2000-12-15 Ben Elliston <bje@redhat.com>
[deliverable/binutils-gdb.git] / sim / common / sim-fpu.h
CommitLineData
c906108c
SS
1/* Simulator Floating-point support.
2 Copyright (C) 1997-1998 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5This file is part of GDB, the GNU debugger.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License along
18with this program; if not, write to the Free Software Foundation, Inc.,
1959 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21
22
23#ifndef SIM_FPU_H
24#define SIM_FPU_H
25
26
27
28/* The FPU intermediate type - this object, passed by reference,
29 should be treated as opaque.
30
31
32 Pragmatics - pass struct by ref:
33
34 The alternatives for this object/interface that were considered
35 were: a packed 64 bit value; an unpacked structure passed by value;
36 and an unpacked structure passed by reference.
37
38 The packed 64 bit value was rejected because: it limited the
39 precision of intermediate values; reasonable performance would only
40 be achieved when the sim_fpu package was in-lined allowing repeated
41 unpacking operations to be eliminated.
42
43 For unpacked structures (passed by value and reference), the code
44 quality of GCC-2.7 (on x86) for each alternative was compared.
45 Needless to say the results, while better then for a packed 64 bit
46 object, were still poor (GCC had only limited support for the
47 optimization of references to structure members). Regardless, the
48 struct-by-ref alternative achieved better results when compiled
49 with (better speed) and without (better code density) in-lining.
50 Here's looking forward to an improved GCC optimizer.
51
52
53 Pragmatics - avoid host FP hardware:
54
55 FP operations can be implemented by either: the host's floating
56 point hardware; or by emulating the FP operations using integer
57 only routines. This is direct tradeoff between speed, portability
58 and correctness.
59
60 The two principal reasons for selecting portability and correctness
61 over speed are:
62
63 1 - Correctness. The assumption that FP correctness wasn't an
64 issue for code being run on simulators was wrong. Instead of
65 running FP tolerant (?) code, simulator users instead typically run
66 very aggressive FP code sequences. The sole purpose of those
67 sequences being to test the target ISA's FP implementation.
68
69 2 - Portability. The host FP implementation is not predictable. A
70 simulator modeling aggressive FP code sequences using the hosts FPU
71 relies heavily on the correctness of the hosts FP implementation.
72 It turns out that such trust can be misplaced. The behavior of
73 host FP implementations when handling edge conditions such as SNaNs
74 and exceptions varied widely.
75
76
77 */
78
79
80typedef enum
81{
82 sim_fpu_class_zero,
83 sim_fpu_class_snan,
84 sim_fpu_class_qnan,
85 sim_fpu_class_number,
86 sim_fpu_class_denorm,
87 sim_fpu_class_infinity,
88} sim_fpu_class;
89
90typedef struct _sim_fpu {
91 sim_fpu_class class;
92 int sign;
93 unsigned64 fraction;
94 int normal_exp;
95} sim_fpu;
96
97
98
99/* Rounding options.
100
101 The value zero (sim_fpu_round_default) for ALU operations indicates
102 that, when possible, rounding should be avoided. */
103
104typedef enum
105{
106 sim_fpu_round_default = 0,
107 sim_fpu_round_near = 1,
108 sim_fpu_round_zero = 2,
109 sim_fpu_round_up = 3,
110 sim_fpu_round_down = 4,
111} sim_fpu_round;
112
113
114/* Options when handling denormalized numbers. */
115
116typedef enum
117{
118 sim_fpu_denorm_default = 0,
119 sim_fpu_denorm_underflow_inexact = 1,
120 sim_fpu_denorm_zero = 2,
121} sim_fpu_denorm;
122
123
124
125/* Status values returned by FPU operators.
126
127 When checking the result of an FP sequence (ex 32to, add, single,
128 to32) the caller may either: check the return value of each FP
129 operator; or form the union (OR) of the returned values and examine
130 them once at the end.
131
132 FIXME: This facility is still being developed. The choice of
133 status values returned and their exact meaning may changed in the
134 future. */
135
136typedef enum
137{
138 sim_fpu_status_invalid_snan = 1,
139 sim_fpu_status_invalid_qnan = 2,
140 sim_fpu_status_invalid_isi = 4, /* (inf - inf) */
141 sim_fpu_status_invalid_idi = 8, /* (inf / inf) */
142 sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */
143 sim_fpu_status_invalid_imz = 32, /* (inf * 0) */
144 sim_fpu_status_invalid_cvi = 64, /* convert to integer */
145 sim_fpu_status_invalid_div0 = 128, /* (X / 0) */
146 sim_fpu_status_invalid_cmp = 256, /* compare */
147 sim_fpu_status_invalid_sqrt = 512,
148 sim_fpu_status_rounded = 1024,
149 sim_fpu_status_inexact = 2048,
150 sim_fpu_status_overflow = 4096,
151 sim_fpu_status_underflow = 8192,
152 sim_fpu_status_denorm = 16384,
153} sim_fpu_status;
154
155
156
157
158/* Directly map between a 32/64 bit register and the sim_fpu internal
159 type.
160
161 When converting from the 32/64 bit packed format to the sim_fpu
162 internal type, the operation is exact.
163
164 When converting from the sim_fpu internal type to 32/64 bit packed
165 format, the operation may result in a loss of precision. The
166 configuration macro WITH_FPU_CONVERSION controls this. By default,
620abd4d 167 silent round to nearest is performed. Alternatively, round up,
c906108c 168 round down and round to zero can be performed. In a simulator
620abd4d 169 emulating exact FPU behavior, sim_fpu_round_{32,64} should be
c906108c
SS
170 called before packing the sim_fpu value. */
171
172INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, unsigned32 s);
173INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l);
174INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, unsigned64 d);
175
176INLINE_SIM_FPU (void) sim_fpu_to32 (unsigned32 *s, const sim_fpu *f);
177INLINE_SIM_FPU (void) sim_fpu_to232 (unsigned32 *h, unsigned32 *l, const sim_fpu *f);
178INLINE_SIM_FPU (void) sim_fpu_to64 (unsigned64 *d, const sim_fpu *f);
179
180
181/* Create a sim_fpu struct using raw information. (FRACTION & LSMASK
182 (PRECISION-1, 0)) is assumed to contain the fraction part of the
183 floating-point number. The leading bit LSBIT (PRECISION) is always
184 implied. The number created can be represented by:
185
186 (SIGN ? "-" : "+") "1." FRACTION{PRECISION-1,0} X 2 ^ NORMAL_EXP>
187
188 You can not specify zero using this function. */
189
190INLINE_SIM_FPU (void) sim_fpu_fractionto (sim_fpu *f, int sign, int normal_exp, unsigned64 fraction, int precision);
191
620abd4d 192/* Reverse operation. If S is a non-zero number, discards the implied
c906108c
SS
193 leading one and returns PRECISION fraction bits. No rounding is
194 performed. */
195INLINE_SIM_FPU (unsigned64) sim_fpu_tofraction (const sim_fpu *s, int precision);
196
197
198
199/* Rounding operators.
200
201 Force an intermediate result to an exact 32/64 bit
202 representation. */
203
204INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f,
205 sim_fpu_round round,
206 sim_fpu_denorm denorm);
207INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f,
208 sim_fpu_round round,
209 sim_fpu_denorm denorm);
210
211
212
620abd4d 213/* Arithmetic operators.
c906108c
SS
214
215 FIXME: In the future, additional arguments ROUNDING and BITSIZE may
216 be added. */
217
218typedef int (sim_fpu_op1) (sim_fpu *f,
219 const sim_fpu *l);
220typedef int (sim_fpu_op2) (sim_fpu *f,
221 const sim_fpu *l,
222 const sim_fpu *r);
223
224INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f,
225 const sim_fpu *l, const sim_fpu *r);
226INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f,
227 const sim_fpu *l, const sim_fpu *r);
228INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f,
229 const sim_fpu *l, const sim_fpu *r);
230INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f,
231 const sim_fpu *l, const sim_fpu *r);
232INLINE_SIM_FPU (int) sim_fpu_max (sim_fpu *f,
233 const sim_fpu *l, const sim_fpu *r);
234INLINE_SIM_FPU (int) sim_fpu_min (sim_fpu *f,
235 const sim_fpu *l, const sim_fpu *r);
236INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f,
237 const sim_fpu *a);
238INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f,
239 const sim_fpu *a);
240INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f,
241 const sim_fpu *a);
242INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f,
243 const sim_fpu *sqr);
244
245
246
247/* Conversion of integer <-> floating point. */
248
249INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, signed32 i,
250 sim_fpu_round round);
251INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, unsigned32 u,
252 sim_fpu_round round);
253INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, signed64 i,
254 sim_fpu_round round);
255INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, unsigned64 u,
256 sim_fpu_round round);
257#if 0
258INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, signed32 h, signed32 l,
259 sim_fpu_round round);
260#endif
261#if 0
262INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, unsigned32 h, unsigned32 l,
263 sim_fpu_round round);
264#endif
265
266INLINE_SIM_FPU (int) sim_fpu_to32i (signed32 *i, const sim_fpu *f,
267 sim_fpu_round round);
268INLINE_SIM_FPU (int) sim_fpu_to32u (unsigned32 *u, const sim_fpu *f,
269 sim_fpu_round round);
270INLINE_SIM_FPU (int) sim_fpu_to64i (signed64 *i, const sim_fpu *f,
271 sim_fpu_round round);
272INLINE_SIM_FPU (int) sim_fpu_to64u (unsigned64 *u, const sim_fpu *f,
273 sim_fpu_round round);
274#if 0
275INLINE_SIM_FPU (int) sim_fpu_to232i (signed64 *h, signed64 *l, const sim_fpu *f,
276 sim_fpu_round round);
277#endif
278#if 0
279INLINE_SIM_FPU (int) sim_fpu_to232u (unsigned64 *h, unsigned64 *l, const sim_fpu *f,
280 sim_fpu_round round);
281#endif
282
283
284/* Conversion of internal sim_fpu type to host double format.
285
620abd4d 286 For debugging/tracing only. A SNaN is never returned. */
c906108c
SS
287
288/* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */
289INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d);
290
291/* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */
292INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d);
293
294
295
296/* Specific number classes.
297
298 NB: When either, a 32/64 bit floating points is converted to
299 internal format, or an internal format number is rounded to 32/64
300 bit precision, a special marker is retained that indicates that the
301 value was normalized. For such numbers both is_number and
302 is_denorm return true. */
303
304INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */
305INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */
306INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */
307
308INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s);
309INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s);
310INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */
311INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */
312
313
314
315/* Floating point fields */
316
317INLINE_SIM_FPU (int) sim_fpu_sign (const sim_fpu *s);
318INLINE_SIM_FPU (int) sim_fpu_exp (const sim_fpu *s);
319
320
321
322/* Specific comparison operators
323
324 For NaNs et.al., the comparison operators will set IS to zero and
325 return a nonzero result. */
326
327INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r);
328INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r);
329INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r);
330INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r);
331INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r);
332INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r);
333
334INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r);
335INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r);
336INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r);
337INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r);
338INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r);
339INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r);
340
341
342
343/* General number class and comparison operators.
344
345 The result of the comparison is indicated by returning one of the
346 values below. Efficient emulation of a target FP compare
347 instruction can be achieved by redefining the values below to match
348 corresponding target FP status bits.
349
350 For instance. SIM_FPU_QNAN may be redefined to be the bit
351 `INVALID' while SIM_FPU_NINF might be redefined as the bits
352 `NEGATIVE | INFINITY | VALID'. */
353
354#ifndef SIM_FPU_IS_SNAN
355enum {
356 SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */
357 SIM_FPU_IS_QNAN = 2, /* Quite not-a-number */
358 SIM_FPU_IS_NINF = 3, /* -infinity */
359 SIM_FPU_IS_PINF = 4, /* +infinity */
360 SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */
361 SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */
362 SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */
363 SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */
364 SIM_FPU_IS_NZERO = 9, /* -0 */
365 SIM_FPU_IS_PZERO = 10, /* +0 */
366};
367#endif
368
369INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l);
370INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r);
371
372
373
374/* A constant of useful numbers */
375
376extern const sim_fpu sim_fpu_zero;
377extern const sim_fpu sim_fpu_one;
378extern const sim_fpu sim_fpu_two;
379extern const sim_fpu sim_fpu_qnan;
380extern const sim_fpu sim_fpu_max32;
381extern const sim_fpu sim_fpu_max64;
382
383
384/* Select the applicable functions for the fp_word type */
385
386#if WITH_TARGET_FLOATING_POINT_BITSIZE == 32
387#define sim_fpu_tofp sim_fpu_to32
388#define sim_fpu_fpto sim_fpu_32to
389#define sim_fpu_round_fp sim_fpu_round_32
390#define sim_fpu_maxfp sim_fpu_max32
391#endif
392#if WITH_TARGET_FLOATING_POINT_BITSIZE == 64
393#define sim_fpu_tofp sim_fpu_to64
394#define sim_fpu_fpto sim_fpu_64to
395#define sim_fpu_round_fp sim_fpu_round_64
396#define sim_fpu_maxfp sim_fpu_max64
397#endif
398
399
400
401/* For debugging */
402
403typedef void sim_fpu_print_func (void *, char *, ...);
404
b94c0966 405/* Print a sim_fpu with full precision. */
c906108c
SS
406INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f,
407 sim_fpu_print_func *print,
408 void *arg);
409
b94c0966
BE
410/* Print a sim_fpu with `n' trailing digits. */
411INLINE_SIM_FPU (void) sim_fpu_printn_fpu (const sim_fpu *f,
412 sim_fpu_print_func *print,
413 int digits,
414 void *arg);
415
c906108c
SS
416INLINE_SIM_FPU (void) sim_fpu_print_status (int status,
417 sim_fpu_print_func *print,
418 void *arg);
419
420#if H_REVEALS_MODULE_P (SIM_FPU_INLINE)
421#include "sim-fpu.c"
422#endif
423
424#endif
This page took 0.078064 seconds and 4 git commands to generate.