sata_promise: fix endianess bug in ASIC PRD bug workaround
[deliverable/linux.git] / drivers / ata / libata-core.c
... / ...
CommitLineData
1/*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
50#include <linux/jiffies.h>
51#include <linux/scatterlist.h>
52#include <linux/io.h>
53#include <scsi/scsi.h>
54#include <scsi/scsi_cmnd.h>
55#include <scsi/scsi_host.h>
56#include <linux/libata.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
62
63/* debounce timing parameters in msecs { interval, duration, timeout } */
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
73static void ata_dev_xfermask(struct ata_device *dev);
74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
75
76unsigned int ata_print_id = 1;
77static struct workqueue_struct *ata_wq;
78
79struct workqueue_struct *ata_aux_wq;
80
81int atapi_enabled = 1;
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
89int atapi_passthru16 = 1;
90module_param(atapi_passthru16, int, 0444);
91MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
92
93int libata_fua = 0;
94module_param_named(fua, libata_fua, int, 0444);
95MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
96
97static int ata_ignore_hpa;
98module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
100
101static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102module_param_named(dma, libata_dma_mask, int, 0444);
103MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
104
105static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106module_param(ata_probe_timeout, int, 0444);
107MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
108
109int libata_noacpi = 0;
110module_param_named(noacpi, libata_noacpi, int, 0444);
111MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
112
113MODULE_AUTHOR("Jeff Garzik");
114MODULE_DESCRIPTION("Library module for ATA devices");
115MODULE_LICENSE("GPL");
116MODULE_VERSION(DRV_VERSION);
117
118
119/**
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
122 * @pmp: Port multiplier port
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
125 *
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
128 *
129 * LOCKING:
130 * Inherited from caller.
131 */
132void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
133{
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
138
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
141
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
146
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
151
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
156
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
161}
162
163/**
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
167 *
168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
169 *
170 * LOCKING:
171 * Inherited from caller.
172 */
173
174void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
175{
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
178
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
183
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
187
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
190}
191
192static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
198 0,
199 0,
200 0,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
207 0,
208 0,
209 0,
210 0,
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
215 ATA_CMD_WRITE_EXT,
216 0,
217 0,
218 0,
219 ATA_CMD_WRITE_FUA_EXT
220};
221
222/**
223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
226 *
227 * Examine the device configuration and tf->flags to calculate
228 * the proper read/write commands and protocol to use.
229 *
230 * LOCKING:
231 * caller.
232 */
233static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
234{
235 u8 cmd;
236
237 int index, fua, lba48, write;
238
239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
242
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
245 index = dev->multi_count ? 0 : 8;
246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
249 index = dev->multi_count ? 0 : 8;
250 } else {
251 tf->protocol = ATA_PROT_DMA;
252 index = 16;
253 }
254
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
259 }
260 return -1;
261}
262
263/**
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
267 *
268 * LOCKING:
269 * None.
270 *
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
274 *
275 * RETURNS:
276 * Block address read from @tf.
277 */
278u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
279{
280 u64 block = 0;
281
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
289
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
295
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
299
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
301 }
302
303 return block;
304}
305
306/**
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
314 *
315 * LOCKING:
316 * None.
317 *
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
320 *
321 * RETURNS:
322 *
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
325 */
326int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
329{
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
332
333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
337
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
340
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
345
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
349
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
356
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
362
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
369
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
372
373 tf->hob_nsect = (n_block >> 8) & 0xff;
374
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
381
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
384
385 tf->nsect = n_block & 0xff;
386
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
390
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
395
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
399
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
402
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
408
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
411
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
418
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
424 }
425
426 return 0;
427}
428
429/**
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
434 *
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
437 *
438 * LOCKING:
439 * None.
440 *
441 * RETURNS:
442 * Packed xfer_mask.
443 */
444static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
447{
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
451}
452
453/**
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
459 *
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
462 */
463static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
467{
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
474}
475
476static const struct ata_xfer_ent {
477 int shift, bits;
478 u8 base;
479} ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
484};
485
486/**
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
489 *
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
498 */
499static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
500{
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
503
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
508}
509
510/**
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
513 *
514 * Return matching xfer_mask for @xfer_mode.
515 *
516 * LOCKING:
517 * None.
518 *
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
521 */
522static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
523{
524 const struct ata_xfer_ent *ent;
525
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
530}
531
532/**
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
535 *
536 * Return matching xfer_shift for @xfer_mode.
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
543 */
544static int ata_xfer_mode2shift(unsigned int xfer_mode)
545{
546 const struct ata_xfer_ent *ent;
547
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
552}
553
554/**
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
557 *
558 * Determine string which represents the highest speed
559 * (highest bit in @modemask).
560 *
561 * LOCKING:
562 * None.
563 *
564 * RETURNS:
565 * Constant C string representing highest speed listed in
566 * @mode_mask, or the constant C string "<n/a>".
567 */
568static const char *ata_mode_string(unsigned int xfer_mask)
569{
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
576 "PIO5",
577 "PIO6",
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
581 "MWDMA3",
582 "MWDMA4",
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
591 };
592 int highbit;
593
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
597 return "<n/a>";
598}
599
600static const char *sata_spd_string(unsigned int spd)
601{
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
605 };
606
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
610}
611
612void ata_dev_disable(struct ata_device *dev)
613{
614 if (ata_dev_enabled(dev)) {
615 if (ata_msg_drv(dev->link->ap))
616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
619 dev->class++;
620 }
621}
622
623static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
624{
625 struct ata_link *link = dev->link;
626 struct ata_port *ap = link->ap;
627 u32 scontrol;
628 unsigned int err_mask;
629 int rc;
630
631 /*
632 * disallow DIPM for drivers which haven't set
633 * ATA_FLAG_IPM. This is because when DIPM is enabled,
634 * phy ready will be set in the interrupt status on
635 * state changes, which will cause some drivers to
636 * think there are errors - additionally drivers will
637 * need to disable hot plug.
638 */
639 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
640 ap->pm_policy = NOT_AVAILABLE;
641 return -EINVAL;
642 }
643
644 /*
645 * For DIPM, we will only enable it for the
646 * min_power setting.
647 *
648 * Why? Because Disks are too stupid to know that
649 * If the host rejects a request to go to SLUMBER
650 * they should retry at PARTIAL, and instead it
651 * just would give up. So, for medium_power to
652 * work at all, we need to only allow HIPM.
653 */
654 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
655 if (rc)
656 return rc;
657
658 switch (policy) {
659 case MIN_POWER:
660 /* no restrictions on IPM transitions */
661 scontrol &= ~(0x3 << 8);
662 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
663 if (rc)
664 return rc;
665
666 /* enable DIPM */
667 if (dev->flags & ATA_DFLAG_DIPM)
668 err_mask = ata_dev_set_feature(dev,
669 SETFEATURES_SATA_ENABLE, SATA_DIPM);
670 break;
671 case MEDIUM_POWER:
672 /* allow IPM to PARTIAL */
673 scontrol &= ~(0x1 << 8);
674 scontrol |= (0x2 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
678
679 /* disable DIPM */
680 if (ata_dev_enabled(dev) && (dev->flags & ATA_DFLAG_DIPM))
681 err_mask = ata_dev_set_feature(dev,
682 SETFEATURES_SATA_DISABLE, SATA_DIPM);
683 break;
684 case NOT_AVAILABLE:
685 case MAX_PERFORMANCE:
686 /* disable all IPM transitions */
687 scontrol |= (0x3 << 8);
688 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
689 if (rc)
690 return rc;
691
692 /* disable DIPM */
693 if (ata_dev_enabled(dev) && (dev->flags & ATA_DFLAG_DIPM))
694 err_mask = ata_dev_set_feature(dev,
695 SETFEATURES_SATA_DISABLE, SATA_DIPM);
696 break;
697 }
698
699 /* FIXME: handle SET FEATURES failure */
700 (void) err_mask;
701
702 return 0;
703}
704
705/**
706 * ata_dev_enable_pm - enable SATA interface power management
707 * @dev: device to enable power management
708 * @policy: the link power management policy
709 *
710 * Enable SATA Interface power management. This will enable
711 * Device Interface Power Management (DIPM) for min_power
712 * policy, and then call driver specific callbacks for
713 * enabling Host Initiated Power management.
714 *
715 * Locking: Caller.
716 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
717 */
718void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
719{
720 int rc = 0;
721 struct ata_port *ap = dev->link->ap;
722
723 /* set HIPM first, then DIPM */
724 if (ap->ops->enable_pm)
725 rc = ap->ops->enable_pm(ap, policy);
726 if (rc)
727 goto enable_pm_out;
728 rc = ata_dev_set_dipm(dev, policy);
729
730enable_pm_out:
731 if (rc)
732 ap->pm_policy = MAX_PERFORMANCE;
733 else
734 ap->pm_policy = policy;
735 return /* rc */; /* hopefully we can use 'rc' eventually */
736}
737
738#ifdef CONFIG_PM
739/**
740 * ata_dev_disable_pm - disable SATA interface power management
741 * @dev: device to disable power management
742 *
743 * Disable SATA Interface power management. This will disable
744 * Device Interface Power Management (DIPM) without changing
745 * policy, call driver specific callbacks for disabling Host
746 * Initiated Power management.
747 *
748 * Locking: Caller.
749 * Returns: void
750 */
751static void ata_dev_disable_pm(struct ata_device *dev)
752{
753 struct ata_port *ap = dev->link->ap;
754
755 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
756 if (ap->ops->disable_pm)
757 ap->ops->disable_pm(ap);
758}
759#endif /* CONFIG_PM */
760
761void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
762{
763 ap->pm_policy = policy;
764 ap->link.eh_info.action |= ATA_EHI_LPM;
765 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
766 ata_port_schedule_eh(ap);
767}
768
769#ifdef CONFIG_PM
770static void ata_lpm_enable(struct ata_host *host)
771{
772 struct ata_link *link;
773 struct ata_port *ap;
774 struct ata_device *dev;
775 int i;
776
777 for (i = 0; i < host->n_ports; i++) {
778 ap = host->ports[i];
779 ata_port_for_each_link(link, ap) {
780 ata_link_for_each_dev(dev, link)
781 ata_dev_disable_pm(dev);
782 }
783 }
784}
785
786static void ata_lpm_disable(struct ata_host *host)
787{
788 int i;
789
790 for (i = 0; i < host->n_ports; i++) {
791 struct ata_port *ap = host->ports[i];
792 ata_lpm_schedule(ap, ap->pm_policy);
793 }
794}
795#endif /* CONFIG_PM */
796
797
798/**
799 * ata_devchk - PATA device presence detection
800 * @ap: ATA channel to examine
801 * @device: Device to examine (starting at zero)
802 *
803 * This technique was originally described in
804 * Hale Landis's ATADRVR (www.ata-atapi.com), and
805 * later found its way into the ATA/ATAPI spec.
806 *
807 * Write a pattern to the ATA shadow registers,
808 * and if a device is present, it will respond by
809 * correctly storing and echoing back the
810 * ATA shadow register contents.
811 *
812 * LOCKING:
813 * caller.
814 */
815
816static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
817{
818 struct ata_ioports *ioaddr = &ap->ioaddr;
819 u8 nsect, lbal;
820
821 ap->ops->dev_select(ap, device);
822
823 iowrite8(0x55, ioaddr->nsect_addr);
824 iowrite8(0xaa, ioaddr->lbal_addr);
825
826 iowrite8(0xaa, ioaddr->nsect_addr);
827 iowrite8(0x55, ioaddr->lbal_addr);
828
829 iowrite8(0x55, ioaddr->nsect_addr);
830 iowrite8(0xaa, ioaddr->lbal_addr);
831
832 nsect = ioread8(ioaddr->nsect_addr);
833 lbal = ioread8(ioaddr->lbal_addr);
834
835 if ((nsect == 0x55) && (lbal == 0xaa))
836 return 1; /* we found a device */
837
838 return 0; /* nothing found */
839}
840
841/**
842 * ata_dev_classify - determine device type based on ATA-spec signature
843 * @tf: ATA taskfile register set for device to be identified
844 *
845 * Determine from taskfile register contents whether a device is
846 * ATA or ATAPI, as per "Signature and persistence" section
847 * of ATA/PI spec (volume 1, sect 5.14).
848 *
849 * LOCKING:
850 * None.
851 *
852 * RETURNS:
853 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
854 * %ATA_DEV_UNKNOWN the event of failure.
855 */
856unsigned int ata_dev_classify(const struct ata_taskfile *tf)
857{
858 /* Apple's open source Darwin code hints that some devices only
859 * put a proper signature into the LBA mid/high registers,
860 * So, we only check those. It's sufficient for uniqueness.
861 *
862 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
863 * signatures for ATA and ATAPI devices attached on SerialATA,
864 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
865 * spec has never mentioned about using different signatures
866 * for ATA/ATAPI devices. Then, Serial ATA II: Port
867 * Multiplier specification began to use 0x69/0x96 to identify
868 * port multpliers and 0x3c/0xc3 to identify SEMB device.
869 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
870 * 0x69/0x96 shortly and described them as reserved for
871 * SerialATA.
872 *
873 * We follow the current spec and consider that 0x69/0x96
874 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
875 */
876 if ((tf->lbam == 0) && (tf->lbah == 0)) {
877 DPRINTK("found ATA device by sig\n");
878 return ATA_DEV_ATA;
879 }
880
881 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
882 DPRINTK("found ATAPI device by sig\n");
883 return ATA_DEV_ATAPI;
884 }
885
886 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
887 DPRINTK("found PMP device by sig\n");
888 return ATA_DEV_PMP;
889 }
890
891 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
892 printk(KERN_INFO "ata: SEMB device ignored\n");
893 return ATA_DEV_SEMB_UNSUP; /* not yet */
894 }
895
896 DPRINTK("unknown device\n");
897 return ATA_DEV_UNKNOWN;
898}
899
900/**
901 * ata_dev_try_classify - Parse returned ATA device signature
902 * @dev: ATA device to classify (starting at zero)
903 * @present: device seems present
904 * @r_err: Value of error register on completion
905 *
906 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
907 * an ATA/ATAPI-defined set of values is placed in the ATA
908 * shadow registers, indicating the results of device detection
909 * and diagnostics.
910 *
911 * Select the ATA device, and read the values from the ATA shadow
912 * registers. Then parse according to the Error register value,
913 * and the spec-defined values examined by ata_dev_classify().
914 *
915 * LOCKING:
916 * caller.
917 *
918 * RETURNS:
919 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
920 */
921unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
922 u8 *r_err)
923{
924 struct ata_port *ap = dev->link->ap;
925 struct ata_taskfile tf;
926 unsigned int class;
927 u8 err;
928
929 ap->ops->dev_select(ap, dev->devno);
930
931 memset(&tf, 0, sizeof(tf));
932
933 ap->ops->tf_read(ap, &tf);
934 err = tf.feature;
935 if (r_err)
936 *r_err = err;
937
938 /* see if device passed diags: if master then continue and warn later */
939 if (err == 0 && dev->devno == 0)
940 /* diagnostic fail : do nothing _YET_ */
941 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
942 else if (err == 1)
943 /* do nothing */ ;
944 else if ((dev->devno == 0) && (err == 0x81))
945 /* do nothing */ ;
946 else
947 return ATA_DEV_NONE;
948
949 /* determine if device is ATA or ATAPI */
950 class = ata_dev_classify(&tf);
951
952 if (class == ATA_DEV_UNKNOWN) {
953 /* If the device failed diagnostic, it's likely to
954 * have reported incorrect device signature too.
955 * Assume ATA device if the device seems present but
956 * device signature is invalid with diagnostic
957 * failure.
958 */
959 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
960 class = ATA_DEV_ATA;
961 else
962 class = ATA_DEV_NONE;
963 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
964 class = ATA_DEV_NONE;
965
966 return class;
967}
968
969/**
970 * ata_id_string - Convert IDENTIFY DEVICE page into string
971 * @id: IDENTIFY DEVICE results we will examine
972 * @s: string into which data is output
973 * @ofs: offset into identify device page
974 * @len: length of string to return. must be an even number.
975 *
976 * The strings in the IDENTIFY DEVICE page are broken up into
977 * 16-bit chunks. Run through the string, and output each
978 * 8-bit chunk linearly, regardless of platform.
979 *
980 * LOCKING:
981 * caller.
982 */
983
984void ata_id_string(const u16 *id, unsigned char *s,
985 unsigned int ofs, unsigned int len)
986{
987 unsigned int c;
988
989 while (len > 0) {
990 c = id[ofs] >> 8;
991 *s = c;
992 s++;
993
994 c = id[ofs] & 0xff;
995 *s = c;
996 s++;
997
998 ofs++;
999 len -= 2;
1000 }
1001}
1002
1003/**
1004 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1005 * @id: IDENTIFY DEVICE results we will examine
1006 * @s: string into which data is output
1007 * @ofs: offset into identify device page
1008 * @len: length of string to return. must be an odd number.
1009 *
1010 * This function is identical to ata_id_string except that it
1011 * trims trailing spaces and terminates the resulting string with
1012 * null. @len must be actual maximum length (even number) + 1.
1013 *
1014 * LOCKING:
1015 * caller.
1016 */
1017void ata_id_c_string(const u16 *id, unsigned char *s,
1018 unsigned int ofs, unsigned int len)
1019{
1020 unsigned char *p;
1021
1022 WARN_ON(!(len & 1));
1023
1024 ata_id_string(id, s, ofs, len - 1);
1025
1026 p = s + strnlen(s, len - 1);
1027 while (p > s && p[-1] == ' ')
1028 p--;
1029 *p = '\0';
1030}
1031
1032static u64 ata_id_n_sectors(const u16 *id)
1033{
1034 if (ata_id_has_lba(id)) {
1035 if (ata_id_has_lba48(id))
1036 return ata_id_u64(id, 100);
1037 else
1038 return ata_id_u32(id, 60);
1039 } else {
1040 if (ata_id_current_chs_valid(id))
1041 return ata_id_u32(id, 57);
1042 else
1043 return id[1] * id[3] * id[6];
1044 }
1045}
1046
1047static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1048{
1049 u64 sectors = 0;
1050
1051 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1052 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1053 sectors |= (tf->hob_lbal & 0xff) << 24;
1054 sectors |= (tf->lbah & 0xff) << 16;
1055 sectors |= (tf->lbam & 0xff) << 8;
1056 sectors |= (tf->lbal & 0xff);
1057
1058 return ++sectors;
1059}
1060
1061static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1062{
1063 u64 sectors = 0;
1064
1065 sectors |= (tf->device & 0x0f) << 24;
1066 sectors |= (tf->lbah & 0xff) << 16;
1067 sectors |= (tf->lbam & 0xff) << 8;
1068 sectors |= (tf->lbal & 0xff);
1069
1070 return ++sectors;
1071}
1072
1073/**
1074 * ata_read_native_max_address - Read native max address
1075 * @dev: target device
1076 * @max_sectors: out parameter for the result native max address
1077 *
1078 * Perform an LBA48 or LBA28 native size query upon the device in
1079 * question.
1080 *
1081 * RETURNS:
1082 * 0 on success, -EACCES if command is aborted by the drive.
1083 * -EIO on other errors.
1084 */
1085static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1086{
1087 unsigned int err_mask;
1088 struct ata_taskfile tf;
1089 int lba48 = ata_id_has_lba48(dev->id);
1090
1091 ata_tf_init(dev, &tf);
1092
1093 /* always clear all address registers */
1094 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1095
1096 if (lba48) {
1097 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1098 tf.flags |= ATA_TFLAG_LBA48;
1099 } else
1100 tf.command = ATA_CMD_READ_NATIVE_MAX;
1101
1102 tf.protocol |= ATA_PROT_NODATA;
1103 tf.device |= ATA_LBA;
1104
1105 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1106 if (err_mask) {
1107 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1108 "max address (err_mask=0x%x)\n", err_mask);
1109 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1110 return -EACCES;
1111 return -EIO;
1112 }
1113
1114 if (lba48)
1115 *max_sectors = ata_tf_to_lba48(&tf);
1116 else
1117 *max_sectors = ata_tf_to_lba(&tf);
1118 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1119 (*max_sectors)--;
1120 return 0;
1121}
1122
1123/**
1124 * ata_set_max_sectors - Set max sectors
1125 * @dev: target device
1126 * @new_sectors: new max sectors value to set for the device
1127 *
1128 * Set max sectors of @dev to @new_sectors.
1129 *
1130 * RETURNS:
1131 * 0 on success, -EACCES if command is aborted or denied (due to
1132 * previous non-volatile SET_MAX) by the drive. -EIO on other
1133 * errors.
1134 */
1135static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1136{
1137 unsigned int err_mask;
1138 struct ata_taskfile tf;
1139 int lba48 = ata_id_has_lba48(dev->id);
1140
1141 new_sectors--;
1142
1143 ata_tf_init(dev, &tf);
1144
1145 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1146
1147 if (lba48) {
1148 tf.command = ATA_CMD_SET_MAX_EXT;
1149 tf.flags |= ATA_TFLAG_LBA48;
1150
1151 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1152 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1153 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1154 } else {
1155 tf.command = ATA_CMD_SET_MAX;
1156
1157 tf.device |= (new_sectors >> 24) & 0xf;
1158 }
1159
1160 tf.protocol |= ATA_PROT_NODATA;
1161 tf.device |= ATA_LBA;
1162
1163 tf.lbal = (new_sectors >> 0) & 0xff;
1164 tf.lbam = (new_sectors >> 8) & 0xff;
1165 tf.lbah = (new_sectors >> 16) & 0xff;
1166
1167 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1168 if (err_mask) {
1169 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1170 "max address (err_mask=0x%x)\n", err_mask);
1171 if (err_mask == AC_ERR_DEV &&
1172 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1173 return -EACCES;
1174 return -EIO;
1175 }
1176
1177 return 0;
1178}
1179
1180/**
1181 * ata_hpa_resize - Resize a device with an HPA set
1182 * @dev: Device to resize
1183 *
1184 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1185 * it if required to the full size of the media. The caller must check
1186 * the drive has the HPA feature set enabled.
1187 *
1188 * RETURNS:
1189 * 0 on success, -errno on failure.
1190 */
1191static int ata_hpa_resize(struct ata_device *dev)
1192{
1193 struct ata_eh_context *ehc = &dev->link->eh_context;
1194 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1195 u64 sectors = ata_id_n_sectors(dev->id);
1196 u64 native_sectors;
1197 int rc;
1198
1199 /* do we need to do it? */
1200 if (dev->class != ATA_DEV_ATA ||
1201 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1202 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1203 return 0;
1204
1205 /* read native max address */
1206 rc = ata_read_native_max_address(dev, &native_sectors);
1207 if (rc) {
1208 /* If HPA isn't going to be unlocked, skip HPA
1209 * resizing from the next try.
1210 */
1211 if (!ata_ignore_hpa) {
1212 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1213 "broken, will skip HPA handling\n");
1214 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1215
1216 /* we can continue if device aborted the command */
1217 if (rc == -EACCES)
1218 rc = 0;
1219 }
1220
1221 return rc;
1222 }
1223
1224 /* nothing to do? */
1225 if (native_sectors <= sectors || !ata_ignore_hpa) {
1226 if (!print_info || native_sectors == sectors)
1227 return 0;
1228
1229 if (native_sectors > sectors)
1230 ata_dev_printk(dev, KERN_INFO,
1231 "HPA detected: current %llu, native %llu\n",
1232 (unsigned long long)sectors,
1233 (unsigned long long)native_sectors);
1234 else if (native_sectors < sectors)
1235 ata_dev_printk(dev, KERN_WARNING,
1236 "native sectors (%llu) is smaller than "
1237 "sectors (%llu)\n",
1238 (unsigned long long)native_sectors,
1239 (unsigned long long)sectors);
1240 return 0;
1241 }
1242
1243 /* let's unlock HPA */
1244 rc = ata_set_max_sectors(dev, native_sectors);
1245 if (rc == -EACCES) {
1246 /* if device aborted the command, skip HPA resizing */
1247 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1248 "(%llu -> %llu), skipping HPA handling\n",
1249 (unsigned long long)sectors,
1250 (unsigned long long)native_sectors);
1251 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1252 return 0;
1253 } else if (rc)
1254 return rc;
1255
1256 /* re-read IDENTIFY data */
1257 rc = ata_dev_reread_id(dev, 0);
1258 if (rc) {
1259 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1260 "data after HPA resizing\n");
1261 return rc;
1262 }
1263
1264 if (print_info) {
1265 u64 new_sectors = ata_id_n_sectors(dev->id);
1266 ata_dev_printk(dev, KERN_INFO,
1267 "HPA unlocked: %llu -> %llu, native %llu\n",
1268 (unsigned long long)sectors,
1269 (unsigned long long)new_sectors,
1270 (unsigned long long)native_sectors);
1271 }
1272
1273 return 0;
1274}
1275
1276/**
1277 * ata_id_to_dma_mode - Identify DMA mode from id block
1278 * @dev: device to identify
1279 * @unknown: mode to assume if we cannot tell
1280 *
1281 * Set up the timing values for the device based upon the identify
1282 * reported values for the DMA mode. This function is used by drivers
1283 * which rely upon firmware configured modes, but wish to report the
1284 * mode correctly when possible.
1285 *
1286 * In addition we emit similarly formatted messages to the default
1287 * ata_dev_set_mode handler, in order to provide consistency of
1288 * presentation.
1289 */
1290
1291void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1292{
1293 unsigned int mask;
1294 u8 mode;
1295
1296 /* Pack the DMA modes */
1297 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1298 if (dev->id[53] & 0x04)
1299 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1300
1301 /* Select the mode in use */
1302 mode = ata_xfer_mask2mode(mask);
1303
1304 if (mode != 0) {
1305 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1306 ata_mode_string(mask));
1307 } else {
1308 /* SWDMA perhaps ? */
1309 mode = unknown;
1310 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1311 }
1312
1313 /* Configure the device reporting */
1314 dev->xfer_mode = mode;
1315 dev->xfer_shift = ata_xfer_mode2shift(mode);
1316}
1317
1318/**
1319 * ata_noop_dev_select - Select device 0/1 on ATA bus
1320 * @ap: ATA channel to manipulate
1321 * @device: ATA device (numbered from zero) to select
1322 *
1323 * This function performs no actual function.
1324 *
1325 * May be used as the dev_select() entry in ata_port_operations.
1326 *
1327 * LOCKING:
1328 * caller.
1329 */
1330void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1331{
1332}
1333
1334
1335/**
1336 * ata_std_dev_select - Select device 0/1 on ATA bus
1337 * @ap: ATA channel to manipulate
1338 * @device: ATA device (numbered from zero) to select
1339 *
1340 * Use the method defined in the ATA specification to
1341 * make either device 0, or device 1, active on the
1342 * ATA channel. Works with both PIO and MMIO.
1343 *
1344 * May be used as the dev_select() entry in ata_port_operations.
1345 *
1346 * LOCKING:
1347 * caller.
1348 */
1349
1350void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1351{
1352 u8 tmp;
1353
1354 if (device == 0)
1355 tmp = ATA_DEVICE_OBS;
1356 else
1357 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1358
1359 iowrite8(tmp, ap->ioaddr.device_addr);
1360 ata_pause(ap); /* needed; also flushes, for mmio */
1361}
1362
1363/**
1364 * ata_dev_select - Select device 0/1 on ATA bus
1365 * @ap: ATA channel to manipulate
1366 * @device: ATA device (numbered from zero) to select
1367 * @wait: non-zero to wait for Status register BSY bit to clear
1368 * @can_sleep: non-zero if context allows sleeping
1369 *
1370 * Use the method defined in the ATA specification to
1371 * make either device 0, or device 1, active on the
1372 * ATA channel.
1373 *
1374 * This is a high-level version of ata_std_dev_select(),
1375 * which additionally provides the services of inserting
1376 * the proper pauses and status polling, where needed.
1377 *
1378 * LOCKING:
1379 * caller.
1380 */
1381
1382void ata_dev_select(struct ata_port *ap, unsigned int device,
1383 unsigned int wait, unsigned int can_sleep)
1384{
1385 if (ata_msg_probe(ap))
1386 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1387 "device %u, wait %u\n", device, wait);
1388
1389 if (wait)
1390 ata_wait_idle(ap);
1391
1392 ap->ops->dev_select(ap, device);
1393
1394 if (wait) {
1395 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1396 msleep(150);
1397 ata_wait_idle(ap);
1398 }
1399}
1400
1401/**
1402 * ata_dump_id - IDENTIFY DEVICE info debugging output
1403 * @id: IDENTIFY DEVICE page to dump
1404 *
1405 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1406 * page.
1407 *
1408 * LOCKING:
1409 * caller.
1410 */
1411
1412static inline void ata_dump_id(const u16 *id)
1413{
1414 DPRINTK("49==0x%04x "
1415 "53==0x%04x "
1416 "63==0x%04x "
1417 "64==0x%04x "
1418 "75==0x%04x \n",
1419 id[49],
1420 id[53],
1421 id[63],
1422 id[64],
1423 id[75]);
1424 DPRINTK("80==0x%04x "
1425 "81==0x%04x "
1426 "82==0x%04x "
1427 "83==0x%04x "
1428 "84==0x%04x \n",
1429 id[80],
1430 id[81],
1431 id[82],
1432 id[83],
1433 id[84]);
1434 DPRINTK("88==0x%04x "
1435 "93==0x%04x\n",
1436 id[88],
1437 id[93]);
1438}
1439
1440/**
1441 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1442 * @id: IDENTIFY data to compute xfer mask from
1443 *
1444 * Compute the xfermask for this device. This is not as trivial
1445 * as it seems if we must consider early devices correctly.
1446 *
1447 * FIXME: pre IDE drive timing (do we care ?).
1448 *
1449 * LOCKING:
1450 * None.
1451 *
1452 * RETURNS:
1453 * Computed xfermask
1454 */
1455static unsigned int ata_id_xfermask(const u16 *id)
1456{
1457 unsigned int pio_mask, mwdma_mask, udma_mask;
1458
1459 /* Usual case. Word 53 indicates word 64 is valid */
1460 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1461 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1462 pio_mask <<= 3;
1463 pio_mask |= 0x7;
1464 } else {
1465 /* If word 64 isn't valid then Word 51 high byte holds
1466 * the PIO timing number for the maximum. Turn it into
1467 * a mask.
1468 */
1469 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1470 if (mode < 5) /* Valid PIO range */
1471 pio_mask = (2 << mode) - 1;
1472 else
1473 pio_mask = 1;
1474
1475 /* But wait.. there's more. Design your standards by
1476 * committee and you too can get a free iordy field to
1477 * process. However its the speeds not the modes that
1478 * are supported... Note drivers using the timing API
1479 * will get this right anyway
1480 */
1481 }
1482
1483 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1484
1485 if (ata_id_is_cfa(id)) {
1486 /*
1487 * Process compact flash extended modes
1488 */
1489 int pio = id[163] & 0x7;
1490 int dma = (id[163] >> 3) & 7;
1491
1492 if (pio)
1493 pio_mask |= (1 << 5);
1494 if (pio > 1)
1495 pio_mask |= (1 << 6);
1496 if (dma)
1497 mwdma_mask |= (1 << 3);
1498 if (dma > 1)
1499 mwdma_mask |= (1 << 4);
1500 }
1501
1502 udma_mask = 0;
1503 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1504 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1505
1506 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1507}
1508
1509/**
1510 * ata_port_queue_task - Queue port_task
1511 * @ap: The ata_port to queue port_task for
1512 * @fn: workqueue function to be scheduled
1513 * @data: data for @fn to use
1514 * @delay: delay time for workqueue function
1515 *
1516 * Schedule @fn(@data) for execution after @delay jiffies using
1517 * port_task. There is one port_task per port and it's the
1518 * user(low level driver)'s responsibility to make sure that only
1519 * one task is active at any given time.
1520 *
1521 * libata core layer takes care of synchronization between
1522 * port_task and EH. ata_port_queue_task() may be ignored for EH
1523 * synchronization.
1524 *
1525 * LOCKING:
1526 * Inherited from caller.
1527 */
1528void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1529 unsigned long delay)
1530{
1531 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1532 ap->port_task_data = data;
1533
1534 /* may fail if ata_port_flush_task() in progress */
1535 queue_delayed_work(ata_wq, &ap->port_task, delay);
1536}
1537
1538/**
1539 * ata_port_flush_task - Flush port_task
1540 * @ap: The ata_port to flush port_task for
1541 *
1542 * After this function completes, port_task is guranteed not to
1543 * be running or scheduled.
1544 *
1545 * LOCKING:
1546 * Kernel thread context (may sleep)
1547 */
1548void ata_port_flush_task(struct ata_port *ap)
1549{
1550 DPRINTK("ENTER\n");
1551
1552 cancel_rearming_delayed_work(&ap->port_task);
1553
1554 if (ata_msg_ctl(ap))
1555 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1556}
1557
1558static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1559{
1560 struct completion *waiting = qc->private_data;
1561
1562 complete(waiting);
1563}
1564
1565/**
1566 * ata_exec_internal_sg - execute libata internal command
1567 * @dev: Device to which the command is sent
1568 * @tf: Taskfile registers for the command and the result
1569 * @cdb: CDB for packet command
1570 * @dma_dir: Data tranfer direction of the command
1571 * @sgl: sg list for the data buffer of the command
1572 * @n_elem: Number of sg entries
1573 * @timeout: Timeout in msecs (0 for default)
1574 *
1575 * Executes libata internal command with timeout. @tf contains
1576 * command on entry and result on return. Timeout and error
1577 * conditions are reported via return value. No recovery action
1578 * is taken after a command times out. It's caller's duty to
1579 * clean up after timeout.
1580 *
1581 * LOCKING:
1582 * None. Should be called with kernel context, might sleep.
1583 *
1584 * RETURNS:
1585 * Zero on success, AC_ERR_* mask on failure
1586 */
1587unsigned ata_exec_internal_sg(struct ata_device *dev,
1588 struct ata_taskfile *tf, const u8 *cdb,
1589 int dma_dir, struct scatterlist *sgl,
1590 unsigned int n_elem, unsigned long timeout)
1591{
1592 struct ata_link *link = dev->link;
1593 struct ata_port *ap = link->ap;
1594 u8 command = tf->command;
1595 struct ata_queued_cmd *qc;
1596 unsigned int tag, preempted_tag;
1597 u32 preempted_sactive, preempted_qc_active;
1598 int preempted_nr_active_links;
1599 DECLARE_COMPLETION_ONSTACK(wait);
1600 unsigned long flags;
1601 unsigned int err_mask;
1602 int rc;
1603
1604 spin_lock_irqsave(ap->lock, flags);
1605
1606 /* no internal command while frozen */
1607 if (ap->pflags & ATA_PFLAG_FROZEN) {
1608 spin_unlock_irqrestore(ap->lock, flags);
1609 return AC_ERR_SYSTEM;
1610 }
1611
1612 /* initialize internal qc */
1613
1614 /* XXX: Tag 0 is used for drivers with legacy EH as some
1615 * drivers choke if any other tag is given. This breaks
1616 * ata_tag_internal() test for those drivers. Don't use new
1617 * EH stuff without converting to it.
1618 */
1619 if (ap->ops->error_handler)
1620 tag = ATA_TAG_INTERNAL;
1621 else
1622 tag = 0;
1623
1624 if (test_and_set_bit(tag, &ap->qc_allocated))
1625 BUG();
1626 qc = __ata_qc_from_tag(ap, tag);
1627
1628 qc->tag = tag;
1629 qc->scsicmd = NULL;
1630 qc->ap = ap;
1631 qc->dev = dev;
1632 ata_qc_reinit(qc);
1633
1634 preempted_tag = link->active_tag;
1635 preempted_sactive = link->sactive;
1636 preempted_qc_active = ap->qc_active;
1637 preempted_nr_active_links = ap->nr_active_links;
1638 link->active_tag = ATA_TAG_POISON;
1639 link->sactive = 0;
1640 ap->qc_active = 0;
1641 ap->nr_active_links = 0;
1642
1643 /* prepare & issue qc */
1644 qc->tf = *tf;
1645 if (cdb)
1646 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1647 qc->flags |= ATA_QCFLAG_RESULT_TF;
1648 qc->dma_dir = dma_dir;
1649 if (dma_dir != DMA_NONE) {
1650 unsigned int i, buflen = 0;
1651 struct scatterlist *sg;
1652
1653 for_each_sg(sgl, sg, n_elem, i)
1654 buflen += sg->length;
1655
1656 ata_sg_init(qc, sgl, n_elem);
1657 qc->nbytes = buflen;
1658 }
1659
1660 qc->private_data = &wait;
1661 qc->complete_fn = ata_qc_complete_internal;
1662
1663 ata_qc_issue(qc);
1664
1665 spin_unlock_irqrestore(ap->lock, flags);
1666
1667 if (!timeout)
1668 timeout = ata_probe_timeout * 1000 / HZ;
1669
1670 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1671
1672 ata_port_flush_task(ap);
1673
1674 if (!rc) {
1675 spin_lock_irqsave(ap->lock, flags);
1676
1677 /* We're racing with irq here. If we lose, the
1678 * following test prevents us from completing the qc
1679 * twice. If we win, the port is frozen and will be
1680 * cleaned up by ->post_internal_cmd().
1681 */
1682 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1683 qc->err_mask |= AC_ERR_TIMEOUT;
1684
1685 if (ap->ops->error_handler)
1686 ata_port_freeze(ap);
1687 else
1688 ata_qc_complete(qc);
1689
1690 if (ata_msg_warn(ap))
1691 ata_dev_printk(dev, KERN_WARNING,
1692 "qc timeout (cmd 0x%x)\n", command);
1693 }
1694
1695 spin_unlock_irqrestore(ap->lock, flags);
1696 }
1697
1698 /* do post_internal_cmd */
1699 if (ap->ops->post_internal_cmd)
1700 ap->ops->post_internal_cmd(qc);
1701
1702 /* perform minimal error analysis */
1703 if (qc->flags & ATA_QCFLAG_FAILED) {
1704 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1705 qc->err_mask |= AC_ERR_DEV;
1706
1707 if (!qc->err_mask)
1708 qc->err_mask |= AC_ERR_OTHER;
1709
1710 if (qc->err_mask & ~AC_ERR_OTHER)
1711 qc->err_mask &= ~AC_ERR_OTHER;
1712 }
1713
1714 /* finish up */
1715 spin_lock_irqsave(ap->lock, flags);
1716
1717 *tf = qc->result_tf;
1718 err_mask = qc->err_mask;
1719
1720 ata_qc_free(qc);
1721 link->active_tag = preempted_tag;
1722 link->sactive = preempted_sactive;
1723 ap->qc_active = preempted_qc_active;
1724 ap->nr_active_links = preempted_nr_active_links;
1725
1726 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1727 * Until those drivers are fixed, we detect the condition
1728 * here, fail the command with AC_ERR_SYSTEM and reenable the
1729 * port.
1730 *
1731 * Note that this doesn't change any behavior as internal
1732 * command failure results in disabling the device in the
1733 * higher layer for LLDDs without new reset/EH callbacks.
1734 *
1735 * Kill the following code as soon as those drivers are fixed.
1736 */
1737 if (ap->flags & ATA_FLAG_DISABLED) {
1738 err_mask |= AC_ERR_SYSTEM;
1739 ata_port_probe(ap);
1740 }
1741
1742 spin_unlock_irqrestore(ap->lock, flags);
1743
1744 return err_mask;
1745}
1746
1747/**
1748 * ata_exec_internal - execute libata internal command
1749 * @dev: Device to which the command is sent
1750 * @tf: Taskfile registers for the command and the result
1751 * @cdb: CDB for packet command
1752 * @dma_dir: Data tranfer direction of the command
1753 * @buf: Data buffer of the command
1754 * @buflen: Length of data buffer
1755 * @timeout: Timeout in msecs (0 for default)
1756 *
1757 * Wrapper around ata_exec_internal_sg() which takes simple
1758 * buffer instead of sg list.
1759 *
1760 * LOCKING:
1761 * None. Should be called with kernel context, might sleep.
1762 *
1763 * RETURNS:
1764 * Zero on success, AC_ERR_* mask on failure
1765 */
1766unsigned ata_exec_internal(struct ata_device *dev,
1767 struct ata_taskfile *tf, const u8 *cdb,
1768 int dma_dir, void *buf, unsigned int buflen,
1769 unsigned long timeout)
1770{
1771 struct scatterlist *psg = NULL, sg;
1772 unsigned int n_elem = 0;
1773
1774 if (dma_dir != DMA_NONE) {
1775 WARN_ON(!buf);
1776 sg_init_one(&sg, buf, buflen);
1777 psg = &sg;
1778 n_elem++;
1779 }
1780
1781 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1782 timeout);
1783}
1784
1785/**
1786 * ata_do_simple_cmd - execute simple internal command
1787 * @dev: Device to which the command is sent
1788 * @cmd: Opcode to execute
1789 *
1790 * Execute a 'simple' command, that only consists of the opcode
1791 * 'cmd' itself, without filling any other registers
1792 *
1793 * LOCKING:
1794 * Kernel thread context (may sleep).
1795 *
1796 * RETURNS:
1797 * Zero on success, AC_ERR_* mask on failure
1798 */
1799unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1800{
1801 struct ata_taskfile tf;
1802
1803 ata_tf_init(dev, &tf);
1804
1805 tf.command = cmd;
1806 tf.flags |= ATA_TFLAG_DEVICE;
1807 tf.protocol = ATA_PROT_NODATA;
1808
1809 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1810}
1811
1812/**
1813 * ata_pio_need_iordy - check if iordy needed
1814 * @adev: ATA device
1815 *
1816 * Check if the current speed of the device requires IORDY. Used
1817 * by various controllers for chip configuration.
1818 */
1819
1820unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1821{
1822 /* Controller doesn't support IORDY. Probably a pointless check
1823 as the caller should know this */
1824 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1825 return 0;
1826 /* PIO3 and higher it is mandatory */
1827 if (adev->pio_mode > XFER_PIO_2)
1828 return 1;
1829 /* We turn it on when possible */
1830 if (ata_id_has_iordy(adev->id))
1831 return 1;
1832 return 0;
1833}
1834
1835/**
1836 * ata_pio_mask_no_iordy - Return the non IORDY mask
1837 * @adev: ATA device
1838 *
1839 * Compute the highest mode possible if we are not using iordy. Return
1840 * -1 if no iordy mode is available.
1841 */
1842
1843static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1844{
1845 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1846 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1847 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1848 /* Is the speed faster than the drive allows non IORDY ? */
1849 if (pio) {
1850 /* This is cycle times not frequency - watch the logic! */
1851 if (pio > 240) /* PIO2 is 240nS per cycle */
1852 return 3 << ATA_SHIFT_PIO;
1853 return 7 << ATA_SHIFT_PIO;
1854 }
1855 }
1856 return 3 << ATA_SHIFT_PIO;
1857}
1858
1859/**
1860 * ata_dev_read_id - Read ID data from the specified device
1861 * @dev: target device
1862 * @p_class: pointer to class of the target device (may be changed)
1863 * @flags: ATA_READID_* flags
1864 * @id: buffer to read IDENTIFY data into
1865 *
1866 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1867 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1868 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1869 * for pre-ATA4 drives.
1870 *
1871 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1872 * now we abort if we hit that case.
1873 *
1874 * LOCKING:
1875 * Kernel thread context (may sleep)
1876 *
1877 * RETURNS:
1878 * 0 on success, -errno otherwise.
1879 */
1880int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1881 unsigned int flags, u16 *id)
1882{
1883 struct ata_port *ap = dev->link->ap;
1884 unsigned int class = *p_class;
1885 struct ata_taskfile tf;
1886 unsigned int err_mask = 0;
1887 const char *reason;
1888 int may_fallback = 1, tried_spinup = 0;
1889 int rc;
1890
1891 if (ata_msg_ctl(ap))
1892 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1893
1894 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1895 retry:
1896 ata_tf_init(dev, &tf);
1897
1898 switch (class) {
1899 case ATA_DEV_ATA:
1900 tf.command = ATA_CMD_ID_ATA;
1901 break;
1902 case ATA_DEV_ATAPI:
1903 tf.command = ATA_CMD_ID_ATAPI;
1904 break;
1905 default:
1906 rc = -ENODEV;
1907 reason = "unsupported class";
1908 goto err_out;
1909 }
1910
1911 tf.protocol = ATA_PROT_PIO;
1912
1913 /* Some devices choke if TF registers contain garbage. Make
1914 * sure those are properly initialized.
1915 */
1916 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1917
1918 /* Device presence detection is unreliable on some
1919 * controllers. Always poll IDENTIFY if available.
1920 */
1921 tf.flags |= ATA_TFLAG_POLLING;
1922
1923 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1924 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1925 if (err_mask) {
1926 if (err_mask & AC_ERR_NODEV_HINT) {
1927 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1928 ap->print_id, dev->devno);
1929 return -ENOENT;
1930 }
1931
1932 /* Device or controller might have reported the wrong
1933 * device class. Give a shot at the other IDENTIFY if
1934 * the current one is aborted by the device.
1935 */
1936 if (may_fallback &&
1937 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1938 may_fallback = 0;
1939
1940 if (class == ATA_DEV_ATA)
1941 class = ATA_DEV_ATAPI;
1942 else
1943 class = ATA_DEV_ATA;
1944 goto retry;
1945 }
1946
1947 rc = -EIO;
1948 reason = "I/O error";
1949 goto err_out;
1950 }
1951
1952 /* Falling back doesn't make sense if ID data was read
1953 * successfully at least once.
1954 */
1955 may_fallback = 0;
1956
1957 swap_buf_le16(id, ATA_ID_WORDS);
1958
1959 /* sanity check */
1960 rc = -EINVAL;
1961 reason = "device reports invalid type";
1962
1963 if (class == ATA_DEV_ATA) {
1964 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1965 goto err_out;
1966 } else {
1967 if (ata_id_is_ata(id))
1968 goto err_out;
1969 }
1970
1971 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1972 tried_spinup = 1;
1973 /*
1974 * Drive powered-up in standby mode, and requires a specific
1975 * SET_FEATURES spin-up subcommand before it will accept
1976 * anything other than the original IDENTIFY command.
1977 */
1978 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1979 if (err_mask && id[2] != 0x738c) {
1980 rc = -EIO;
1981 reason = "SPINUP failed";
1982 goto err_out;
1983 }
1984 /*
1985 * If the drive initially returned incomplete IDENTIFY info,
1986 * we now must reissue the IDENTIFY command.
1987 */
1988 if (id[2] == 0x37c8)
1989 goto retry;
1990 }
1991
1992 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1993 /*
1994 * The exact sequence expected by certain pre-ATA4 drives is:
1995 * SRST RESET
1996 * IDENTIFY (optional in early ATA)
1997 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1998 * anything else..
1999 * Some drives were very specific about that exact sequence.
2000 *
2001 * Note that ATA4 says lba is mandatory so the second check
2002 * shoud never trigger.
2003 */
2004 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2005 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2006 if (err_mask) {
2007 rc = -EIO;
2008 reason = "INIT_DEV_PARAMS failed";
2009 goto err_out;
2010 }
2011
2012 /* current CHS translation info (id[53-58]) might be
2013 * changed. reread the identify device info.
2014 */
2015 flags &= ~ATA_READID_POSTRESET;
2016 goto retry;
2017 }
2018 }
2019
2020 *p_class = class;
2021
2022 return 0;
2023
2024 err_out:
2025 if (ata_msg_warn(ap))
2026 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2027 "(%s, err_mask=0x%x)\n", reason, err_mask);
2028 return rc;
2029}
2030
2031static inline u8 ata_dev_knobble(struct ata_device *dev)
2032{
2033 struct ata_port *ap = dev->link->ap;
2034 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2035}
2036
2037static void ata_dev_config_ncq(struct ata_device *dev,
2038 char *desc, size_t desc_sz)
2039{
2040 struct ata_port *ap = dev->link->ap;
2041 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2042
2043 if (!ata_id_has_ncq(dev->id)) {
2044 desc[0] = '\0';
2045 return;
2046 }
2047 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2048 snprintf(desc, desc_sz, "NCQ (not used)");
2049 return;
2050 }
2051 if (ap->flags & ATA_FLAG_NCQ) {
2052 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2053 dev->flags |= ATA_DFLAG_NCQ;
2054 }
2055
2056 if (hdepth >= ddepth)
2057 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2058 else
2059 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2060}
2061
2062/**
2063 * ata_dev_configure - Configure the specified ATA/ATAPI device
2064 * @dev: Target device to configure
2065 *
2066 * Configure @dev according to @dev->id. Generic and low-level
2067 * driver specific fixups are also applied.
2068 *
2069 * LOCKING:
2070 * Kernel thread context (may sleep)
2071 *
2072 * RETURNS:
2073 * 0 on success, -errno otherwise
2074 */
2075int ata_dev_configure(struct ata_device *dev)
2076{
2077 struct ata_port *ap = dev->link->ap;
2078 struct ata_eh_context *ehc = &dev->link->eh_context;
2079 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2080 const u16 *id = dev->id;
2081 unsigned int xfer_mask;
2082 char revbuf[7]; /* XYZ-99\0 */
2083 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2084 char modelbuf[ATA_ID_PROD_LEN+1];
2085 int rc;
2086
2087 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2088 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2089 __FUNCTION__);
2090 return 0;
2091 }
2092
2093 if (ata_msg_probe(ap))
2094 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2095
2096 /* set horkage */
2097 dev->horkage |= ata_dev_blacklisted(dev);
2098
2099 /* let ACPI work its magic */
2100 rc = ata_acpi_on_devcfg(dev);
2101 if (rc)
2102 return rc;
2103
2104 /* massage HPA, do it early as it might change IDENTIFY data */
2105 rc = ata_hpa_resize(dev);
2106 if (rc)
2107 return rc;
2108
2109 /* print device capabilities */
2110 if (ata_msg_probe(ap))
2111 ata_dev_printk(dev, KERN_DEBUG,
2112 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2113 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2114 __FUNCTION__,
2115 id[49], id[82], id[83], id[84],
2116 id[85], id[86], id[87], id[88]);
2117
2118 /* initialize to-be-configured parameters */
2119 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2120 dev->max_sectors = 0;
2121 dev->cdb_len = 0;
2122 dev->n_sectors = 0;
2123 dev->cylinders = 0;
2124 dev->heads = 0;
2125 dev->sectors = 0;
2126
2127 /*
2128 * common ATA, ATAPI feature tests
2129 */
2130
2131 /* find max transfer mode; for printk only */
2132 xfer_mask = ata_id_xfermask(id);
2133
2134 if (ata_msg_probe(ap))
2135 ata_dump_id(id);
2136
2137 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2138 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2139 sizeof(fwrevbuf));
2140
2141 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2142 sizeof(modelbuf));
2143
2144 /* ATA-specific feature tests */
2145 if (dev->class == ATA_DEV_ATA) {
2146 if (ata_id_is_cfa(id)) {
2147 if (id[162] & 1) /* CPRM may make this media unusable */
2148 ata_dev_printk(dev, KERN_WARNING,
2149 "supports DRM functions and may "
2150 "not be fully accessable.\n");
2151 snprintf(revbuf, 7, "CFA");
2152 } else
2153 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2154
2155 dev->n_sectors = ata_id_n_sectors(id);
2156
2157 if (dev->id[59] & 0x100)
2158 dev->multi_count = dev->id[59] & 0xff;
2159
2160 if (ata_id_has_lba(id)) {
2161 const char *lba_desc;
2162 char ncq_desc[20];
2163
2164 lba_desc = "LBA";
2165 dev->flags |= ATA_DFLAG_LBA;
2166 if (ata_id_has_lba48(id)) {
2167 dev->flags |= ATA_DFLAG_LBA48;
2168 lba_desc = "LBA48";
2169
2170 if (dev->n_sectors >= (1UL << 28) &&
2171 ata_id_has_flush_ext(id))
2172 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2173 }
2174
2175 /* config NCQ */
2176 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2177
2178 /* print device info to dmesg */
2179 if (ata_msg_drv(ap) && print_info) {
2180 ata_dev_printk(dev, KERN_INFO,
2181 "%s: %s, %s, max %s\n",
2182 revbuf, modelbuf, fwrevbuf,
2183 ata_mode_string(xfer_mask));
2184 ata_dev_printk(dev, KERN_INFO,
2185 "%Lu sectors, multi %u: %s %s\n",
2186 (unsigned long long)dev->n_sectors,
2187 dev->multi_count, lba_desc, ncq_desc);
2188 }
2189 } else {
2190 /* CHS */
2191
2192 /* Default translation */
2193 dev->cylinders = id[1];
2194 dev->heads = id[3];
2195 dev->sectors = id[6];
2196
2197 if (ata_id_current_chs_valid(id)) {
2198 /* Current CHS translation is valid. */
2199 dev->cylinders = id[54];
2200 dev->heads = id[55];
2201 dev->sectors = id[56];
2202 }
2203
2204 /* print device info to dmesg */
2205 if (ata_msg_drv(ap) && print_info) {
2206 ata_dev_printk(dev, KERN_INFO,
2207 "%s: %s, %s, max %s\n",
2208 revbuf, modelbuf, fwrevbuf,
2209 ata_mode_string(xfer_mask));
2210 ata_dev_printk(dev, KERN_INFO,
2211 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2212 (unsigned long long)dev->n_sectors,
2213 dev->multi_count, dev->cylinders,
2214 dev->heads, dev->sectors);
2215 }
2216 }
2217
2218 dev->cdb_len = 16;
2219 }
2220
2221 /* ATAPI-specific feature tests */
2222 else if (dev->class == ATA_DEV_ATAPI) {
2223 const char *cdb_intr_string = "";
2224 const char *atapi_an_string = "";
2225 u32 sntf;
2226
2227 rc = atapi_cdb_len(id);
2228 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2229 if (ata_msg_warn(ap))
2230 ata_dev_printk(dev, KERN_WARNING,
2231 "unsupported CDB len\n");
2232 rc = -EINVAL;
2233 goto err_out_nosup;
2234 }
2235 dev->cdb_len = (unsigned int) rc;
2236
2237 /* Enable ATAPI AN if both the host and device have
2238 * the support. If PMP is attached, SNTF is required
2239 * to enable ATAPI AN to discern between PHY status
2240 * changed notifications and ATAPI ANs.
2241 */
2242 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2243 (!ap->nr_pmp_links ||
2244 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2245 unsigned int err_mask;
2246
2247 /* issue SET feature command to turn this on */
2248 err_mask = ata_dev_set_feature(dev,
2249 SETFEATURES_SATA_ENABLE, SATA_AN);
2250 if (err_mask)
2251 ata_dev_printk(dev, KERN_ERR,
2252 "failed to enable ATAPI AN "
2253 "(err_mask=0x%x)\n", err_mask);
2254 else {
2255 dev->flags |= ATA_DFLAG_AN;
2256 atapi_an_string = ", ATAPI AN";
2257 }
2258 }
2259
2260 if (ata_id_cdb_intr(dev->id)) {
2261 dev->flags |= ATA_DFLAG_CDB_INTR;
2262 cdb_intr_string = ", CDB intr";
2263 }
2264
2265 /* print device info to dmesg */
2266 if (ata_msg_drv(ap) && print_info)
2267 ata_dev_printk(dev, KERN_INFO,
2268 "ATAPI: %s, %s, max %s%s%s\n",
2269 modelbuf, fwrevbuf,
2270 ata_mode_string(xfer_mask),
2271 cdb_intr_string, atapi_an_string);
2272 }
2273
2274 /* determine max_sectors */
2275 dev->max_sectors = ATA_MAX_SECTORS;
2276 if (dev->flags & ATA_DFLAG_LBA48)
2277 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2278
2279 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2280 if (ata_id_has_hipm(dev->id))
2281 dev->flags |= ATA_DFLAG_HIPM;
2282 if (ata_id_has_dipm(dev->id))
2283 dev->flags |= ATA_DFLAG_DIPM;
2284 }
2285
2286 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2287 /* Let the user know. We don't want to disallow opens for
2288 rescue purposes, or in case the vendor is just a blithering
2289 idiot */
2290 if (print_info) {
2291 ata_dev_printk(dev, KERN_WARNING,
2292"Drive reports diagnostics failure. This may indicate a drive\n");
2293 ata_dev_printk(dev, KERN_WARNING,
2294"fault or invalid emulation. Contact drive vendor for information.\n");
2295 }
2296 }
2297
2298 /* limit bridge transfers to udma5, 200 sectors */
2299 if (ata_dev_knobble(dev)) {
2300 if (ata_msg_drv(ap) && print_info)
2301 ata_dev_printk(dev, KERN_INFO,
2302 "applying bridge limits\n");
2303 dev->udma_mask &= ATA_UDMA5;
2304 dev->max_sectors = ATA_MAX_SECTORS;
2305 }
2306
2307 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2308 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2309 dev->max_sectors);
2310
2311 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2312 dev->horkage |= ATA_HORKAGE_IPM;
2313
2314 /* reset link pm_policy for this port to no pm */
2315 ap->pm_policy = MAX_PERFORMANCE;
2316 }
2317
2318 if (ap->ops->dev_config)
2319 ap->ops->dev_config(dev);
2320
2321 if (ata_msg_probe(ap))
2322 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2323 __FUNCTION__, ata_chk_status(ap));
2324 return 0;
2325
2326err_out_nosup:
2327 if (ata_msg_probe(ap))
2328 ata_dev_printk(dev, KERN_DEBUG,
2329 "%s: EXIT, err\n", __FUNCTION__);
2330 return rc;
2331}
2332
2333/**
2334 * ata_cable_40wire - return 40 wire cable type
2335 * @ap: port
2336 *
2337 * Helper method for drivers which want to hardwire 40 wire cable
2338 * detection.
2339 */
2340
2341int ata_cable_40wire(struct ata_port *ap)
2342{
2343 return ATA_CBL_PATA40;
2344}
2345
2346/**
2347 * ata_cable_80wire - return 80 wire cable type
2348 * @ap: port
2349 *
2350 * Helper method for drivers which want to hardwire 80 wire cable
2351 * detection.
2352 */
2353
2354int ata_cable_80wire(struct ata_port *ap)
2355{
2356 return ATA_CBL_PATA80;
2357}
2358
2359/**
2360 * ata_cable_unknown - return unknown PATA cable.
2361 * @ap: port
2362 *
2363 * Helper method for drivers which have no PATA cable detection.
2364 */
2365
2366int ata_cable_unknown(struct ata_port *ap)
2367{
2368 return ATA_CBL_PATA_UNK;
2369}
2370
2371/**
2372 * ata_cable_sata - return SATA cable type
2373 * @ap: port
2374 *
2375 * Helper method for drivers which have SATA cables
2376 */
2377
2378int ata_cable_sata(struct ata_port *ap)
2379{
2380 return ATA_CBL_SATA;
2381}
2382
2383/**
2384 * ata_bus_probe - Reset and probe ATA bus
2385 * @ap: Bus to probe
2386 *
2387 * Master ATA bus probing function. Initiates a hardware-dependent
2388 * bus reset, then attempts to identify any devices found on
2389 * the bus.
2390 *
2391 * LOCKING:
2392 * PCI/etc. bus probe sem.
2393 *
2394 * RETURNS:
2395 * Zero on success, negative errno otherwise.
2396 */
2397
2398int ata_bus_probe(struct ata_port *ap)
2399{
2400 unsigned int classes[ATA_MAX_DEVICES];
2401 int tries[ATA_MAX_DEVICES];
2402 int rc;
2403 struct ata_device *dev;
2404
2405 ata_port_probe(ap);
2406
2407 ata_link_for_each_dev(dev, &ap->link)
2408 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2409
2410 retry:
2411 ata_link_for_each_dev(dev, &ap->link) {
2412 /* If we issue an SRST then an ATA drive (not ATAPI)
2413 * may change configuration and be in PIO0 timing. If
2414 * we do a hard reset (or are coming from power on)
2415 * this is true for ATA or ATAPI. Until we've set a
2416 * suitable controller mode we should not touch the
2417 * bus as we may be talking too fast.
2418 */
2419 dev->pio_mode = XFER_PIO_0;
2420
2421 /* If the controller has a pio mode setup function
2422 * then use it to set the chipset to rights. Don't
2423 * touch the DMA setup as that will be dealt with when
2424 * configuring devices.
2425 */
2426 if (ap->ops->set_piomode)
2427 ap->ops->set_piomode(ap, dev);
2428 }
2429
2430 /* reset and determine device classes */
2431 ap->ops->phy_reset(ap);
2432
2433 ata_link_for_each_dev(dev, &ap->link) {
2434 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2435 dev->class != ATA_DEV_UNKNOWN)
2436 classes[dev->devno] = dev->class;
2437 else
2438 classes[dev->devno] = ATA_DEV_NONE;
2439
2440 dev->class = ATA_DEV_UNKNOWN;
2441 }
2442
2443 ata_port_probe(ap);
2444
2445 /* read IDENTIFY page and configure devices. We have to do the identify
2446 specific sequence bass-ackwards so that PDIAG- is released by
2447 the slave device */
2448
2449 ata_link_for_each_dev(dev, &ap->link) {
2450 if (tries[dev->devno])
2451 dev->class = classes[dev->devno];
2452
2453 if (!ata_dev_enabled(dev))
2454 continue;
2455
2456 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2457 dev->id);
2458 if (rc)
2459 goto fail;
2460 }
2461
2462 /* Now ask for the cable type as PDIAG- should have been released */
2463 if (ap->ops->cable_detect)
2464 ap->cbl = ap->ops->cable_detect(ap);
2465
2466 /* We may have SATA bridge glue hiding here irrespective of the
2467 reported cable types and sensed types */
2468 ata_link_for_each_dev(dev, &ap->link) {
2469 if (!ata_dev_enabled(dev))
2470 continue;
2471 /* SATA drives indicate we have a bridge. We don't know which
2472 end of the link the bridge is which is a problem */
2473 if (ata_id_is_sata(dev->id))
2474 ap->cbl = ATA_CBL_SATA;
2475 }
2476
2477 /* After the identify sequence we can now set up the devices. We do
2478 this in the normal order so that the user doesn't get confused */
2479
2480 ata_link_for_each_dev(dev, &ap->link) {
2481 if (!ata_dev_enabled(dev))
2482 continue;
2483
2484 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2485 rc = ata_dev_configure(dev);
2486 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2487 if (rc)
2488 goto fail;
2489 }
2490
2491 /* configure transfer mode */
2492 rc = ata_set_mode(&ap->link, &dev);
2493 if (rc)
2494 goto fail;
2495
2496 ata_link_for_each_dev(dev, &ap->link)
2497 if (ata_dev_enabled(dev))
2498 return 0;
2499
2500 /* no device present, disable port */
2501 ata_port_disable(ap);
2502 return -ENODEV;
2503
2504 fail:
2505 tries[dev->devno]--;
2506
2507 switch (rc) {
2508 case -EINVAL:
2509 /* eeek, something went very wrong, give up */
2510 tries[dev->devno] = 0;
2511 break;
2512
2513 case -ENODEV:
2514 /* give it just one more chance */
2515 tries[dev->devno] = min(tries[dev->devno], 1);
2516 case -EIO:
2517 if (tries[dev->devno] == 1) {
2518 /* This is the last chance, better to slow
2519 * down than lose it.
2520 */
2521 sata_down_spd_limit(&ap->link);
2522 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2523 }
2524 }
2525
2526 if (!tries[dev->devno])
2527 ata_dev_disable(dev);
2528
2529 goto retry;
2530}
2531
2532/**
2533 * ata_port_probe - Mark port as enabled
2534 * @ap: Port for which we indicate enablement
2535 *
2536 * Modify @ap data structure such that the system
2537 * thinks that the entire port is enabled.
2538 *
2539 * LOCKING: host lock, or some other form of
2540 * serialization.
2541 */
2542
2543void ata_port_probe(struct ata_port *ap)
2544{
2545 ap->flags &= ~ATA_FLAG_DISABLED;
2546}
2547
2548/**
2549 * sata_print_link_status - Print SATA link status
2550 * @link: SATA link to printk link status about
2551 *
2552 * This function prints link speed and status of a SATA link.
2553 *
2554 * LOCKING:
2555 * None.
2556 */
2557void sata_print_link_status(struct ata_link *link)
2558{
2559 u32 sstatus, scontrol, tmp;
2560
2561 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2562 return;
2563 sata_scr_read(link, SCR_CONTROL, &scontrol);
2564
2565 if (ata_link_online(link)) {
2566 tmp = (sstatus >> 4) & 0xf;
2567 ata_link_printk(link, KERN_INFO,
2568 "SATA link up %s (SStatus %X SControl %X)\n",
2569 sata_spd_string(tmp), sstatus, scontrol);
2570 } else {
2571 ata_link_printk(link, KERN_INFO,
2572 "SATA link down (SStatus %X SControl %X)\n",
2573 sstatus, scontrol);
2574 }
2575}
2576
2577/**
2578 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2579 * @ap: SATA port associated with target SATA PHY.
2580 *
2581 * This function issues commands to standard SATA Sxxx
2582 * PHY registers, to wake up the phy (and device), and
2583 * clear any reset condition.
2584 *
2585 * LOCKING:
2586 * PCI/etc. bus probe sem.
2587 *
2588 */
2589void __sata_phy_reset(struct ata_port *ap)
2590{
2591 struct ata_link *link = &ap->link;
2592 unsigned long timeout = jiffies + (HZ * 5);
2593 u32 sstatus;
2594
2595 if (ap->flags & ATA_FLAG_SATA_RESET) {
2596 /* issue phy wake/reset */
2597 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2598 /* Couldn't find anything in SATA I/II specs, but
2599 * AHCI-1.1 10.4.2 says at least 1 ms. */
2600 mdelay(1);
2601 }
2602 /* phy wake/clear reset */
2603 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2604
2605 /* wait for phy to become ready, if necessary */
2606 do {
2607 msleep(200);
2608 sata_scr_read(link, SCR_STATUS, &sstatus);
2609 if ((sstatus & 0xf) != 1)
2610 break;
2611 } while (time_before(jiffies, timeout));
2612
2613 /* print link status */
2614 sata_print_link_status(link);
2615
2616 /* TODO: phy layer with polling, timeouts, etc. */
2617 if (!ata_link_offline(link))
2618 ata_port_probe(ap);
2619 else
2620 ata_port_disable(ap);
2621
2622 if (ap->flags & ATA_FLAG_DISABLED)
2623 return;
2624
2625 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2626 ata_port_disable(ap);
2627 return;
2628 }
2629
2630 ap->cbl = ATA_CBL_SATA;
2631}
2632
2633/**
2634 * sata_phy_reset - Reset SATA bus.
2635 * @ap: SATA port associated with target SATA PHY.
2636 *
2637 * This function resets the SATA bus, and then probes
2638 * the bus for devices.
2639 *
2640 * LOCKING:
2641 * PCI/etc. bus probe sem.
2642 *
2643 */
2644void sata_phy_reset(struct ata_port *ap)
2645{
2646 __sata_phy_reset(ap);
2647 if (ap->flags & ATA_FLAG_DISABLED)
2648 return;
2649 ata_bus_reset(ap);
2650}
2651
2652/**
2653 * ata_dev_pair - return other device on cable
2654 * @adev: device
2655 *
2656 * Obtain the other device on the same cable, or if none is
2657 * present NULL is returned
2658 */
2659
2660struct ata_device *ata_dev_pair(struct ata_device *adev)
2661{
2662 struct ata_link *link = adev->link;
2663 struct ata_device *pair = &link->device[1 - adev->devno];
2664 if (!ata_dev_enabled(pair))
2665 return NULL;
2666 return pair;
2667}
2668
2669/**
2670 * ata_port_disable - Disable port.
2671 * @ap: Port to be disabled.
2672 *
2673 * Modify @ap data structure such that the system
2674 * thinks that the entire port is disabled, and should
2675 * never attempt to probe or communicate with devices
2676 * on this port.
2677 *
2678 * LOCKING: host lock, or some other form of
2679 * serialization.
2680 */
2681
2682void ata_port_disable(struct ata_port *ap)
2683{
2684 ap->link.device[0].class = ATA_DEV_NONE;
2685 ap->link.device[1].class = ATA_DEV_NONE;
2686 ap->flags |= ATA_FLAG_DISABLED;
2687}
2688
2689/**
2690 * sata_down_spd_limit - adjust SATA spd limit downward
2691 * @link: Link to adjust SATA spd limit for
2692 *
2693 * Adjust SATA spd limit of @link downward. Note that this
2694 * function only adjusts the limit. The change must be applied
2695 * using sata_set_spd().
2696 *
2697 * LOCKING:
2698 * Inherited from caller.
2699 *
2700 * RETURNS:
2701 * 0 on success, negative errno on failure
2702 */
2703int sata_down_spd_limit(struct ata_link *link)
2704{
2705 u32 sstatus, spd, mask;
2706 int rc, highbit;
2707
2708 if (!sata_scr_valid(link))
2709 return -EOPNOTSUPP;
2710
2711 /* If SCR can be read, use it to determine the current SPD.
2712 * If not, use cached value in link->sata_spd.
2713 */
2714 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2715 if (rc == 0)
2716 spd = (sstatus >> 4) & 0xf;
2717 else
2718 spd = link->sata_spd;
2719
2720 mask = link->sata_spd_limit;
2721 if (mask <= 1)
2722 return -EINVAL;
2723
2724 /* unconditionally mask off the highest bit */
2725 highbit = fls(mask) - 1;
2726 mask &= ~(1 << highbit);
2727
2728 /* Mask off all speeds higher than or equal to the current
2729 * one. Force 1.5Gbps if current SPD is not available.
2730 */
2731 if (spd > 1)
2732 mask &= (1 << (spd - 1)) - 1;
2733 else
2734 mask &= 1;
2735
2736 /* were we already at the bottom? */
2737 if (!mask)
2738 return -EINVAL;
2739
2740 link->sata_spd_limit = mask;
2741
2742 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2743 sata_spd_string(fls(mask)));
2744
2745 return 0;
2746}
2747
2748static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2749{
2750 u32 spd, limit;
2751
2752 if (link->sata_spd_limit == UINT_MAX)
2753 limit = 0;
2754 else
2755 limit = fls(link->sata_spd_limit);
2756
2757 spd = (*scontrol >> 4) & 0xf;
2758 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2759
2760 return spd != limit;
2761}
2762
2763/**
2764 * sata_set_spd_needed - is SATA spd configuration needed
2765 * @link: Link in question
2766 *
2767 * Test whether the spd limit in SControl matches
2768 * @link->sata_spd_limit. This function is used to determine
2769 * whether hardreset is necessary to apply SATA spd
2770 * configuration.
2771 *
2772 * LOCKING:
2773 * Inherited from caller.
2774 *
2775 * RETURNS:
2776 * 1 if SATA spd configuration is needed, 0 otherwise.
2777 */
2778int sata_set_spd_needed(struct ata_link *link)
2779{
2780 u32 scontrol;
2781
2782 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2783 return 0;
2784
2785 return __sata_set_spd_needed(link, &scontrol);
2786}
2787
2788/**
2789 * sata_set_spd - set SATA spd according to spd limit
2790 * @link: Link to set SATA spd for
2791 *
2792 * Set SATA spd of @link according to sata_spd_limit.
2793 *
2794 * LOCKING:
2795 * Inherited from caller.
2796 *
2797 * RETURNS:
2798 * 0 if spd doesn't need to be changed, 1 if spd has been
2799 * changed. Negative errno if SCR registers are inaccessible.
2800 */
2801int sata_set_spd(struct ata_link *link)
2802{
2803 u32 scontrol;
2804 int rc;
2805
2806 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2807 return rc;
2808
2809 if (!__sata_set_spd_needed(link, &scontrol))
2810 return 0;
2811
2812 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2813 return rc;
2814
2815 return 1;
2816}
2817
2818/*
2819 * This mode timing computation functionality is ported over from
2820 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2821 */
2822/*
2823 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2824 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2825 * for UDMA6, which is currently supported only by Maxtor drives.
2826 *
2827 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2828 */
2829
2830static const struct ata_timing ata_timing[] = {
2831
2832 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2833 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2834 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2835 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2836
2837 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2838 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2839 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2840 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2841 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2842
2843/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2844
2845 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2846 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2847 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2848
2849 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2850 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2851 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2852
2853 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2854 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2855 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2856 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2857
2858 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2859 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2860 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2861
2862/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2863
2864 { 0xFF }
2865};
2866
2867#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2868#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2869
2870static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2871{
2872 q->setup = EZ(t->setup * 1000, T);
2873 q->act8b = EZ(t->act8b * 1000, T);
2874 q->rec8b = EZ(t->rec8b * 1000, T);
2875 q->cyc8b = EZ(t->cyc8b * 1000, T);
2876 q->active = EZ(t->active * 1000, T);
2877 q->recover = EZ(t->recover * 1000, T);
2878 q->cycle = EZ(t->cycle * 1000, T);
2879 q->udma = EZ(t->udma * 1000, UT);
2880}
2881
2882void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2883 struct ata_timing *m, unsigned int what)
2884{
2885 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2886 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2887 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2888 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2889 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2890 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2891 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2892 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2893}
2894
2895static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
2896{
2897 const struct ata_timing *t;
2898
2899 for (t = ata_timing; t->mode != speed; t++)
2900 if (t->mode == 0xFF)
2901 return NULL;
2902 return t;
2903}
2904
2905int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2906 struct ata_timing *t, int T, int UT)
2907{
2908 const struct ata_timing *s;
2909 struct ata_timing p;
2910
2911 /*
2912 * Find the mode.
2913 */
2914
2915 if (!(s = ata_timing_find_mode(speed)))
2916 return -EINVAL;
2917
2918 memcpy(t, s, sizeof(*s));
2919
2920 /*
2921 * If the drive is an EIDE drive, it can tell us it needs extended
2922 * PIO/MW_DMA cycle timing.
2923 */
2924
2925 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2926 memset(&p, 0, sizeof(p));
2927 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2928 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2929 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2930 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2931 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2932 }
2933 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2934 }
2935
2936 /*
2937 * Convert the timing to bus clock counts.
2938 */
2939
2940 ata_timing_quantize(t, t, T, UT);
2941
2942 /*
2943 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2944 * S.M.A.R.T * and some other commands. We have to ensure that the
2945 * DMA cycle timing is slower/equal than the fastest PIO timing.
2946 */
2947
2948 if (speed > XFER_PIO_6) {
2949 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2950 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2951 }
2952
2953 /*
2954 * Lengthen active & recovery time so that cycle time is correct.
2955 */
2956
2957 if (t->act8b + t->rec8b < t->cyc8b) {
2958 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2959 t->rec8b = t->cyc8b - t->act8b;
2960 }
2961
2962 if (t->active + t->recover < t->cycle) {
2963 t->active += (t->cycle - (t->active + t->recover)) / 2;
2964 t->recover = t->cycle - t->active;
2965 }
2966
2967 /* In a few cases quantisation may produce enough errors to
2968 leave t->cycle too low for the sum of active and recovery
2969 if so we must correct this */
2970 if (t->active + t->recover > t->cycle)
2971 t->cycle = t->active + t->recover;
2972
2973 return 0;
2974}
2975
2976/**
2977 * ata_down_xfermask_limit - adjust dev xfer masks downward
2978 * @dev: Device to adjust xfer masks
2979 * @sel: ATA_DNXFER_* selector
2980 *
2981 * Adjust xfer masks of @dev downward. Note that this function
2982 * does not apply the change. Invoking ata_set_mode() afterwards
2983 * will apply the limit.
2984 *
2985 * LOCKING:
2986 * Inherited from caller.
2987 *
2988 * RETURNS:
2989 * 0 on success, negative errno on failure
2990 */
2991int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2992{
2993 char buf[32];
2994 unsigned int orig_mask, xfer_mask;
2995 unsigned int pio_mask, mwdma_mask, udma_mask;
2996 int quiet, highbit;
2997
2998 quiet = !!(sel & ATA_DNXFER_QUIET);
2999 sel &= ~ATA_DNXFER_QUIET;
3000
3001 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3002 dev->mwdma_mask,
3003 dev->udma_mask);
3004 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3005
3006 switch (sel) {
3007 case ATA_DNXFER_PIO:
3008 highbit = fls(pio_mask) - 1;
3009 pio_mask &= ~(1 << highbit);
3010 break;
3011
3012 case ATA_DNXFER_DMA:
3013 if (udma_mask) {
3014 highbit = fls(udma_mask) - 1;
3015 udma_mask &= ~(1 << highbit);
3016 if (!udma_mask)
3017 return -ENOENT;
3018 } else if (mwdma_mask) {
3019 highbit = fls(mwdma_mask) - 1;
3020 mwdma_mask &= ~(1 << highbit);
3021 if (!mwdma_mask)
3022 return -ENOENT;
3023 }
3024 break;
3025
3026 case ATA_DNXFER_40C:
3027 udma_mask &= ATA_UDMA_MASK_40C;
3028 break;
3029
3030 case ATA_DNXFER_FORCE_PIO0:
3031 pio_mask &= 1;
3032 case ATA_DNXFER_FORCE_PIO:
3033 mwdma_mask = 0;
3034 udma_mask = 0;
3035 break;
3036
3037 default:
3038 BUG();
3039 }
3040
3041 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3042
3043 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3044 return -ENOENT;
3045
3046 if (!quiet) {
3047 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3048 snprintf(buf, sizeof(buf), "%s:%s",
3049 ata_mode_string(xfer_mask),
3050 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3051 else
3052 snprintf(buf, sizeof(buf), "%s",
3053 ata_mode_string(xfer_mask));
3054
3055 ata_dev_printk(dev, KERN_WARNING,
3056 "limiting speed to %s\n", buf);
3057 }
3058
3059 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3060 &dev->udma_mask);
3061
3062 return 0;
3063}
3064
3065static int ata_dev_set_mode(struct ata_device *dev)
3066{
3067 struct ata_eh_context *ehc = &dev->link->eh_context;
3068 unsigned int err_mask;
3069 int rc;
3070
3071 dev->flags &= ~ATA_DFLAG_PIO;
3072 if (dev->xfer_shift == ATA_SHIFT_PIO)
3073 dev->flags |= ATA_DFLAG_PIO;
3074
3075 err_mask = ata_dev_set_xfermode(dev);
3076
3077 /* Old CFA may refuse this command, which is just fine */
3078 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3079 err_mask &= ~AC_ERR_DEV;
3080
3081 /* Some very old devices and some bad newer ones fail any kind of
3082 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3083 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3084 dev->pio_mode <= XFER_PIO_2)
3085 err_mask &= ~AC_ERR_DEV;
3086
3087 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3088 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3089 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3090 dev->dma_mode == XFER_MW_DMA_0 &&
3091 (dev->id[63] >> 8) & 1)
3092 err_mask &= ~AC_ERR_DEV;
3093
3094 if (err_mask) {
3095 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3096 "(err_mask=0x%x)\n", err_mask);
3097 return -EIO;
3098 }
3099
3100 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3101 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3102 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3103 if (rc)
3104 return rc;
3105
3106 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3107 dev->xfer_shift, (int)dev->xfer_mode);
3108
3109 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3110 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
3111 return 0;
3112}
3113
3114/**
3115 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3116 * @link: link on which timings will be programmed
3117 * @r_failed_dev: out paramter for failed device
3118 *
3119 * Standard implementation of the function used to tune and set
3120 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3121 * ata_dev_set_mode() fails, pointer to the failing device is
3122 * returned in @r_failed_dev.
3123 *
3124 * LOCKING:
3125 * PCI/etc. bus probe sem.
3126 *
3127 * RETURNS:
3128 * 0 on success, negative errno otherwise
3129 */
3130
3131int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3132{
3133 struct ata_port *ap = link->ap;
3134 struct ata_device *dev;
3135 int rc = 0, used_dma = 0, found = 0;
3136
3137 /* step 1: calculate xfer_mask */
3138 ata_link_for_each_dev(dev, link) {
3139 unsigned int pio_mask, dma_mask;
3140 unsigned int mode_mask;
3141
3142 if (!ata_dev_enabled(dev))
3143 continue;
3144
3145 mode_mask = ATA_DMA_MASK_ATA;
3146 if (dev->class == ATA_DEV_ATAPI)
3147 mode_mask = ATA_DMA_MASK_ATAPI;
3148 else if (ata_id_is_cfa(dev->id))
3149 mode_mask = ATA_DMA_MASK_CFA;
3150
3151 ata_dev_xfermask(dev);
3152
3153 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3154 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3155
3156 if (libata_dma_mask & mode_mask)
3157 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3158 else
3159 dma_mask = 0;
3160
3161 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3162 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3163
3164 found = 1;
3165 if (dev->dma_mode)
3166 used_dma = 1;
3167 }
3168 if (!found)
3169 goto out;
3170
3171 /* step 2: always set host PIO timings */
3172 ata_link_for_each_dev(dev, link) {
3173 if (!ata_dev_enabled(dev))
3174 continue;
3175
3176 if (!dev->pio_mode) {
3177 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3178 rc = -EINVAL;
3179 goto out;
3180 }
3181
3182 dev->xfer_mode = dev->pio_mode;
3183 dev->xfer_shift = ATA_SHIFT_PIO;
3184 if (ap->ops->set_piomode)
3185 ap->ops->set_piomode(ap, dev);
3186 }
3187
3188 /* step 3: set host DMA timings */
3189 ata_link_for_each_dev(dev, link) {
3190 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3191 continue;
3192
3193 dev->xfer_mode = dev->dma_mode;
3194 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3195 if (ap->ops->set_dmamode)
3196 ap->ops->set_dmamode(ap, dev);
3197 }
3198
3199 /* step 4: update devices' xfer mode */
3200 ata_link_for_each_dev(dev, link) {
3201 /* don't update suspended devices' xfer mode */
3202 if (!ata_dev_enabled(dev))
3203 continue;
3204
3205 rc = ata_dev_set_mode(dev);
3206 if (rc)
3207 goto out;
3208 }
3209
3210 /* Record simplex status. If we selected DMA then the other
3211 * host channels are not permitted to do so.
3212 */
3213 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3214 ap->host->simplex_claimed = ap;
3215
3216 out:
3217 if (rc)
3218 *r_failed_dev = dev;
3219 return rc;
3220}
3221
3222/**
3223 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3224 * @link: link on which timings will be programmed
3225 * @r_failed_dev: out paramter for failed device
3226 *
3227 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3228 * ata_set_mode() fails, pointer to the failing device is
3229 * returned in @r_failed_dev.
3230 *
3231 * LOCKING:
3232 * PCI/etc. bus probe sem.
3233 *
3234 * RETURNS:
3235 * 0 on success, negative errno otherwise
3236 */
3237int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3238{
3239 struct ata_port *ap = link->ap;
3240
3241 /* has private set_mode? */
3242 if (ap->ops->set_mode)
3243 return ap->ops->set_mode(link, r_failed_dev);
3244 return ata_do_set_mode(link, r_failed_dev);
3245}
3246
3247/**
3248 * ata_tf_to_host - issue ATA taskfile to host controller
3249 * @ap: port to which command is being issued
3250 * @tf: ATA taskfile register set
3251 *
3252 * Issues ATA taskfile register set to ATA host controller,
3253 * with proper synchronization with interrupt handler and
3254 * other threads.
3255 *
3256 * LOCKING:
3257 * spin_lock_irqsave(host lock)
3258 */
3259
3260static inline void ata_tf_to_host(struct ata_port *ap,
3261 const struct ata_taskfile *tf)
3262{
3263 ap->ops->tf_load(ap, tf);
3264 ap->ops->exec_command(ap, tf);
3265}
3266
3267/**
3268 * ata_busy_sleep - sleep until BSY clears, or timeout
3269 * @ap: port containing status register to be polled
3270 * @tmout_pat: impatience timeout
3271 * @tmout: overall timeout
3272 *
3273 * Sleep until ATA Status register bit BSY clears,
3274 * or a timeout occurs.
3275 *
3276 * LOCKING:
3277 * Kernel thread context (may sleep).
3278 *
3279 * RETURNS:
3280 * 0 on success, -errno otherwise.
3281 */
3282int ata_busy_sleep(struct ata_port *ap,
3283 unsigned long tmout_pat, unsigned long tmout)
3284{
3285 unsigned long timer_start, timeout;
3286 u8 status;
3287
3288 status = ata_busy_wait(ap, ATA_BUSY, 300);
3289 timer_start = jiffies;
3290 timeout = timer_start + tmout_pat;
3291 while (status != 0xff && (status & ATA_BUSY) &&
3292 time_before(jiffies, timeout)) {
3293 msleep(50);
3294 status = ata_busy_wait(ap, ATA_BUSY, 3);
3295 }
3296
3297 if (status != 0xff && (status & ATA_BUSY))
3298 ata_port_printk(ap, KERN_WARNING,
3299 "port is slow to respond, please be patient "
3300 "(Status 0x%x)\n", status);
3301
3302 timeout = timer_start + tmout;
3303 while (status != 0xff && (status & ATA_BUSY) &&
3304 time_before(jiffies, timeout)) {
3305 msleep(50);
3306 status = ata_chk_status(ap);
3307 }
3308
3309 if (status == 0xff)
3310 return -ENODEV;
3311
3312 if (status & ATA_BUSY) {
3313 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3314 "(%lu secs, Status 0x%x)\n",
3315 tmout / HZ, status);
3316 return -EBUSY;
3317 }
3318
3319 return 0;
3320}
3321
3322/**
3323 * ata_wait_after_reset - wait before checking status after reset
3324 * @ap: port containing status register to be polled
3325 * @deadline: deadline jiffies for the operation
3326 *
3327 * After reset, we need to pause a while before reading status.
3328 * Also, certain combination of controller and device report 0xff
3329 * for some duration (e.g. until SATA PHY is up and running)
3330 * which is interpreted as empty port in ATA world. This
3331 * function also waits for such devices to get out of 0xff
3332 * status.
3333 *
3334 * LOCKING:
3335 * Kernel thread context (may sleep).
3336 */
3337void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3338{
3339 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3340
3341 if (time_before(until, deadline))
3342 deadline = until;
3343
3344 /* Spec mandates ">= 2ms" before checking status. We wait
3345 * 150ms, because that was the magic delay used for ATAPI
3346 * devices in Hale Landis's ATADRVR, for the period of time
3347 * between when the ATA command register is written, and then
3348 * status is checked. Because waiting for "a while" before
3349 * checking status is fine, post SRST, we perform this magic
3350 * delay here as well.
3351 *
3352 * Old drivers/ide uses the 2mS rule and then waits for ready.
3353 */
3354 msleep(150);
3355
3356 /* Wait for 0xff to clear. Some SATA devices take a long time
3357 * to clear 0xff after reset. For example, HHD424020F7SV00
3358 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3359 * than that.
3360 */
3361 while (1) {
3362 u8 status = ata_chk_status(ap);
3363
3364 if (status != 0xff || time_after(jiffies, deadline))
3365 return;
3366
3367 msleep(50);
3368 }
3369}
3370
3371/**
3372 * ata_wait_ready - sleep until BSY clears, or timeout
3373 * @ap: port containing status register to be polled
3374 * @deadline: deadline jiffies for the operation
3375 *
3376 * Sleep until ATA Status register bit BSY clears, or timeout
3377 * occurs.
3378 *
3379 * LOCKING:
3380 * Kernel thread context (may sleep).
3381 *
3382 * RETURNS:
3383 * 0 on success, -errno otherwise.
3384 */
3385int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3386{
3387 unsigned long start = jiffies;
3388 int warned = 0;
3389
3390 while (1) {
3391 u8 status = ata_chk_status(ap);
3392 unsigned long now = jiffies;
3393
3394 if (!(status & ATA_BUSY))
3395 return 0;
3396 if (!ata_link_online(&ap->link) && status == 0xff)
3397 return -ENODEV;
3398 if (time_after(now, deadline))
3399 return -EBUSY;
3400
3401 if (!warned && time_after(now, start + 5 * HZ) &&
3402 (deadline - now > 3 * HZ)) {
3403 ata_port_printk(ap, KERN_WARNING,
3404 "port is slow to respond, please be patient "
3405 "(Status 0x%x)\n", status);
3406 warned = 1;
3407 }
3408
3409 msleep(50);
3410 }
3411}
3412
3413static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3414 unsigned long deadline)
3415{
3416 struct ata_ioports *ioaddr = &ap->ioaddr;
3417 unsigned int dev0 = devmask & (1 << 0);
3418 unsigned int dev1 = devmask & (1 << 1);
3419 int rc, ret = 0;
3420
3421 /* if device 0 was found in ata_devchk, wait for its
3422 * BSY bit to clear
3423 */
3424 if (dev0) {
3425 rc = ata_wait_ready(ap, deadline);
3426 if (rc) {
3427 if (rc != -ENODEV)
3428 return rc;
3429 ret = rc;
3430 }
3431 }
3432
3433 /* if device 1 was found in ata_devchk, wait for register
3434 * access briefly, then wait for BSY to clear.
3435 */
3436 if (dev1) {
3437 int i;
3438
3439 ap->ops->dev_select(ap, 1);
3440
3441 /* Wait for register access. Some ATAPI devices fail
3442 * to set nsect/lbal after reset, so don't waste too
3443 * much time on it. We're gonna wait for !BSY anyway.
3444 */
3445 for (i = 0; i < 2; i++) {
3446 u8 nsect, lbal;
3447
3448 nsect = ioread8(ioaddr->nsect_addr);
3449 lbal = ioread8(ioaddr->lbal_addr);
3450 if ((nsect == 1) && (lbal == 1))
3451 break;
3452 msleep(50); /* give drive a breather */
3453 }
3454
3455 rc = ata_wait_ready(ap, deadline);
3456 if (rc) {
3457 if (rc != -ENODEV)
3458 return rc;
3459 ret = rc;
3460 }
3461 }
3462
3463 /* is all this really necessary? */
3464 ap->ops->dev_select(ap, 0);
3465 if (dev1)
3466 ap->ops->dev_select(ap, 1);
3467 if (dev0)
3468 ap->ops->dev_select(ap, 0);
3469
3470 return ret;
3471}
3472
3473static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3474 unsigned long deadline)
3475{
3476 struct ata_ioports *ioaddr = &ap->ioaddr;
3477
3478 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3479
3480 /* software reset. causes dev0 to be selected */
3481 iowrite8(ap->ctl, ioaddr->ctl_addr);
3482 udelay(20); /* FIXME: flush */
3483 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3484 udelay(20); /* FIXME: flush */
3485 iowrite8(ap->ctl, ioaddr->ctl_addr);
3486
3487 /* wait a while before checking status */
3488 ata_wait_after_reset(ap, deadline);
3489
3490 /* Before we perform post reset processing we want to see if
3491 * the bus shows 0xFF because the odd clown forgets the D7
3492 * pulldown resistor.
3493 */
3494 if (ata_chk_status(ap) == 0xFF)
3495 return -ENODEV;
3496
3497 return ata_bus_post_reset(ap, devmask, deadline);
3498}
3499
3500/**
3501 * ata_bus_reset - reset host port and associated ATA channel
3502 * @ap: port to reset
3503 *
3504 * This is typically the first time we actually start issuing
3505 * commands to the ATA channel. We wait for BSY to clear, then
3506 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3507 * result. Determine what devices, if any, are on the channel
3508 * by looking at the device 0/1 error register. Look at the signature
3509 * stored in each device's taskfile registers, to determine if
3510 * the device is ATA or ATAPI.
3511 *
3512 * LOCKING:
3513 * PCI/etc. bus probe sem.
3514 * Obtains host lock.
3515 *
3516 * SIDE EFFECTS:
3517 * Sets ATA_FLAG_DISABLED if bus reset fails.
3518 */
3519
3520void ata_bus_reset(struct ata_port *ap)
3521{
3522 struct ata_device *device = ap->link.device;
3523 struct ata_ioports *ioaddr = &ap->ioaddr;
3524 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3525 u8 err;
3526 unsigned int dev0, dev1 = 0, devmask = 0;
3527 int rc;
3528
3529 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3530
3531 /* determine if device 0/1 are present */
3532 if (ap->flags & ATA_FLAG_SATA_RESET)
3533 dev0 = 1;
3534 else {
3535 dev0 = ata_devchk(ap, 0);
3536 if (slave_possible)
3537 dev1 = ata_devchk(ap, 1);
3538 }
3539
3540 if (dev0)
3541 devmask |= (1 << 0);
3542 if (dev1)
3543 devmask |= (1 << 1);
3544
3545 /* select device 0 again */
3546 ap->ops->dev_select(ap, 0);
3547
3548 /* issue bus reset */
3549 if (ap->flags & ATA_FLAG_SRST) {
3550 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3551 if (rc && rc != -ENODEV)
3552 goto err_out;
3553 }
3554
3555 /*
3556 * determine by signature whether we have ATA or ATAPI devices
3557 */
3558 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3559 if ((slave_possible) && (err != 0x81))
3560 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3561
3562 /* is double-select really necessary? */
3563 if (device[1].class != ATA_DEV_NONE)
3564 ap->ops->dev_select(ap, 1);
3565 if (device[0].class != ATA_DEV_NONE)
3566 ap->ops->dev_select(ap, 0);
3567
3568 /* if no devices were detected, disable this port */
3569 if ((device[0].class == ATA_DEV_NONE) &&
3570 (device[1].class == ATA_DEV_NONE))
3571 goto err_out;
3572
3573 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3574 /* set up device control for ATA_FLAG_SATA_RESET */
3575 iowrite8(ap->ctl, ioaddr->ctl_addr);
3576 }
3577
3578 DPRINTK("EXIT\n");
3579 return;
3580
3581err_out:
3582 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3583 ata_port_disable(ap);
3584
3585 DPRINTK("EXIT\n");
3586}
3587
3588/**
3589 * sata_link_debounce - debounce SATA phy status
3590 * @link: ATA link to debounce SATA phy status for
3591 * @params: timing parameters { interval, duratinon, timeout } in msec
3592 * @deadline: deadline jiffies for the operation
3593 *
3594* Make sure SStatus of @link reaches stable state, determined by
3595 * holding the same value where DET is not 1 for @duration polled
3596 * every @interval, before @timeout. Timeout constraints the
3597 * beginning of the stable state. Because DET gets stuck at 1 on
3598 * some controllers after hot unplugging, this functions waits
3599 * until timeout then returns 0 if DET is stable at 1.
3600 *
3601 * @timeout is further limited by @deadline. The sooner of the
3602 * two is used.
3603 *
3604 * LOCKING:
3605 * Kernel thread context (may sleep)
3606 *
3607 * RETURNS:
3608 * 0 on success, -errno on failure.
3609 */
3610int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3611 unsigned long deadline)
3612{
3613 unsigned long interval_msec = params[0];
3614 unsigned long duration = msecs_to_jiffies(params[1]);
3615 unsigned long last_jiffies, t;
3616 u32 last, cur;
3617 int rc;
3618
3619 t = jiffies + msecs_to_jiffies(params[2]);
3620 if (time_before(t, deadline))
3621 deadline = t;
3622
3623 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3624 return rc;
3625 cur &= 0xf;
3626
3627 last = cur;
3628 last_jiffies = jiffies;
3629
3630 while (1) {
3631 msleep(interval_msec);
3632 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3633 return rc;
3634 cur &= 0xf;
3635
3636 /* DET stable? */
3637 if (cur == last) {
3638 if (cur == 1 && time_before(jiffies, deadline))
3639 continue;
3640 if (time_after(jiffies, last_jiffies + duration))
3641 return 0;
3642 continue;
3643 }
3644
3645 /* unstable, start over */
3646 last = cur;
3647 last_jiffies = jiffies;
3648
3649 /* Check deadline. If debouncing failed, return
3650 * -EPIPE to tell upper layer to lower link speed.
3651 */
3652 if (time_after(jiffies, deadline))
3653 return -EPIPE;
3654 }
3655}
3656
3657/**
3658 * sata_link_resume - resume SATA link
3659 * @link: ATA link to resume SATA
3660 * @params: timing parameters { interval, duratinon, timeout } in msec
3661 * @deadline: deadline jiffies for the operation
3662 *
3663 * Resume SATA phy @link and debounce it.
3664 *
3665 * LOCKING:
3666 * Kernel thread context (may sleep)
3667 *
3668 * RETURNS:
3669 * 0 on success, -errno on failure.
3670 */
3671int sata_link_resume(struct ata_link *link, const unsigned long *params,
3672 unsigned long deadline)
3673{
3674 u32 scontrol;
3675 int rc;
3676
3677 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3678 return rc;
3679
3680 scontrol = (scontrol & 0x0f0) | 0x300;
3681
3682 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3683 return rc;
3684
3685 /* Some PHYs react badly if SStatus is pounded immediately
3686 * after resuming. Delay 200ms before debouncing.
3687 */
3688 msleep(200);
3689
3690 return sata_link_debounce(link, params, deadline);
3691}
3692
3693/**
3694 * ata_std_prereset - prepare for reset
3695 * @link: ATA link to be reset
3696 * @deadline: deadline jiffies for the operation
3697 *
3698 * @link is about to be reset. Initialize it. Failure from
3699 * prereset makes libata abort whole reset sequence and give up
3700 * that port, so prereset should be best-effort. It does its
3701 * best to prepare for reset sequence but if things go wrong, it
3702 * should just whine, not fail.
3703 *
3704 * LOCKING:
3705 * Kernel thread context (may sleep)
3706 *
3707 * RETURNS:
3708 * 0 on success, -errno otherwise.
3709 */
3710int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3711{
3712 struct ata_port *ap = link->ap;
3713 struct ata_eh_context *ehc = &link->eh_context;
3714 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3715 int rc;
3716
3717 /* handle link resume */
3718 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3719 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3720 ehc->i.action |= ATA_EH_HARDRESET;
3721
3722 /* Some PMPs don't work with only SRST, force hardreset if PMP
3723 * is supported.
3724 */
3725 if (ap->flags & ATA_FLAG_PMP)
3726 ehc->i.action |= ATA_EH_HARDRESET;
3727
3728 /* if we're about to do hardreset, nothing more to do */
3729 if (ehc->i.action & ATA_EH_HARDRESET)
3730 return 0;
3731
3732 /* if SATA, resume link */
3733 if (ap->flags & ATA_FLAG_SATA) {
3734 rc = sata_link_resume(link, timing, deadline);
3735 /* whine about phy resume failure but proceed */
3736 if (rc && rc != -EOPNOTSUPP)
3737 ata_link_printk(link, KERN_WARNING, "failed to resume "
3738 "link for reset (errno=%d)\n", rc);
3739 }
3740
3741 /* Wait for !BSY if the controller can wait for the first D2H
3742 * Reg FIS and we don't know that no device is attached.
3743 */
3744 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3745 rc = ata_wait_ready(ap, deadline);
3746 if (rc && rc != -ENODEV) {
3747 ata_link_printk(link, KERN_WARNING, "device not ready "
3748 "(errno=%d), forcing hardreset\n", rc);
3749 ehc->i.action |= ATA_EH_HARDRESET;
3750 }
3751 }
3752
3753 return 0;
3754}
3755
3756/**
3757 * ata_std_softreset - reset host port via ATA SRST
3758 * @link: ATA link to reset
3759 * @classes: resulting classes of attached devices
3760 * @deadline: deadline jiffies for the operation
3761 *
3762 * Reset host port using ATA SRST.
3763 *
3764 * LOCKING:
3765 * Kernel thread context (may sleep)
3766 *
3767 * RETURNS:
3768 * 0 on success, -errno otherwise.
3769 */
3770int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3771 unsigned long deadline)
3772{
3773 struct ata_port *ap = link->ap;
3774 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3775 unsigned int devmask = 0;
3776 int rc;
3777 u8 err;
3778
3779 DPRINTK("ENTER\n");
3780
3781 if (ata_link_offline(link)) {
3782 classes[0] = ATA_DEV_NONE;
3783 goto out;
3784 }
3785
3786 /* determine if device 0/1 are present */
3787 if (ata_devchk(ap, 0))
3788 devmask |= (1 << 0);
3789 if (slave_possible && ata_devchk(ap, 1))
3790 devmask |= (1 << 1);
3791
3792 /* select device 0 again */
3793 ap->ops->dev_select(ap, 0);
3794
3795 /* issue bus reset */
3796 DPRINTK("about to softreset, devmask=%x\n", devmask);
3797 rc = ata_bus_softreset(ap, devmask, deadline);
3798 /* if link is occupied, -ENODEV too is an error */
3799 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3800 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3801 return rc;
3802 }
3803
3804 /* determine by signature whether we have ATA or ATAPI devices */
3805 classes[0] = ata_dev_try_classify(&link->device[0],
3806 devmask & (1 << 0), &err);
3807 if (slave_possible && err != 0x81)
3808 classes[1] = ata_dev_try_classify(&link->device[1],
3809 devmask & (1 << 1), &err);
3810
3811 out:
3812 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3813 return 0;
3814}
3815
3816/**
3817 * sata_link_hardreset - reset link via SATA phy reset
3818 * @link: link to reset
3819 * @timing: timing parameters { interval, duratinon, timeout } in msec
3820 * @deadline: deadline jiffies for the operation
3821 *
3822 * SATA phy-reset @link using DET bits of SControl register.
3823 *
3824 * LOCKING:
3825 * Kernel thread context (may sleep)
3826 *
3827 * RETURNS:
3828 * 0 on success, -errno otherwise.
3829 */
3830int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3831 unsigned long deadline)
3832{
3833 u32 scontrol;
3834 int rc;
3835
3836 DPRINTK("ENTER\n");
3837
3838 if (sata_set_spd_needed(link)) {
3839 /* SATA spec says nothing about how to reconfigure
3840 * spd. To be on the safe side, turn off phy during
3841 * reconfiguration. This works for at least ICH7 AHCI
3842 * and Sil3124.
3843 */
3844 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3845 goto out;
3846
3847 scontrol = (scontrol & 0x0f0) | 0x304;
3848
3849 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3850 goto out;
3851
3852 sata_set_spd(link);
3853 }
3854
3855 /* issue phy wake/reset */
3856 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3857 goto out;
3858
3859 scontrol = (scontrol & 0x0f0) | 0x301;
3860
3861 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3862 goto out;
3863
3864 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3865 * 10.4.2 says at least 1 ms.
3866 */
3867 msleep(1);
3868
3869 /* bring link back */
3870 rc = sata_link_resume(link, timing, deadline);
3871 out:
3872 DPRINTK("EXIT, rc=%d\n", rc);
3873 return rc;
3874}
3875
3876/**
3877 * sata_std_hardreset - reset host port via SATA phy reset
3878 * @link: link to reset
3879 * @class: resulting class of attached device
3880 * @deadline: deadline jiffies for the operation
3881 *
3882 * SATA phy-reset host port using DET bits of SControl register,
3883 * wait for !BSY and classify the attached device.
3884 *
3885 * LOCKING:
3886 * Kernel thread context (may sleep)
3887 *
3888 * RETURNS:
3889 * 0 on success, -errno otherwise.
3890 */
3891int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3892 unsigned long deadline)
3893{
3894 struct ata_port *ap = link->ap;
3895 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3896 int rc;
3897
3898 DPRINTK("ENTER\n");
3899
3900 /* do hardreset */
3901 rc = sata_link_hardreset(link, timing, deadline);
3902 if (rc) {
3903 ata_link_printk(link, KERN_ERR,
3904 "COMRESET failed (errno=%d)\n", rc);
3905 return rc;
3906 }
3907
3908 /* TODO: phy layer with polling, timeouts, etc. */
3909 if (ata_link_offline(link)) {
3910 *class = ATA_DEV_NONE;
3911 DPRINTK("EXIT, link offline\n");
3912 return 0;
3913 }
3914
3915 /* wait a while before checking status */
3916 ata_wait_after_reset(ap, deadline);
3917
3918 /* If PMP is supported, we have to do follow-up SRST. Note
3919 * that some PMPs don't send D2H Reg FIS after hardreset at
3920 * all if the first port is empty. Wait for it just for a
3921 * second and request follow-up SRST.
3922 */
3923 if (ap->flags & ATA_FLAG_PMP) {
3924 ata_wait_ready(ap, jiffies + HZ);
3925 return -EAGAIN;
3926 }
3927
3928 rc = ata_wait_ready(ap, deadline);
3929 /* link occupied, -ENODEV too is an error */
3930 if (rc) {
3931 ata_link_printk(link, KERN_ERR,
3932 "COMRESET failed (errno=%d)\n", rc);
3933 return rc;
3934 }
3935
3936 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3937
3938 *class = ata_dev_try_classify(link->device, 1, NULL);
3939
3940 DPRINTK("EXIT, class=%u\n", *class);
3941 return 0;
3942}
3943
3944/**
3945 * ata_std_postreset - standard postreset callback
3946 * @link: the target ata_link
3947 * @classes: classes of attached devices
3948 *
3949 * This function is invoked after a successful reset. Note that
3950 * the device might have been reset more than once using
3951 * different reset methods before postreset is invoked.
3952 *
3953 * LOCKING:
3954 * Kernel thread context (may sleep)
3955 */
3956void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3957{
3958 struct ata_port *ap = link->ap;
3959 u32 serror;
3960
3961 DPRINTK("ENTER\n");
3962
3963 /* print link status */
3964 sata_print_link_status(link);
3965
3966 /* clear SError */
3967 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3968 sata_scr_write(link, SCR_ERROR, serror);
3969
3970 /* is double-select really necessary? */
3971 if (classes[0] != ATA_DEV_NONE)
3972 ap->ops->dev_select(ap, 1);
3973 if (classes[1] != ATA_DEV_NONE)
3974 ap->ops->dev_select(ap, 0);
3975
3976 /* bail out if no device is present */
3977 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3978 DPRINTK("EXIT, no device\n");
3979 return;
3980 }
3981
3982 /* set up device control */
3983 if (ap->ioaddr.ctl_addr)
3984 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3985
3986 DPRINTK("EXIT\n");
3987}
3988
3989/**
3990 * ata_dev_same_device - Determine whether new ID matches configured device
3991 * @dev: device to compare against
3992 * @new_class: class of the new device
3993 * @new_id: IDENTIFY page of the new device
3994 *
3995 * Compare @new_class and @new_id against @dev and determine
3996 * whether @dev is the device indicated by @new_class and
3997 * @new_id.
3998 *
3999 * LOCKING:
4000 * None.
4001 *
4002 * RETURNS:
4003 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4004 */
4005static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4006 const u16 *new_id)
4007{
4008 const u16 *old_id = dev->id;
4009 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4010 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4011
4012 if (dev->class != new_class) {
4013 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4014 dev->class, new_class);
4015 return 0;
4016 }
4017
4018 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4019 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4020 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4021 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4022
4023 if (strcmp(model[0], model[1])) {
4024 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4025 "'%s' != '%s'\n", model[0], model[1]);
4026 return 0;
4027 }
4028
4029 if (strcmp(serial[0], serial[1])) {
4030 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4031 "'%s' != '%s'\n", serial[0], serial[1]);
4032 return 0;
4033 }
4034
4035 return 1;
4036}
4037
4038/**
4039 * ata_dev_reread_id - Re-read IDENTIFY data
4040 * @dev: target ATA device
4041 * @readid_flags: read ID flags
4042 *
4043 * Re-read IDENTIFY page and make sure @dev is still attached to
4044 * the port.
4045 *
4046 * LOCKING:
4047 * Kernel thread context (may sleep)
4048 *
4049 * RETURNS:
4050 * 0 on success, negative errno otherwise
4051 */
4052int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4053{
4054 unsigned int class = dev->class;
4055 u16 *id = (void *)dev->link->ap->sector_buf;
4056 int rc;
4057
4058 /* read ID data */
4059 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4060 if (rc)
4061 return rc;
4062
4063 /* is the device still there? */
4064 if (!ata_dev_same_device(dev, class, id))
4065 return -ENODEV;
4066
4067 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4068 return 0;
4069}
4070
4071/**
4072 * ata_dev_revalidate - Revalidate ATA device
4073 * @dev: device to revalidate
4074 * @new_class: new class code
4075 * @readid_flags: read ID flags
4076 *
4077 * Re-read IDENTIFY page, make sure @dev is still attached to the
4078 * port and reconfigure it according to the new IDENTIFY page.
4079 *
4080 * LOCKING:
4081 * Kernel thread context (may sleep)
4082 *
4083 * RETURNS:
4084 * 0 on success, negative errno otherwise
4085 */
4086int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4087 unsigned int readid_flags)
4088{
4089 u64 n_sectors = dev->n_sectors;
4090 int rc;
4091
4092 if (!ata_dev_enabled(dev))
4093 return -ENODEV;
4094
4095 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4096 if (ata_class_enabled(new_class) &&
4097 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4098 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4099 dev->class, new_class);
4100 rc = -ENODEV;
4101 goto fail;
4102 }
4103
4104 /* re-read ID */
4105 rc = ata_dev_reread_id(dev, readid_flags);
4106 if (rc)
4107 goto fail;
4108
4109 /* configure device according to the new ID */
4110 rc = ata_dev_configure(dev);
4111 if (rc)
4112 goto fail;
4113
4114 /* verify n_sectors hasn't changed */
4115 if (dev->class == ATA_DEV_ATA && n_sectors &&
4116 dev->n_sectors != n_sectors) {
4117 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4118 "%llu != %llu\n",
4119 (unsigned long long)n_sectors,
4120 (unsigned long long)dev->n_sectors);
4121
4122 /* restore original n_sectors */
4123 dev->n_sectors = n_sectors;
4124
4125 rc = -ENODEV;
4126 goto fail;
4127 }
4128
4129 return 0;
4130
4131 fail:
4132 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4133 return rc;
4134}
4135
4136struct ata_blacklist_entry {
4137 const char *model_num;
4138 const char *model_rev;
4139 unsigned long horkage;
4140};
4141
4142static const struct ata_blacklist_entry ata_device_blacklist [] = {
4143 /* Devices with DMA related problems under Linux */
4144 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4145 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4146 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4147 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4148 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4149 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4150 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4151 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4152 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4153 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4154 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4155 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4156 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4157 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4158 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4159 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4160 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4161 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4162 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4163 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4164 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4165 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4166 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4167 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4168 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4169 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4170 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4171 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4172 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4173 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4174 /* Odd clown on sil3726/4726 PMPs */
4175 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4176 ATA_HORKAGE_SKIP_PM },
4177
4178 /* Weird ATAPI devices */
4179 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4180
4181 /* Devices we expect to fail diagnostics */
4182
4183 /* Devices where NCQ should be avoided */
4184 /* NCQ is slow */
4185 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4186 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4187 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4188 /* NCQ is broken */
4189 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4190 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4191 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4192 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
4193 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4194
4195 /* Blacklist entries taken from Silicon Image 3124/3132
4196 Windows driver .inf file - also several Linux problem reports */
4197 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4198 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4199 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4200 /* Drives which do spurious command completion */
4201 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
4202 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
4203 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
4204 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
4205 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
4206 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4207 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
4208 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
4209 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4210 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4211 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
4212 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
4213 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4214 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
4215 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
4216 { "Maxtor 7V300F0", "VA111900", ATA_HORKAGE_NONCQ, },
4217
4218 /* devices which puke on READ_NATIVE_MAX */
4219 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4220 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4221 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4222 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4223
4224 /* Devices which report 1 sector over size HPA */
4225 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4226 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4227
4228 /* End Marker */
4229 { }
4230};
4231
4232static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4233{
4234 const char *p;
4235 int len;
4236
4237 /*
4238 * check for trailing wildcard: *\0
4239 */
4240 p = strchr(patt, wildchar);
4241 if (p && ((*(p + 1)) == 0))
4242 len = p - patt;
4243 else {
4244 len = strlen(name);
4245 if (!len) {
4246 if (!*patt)
4247 return 0;
4248 return -1;
4249 }
4250 }
4251
4252 return strncmp(patt, name, len);
4253}
4254
4255static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4256{
4257 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4258 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4259 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4260
4261 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4262 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4263
4264 while (ad->model_num) {
4265 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4266 if (ad->model_rev == NULL)
4267 return ad->horkage;
4268 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4269 return ad->horkage;
4270 }
4271 ad++;
4272 }
4273 return 0;
4274}
4275
4276static int ata_dma_blacklisted(const struct ata_device *dev)
4277{
4278 /* We don't support polling DMA.
4279 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4280 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4281 */
4282 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4283 (dev->flags & ATA_DFLAG_CDB_INTR))
4284 return 1;
4285 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4286}
4287
4288/**
4289 * ata_dev_xfermask - Compute supported xfermask of the given device
4290 * @dev: Device to compute xfermask for
4291 *
4292 * Compute supported xfermask of @dev and store it in
4293 * dev->*_mask. This function is responsible for applying all
4294 * known limits including host controller limits, device
4295 * blacklist, etc...
4296 *
4297 * LOCKING:
4298 * None.
4299 */
4300static void ata_dev_xfermask(struct ata_device *dev)
4301{
4302 struct ata_link *link = dev->link;
4303 struct ata_port *ap = link->ap;
4304 struct ata_host *host = ap->host;
4305 unsigned long xfer_mask;
4306
4307 /* controller modes available */
4308 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4309 ap->mwdma_mask, ap->udma_mask);
4310
4311 /* drive modes available */
4312 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4313 dev->mwdma_mask, dev->udma_mask);
4314 xfer_mask &= ata_id_xfermask(dev->id);
4315
4316 /*
4317 * CFA Advanced TrueIDE timings are not allowed on a shared
4318 * cable
4319 */
4320 if (ata_dev_pair(dev)) {
4321 /* No PIO5 or PIO6 */
4322 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4323 /* No MWDMA3 or MWDMA 4 */
4324 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4325 }
4326
4327 if (ata_dma_blacklisted(dev)) {
4328 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4329 ata_dev_printk(dev, KERN_WARNING,
4330 "device is on DMA blacklist, disabling DMA\n");
4331 }
4332
4333 if ((host->flags & ATA_HOST_SIMPLEX) &&
4334 host->simplex_claimed && host->simplex_claimed != ap) {
4335 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4336 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4337 "other device, disabling DMA\n");
4338 }
4339
4340 if (ap->flags & ATA_FLAG_NO_IORDY)
4341 xfer_mask &= ata_pio_mask_no_iordy(dev);
4342
4343 if (ap->ops->mode_filter)
4344 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4345
4346 /* Apply cable rule here. Don't apply it early because when
4347 * we handle hot plug the cable type can itself change.
4348 * Check this last so that we know if the transfer rate was
4349 * solely limited by the cable.
4350 * Unknown or 80 wire cables reported host side are checked
4351 * drive side as well. Cases where we know a 40wire cable
4352 * is used safely for 80 are not checked here.
4353 */
4354 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4355 /* UDMA/44 or higher would be available */
4356 if ((ap->cbl == ATA_CBL_PATA40) ||
4357 (ata_drive_40wire(dev->id) &&
4358 (ap->cbl == ATA_CBL_PATA_UNK ||
4359 ap->cbl == ATA_CBL_PATA80))) {
4360 ata_dev_printk(dev, KERN_WARNING,
4361 "limited to UDMA/33 due to 40-wire cable\n");
4362 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4363 }
4364
4365 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4366 &dev->mwdma_mask, &dev->udma_mask);
4367}
4368
4369/**
4370 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4371 * @dev: Device to which command will be sent
4372 *
4373 * Issue SET FEATURES - XFER MODE command to device @dev
4374 * on port @ap.
4375 *
4376 * LOCKING:
4377 * PCI/etc. bus probe sem.
4378 *
4379 * RETURNS:
4380 * 0 on success, AC_ERR_* mask otherwise.
4381 */
4382
4383static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4384{
4385 struct ata_taskfile tf;
4386 unsigned int err_mask;
4387
4388 /* set up set-features taskfile */
4389 DPRINTK("set features - xfer mode\n");
4390
4391 /* Some controllers and ATAPI devices show flaky interrupt
4392 * behavior after setting xfer mode. Use polling instead.
4393 */
4394 ata_tf_init(dev, &tf);
4395 tf.command = ATA_CMD_SET_FEATURES;
4396 tf.feature = SETFEATURES_XFER;
4397 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4398 tf.protocol = ATA_PROT_NODATA;
4399 tf.nsect = dev->xfer_mode;
4400
4401 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4402
4403 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4404 return err_mask;
4405}
4406/**
4407 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4408 * @dev: Device to which command will be sent
4409 * @enable: Whether to enable or disable the feature
4410 * @feature: The sector count represents the feature to set
4411 *
4412 * Issue SET FEATURES - SATA FEATURES command to device @dev
4413 * on port @ap with sector count
4414 *
4415 * LOCKING:
4416 * PCI/etc. bus probe sem.
4417 *
4418 * RETURNS:
4419 * 0 on success, AC_ERR_* mask otherwise.
4420 */
4421static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4422 u8 feature)
4423{
4424 struct ata_taskfile tf;
4425 unsigned int err_mask;
4426
4427 /* set up set-features taskfile */
4428 DPRINTK("set features - SATA features\n");
4429
4430 ata_tf_init(dev, &tf);
4431 tf.command = ATA_CMD_SET_FEATURES;
4432 tf.feature = enable;
4433 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4434 tf.protocol = ATA_PROT_NODATA;
4435 tf.nsect = feature;
4436
4437 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4438
4439 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4440 return err_mask;
4441}
4442
4443/**
4444 * ata_dev_init_params - Issue INIT DEV PARAMS command
4445 * @dev: Device to which command will be sent
4446 * @heads: Number of heads (taskfile parameter)
4447 * @sectors: Number of sectors (taskfile parameter)
4448 *
4449 * LOCKING:
4450 * Kernel thread context (may sleep)
4451 *
4452 * RETURNS:
4453 * 0 on success, AC_ERR_* mask otherwise.
4454 */
4455static unsigned int ata_dev_init_params(struct ata_device *dev,
4456 u16 heads, u16 sectors)
4457{
4458 struct ata_taskfile tf;
4459 unsigned int err_mask;
4460
4461 /* Number of sectors per track 1-255. Number of heads 1-16 */
4462 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4463 return AC_ERR_INVALID;
4464
4465 /* set up init dev params taskfile */
4466 DPRINTK("init dev params \n");
4467
4468 ata_tf_init(dev, &tf);
4469 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4470 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4471 tf.protocol = ATA_PROT_NODATA;
4472 tf.nsect = sectors;
4473 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4474
4475 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4476 /* A clean abort indicates an original or just out of spec drive
4477 and we should continue as we issue the setup based on the
4478 drive reported working geometry */
4479 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4480 err_mask = 0;
4481
4482 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4483 return err_mask;
4484}
4485
4486/**
4487 * ata_sg_clean - Unmap DMA memory associated with command
4488 * @qc: Command containing DMA memory to be released
4489 *
4490 * Unmap all mapped DMA memory associated with this command.
4491 *
4492 * LOCKING:
4493 * spin_lock_irqsave(host lock)
4494 */
4495void ata_sg_clean(struct ata_queued_cmd *qc)
4496{
4497 struct ata_port *ap = qc->ap;
4498 struct scatterlist *sg = qc->__sg;
4499 int dir = qc->dma_dir;
4500 void *pad_buf = NULL;
4501
4502 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4503 WARN_ON(sg == NULL);
4504
4505 if (qc->flags & ATA_QCFLAG_SINGLE)
4506 WARN_ON(qc->n_elem > 1);
4507
4508 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4509
4510 /* if we padded the buffer out to 32-bit bound, and data
4511 * xfer direction is from-device, we must copy from the
4512 * pad buffer back into the supplied buffer
4513 */
4514 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4515 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4516
4517 if (qc->flags & ATA_QCFLAG_SG) {
4518 if (qc->n_elem)
4519 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4520 /* restore last sg */
4521 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
4522 if (pad_buf) {
4523 struct scatterlist *psg = &qc->pad_sgent;
4524 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4525 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4526 kunmap_atomic(addr, KM_IRQ0);
4527 }
4528 } else {
4529 if (qc->n_elem)
4530 dma_unmap_single(ap->dev,
4531 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4532 dir);
4533 /* restore sg */
4534 sg->length += qc->pad_len;
4535 if (pad_buf)
4536 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4537 pad_buf, qc->pad_len);
4538 }
4539
4540 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4541 qc->__sg = NULL;
4542}
4543
4544/**
4545 * ata_fill_sg - Fill PCI IDE PRD table
4546 * @qc: Metadata associated with taskfile to be transferred
4547 *
4548 * Fill PCI IDE PRD (scatter-gather) table with segments
4549 * associated with the current disk command.
4550 *
4551 * LOCKING:
4552 * spin_lock_irqsave(host lock)
4553 *
4554 */
4555static void ata_fill_sg(struct ata_queued_cmd *qc)
4556{
4557 struct ata_port *ap = qc->ap;
4558 struct scatterlist *sg;
4559 unsigned int idx;
4560
4561 WARN_ON(qc->__sg == NULL);
4562 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4563
4564 idx = 0;
4565 ata_for_each_sg(sg, qc) {
4566 u32 addr, offset;
4567 u32 sg_len, len;
4568
4569 /* determine if physical DMA addr spans 64K boundary.
4570 * Note h/w doesn't support 64-bit, so we unconditionally
4571 * truncate dma_addr_t to u32.
4572 */
4573 addr = (u32) sg_dma_address(sg);
4574 sg_len = sg_dma_len(sg);
4575
4576 while (sg_len) {
4577 offset = addr & 0xffff;
4578 len = sg_len;
4579 if ((offset + sg_len) > 0x10000)
4580 len = 0x10000 - offset;
4581
4582 ap->prd[idx].addr = cpu_to_le32(addr);
4583 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4584 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4585
4586 idx++;
4587 sg_len -= len;
4588 addr += len;
4589 }
4590 }
4591
4592 if (idx)
4593 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4594}
4595
4596/**
4597 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4598 * @qc: Metadata associated with taskfile to be transferred
4599 *
4600 * Fill PCI IDE PRD (scatter-gather) table with segments
4601 * associated with the current disk command. Perform the fill
4602 * so that we avoid writing any length 64K records for
4603 * controllers that don't follow the spec.
4604 *
4605 * LOCKING:
4606 * spin_lock_irqsave(host lock)
4607 *
4608 */
4609static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4610{
4611 struct ata_port *ap = qc->ap;
4612 struct scatterlist *sg;
4613 unsigned int idx;
4614
4615 WARN_ON(qc->__sg == NULL);
4616 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4617
4618 idx = 0;
4619 ata_for_each_sg(sg, qc) {
4620 u32 addr, offset;
4621 u32 sg_len, len, blen;
4622
4623 /* determine if physical DMA addr spans 64K boundary.
4624 * Note h/w doesn't support 64-bit, so we unconditionally
4625 * truncate dma_addr_t to u32.
4626 */
4627 addr = (u32) sg_dma_address(sg);
4628 sg_len = sg_dma_len(sg);
4629
4630 while (sg_len) {
4631 offset = addr & 0xffff;
4632 len = sg_len;
4633 if ((offset + sg_len) > 0x10000)
4634 len = 0x10000 - offset;
4635
4636 blen = len & 0xffff;
4637 ap->prd[idx].addr = cpu_to_le32(addr);
4638 if (blen == 0) {
4639 /* Some PATA chipsets like the CS5530 can't
4640 cope with 0x0000 meaning 64K as the spec says */
4641 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4642 blen = 0x8000;
4643 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4644 }
4645 ap->prd[idx].flags_len = cpu_to_le32(blen);
4646 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4647
4648 idx++;
4649 sg_len -= len;
4650 addr += len;
4651 }
4652 }
4653
4654 if (idx)
4655 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4656}
4657
4658/**
4659 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4660 * @qc: Metadata associated with taskfile to check
4661 *
4662 * Allow low-level driver to filter ATA PACKET commands, returning
4663 * a status indicating whether or not it is OK to use DMA for the
4664 * supplied PACKET command.
4665 *
4666 * LOCKING:
4667 * spin_lock_irqsave(host lock)
4668 *
4669 * RETURNS: 0 when ATAPI DMA can be used
4670 * nonzero otherwise
4671 */
4672int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4673{
4674 struct ata_port *ap = qc->ap;
4675
4676 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4677 * few ATAPI devices choke on such DMA requests.
4678 */
4679 if (unlikely(qc->nbytes & 15))
4680 return 1;
4681
4682 if (ap->ops->check_atapi_dma)
4683 return ap->ops->check_atapi_dma(qc);
4684
4685 return 0;
4686}
4687
4688/**
4689 * ata_std_qc_defer - Check whether a qc needs to be deferred
4690 * @qc: ATA command in question
4691 *
4692 * Non-NCQ commands cannot run with any other command, NCQ or
4693 * not. As upper layer only knows the queue depth, we are
4694 * responsible for maintaining exclusion. This function checks
4695 * whether a new command @qc can be issued.
4696 *
4697 * LOCKING:
4698 * spin_lock_irqsave(host lock)
4699 *
4700 * RETURNS:
4701 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4702 */
4703int ata_std_qc_defer(struct ata_queued_cmd *qc)
4704{
4705 struct ata_link *link = qc->dev->link;
4706
4707 if (qc->tf.protocol == ATA_PROT_NCQ) {
4708 if (!ata_tag_valid(link->active_tag))
4709 return 0;
4710 } else {
4711 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4712 return 0;
4713 }
4714
4715 return ATA_DEFER_LINK;
4716}
4717
4718/**
4719 * ata_qc_prep - Prepare taskfile for submission
4720 * @qc: Metadata associated with taskfile to be prepared
4721 *
4722 * Prepare ATA taskfile for submission.
4723 *
4724 * LOCKING:
4725 * spin_lock_irqsave(host lock)
4726 */
4727void ata_qc_prep(struct ata_queued_cmd *qc)
4728{
4729 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4730 return;
4731
4732 ata_fill_sg(qc);
4733}
4734
4735/**
4736 * ata_dumb_qc_prep - Prepare taskfile for submission
4737 * @qc: Metadata associated with taskfile to be prepared
4738 *
4739 * Prepare ATA taskfile for submission.
4740 *
4741 * LOCKING:
4742 * spin_lock_irqsave(host lock)
4743 */
4744void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4745{
4746 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4747 return;
4748
4749 ata_fill_sg_dumb(qc);
4750}
4751
4752void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4753
4754/**
4755 * ata_sg_init_one - Associate command with memory buffer
4756 * @qc: Command to be associated
4757 * @buf: Memory buffer
4758 * @buflen: Length of memory buffer, in bytes.
4759 *
4760 * Initialize the data-related elements of queued_cmd @qc
4761 * to point to a single memory buffer, @buf of byte length @buflen.
4762 *
4763 * LOCKING:
4764 * spin_lock_irqsave(host lock)
4765 */
4766
4767void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4768{
4769 qc->flags |= ATA_QCFLAG_SINGLE;
4770
4771 qc->__sg = &qc->sgent;
4772 qc->n_elem = 1;
4773 qc->orig_n_elem = 1;
4774 qc->buf_virt = buf;
4775 qc->nbytes = buflen;
4776 qc->cursg = qc->__sg;
4777
4778 sg_init_one(&qc->sgent, buf, buflen);
4779}
4780
4781/**
4782 * ata_sg_init - Associate command with scatter-gather table.
4783 * @qc: Command to be associated
4784 * @sg: Scatter-gather table.
4785 * @n_elem: Number of elements in s/g table.
4786 *
4787 * Initialize the data-related elements of queued_cmd @qc
4788 * to point to a scatter-gather table @sg, containing @n_elem
4789 * elements.
4790 *
4791 * LOCKING:
4792 * spin_lock_irqsave(host lock)
4793 */
4794
4795void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4796 unsigned int n_elem)
4797{
4798 qc->flags |= ATA_QCFLAG_SG;
4799 qc->__sg = sg;
4800 qc->n_elem = n_elem;
4801 qc->orig_n_elem = n_elem;
4802 qc->cursg = qc->__sg;
4803}
4804
4805/**
4806 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4807 * @qc: Command with memory buffer to be mapped.
4808 *
4809 * DMA-map the memory buffer associated with queued_cmd @qc.
4810 *
4811 * LOCKING:
4812 * spin_lock_irqsave(host lock)
4813 *
4814 * RETURNS:
4815 * Zero on success, negative on error.
4816 */
4817
4818static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4819{
4820 struct ata_port *ap = qc->ap;
4821 int dir = qc->dma_dir;
4822 struct scatterlist *sg = qc->__sg;
4823 dma_addr_t dma_address;
4824 int trim_sg = 0;
4825
4826 /* we must lengthen transfers to end on a 32-bit boundary */
4827 qc->pad_len = sg->length & 3;
4828 if (qc->pad_len) {
4829 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4830 struct scatterlist *psg = &qc->pad_sgent;
4831
4832 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4833
4834 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4835
4836 if (qc->tf.flags & ATA_TFLAG_WRITE)
4837 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4838 qc->pad_len);
4839
4840 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4841 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4842 /* trim sg */
4843 sg->length -= qc->pad_len;
4844 if (sg->length == 0)
4845 trim_sg = 1;
4846
4847 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4848 sg->length, qc->pad_len);
4849 }
4850
4851 if (trim_sg) {
4852 qc->n_elem--;
4853 goto skip_map;
4854 }
4855
4856 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4857 sg->length, dir);
4858 if (dma_mapping_error(dma_address)) {
4859 /* restore sg */
4860 sg->length += qc->pad_len;
4861 return -1;
4862 }
4863
4864 sg_dma_address(sg) = dma_address;
4865 sg_dma_len(sg) = sg->length;
4866
4867skip_map:
4868 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4869 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4870
4871 return 0;
4872}
4873
4874/**
4875 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4876 * @qc: Command with scatter-gather table to be mapped.
4877 *
4878 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4879 *
4880 * LOCKING:
4881 * spin_lock_irqsave(host lock)
4882 *
4883 * RETURNS:
4884 * Zero on success, negative on error.
4885 *
4886 */
4887
4888static int ata_sg_setup(struct ata_queued_cmd *qc)
4889{
4890 struct ata_port *ap = qc->ap;
4891 struct scatterlist *sg = qc->__sg;
4892 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4893 int n_elem, pre_n_elem, dir, trim_sg = 0;
4894
4895 VPRINTK("ENTER, ata%u\n", ap->print_id);
4896 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4897
4898 /* we must lengthen transfers to end on a 32-bit boundary */
4899 qc->pad_len = lsg->length & 3;
4900 if (qc->pad_len) {
4901 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4902 struct scatterlist *psg = &qc->pad_sgent;
4903 unsigned int offset;
4904
4905 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4906
4907 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4908
4909 /*
4910 * psg->page/offset are used to copy to-be-written
4911 * data in this function or read data in ata_sg_clean.
4912 */
4913 offset = lsg->offset + lsg->length - qc->pad_len;
4914 sg_init_table(psg, 1);
4915 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4916 qc->pad_len, offset_in_page(offset));
4917
4918 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4919 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4920 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4921 kunmap_atomic(addr, KM_IRQ0);
4922 }
4923
4924 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4925 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4926 /* trim last sg */
4927 lsg->length -= qc->pad_len;
4928 if (lsg->length == 0)
4929 trim_sg = 1;
4930
4931 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4932 qc->n_elem - 1, lsg->length, qc->pad_len);
4933 }
4934
4935 pre_n_elem = qc->n_elem;
4936 if (trim_sg && pre_n_elem)
4937 pre_n_elem--;
4938
4939 if (!pre_n_elem) {
4940 n_elem = 0;
4941 goto skip_map;
4942 }
4943
4944 dir = qc->dma_dir;
4945 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4946 if (n_elem < 1) {
4947 /* restore last sg */
4948 lsg->length += qc->pad_len;
4949 return -1;
4950 }
4951
4952 DPRINTK("%d sg elements mapped\n", n_elem);
4953
4954skip_map:
4955 qc->n_elem = n_elem;
4956
4957 return 0;
4958}
4959
4960/**
4961 * swap_buf_le16 - swap halves of 16-bit words in place
4962 * @buf: Buffer to swap
4963 * @buf_words: Number of 16-bit words in buffer.
4964 *
4965 * Swap halves of 16-bit words if needed to convert from
4966 * little-endian byte order to native cpu byte order, or
4967 * vice-versa.
4968 *
4969 * LOCKING:
4970 * Inherited from caller.
4971 */
4972void swap_buf_le16(u16 *buf, unsigned int buf_words)
4973{
4974#ifdef __BIG_ENDIAN
4975 unsigned int i;
4976
4977 for (i = 0; i < buf_words; i++)
4978 buf[i] = le16_to_cpu(buf[i]);
4979#endif /* __BIG_ENDIAN */
4980}
4981
4982/**
4983 * ata_data_xfer - Transfer data by PIO
4984 * @adev: device to target
4985 * @buf: data buffer
4986 * @buflen: buffer length
4987 * @write_data: read/write
4988 *
4989 * Transfer data from/to the device data register by PIO.
4990 *
4991 * LOCKING:
4992 * Inherited from caller.
4993 */
4994void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4995 unsigned int buflen, int write_data)
4996{
4997 struct ata_port *ap = adev->link->ap;
4998 unsigned int words = buflen >> 1;
4999
5000 /* Transfer multiple of 2 bytes */
5001 if (write_data)
5002 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
5003 else
5004 ioread16_rep(ap->ioaddr.data_addr, buf, words);
5005
5006 /* Transfer trailing 1 byte, if any. */
5007 if (unlikely(buflen & 0x01)) {
5008 u16 align_buf[1] = { 0 };
5009 unsigned char *trailing_buf = buf + buflen - 1;
5010
5011 if (write_data) {
5012 memcpy(align_buf, trailing_buf, 1);
5013 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
5014 } else {
5015 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
5016 memcpy(trailing_buf, align_buf, 1);
5017 }
5018 }
5019}
5020
5021/**
5022 * ata_data_xfer_noirq - Transfer data by PIO
5023 * @adev: device to target
5024 * @buf: data buffer
5025 * @buflen: buffer length
5026 * @write_data: read/write
5027 *
5028 * Transfer data from/to the device data register by PIO. Do the
5029 * transfer with interrupts disabled.
5030 *
5031 * LOCKING:
5032 * Inherited from caller.
5033 */
5034void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5035 unsigned int buflen, int write_data)
5036{
5037 unsigned long flags;
5038 local_irq_save(flags);
5039 ata_data_xfer(adev, buf, buflen, write_data);
5040 local_irq_restore(flags);
5041}
5042
5043
5044/**
5045 * ata_pio_sector - Transfer a sector of data.
5046 * @qc: Command on going
5047 *
5048 * Transfer qc->sect_size bytes of data from/to the ATA device.
5049 *
5050 * LOCKING:
5051 * Inherited from caller.
5052 */
5053
5054static void ata_pio_sector(struct ata_queued_cmd *qc)
5055{
5056 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5057 struct ata_port *ap = qc->ap;
5058 struct page *page;
5059 unsigned int offset;
5060 unsigned char *buf;
5061
5062 if (qc->curbytes == qc->nbytes - qc->sect_size)
5063 ap->hsm_task_state = HSM_ST_LAST;
5064
5065 page = sg_page(qc->cursg);
5066 offset = qc->cursg->offset + qc->cursg_ofs;
5067
5068 /* get the current page and offset */
5069 page = nth_page(page, (offset >> PAGE_SHIFT));
5070 offset %= PAGE_SIZE;
5071
5072 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5073
5074 if (PageHighMem(page)) {
5075 unsigned long flags;
5076
5077 /* FIXME: use a bounce buffer */
5078 local_irq_save(flags);
5079 buf = kmap_atomic(page, KM_IRQ0);
5080
5081 /* do the actual data transfer */
5082 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5083
5084 kunmap_atomic(buf, KM_IRQ0);
5085 local_irq_restore(flags);
5086 } else {
5087 buf = page_address(page);
5088 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5089 }
5090
5091 qc->curbytes += qc->sect_size;
5092 qc->cursg_ofs += qc->sect_size;
5093
5094 if (qc->cursg_ofs == qc->cursg->length) {
5095 qc->cursg = sg_next(qc->cursg);
5096 qc->cursg_ofs = 0;
5097 }
5098}
5099
5100/**
5101 * ata_pio_sectors - Transfer one or many sectors.
5102 * @qc: Command on going
5103 *
5104 * Transfer one or many sectors of data from/to the
5105 * ATA device for the DRQ request.
5106 *
5107 * LOCKING:
5108 * Inherited from caller.
5109 */
5110
5111static void ata_pio_sectors(struct ata_queued_cmd *qc)
5112{
5113 if (is_multi_taskfile(&qc->tf)) {
5114 /* READ/WRITE MULTIPLE */
5115 unsigned int nsect;
5116
5117 WARN_ON(qc->dev->multi_count == 0);
5118
5119 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5120 qc->dev->multi_count);
5121 while (nsect--)
5122 ata_pio_sector(qc);
5123 } else
5124 ata_pio_sector(qc);
5125
5126 ata_altstatus(qc->ap); /* flush */
5127}
5128
5129/**
5130 * atapi_send_cdb - Write CDB bytes to hardware
5131 * @ap: Port to which ATAPI device is attached.
5132 * @qc: Taskfile currently active
5133 *
5134 * When device has indicated its readiness to accept
5135 * a CDB, this function is called. Send the CDB.
5136 *
5137 * LOCKING:
5138 * caller.
5139 */
5140
5141static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5142{
5143 /* send SCSI cdb */
5144 DPRINTK("send cdb\n");
5145 WARN_ON(qc->dev->cdb_len < 12);
5146
5147 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5148 ata_altstatus(ap); /* flush */
5149
5150 switch (qc->tf.protocol) {
5151 case ATA_PROT_ATAPI:
5152 ap->hsm_task_state = HSM_ST;
5153 break;
5154 case ATA_PROT_ATAPI_NODATA:
5155 ap->hsm_task_state = HSM_ST_LAST;
5156 break;
5157 case ATA_PROT_ATAPI_DMA:
5158 ap->hsm_task_state = HSM_ST_LAST;
5159 /* initiate bmdma */
5160 ap->ops->bmdma_start(qc);
5161 break;
5162 }
5163}
5164
5165/**
5166 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5167 * @qc: Command on going
5168 * @bytes: number of bytes
5169 *
5170 * Transfer Transfer data from/to the ATAPI device.
5171 *
5172 * LOCKING:
5173 * Inherited from caller.
5174 *
5175 */
5176
5177static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5178{
5179 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5180 struct scatterlist *sg = qc->__sg;
5181 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
5182 struct ata_port *ap = qc->ap;
5183 struct page *page;
5184 unsigned char *buf;
5185 unsigned int offset, count;
5186 int no_more_sg = 0;
5187
5188 if (qc->curbytes + bytes >= qc->nbytes)
5189 ap->hsm_task_state = HSM_ST_LAST;
5190
5191next_sg:
5192 if (unlikely(no_more_sg)) {
5193 /*
5194 * The end of qc->sg is reached and the device expects
5195 * more data to transfer. In order not to overrun qc->sg
5196 * and fulfill length specified in the byte count register,
5197 * - for read case, discard trailing data from the device
5198 * - for write case, padding zero data to the device
5199 */
5200 u16 pad_buf[1] = { 0 };
5201 unsigned int words = bytes >> 1;
5202 unsigned int i;
5203
5204 if (words) /* warning if bytes > 1 */
5205 ata_dev_printk(qc->dev, KERN_WARNING,
5206 "%u bytes trailing data\n", bytes);
5207
5208 for (i = 0; i < words; i++)
5209 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
5210
5211 ap->hsm_task_state = HSM_ST_LAST;
5212 return;
5213 }
5214
5215 sg = qc->cursg;
5216
5217 page = sg_page(sg);
5218 offset = sg->offset + qc->cursg_ofs;
5219
5220 /* get the current page and offset */
5221 page = nth_page(page, (offset >> PAGE_SHIFT));
5222 offset %= PAGE_SIZE;
5223
5224 /* don't overrun current sg */
5225 count = min(sg->length - qc->cursg_ofs, bytes);
5226
5227 /* don't cross page boundaries */
5228 count = min(count, (unsigned int)PAGE_SIZE - offset);
5229
5230 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5231
5232 if (PageHighMem(page)) {
5233 unsigned long flags;
5234
5235 /* FIXME: use bounce buffer */
5236 local_irq_save(flags);
5237 buf = kmap_atomic(page, KM_IRQ0);
5238
5239 /* do the actual data transfer */
5240 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5241
5242 kunmap_atomic(buf, KM_IRQ0);
5243 local_irq_restore(flags);
5244 } else {
5245 buf = page_address(page);
5246 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5247 }
5248
5249 bytes -= count;
5250 qc->curbytes += count;
5251 qc->cursg_ofs += count;
5252
5253 if (qc->cursg_ofs == sg->length) {
5254 if (qc->cursg == lsg)
5255 no_more_sg = 1;
5256
5257 qc->cursg = sg_next(qc->cursg);
5258 qc->cursg_ofs = 0;
5259 }
5260
5261 if (bytes)
5262 goto next_sg;
5263}
5264
5265/**
5266 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5267 * @qc: Command on going
5268 *
5269 * Transfer Transfer data from/to the ATAPI device.
5270 *
5271 * LOCKING:
5272 * Inherited from caller.
5273 */
5274
5275static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5276{
5277 struct ata_port *ap = qc->ap;
5278 struct ata_device *dev = qc->dev;
5279 unsigned int ireason, bc_lo, bc_hi, bytes;
5280 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5281
5282 /* Abuse qc->result_tf for temp storage of intermediate TF
5283 * here to save some kernel stack usage.
5284 * For normal completion, qc->result_tf is not relevant. For
5285 * error, qc->result_tf is later overwritten by ata_qc_complete().
5286 * So, the correctness of qc->result_tf is not affected.
5287 */
5288 ap->ops->tf_read(ap, &qc->result_tf);
5289 ireason = qc->result_tf.nsect;
5290 bc_lo = qc->result_tf.lbam;
5291 bc_hi = qc->result_tf.lbah;
5292 bytes = (bc_hi << 8) | bc_lo;
5293
5294 /* shall be cleared to zero, indicating xfer of data */
5295 if (ireason & (1 << 0))
5296 goto err_out;
5297
5298 /* make sure transfer direction matches expected */
5299 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5300 if (do_write != i_write)
5301 goto err_out;
5302
5303 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5304
5305 __atapi_pio_bytes(qc, bytes);
5306 ata_altstatus(ap); /* flush */
5307
5308 return;
5309
5310err_out:
5311 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5312 qc->err_mask |= AC_ERR_HSM;
5313 ap->hsm_task_state = HSM_ST_ERR;
5314}
5315
5316/**
5317 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5318 * @ap: the target ata_port
5319 * @qc: qc on going
5320 *
5321 * RETURNS:
5322 * 1 if ok in workqueue, 0 otherwise.
5323 */
5324
5325static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5326{
5327 if (qc->tf.flags & ATA_TFLAG_POLLING)
5328 return 1;
5329
5330 if (ap->hsm_task_state == HSM_ST_FIRST) {
5331 if (qc->tf.protocol == ATA_PROT_PIO &&
5332 (qc->tf.flags & ATA_TFLAG_WRITE))
5333 return 1;
5334
5335 if (is_atapi_taskfile(&qc->tf) &&
5336 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5337 return 1;
5338 }
5339
5340 return 0;
5341}
5342
5343/**
5344 * ata_hsm_qc_complete - finish a qc running on standard HSM
5345 * @qc: Command to complete
5346 * @in_wq: 1 if called from workqueue, 0 otherwise
5347 *
5348 * Finish @qc which is running on standard HSM.
5349 *
5350 * LOCKING:
5351 * If @in_wq is zero, spin_lock_irqsave(host lock).
5352 * Otherwise, none on entry and grabs host lock.
5353 */
5354static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5355{
5356 struct ata_port *ap = qc->ap;
5357 unsigned long flags;
5358
5359 if (ap->ops->error_handler) {
5360 if (in_wq) {
5361 spin_lock_irqsave(ap->lock, flags);
5362
5363 /* EH might have kicked in while host lock is
5364 * released.
5365 */
5366 qc = ata_qc_from_tag(ap, qc->tag);
5367 if (qc) {
5368 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5369 ap->ops->irq_on(ap);
5370 ata_qc_complete(qc);
5371 } else
5372 ata_port_freeze(ap);
5373 }
5374
5375 spin_unlock_irqrestore(ap->lock, flags);
5376 } else {
5377 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5378 ata_qc_complete(qc);
5379 else
5380 ata_port_freeze(ap);
5381 }
5382 } else {
5383 if (in_wq) {
5384 spin_lock_irqsave(ap->lock, flags);
5385 ap->ops->irq_on(ap);
5386 ata_qc_complete(qc);
5387 spin_unlock_irqrestore(ap->lock, flags);
5388 } else
5389 ata_qc_complete(qc);
5390 }
5391}
5392
5393/**
5394 * ata_hsm_move - move the HSM to the next state.
5395 * @ap: the target ata_port
5396 * @qc: qc on going
5397 * @status: current device status
5398 * @in_wq: 1 if called from workqueue, 0 otherwise
5399 *
5400 * RETURNS:
5401 * 1 when poll next status needed, 0 otherwise.
5402 */
5403int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5404 u8 status, int in_wq)
5405{
5406 unsigned long flags = 0;
5407 int poll_next;
5408
5409 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5410
5411 /* Make sure ata_qc_issue_prot() does not throw things
5412 * like DMA polling into the workqueue. Notice that
5413 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5414 */
5415 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5416
5417fsm_start:
5418 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5419 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5420
5421 switch (ap->hsm_task_state) {
5422 case HSM_ST_FIRST:
5423 /* Send first data block or PACKET CDB */
5424
5425 /* If polling, we will stay in the work queue after
5426 * sending the data. Otherwise, interrupt handler
5427 * takes over after sending the data.
5428 */
5429 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5430
5431 /* check device status */
5432 if (unlikely((status & ATA_DRQ) == 0)) {
5433 /* handle BSY=0, DRQ=0 as error */
5434 if (likely(status & (ATA_ERR | ATA_DF)))
5435 /* device stops HSM for abort/error */
5436 qc->err_mask |= AC_ERR_DEV;
5437 else
5438 /* HSM violation. Let EH handle this */
5439 qc->err_mask |= AC_ERR_HSM;
5440
5441 ap->hsm_task_state = HSM_ST_ERR;
5442 goto fsm_start;
5443 }
5444
5445 /* Device should not ask for data transfer (DRQ=1)
5446 * when it finds something wrong.
5447 * We ignore DRQ here and stop the HSM by
5448 * changing hsm_task_state to HSM_ST_ERR and
5449 * let the EH abort the command or reset the device.
5450 */
5451 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5452 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5453 "error, dev_stat 0x%X\n", status);
5454 qc->err_mask |= AC_ERR_HSM;
5455 ap->hsm_task_state = HSM_ST_ERR;
5456 goto fsm_start;
5457 }
5458
5459 /* Send the CDB (atapi) or the first data block (ata pio out).
5460 * During the state transition, interrupt handler shouldn't
5461 * be invoked before the data transfer is complete and
5462 * hsm_task_state is changed. Hence, the following locking.
5463 */
5464 if (in_wq)
5465 spin_lock_irqsave(ap->lock, flags);
5466
5467 if (qc->tf.protocol == ATA_PROT_PIO) {
5468 /* PIO data out protocol.
5469 * send first data block.
5470 */
5471
5472 /* ata_pio_sectors() might change the state
5473 * to HSM_ST_LAST. so, the state is changed here
5474 * before ata_pio_sectors().
5475 */
5476 ap->hsm_task_state = HSM_ST;
5477 ata_pio_sectors(qc);
5478 } else
5479 /* send CDB */
5480 atapi_send_cdb(ap, qc);
5481
5482 if (in_wq)
5483 spin_unlock_irqrestore(ap->lock, flags);
5484
5485 /* if polling, ata_pio_task() handles the rest.
5486 * otherwise, interrupt handler takes over from here.
5487 */
5488 break;
5489
5490 case HSM_ST:
5491 /* complete command or read/write the data register */
5492 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5493 /* ATAPI PIO protocol */
5494 if ((status & ATA_DRQ) == 0) {
5495 /* No more data to transfer or device error.
5496 * Device error will be tagged in HSM_ST_LAST.
5497 */
5498 ap->hsm_task_state = HSM_ST_LAST;
5499 goto fsm_start;
5500 }
5501
5502 /* Device should not ask for data transfer (DRQ=1)
5503 * when it finds something wrong.
5504 * We ignore DRQ here and stop the HSM by
5505 * changing hsm_task_state to HSM_ST_ERR and
5506 * let the EH abort the command or reset the device.
5507 */
5508 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5509 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5510 "device error, dev_stat 0x%X\n",
5511 status);
5512 qc->err_mask |= AC_ERR_HSM;
5513 ap->hsm_task_state = HSM_ST_ERR;
5514 goto fsm_start;
5515 }
5516
5517 atapi_pio_bytes(qc);
5518
5519 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5520 /* bad ireason reported by device */
5521 goto fsm_start;
5522
5523 } else {
5524 /* ATA PIO protocol */
5525 if (unlikely((status & ATA_DRQ) == 0)) {
5526 /* handle BSY=0, DRQ=0 as error */
5527 if (likely(status & (ATA_ERR | ATA_DF)))
5528 /* device stops HSM for abort/error */
5529 qc->err_mask |= AC_ERR_DEV;
5530 else
5531 /* HSM violation. Let EH handle this.
5532 * Phantom devices also trigger this
5533 * condition. Mark hint.
5534 */
5535 qc->err_mask |= AC_ERR_HSM |
5536 AC_ERR_NODEV_HINT;
5537
5538 ap->hsm_task_state = HSM_ST_ERR;
5539 goto fsm_start;
5540 }
5541
5542 /* For PIO reads, some devices may ask for
5543 * data transfer (DRQ=1) alone with ERR=1.
5544 * We respect DRQ here and transfer one
5545 * block of junk data before changing the
5546 * hsm_task_state to HSM_ST_ERR.
5547 *
5548 * For PIO writes, ERR=1 DRQ=1 doesn't make
5549 * sense since the data block has been
5550 * transferred to the device.
5551 */
5552 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5553 /* data might be corrputed */
5554 qc->err_mask |= AC_ERR_DEV;
5555
5556 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5557 ata_pio_sectors(qc);
5558 status = ata_wait_idle(ap);
5559 }
5560
5561 if (status & (ATA_BUSY | ATA_DRQ))
5562 qc->err_mask |= AC_ERR_HSM;
5563
5564 /* ata_pio_sectors() might change the
5565 * state to HSM_ST_LAST. so, the state
5566 * is changed after ata_pio_sectors().
5567 */
5568 ap->hsm_task_state = HSM_ST_ERR;
5569 goto fsm_start;
5570 }
5571
5572 ata_pio_sectors(qc);
5573
5574 if (ap->hsm_task_state == HSM_ST_LAST &&
5575 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5576 /* all data read */
5577 status = ata_wait_idle(ap);
5578 goto fsm_start;
5579 }
5580 }
5581
5582 poll_next = 1;
5583 break;
5584
5585 case HSM_ST_LAST:
5586 if (unlikely(!ata_ok(status))) {
5587 qc->err_mask |= __ac_err_mask(status);
5588 ap->hsm_task_state = HSM_ST_ERR;
5589 goto fsm_start;
5590 }
5591
5592 /* no more data to transfer */
5593 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5594 ap->print_id, qc->dev->devno, status);
5595
5596 WARN_ON(qc->err_mask);
5597
5598 ap->hsm_task_state = HSM_ST_IDLE;
5599
5600 /* complete taskfile transaction */
5601 ata_hsm_qc_complete(qc, in_wq);
5602
5603 poll_next = 0;
5604 break;
5605
5606 case HSM_ST_ERR:
5607 /* make sure qc->err_mask is available to
5608 * know what's wrong and recover
5609 */
5610 WARN_ON(qc->err_mask == 0);
5611
5612 ap->hsm_task_state = HSM_ST_IDLE;
5613
5614 /* complete taskfile transaction */
5615 ata_hsm_qc_complete(qc, in_wq);
5616
5617 poll_next = 0;
5618 break;
5619 default:
5620 poll_next = 0;
5621 BUG();
5622 }
5623
5624 return poll_next;
5625}
5626
5627static void ata_pio_task(struct work_struct *work)
5628{
5629 struct ata_port *ap =
5630 container_of(work, struct ata_port, port_task.work);
5631 struct ata_queued_cmd *qc = ap->port_task_data;
5632 u8 status;
5633 int poll_next;
5634
5635fsm_start:
5636 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5637
5638 /*
5639 * This is purely heuristic. This is a fast path.
5640 * Sometimes when we enter, BSY will be cleared in
5641 * a chk-status or two. If not, the drive is probably seeking
5642 * or something. Snooze for a couple msecs, then
5643 * chk-status again. If still busy, queue delayed work.
5644 */
5645 status = ata_busy_wait(ap, ATA_BUSY, 5);
5646 if (status & ATA_BUSY) {
5647 msleep(2);
5648 status = ata_busy_wait(ap, ATA_BUSY, 10);
5649 if (status & ATA_BUSY) {
5650 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5651 return;
5652 }
5653 }
5654
5655 /* move the HSM */
5656 poll_next = ata_hsm_move(ap, qc, status, 1);
5657
5658 /* another command or interrupt handler
5659 * may be running at this point.
5660 */
5661 if (poll_next)
5662 goto fsm_start;
5663}
5664
5665/**
5666 * ata_qc_new - Request an available ATA command, for queueing
5667 * @ap: Port associated with device @dev
5668 * @dev: Device from whom we request an available command structure
5669 *
5670 * LOCKING:
5671 * None.
5672 */
5673
5674static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5675{
5676 struct ata_queued_cmd *qc = NULL;
5677 unsigned int i;
5678
5679 /* no command while frozen */
5680 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5681 return NULL;
5682
5683 /* the last tag is reserved for internal command. */
5684 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5685 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5686 qc = __ata_qc_from_tag(ap, i);
5687 break;
5688 }
5689
5690 if (qc)
5691 qc->tag = i;
5692
5693 return qc;
5694}
5695
5696/**
5697 * ata_qc_new_init - Request an available ATA command, and initialize it
5698 * @dev: Device from whom we request an available command structure
5699 *
5700 * LOCKING:
5701 * None.
5702 */
5703
5704struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5705{
5706 struct ata_port *ap = dev->link->ap;
5707 struct ata_queued_cmd *qc;
5708
5709 qc = ata_qc_new(ap);
5710 if (qc) {
5711 qc->scsicmd = NULL;
5712 qc->ap = ap;
5713 qc->dev = dev;
5714
5715 ata_qc_reinit(qc);
5716 }
5717
5718 return qc;
5719}
5720
5721/**
5722 * ata_qc_free - free unused ata_queued_cmd
5723 * @qc: Command to complete
5724 *
5725 * Designed to free unused ata_queued_cmd object
5726 * in case something prevents using it.
5727 *
5728 * LOCKING:
5729 * spin_lock_irqsave(host lock)
5730 */
5731void ata_qc_free(struct ata_queued_cmd *qc)
5732{
5733 struct ata_port *ap = qc->ap;
5734 unsigned int tag;
5735
5736 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5737
5738 qc->flags = 0;
5739 tag = qc->tag;
5740 if (likely(ata_tag_valid(tag))) {
5741 qc->tag = ATA_TAG_POISON;
5742 clear_bit(tag, &ap->qc_allocated);
5743 }
5744}
5745
5746void __ata_qc_complete(struct ata_queued_cmd *qc)
5747{
5748 struct ata_port *ap = qc->ap;
5749 struct ata_link *link = qc->dev->link;
5750
5751 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5752 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5753
5754 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5755 ata_sg_clean(qc);
5756
5757 /* command should be marked inactive atomically with qc completion */
5758 if (qc->tf.protocol == ATA_PROT_NCQ) {
5759 link->sactive &= ~(1 << qc->tag);
5760 if (!link->sactive)
5761 ap->nr_active_links--;
5762 } else {
5763 link->active_tag = ATA_TAG_POISON;
5764 ap->nr_active_links--;
5765 }
5766
5767 /* clear exclusive status */
5768 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5769 ap->excl_link == link))
5770 ap->excl_link = NULL;
5771
5772 /* atapi: mark qc as inactive to prevent the interrupt handler
5773 * from completing the command twice later, before the error handler
5774 * is called. (when rc != 0 and atapi request sense is needed)
5775 */
5776 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5777 ap->qc_active &= ~(1 << qc->tag);
5778
5779 /* call completion callback */
5780 qc->complete_fn(qc);
5781}
5782
5783static void fill_result_tf(struct ata_queued_cmd *qc)
5784{
5785 struct ata_port *ap = qc->ap;
5786
5787 qc->result_tf.flags = qc->tf.flags;
5788 ap->ops->tf_read(ap, &qc->result_tf);
5789}
5790
5791/**
5792 * ata_qc_complete - Complete an active ATA command
5793 * @qc: Command to complete
5794 * @err_mask: ATA Status register contents
5795 *
5796 * Indicate to the mid and upper layers that an ATA
5797 * command has completed, with either an ok or not-ok status.
5798 *
5799 * LOCKING:
5800 * spin_lock_irqsave(host lock)
5801 */
5802void ata_qc_complete(struct ata_queued_cmd *qc)
5803{
5804 struct ata_port *ap = qc->ap;
5805
5806 /* XXX: New EH and old EH use different mechanisms to
5807 * synchronize EH with regular execution path.
5808 *
5809 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5810 * Normal execution path is responsible for not accessing a
5811 * failed qc. libata core enforces the rule by returning NULL
5812 * from ata_qc_from_tag() for failed qcs.
5813 *
5814 * Old EH depends on ata_qc_complete() nullifying completion
5815 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5816 * not synchronize with interrupt handler. Only PIO task is
5817 * taken care of.
5818 */
5819 if (ap->ops->error_handler) {
5820 struct ata_device *dev = qc->dev;
5821 struct ata_eh_info *ehi = &dev->link->eh_info;
5822
5823 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5824
5825 if (unlikely(qc->err_mask))
5826 qc->flags |= ATA_QCFLAG_FAILED;
5827
5828 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5829 if (!ata_tag_internal(qc->tag)) {
5830 /* always fill result TF for failed qc */
5831 fill_result_tf(qc);
5832 ata_qc_schedule_eh(qc);
5833 return;
5834 }
5835 }
5836
5837 /* read result TF if requested */
5838 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5839 fill_result_tf(qc);
5840
5841 /* Some commands need post-processing after successful
5842 * completion.
5843 */
5844 switch (qc->tf.command) {
5845 case ATA_CMD_SET_FEATURES:
5846 if (qc->tf.feature != SETFEATURES_WC_ON &&
5847 qc->tf.feature != SETFEATURES_WC_OFF)
5848 break;
5849 /* fall through */
5850 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5851 case ATA_CMD_SET_MULTI: /* multi_count changed */
5852 /* revalidate device */
5853 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5854 ata_port_schedule_eh(ap);
5855 break;
5856
5857 case ATA_CMD_SLEEP:
5858 dev->flags |= ATA_DFLAG_SLEEPING;
5859 break;
5860 }
5861
5862 __ata_qc_complete(qc);
5863 } else {
5864 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5865 return;
5866
5867 /* read result TF if failed or requested */
5868 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5869 fill_result_tf(qc);
5870
5871 __ata_qc_complete(qc);
5872 }
5873}
5874
5875/**
5876 * ata_qc_complete_multiple - Complete multiple qcs successfully
5877 * @ap: port in question
5878 * @qc_active: new qc_active mask
5879 * @finish_qc: LLDD callback invoked before completing a qc
5880 *
5881 * Complete in-flight commands. This functions is meant to be
5882 * called from low-level driver's interrupt routine to complete
5883 * requests normally. ap->qc_active and @qc_active is compared
5884 * and commands are completed accordingly.
5885 *
5886 * LOCKING:
5887 * spin_lock_irqsave(host lock)
5888 *
5889 * RETURNS:
5890 * Number of completed commands on success, -errno otherwise.
5891 */
5892int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5893 void (*finish_qc)(struct ata_queued_cmd *))
5894{
5895 int nr_done = 0;
5896 u32 done_mask;
5897 int i;
5898
5899 done_mask = ap->qc_active ^ qc_active;
5900
5901 if (unlikely(done_mask & qc_active)) {
5902 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5903 "(%08x->%08x)\n", ap->qc_active, qc_active);
5904 return -EINVAL;
5905 }
5906
5907 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5908 struct ata_queued_cmd *qc;
5909
5910 if (!(done_mask & (1 << i)))
5911 continue;
5912
5913 if ((qc = ata_qc_from_tag(ap, i))) {
5914 if (finish_qc)
5915 finish_qc(qc);
5916 ata_qc_complete(qc);
5917 nr_done++;
5918 }
5919 }
5920
5921 return nr_done;
5922}
5923
5924static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5925{
5926 struct ata_port *ap = qc->ap;
5927
5928 switch (qc->tf.protocol) {
5929 case ATA_PROT_NCQ:
5930 case ATA_PROT_DMA:
5931 case ATA_PROT_ATAPI_DMA:
5932 return 1;
5933
5934 case ATA_PROT_ATAPI:
5935 case ATA_PROT_PIO:
5936 if (ap->flags & ATA_FLAG_PIO_DMA)
5937 return 1;
5938
5939 /* fall through */
5940
5941 default:
5942 return 0;
5943 }
5944
5945 /* never reached */
5946}
5947
5948/**
5949 * ata_qc_issue - issue taskfile to device
5950 * @qc: command to issue to device
5951 *
5952 * Prepare an ATA command to submission to device.
5953 * This includes mapping the data into a DMA-able
5954 * area, filling in the S/G table, and finally
5955 * writing the taskfile to hardware, starting the command.
5956 *
5957 * LOCKING:
5958 * spin_lock_irqsave(host lock)
5959 */
5960void ata_qc_issue(struct ata_queued_cmd *qc)
5961{
5962 struct ata_port *ap = qc->ap;
5963 struct ata_link *link = qc->dev->link;
5964
5965 /* Make sure only one non-NCQ command is outstanding. The
5966 * check is skipped for old EH because it reuses active qc to
5967 * request ATAPI sense.
5968 */
5969 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5970
5971 if (qc->tf.protocol == ATA_PROT_NCQ) {
5972 WARN_ON(link->sactive & (1 << qc->tag));
5973
5974 if (!link->sactive)
5975 ap->nr_active_links++;
5976 link->sactive |= 1 << qc->tag;
5977 } else {
5978 WARN_ON(link->sactive);
5979
5980 ap->nr_active_links++;
5981 link->active_tag = qc->tag;
5982 }
5983
5984 qc->flags |= ATA_QCFLAG_ACTIVE;
5985 ap->qc_active |= 1 << qc->tag;
5986
5987 if (ata_should_dma_map(qc)) {
5988 if (qc->flags & ATA_QCFLAG_SG) {
5989 if (ata_sg_setup(qc))
5990 goto sg_err;
5991 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5992 if (ata_sg_setup_one(qc))
5993 goto sg_err;
5994 }
5995 } else {
5996 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5997 }
5998
5999 /* if device is sleeping, schedule softreset and abort the link */
6000 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6001 link->eh_info.action |= ATA_EH_SOFTRESET;
6002 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6003 ata_link_abort(link);
6004 return;
6005 }
6006
6007 ap->ops->qc_prep(qc);
6008
6009 qc->err_mask |= ap->ops->qc_issue(qc);
6010 if (unlikely(qc->err_mask))
6011 goto err;
6012 return;
6013
6014sg_err:
6015 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6016 qc->err_mask |= AC_ERR_SYSTEM;
6017err:
6018 ata_qc_complete(qc);
6019}
6020
6021/**
6022 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6023 * @qc: command to issue to device
6024 *
6025 * Using various libata functions and hooks, this function
6026 * starts an ATA command. ATA commands are grouped into
6027 * classes called "protocols", and issuing each type of protocol
6028 * is slightly different.
6029 *
6030 * May be used as the qc_issue() entry in ata_port_operations.
6031 *
6032 * LOCKING:
6033 * spin_lock_irqsave(host lock)
6034 *
6035 * RETURNS:
6036 * Zero on success, AC_ERR_* mask on failure
6037 */
6038
6039unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6040{
6041 struct ata_port *ap = qc->ap;
6042
6043 /* Use polling pio if the LLD doesn't handle
6044 * interrupt driven pio and atapi CDB interrupt.
6045 */
6046 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6047 switch (qc->tf.protocol) {
6048 case ATA_PROT_PIO:
6049 case ATA_PROT_NODATA:
6050 case ATA_PROT_ATAPI:
6051 case ATA_PROT_ATAPI_NODATA:
6052 qc->tf.flags |= ATA_TFLAG_POLLING;
6053 break;
6054 case ATA_PROT_ATAPI_DMA:
6055 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6056 /* see ata_dma_blacklisted() */
6057 BUG();
6058 break;
6059 default:
6060 break;
6061 }
6062 }
6063
6064 /* select the device */
6065 ata_dev_select(ap, qc->dev->devno, 1, 0);
6066
6067 /* start the command */
6068 switch (qc->tf.protocol) {
6069 case ATA_PROT_NODATA:
6070 if (qc->tf.flags & ATA_TFLAG_POLLING)
6071 ata_qc_set_polling(qc);
6072
6073 ata_tf_to_host(ap, &qc->tf);
6074 ap->hsm_task_state = HSM_ST_LAST;
6075
6076 if (qc->tf.flags & ATA_TFLAG_POLLING)
6077 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6078
6079 break;
6080
6081 case ATA_PROT_DMA:
6082 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6083
6084 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6085 ap->ops->bmdma_setup(qc); /* set up bmdma */
6086 ap->ops->bmdma_start(qc); /* initiate bmdma */
6087 ap->hsm_task_state = HSM_ST_LAST;
6088 break;
6089
6090 case ATA_PROT_PIO:
6091 if (qc->tf.flags & ATA_TFLAG_POLLING)
6092 ata_qc_set_polling(qc);
6093
6094 ata_tf_to_host(ap, &qc->tf);
6095
6096 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6097 /* PIO data out protocol */
6098 ap->hsm_task_state = HSM_ST_FIRST;
6099 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6100
6101 /* always send first data block using
6102 * the ata_pio_task() codepath.
6103 */
6104 } else {
6105 /* PIO data in protocol */
6106 ap->hsm_task_state = HSM_ST;
6107
6108 if (qc->tf.flags & ATA_TFLAG_POLLING)
6109 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6110
6111 /* if polling, ata_pio_task() handles the rest.
6112 * otherwise, interrupt handler takes over from here.
6113 */
6114 }
6115
6116 break;
6117
6118 case ATA_PROT_ATAPI:
6119 case ATA_PROT_ATAPI_NODATA:
6120 if (qc->tf.flags & ATA_TFLAG_POLLING)
6121 ata_qc_set_polling(qc);
6122
6123 ata_tf_to_host(ap, &qc->tf);
6124
6125 ap->hsm_task_state = HSM_ST_FIRST;
6126
6127 /* send cdb by polling if no cdb interrupt */
6128 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6129 (qc->tf.flags & ATA_TFLAG_POLLING))
6130 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6131 break;
6132
6133 case ATA_PROT_ATAPI_DMA:
6134 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6135
6136 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6137 ap->ops->bmdma_setup(qc); /* set up bmdma */
6138 ap->hsm_task_state = HSM_ST_FIRST;
6139
6140 /* send cdb by polling if no cdb interrupt */
6141 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6142 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6143 break;
6144
6145 default:
6146 WARN_ON(1);
6147 return AC_ERR_SYSTEM;
6148 }
6149
6150 return 0;
6151}
6152
6153/**
6154 * ata_host_intr - Handle host interrupt for given (port, task)
6155 * @ap: Port on which interrupt arrived (possibly...)
6156 * @qc: Taskfile currently active in engine
6157 *
6158 * Handle host interrupt for given queued command. Currently,
6159 * only DMA interrupts are handled. All other commands are
6160 * handled via polling with interrupts disabled (nIEN bit).
6161 *
6162 * LOCKING:
6163 * spin_lock_irqsave(host lock)
6164 *
6165 * RETURNS:
6166 * One if interrupt was handled, zero if not (shared irq).
6167 */
6168
6169inline unsigned int ata_host_intr(struct ata_port *ap,
6170 struct ata_queued_cmd *qc)
6171{
6172 struct ata_eh_info *ehi = &ap->link.eh_info;
6173 u8 status, host_stat = 0;
6174
6175 VPRINTK("ata%u: protocol %d task_state %d\n",
6176 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6177
6178 /* Check whether we are expecting interrupt in this state */
6179 switch (ap->hsm_task_state) {
6180 case HSM_ST_FIRST:
6181 /* Some pre-ATAPI-4 devices assert INTRQ
6182 * at this state when ready to receive CDB.
6183 */
6184
6185 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6186 * The flag was turned on only for atapi devices.
6187 * No need to check is_atapi_taskfile(&qc->tf) again.
6188 */
6189 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6190 goto idle_irq;
6191 break;
6192 case HSM_ST_LAST:
6193 if (qc->tf.protocol == ATA_PROT_DMA ||
6194 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6195 /* check status of DMA engine */
6196 host_stat = ap->ops->bmdma_status(ap);
6197 VPRINTK("ata%u: host_stat 0x%X\n",
6198 ap->print_id, host_stat);
6199
6200 /* if it's not our irq... */
6201 if (!(host_stat & ATA_DMA_INTR))
6202 goto idle_irq;
6203
6204 /* before we do anything else, clear DMA-Start bit */
6205 ap->ops->bmdma_stop(qc);
6206
6207 if (unlikely(host_stat & ATA_DMA_ERR)) {
6208 /* error when transfering data to/from memory */
6209 qc->err_mask |= AC_ERR_HOST_BUS;
6210 ap->hsm_task_state = HSM_ST_ERR;
6211 }
6212 }
6213 break;
6214 case HSM_ST:
6215 break;
6216 default:
6217 goto idle_irq;
6218 }
6219
6220 /* check altstatus */
6221 status = ata_altstatus(ap);
6222 if (status & ATA_BUSY)
6223 goto idle_irq;
6224
6225 /* check main status, clearing INTRQ */
6226 status = ata_chk_status(ap);
6227 if (unlikely(status & ATA_BUSY))
6228 goto idle_irq;
6229
6230 /* ack bmdma irq events */
6231 ap->ops->irq_clear(ap);
6232
6233 ata_hsm_move(ap, qc, status, 0);
6234
6235 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6236 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6237 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6238
6239 return 1; /* irq handled */
6240
6241idle_irq:
6242 ap->stats.idle_irq++;
6243
6244#ifdef ATA_IRQ_TRAP
6245 if ((ap->stats.idle_irq % 1000) == 0) {
6246 ata_chk_status(ap);
6247 ap->ops->irq_clear(ap);
6248 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6249 return 1;
6250 }
6251#endif
6252 return 0; /* irq not handled */
6253}
6254
6255/**
6256 * ata_interrupt - Default ATA host interrupt handler
6257 * @irq: irq line (unused)
6258 * @dev_instance: pointer to our ata_host information structure
6259 *
6260 * Default interrupt handler for PCI IDE devices. Calls
6261 * ata_host_intr() for each port that is not disabled.
6262 *
6263 * LOCKING:
6264 * Obtains host lock during operation.
6265 *
6266 * RETURNS:
6267 * IRQ_NONE or IRQ_HANDLED.
6268 */
6269
6270irqreturn_t ata_interrupt(int irq, void *dev_instance)
6271{
6272 struct ata_host *host = dev_instance;
6273 unsigned int i;
6274 unsigned int handled = 0;
6275 unsigned long flags;
6276
6277 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6278 spin_lock_irqsave(&host->lock, flags);
6279
6280 for (i = 0; i < host->n_ports; i++) {
6281 struct ata_port *ap;
6282
6283 ap = host->ports[i];
6284 if (ap &&
6285 !(ap->flags & ATA_FLAG_DISABLED)) {
6286 struct ata_queued_cmd *qc;
6287
6288 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6289 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6290 (qc->flags & ATA_QCFLAG_ACTIVE))
6291 handled |= ata_host_intr(ap, qc);
6292 }
6293 }
6294
6295 spin_unlock_irqrestore(&host->lock, flags);
6296
6297 return IRQ_RETVAL(handled);
6298}
6299
6300/**
6301 * sata_scr_valid - test whether SCRs are accessible
6302 * @link: ATA link to test SCR accessibility for
6303 *
6304 * Test whether SCRs are accessible for @link.
6305 *
6306 * LOCKING:
6307 * None.
6308 *
6309 * RETURNS:
6310 * 1 if SCRs are accessible, 0 otherwise.
6311 */
6312int sata_scr_valid(struct ata_link *link)
6313{
6314 struct ata_port *ap = link->ap;
6315
6316 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6317}
6318
6319/**
6320 * sata_scr_read - read SCR register of the specified port
6321 * @link: ATA link to read SCR for
6322 * @reg: SCR to read
6323 * @val: Place to store read value
6324 *
6325 * Read SCR register @reg of @link into *@val. This function is
6326 * guaranteed to succeed if @link is ap->link, the cable type of
6327 * the port is SATA and the port implements ->scr_read.
6328 *
6329 * LOCKING:
6330 * None if @link is ap->link. Kernel thread context otherwise.
6331 *
6332 * RETURNS:
6333 * 0 on success, negative errno on failure.
6334 */
6335int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6336{
6337 if (ata_is_host_link(link)) {
6338 struct ata_port *ap = link->ap;
6339
6340 if (sata_scr_valid(link))
6341 return ap->ops->scr_read(ap, reg, val);
6342 return -EOPNOTSUPP;
6343 }
6344
6345 return sata_pmp_scr_read(link, reg, val);
6346}
6347
6348/**
6349 * sata_scr_write - write SCR register of the specified port
6350 * @link: ATA link to write SCR for
6351 * @reg: SCR to write
6352 * @val: value to write
6353 *
6354 * Write @val to SCR register @reg of @link. This function is
6355 * guaranteed to succeed if @link is ap->link, the cable type of
6356 * the port is SATA and the port implements ->scr_read.
6357 *
6358 * LOCKING:
6359 * None if @link is ap->link. Kernel thread context otherwise.
6360 *
6361 * RETURNS:
6362 * 0 on success, negative errno on failure.
6363 */
6364int sata_scr_write(struct ata_link *link, int reg, u32 val)
6365{
6366 if (ata_is_host_link(link)) {
6367 struct ata_port *ap = link->ap;
6368
6369 if (sata_scr_valid(link))
6370 return ap->ops->scr_write(ap, reg, val);
6371 return -EOPNOTSUPP;
6372 }
6373
6374 return sata_pmp_scr_write(link, reg, val);
6375}
6376
6377/**
6378 * sata_scr_write_flush - write SCR register of the specified port and flush
6379 * @link: ATA link to write SCR for
6380 * @reg: SCR to write
6381 * @val: value to write
6382 *
6383 * This function is identical to sata_scr_write() except that this
6384 * function performs flush after writing to the register.
6385 *
6386 * LOCKING:
6387 * None if @link is ap->link. Kernel thread context otherwise.
6388 *
6389 * RETURNS:
6390 * 0 on success, negative errno on failure.
6391 */
6392int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6393{
6394 if (ata_is_host_link(link)) {
6395 struct ata_port *ap = link->ap;
6396 int rc;
6397
6398 if (sata_scr_valid(link)) {
6399 rc = ap->ops->scr_write(ap, reg, val);
6400 if (rc == 0)
6401 rc = ap->ops->scr_read(ap, reg, &val);
6402 return rc;
6403 }
6404 return -EOPNOTSUPP;
6405 }
6406
6407 return sata_pmp_scr_write(link, reg, val);
6408}
6409
6410/**
6411 * ata_link_online - test whether the given link is online
6412 * @link: ATA link to test
6413 *
6414 * Test whether @link is online. Note that this function returns
6415 * 0 if online status of @link cannot be obtained, so
6416 * ata_link_online(link) != !ata_link_offline(link).
6417 *
6418 * LOCKING:
6419 * None.
6420 *
6421 * RETURNS:
6422 * 1 if the port online status is available and online.
6423 */
6424int ata_link_online(struct ata_link *link)
6425{
6426 u32 sstatus;
6427
6428 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6429 (sstatus & 0xf) == 0x3)
6430 return 1;
6431 return 0;
6432}
6433
6434/**
6435 * ata_link_offline - test whether the given link is offline
6436 * @link: ATA link to test
6437 *
6438 * Test whether @link is offline. Note that this function
6439 * returns 0 if offline status of @link cannot be obtained, so
6440 * ata_link_online(link) != !ata_link_offline(link).
6441 *
6442 * LOCKING:
6443 * None.
6444 *
6445 * RETURNS:
6446 * 1 if the port offline status is available and offline.
6447 */
6448int ata_link_offline(struct ata_link *link)
6449{
6450 u32 sstatus;
6451
6452 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6453 (sstatus & 0xf) != 0x3)
6454 return 1;
6455 return 0;
6456}
6457
6458int ata_flush_cache(struct ata_device *dev)
6459{
6460 unsigned int err_mask;
6461 u8 cmd;
6462
6463 if (!ata_try_flush_cache(dev))
6464 return 0;
6465
6466 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6467 cmd = ATA_CMD_FLUSH_EXT;
6468 else
6469 cmd = ATA_CMD_FLUSH;
6470
6471 /* This is wrong. On a failed flush we get back the LBA of the lost
6472 sector and we should (assuming it wasn't aborted as unknown) issue
6473 a further flush command to continue the writeback until it
6474 does not error */
6475 err_mask = ata_do_simple_cmd(dev, cmd);
6476 if (err_mask) {
6477 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6478 return -EIO;
6479 }
6480
6481 return 0;
6482}
6483
6484#ifdef CONFIG_PM
6485static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6486 unsigned int action, unsigned int ehi_flags,
6487 int wait)
6488{
6489 unsigned long flags;
6490 int i, rc;
6491
6492 for (i = 0; i < host->n_ports; i++) {
6493 struct ata_port *ap = host->ports[i];
6494 struct ata_link *link;
6495
6496 /* Previous resume operation might still be in
6497 * progress. Wait for PM_PENDING to clear.
6498 */
6499 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6500 ata_port_wait_eh(ap);
6501 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6502 }
6503
6504 /* request PM ops to EH */
6505 spin_lock_irqsave(ap->lock, flags);
6506
6507 ap->pm_mesg = mesg;
6508 if (wait) {
6509 rc = 0;
6510 ap->pm_result = &rc;
6511 }
6512
6513 ap->pflags |= ATA_PFLAG_PM_PENDING;
6514 __ata_port_for_each_link(link, ap) {
6515 link->eh_info.action |= action;
6516 link->eh_info.flags |= ehi_flags;
6517 }
6518
6519 ata_port_schedule_eh(ap);
6520
6521 spin_unlock_irqrestore(ap->lock, flags);
6522
6523 /* wait and check result */
6524 if (wait) {
6525 ata_port_wait_eh(ap);
6526 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6527 if (rc)
6528 return rc;
6529 }
6530 }
6531
6532 return 0;
6533}
6534
6535/**
6536 * ata_host_suspend - suspend host
6537 * @host: host to suspend
6538 * @mesg: PM message
6539 *
6540 * Suspend @host. Actual operation is performed by EH. This
6541 * function requests EH to perform PM operations and waits for EH
6542 * to finish.
6543 *
6544 * LOCKING:
6545 * Kernel thread context (may sleep).
6546 *
6547 * RETURNS:
6548 * 0 on success, -errno on failure.
6549 */
6550int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6551{
6552 int rc;
6553
6554 /*
6555 * disable link pm on all ports before requesting
6556 * any pm activity
6557 */
6558 ata_lpm_enable(host);
6559
6560 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6561 if (rc == 0)
6562 host->dev->power.power_state = mesg;
6563 return rc;
6564}
6565
6566/**
6567 * ata_host_resume - resume host
6568 * @host: host to resume
6569 *
6570 * Resume @host. Actual operation is performed by EH. This
6571 * function requests EH to perform PM operations and returns.
6572 * Note that all resume operations are performed parallely.
6573 *
6574 * LOCKING:
6575 * Kernel thread context (may sleep).
6576 */
6577void ata_host_resume(struct ata_host *host)
6578{
6579 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6580 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6581 host->dev->power.power_state = PMSG_ON;
6582
6583 /* reenable link pm */
6584 ata_lpm_disable(host);
6585}
6586#endif
6587
6588/**
6589 * ata_port_start - Set port up for dma.
6590 * @ap: Port to initialize
6591 *
6592 * Called just after data structures for each port are
6593 * initialized. Allocates space for PRD table.
6594 *
6595 * May be used as the port_start() entry in ata_port_operations.
6596 *
6597 * LOCKING:
6598 * Inherited from caller.
6599 */
6600int ata_port_start(struct ata_port *ap)
6601{
6602 struct device *dev = ap->dev;
6603 int rc;
6604
6605 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6606 GFP_KERNEL);
6607 if (!ap->prd)
6608 return -ENOMEM;
6609
6610 rc = ata_pad_alloc(ap, dev);
6611 if (rc)
6612 return rc;
6613
6614 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6615 (unsigned long long)ap->prd_dma);
6616 return 0;
6617}
6618
6619/**
6620 * ata_dev_init - Initialize an ata_device structure
6621 * @dev: Device structure to initialize
6622 *
6623 * Initialize @dev in preparation for probing.
6624 *
6625 * LOCKING:
6626 * Inherited from caller.
6627 */
6628void ata_dev_init(struct ata_device *dev)
6629{
6630 struct ata_link *link = dev->link;
6631 struct ata_port *ap = link->ap;
6632 unsigned long flags;
6633
6634 /* SATA spd limit is bound to the first device */
6635 link->sata_spd_limit = link->hw_sata_spd_limit;
6636 link->sata_spd = 0;
6637
6638 /* High bits of dev->flags are used to record warm plug
6639 * requests which occur asynchronously. Synchronize using
6640 * host lock.
6641 */
6642 spin_lock_irqsave(ap->lock, flags);
6643 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6644 dev->horkage = 0;
6645 spin_unlock_irqrestore(ap->lock, flags);
6646
6647 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6648 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6649 dev->pio_mask = UINT_MAX;
6650 dev->mwdma_mask = UINT_MAX;
6651 dev->udma_mask = UINT_MAX;
6652}
6653
6654/**
6655 * ata_link_init - Initialize an ata_link structure
6656 * @ap: ATA port link is attached to
6657 * @link: Link structure to initialize
6658 * @pmp: Port multiplier port number
6659 *
6660 * Initialize @link.
6661 *
6662 * LOCKING:
6663 * Kernel thread context (may sleep)
6664 */
6665void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6666{
6667 int i;
6668
6669 /* clear everything except for devices */
6670 memset(link, 0, offsetof(struct ata_link, device[0]));
6671
6672 link->ap = ap;
6673 link->pmp = pmp;
6674 link->active_tag = ATA_TAG_POISON;
6675 link->hw_sata_spd_limit = UINT_MAX;
6676
6677 /* can't use iterator, ap isn't initialized yet */
6678 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6679 struct ata_device *dev = &link->device[i];
6680
6681 dev->link = link;
6682 dev->devno = dev - link->device;
6683 ata_dev_init(dev);
6684 }
6685}
6686
6687/**
6688 * sata_link_init_spd - Initialize link->sata_spd_limit
6689 * @link: Link to configure sata_spd_limit for
6690 *
6691 * Initialize @link->[hw_]sata_spd_limit to the currently
6692 * configured value.
6693 *
6694 * LOCKING:
6695 * Kernel thread context (may sleep).
6696 *
6697 * RETURNS:
6698 * 0 on success, -errno on failure.
6699 */
6700int sata_link_init_spd(struct ata_link *link)
6701{
6702 u32 scontrol, spd;
6703 int rc;
6704
6705 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6706 if (rc)
6707 return rc;
6708
6709 spd = (scontrol >> 4) & 0xf;
6710 if (spd)
6711 link->hw_sata_spd_limit &= (1 << spd) - 1;
6712
6713 link->sata_spd_limit = link->hw_sata_spd_limit;
6714
6715 return 0;
6716}
6717
6718/**
6719 * ata_port_alloc - allocate and initialize basic ATA port resources
6720 * @host: ATA host this allocated port belongs to
6721 *
6722 * Allocate and initialize basic ATA port resources.
6723 *
6724 * RETURNS:
6725 * Allocate ATA port on success, NULL on failure.
6726 *
6727 * LOCKING:
6728 * Inherited from calling layer (may sleep).
6729 */
6730struct ata_port *ata_port_alloc(struct ata_host *host)
6731{
6732 struct ata_port *ap;
6733
6734 DPRINTK("ENTER\n");
6735
6736 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6737 if (!ap)
6738 return NULL;
6739
6740 ap->pflags |= ATA_PFLAG_INITIALIZING;
6741 ap->lock = &host->lock;
6742 ap->flags = ATA_FLAG_DISABLED;
6743 ap->print_id = -1;
6744 ap->ctl = ATA_DEVCTL_OBS;
6745 ap->host = host;
6746 ap->dev = host->dev;
6747 ap->last_ctl = 0xFF;
6748
6749#if defined(ATA_VERBOSE_DEBUG)
6750 /* turn on all debugging levels */
6751 ap->msg_enable = 0x00FF;
6752#elif defined(ATA_DEBUG)
6753 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6754#else
6755 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6756#endif
6757
6758 INIT_DELAYED_WORK(&ap->port_task, NULL);
6759 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6760 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6761 INIT_LIST_HEAD(&ap->eh_done_q);
6762 init_waitqueue_head(&ap->eh_wait_q);
6763 init_timer_deferrable(&ap->fastdrain_timer);
6764 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6765 ap->fastdrain_timer.data = (unsigned long)ap;
6766
6767 ap->cbl = ATA_CBL_NONE;
6768
6769 ata_link_init(ap, &ap->link, 0);
6770
6771#ifdef ATA_IRQ_TRAP
6772 ap->stats.unhandled_irq = 1;
6773 ap->stats.idle_irq = 1;
6774#endif
6775 return ap;
6776}
6777
6778static void ata_host_release(struct device *gendev, void *res)
6779{
6780 struct ata_host *host = dev_get_drvdata(gendev);
6781 int i;
6782
6783 for (i = 0; i < host->n_ports; i++) {
6784 struct ata_port *ap = host->ports[i];
6785
6786 if (!ap)
6787 continue;
6788
6789 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6790 ap->ops->port_stop(ap);
6791 }
6792
6793 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6794 host->ops->host_stop(host);
6795
6796 for (i = 0; i < host->n_ports; i++) {
6797 struct ata_port *ap = host->ports[i];
6798
6799 if (!ap)
6800 continue;
6801
6802 if (ap->scsi_host)
6803 scsi_host_put(ap->scsi_host);
6804
6805 kfree(ap->pmp_link);
6806 kfree(ap);
6807 host->ports[i] = NULL;
6808 }
6809
6810 dev_set_drvdata(gendev, NULL);
6811}
6812
6813/**
6814 * ata_host_alloc - allocate and init basic ATA host resources
6815 * @dev: generic device this host is associated with
6816 * @max_ports: maximum number of ATA ports associated with this host
6817 *
6818 * Allocate and initialize basic ATA host resources. LLD calls
6819 * this function to allocate a host, initializes it fully and
6820 * attaches it using ata_host_register().
6821 *
6822 * @max_ports ports are allocated and host->n_ports is
6823 * initialized to @max_ports. The caller is allowed to decrease
6824 * host->n_ports before calling ata_host_register(). The unused
6825 * ports will be automatically freed on registration.
6826 *
6827 * RETURNS:
6828 * Allocate ATA host on success, NULL on failure.
6829 *
6830 * LOCKING:
6831 * Inherited from calling layer (may sleep).
6832 */
6833struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6834{
6835 struct ata_host *host;
6836 size_t sz;
6837 int i;
6838
6839 DPRINTK("ENTER\n");
6840
6841 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6842 return NULL;
6843
6844 /* alloc a container for our list of ATA ports (buses) */
6845 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6846 /* alloc a container for our list of ATA ports (buses) */
6847 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6848 if (!host)
6849 goto err_out;
6850
6851 devres_add(dev, host);
6852 dev_set_drvdata(dev, host);
6853
6854 spin_lock_init(&host->lock);
6855 host->dev = dev;
6856 host->n_ports = max_ports;
6857
6858 /* allocate ports bound to this host */
6859 for (i = 0; i < max_ports; i++) {
6860 struct ata_port *ap;
6861
6862 ap = ata_port_alloc(host);
6863 if (!ap)
6864 goto err_out;
6865
6866 ap->port_no = i;
6867 host->ports[i] = ap;
6868 }
6869
6870 devres_remove_group(dev, NULL);
6871 return host;
6872
6873 err_out:
6874 devres_release_group(dev, NULL);
6875 return NULL;
6876}
6877
6878/**
6879 * ata_host_alloc_pinfo - alloc host and init with port_info array
6880 * @dev: generic device this host is associated with
6881 * @ppi: array of ATA port_info to initialize host with
6882 * @n_ports: number of ATA ports attached to this host
6883 *
6884 * Allocate ATA host and initialize with info from @ppi. If NULL
6885 * terminated, @ppi may contain fewer entries than @n_ports. The
6886 * last entry will be used for the remaining ports.
6887 *
6888 * RETURNS:
6889 * Allocate ATA host on success, NULL on failure.
6890 *
6891 * LOCKING:
6892 * Inherited from calling layer (may sleep).
6893 */
6894struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6895 const struct ata_port_info * const * ppi,
6896 int n_ports)
6897{
6898 const struct ata_port_info *pi;
6899 struct ata_host *host;
6900 int i, j;
6901
6902 host = ata_host_alloc(dev, n_ports);
6903 if (!host)
6904 return NULL;
6905
6906 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6907 struct ata_port *ap = host->ports[i];
6908
6909 if (ppi[j])
6910 pi = ppi[j++];
6911
6912 ap->pio_mask = pi->pio_mask;
6913 ap->mwdma_mask = pi->mwdma_mask;
6914 ap->udma_mask = pi->udma_mask;
6915 ap->flags |= pi->flags;
6916 ap->link.flags |= pi->link_flags;
6917 ap->ops = pi->port_ops;
6918
6919 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6920 host->ops = pi->port_ops;
6921 if (!host->private_data && pi->private_data)
6922 host->private_data = pi->private_data;
6923 }
6924
6925 return host;
6926}
6927
6928/**
6929 * ata_host_start - start and freeze ports of an ATA host
6930 * @host: ATA host to start ports for
6931 *
6932 * Start and then freeze ports of @host. Started status is
6933 * recorded in host->flags, so this function can be called
6934 * multiple times. Ports are guaranteed to get started only
6935 * once. If host->ops isn't initialized yet, its set to the
6936 * first non-dummy port ops.
6937 *
6938 * LOCKING:
6939 * Inherited from calling layer (may sleep).
6940 *
6941 * RETURNS:
6942 * 0 if all ports are started successfully, -errno otherwise.
6943 */
6944int ata_host_start(struct ata_host *host)
6945{
6946 int i, rc;
6947
6948 if (host->flags & ATA_HOST_STARTED)
6949 return 0;
6950
6951 for (i = 0; i < host->n_ports; i++) {
6952 struct ata_port *ap = host->ports[i];
6953
6954 if (!host->ops && !ata_port_is_dummy(ap))
6955 host->ops = ap->ops;
6956
6957 if (ap->ops->port_start) {
6958 rc = ap->ops->port_start(ap);
6959 if (rc) {
6960 ata_port_printk(ap, KERN_ERR, "failed to "
6961 "start port (errno=%d)\n", rc);
6962 goto err_out;
6963 }
6964 }
6965
6966 ata_eh_freeze_port(ap);
6967 }
6968
6969 host->flags |= ATA_HOST_STARTED;
6970 return 0;
6971
6972 err_out:
6973 while (--i >= 0) {
6974 struct ata_port *ap = host->ports[i];
6975
6976 if (ap->ops->port_stop)
6977 ap->ops->port_stop(ap);
6978 }
6979 return rc;
6980}
6981
6982/**
6983 * ata_sas_host_init - Initialize a host struct
6984 * @host: host to initialize
6985 * @dev: device host is attached to
6986 * @flags: host flags
6987 * @ops: port_ops
6988 *
6989 * LOCKING:
6990 * PCI/etc. bus probe sem.
6991 *
6992 */
6993/* KILLME - the only user left is ipr */
6994void ata_host_init(struct ata_host *host, struct device *dev,
6995 unsigned long flags, const struct ata_port_operations *ops)
6996{
6997 spin_lock_init(&host->lock);
6998 host->dev = dev;
6999 host->flags = flags;
7000 host->ops = ops;
7001}
7002
7003/**
7004 * ata_host_register - register initialized ATA host
7005 * @host: ATA host to register
7006 * @sht: template for SCSI host
7007 *
7008 * Register initialized ATA host. @host is allocated using
7009 * ata_host_alloc() and fully initialized by LLD. This function
7010 * starts ports, registers @host with ATA and SCSI layers and
7011 * probe registered devices.
7012 *
7013 * LOCKING:
7014 * Inherited from calling layer (may sleep).
7015 *
7016 * RETURNS:
7017 * 0 on success, -errno otherwise.
7018 */
7019int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7020{
7021 int i, rc;
7022
7023 /* host must have been started */
7024 if (!(host->flags & ATA_HOST_STARTED)) {
7025 dev_printk(KERN_ERR, host->dev,
7026 "BUG: trying to register unstarted host\n");
7027 WARN_ON(1);
7028 return -EINVAL;
7029 }
7030
7031 /* Blow away unused ports. This happens when LLD can't
7032 * determine the exact number of ports to allocate at
7033 * allocation time.
7034 */
7035 for (i = host->n_ports; host->ports[i]; i++)
7036 kfree(host->ports[i]);
7037
7038 /* give ports names and add SCSI hosts */
7039 for (i = 0; i < host->n_ports; i++)
7040 host->ports[i]->print_id = ata_print_id++;
7041
7042 rc = ata_scsi_add_hosts(host, sht);
7043 if (rc)
7044 return rc;
7045
7046 /* associate with ACPI nodes */
7047 ata_acpi_associate(host);
7048
7049 /* set cable, sata_spd_limit and report */
7050 for (i = 0; i < host->n_ports; i++) {
7051 struct ata_port *ap = host->ports[i];
7052 unsigned long xfer_mask;
7053
7054 /* set SATA cable type if still unset */
7055 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7056 ap->cbl = ATA_CBL_SATA;
7057
7058 /* init sata_spd_limit to the current value */
7059 sata_link_init_spd(&ap->link);
7060
7061 /* print per-port info to dmesg */
7062 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7063 ap->udma_mask);
7064
7065 if (!ata_port_is_dummy(ap)) {
7066 ata_port_printk(ap, KERN_INFO,
7067 "%cATA max %s %s\n",
7068 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7069 ata_mode_string(xfer_mask),
7070 ap->link.eh_info.desc);
7071 ata_ehi_clear_desc(&ap->link.eh_info);
7072 } else
7073 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7074 }
7075
7076 /* perform each probe synchronously */
7077 DPRINTK("probe begin\n");
7078 for (i = 0; i < host->n_ports; i++) {
7079 struct ata_port *ap = host->ports[i];
7080 int rc;
7081
7082 /* probe */
7083 if (ap->ops->error_handler) {
7084 struct ata_eh_info *ehi = &ap->link.eh_info;
7085 unsigned long flags;
7086
7087 ata_port_probe(ap);
7088
7089 /* kick EH for boot probing */
7090 spin_lock_irqsave(ap->lock, flags);
7091
7092 ehi->probe_mask =
7093 (1 << ata_link_max_devices(&ap->link)) - 1;
7094 ehi->action |= ATA_EH_SOFTRESET;
7095 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7096
7097 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7098 ap->pflags |= ATA_PFLAG_LOADING;
7099 ata_port_schedule_eh(ap);
7100
7101 spin_unlock_irqrestore(ap->lock, flags);
7102
7103 /* wait for EH to finish */
7104 ata_port_wait_eh(ap);
7105 } else {
7106 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7107 rc = ata_bus_probe(ap);
7108 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7109
7110 if (rc) {
7111 /* FIXME: do something useful here?
7112 * Current libata behavior will
7113 * tear down everything when
7114 * the module is removed
7115 * or the h/w is unplugged.
7116 */
7117 }
7118 }
7119 }
7120
7121 /* probes are done, now scan each port's disk(s) */
7122 DPRINTK("host probe begin\n");
7123 for (i = 0; i < host->n_ports; i++) {
7124 struct ata_port *ap = host->ports[i];
7125
7126 ata_scsi_scan_host(ap, 1);
7127 ata_lpm_schedule(ap, ap->pm_policy);
7128 }
7129
7130 return 0;
7131}
7132
7133/**
7134 * ata_host_activate - start host, request IRQ and register it
7135 * @host: target ATA host
7136 * @irq: IRQ to request
7137 * @irq_handler: irq_handler used when requesting IRQ
7138 * @irq_flags: irq_flags used when requesting IRQ
7139 * @sht: scsi_host_template to use when registering the host
7140 *
7141 * After allocating an ATA host and initializing it, most libata
7142 * LLDs perform three steps to activate the host - start host,
7143 * request IRQ and register it. This helper takes necessasry
7144 * arguments and performs the three steps in one go.
7145 *
7146 * LOCKING:
7147 * Inherited from calling layer (may sleep).
7148 *
7149 * RETURNS:
7150 * 0 on success, -errno otherwise.
7151 */
7152int ata_host_activate(struct ata_host *host, int irq,
7153 irq_handler_t irq_handler, unsigned long irq_flags,
7154 struct scsi_host_template *sht)
7155{
7156 int i, rc;
7157
7158 rc = ata_host_start(host);
7159 if (rc)
7160 return rc;
7161
7162 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7163 dev_driver_string(host->dev), host);
7164 if (rc)
7165 return rc;
7166
7167 for (i = 0; i < host->n_ports; i++)
7168 ata_port_desc(host->ports[i], "irq %d", irq);
7169
7170 rc = ata_host_register(host, sht);
7171 /* if failed, just free the IRQ and leave ports alone */
7172 if (rc)
7173 devm_free_irq(host->dev, irq, host);
7174
7175 return rc;
7176}
7177
7178/**
7179 * ata_port_detach - Detach ATA port in prepration of device removal
7180 * @ap: ATA port to be detached
7181 *
7182 * Detach all ATA devices and the associated SCSI devices of @ap;
7183 * then, remove the associated SCSI host. @ap is guaranteed to
7184 * be quiescent on return from this function.
7185 *
7186 * LOCKING:
7187 * Kernel thread context (may sleep).
7188 */
7189static void ata_port_detach(struct ata_port *ap)
7190{
7191 unsigned long flags;
7192 struct ata_link *link;
7193 struct ata_device *dev;
7194
7195 if (!ap->ops->error_handler)
7196 goto skip_eh;
7197
7198 /* tell EH we're leaving & flush EH */
7199 spin_lock_irqsave(ap->lock, flags);
7200 ap->pflags |= ATA_PFLAG_UNLOADING;
7201 spin_unlock_irqrestore(ap->lock, flags);
7202
7203 ata_port_wait_eh(ap);
7204
7205 /* EH is now guaranteed to see UNLOADING, so no new device
7206 * will be attached. Disable all existing devices.
7207 */
7208 spin_lock_irqsave(ap->lock, flags);
7209
7210 ata_port_for_each_link(link, ap) {
7211 ata_link_for_each_dev(dev, link)
7212 ata_dev_disable(dev);
7213 }
7214
7215 spin_unlock_irqrestore(ap->lock, flags);
7216
7217 /* Final freeze & EH. All in-flight commands are aborted. EH
7218 * will be skipped and retrials will be terminated with bad
7219 * target.
7220 */
7221 spin_lock_irqsave(ap->lock, flags);
7222 ata_port_freeze(ap); /* won't be thawed */
7223 spin_unlock_irqrestore(ap->lock, flags);
7224
7225 ata_port_wait_eh(ap);
7226 cancel_rearming_delayed_work(&ap->hotplug_task);
7227
7228 skip_eh:
7229 /* remove the associated SCSI host */
7230 scsi_remove_host(ap->scsi_host);
7231}
7232
7233/**
7234 * ata_host_detach - Detach all ports of an ATA host
7235 * @host: Host to detach
7236 *
7237 * Detach all ports of @host.
7238 *
7239 * LOCKING:
7240 * Kernel thread context (may sleep).
7241 */
7242void ata_host_detach(struct ata_host *host)
7243{
7244 int i;
7245
7246 for (i = 0; i < host->n_ports; i++)
7247 ata_port_detach(host->ports[i]);
7248}
7249
7250/**
7251 * ata_std_ports - initialize ioaddr with standard port offsets.
7252 * @ioaddr: IO address structure to be initialized
7253 *
7254 * Utility function which initializes data_addr, error_addr,
7255 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7256 * device_addr, status_addr, and command_addr to standard offsets
7257 * relative to cmd_addr.
7258 *
7259 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7260 */
7261
7262void ata_std_ports(struct ata_ioports *ioaddr)
7263{
7264 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7265 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7266 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7267 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7268 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7269 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7270 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7271 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7272 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7273 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7274}
7275
7276
7277#ifdef CONFIG_PCI
7278
7279/**
7280 * ata_pci_remove_one - PCI layer callback for device removal
7281 * @pdev: PCI device that was removed
7282 *
7283 * PCI layer indicates to libata via this hook that hot-unplug or
7284 * module unload event has occurred. Detach all ports. Resource
7285 * release is handled via devres.
7286 *
7287 * LOCKING:
7288 * Inherited from PCI layer (may sleep).
7289 */
7290void ata_pci_remove_one(struct pci_dev *pdev)
7291{
7292 struct device *dev = &pdev->dev;
7293 struct ata_host *host = dev_get_drvdata(dev);
7294
7295 ata_host_detach(host);
7296}
7297
7298/* move to PCI subsystem */
7299int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7300{
7301 unsigned long tmp = 0;
7302
7303 switch (bits->width) {
7304 case 1: {
7305 u8 tmp8 = 0;
7306 pci_read_config_byte(pdev, bits->reg, &tmp8);
7307 tmp = tmp8;
7308 break;
7309 }
7310 case 2: {
7311 u16 tmp16 = 0;
7312 pci_read_config_word(pdev, bits->reg, &tmp16);
7313 tmp = tmp16;
7314 break;
7315 }
7316 case 4: {
7317 u32 tmp32 = 0;
7318 pci_read_config_dword(pdev, bits->reg, &tmp32);
7319 tmp = tmp32;
7320 break;
7321 }
7322
7323 default:
7324 return -EINVAL;
7325 }
7326
7327 tmp &= bits->mask;
7328
7329 return (tmp == bits->val) ? 1 : 0;
7330}
7331
7332#ifdef CONFIG_PM
7333void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7334{
7335 pci_save_state(pdev);
7336 pci_disable_device(pdev);
7337
7338 if (mesg.event == PM_EVENT_SUSPEND)
7339 pci_set_power_state(pdev, PCI_D3hot);
7340}
7341
7342int ata_pci_device_do_resume(struct pci_dev *pdev)
7343{
7344 int rc;
7345
7346 pci_set_power_state(pdev, PCI_D0);
7347 pci_restore_state(pdev);
7348
7349 rc = pcim_enable_device(pdev);
7350 if (rc) {
7351 dev_printk(KERN_ERR, &pdev->dev,
7352 "failed to enable device after resume (%d)\n", rc);
7353 return rc;
7354 }
7355
7356 pci_set_master(pdev);
7357 return 0;
7358}
7359
7360int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7361{
7362 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7363 int rc = 0;
7364
7365 rc = ata_host_suspend(host, mesg);
7366 if (rc)
7367 return rc;
7368
7369 ata_pci_device_do_suspend(pdev, mesg);
7370
7371 return 0;
7372}
7373
7374int ata_pci_device_resume(struct pci_dev *pdev)
7375{
7376 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7377 int rc;
7378
7379 rc = ata_pci_device_do_resume(pdev);
7380 if (rc == 0)
7381 ata_host_resume(host);
7382 return rc;
7383}
7384#endif /* CONFIG_PM */
7385
7386#endif /* CONFIG_PCI */
7387
7388
7389static int __init ata_init(void)
7390{
7391 ata_probe_timeout *= HZ;
7392 ata_wq = create_workqueue("ata");
7393 if (!ata_wq)
7394 return -ENOMEM;
7395
7396 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7397 if (!ata_aux_wq) {
7398 destroy_workqueue(ata_wq);
7399 return -ENOMEM;
7400 }
7401
7402 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7403 return 0;
7404}
7405
7406static void __exit ata_exit(void)
7407{
7408 destroy_workqueue(ata_wq);
7409 destroy_workqueue(ata_aux_wq);
7410}
7411
7412subsys_initcall(ata_init);
7413module_exit(ata_exit);
7414
7415static unsigned long ratelimit_time;
7416static DEFINE_SPINLOCK(ata_ratelimit_lock);
7417
7418int ata_ratelimit(void)
7419{
7420 int rc;
7421 unsigned long flags;
7422
7423 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7424
7425 if (time_after(jiffies, ratelimit_time)) {
7426 rc = 1;
7427 ratelimit_time = jiffies + (HZ/5);
7428 } else
7429 rc = 0;
7430
7431 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7432
7433 return rc;
7434}
7435
7436/**
7437 * ata_wait_register - wait until register value changes
7438 * @reg: IO-mapped register
7439 * @mask: Mask to apply to read register value
7440 * @val: Wait condition
7441 * @interval_msec: polling interval in milliseconds
7442 * @timeout_msec: timeout in milliseconds
7443 *
7444 * Waiting for some bits of register to change is a common
7445 * operation for ATA controllers. This function reads 32bit LE
7446 * IO-mapped register @reg and tests for the following condition.
7447 *
7448 * (*@reg & mask) != val
7449 *
7450 * If the condition is met, it returns; otherwise, the process is
7451 * repeated after @interval_msec until timeout.
7452 *
7453 * LOCKING:
7454 * Kernel thread context (may sleep)
7455 *
7456 * RETURNS:
7457 * The final register value.
7458 */
7459u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7460 unsigned long interval_msec,
7461 unsigned long timeout_msec)
7462{
7463 unsigned long timeout;
7464 u32 tmp;
7465
7466 tmp = ioread32(reg);
7467
7468 /* Calculate timeout _after_ the first read to make sure
7469 * preceding writes reach the controller before starting to
7470 * eat away the timeout.
7471 */
7472 timeout = jiffies + (timeout_msec * HZ) / 1000;
7473
7474 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7475 msleep(interval_msec);
7476 tmp = ioread32(reg);
7477 }
7478
7479 return tmp;
7480}
7481
7482/*
7483 * Dummy port_ops
7484 */
7485static void ata_dummy_noret(struct ata_port *ap) { }
7486static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7487static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7488
7489static u8 ata_dummy_check_status(struct ata_port *ap)
7490{
7491 return ATA_DRDY;
7492}
7493
7494static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7495{
7496 return AC_ERR_SYSTEM;
7497}
7498
7499const struct ata_port_operations ata_dummy_port_ops = {
7500 .check_status = ata_dummy_check_status,
7501 .check_altstatus = ata_dummy_check_status,
7502 .dev_select = ata_noop_dev_select,
7503 .qc_prep = ata_noop_qc_prep,
7504 .qc_issue = ata_dummy_qc_issue,
7505 .freeze = ata_dummy_noret,
7506 .thaw = ata_dummy_noret,
7507 .error_handler = ata_dummy_noret,
7508 .post_internal_cmd = ata_dummy_qc_noret,
7509 .irq_clear = ata_dummy_noret,
7510 .port_start = ata_dummy_ret0,
7511 .port_stop = ata_dummy_noret,
7512};
7513
7514const struct ata_port_info ata_dummy_port_info = {
7515 .port_ops = &ata_dummy_port_ops,
7516};
7517
7518/*
7519 * libata is essentially a library of internal helper functions for
7520 * low-level ATA host controller drivers. As such, the API/ABI is
7521 * likely to change as new drivers are added and updated.
7522 * Do not depend on ABI/API stability.
7523 */
7524EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7525EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7526EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7527EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7528EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7529EXPORT_SYMBOL_GPL(ata_std_bios_param);
7530EXPORT_SYMBOL_GPL(ata_std_ports);
7531EXPORT_SYMBOL_GPL(ata_host_init);
7532EXPORT_SYMBOL_GPL(ata_host_alloc);
7533EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7534EXPORT_SYMBOL_GPL(ata_host_start);
7535EXPORT_SYMBOL_GPL(ata_host_register);
7536EXPORT_SYMBOL_GPL(ata_host_activate);
7537EXPORT_SYMBOL_GPL(ata_host_detach);
7538EXPORT_SYMBOL_GPL(ata_sg_init);
7539EXPORT_SYMBOL_GPL(ata_sg_init_one);
7540EXPORT_SYMBOL_GPL(ata_hsm_move);
7541EXPORT_SYMBOL_GPL(ata_qc_complete);
7542EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7543EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7544EXPORT_SYMBOL_GPL(ata_tf_load);
7545EXPORT_SYMBOL_GPL(ata_tf_read);
7546EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7547EXPORT_SYMBOL_GPL(ata_std_dev_select);
7548EXPORT_SYMBOL_GPL(sata_print_link_status);
7549EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7550EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7551EXPORT_SYMBOL_GPL(ata_check_status);
7552EXPORT_SYMBOL_GPL(ata_altstatus);
7553EXPORT_SYMBOL_GPL(ata_exec_command);
7554EXPORT_SYMBOL_GPL(ata_port_start);
7555EXPORT_SYMBOL_GPL(ata_sff_port_start);
7556EXPORT_SYMBOL_GPL(ata_interrupt);
7557EXPORT_SYMBOL_GPL(ata_do_set_mode);
7558EXPORT_SYMBOL_GPL(ata_data_xfer);
7559EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7560EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7561EXPORT_SYMBOL_GPL(ata_qc_prep);
7562EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7563EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7564EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7565EXPORT_SYMBOL_GPL(ata_bmdma_start);
7566EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7567EXPORT_SYMBOL_GPL(ata_bmdma_status);
7568EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7569EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7570EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7571EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7572EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7573EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7574EXPORT_SYMBOL_GPL(ata_port_probe);
7575EXPORT_SYMBOL_GPL(ata_dev_disable);
7576EXPORT_SYMBOL_GPL(sata_set_spd);
7577EXPORT_SYMBOL_GPL(sata_link_debounce);
7578EXPORT_SYMBOL_GPL(sata_link_resume);
7579EXPORT_SYMBOL_GPL(sata_phy_reset);
7580EXPORT_SYMBOL_GPL(__sata_phy_reset);
7581EXPORT_SYMBOL_GPL(ata_bus_reset);
7582EXPORT_SYMBOL_GPL(ata_std_prereset);
7583EXPORT_SYMBOL_GPL(ata_std_softreset);
7584EXPORT_SYMBOL_GPL(sata_link_hardreset);
7585EXPORT_SYMBOL_GPL(sata_std_hardreset);
7586EXPORT_SYMBOL_GPL(ata_std_postreset);
7587EXPORT_SYMBOL_GPL(ata_dev_classify);
7588EXPORT_SYMBOL_GPL(ata_dev_pair);
7589EXPORT_SYMBOL_GPL(ata_port_disable);
7590EXPORT_SYMBOL_GPL(ata_ratelimit);
7591EXPORT_SYMBOL_GPL(ata_wait_register);
7592EXPORT_SYMBOL_GPL(ata_busy_sleep);
7593EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7594EXPORT_SYMBOL_GPL(ata_wait_ready);
7595EXPORT_SYMBOL_GPL(ata_port_queue_task);
7596EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7597EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7598EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7599EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7600EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7601EXPORT_SYMBOL_GPL(ata_host_intr);
7602EXPORT_SYMBOL_GPL(sata_scr_valid);
7603EXPORT_SYMBOL_GPL(sata_scr_read);
7604EXPORT_SYMBOL_GPL(sata_scr_write);
7605EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7606EXPORT_SYMBOL_GPL(ata_link_online);
7607EXPORT_SYMBOL_GPL(ata_link_offline);
7608#ifdef CONFIG_PM
7609EXPORT_SYMBOL_GPL(ata_host_suspend);
7610EXPORT_SYMBOL_GPL(ata_host_resume);
7611#endif /* CONFIG_PM */
7612EXPORT_SYMBOL_GPL(ata_id_string);
7613EXPORT_SYMBOL_GPL(ata_id_c_string);
7614EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7615EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7616
7617EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7618EXPORT_SYMBOL_GPL(ata_timing_compute);
7619EXPORT_SYMBOL_GPL(ata_timing_merge);
7620
7621#ifdef CONFIG_PCI
7622EXPORT_SYMBOL_GPL(pci_test_config_bits);
7623EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7624EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7625EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7626EXPORT_SYMBOL_GPL(ata_pci_init_one);
7627EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7628#ifdef CONFIG_PM
7629EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7630EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7631EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7632EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7633#endif /* CONFIG_PM */
7634EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7635EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7636#endif /* CONFIG_PCI */
7637
7638EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7639EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7640EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7641EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7642EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7643
7644EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7645EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7646EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7647EXPORT_SYMBOL_GPL(ata_port_desc);
7648#ifdef CONFIG_PCI
7649EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7650#endif /* CONFIG_PCI */
7651EXPORT_SYMBOL_GPL(ata_eng_timeout);
7652EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7653EXPORT_SYMBOL_GPL(ata_link_abort);
7654EXPORT_SYMBOL_GPL(ata_port_abort);
7655EXPORT_SYMBOL_GPL(ata_port_freeze);
7656EXPORT_SYMBOL_GPL(sata_async_notification);
7657EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7658EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7659EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7660EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7661EXPORT_SYMBOL_GPL(ata_do_eh);
7662EXPORT_SYMBOL_GPL(ata_irq_on);
7663EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7664
7665EXPORT_SYMBOL_GPL(ata_cable_40wire);
7666EXPORT_SYMBOL_GPL(ata_cable_80wire);
7667EXPORT_SYMBOL_GPL(ata_cable_unknown);
7668EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.083356 seconds and 5 git commands to generate.