_size_set(frag, size);
cca7af38
PE
1345
1346 page = compound_head(page);
1347 if (page->pfmemalloc && !page->mapping)
1348 skb->pfmemalloc = true;
131ea667
IC
1349}
1350
1351/**
1352 * skb_fill_page_desc - initialise a paged fragment in an skb
1353 * @skb: buffer containing fragment to be initialised
1354 * @i: paged fragment index to initialise
1355 * @page: the page to use for this fragment
1356 * @off: the offset to the data with @page
1357 * @size: the length of the data
1358 *
1359 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1360 * @skb to point to &size bytes at offset @off within @page. In
1361 * addition updates @skb such that @i is the last fragment.
1362 *
1363 * Does not take any additional reference on the fragment.
1364 */
1365static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1366 struct page *page, int off, int size)
1367{
1368 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1369 skb_shinfo(skb)->nr_frags = i + 1;
1370}
1371
7965bd4d
JP
1372void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1373 int size, unsigned int truesize);
654bed16 1374
1da177e4 1375#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1376#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1377#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1378
27a884dc
ACM
1379#ifdef NET_SKBUFF_DATA_USES_OFFSET
1380static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1381{
1382 return skb->head + skb->tail;
1383}
1384
1385static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1386{
1387 skb->tail = skb->data - skb->head;
1388}
1389
1390static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1391{
1392 skb_reset_tail_pointer(skb);
1393 skb->tail += offset;
1394}
7cc46190 1395
27a884dc
ACM
1396#else /* NET_SKBUFF_DATA_USES_OFFSET */
1397static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1398{
1399 return skb->tail;
1400}
1401
1402static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1403{
1404 skb->tail = skb->data;
1405}
1406
1407static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1408{
1409 skb->tail = skb->data + offset;
1410}
4305b541 1411
27a884dc
ACM
1412#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1413
1da177e4
LT
1414/*
1415 * Add data to an sk_buff
1416 */
7965bd4d 1417unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1418static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1419{
27a884dc 1420 unsigned char *tmp = skb_tail_pointer(skb);
1da177e4
LT
1421 SKB_LINEAR_ASSERT(skb);
1422 skb->tail += len;
1423 skb->len += len;
1424 return tmp;
1425}
1426
7965bd4d 1427unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1428static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1429{
1430 skb->data -= len;
1431 skb->len += len;
1432 return skb->data;
1433}
1434
7965bd4d 1435unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1436static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1437{
1438 skb->len -= len;
1439 BUG_ON(skb->len < skb->data_len);
1440 return skb->data += len;
1441}
1442
47d29646
DM
1443static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1444{
1445 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1446}
1447
7965bd4d 1448unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4
LT
1449
1450static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1451{
1452 if (len > skb_headlen(skb) &&
987c402a 1453 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
1454 return NULL;
1455 skb->len -= len;
1456 return skb->data += len;
1457}
1458
1459static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1460{
1461 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1462}
1463
1464static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1465{
1466 if (likely(len <= skb_headlen(skb)))
1467 return 1;
1468 if (unlikely(len > skb->len))
1469 return 0;
987c402a 1470 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
1471}
1472
1473/**
1474 * skb_headroom - bytes at buffer head
1475 * @skb: buffer to check
1476 *
1477 * Return the number of bytes of free space at the head of an &sk_buff.
1478 */
c2636b4d 1479static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
1480{
1481 return skb->data - skb->head;
1482}
1483
1484/**
1485 * skb_tailroom - bytes at buffer end
1486 * @skb: buffer to check
1487 *
1488 * Return the number of bytes of free space at the tail of an sk_buff
1489 */
1490static inline int skb_tailroom(const struct sk_buff *skb)
1491{
4305b541 1492 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
1493}
1494
a21d4572
ED
1495/**
1496 * skb_availroom - bytes at buffer end
1497 * @skb: buffer to check
1498 *
1499 * Return the number of bytes of free space at the tail of an sk_buff
1500 * allocated by sk_stream_alloc()
1501 */
1502static inline int skb_availroom(const struct sk_buff *skb)
1503{
16fad69c
ED
1504 if (skb_is_nonlinear(skb))
1505 return 0;
1506
1507 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
1508}
1509
1da177e4
LT
1510/**
1511 * skb_reserve - adjust headroom
1512 * @skb: buffer to alter
1513 * @len: bytes to move
1514 *
1515 * Increase the headroom of an empty &sk_buff by reducing the tail
1516 * room. This is only allowed for an empty buffer.
1517 */
8243126c 1518static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
1519{
1520 skb->data += len;
1521 skb->tail += len;
1522}
1523
6a674e9c
JG
1524static inline void skb_reset_inner_headers(struct sk_buff *skb)
1525{
aefbd2b3 1526 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
1527 skb->inner_network_header = skb->network_header;
1528 skb->inner_transport_header = skb->transport_header;
1529}
1530
0b5c9db1
JP
1531static inline void skb_reset_mac_len(struct sk_buff *skb)
1532{
1533 skb->mac_len = skb->network_header - skb->mac_header;
1534}
1535
6a674e9c
JG
1536static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1537 *skb)
1538{
1539 return skb->head + skb->inner_transport_header;
1540}
1541
1542static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1543{
1544 skb->inner_transport_header = skb->data - skb->head;
1545}
1546
1547static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1548 const int offset)
1549{
1550 skb_reset_inner_transport_header(skb);
1551 skb->inner_transport_header += offset;
1552}
1553
1554static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1555{
1556 return skb->head + skb->inner_network_header;
1557}
1558
1559static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1560{
1561 skb->inner_network_header = skb->data - skb->head;
1562}
1563
1564static inline void skb_set_inner_network_header(struct sk_buff *skb,
1565 const int offset)
1566{
1567 skb_reset_inner_network_header(skb);
1568 skb->inner_network_header += offset;
1569}
1570
aefbd2b3
PS
1571static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1572{
1573 return skb->head + skb->inner_mac_header;
1574}
1575
1576static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1577{
1578 skb->inner_mac_header = skb->data - skb->head;
1579}
1580
1581static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1582 const int offset)
1583{
1584 skb_reset_inner_mac_header(skb);
1585 skb->inner_mac_header += offset;
1586}
fda55eca
ED
1587static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1588{
35d04610 1589 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
1590}
1591
9c70220b
ACM
1592static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1593{
2e07fa9c 1594 return skb->head + skb->transport_header;
9c70220b
ACM
1595}
1596
badff6d0
ACM
1597static inline void skb_reset_transport_header(struct sk_buff *skb)
1598{
2e07fa9c 1599 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
1600}
1601
967b05f6
ACM
1602static inline void skb_set_transport_header(struct sk_buff *skb,
1603 const int offset)
1604{
2e07fa9c
ACM
1605 skb_reset_transport_header(skb);
1606 skb->transport_header += offset;
ea2ae17d
ACM
1607}
1608
d56f90a7
ACM
1609static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1610{
2e07fa9c 1611 return skb->head + skb->network_header;
d56f90a7
ACM
1612}
1613
c1d2bbe1
ACM
1614static inline void skb_reset_network_header(struct sk_buff *skb)
1615{
2e07fa9c 1616 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
1617}
1618
c14d2450
ACM
1619static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1620{
2e07fa9c
ACM
1621 skb_reset_network_header(skb);
1622 skb->network_header += offset;
c14d2450
ACM
1623}
1624
2e07fa9c 1625static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 1626{
2e07fa9c 1627 return skb->head + skb->mac_header;
bbe735e4
ACM
1628}
1629
2e07fa9c 1630static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 1631{
35d04610 1632 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
1633}
1634
1635static inline void skb_reset_mac_header(struct sk_buff *skb)
1636{
1637 skb->mac_header = skb->data - skb->head;
1638}
1639
1640static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1641{
1642 skb_reset_mac_header(skb);
1643 skb->mac_header += offset;
1644}
1645
fbbdb8f0
YX
1646static inline void skb_probe_transport_header(struct sk_buff *skb,
1647 const int offset_hint)
1648{
1649 struct flow_keys keys;
1650
1651 if (skb_transport_header_was_set(skb))
1652 return;
1653 else if (skb_flow_dissect(skb, &keys))
1654 skb_set_transport_header(skb, keys.thoff);
1655 else
1656 skb_set_transport_header(skb, offset_hint);
1657}
1658
03606895
ED
1659static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1660{
1661 if (skb_mac_header_was_set(skb)) {
1662 const unsigned char *old_mac = skb_mac_header(skb);
1663
1664 skb_set_mac_header(skb, -skb->mac_len);
1665 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1666 }
1667}
1668
04fb451e
MM
1669static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1670{
1671 return skb->csum_start - skb_headroom(skb);
1672}
1673
2e07fa9c
ACM
1674static inline int skb_transport_offset(const struct sk_buff *skb)
1675{
1676 return skb_transport_header(skb) - skb->data;
1677}
1678
1679static inline u32 skb_network_header_len(const struct sk_buff *skb)
1680{
1681 return skb->transport_header - skb->network_header;
1682}
1683
6a674e9c
JG
1684static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1685{
1686 return skb->inner_transport_header - skb->inner_network_header;
1687}
1688
2e07fa9c
ACM
1689static inline int skb_network_offset(const struct sk_buff *skb)
1690{
1691 return skb_network_header(skb) - skb->data;
1692}
48d49d0c 1693
6a674e9c
JG
1694static inline int skb_inner_network_offset(const struct sk_buff *skb)
1695{
1696 return skb_inner_network_header(skb) - skb->data;
1697}
1698
f9599ce1
CG
1699static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1700{
1701 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1702}
1703
1da177e4
LT
1704/*
1705 * CPUs often take a performance hit when accessing unaligned memory
1706 * locations. The actual performance hit varies, it can be small if the
1707 * hardware handles it or large if we have to take an exception and fix it
1708 * in software.
1709 *
1710 * Since an ethernet header is 14 bytes network drivers often end up with
1711 * the IP header at an unaligned offset. The IP header can be aligned by
1712 * shifting the start of the packet by 2 bytes. Drivers should do this
1713 * with:
1714 *
8660c124 1715 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
1716 *
1717 * The downside to this alignment of the IP header is that the DMA is now
1718 * unaligned. On some architectures the cost of an unaligned DMA is high
1719 * and this cost outweighs the gains made by aligning the IP header.
8660c124 1720 *
1da177e4
LT
1721 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1722 * to be overridden.
1723 */
1724#ifndef NET_IP_ALIGN
1725#define NET_IP_ALIGN 2
1726#endif
1727
025be81e
AB
1728/*
1729 * The networking layer reserves some headroom in skb data (via
1730 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1731 * the header has to grow. In the default case, if the header has to grow
d6301d3d 1732 * 32 bytes or less we avoid the reallocation.
025be81e
AB
1733 *
1734 * Unfortunately this headroom changes the DMA alignment of the resulting
1735 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1736 * on some architectures. An architecture can override this value,
1737 * perhaps setting it to a cacheline in size (since that will maintain
1738 * cacheline alignment of the DMA). It must be a power of 2.
1739 *
d6301d3d 1740 * Various parts of the networking layer expect at least 32 bytes of
025be81e 1741 * headroom, you should not reduce this.
5933dd2f
ED
1742 *
1743 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1744 * to reduce average number of cache lines per packet.
1745 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 1746 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
1747 */
1748#ifndef NET_SKB_PAD
5933dd2f 1749#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
1750#endif
1751
7965bd4d 1752int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1753
1754static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1755{
c4264f27 1756 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
1757 WARN_ON(1);
1758 return;
1759 }
27a884dc
ACM
1760 skb->len = len;
1761 skb_set_tail_pointer(skb, len);
1da177e4
LT
1762}
1763
7965bd4d 1764void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1765
1766static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1767{
3cc0e873
HX
1768 if (skb->data_len)
1769 return ___pskb_trim(skb, len);
1770 __skb_trim(skb, len);
1771 return 0;
1da177e4
LT
1772}
1773
1774static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1775{
1776 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1777}
1778
e9fa4f7b
HX
1779/**
1780 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1781 * @skb: buffer to alter
1782 * @len: new length
1783 *
1784 * This is identical to pskb_trim except that the caller knows that
1785 * the skb is not cloned so we should never get an error due to out-
1786 * of-memory.
1787 */
1788static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1789{
1790 int err = pskb_trim(skb, len);
1791 BUG_ON(err);
1792}
1793
1da177e4
LT
1794/**
1795 * skb_orphan - orphan a buffer
1796 * @skb: buffer to orphan
1797 *
1798 * If a buffer currently has an owner then we call the owner's
1799 * destructor function and make the @skb unowned. The buffer continues
1800 * to exist but is no longer charged to its former owner.
1801 */
1802static inline void skb_orphan(struct sk_buff *skb)
1803{
c34a7612 1804 if (skb->destructor) {
1da177e4 1805 skb->destructor(skb);
c34a7612
ED
1806 skb->destructor = NULL;
1807 skb->sk = NULL;
376c7311
ED
1808 } else {
1809 BUG_ON(skb->sk);
c34a7612 1810 }
1da177e4
LT
1811}
1812
a353e0ce
MT
1813/**
1814 * skb_orphan_frags - orphan the frags contained in a buffer
1815 * @skb: buffer to orphan frags from
1816 * @gfp_mask: allocation mask for replacement pages
1817 *
1818 * For each frag in the SKB which needs a destructor (i.e. has an
1819 * owner) create a copy of that frag and release the original
1820 * page by calling the destructor.
1821 */
1822static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1823{
1824 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1825 return 0;
1826 return skb_copy_ubufs(skb, gfp_mask);
1827}
1828
1da177e4
LT
1829/**
1830 * __skb_queue_purge - empty a list
1831 * @list: list to empty
1832 *
1833 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1834 * the list and one reference dropped. This function does not take the
1835 * list lock and the caller must hold the relevant locks to use it.
1836 */
7965bd4d 1837void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
1838static inline void __skb_queue_purge(struct sk_buff_head *list)
1839{
1840 struct sk_buff *skb;
1841 while ((skb = __skb_dequeue(list)) != NULL)
1842 kfree_skb(skb);
1843}
1844
e5e67305
AD
1845#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
1846#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
1847#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
1848
7965bd4d 1849void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 1850
7965bd4d
JP
1851struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
1852 gfp_t gfp_mask);
8af27456
CH
1853
1854/**
1855 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1856 * @dev: network device to receive on
1857 * @length: length to allocate
1858 *
1859 * Allocate a new &sk_buff and assign it a usage count of one. The
1860 * buffer has unspecified headroom built in. Users should allocate
1861 * the headroom they think they need without accounting for the
1862 * built in space. The built in space is used for optimisations.
1863 *
1864 * %NULL is returned if there is no free memory. Although this function
1865 * allocates memory it can be called from an interrupt.
1866 */
1867static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 1868 unsigned int length)
8af27456
CH
1869{
1870 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1871}
1872
6f532612
ED
1873/* legacy helper around __netdev_alloc_skb() */
1874static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1875 gfp_t gfp_mask)
1876{
1877 return __netdev_alloc_skb(NULL, length, gfp_mask);
1878}
1879
1880/* legacy helper around netdev_alloc_skb() */
1881static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1882{
1883 return netdev_alloc_skb(NULL, length);
1884}
1885
1886
4915a0de
ED
1887static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1888 unsigned int length, gfp_t gfp)
61321bbd 1889{
4915a0de 1890 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
1891
1892 if (NET_IP_ALIGN && skb)
1893 skb_reserve(skb, NET_IP_ALIGN);
1894 return skb;
1895}
1896
4915a0de
ED
1897static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1898 unsigned int length)
1899{
1900 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1901}
1902
bc6fc9fa
FF
1903/**
1904 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
0614002b
MG
1905 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1906 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1907 * @order: size of the allocation
1908 *
1909 * Allocate a new page.
1910 *
1911 * %NULL is returned if there is no free memory.
1912*/
1913static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
1914 struct sk_buff *skb,
1915 unsigned int order)
1916{
1917 struct page *page;
1918
1919 gfp_mask |= __GFP_COLD;
1920
1921 if (!(gfp_mask & __GFP_NOMEMALLOC))
1922 gfp_mask |= __GFP_MEMALLOC;
1923
1924 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
1925 if (skb && page && page->pfmemalloc)
1926 skb->pfmemalloc = true;
1927
1928 return page;
1929}
1930
1931/**
1932 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
1933 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1934 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1935 *
1936 * Allocate a new page.
1937 *
1938 * %NULL is returned if there is no free memory.
1939 */
1940static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
1941 struct sk_buff *skb)
1942{
1943 return __skb_alloc_pages(gfp_mask, skb, 0);
1944}
1945
1946/**
1947 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
1948 * @page: The page that was allocated from skb_alloc_page
1949 * @skb: The skb that may need pfmemalloc set
1950 */
1951static inline void skb_propagate_pfmemalloc(struct page *page,
1952 struct sk_buff *skb)
1953{
1954 if (page && page->pfmemalloc)
1955 skb->pfmemalloc = true;
1956}
1957
131ea667
IC
1958/**
1959 * skb_frag_page - retrieve the page refered to by a paged fragment
1960 * @frag: the paged fragment
1961 *
1962 * Returns the &struct page associated with @frag.
1963 */
1964static inline struct page *skb_frag_page(const skb_frag_t *frag)
1965{
a8605c60 1966 return frag->page.p;
131ea667
IC
1967}
1968
1969/**
1970 * __skb_frag_ref - take an addition reference on a paged fragment.
1971 * @frag: the paged fragment
1972 *
1973 * Takes an additional reference on the paged fragment @frag.
1974 */
1975static inline void __skb_frag_ref(skb_frag_t *frag)
1976{
1977 get_page(skb_frag_page(frag));
1978}
1979
1980/**
1981 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1982 * @skb: the buffer
1983 * @f: the fragment offset.
1984 *
1985 * Takes an additional reference on the @f'th paged fragment of @skb.
1986 */
1987static inline void skb_frag_ref(struct sk_buff *skb, int f)
1988{
1989 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1990}
1991
1992/**
1993 * __skb_frag_unref - release a reference on a paged fragment.
1994 * @frag: the paged fragment
1995 *
1996 * Releases a reference on the paged fragment @frag.
1997 */
1998static inline void __skb_frag_unref(skb_frag_t *frag)
1999{
2000 put_page(skb_frag_page(frag));
2001}
2002
2003/**
2004 * skb_frag_unref - release a reference on a paged fragment of an skb.
2005 * @skb: the buffer
2006 * @f: the fragment offset
2007 *
2008 * Releases a reference on the @f'th paged fragment of @skb.
2009 */
2010static inline void skb_frag_unref(struct sk_buff *skb, int f)
2011{
2012 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2013}
2014
2015/**
2016 * skb_frag_address - gets the address of the data contained in a paged fragment
2017 * @frag: the paged fragment buffer
2018 *
2019 * Returns the address of the data within @frag. The page must already
2020 * be mapped.
2021 */
2022static inline void *skb_frag_address(const skb_frag_t *frag)
2023{
2024 return page_address(skb_frag_page(frag)) + frag->page_offset;
2025}
2026
2027/**
2028 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2029 * @frag: the paged fragment buffer
2030 *
2031 * Returns the address of the data within @frag. Checks that the page
2032 * is mapped and returns %NULL otherwise.
2033 */
2034static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2035{
2036 void *ptr = page_address(skb_frag_page(frag));
2037 if (unlikely(!ptr))
2038 return NULL;
2039
2040 return ptr + frag->page_offset;
2041}
2042
2043/**
2044 * __skb_frag_set_page - sets the page contained in a paged fragment
2045 * @frag: the paged fragment
2046 * @page: the page to set
2047 *
2048 * Sets the fragment @frag to contain @page.
2049 */
2050static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2051{
a8605c60 2052 frag->page.p = page;
131ea667
IC
2053}
2054
2055/**
2056 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2057 * @skb: the buffer
2058 * @f: the fragment offset
2059 * @page: the page to set
2060 *
2061 * Sets the @f'th fragment of @skb to contain @page.
2062 */
2063static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2064 struct page *page)
2065{
2066 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2067}
2068
400dfd3a
ED
2069bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2070
131ea667
IC
2071/**
2072 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2073 * @dev: the device to map the fragment to
131ea667
IC
2074 * @frag: the paged fragment to map
2075 * @offset: the offset within the fragment (starting at the
2076 * fragment's own offset)
2077 * @size: the number of bytes to map
f83347df 2078 * @dir: the direction of the mapping (%PCI_DMA_*)
131ea667
IC
2079 *
2080 * Maps the page associated with @frag to @device.
2081 */
2082static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2083 const skb_frag_t *frag,
2084 size_t offset, size_t size,
2085 enum dma_data_direction dir)
2086{
2087 return dma_map_page(dev, skb_frag_page(frag),
2088 frag->page_offset + offset, size, dir);
2089}
2090
117632e6
ED
2091static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2092 gfp_t gfp_mask)
2093{
2094 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2095}
2096
334a8132
PM
2097/**
2098 * skb_clone_writable - is the header of a clone writable
2099 * @skb: buffer to check
2100 * @len: length up to which to write
2101 *
2102 * Returns true if modifying the header part of the cloned buffer
2103 * does not requires the data to be copied.
2104 */
05bdd2f1 2105static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2106{
2107 return !skb_header_cloned(skb) &&
2108 skb_headroom(skb) + len <= skb->hdr_len;
2109}
2110
d9cc2048
HX
2111static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2112 int cloned)
2113{
2114 int delta = 0;
2115
d9cc2048
HX
2116 if (headroom > skb_headroom(skb))
2117 delta = headroom - skb_headroom(skb);
2118
2119 if (delta || cloned)
2120 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2121 GFP_ATOMIC);
2122 return 0;
2123}
2124
1da177e4
LT
2125/**
2126 * skb_cow - copy header of skb when it is required
2127 * @skb: buffer to cow
2128 * @headroom: needed headroom
2129 *
2130 * If the skb passed lacks sufficient headroom or its data part
2131 * is shared, data is reallocated. If reallocation fails, an error
2132 * is returned and original skb is not changed.
2133 *
2134 * The result is skb with writable area skb->head...skb->tail
2135 * and at least @headroom of space at head.
2136 */
2137static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2138{
d9cc2048
HX
2139 return __skb_cow(skb, headroom, skb_cloned(skb));
2140}
1da177e4 2141
d9cc2048
HX
2142/**
2143 * skb_cow_head - skb_cow but only making the head writable
2144 * @skb: buffer to cow
2145 * @headroom: needed headroom
2146 *
2147 * This function is identical to skb_cow except that we replace the
2148 * skb_cloned check by skb_header_cloned. It should be used when
2149 * you only need to push on some header and do not need to modify
2150 * the data.
2151 */
2152static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2153{
2154 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2155}
2156
2157/**
2158 * skb_padto - pad an skbuff up to a minimal size
2159 * @skb: buffer to pad
2160 * @len: minimal length
2161 *
2162 * Pads up a buffer to ensure the trailing bytes exist and are
2163 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2164 * is untouched. Otherwise it is extended. Returns zero on
2165 * success. The skb is freed on error.
1da177e4
LT
2166 */
2167
5b057c6b 2168static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2169{
2170 unsigned int size = skb->len;
2171 if (likely(size >= len))
5b057c6b 2172 return 0;
987c402a 2173 return skb_pad(skb, len - size);
1da177e4
LT
2174}
2175
2176static inline int skb_add_data(struct sk_buff *skb,
2177 char __user *from, int copy)
2178{
2179 const int off = skb->len;
2180
2181 if (skb->ip_summed == CHECKSUM_NONE) {
2182 int err = 0;
5084205f 2183 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1da177e4
LT
2184 copy, 0, &err);
2185 if (!err) {
2186 skb->csum = csum_block_add(skb->csum, csum, off);
2187 return 0;
2188 }
2189 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2190 return 0;
2191
2192 __skb_trim(skb, off);
2193 return -EFAULT;
2194}
2195
38ba0a65
ED
2196static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2197 const struct page *page, int off)
1da177e4
LT
2198{
2199 if (i) {
9e903e08 2200 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 2201
ea2ab693 2202 return page == skb_frag_page(frag) &&
9e903e08 2203 off == frag->page_offset + skb_frag_size(frag);
1da177e4 2204 }
38ba0a65 2205 return false;
1da177e4
LT
2206}
2207
364c6bad
HX
2208static inline int __skb_linearize(struct sk_buff *skb)
2209{
2210 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2211}
2212
1da177e4
LT
2213/**
2214 * skb_linearize - convert paged skb to linear one
2215 * @skb: buffer to linarize
1da177e4
LT
2216 *
2217 * If there is no free memory -ENOMEM is returned, otherwise zero
2218 * is returned and the old skb data released.
2219 */
364c6bad
HX
2220static inline int skb_linearize(struct sk_buff *skb)
2221{
2222 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2223}
2224
cef401de
ED
2225/**
2226 * skb_has_shared_frag - can any frag be overwritten
2227 * @skb: buffer to test
2228 *
2229 * Return true if the skb has at least one frag that might be modified
2230 * by an external entity (as in vmsplice()/sendfile())
2231 */
2232static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2233{
c9af6db4
PS
2234 return skb_is_nonlinear(skb) &&
2235 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
2236}
2237
364c6bad
HX
2238/**
2239 * skb_linearize_cow - make sure skb is linear and writable
2240 * @skb: buffer to process
2241 *
2242 * If there is no free memory -ENOMEM is returned, otherwise zero
2243 * is returned and the old skb data released.
2244 */
2245static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 2246{
364c6bad
HX
2247 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2248 __skb_linearize(skb) : 0;
1da177e4
LT
2249}
2250
2251/**
2252 * skb_postpull_rcsum - update checksum for received skb after pull
2253 * @skb: buffer to update
2254 * @start: start of data before pull
2255 * @len: length of data pulled
2256 *
2257 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
2258 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2259 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4
LT
2260 */
2261
2262static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 2263 const void *start, unsigned int len)
1da177e4 2264{
84fa7933 2265 if (skb->ip_summed == CHECKSUM_COMPLETE)
1da177e4
LT
2266 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2267}
2268
cbb042f9
HX
2269unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2270
1da177e4
LT
2271/**
2272 * pskb_trim_rcsum - trim received skb and update checksum
2273 * @skb: buffer to trim
2274 * @len: new length
2275 *
2276 * This is exactly the same as pskb_trim except that it ensures the
2277 * checksum of received packets are still valid after the operation.
2278 */
2279
2280static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2281{
0e4e4220 2282 if (likely(len >= skb->len))
1da177e4 2283 return 0;
84fa7933 2284 if (skb->ip_summed == CHECKSUM_COMPLETE)
1da177e4
LT
2285 skb->ip_summed = CHECKSUM_NONE;
2286 return __pskb_trim(skb, len);
2287}
2288
1da177e4
LT
2289#define skb_queue_walk(queue, skb) \
2290 for (skb = (queue)->next; \
a1e4891f 2291 skb != (struct sk_buff *)(queue); \
1da177e4
LT
2292 skb = skb->next)
2293
46f8914e
JC
2294#define skb_queue_walk_safe(queue, skb, tmp) \
2295 for (skb = (queue)->next, tmp = skb->next; \
2296 skb != (struct sk_buff *)(queue); \
2297 skb = tmp, tmp = skb->next)
2298
1164f52a 2299#define skb_queue_walk_from(queue, skb) \
a1e4891f 2300 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
2301 skb = skb->next)
2302
2303#define skb_queue_walk_from_safe(queue, skb, tmp) \
2304 for (tmp = skb->next; \
2305 skb != (struct sk_buff *)(queue); \
2306 skb = tmp, tmp = skb->next)
2307
300ce174
SH
2308#define skb_queue_reverse_walk(queue, skb) \
2309 for (skb = (queue)->prev; \
a1e4891f 2310 skb != (struct sk_buff *)(queue); \
300ce174
SH
2311 skb = skb->prev)
2312
686a2955
DM
2313#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2314 for (skb = (queue)->prev, tmp = skb->prev; \
2315 skb != (struct sk_buff *)(queue); \
2316 skb = tmp, tmp = skb->prev)
2317
2318#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2319 for (tmp = skb->prev; \
2320 skb != (struct sk_buff *)(queue); \
2321 skb = tmp, tmp = skb->prev)
1da177e4 2322
21dc3301 2323static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
2324{
2325 return skb_shinfo(skb)->frag_list != NULL;
2326}
2327
2328static inline void skb_frag_list_init(struct sk_buff *skb)
2329{
2330 skb_shinfo(skb)->frag_list = NULL;
2331}
2332
2333static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2334{
2335 frag->next = skb_shinfo(skb)->frag_list;
2336 skb_shinfo(skb)->frag_list = frag;
2337}
2338
2339#define skb_walk_frags(skb, iter) \
2340 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2341
7965bd4d
JP
2342struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2343 int *peeked, int *off, int *err);
2344struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2345 int *err);
2346unsigned int datagram_poll(struct file *file, struct socket *sock,
2347 struct poll_table_struct *wait);
2348int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
2349 struct iovec *to, int size);
2350int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
2351 struct iovec *iov);
2352int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
2353 const struct iovec *from, int from_offset,
2354 int len);
2355int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
2356 int offset, size_t count);
2357int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
2358 const struct iovec *to, int to_offset,
2359 int size);
2360void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2361void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2362int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2363__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2364 __wsum csum);
2365int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2366int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2367__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2368 int len, __wsum csum);
2369int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2370 struct pipe_inode_info *pipe, unsigned int len,
2371 unsigned int flags);
2372void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2373void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2374int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2375void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2376
2377struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
20380731 2378
1da177e4
LT
2379static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2380 int len, void *buffer)
2381{
2382 int hlen = skb_headlen(skb);
2383
55820ee2 2384 if (hlen - offset >= len)
1da177e4
LT
2385 return skb->data + offset;
2386
2387 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2388 return NULL;
2389
2390 return buffer;
2391}
2392
d626f62b
ACM
2393static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2394 void *to,
2395 const unsigned int len)
2396{
2397 memcpy(to, skb->data, len);
2398}
2399
2400static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2401 const int offset, void *to,
2402 const unsigned int len)
2403{
2404 memcpy(to, skb->data + offset, len);
2405}
2406
27d7ff46
ACM
2407static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2408 const void *from,
2409 const unsigned int len)
2410{
2411 memcpy(skb->data, from, len);
2412}
2413
2414static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2415 const int offset,
2416 const void *from,
2417 const unsigned int len)
2418{
2419 memcpy(skb->data + offset, from, len);
2420}
2421
7965bd4d 2422void skb_init(void);
1da177e4 2423
ac45f602
PO
2424static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2425{
2426 return skb->tstamp;
2427}
2428
a61bbcf2
PM
2429/**
2430 * skb_get_timestamp - get timestamp from a skb
2431 * @skb: skb to get stamp from
2432 * @stamp: pointer to struct timeval to store stamp in
2433 *
2434 * Timestamps are stored in the skb as offsets to a base timestamp.
2435 * This function converts the offset back to a struct timeval and stores
2436 * it in stamp.
2437 */
ac45f602
PO
2438static inline void skb_get_timestamp(const struct sk_buff *skb,
2439 struct timeval *stamp)
a61bbcf2 2440{
b7aa0bf7 2441 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
2442}
2443
ac45f602
PO
2444static inline void skb_get_timestampns(const struct sk_buff *skb,
2445 struct timespec *stamp)
2446{
2447 *stamp = ktime_to_timespec(skb->tstamp);
2448}
2449
b7aa0bf7 2450static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 2451{
b7aa0bf7 2452 skb->tstamp = ktime_get_real();
a61bbcf2
PM
2453}
2454
164891aa
SH
2455static inline ktime_t net_timedelta(ktime_t t)
2456{
2457 return ktime_sub(ktime_get_real(), t);
2458}
2459
b9ce204f
IJ
2460static inline ktime_t net_invalid_timestamp(void)
2461{
2462 return ktime_set(0, 0);
2463}
a61bbcf2 2464
7965bd4d 2465void skb_timestamping_init(void);
c1f19b51
RC
2466
2467#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2468
7965bd4d
JP
2469void skb_clone_tx_timestamp(struct sk_buff *skb);
2470bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
2471
2472#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2473
2474static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2475{
2476}
2477
2478static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2479{
2480 return false;
2481}
2482
2483#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2484
2485/**
2486 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2487 *
da92b194
RC
2488 * PHY drivers may accept clones of transmitted packets for
2489 * timestamping via their phy_driver.txtstamp method. These drivers
2490 * must call this function to return the skb back to the stack, with
2491 * or without a timestamp.
2492 *
c1f19b51 2493 * @skb: clone of the the original outgoing packet
da92b194 2494 * @hwtstamps: hardware time stamps, may be NULL if not available
c1f19b51
RC
2495 *
2496 */
2497void skb_complete_tx_timestamp(struct sk_buff *skb,
2498 struct skb_shared_hwtstamps *hwtstamps);
2499
ac45f602
PO
2500/**
2501 * skb_tstamp_tx - queue clone of skb with send time stamps
2502 * @orig_skb: the original outgoing packet
2503 * @hwtstamps: hardware time stamps, may be NULL if not available
2504 *
2505 * If the skb has a socket associated, then this function clones the
2506 * skb (thus sharing the actual data and optional structures), stores
2507 * the optional hardware time stamping information (if non NULL) or
2508 * generates a software time stamp (otherwise), then queues the clone
2509 * to the error queue of the socket. Errors are silently ignored.
2510 */
7965bd4d
JP
2511void skb_tstamp_tx(struct sk_buff *orig_skb,
2512 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 2513
4507a715
RC
2514static inline void sw_tx_timestamp(struct sk_buff *skb)
2515{
2244d07b
OH
2516 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2517 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
4507a715
RC
2518 skb_tstamp_tx(skb, NULL);
2519}
2520
2521/**
2522 * skb_tx_timestamp() - Driver hook for transmit timestamping
2523 *
2524 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 2525 * function immediately before giving the sk_buff to the MAC hardware.
4507a715
RC
2526 *
2527 * @skb: A socket buffer.
2528 */
2529static inline void skb_tx_timestamp(struct sk_buff *skb)
2530{
c1f19b51 2531 skb_clone_tx_timestamp(skb);
4507a715
RC
2532 sw_tx_timestamp(skb);
2533}
2534
6e3e939f
JB
2535/**
2536 * skb_complete_wifi_ack - deliver skb with wifi status
2537 *
2538 * @skb: the original outgoing packet
2539 * @acked: ack status
2540 *
2541 */
2542void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2543
7965bd4d
JP
2544__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2545__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 2546
60476372
HX
2547static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2548{
2549 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2550}
2551
fb286bb2
HX
2552/**
2553 * skb_checksum_complete - Calculate checksum of an entire packet
2554 * @skb: packet to process
2555 *
2556 * This function calculates the checksum over the entire packet plus
2557 * the value of skb->csum. The latter can be used to supply the
2558 * checksum of a pseudo header as used by TCP/UDP. It returns the
2559 * checksum.
2560 *
2561 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2562 * this function can be used to verify that checksum on received
2563 * packets. In that case the function should return zero if the
2564 * checksum is correct. In particular, this function will return zero
2565 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2566 * hardware has already verified the correctness of the checksum.
2567 */
4381ca3c 2568static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 2569{
60476372
HX
2570 return skb_csum_unnecessary(skb) ?
2571 0 : __skb_checksum_complete(skb);
fb286bb2
HX
2572}
2573
5f79e0f9 2574#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 2575void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
2576static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2577{
2578 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 2579 nf_conntrack_destroy(nfct);
1da177e4
LT
2580}
2581static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2582{
2583 if (nfct)
2584 atomic_inc(&nfct->use);
2585}
2fc72c7b
KK
2586#endif
2587#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
9fb9cbb1
YK
2588static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2589{
2590 if (skb)
2591 atomic_inc(&skb->users);
2592}
2593static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2594{
2595 if (skb)
2596 kfree_skb(skb);
2597}
2598#endif
1da177e4
LT
2599#ifdef CONFIG_BRIDGE_NETFILTER
2600static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2601{
2602 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2603 kfree(nf_bridge);
2604}
2605static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2606{
2607 if (nf_bridge)
2608 atomic_inc(&nf_bridge->use);
2609}
2610#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
2611static inline void nf_reset(struct sk_buff *skb)
2612{
5f79e0f9 2613#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a193a4ab
PM
2614 nf_conntrack_put(skb->nfct);
2615 skb->nfct = NULL;
2fc72c7b
KK
2616#endif
2617#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
a193a4ab
PM
2618 nf_conntrack_put_reasm(skb->nfct_reasm);
2619 skb->nfct_reasm = NULL;
2620#endif
2621#ifdef CONFIG_BRIDGE_NETFILTER
2622 nf_bridge_put(skb->nf_bridge);
2623 skb->nf_bridge = NULL;
2624#endif
2625}
2626
124dff01
PM
2627static inline void nf_reset_trace(struct sk_buff *skb)
2628{
130549fe
G
2629#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2630 skb->nf_trace = 0;
2631#endif
a193a4ab
PM
2632}
2633
edda553c
YK
2634/* Note: This doesn't put any conntrack and bridge info in dst. */
2635static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2636{
5f79e0f9 2637#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
edda553c
YK
2638 dst->nfct = src->nfct;
2639 nf_conntrack_get(src->nfct);
2640 dst->nfctinfo = src->nfctinfo;
2fc72c7b
KK
2641#endif
2642#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
edda553c
YK
2643 dst->nfct_reasm = src->nfct_reasm;
2644 nf_conntrack_get_reasm(src->nfct_reasm);
2645#endif
2646#ifdef CONFIG_BRIDGE_NETFILTER
2647 dst->nf_bridge = src->nf_bridge;
2648 nf_bridge_get(src->nf_bridge);
2649#endif
2650}
2651
e7ac05f3
YK
2652static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2653{
e7ac05f3 2654#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 2655 nf_conntrack_put(dst->nfct);
2fc72c7b
KK
2656#endif
2657#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
e7ac05f3
YK
2658 nf_conntrack_put_reasm(dst->nfct_reasm);
2659#endif
2660#ifdef CONFIG_BRIDGE_NETFILTER
2661 nf_bridge_put(dst->nf_bridge);
2662#endif
2663 __nf_copy(dst, src);
2664}
2665
984bc16c
JM
2666#ifdef CONFIG_NETWORK_SECMARK
2667static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2668{
2669 to->secmark = from->secmark;
2670}
2671
2672static inline void skb_init_secmark(struct sk_buff *skb)
2673{
2674 skb->secmark = 0;
2675}
2676#else
2677static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2678{ }
2679
2680static inline void skb_init_secmark(struct sk_buff *skb)
2681{ }
2682#endif
2683
f25f4e44
PWJ
2684static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2685{
f25f4e44 2686 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
2687}
2688
9247744e 2689static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 2690{
4e3ab47a 2691 return skb->queue_mapping;
4e3ab47a
PE
2692}
2693
f25f4e44
PWJ
2694static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2695{
f25f4e44 2696 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
2697}
2698
d5a9e24a
DM
2699static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2700{
2701 skb->queue_mapping = rx_queue + 1;
2702}
2703
9247744e 2704static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
2705{
2706 return skb->queue_mapping - 1;
2707}
2708
9247744e 2709static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 2710{
a02cec21 2711 return skb->queue_mapping != 0;
d5a9e24a
DM
2712}
2713
7965bd4d
JP
2714u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2715 unsigned int num_tx_queues);
9247744e 2716
def8b4fa
AD
2717static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2718{
0b3d8e08 2719#ifdef CONFIG_XFRM
def8b4fa 2720 return skb->sp;
def8b4fa 2721#else
def8b4fa 2722 return NULL;
def8b4fa 2723#endif
0b3d8e08 2724}
def8b4fa 2725
68c33163
PS
2726/* Keeps track of mac header offset relative to skb->head.
2727 * It is useful for TSO of Tunneling protocol. e.g. GRE.
2728 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
2729 * tunnel skb it points to outer mac header.
2730 * Keeps track of level of encapsulation of network headers.
2731 */
68c33163 2732struct skb_gso_cb {
3347c960
ED
2733 int mac_offset;
2734 int encap_level;
68c33163
PS
2735};
2736#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
2737
2738static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
2739{
2740 return (skb_mac_header(inner_skb) - inner_skb->head) -
2741 SKB_GSO_CB(inner_skb)->mac_offset;
2742}
2743
1e2bd517
PS
2744static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
2745{
2746 int new_headroom, headroom;
2747 int ret;
2748
2749 headroom = skb_headroom(skb);
2750 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
2751 if (ret)
2752 return ret;
2753
2754 new_headroom = skb_headroom(skb);
2755 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
2756 return 0;
2757}
2758
bdcc0924 2759static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
2760{
2761 return skb_shinfo(skb)->gso_size;
2762}
2763
36a8f39e 2764/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 2765static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
2766{
2767 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2768}
2769
7965bd4d 2770void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
2771
2772static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2773{
2774 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2775 * wanted then gso_type will be set. */
05bdd2f1
ED
2776 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2777
b78462eb
AD
2778 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2779 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
2780 __skb_warn_lro_forwarding(skb);
2781 return true;
2782 }
2783 return false;
2784}
2785
35fc92a9
HX
2786static inline void skb_forward_csum(struct sk_buff *skb)
2787{
2788 /* Unfortunately we don't support this one. Any brave souls? */
2789 if (skb->ip_summed == CHECKSUM_COMPLETE)
2790 skb->ip_summed = CHECKSUM_NONE;
2791}
2792
bc8acf2c
ED
2793/**
2794 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2795 * @skb: skb to check
2796 *
2797 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2798 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2799 * use this helper, to document places where we make this assertion.
2800 */
05bdd2f1 2801static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
2802{
2803#ifdef DEBUG
2804 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2805#endif
2806}
2807
f35d9d8a 2808bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 2809
f77668dc
DB
2810u32 __skb_get_poff(const struct sk_buff *skb);
2811
3a7c1ee4
AD
2812/**
2813 * skb_head_is_locked - Determine if the skb->head is locked down
2814 * @skb: skb to check
2815 *
2816 * The head on skbs build around a head frag can be removed if they are
2817 * not cloned. This function returns true if the skb head is locked down
2818 * due to either being allocated via kmalloc, or by being a clone with
2819 * multiple references to the head.
2820 */
2821static inline bool skb_head_is_locked(const struct sk_buff *skb)
2822{
2823 return !skb->head_frag || skb_cloned(skb);
2824}
1da177e4
LT
2825#endif /* __KERNEL__ */
2826#endif /* _LINUX_SKBUFF_H */
This page took 1.45801 seconds and 5 git commands to generate.