drm/i915: enable SDEIER later
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
... / ...
CommitLineData
1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3/*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/sysrq.h>
32#include <linux/slab.h>
33#include <linux/circ_buf.h>
34#include <drm/drmP.h>
35#include <drm/i915_drm.h>
36#include "i915_drv.h"
37#include "i915_trace.h"
38#include "intel_drv.h"
39
40static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46};
47
48static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54};
55
56static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63};
64
65static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72};
73
74static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81};
82
83/* IIR can theoretically queue up two events. Be paranoid. */
84#define GEN8_IRQ_RESET_NDX(type, which) do { \
85 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 POSTING_READ(GEN8_##type##_IMR(which)); \
87 I915_WRITE(GEN8_##type##_IER(which), 0); \
88 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 POSTING_READ(GEN8_##type##_IIR(which)); \
90 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 POSTING_READ(GEN8_##type##_IIR(which)); \
92} while (0)
93
94#define GEN5_IRQ_RESET(type) do { \
95 I915_WRITE(type##IMR, 0xffffffff); \
96 POSTING_READ(type##IMR); \
97 I915_WRITE(type##IER, 0); \
98 I915_WRITE(type##IIR, 0xffffffff); \
99 POSTING_READ(type##IIR); \
100 I915_WRITE(type##IIR, 0xffffffff); \
101 POSTING_READ(type##IIR); \
102} while (0)
103
104/*
105 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106 */
107#define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 u32 val = I915_READ(reg); \
109 if (val) { \
110 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 (reg), val); \
112 I915_WRITE((reg), 0xffffffff); \
113 POSTING_READ(reg); \
114 I915_WRITE((reg), 0xffffffff); \
115 POSTING_READ(reg); \
116 } \
117} while (0)
118
119#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 POSTING_READ(GEN8_##type##_IER(which)); \
124} while (0)
125
126#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 I915_WRITE(type##IMR, (imr_val)); \
129 I915_WRITE(type##IER, (ier_val)); \
130 POSTING_READ(type##IER); \
131} while (0)
132
133/* For display hotplug interrupt */
134static void
135ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136{
137 assert_spin_locked(&dev_priv->irq_lock);
138
139 if (dev_priv->pm.irqs_disabled) {
140 WARN(1, "IRQs disabled\n");
141 dev_priv->pm.regsave.deimr &= ~mask;
142 return;
143 }
144
145 if ((dev_priv->irq_mask & mask) != 0) {
146 dev_priv->irq_mask &= ~mask;
147 I915_WRITE(DEIMR, dev_priv->irq_mask);
148 POSTING_READ(DEIMR);
149 }
150}
151
152static void
153ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
154{
155 assert_spin_locked(&dev_priv->irq_lock);
156
157 if (dev_priv->pm.irqs_disabled) {
158 WARN(1, "IRQs disabled\n");
159 dev_priv->pm.regsave.deimr |= mask;
160 return;
161 }
162
163 if ((dev_priv->irq_mask & mask) != mask) {
164 dev_priv->irq_mask |= mask;
165 I915_WRITE(DEIMR, dev_priv->irq_mask);
166 POSTING_READ(DEIMR);
167 }
168}
169
170/**
171 * ilk_update_gt_irq - update GTIMR
172 * @dev_priv: driver private
173 * @interrupt_mask: mask of interrupt bits to update
174 * @enabled_irq_mask: mask of interrupt bits to enable
175 */
176static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
177 uint32_t interrupt_mask,
178 uint32_t enabled_irq_mask)
179{
180 assert_spin_locked(&dev_priv->irq_lock);
181
182 if (dev_priv->pm.irqs_disabled) {
183 WARN(1, "IRQs disabled\n");
184 dev_priv->pm.regsave.gtimr &= ~interrupt_mask;
185 dev_priv->pm.regsave.gtimr |= (~enabled_irq_mask &
186 interrupt_mask);
187 return;
188 }
189
190 dev_priv->gt_irq_mask &= ~interrupt_mask;
191 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
192 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
193 POSTING_READ(GTIMR);
194}
195
196void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
197{
198 ilk_update_gt_irq(dev_priv, mask, mask);
199}
200
201void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
202{
203 ilk_update_gt_irq(dev_priv, mask, 0);
204}
205
206/**
207 * snb_update_pm_irq - update GEN6_PMIMR
208 * @dev_priv: driver private
209 * @interrupt_mask: mask of interrupt bits to update
210 * @enabled_irq_mask: mask of interrupt bits to enable
211 */
212static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
213 uint32_t interrupt_mask,
214 uint32_t enabled_irq_mask)
215{
216 uint32_t new_val;
217
218 assert_spin_locked(&dev_priv->irq_lock);
219
220 if (dev_priv->pm.irqs_disabled) {
221 WARN(1, "IRQs disabled\n");
222 dev_priv->pm.regsave.gen6_pmimr &= ~interrupt_mask;
223 dev_priv->pm.regsave.gen6_pmimr |= (~enabled_irq_mask &
224 interrupt_mask);
225 return;
226 }
227
228 new_val = dev_priv->pm_irq_mask;
229 new_val &= ~interrupt_mask;
230 new_val |= (~enabled_irq_mask & interrupt_mask);
231
232 if (new_val != dev_priv->pm_irq_mask) {
233 dev_priv->pm_irq_mask = new_val;
234 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
235 POSTING_READ(GEN6_PMIMR);
236 }
237}
238
239void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
240{
241 snb_update_pm_irq(dev_priv, mask, mask);
242}
243
244void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
245{
246 snb_update_pm_irq(dev_priv, mask, 0);
247}
248
249static bool ivb_can_enable_err_int(struct drm_device *dev)
250{
251 struct drm_i915_private *dev_priv = dev->dev_private;
252 struct intel_crtc *crtc;
253 enum pipe pipe;
254
255 assert_spin_locked(&dev_priv->irq_lock);
256
257 for_each_pipe(pipe) {
258 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
259
260 if (crtc->cpu_fifo_underrun_disabled)
261 return false;
262 }
263
264 return true;
265}
266
267static bool cpt_can_enable_serr_int(struct drm_device *dev)
268{
269 struct drm_i915_private *dev_priv = dev->dev_private;
270 enum pipe pipe;
271 struct intel_crtc *crtc;
272
273 assert_spin_locked(&dev_priv->irq_lock);
274
275 for_each_pipe(pipe) {
276 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
277
278 if (crtc->pch_fifo_underrun_disabled)
279 return false;
280 }
281
282 return true;
283}
284
285static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
286{
287 struct drm_i915_private *dev_priv = dev->dev_private;
288 u32 reg = PIPESTAT(pipe);
289 u32 pipestat = I915_READ(reg) & 0x7fff0000;
290
291 assert_spin_locked(&dev_priv->irq_lock);
292
293 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
294 POSTING_READ(reg);
295}
296
297static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
298 enum pipe pipe, bool enable)
299{
300 struct drm_i915_private *dev_priv = dev->dev_private;
301 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
302 DE_PIPEB_FIFO_UNDERRUN;
303
304 if (enable)
305 ironlake_enable_display_irq(dev_priv, bit);
306 else
307 ironlake_disable_display_irq(dev_priv, bit);
308}
309
310static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
311 enum pipe pipe, bool enable)
312{
313 struct drm_i915_private *dev_priv = dev->dev_private;
314 if (enable) {
315 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
316
317 if (!ivb_can_enable_err_int(dev))
318 return;
319
320 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
321 } else {
322 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
323
324 /* Change the state _after_ we've read out the current one. */
325 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
326
327 if (!was_enabled &&
328 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
329 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
330 pipe_name(pipe));
331 }
332 }
333}
334
335static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
336 enum pipe pipe, bool enable)
337{
338 struct drm_i915_private *dev_priv = dev->dev_private;
339
340 assert_spin_locked(&dev_priv->irq_lock);
341
342 if (enable)
343 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
344 else
345 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
346 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
347 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
348}
349
350/**
351 * ibx_display_interrupt_update - update SDEIMR
352 * @dev_priv: driver private
353 * @interrupt_mask: mask of interrupt bits to update
354 * @enabled_irq_mask: mask of interrupt bits to enable
355 */
356static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
357 uint32_t interrupt_mask,
358 uint32_t enabled_irq_mask)
359{
360 uint32_t sdeimr = I915_READ(SDEIMR);
361 sdeimr &= ~interrupt_mask;
362 sdeimr |= (~enabled_irq_mask & interrupt_mask);
363
364 assert_spin_locked(&dev_priv->irq_lock);
365
366 if (dev_priv->pm.irqs_disabled &&
367 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
368 WARN(1, "IRQs disabled\n");
369 dev_priv->pm.regsave.sdeimr &= ~interrupt_mask;
370 dev_priv->pm.regsave.sdeimr |= (~enabled_irq_mask &
371 interrupt_mask);
372 return;
373 }
374
375 I915_WRITE(SDEIMR, sdeimr);
376 POSTING_READ(SDEIMR);
377}
378#define ibx_enable_display_interrupt(dev_priv, bits) \
379 ibx_display_interrupt_update((dev_priv), (bits), (bits))
380#define ibx_disable_display_interrupt(dev_priv, bits) \
381 ibx_display_interrupt_update((dev_priv), (bits), 0)
382
383static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
384 enum transcoder pch_transcoder,
385 bool enable)
386{
387 struct drm_i915_private *dev_priv = dev->dev_private;
388 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
389 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
390
391 if (enable)
392 ibx_enable_display_interrupt(dev_priv, bit);
393 else
394 ibx_disable_display_interrupt(dev_priv, bit);
395}
396
397static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
398 enum transcoder pch_transcoder,
399 bool enable)
400{
401 struct drm_i915_private *dev_priv = dev->dev_private;
402
403 if (enable) {
404 I915_WRITE(SERR_INT,
405 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
406
407 if (!cpt_can_enable_serr_int(dev))
408 return;
409
410 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
411 } else {
412 uint32_t tmp = I915_READ(SERR_INT);
413 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
414
415 /* Change the state _after_ we've read out the current one. */
416 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
417
418 if (!was_enabled &&
419 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
420 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
421 transcoder_name(pch_transcoder));
422 }
423 }
424}
425
426/**
427 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
428 * @dev: drm device
429 * @pipe: pipe
430 * @enable: true if we want to report FIFO underrun errors, false otherwise
431 *
432 * This function makes us disable or enable CPU fifo underruns for a specific
433 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
434 * reporting for one pipe may also disable all the other CPU error interruts for
435 * the other pipes, due to the fact that there's just one interrupt mask/enable
436 * bit for all the pipes.
437 *
438 * Returns the previous state of underrun reporting.
439 */
440bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
441 enum pipe pipe, bool enable)
442{
443 struct drm_i915_private *dev_priv = dev->dev_private;
444 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
446 bool ret;
447
448 assert_spin_locked(&dev_priv->irq_lock);
449
450 ret = !intel_crtc->cpu_fifo_underrun_disabled;
451
452 if (enable == ret)
453 goto done;
454
455 intel_crtc->cpu_fifo_underrun_disabled = !enable;
456
457 if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
458 i9xx_clear_fifo_underrun(dev, pipe);
459 else if (IS_GEN5(dev) || IS_GEN6(dev))
460 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
461 else if (IS_GEN7(dev))
462 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
463 else if (IS_GEN8(dev))
464 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
465
466done:
467 return ret;
468}
469
470bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
471 enum pipe pipe, bool enable)
472{
473 struct drm_i915_private *dev_priv = dev->dev_private;
474 unsigned long flags;
475 bool ret;
476
477 spin_lock_irqsave(&dev_priv->irq_lock, flags);
478 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
479 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
480
481 return ret;
482}
483
484static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
485 enum pipe pipe)
486{
487 struct drm_i915_private *dev_priv = dev->dev_private;
488 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
489 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
490
491 return !intel_crtc->cpu_fifo_underrun_disabled;
492}
493
494/**
495 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
496 * @dev: drm device
497 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
498 * @enable: true if we want to report FIFO underrun errors, false otherwise
499 *
500 * This function makes us disable or enable PCH fifo underruns for a specific
501 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
502 * underrun reporting for one transcoder may also disable all the other PCH
503 * error interruts for the other transcoders, due to the fact that there's just
504 * one interrupt mask/enable bit for all the transcoders.
505 *
506 * Returns the previous state of underrun reporting.
507 */
508bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
509 enum transcoder pch_transcoder,
510 bool enable)
511{
512 struct drm_i915_private *dev_priv = dev->dev_private;
513 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
514 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
515 unsigned long flags;
516 bool ret;
517
518 /*
519 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
520 * has only one pch transcoder A that all pipes can use. To avoid racy
521 * pch transcoder -> pipe lookups from interrupt code simply store the
522 * underrun statistics in crtc A. Since we never expose this anywhere
523 * nor use it outside of the fifo underrun code here using the "wrong"
524 * crtc on LPT won't cause issues.
525 */
526
527 spin_lock_irqsave(&dev_priv->irq_lock, flags);
528
529 ret = !intel_crtc->pch_fifo_underrun_disabled;
530
531 if (enable == ret)
532 goto done;
533
534 intel_crtc->pch_fifo_underrun_disabled = !enable;
535
536 if (HAS_PCH_IBX(dev))
537 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
538 else
539 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
540
541done:
542 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
543 return ret;
544}
545
546
547static void
548__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
549 u32 enable_mask, u32 status_mask)
550{
551 u32 reg = PIPESTAT(pipe);
552 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
553
554 assert_spin_locked(&dev_priv->irq_lock);
555
556 if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
557 status_mask & ~PIPESTAT_INT_STATUS_MASK))
558 return;
559
560 if ((pipestat & enable_mask) == enable_mask)
561 return;
562
563 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
564
565 /* Enable the interrupt, clear any pending status */
566 pipestat |= enable_mask | status_mask;
567 I915_WRITE(reg, pipestat);
568 POSTING_READ(reg);
569}
570
571static void
572__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
573 u32 enable_mask, u32 status_mask)
574{
575 u32 reg = PIPESTAT(pipe);
576 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
577
578 assert_spin_locked(&dev_priv->irq_lock);
579
580 if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
581 status_mask & ~PIPESTAT_INT_STATUS_MASK))
582 return;
583
584 if ((pipestat & enable_mask) == 0)
585 return;
586
587 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
588
589 pipestat &= ~enable_mask;
590 I915_WRITE(reg, pipestat);
591 POSTING_READ(reg);
592}
593
594static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
595{
596 u32 enable_mask = status_mask << 16;
597
598 /*
599 * On pipe A we don't support the PSR interrupt yet, on pipe B the
600 * same bit MBZ.
601 */
602 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
603 return 0;
604
605 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
606 SPRITE0_FLIP_DONE_INT_EN_VLV |
607 SPRITE1_FLIP_DONE_INT_EN_VLV);
608 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
609 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
610 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
611 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
612
613 return enable_mask;
614}
615
616void
617i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
618 u32 status_mask)
619{
620 u32 enable_mask;
621
622 if (IS_VALLEYVIEW(dev_priv->dev))
623 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
624 status_mask);
625 else
626 enable_mask = status_mask << 16;
627 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
628}
629
630void
631i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
632 u32 status_mask)
633{
634 u32 enable_mask;
635
636 if (IS_VALLEYVIEW(dev_priv->dev))
637 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
638 status_mask);
639 else
640 enable_mask = status_mask << 16;
641 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
642}
643
644/**
645 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
646 */
647static void i915_enable_asle_pipestat(struct drm_device *dev)
648{
649 struct drm_i915_private *dev_priv = dev->dev_private;
650 unsigned long irqflags;
651
652 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
653 return;
654
655 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
656
657 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658 if (INTEL_INFO(dev)->gen >= 4)
659 i915_enable_pipestat(dev_priv, PIPE_A,
660 PIPE_LEGACY_BLC_EVENT_STATUS);
661
662 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
663}
664
665/**
666 * i915_pipe_enabled - check if a pipe is enabled
667 * @dev: DRM device
668 * @pipe: pipe to check
669 *
670 * Reading certain registers when the pipe is disabled can hang the chip.
671 * Use this routine to make sure the PLL is running and the pipe is active
672 * before reading such registers if unsure.
673 */
674static int
675i915_pipe_enabled(struct drm_device *dev, int pipe)
676{
677 struct drm_i915_private *dev_priv = dev->dev_private;
678
679 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
680 /* Locking is horribly broken here, but whatever. */
681 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
682 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
683
684 return intel_crtc->active;
685 } else {
686 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
687 }
688}
689
690static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
691{
692 /* Gen2 doesn't have a hardware frame counter */
693 return 0;
694}
695
696/* Called from drm generic code, passed a 'crtc', which
697 * we use as a pipe index
698 */
699static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
700{
701 struct drm_i915_private *dev_priv = dev->dev_private;
702 unsigned long high_frame;
703 unsigned long low_frame;
704 u32 high1, high2, low, pixel, vbl_start;
705
706 if (!i915_pipe_enabled(dev, pipe)) {
707 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
708 "pipe %c\n", pipe_name(pipe));
709 return 0;
710 }
711
712 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
713 struct intel_crtc *intel_crtc =
714 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
715 const struct drm_display_mode *mode =
716 &intel_crtc->config.adjusted_mode;
717
718 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
719 } else {
720 enum transcoder cpu_transcoder = (enum transcoder) pipe;
721 u32 htotal;
722
723 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
724 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
725
726 vbl_start *= htotal;
727 }
728
729 high_frame = PIPEFRAME(pipe);
730 low_frame = PIPEFRAMEPIXEL(pipe);
731
732 /*
733 * High & low register fields aren't synchronized, so make sure
734 * we get a low value that's stable across two reads of the high
735 * register.
736 */
737 do {
738 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
739 low = I915_READ(low_frame);
740 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
741 } while (high1 != high2);
742
743 high1 >>= PIPE_FRAME_HIGH_SHIFT;
744 pixel = low & PIPE_PIXEL_MASK;
745 low >>= PIPE_FRAME_LOW_SHIFT;
746
747 /*
748 * The frame counter increments at beginning of active.
749 * Cook up a vblank counter by also checking the pixel
750 * counter against vblank start.
751 */
752 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
753}
754
755static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
756{
757 struct drm_i915_private *dev_priv = dev->dev_private;
758 int reg = PIPE_FRMCOUNT_GM45(pipe);
759
760 if (!i915_pipe_enabled(dev, pipe)) {
761 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
762 "pipe %c\n", pipe_name(pipe));
763 return 0;
764 }
765
766 return I915_READ(reg);
767}
768
769/* raw reads, only for fast reads of display block, no need for forcewake etc. */
770#define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
771
772static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
773{
774 struct drm_i915_private *dev_priv = dev->dev_private;
775 uint32_t status;
776 int reg;
777
778 if (INTEL_INFO(dev)->gen >= 8) {
779 status = GEN8_PIPE_VBLANK;
780 reg = GEN8_DE_PIPE_ISR(pipe);
781 } else if (INTEL_INFO(dev)->gen >= 7) {
782 status = DE_PIPE_VBLANK_IVB(pipe);
783 reg = DEISR;
784 } else {
785 status = DE_PIPE_VBLANK(pipe);
786 reg = DEISR;
787 }
788
789 return __raw_i915_read32(dev_priv, reg) & status;
790}
791
792static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
793 unsigned int flags, int *vpos, int *hpos,
794 ktime_t *stime, ktime_t *etime)
795{
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
800 int position;
801 int vbl_start, vbl_end, htotal, vtotal;
802 bool in_vbl = true;
803 int ret = 0;
804 unsigned long irqflags;
805
806 if (!intel_crtc->active) {
807 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
808 "pipe %c\n", pipe_name(pipe));
809 return 0;
810 }
811
812 htotal = mode->crtc_htotal;
813 vtotal = mode->crtc_vtotal;
814 vbl_start = mode->crtc_vblank_start;
815 vbl_end = mode->crtc_vblank_end;
816
817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 vbl_end /= 2;
820 vtotal /= 2;
821 }
822
823 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825 /*
826 * Lock uncore.lock, as we will do multiple timing critical raw
827 * register reads, potentially with preemption disabled, so the
828 * following code must not block on uncore.lock.
829 */
830 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834 /* Get optional system timestamp before query. */
835 if (stime)
836 *stime = ktime_get();
837
838 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 /* No obvious pixelcount register. Only query vertical
840 * scanout position from Display scan line register.
841 */
842 if (IS_GEN2(dev))
843 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
844 else
845 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
846
847 if (HAS_DDI(dev)) {
848 /*
849 * On HSW HDMI outputs there seems to be a 2 line
850 * difference, whereas eDP has the normal 1 line
851 * difference that earlier platforms have. External
852 * DP is unknown. For now just check for the 2 line
853 * difference case on all output types on HSW+.
854 *
855 * This might misinterpret the scanline counter being
856 * one line too far along on eDP, but that's less
857 * dangerous than the alternative since that would lead
858 * the vblank timestamp code astray when it sees a
859 * scanline count before vblank_start during a vblank
860 * interrupt.
861 */
862 in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
863 if ((in_vbl && (position == vbl_start - 2 ||
864 position == vbl_start - 1)) ||
865 (!in_vbl && (position == vbl_end - 2 ||
866 position == vbl_end - 1)))
867 position = (position + 2) % vtotal;
868 } else if (HAS_PCH_SPLIT(dev)) {
869 /*
870 * The scanline counter increments at the leading edge
871 * of hsync, ie. it completely misses the active portion
872 * of the line. Fix up the counter at both edges of vblank
873 * to get a more accurate picture whether we're in vblank
874 * or not.
875 */
876 in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
877 if ((in_vbl && position == vbl_start - 1) ||
878 (!in_vbl && position == vbl_end - 1))
879 position = (position + 1) % vtotal;
880 } else {
881 /*
882 * ISR vblank status bits don't work the way we'd want
883 * them to work on non-PCH platforms (for
884 * ilk_pipe_in_vblank_locked()), and there doesn't
885 * appear any other way to determine if we're currently
886 * in vblank.
887 *
888 * Instead let's assume that we're already in vblank if
889 * we got called from the vblank interrupt and the
890 * scanline counter value indicates that we're on the
891 * line just prior to vblank start. This should result
892 * in the correct answer, unless the vblank interrupt
893 * delivery really got delayed for almost exactly one
894 * full frame/field.
895 */
896 if (flags & DRM_CALLED_FROM_VBLIRQ &&
897 position == vbl_start - 1) {
898 position = (position + 1) % vtotal;
899
900 /* Signal this correction as "applied". */
901 ret |= 0x8;
902 }
903 }
904 } else {
905 /* Have access to pixelcount since start of frame.
906 * We can split this into vertical and horizontal
907 * scanout position.
908 */
909 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
910
911 /* convert to pixel counts */
912 vbl_start *= htotal;
913 vbl_end *= htotal;
914 vtotal *= htotal;
915 }
916
917 /* Get optional system timestamp after query. */
918 if (etime)
919 *etime = ktime_get();
920
921 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
922
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 in_vbl = position >= vbl_start && position < vbl_end;
926
927 /*
928 * While in vblank, position will be negative
929 * counting up towards 0 at vbl_end. And outside
930 * vblank, position will be positive counting
931 * up since vbl_end.
932 */
933 if (position >= vbl_start)
934 position -= vbl_end;
935 else
936 position += vtotal - vbl_end;
937
938 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
939 *vpos = position;
940 *hpos = 0;
941 } else {
942 *vpos = position / htotal;
943 *hpos = position - (*vpos * htotal);
944 }
945
946 /* In vblank? */
947 if (in_vbl)
948 ret |= DRM_SCANOUTPOS_INVBL;
949
950 return ret;
951}
952
953static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
954 int *max_error,
955 struct timeval *vblank_time,
956 unsigned flags)
957{
958 struct drm_crtc *crtc;
959
960 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
961 DRM_ERROR("Invalid crtc %d\n", pipe);
962 return -EINVAL;
963 }
964
965 /* Get drm_crtc to timestamp: */
966 crtc = intel_get_crtc_for_pipe(dev, pipe);
967 if (crtc == NULL) {
968 DRM_ERROR("Invalid crtc %d\n", pipe);
969 return -EINVAL;
970 }
971
972 if (!crtc->enabled) {
973 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
974 return -EBUSY;
975 }
976
977 /* Helper routine in DRM core does all the work: */
978 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
979 vblank_time, flags,
980 crtc,
981 &to_intel_crtc(crtc)->config.adjusted_mode);
982}
983
984static bool intel_hpd_irq_event(struct drm_device *dev,
985 struct drm_connector *connector)
986{
987 enum drm_connector_status old_status;
988
989 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
990 old_status = connector->status;
991
992 connector->status = connector->funcs->detect(connector, false);
993 if (old_status == connector->status)
994 return false;
995
996 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
997 connector->base.id,
998 drm_get_connector_name(connector),
999 drm_get_connector_status_name(old_status),
1000 drm_get_connector_status_name(connector->status));
1001
1002 return true;
1003}
1004
1005/*
1006 * Handle hotplug events outside the interrupt handler proper.
1007 */
1008#define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1009
1010static void i915_hotplug_work_func(struct work_struct *work)
1011{
1012 struct drm_i915_private *dev_priv =
1013 container_of(work, struct drm_i915_private, hotplug_work);
1014 struct drm_device *dev = dev_priv->dev;
1015 struct drm_mode_config *mode_config = &dev->mode_config;
1016 struct intel_connector *intel_connector;
1017 struct intel_encoder *intel_encoder;
1018 struct drm_connector *connector;
1019 unsigned long irqflags;
1020 bool hpd_disabled = false;
1021 bool changed = false;
1022 u32 hpd_event_bits;
1023
1024 /* HPD irq before everything is fully set up. */
1025 if (!dev_priv->enable_hotplug_processing)
1026 return;
1027
1028 mutex_lock(&mode_config->mutex);
1029 DRM_DEBUG_KMS("running encoder hotplug functions\n");
1030
1031 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1032
1033 hpd_event_bits = dev_priv->hpd_event_bits;
1034 dev_priv->hpd_event_bits = 0;
1035 list_for_each_entry(connector, &mode_config->connector_list, head) {
1036 intel_connector = to_intel_connector(connector);
1037 intel_encoder = intel_connector->encoder;
1038 if (intel_encoder->hpd_pin > HPD_NONE &&
1039 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1040 connector->polled == DRM_CONNECTOR_POLL_HPD) {
1041 DRM_INFO("HPD interrupt storm detected on connector %s: "
1042 "switching from hotplug detection to polling\n",
1043 drm_get_connector_name(connector));
1044 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1045 connector->polled = DRM_CONNECTOR_POLL_CONNECT
1046 | DRM_CONNECTOR_POLL_DISCONNECT;
1047 hpd_disabled = true;
1048 }
1049 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1050 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1051 drm_get_connector_name(connector), intel_encoder->hpd_pin);
1052 }
1053 }
1054 /* if there were no outputs to poll, poll was disabled,
1055 * therefore make sure it's enabled when disabling HPD on
1056 * some connectors */
1057 if (hpd_disabled) {
1058 drm_kms_helper_poll_enable(dev);
1059 mod_timer(&dev_priv->hotplug_reenable_timer,
1060 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1061 }
1062
1063 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1064
1065 list_for_each_entry(connector, &mode_config->connector_list, head) {
1066 intel_connector = to_intel_connector(connector);
1067 intel_encoder = intel_connector->encoder;
1068 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1069 if (intel_encoder->hot_plug)
1070 intel_encoder->hot_plug(intel_encoder);
1071 if (intel_hpd_irq_event(dev, connector))
1072 changed = true;
1073 }
1074 }
1075 mutex_unlock(&mode_config->mutex);
1076
1077 if (changed)
1078 drm_kms_helper_hotplug_event(dev);
1079}
1080
1081static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1082{
1083 del_timer_sync(&dev_priv->hotplug_reenable_timer);
1084}
1085
1086static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1087{
1088 struct drm_i915_private *dev_priv = dev->dev_private;
1089 u32 busy_up, busy_down, max_avg, min_avg;
1090 u8 new_delay;
1091
1092 spin_lock(&mchdev_lock);
1093
1094 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1095
1096 new_delay = dev_priv->ips.cur_delay;
1097
1098 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1099 busy_up = I915_READ(RCPREVBSYTUPAVG);
1100 busy_down = I915_READ(RCPREVBSYTDNAVG);
1101 max_avg = I915_READ(RCBMAXAVG);
1102 min_avg = I915_READ(RCBMINAVG);
1103
1104 /* Handle RCS change request from hw */
1105 if (busy_up > max_avg) {
1106 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1107 new_delay = dev_priv->ips.cur_delay - 1;
1108 if (new_delay < dev_priv->ips.max_delay)
1109 new_delay = dev_priv->ips.max_delay;
1110 } else if (busy_down < min_avg) {
1111 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1112 new_delay = dev_priv->ips.cur_delay + 1;
1113 if (new_delay > dev_priv->ips.min_delay)
1114 new_delay = dev_priv->ips.min_delay;
1115 }
1116
1117 if (ironlake_set_drps(dev, new_delay))
1118 dev_priv->ips.cur_delay = new_delay;
1119
1120 spin_unlock(&mchdev_lock);
1121
1122 return;
1123}
1124
1125static void notify_ring(struct drm_device *dev,
1126 struct intel_ring_buffer *ring)
1127{
1128 if (ring->obj == NULL)
1129 return;
1130
1131 trace_i915_gem_request_complete(ring);
1132
1133 wake_up_all(&ring->irq_queue);
1134 i915_queue_hangcheck(dev);
1135}
1136
1137static void gen6_pm_rps_work(struct work_struct *work)
1138{
1139 struct drm_i915_private *dev_priv =
1140 container_of(work, struct drm_i915_private, rps.work);
1141 u32 pm_iir;
1142 int new_delay, adj;
1143
1144 spin_lock_irq(&dev_priv->irq_lock);
1145 pm_iir = dev_priv->rps.pm_iir;
1146 dev_priv->rps.pm_iir = 0;
1147 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
1148 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1149 spin_unlock_irq(&dev_priv->irq_lock);
1150
1151 /* Make sure we didn't queue anything we're not going to process. */
1152 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1153
1154 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1155 return;
1156
1157 mutex_lock(&dev_priv->rps.hw_lock);
1158
1159 adj = dev_priv->rps.last_adj;
1160 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1161 if (adj > 0)
1162 adj *= 2;
1163 else
1164 adj = 1;
1165 new_delay = dev_priv->rps.cur_freq + adj;
1166
1167 /*
1168 * For better performance, jump directly
1169 * to RPe if we're below it.
1170 */
1171 if (new_delay < dev_priv->rps.efficient_freq)
1172 new_delay = dev_priv->rps.efficient_freq;
1173 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1174 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1175 new_delay = dev_priv->rps.efficient_freq;
1176 else
1177 new_delay = dev_priv->rps.min_freq_softlimit;
1178 adj = 0;
1179 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1180 if (adj < 0)
1181 adj *= 2;
1182 else
1183 adj = -1;
1184 new_delay = dev_priv->rps.cur_freq + adj;
1185 } else { /* unknown event */
1186 new_delay = dev_priv->rps.cur_freq;
1187 }
1188
1189 /* sysfs frequency interfaces may have snuck in while servicing the
1190 * interrupt
1191 */
1192 new_delay = clamp_t(int, new_delay,
1193 dev_priv->rps.min_freq_softlimit,
1194 dev_priv->rps.max_freq_softlimit);
1195
1196 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1197
1198 if (IS_VALLEYVIEW(dev_priv->dev))
1199 valleyview_set_rps(dev_priv->dev, new_delay);
1200 else
1201 gen6_set_rps(dev_priv->dev, new_delay);
1202
1203 mutex_unlock(&dev_priv->rps.hw_lock);
1204}
1205
1206
1207/**
1208 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1209 * occurred.
1210 * @work: workqueue struct
1211 *
1212 * Doesn't actually do anything except notify userspace. As a consequence of
1213 * this event, userspace should try to remap the bad rows since statistically
1214 * it is likely the same row is more likely to go bad again.
1215 */
1216static void ivybridge_parity_work(struct work_struct *work)
1217{
1218 struct drm_i915_private *dev_priv =
1219 container_of(work, struct drm_i915_private, l3_parity.error_work);
1220 u32 error_status, row, bank, subbank;
1221 char *parity_event[6];
1222 uint32_t misccpctl;
1223 unsigned long flags;
1224 uint8_t slice = 0;
1225
1226 /* We must turn off DOP level clock gating to access the L3 registers.
1227 * In order to prevent a get/put style interface, acquire struct mutex
1228 * any time we access those registers.
1229 */
1230 mutex_lock(&dev_priv->dev->struct_mutex);
1231
1232 /* If we've screwed up tracking, just let the interrupt fire again */
1233 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1234 goto out;
1235
1236 misccpctl = I915_READ(GEN7_MISCCPCTL);
1237 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1238 POSTING_READ(GEN7_MISCCPCTL);
1239
1240 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1241 u32 reg;
1242
1243 slice--;
1244 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1245 break;
1246
1247 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1248
1249 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1250
1251 error_status = I915_READ(reg);
1252 row = GEN7_PARITY_ERROR_ROW(error_status);
1253 bank = GEN7_PARITY_ERROR_BANK(error_status);
1254 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1255
1256 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1257 POSTING_READ(reg);
1258
1259 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1260 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1261 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1262 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1263 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1264 parity_event[5] = NULL;
1265
1266 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1267 KOBJ_CHANGE, parity_event);
1268
1269 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1270 slice, row, bank, subbank);
1271
1272 kfree(parity_event[4]);
1273 kfree(parity_event[3]);
1274 kfree(parity_event[2]);
1275 kfree(parity_event[1]);
1276 }
1277
1278 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1279
1280out:
1281 WARN_ON(dev_priv->l3_parity.which_slice);
1282 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1283 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1284 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1285
1286 mutex_unlock(&dev_priv->dev->struct_mutex);
1287}
1288
1289static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1290{
1291 struct drm_i915_private *dev_priv = dev->dev_private;
1292
1293 if (!HAS_L3_DPF(dev))
1294 return;
1295
1296 spin_lock(&dev_priv->irq_lock);
1297 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1298 spin_unlock(&dev_priv->irq_lock);
1299
1300 iir &= GT_PARITY_ERROR(dev);
1301 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1302 dev_priv->l3_parity.which_slice |= 1 << 1;
1303
1304 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1305 dev_priv->l3_parity.which_slice |= 1 << 0;
1306
1307 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1308}
1309
1310static void ilk_gt_irq_handler(struct drm_device *dev,
1311 struct drm_i915_private *dev_priv,
1312 u32 gt_iir)
1313{
1314 if (gt_iir &
1315 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1316 notify_ring(dev, &dev_priv->ring[RCS]);
1317 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1318 notify_ring(dev, &dev_priv->ring[VCS]);
1319}
1320
1321static void snb_gt_irq_handler(struct drm_device *dev,
1322 struct drm_i915_private *dev_priv,
1323 u32 gt_iir)
1324{
1325
1326 if (gt_iir &
1327 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1328 notify_ring(dev, &dev_priv->ring[RCS]);
1329 if (gt_iir & GT_BSD_USER_INTERRUPT)
1330 notify_ring(dev, &dev_priv->ring[VCS]);
1331 if (gt_iir & GT_BLT_USER_INTERRUPT)
1332 notify_ring(dev, &dev_priv->ring[BCS]);
1333
1334 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1335 GT_BSD_CS_ERROR_INTERRUPT |
1336 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1337 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1338 gt_iir);
1339 }
1340
1341 if (gt_iir & GT_PARITY_ERROR(dev))
1342 ivybridge_parity_error_irq_handler(dev, gt_iir);
1343}
1344
1345static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1346 struct drm_i915_private *dev_priv,
1347 u32 master_ctl)
1348{
1349 u32 rcs, bcs, vcs;
1350 uint32_t tmp = 0;
1351 irqreturn_t ret = IRQ_NONE;
1352
1353 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1354 tmp = I915_READ(GEN8_GT_IIR(0));
1355 if (tmp) {
1356 ret = IRQ_HANDLED;
1357 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1358 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1359 if (rcs & GT_RENDER_USER_INTERRUPT)
1360 notify_ring(dev, &dev_priv->ring[RCS]);
1361 if (bcs & GT_RENDER_USER_INTERRUPT)
1362 notify_ring(dev, &dev_priv->ring[BCS]);
1363 I915_WRITE(GEN8_GT_IIR(0), tmp);
1364 } else
1365 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1366 }
1367
1368 if (master_ctl & GEN8_GT_VCS1_IRQ) {
1369 tmp = I915_READ(GEN8_GT_IIR(1));
1370 if (tmp) {
1371 ret = IRQ_HANDLED;
1372 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1373 if (vcs & GT_RENDER_USER_INTERRUPT)
1374 notify_ring(dev, &dev_priv->ring[VCS]);
1375 I915_WRITE(GEN8_GT_IIR(1), tmp);
1376 } else
1377 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1378 }
1379
1380 if (master_ctl & GEN8_GT_VECS_IRQ) {
1381 tmp = I915_READ(GEN8_GT_IIR(3));
1382 if (tmp) {
1383 ret = IRQ_HANDLED;
1384 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1385 if (vcs & GT_RENDER_USER_INTERRUPT)
1386 notify_ring(dev, &dev_priv->ring[VECS]);
1387 I915_WRITE(GEN8_GT_IIR(3), tmp);
1388 } else
1389 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1390 }
1391
1392 return ret;
1393}
1394
1395#define HPD_STORM_DETECT_PERIOD 1000
1396#define HPD_STORM_THRESHOLD 5
1397
1398static inline void intel_hpd_irq_handler(struct drm_device *dev,
1399 u32 hotplug_trigger,
1400 const u32 *hpd)
1401{
1402 struct drm_i915_private *dev_priv = dev->dev_private;
1403 int i;
1404 bool storm_detected = false;
1405
1406 if (!hotplug_trigger)
1407 return;
1408
1409 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1410 hotplug_trigger);
1411
1412 spin_lock(&dev_priv->irq_lock);
1413 for (i = 1; i < HPD_NUM_PINS; i++) {
1414
1415 WARN_ONCE(hpd[i] & hotplug_trigger &&
1416 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED,
1417 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1418 hotplug_trigger, i, hpd[i]);
1419
1420 if (!(hpd[i] & hotplug_trigger) ||
1421 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1422 continue;
1423
1424 dev_priv->hpd_event_bits |= (1 << i);
1425 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1426 dev_priv->hpd_stats[i].hpd_last_jiffies
1427 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1428 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1429 dev_priv->hpd_stats[i].hpd_cnt = 0;
1430 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1431 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1432 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1433 dev_priv->hpd_event_bits &= ~(1 << i);
1434 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1435 storm_detected = true;
1436 } else {
1437 dev_priv->hpd_stats[i].hpd_cnt++;
1438 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1439 dev_priv->hpd_stats[i].hpd_cnt);
1440 }
1441 }
1442
1443 if (storm_detected)
1444 dev_priv->display.hpd_irq_setup(dev);
1445 spin_unlock(&dev_priv->irq_lock);
1446
1447 /*
1448 * Our hotplug handler can grab modeset locks (by calling down into the
1449 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1450 * queue for otherwise the flush_work in the pageflip code will
1451 * deadlock.
1452 */
1453 schedule_work(&dev_priv->hotplug_work);
1454}
1455
1456static void gmbus_irq_handler(struct drm_device *dev)
1457{
1458 struct drm_i915_private *dev_priv = dev->dev_private;
1459
1460 wake_up_all(&dev_priv->gmbus_wait_queue);
1461}
1462
1463static void dp_aux_irq_handler(struct drm_device *dev)
1464{
1465 struct drm_i915_private *dev_priv = dev->dev_private;
1466
1467 wake_up_all(&dev_priv->gmbus_wait_queue);
1468}
1469
1470#if defined(CONFIG_DEBUG_FS)
1471static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1472 uint32_t crc0, uint32_t crc1,
1473 uint32_t crc2, uint32_t crc3,
1474 uint32_t crc4)
1475{
1476 struct drm_i915_private *dev_priv = dev->dev_private;
1477 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1478 struct intel_pipe_crc_entry *entry;
1479 int head, tail;
1480
1481 spin_lock(&pipe_crc->lock);
1482
1483 if (!pipe_crc->entries) {
1484 spin_unlock(&pipe_crc->lock);
1485 DRM_ERROR("spurious interrupt\n");
1486 return;
1487 }
1488
1489 head = pipe_crc->head;
1490 tail = pipe_crc->tail;
1491
1492 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1493 spin_unlock(&pipe_crc->lock);
1494 DRM_ERROR("CRC buffer overflowing\n");
1495 return;
1496 }
1497
1498 entry = &pipe_crc->entries[head];
1499
1500 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1501 entry->crc[0] = crc0;
1502 entry->crc[1] = crc1;
1503 entry->crc[2] = crc2;
1504 entry->crc[3] = crc3;
1505 entry->crc[4] = crc4;
1506
1507 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1508 pipe_crc->head = head;
1509
1510 spin_unlock(&pipe_crc->lock);
1511
1512 wake_up_interruptible(&pipe_crc->wq);
1513}
1514#else
1515static inline void
1516display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1517 uint32_t crc0, uint32_t crc1,
1518 uint32_t crc2, uint32_t crc3,
1519 uint32_t crc4) {}
1520#endif
1521
1522
1523static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1524{
1525 struct drm_i915_private *dev_priv = dev->dev_private;
1526
1527 display_pipe_crc_irq_handler(dev, pipe,
1528 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1529 0, 0, 0, 0);
1530}
1531
1532static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1533{
1534 struct drm_i915_private *dev_priv = dev->dev_private;
1535
1536 display_pipe_crc_irq_handler(dev, pipe,
1537 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1538 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1539 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1540 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1541 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1542}
1543
1544static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1545{
1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547 uint32_t res1, res2;
1548
1549 if (INTEL_INFO(dev)->gen >= 3)
1550 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1551 else
1552 res1 = 0;
1553
1554 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1555 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1556 else
1557 res2 = 0;
1558
1559 display_pipe_crc_irq_handler(dev, pipe,
1560 I915_READ(PIPE_CRC_RES_RED(pipe)),
1561 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1562 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1563 res1, res2);
1564}
1565
1566/* The RPS events need forcewake, so we add them to a work queue and mask their
1567 * IMR bits until the work is done. Other interrupts can be processed without
1568 * the work queue. */
1569static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1570{
1571 if (pm_iir & dev_priv->pm_rps_events) {
1572 spin_lock(&dev_priv->irq_lock);
1573 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1574 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1575 spin_unlock(&dev_priv->irq_lock);
1576
1577 queue_work(dev_priv->wq, &dev_priv->rps.work);
1578 }
1579
1580 if (HAS_VEBOX(dev_priv->dev)) {
1581 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1582 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1583
1584 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1585 i915_handle_error(dev_priv->dev, false,
1586 "VEBOX CS error interrupt 0x%08x",
1587 pm_iir);
1588 }
1589 }
1590}
1591
1592static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1593{
1594 struct drm_i915_private *dev_priv = dev->dev_private;
1595 u32 pipe_stats[I915_MAX_PIPES] = { };
1596 int pipe;
1597
1598 spin_lock(&dev_priv->irq_lock);
1599 for_each_pipe(pipe) {
1600 int reg;
1601 u32 mask, iir_bit = 0;
1602
1603 /*
1604 * PIPESTAT bits get signalled even when the interrupt is
1605 * disabled with the mask bits, and some of the status bits do
1606 * not generate interrupts at all (like the underrun bit). Hence
1607 * we need to be careful that we only handle what we want to
1608 * handle.
1609 */
1610 mask = 0;
1611 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1612 mask |= PIPE_FIFO_UNDERRUN_STATUS;
1613
1614 switch (pipe) {
1615 case PIPE_A:
1616 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1617 break;
1618 case PIPE_B:
1619 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1620 break;
1621 }
1622 if (iir & iir_bit)
1623 mask |= dev_priv->pipestat_irq_mask[pipe];
1624
1625 if (!mask)
1626 continue;
1627
1628 reg = PIPESTAT(pipe);
1629 mask |= PIPESTAT_INT_ENABLE_MASK;
1630 pipe_stats[pipe] = I915_READ(reg) & mask;
1631
1632 /*
1633 * Clear the PIPE*STAT regs before the IIR
1634 */
1635 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1636 PIPESTAT_INT_STATUS_MASK))
1637 I915_WRITE(reg, pipe_stats[pipe]);
1638 }
1639 spin_unlock(&dev_priv->irq_lock);
1640
1641 for_each_pipe(pipe) {
1642 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1643 drm_handle_vblank(dev, pipe);
1644
1645 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1646 intel_prepare_page_flip(dev, pipe);
1647 intel_finish_page_flip(dev, pipe);
1648 }
1649
1650 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1651 i9xx_pipe_crc_irq_handler(dev, pipe);
1652
1653 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1654 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1655 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1656 }
1657
1658 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1659 gmbus_irq_handler(dev);
1660}
1661
1662static void i9xx_hpd_irq_handler(struct drm_device *dev)
1663{
1664 struct drm_i915_private *dev_priv = dev->dev_private;
1665 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1666
1667 if (IS_G4X(dev)) {
1668 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1669
1670 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_g4x);
1671 } else {
1672 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1673
1674 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1675 }
1676
1677 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1678 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1679 dp_aux_irq_handler(dev);
1680
1681 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1682 /*
1683 * Make sure hotplug status is cleared before we clear IIR, or else we
1684 * may miss hotplug events.
1685 */
1686 POSTING_READ(PORT_HOTPLUG_STAT);
1687}
1688
1689static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1690{
1691 struct drm_device *dev = (struct drm_device *) arg;
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693 u32 iir, gt_iir, pm_iir;
1694 irqreturn_t ret = IRQ_NONE;
1695
1696 while (true) {
1697 iir = I915_READ(VLV_IIR);
1698 gt_iir = I915_READ(GTIIR);
1699 pm_iir = I915_READ(GEN6_PMIIR);
1700
1701 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1702 goto out;
1703
1704 ret = IRQ_HANDLED;
1705
1706 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1707
1708 valleyview_pipestat_irq_handler(dev, iir);
1709
1710 /* Consume port. Then clear IIR or we'll miss events */
1711 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1712 i9xx_hpd_irq_handler(dev);
1713
1714 if (pm_iir)
1715 gen6_rps_irq_handler(dev_priv, pm_iir);
1716
1717 I915_WRITE(GTIIR, gt_iir);
1718 I915_WRITE(GEN6_PMIIR, pm_iir);
1719 I915_WRITE(VLV_IIR, iir);
1720 }
1721
1722out:
1723 return ret;
1724}
1725
1726static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1727{
1728 struct drm_i915_private *dev_priv = dev->dev_private;
1729 int pipe;
1730 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1731
1732 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1733
1734 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1735 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1736 SDE_AUDIO_POWER_SHIFT);
1737 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1738 port_name(port));
1739 }
1740
1741 if (pch_iir & SDE_AUX_MASK)
1742 dp_aux_irq_handler(dev);
1743
1744 if (pch_iir & SDE_GMBUS)
1745 gmbus_irq_handler(dev);
1746
1747 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1748 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1749
1750 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1751 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1752
1753 if (pch_iir & SDE_POISON)
1754 DRM_ERROR("PCH poison interrupt\n");
1755
1756 if (pch_iir & SDE_FDI_MASK)
1757 for_each_pipe(pipe)
1758 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1759 pipe_name(pipe),
1760 I915_READ(FDI_RX_IIR(pipe)));
1761
1762 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1763 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1764
1765 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1766 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1767
1768 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1769 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1770 false))
1771 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1772
1773 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1774 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1775 false))
1776 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1777}
1778
1779static void ivb_err_int_handler(struct drm_device *dev)
1780{
1781 struct drm_i915_private *dev_priv = dev->dev_private;
1782 u32 err_int = I915_READ(GEN7_ERR_INT);
1783 enum pipe pipe;
1784
1785 if (err_int & ERR_INT_POISON)
1786 DRM_ERROR("Poison interrupt\n");
1787
1788 for_each_pipe(pipe) {
1789 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1790 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1791 false))
1792 DRM_ERROR("Pipe %c FIFO underrun\n",
1793 pipe_name(pipe));
1794 }
1795
1796 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1797 if (IS_IVYBRIDGE(dev))
1798 ivb_pipe_crc_irq_handler(dev, pipe);
1799 else
1800 hsw_pipe_crc_irq_handler(dev, pipe);
1801 }
1802 }
1803
1804 I915_WRITE(GEN7_ERR_INT, err_int);
1805}
1806
1807static void cpt_serr_int_handler(struct drm_device *dev)
1808{
1809 struct drm_i915_private *dev_priv = dev->dev_private;
1810 u32 serr_int = I915_READ(SERR_INT);
1811
1812 if (serr_int & SERR_INT_POISON)
1813 DRM_ERROR("PCH poison interrupt\n");
1814
1815 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1816 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1817 false))
1818 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1819
1820 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1821 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1822 false))
1823 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1824
1825 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1826 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1827 false))
1828 DRM_ERROR("PCH transcoder C FIFO underrun\n");
1829
1830 I915_WRITE(SERR_INT, serr_int);
1831}
1832
1833static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1834{
1835 struct drm_i915_private *dev_priv = dev->dev_private;
1836 int pipe;
1837 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1838
1839 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1840
1841 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1842 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1843 SDE_AUDIO_POWER_SHIFT_CPT);
1844 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1845 port_name(port));
1846 }
1847
1848 if (pch_iir & SDE_AUX_MASK_CPT)
1849 dp_aux_irq_handler(dev);
1850
1851 if (pch_iir & SDE_GMBUS_CPT)
1852 gmbus_irq_handler(dev);
1853
1854 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1855 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1856
1857 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1858 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1859
1860 if (pch_iir & SDE_FDI_MASK_CPT)
1861 for_each_pipe(pipe)
1862 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1863 pipe_name(pipe),
1864 I915_READ(FDI_RX_IIR(pipe)));
1865
1866 if (pch_iir & SDE_ERROR_CPT)
1867 cpt_serr_int_handler(dev);
1868}
1869
1870static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1871{
1872 struct drm_i915_private *dev_priv = dev->dev_private;
1873 enum pipe pipe;
1874
1875 if (de_iir & DE_AUX_CHANNEL_A)
1876 dp_aux_irq_handler(dev);
1877
1878 if (de_iir & DE_GSE)
1879 intel_opregion_asle_intr(dev);
1880
1881 if (de_iir & DE_POISON)
1882 DRM_ERROR("Poison interrupt\n");
1883
1884 for_each_pipe(pipe) {
1885 if (de_iir & DE_PIPE_VBLANK(pipe))
1886 drm_handle_vblank(dev, pipe);
1887
1888 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1889 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1890 DRM_ERROR("Pipe %c FIFO underrun\n",
1891 pipe_name(pipe));
1892
1893 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1894 i9xx_pipe_crc_irq_handler(dev, pipe);
1895
1896 /* plane/pipes map 1:1 on ilk+ */
1897 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1898 intel_prepare_page_flip(dev, pipe);
1899 intel_finish_page_flip_plane(dev, pipe);
1900 }
1901 }
1902
1903 /* check event from PCH */
1904 if (de_iir & DE_PCH_EVENT) {
1905 u32 pch_iir = I915_READ(SDEIIR);
1906
1907 if (HAS_PCH_CPT(dev))
1908 cpt_irq_handler(dev, pch_iir);
1909 else
1910 ibx_irq_handler(dev, pch_iir);
1911
1912 /* should clear PCH hotplug event before clear CPU irq */
1913 I915_WRITE(SDEIIR, pch_iir);
1914 }
1915
1916 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1917 ironlake_rps_change_irq_handler(dev);
1918}
1919
1920static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1921{
1922 struct drm_i915_private *dev_priv = dev->dev_private;
1923 enum pipe pipe;
1924
1925 if (de_iir & DE_ERR_INT_IVB)
1926 ivb_err_int_handler(dev);
1927
1928 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1929 dp_aux_irq_handler(dev);
1930
1931 if (de_iir & DE_GSE_IVB)
1932 intel_opregion_asle_intr(dev);
1933
1934 for_each_pipe(pipe) {
1935 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1936 drm_handle_vblank(dev, pipe);
1937
1938 /* plane/pipes map 1:1 on ilk+ */
1939 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1940 intel_prepare_page_flip(dev, pipe);
1941 intel_finish_page_flip_plane(dev, pipe);
1942 }
1943 }
1944
1945 /* check event from PCH */
1946 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1947 u32 pch_iir = I915_READ(SDEIIR);
1948
1949 cpt_irq_handler(dev, pch_iir);
1950
1951 /* clear PCH hotplug event before clear CPU irq */
1952 I915_WRITE(SDEIIR, pch_iir);
1953 }
1954}
1955
1956static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1957{
1958 struct drm_device *dev = (struct drm_device *) arg;
1959 struct drm_i915_private *dev_priv = dev->dev_private;
1960 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1961 irqreturn_t ret = IRQ_NONE;
1962
1963 /* We get interrupts on unclaimed registers, so check for this before we
1964 * do any I915_{READ,WRITE}. */
1965 intel_uncore_check_errors(dev);
1966
1967 /* disable master interrupt before clearing iir */
1968 de_ier = I915_READ(DEIER);
1969 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1970 POSTING_READ(DEIER);
1971
1972 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1973 * interrupts will will be stored on its back queue, and then we'll be
1974 * able to process them after we restore SDEIER (as soon as we restore
1975 * it, we'll get an interrupt if SDEIIR still has something to process
1976 * due to its back queue). */
1977 if (!HAS_PCH_NOP(dev)) {
1978 sde_ier = I915_READ(SDEIER);
1979 I915_WRITE(SDEIER, 0);
1980 POSTING_READ(SDEIER);
1981 }
1982
1983 gt_iir = I915_READ(GTIIR);
1984 if (gt_iir) {
1985 if (INTEL_INFO(dev)->gen >= 6)
1986 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1987 else
1988 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1989 I915_WRITE(GTIIR, gt_iir);
1990 ret = IRQ_HANDLED;
1991 }
1992
1993 de_iir = I915_READ(DEIIR);
1994 if (de_iir) {
1995 if (INTEL_INFO(dev)->gen >= 7)
1996 ivb_display_irq_handler(dev, de_iir);
1997 else
1998 ilk_display_irq_handler(dev, de_iir);
1999 I915_WRITE(DEIIR, de_iir);
2000 ret = IRQ_HANDLED;
2001 }
2002
2003 if (INTEL_INFO(dev)->gen >= 6) {
2004 u32 pm_iir = I915_READ(GEN6_PMIIR);
2005 if (pm_iir) {
2006 gen6_rps_irq_handler(dev_priv, pm_iir);
2007 I915_WRITE(GEN6_PMIIR, pm_iir);
2008 ret = IRQ_HANDLED;
2009 }
2010 }
2011
2012 I915_WRITE(DEIER, de_ier);
2013 POSTING_READ(DEIER);
2014 if (!HAS_PCH_NOP(dev)) {
2015 I915_WRITE(SDEIER, sde_ier);
2016 POSTING_READ(SDEIER);
2017 }
2018
2019 return ret;
2020}
2021
2022static irqreturn_t gen8_irq_handler(int irq, void *arg)
2023{
2024 struct drm_device *dev = arg;
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026 u32 master_ctl;
2027 irqreturn_t ret = IRQ_NONE;
2028 uint32_t tmp = 0;
2029 enum pipe pipe;
2030
2031 master_ctl = I915_READ(GEN8_MASTER_IRQ);
2032 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2033 if (!master_ctl)
2034 return IRQ_NONE;
2035
2036 I915_WRITE(GEN8_MASTER_IRQ, 0);
2037 POSTING_READ(GEN8_MASTER_IRQ);
2038
2039 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2040
2041 if (master_ctl & GEN8_DE_MISC_IRQ) {
2042 tmp = I915_READ(GEN8_DE_MISC_IIR);
2043 if (tmp & GEN8_DE_MISC_GSE)
2044 intel_opregion_asle_intr(dev);
2045 else if (tmp)
2046 DRM_ERROR("Unexpected DE Misc interrupt\n");
2047 else
2048 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2049
2050 if (tmp) {
2051 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2052 ret = IRQ_HANDLED;
2053 }
2054 }
2055
2056 if (master_ctl & GEN8_DE_PORT_IRQ) {
2057 tmp = I915_READ(GEN8_DE_PORT_IIR);
2058 if (tmp & GEN8_AUX_CHANNEL_A)
2059 dp_aux_irq_handler(dev);
2060 else if (tmp)
2061 DRM_ERROR("Unexpected DE Port interrupt\n");
2062 else
2063 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2064
2065 if (tmp) {
2066 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2067 ret = IRQ_HANDLED;
2068 }
2069 }
2070
2071 for_each_pipe(pipe) {
2072 uint32_t pipe_iir;
2073
2074 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2075 continue;
2076
2077 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2078 if (pipe_iir & GEN8_PIPE_VBLANK)
2079 drm_handle_vblank(dev, pipe);
2080
2081 if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
2082 intel_prepare_page_flip(dev, pipe);
2083 intel_finish_page_flip_plane(dev, pipe);
2084 }
2085
2086 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2087 hsw_pipe_crc_irq_handler(dev, pipe);
2088
2089 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2090 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2091 false))
2092 DRM_ERROR("Pipe %c FIFO underrun\n",
2093 pipe_name(pipe));
2094 }
2095
2096 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2097 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2098 pipe_name(pipe),
2099 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2100 }
2101
2102 if (pipe_iir) {
2103 ret = IRQ_HANDLED;
2104 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2105 } else
2106 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2107 }
2108
2109 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2110 /*
2111 * FIXME(BDW): Assume for now that the new interrupt handling
2112 * scheme also closed the SDE interrupt handling race we've seen
2113 * on older pch-split platforms. But this needs testing.
2114 */
2115 u32 pch_iir = I915_READ(SDEIIR);
2116
2117 cpt_irq_handler(dev, pch_iir);
2118
2119 if (pch_iir) {
2120 I915_WRITE(SDEIIR, pch_iir);
2121 ret = IRQ_HANDLED;
2122 }
2123 }
2124
2125 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2126 POSTING_READ(GEN8_MASTER_IRQ);
2127
2128 return ret;
2129}
2130
2131static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2132 bool reset_completed)
2133{
2134 struct intel_ring_buffer *ring;
2135 int i;
2136
2137 /*
2138 * Notify all waiters for GPU completion events that reset state has
2139 * been changed, and that they need to restart their wait after
2140 * checking for potential errors (and bail out to drop locks if there is
2141 * a gpu reset pending so that i915_error_work_func can acquire them).
2142 */
2143
2144 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2145 for_each_ring(ring, dev_priv, i)
2146 wake_up_all(&ring->irq_queue);
2147
2148 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2149 wake_up_all(&dev_priv->pending_flip_queue);
2150
2151 /*
2152 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2153 * reset state is cleared.
2154 */
2155 if (reset_completed)
2156 wake_up_all(&dev_priv->gpu_error.reset_queue);
2157}
2158
2159/**
2160 * i915_error_work_func - do process context error handling work
2161 * @work: work struct
2162 *
2163 * Fire an error uevent so userspace can see that a hang or error
2164 * was detected.
2165 */
2166static void i915_error_work_func(struct work_struct *work)
2167{
2168 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2169 work);
2170 struct drm_i915_private *dev_priv =
2171 container_of(error, struct drm_i915_private, gpu_error);
2172 struct drm_device *dev = dev_priv->dev;
2173 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2174 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2175 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2176 int ret;
2177
2178 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2179
2180 /*
2181 * Note that there's only one work item which does gpu resets, so we
2182 * need not worry about concurrent gpu resets potentially incrementing
2183 * error->reset_counter twice. We only need to take care of another
2184 * racing irq/hangcheck declaring the gpu dead for a second time. A
2185 * quick check for that is good enough: schedule_work ensures the
2186 * correct ordering between hang detection and this work item, and since
2187 * the reset in-progress bit is only ever set by code outside of this
2188 * work we don't need to worry about any other races.
2189 */
2190 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2191 DRM_DEBUG_DRIVER("resetting chip\n");
2192 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2193 reset_event);
2194
2195 /*
2196 * All state reset _must_ be completed before we update the
2197 * reset counter, for otherwise waiters might miss the reset
2198 * pending state and not properly drop locks, resulting in
2199 * deadlocks with the reset work.
2200 */
2201 ret = i915_reset(dev);
2202
2203 intel_display_handle_reset(dev);
2204
2205 if (ret == 0) {
2206 /*
2207 * After all the gem state is reset, increment the reset
2208 * counter and wake up everyone waiting for the reset to
2209 * complete.
2210 *
2211 * Since unlock operations are a one-sided barrier only,
2212 * we need to insert a barrier here to order any seqno
2213 * updates before
2214 * the counter increment.
2215 */
2216 smp_mb__before_atomic_inc();
2217 atomic_inc(&dev_priv->gpu_error.reset_counter);
2218
2219 kobject_uevent_env(&dev->primary->kdev->kobj,
2220 KOBJ_CHANGE, reset_done_event);
2221 } else {
2222 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2223 }
2224
2225 /*
2226 * Note: The wake_up also serves as a memory barrier so that
2227 * waiters see the update value of the reset counter atomic_t.
2228 */
2229 i915_error_wake_up(dev_priv, true);
2230 }
2231}
2232
2233static void i915_report_and_clear_eir(struct drm_device *dev)
2234{
2235 struct drm_i915_private *dev_priv = dev->dev_private;
2236 uint32_t instdone[I915_NUM_INSTDONE_REG];
2237 u32 eir = I915_READ(EIR);
2238 int pipe, i;
2239
2240 if (!eir)
2241 return;
2242
2243 pr_err("render error detected, EIR: 0x%08x\n", eir);
2244
2245 i915_get_extra_instdone(dev, instdone);
2246
2247 if (IS_G4X(dev)) {
2248 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2249 u32 ipeir = I915_READ(IPEIR_I965);
2250
2251 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2252 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2253 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2254 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2255 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2256 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2257 I915_WRITE(IPEIR_I965, ipeir);
2258 POSTING_READ(IPEIR_I965);
2259 }
2260 if (eir & GM45_ERROR_PAGE_TABLE) {
2261 u32 pgtbl_err = I915_READ(PGTBL_ER);
2262 pr_err("page table error\n");
2263 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2264 I915_WRITE(PGTBL_ER, pgtbl_err);
2265 POSTING_READ(PGTBL_ER);
2266 }
2267 }
2268
2269 if (!IS_GEN2(dev)) {
2270 if (eir & I915_ERROR_PAGE_TABLE) {
2271 u32 pgtbl_err = I915_READ(PGTBL_ER);
2272 pr_err("page table error\n");
2273 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2274 I915_WRITE(PGTBL_ER, pgtbl_err);
2275 POSTING_READ(PGTBL_ER);
2276 }
2277 }
2278
2279 if (eir & I915_ERROR_MEMORY_REFRESH) {
2280 pr_err("memory refresh error:\n");
2281 for_each_pipe(pipe)
2282 pr_err("pipe %c stat: 0x%08x\n",
2283 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2284 /* pipestat has already been acked */
2285 }
2286 if (eir & I915_ERROR_INSTRUCTION) {
2287 pr_err("instruction error\n");
2288 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2289 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2290 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2291 if (INTEL_INFO(dev)->gen < 4) {
2292 u32 ipeir = I915_READ(IPEIR);
2293
2294 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2295 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2296 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2297 I915_WRITE(IPEIR, ipeir);
2298 POSTING_READ(IPEIR);
2299 } else {
2300 u32 ipeir = I915_READ(IPEIR_I965);
2301
2302 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2303 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2304 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2305 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2306 I915_WRITE(IPEIR_I965, ipeir);
2307 POSTING_READ(IPEIR_I965);
2308 }
2309 }
2310
2311 I915_WRITE(EIR, eir);
2312 POSTING_READ(EIR);
2313 eir = I915_READ(EIR);
2314 if (eir) {
2315 /*
2316 * some errors might have become stuck,
2317 * mask them.
2318 */
2319 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2320 I915_WRITE(EMR, I915_READ(EMR) | eir);
2321 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2322 }
2323}
2324
2325/**
2326 * i915_handle_error - handle an error interrupt
2327 * @dev: drm device
2328 *
2329 * Do some basic checking of regsiter state at error interrupt time and
2330 * dump it to the syslog. Also call i915_capture_error_state() to make
2331 * sure we get a record and make it available in debugfs. Fire a uevent
2332 * so userspace knows something bad happened (should trigger collection
2333 * of a ring dump etc.).
2334 */
2335void i915_handle_error(struct drm_device *dev, bool wedged,
2336 const char *fmt, ...)
2337{
2338 struct drm_i915_private *dev_priv = dev->dev_private;
2339 va_list args;
2340 char error_msg[80];
2341
2342 va_start(args, fmt);
2343 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2344 va_end(args);
2345
2346 i915_capture_error_state(dev, wedged, error_msg);
2347 i915_report_and_clear_eir(dev);
2348
2349 if (wedged) {
2350 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2351 &dev_priv->gpu_error.reset_counter);
2352
2353 /*
2354 * Wakeup waiting processes so that the reset work function
2355 * i915_error_work_func doesn't deadlock trying to grab various
2356 * locks. By bumping the reset counter first, the woken
2357 * processes will see a reset in progress and back off,
2358 * releasing their locks and then wait for the reset completion.
2359 * We must do this for _all_ gpu waiters that might hold locks
2360 * that the reset work needs to acquire.
2361 *
2362 * Note: The wake_up serves as the required memory barrier to
2363 * ensure that the waiters see the updated value of the reset
2364 * counter atomic_t.
2365 */
2366 i915_error_wake_up(dev_priv, false);
2367 }
2368
2369 /*
2370 * Our reset work can grab modeset locks (since it needs to reset the
2371 * state of outstanding pagelips). Hence it must not be run on our own
2372 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2373 * code will deadlock.
2374 */
2375 schedule_work(&dev_priv->gpu_error.work);
2376}
2377
2378static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2379{
2380 struct drm_i915_private *dev_priv = dev->dev_private;
2381 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2383 struct drm_i915_gem_object *obj;
2384 struct intel_unpin_work *work;
2385 unsigned long flags;
2386 bool stall_detected;
2387
2388 /* Ignore early vblank irqs */
2389 if (intel_crtc == NULL)
2390 return;
2391
2392 spin_lock_irqsave(&dev->event_lock, flags);
2393 work = intel_crtc->unpin_work;
2394
2395 if (work == NULL ||
2396 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2397 !work->enable_stall_check) {
2398 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2399 spin_unlock_irqrestore(&dev->event_lock, flags);
2400 return;
2401 }
2402
2403 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2404 obj = work->pending_flip_obj;
2405 if (INTEL_INFO(dev)->gen >= 4) {
2406 int dspsurf = DSPSURF(intel_crtc->plane);
2407 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2408 i915_gem_obj_ggtt_offset(obj);
2409 } else {
2410 int dspaddr = DSPADDR(intel_crtc->plane);
2411 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2412 crtc->y * crtc->fb->pitches[0] +
2413 crtc->x * crtc->fb->bits_per_pixel/8);
2414 }
2415
2416 spin_unlock_irqrestore(&dev->event_lock, flags);
2417
2418 if (stall_detected) {
2419 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2420 intel_prepare_page_flip(dev, intel_crtc->plane);
2421 }
2422}
2423
2424/* Called from drm generic code, passed 'crtc' which
2425 * we use as a pipe index
2426 */
2427static int i915_enable_vblank(struct drm_device *dev, int pipe)
2428{
2429 struct drm_i915_private *dev_priv = dev->dev_private;
2430 unsigned long irqflags;
2431
2432 if (!i915_pipe_enabled(dev, pipe))
2433 return -EINVAL;
2434
2435 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2436 if (INTEL_INFO(dev)->gen >= 4)
2437 i915_enable_pipestat(dev_priv, pipe,
2438 PIPE_START_VBLANK_INTERRUPT_STATUS);
2439 else
2440 i915_enable_pipestat(dev_priv, pipe,
2441 PIPE_VBLANK_INTERRUPT_STATUS);
2442
2443 /* maintain vblank delivery even in deep C-states */
2444 if (INTEL_INFO(dev)->gen == 3)
2445 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2446 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2447
2448 return 0;
2449}
2450
2451static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2452{
2453 struct drm_i915_private *dev_priv = dev->dev_private;
2454 unsigned long irqflags;
2455 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2456 DE_PIPE_VBLANK(pipe);
2457
2458 if (!i915_pipe_enabled(dev, pipe))
2459 return -EINVAL;
2460
2461 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2462 ironlake_enable_display_irq(dev_priv, bit);
2463 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2464
2465 return 0;
2466}
2467
2468static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2469{
2470 struct drm_i915_private *dev_priv = dev->dev_private;
2471 unsigned long irqflags;
2472
2473 if (!i915_pipe_enabled(dev, pipe))
2474 return -EINVAL;
2475
2476 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2477 i915_enable_pipestat(dev_priv, pipe,
2478 PIPE_START_VBLANK_INTERRUPT_STATUS);
2479 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2480
2481 return 0;
2482}
2483
2484static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2485{
2486 struct drm_i915_private *dev_priv = dev->dev_private;
2487 unsigned long irqflags;
2488
2489 if (!i915_pipe_enabled(dev, pipe))
2490 return -EINVAL;
2491
2492 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2493 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2494 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2495 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2496 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2497 return 0;
2498}
2499
2500/* Called from drm generic code, passed 'crtc' which
2501 * we use as a pipe index
2502 */
2503static void i915_disable_vblank(struct drm_device *dev, int pipe)
2504{
2505 struct drm_i915_private *dev_priv = dev->dev_private;
2506 unsigned long irqflags;
2507
2508 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2509 if (INTEL_INFO(dev)->gen == 3)
2510 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2511
2512 i915_disable_pipestat(dev_priv, pipe,
2513 PIPE_VBLANK_INTERRUPT_STATUS |
2514 PIPE_START_VBLANK_INTERRUPT_STATUS);
2515 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2516}
2517
2518static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2519{
2520 struct drm_i915_private *dev_priv = dev->dev_private;
2521 unsigned long irqflags;
2522 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2523 DE_PIPE_VBLANK(pipe);
2524
2525 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2526 ironlake_disable_display_irq(dev_priv, bit);
2527 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2528}
2529
2530static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2531{
2532 struct drm_i915_private *dev_priv = dev->dev_private;
2533 unsigned long irqflags;
2534
2535 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2536 i915_disable_pipestat(dev_priv, pipe,
2537 PIPE_START_VBLANK_INTERRUPT_STATUS);
2538 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2539}
2540
2541static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2542{
2543 struct drm_i915_private *dev_priv = dev->dev_private;
2544 unsigned long irqflags;
2545
2546 if (!i915_pipe_enabled(dev, pipe))
2547 return;
2548
2549 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2550 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2551 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2552 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2553 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2554}
2555
2556static u32
2557ring_last_seqno(struct intel_ring_buffer *ring)
2558{
2559 return list_entry(ring->request_list.prev,
2560 struct drm_i915_gem_request, list)->seqno;
2561}
2562
2563static bool
2564ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2565{
2566 return (list_empty(&ring->request_list) ||
2567 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2568}
2569
2570static bool
2571ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2572{
2573 if (INTEL_INFO(dev)->gen >= 8) {
2574 /*
2575 * FIXME: gen8 semaphore support - currently we don't emit
2576 * semaphores on bdw anyway, but this needs to be addressed when
2577 * we merge that code.
2578 */
2579 return false;
2580 } else {
2581 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2582 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2583 MI_SEMAPHORE_REGISTER);
2584 }
2585}
2586
2587static struct intel_ring_buffer *
2588semaphore_wait_to_signaller_ring(struct intel_ring_buffer *ring, u32 ipehr)
2589{
2590 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2591 struct intel_ring_buffer *signaller;
2592 int i;
2593
2594 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2595 /*
2596 * FIXME: gen8 semaphore support - currently we don't emit
2597 * semaphores on bdw anyway, but this needs to be addressed when
2598 * we merge that code.
2599 */
2600 return NULL;
2601 } else {
2602 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2603
2604 for_each_ring(signaller, dev_priv, i) {
2605 if(ring == signaller)
2606 continue;
2607
2608 if (sync_bits ==
2609 signaller->semaphore_register[ring->id])
2610 return signaller;
2611 }
2612 }
2613
2614 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x\n",
2615 ring->id, ipehr);
2616
2617 return NULL;
2618}
2619
2620static struct intel_ring_buffer *
2621semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2622{
2623 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2624 u32 cmd, ipehr, head;
2625 int i;
2626
2627 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2628 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2629 return NULL;
2630
2631 /*
2632 * HEAD is likely pointing to the dword after the actual command,
2633 * so scan backwards until we find the MBOX. But limit it to just 3
2634 * dwords. Note that we don't care about ACTHD here since that might
2635 * point at at batch, and semaphores are always emitted into the
2636 * ringbuffer itself.
2637 */
2638 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2639
2640 for (i = 4; i; --i) {
2641 /*
2642 * Be paranoid and presume the hw has gone off into the wild -
2643 * our ring is smaller than what the hardware (and hence
2644 * HEAD_ADDR) allows. Also handles wrap-around.
2645 */
2646 head &= ring->size - 1;
2647
2648 /* This here seems to blow up */
2649 cmd = ioread32(ring->virtual_start + head);
2650 if (cmd == ipehr)
2651 break;
2652
2653 head -= 4;
2654 }
2655
2656 if (!i)
2657 return NULL;
2658
2659 *seqno = ioread32(ring->virtual_start + head + 4) + 1;
2660 return semaphore_wait_to_signaller_ring(ring, ipehr);
2661}
2662
2663static int semaphore_passed(struct intel_ring_buffer *ring)
2664{
2665 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2666 struct intel_ring_buffer *signaller;
2667 u32 seqno, ctl;
2668
2669 ring->hangcheck.deadlock = true;
2670
2671 signaller = semaphore_waits_for(ring, &seqno);
2672 if (signaller == NULL || signaller->hangcheck.deadlock)
2673 return -1;
2674
2675 /* cursory check for an unkickable deadlock */
2676 ctl = I915_READ_CTL(signaller);
2677 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2678 return -1;
2679
2680 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2681}
2682
2683static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2684{
2685 struct intel_ring_buffer *ring;
2686 int i;
2687
2688 for_each_ring(ring, dev_priv, i)
2689 ring->hangcheck.deadlock = false;
2690}
2691
2692static enum intel_ring_hangcheck_action
2693ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
2694{
2695 struct drm_device *dev = ring->dev;
2696 struct drm_i915_private *dev_priv = dev->dev_private;
2697 u32 tmp;
2698
2699 if (ring->hangcheck.acthd != acthd)
2700 return HANGCHECK_ACTIVE;
2701
2702 if (IS_GEN2(dev))
2703 return HANGCHECK_HUNG;
2704
2705 /* Is the chip hanging on a WAIT_FOR_EVENT?
2706 * If so we can simply poke the RB_WAIT bit
2707 * and break the hang. This should work on
2708 * all but the second generation chipsets.
2709 */
2710 tmp = I915_READ_CTL(ring);
2711 if (tmp & RING_WAIT) {
2712 i915_handle_error(dev, false,
2713 "Kicking stuck wait on %s",
2714 ring->name);
2715 I915_WRITE_CTL(ring, tmp);
2716 return HANGCHECK_KICK;
2717 }
2718
2719 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2720 switch (semaphore_passed(ring)) {
2721 default:
2722 return HANGCHECK_HUNG;
2723 case 1:
2724 i915_handle_error(dev, false,
2725 "Kicking stuck semaphore on %s",
2726 ring->name);
2727 I915_WRITE_CTL(ring, tmp);
2728 return HANGCHECK_KICK;
2729 case 0:
2730 return HANGCHECK_WAIT;
2731 }
2732 }
2733
2734 return HANGCHECK_HUNG;
2735}
2736
2737/**
2738 * This is called when the chip hasn't reported back with completed
2739 * batchbuffers in a long time. We keep track per ring seqno progress and
2740 * if there are no progress, hangcheck score for that ring is increased.
2741 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2742 * we kick the ring. If we see no progress on three subsequent calls
2743 * we assume chip is wedged and try to fix it by resetting the chip.
2744 */
2745static void i915_hangcheck_elapsed(unsigned long data)
2746{
2747 struct drm_device *dev = (struct drm_device *)data;
2748 struct drm_i915_private *dev_priv = dev->dev_private;
2749 struct intel_ring_buffer *ring;
2750 int i;
2751 int busy_count = 0, rings_hung = 0;
2752 bool stuck[I915_NUM_RINGS] = { 0 };
2753#define BUSY 1
2754#define KICK 5
2755#define HUNG 20
2756
2757 if (!i915.enable_hangcheck)
2758 return;
2759
2760 for_each_ring(ring, dev_priv, i) {
2761 u64 acthd;
2762 u32 seqno;
2763 bool busy = true;
2764
2765 semaphore_clear_deadlocks(dev_priv);
2766
2767 seqno = ring->get_seqno(ring, false);
2768 acthd = intel_ring_get_active_head(ring);
2769
2770 if (ring->hangcheck.seqno == seqno) {
2771 if (ring_idle(ring, seqno)) {
2772 ring->hangcheck.action = HANGCHECK_IDLE;
2773
2774 if (waitqueue_active(&ring->irq_queue)) {
2775 /* Issue a wake-up to catch stuck h/w. */
2776 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2777 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2778 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2779 ring->name);
2780 else
2781 DRM_INFO("Fake missed irq on %s\n",
2782 ring->name);
2783 wake_up_all(&ring->irq_queue);
2784 }
2785 /* Safeguard against driver failure */
2786 ring->hangcheck.score += BUSY;
2787 } else
2788 busy = false;
2789 } else {
2790 /* We always increment the hangcheck score
2791 * if the ring is busy and still processing
2792 * the same request, so that no single request
2793 * can run indefinitely (such as a chain of
2794 * batches). The only time we do not increment
2795 * the hangcheck score on this ring, if this
2796 * ring is in a legitimate wait for another
2797 * ring. In that case the waiting ring is a
2798 * victim and we want to be sure we catch the
2799 * right culprit. Then every time we do kick
2800 * the ring, add a small increment to the
2801 * score so that we can catch a batch that is
2802 * being repeatedly kicked and so responsible
2803 * for stalling the machine.
2804 */
2805 ring->hangcheck.action = ring_stuck(ring,
2806 acthd);
2807
2808 switch (ring->hangcheck.action) {
2809 case HANGCHECK_IDLE:
2810 case HANGCHECK_WAIT:
2811 break;
2812 case HANGCHECK_ACTIVE:
2813 ring->hangcheck.score += BUSY;
2814 break;
2815 case HANGCHECK_KICK:
2816 ring->hangcheck.score += KICK;
2817 break;
2818 case HANGCHECK_HUNG:
2819 ring->hangcheck.score += HUNG;
2820 stuck[i] = true;
2821 break;
2822 }
2823 }
2824 } else {
2825 ring->hangcheck.action = HANGCHECK_ACTIVE;
2826
2827 /* Gradually reduce the count so that we catch DoS
2828 * attempts across multiple batches.
2829 */
2830 if (ring->hangcheck.score > 0)
2831 ring->hangcheck.score--;
2832 }
2833
2834 ring->hangcheck.seqno = seqno;
2835 ring->hangcheck.acthd = acthd;
2836 busy_count += busy;
2837 }
2838
2839 for_each_ring(ring, dev_priv, i) {
2840 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2841 DRM_INFO("%s on %s\n",
2842 stuck[i] ? "stuck" : "no progress",
2843 ring->name);
2844 rings_hung++;
2845 }
2846 }
2847
2848 if (rings_hung)
2849 return i915_handle_error(dev, true, "Ring hung");
2850
2851 if (busy_count)
2852 /* Reset timer case chip hangs without another request
2853 * being added */
2854 i915_queue_hangcheck(dev);
2855}
2856
2857void i915_queue_hangcheck(struct drm_device *dev)
2858{
2859 struct drm_i915_private *dev_priv = dev->dev_private;
2860 if (!i915.enable_hangcheck)
2861 return;
2862
2863 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2864 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2865}
2866
2867static void ibx_irq_preinstall(struct drm_device *dev)
2868{
2869 struct drm_i915_private *dev_priv = dev->dev_private;
2870
2871 if (HAS_PCH_NOP(dev))
2872 return;
2873
2874 GEN5_IRQ_RESET(SDE);
2875
2876 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2877 I915_WRITE(SERR_INT, 0xffffffff);
2878}
2879
2880/*
2881 * SDEIER is also touched by the interrupt handler to work around missed PCH
2882 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2883 * instead we unconditionally enable all PCH interrupt sources here, but then
2884 * only unmask them as needed with SDEIMR.
2885 *
2886 * This function needs to be called before interrupts are enabled.
2887 */
2888static void ibx_irq_pre_postinstall(struct drm_device *dev)
2889{
2890 struct drm_i915_private *dev_priv = dev->dev_private;
2891
2892 if (HAS_PCH_NOP(dev))
2893 return;
2894
2895 WARN_ON(I915_READ(SDEIER) != 0);
2896 I915_WRITE(SDEIER, 0xffffffff);
2897 POSTING_READ(SDEIER);
2898}
2899
2900static void gen5_gt_irq_reset(struct drm_device *dev)
2901{
2902 struct drm_i915_private *dev_priv = dev->dev_private;
2903
2904 GEN5_IRQ_RESET(GT);
2905 if (INTEL_INFO(dev)->gen >= 6)
2906 GEN5_IRQ_RESET(GEN6_PM);
2907}
2908
2909/* drm_dma.h hooks
2910*/
2911static void ironlake_irq_preinstall(struct drm_device *dev)
2912{
2913 struct drm_i915_private *dev_priv = dev->dev_private;
2914
2915 I915_WRITE(HWSTAM, 0xeffe);
2916
2917 GEN5_IRQ_RESET(DE);
2918 if (IS_GEN7(dev))
2919 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2920
2921 gen5_gt_irq_reset(dev);
2922
2923 ibx_irq_preinstall(dev);
2924}
2925
2926static void valleyview_irq_preinstall(struct drm_device *dev)
2927{
2928 struct drm_i915_private *dev_priv = dev->dev_private;
2929 int pipe;
2930
2931 /* VLV magic */
2932 I915_WRITE(VLV_IMR, 0);
2933 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2934 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2935 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2936
2937 /* and GT */
2938 I915_WRITE(GTIIR, I915_READ(GTIIR));
2939 I915_WRITE(GTIIR, I915_READ(GTIIR));
2940
2941 gen5_gt_irq_reset(dev);
2942
2943 I915_WRITE(DPINVGTT, 0xff);
2944
2945 I915_WRITE(PORT_HOTPLUG_EN, 0);
2946 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2947 for_each_pipe(pipe)
2948 I915_WRITE(PIPESTAT(pipe), 0xffff);
2949 I915_WRITE(VLV_IIR, 0xffffffff);
2950 I915_WRITE(VLV_IMR, 0xffffffff);
2951 I915_WRITE(VLV_IER, 0x0);
2952 POSTING_READ(VLV_IER);
2953}
2954
2955static void gen8_irq_preinstall(struct drm_device *dev)
2956{
2957 struct drm_i915_private *dev_priv = dev->dev_private;
2958 int pipe;
2959
2960 I915_WRITE(GEN8_MASTER_IRQ, 0);
2961 POSTING_READ(GEN8_MASTER_IRQ);
2962
2963 GEN8_IRQ_RESET_NDX(GT, 0);
2964 GEN8_IRQ_RESET_NDX(GT, 1);
2965 GEN8_IRQ_RESET_NDX(GT, 2);
2966 GEN8_IRQ_RESET_NDX(GT, 3);
2967
2968 for_each_pipe(pipe) {
2969 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2970 }
2971
2972 GEN5_IRQ_RESET(GEN8_DE_PORT_);
2973 GEN5_IRQ_RESET(GEN8_DE_MISC_);
2974 GEN5_IRQ_RESET(GEN8_PCU_);
2975
2976 ibx_irq_preinstall(dev);
2977}
2978
2979static void ibx_hpd_irq_setup(struct drm_device *dev)
2980{
2981 struct drm_i915_private *dev_priv = dev->dev_private;
2982 struct drm_mode_config *mode_config = &dev->mode_config;
2983 struct intel_encoder *intel_encoder;
2984 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2985
2986 if (HAS_PCH_IBX(dev)) {
2987 hotplug_irqs = SDE_HOTPLUG_MASK;
2988 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2989 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2990 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2991 } else {
2992 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2993 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2994 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2995 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2996 }
2997
2998 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2999
3000 /*
3001 * Enable digital hotplug on the PCH, and configure the DP short pulse
3002 * duration to 2ms (which is the minimum in the Display Port spec)
3003 *
3004 * This register is the same on all known PCH chips.
3005 */
3006 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3007 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3008 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3009 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3010 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3011 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3012}
3013
3014static void ibx_irq_postinstall(struct drm_device *dev)
3015{
3016 struct drm_i915_private *dev_priv = dev->dev_private;
3017 u32 mask;
3018
3019 if (HAS_PCH_NOP(dev))
3020 return;
3021
3022 if (HAS_PCH_IBX(dev))
3023 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3024 else
3025 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3026
3027 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3028 I915_WRITE(SDEIMR, ~mask);
3029}
3030
3031static void gen5_gt_irq_postinstall(struct drm_device *dev)
3032{
3033 struct drm_i915_private *dev_priv = dev->dev_private;
3034 u32 pm_irqs, gt_irqs;
3035
3036 pm_irqs = gt_irqs = 0;
3037
3038 dev_priv->gt_irq_mask = ~0;
3039 if (HAS_L3_DPF(dev)) {
3040 /* L3 parity interrupt is always unmasked. */
3041 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3042 gt_irqs |= GT_PARITY_ERROR(dev);
3043 }
3044
3045 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3046 if (IS_GEN5(dev)) {
3047 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3048 ILK_BSD_USER_INTERRUPT;
3049 } else {
3050 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3051 }
3052
3053 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3054
3055 if (INTEL_INFO(dev)->gen >= 6) {
3056 pm_irqs |= dev_priv->pm_rps_events;
3057
3058 if (HAS_VEBOX(dev))
3059 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3060
3061 dev_priv->pm_irq_mask = 0xffffffff;
3062 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3063 }
3064}
3065
3066static int ironlake_irq_postinstall(struct drm_device *dev)
3067{
3068 unsigned long irqflags;
3069 struct drm_i915_private *dev_priv = dev->dev_private;
3070 u32 display_mask, extra_mask;
3071
3072 if (INTEL_INFO(dev)->gen >= 7) {
3073 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3074 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3075 DE_PLANEB_FLIP_DONE_IVB |
3076 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3077 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3078 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3079 } else {
3080 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3081 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3082 DE_AUX_CHANNEL_A |
3083 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3084 DE_POISON);
3085 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3086 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3087 }
3088
3089 dev_priv->irq_mask = ~display_mask;
3090
3091 ibx_irq_pre_postinstall(dev);
3092
3093 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3094
3095 gen5_gt_irq_postinstall(dev);
3096
3097 ibx_irq_postinstall(dev);
3098
3099 if (IS_IRONLAKE_M(dev)) {
3100 /* Enable PCU event interrupts
3101 *
3102 * spinlocking not required here for correctness since interrupt
3103 * setup is guaranteed to run in single-threaded context. But we
3104 * need it to make the assert_spin_locked happy. */
3105 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3106 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3107 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3108 }
3109
3110 return 0;
3111}
3112
3113static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3114{
3115 u32 pipestat_mask;
3116 u32 iir_mask;
3117
3118 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3119 PIPE_FIFO_UNDERRUN_STATUS;
3120
3121 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3122 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3123 POSTING_READ(PIPESTAT(PIPE_A));
3124
3125 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3126 PIPE_CRC_DONE_INTERRUPT_STATUS;
3127
3128 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3129 PIPE_GMBUS_INTERRUPT_STATUS);
3130 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3131
3132 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3133 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3134 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3135 dev_priv->irq_mask &= ~iir_mask;
3136
3137 I915_WRITE(VLV_IIR, iir_mask);
3138 I915_WRITE(VLV_IIR, iir_mask);
3139 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3140 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3141 POSTING_READ(VLV_IER);
3142}
3143
3144static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3145{
3146 u32 pipestat_mask;
3147 u32 iir_mask;
3148
3149 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3150 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3151 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3152
3153 dev_priv->irq_mask |= iir_mask;
3154 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3155 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3156 I915_WRITE(VLV_IIR, iir_mask);
3157 I915_WRITE(VLV_IIR, iir_mask);
3158 POSTING_READ(VLV_IIR);
3159
3160 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3161 PIPE_CRC_DONE_INTERRUPT_STATUS;
3162
3163 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3164 PIPE_GMBUS_INTERRUPT_STATUS);
3165 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3166
3167 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3168 PIPE_FIFO_UNDERRUN_STATUS;
3169 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3170 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3171 POSTING_READ(PIPESTAT(PIPE_A));
3172}
3173
3174void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3175{
3176 assert_spin_locked(&dev_priv->irq_lock);
3177
3178 if (dev_priv->display_irqs_enabled)
3179 return;
3180
3181 dev_priv->display_irqs_enabled = true;
3182
3183 if (dev_priv->dev->irq_enabled)
3184 valleyview_display_irqs_install(dev_priv);
3185}
3186
3187void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3188{
3189 assert_spin_locked(&dev_priv->irq_lock);
3190
3191 if (!dev_priv->display_irqs_enabled)
3192 return;
3193
3194 dev_priv->display_irqs_enabled = false;
3195
3196 if (dev_priv->dev->irq_enabled)
3197 valleyview_display_irqs_uninstall(dev_priv);
3198}
3199
3200static int valleyview_irq_postinstall(struct drm_device *dev)
3201{
3202 struct drm_i915_private *dev_priv = dev->dev_private;
3203 unsigned long irqflags;
3204
3205 dev_priv->irq_mask = ~0;
3206
3207 I915_WRITE(PORT_HOTPLUG_EN, 0);
3208 POSTING_READ(PORT_HOTPLUG_EN);
3209
3210 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3211 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3212 I915_WRITE(VLV_IIR, 0xffffffff);
3213 POSTING_READ(VLV_IER);
3214
3215 /* Interrupt setup is already guaranteed to be single-threaded, this is
3216 * just to make the assert_spin_locked check happy. */
3217 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3218 if (dev_priv->display_irqs_enabled)
3219 valleyview_display_irqs_install(dev_priv);
3220 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3221
3222 I915_WRITE(VLV_IIR, 0xffffffff);
3223 I915_WRITE(VLV_IIR, 0xffffffff);
3224
3225 gen5_gt_irq_postinstall(dev);
3226
3227 /* ack & enable invalid PTE error interrupts */
3228#if 0 /* FIXME: add support to irq handler for checking these bits */
3229 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3230 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3231#endif
3232
3233 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3234
3235 return 0;
3236}
3237
3238static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3239{
3240 int i;
3241
3242 /* These are interrupts we'll toggle with the ring mask register */
3243 uint32_t gt_interrupts[] = {
3244 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3245 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3246 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3247 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3248 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3249 0,
3250 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3251 };
3252
3253 for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3254 GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3255}
3256
3257static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3258{
3259 struct drm_device *dev = dev_priv->dev;
3260 uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
3261 GEN8_PIPE_CDCLK_CRC_DONE |
3262 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3263 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3264 GEN8_PIPE_FIFO_UNDERRUN;
3265 int pipe;
3266 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3267 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3268 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3269
3270 for_each_pipe(pipe)
3271 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe],
3272 de_pipe_enables);
3273
3274 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3275}
3276
3277static int gen8_irq_postinstall(struct drm_device *dev)
3278{
3279 struct drm_i915_private *dev_priv = dev->dev_private;
3280
3281 ibx_irq_pre_postinstall(dev);
3282
3283 gen8_gt_irq_postinstall(dev_priv);
3284 gen8_de_irq_postinstall(dev_priv);
3285
3286 ibx_irq_postinstall(dev);
3287
3288 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3289 POSTING_READ(GEN8_MASTER_IRQ);
3290
3291 return 0;
3292}
3293
3294static void ibx_irq_uninstall(struct drm_device *dev)
3295{
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297
3298 if (HAS_PCH_NOP(dev))
3299 return;
3300
3301 GEN5_IRQ_RESET(SDE);
3302
3303 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3304 I915_WRITE(SERR_INT, 0xffffffff);
3305}
3306
3307static void gen8_irq_uninstall(struct drm_device *dev)
3308{
3309 struct drm_i915_private *dev_priv = dev->dev_private;
3310 int pipe;
3311
3312 if (!dev_priv)
3313 return;
3314
3315 I915_WRITE(GEN8_MASTER_IRQ, 0);
3316
3317 GEN8_IRQ_RESET_NDX(GT, 0);
3318 GEN8_IRQ_RESET_NDX(GT, 1);
3319 GEN8_IRQ_RESET_NDX(GT, 2);
3320 GEN8_IRQ_RESET_NDX(GT, 3);
3321
3322 for_each_pipe(pipe)
3323 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3324
3325 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3326 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3327 GEN5_IRQ_RESET(GEN8_PCU_);
3328
3329 ibx_irq_uninstall(dev);
3330}
3331
3332static void valleyview_irq_uninstall(struct drm_device *dev)
3333{
3334 struct drm_i915_private *dev_priv = dev->dev_private;
3335 unsigned long irqflags;
3336 int pipe;
3337
3338 if (!dev_priv)
3339 return;
3340
3341 intel_hpd_irq_uninstall(dev_priv);
3342
3343 for_each_pipe(pipe)
3344 I915_WRITE(PIPESTAT(pipe), 0xffff);
3345
3346 I915_WRITE(HWSTAM, 0xffffffff);
3347 I915_WRITE(PORT_HOTPLUG_EN, 0);
3348 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3349
3350 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3351 if (dev_priv->display_irqs_enabled)
3352 valleyview_display_irqs_uninstall(dev_priv);
3353 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3354
3355 dev_priv->irq_mask = 0;
3356
3357 I915_WRITE(VLV_IIR, 0xffffffff);
3358 I915_WRITE(VLV_IMR, 0xffffffff);
3359 I915_WRITE(VLV_IER, 0x0);
3360 POSTING_READ(VLV_IER);
3361}
3362
3363static void ironlake_irq_uninstall(struct drm_device *dev)
3364{
3365 struct drm_i915_private *dev_priv = dev->dev_private;
3366
3367 if (!dev_priv)
3368 return;
3369
3370 intel_hpd_irq_uninstall(dev_priv);
3371
3372 I915_WRITE(HWSTAM, 0xffffffff);
3373
3374 GEN5_IRQ_RESET(DE);
3375 if (IS_GEN7(dev))
3376 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3377
3378 gen5_gt_irq_reset(dev);
3379
3380 ibx_irq_uninstall(dev);
3381}
3382
3383static void i8xx_irq_preinstall(struct drm_device * dev)
3384{
3385 struct drm_i915_private *dev_priv = dev->dev_private;
3386 int pipe;
3387
3388 for_each_pipe(pipe)
3389 I915_WRITE(PIPESTAT(pipe), 0);
3390 I915_WRITE16(IMR, 0xffff);
3391 I915_WRITE16(IER, 0x0);
3392 POSTING_READ16(IER);
3393}
3394
3395static int i8xx_irq_postinstall(struct drm_device *dev)
3396{
3397 struct drm_i915_private *dev_priv = dev->dev_private;
3398 unsigned long irqflags;
3399
3400 I915_WRITE16(EMR,
3401 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3402
3403 /* Unmask the interrupts that we always want on. */
3404 dev_priv->irq_mask =
3405 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3406 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3407 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3408 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3409 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3410 I915_WRITE16(IMR, dev_priv->irq_mask);
3411
3412 I915_WRITE16(IER,
3413 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3414 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3415 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3416 I915_USER_INTERRUPT);
3417 POSTING_READ16(IER);
3418
3419 /* Interrupt setup is already guaranteed to be single-threaded, this is
3420 * just to make the assert_spin_locked check happy. */
3421 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3422 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3423 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3424 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3425
3426 return 0;
3427}
3428
3429/*
3430 * Returns true when a page flip has completed.
3431 */
3432static bool i8xx_handle_vblank(struct drm_device *dev,
3433 int plane, int pipe, u32 iir)
3434{
3435 struct drm_i915_private *dev_priv = dev->dev_private;
3436 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3437
3438 if (!drm_handle_vblank(dev, pipe))
3439 return false;
3440
3441 if ((iir & flip_pending) == 0)
3442 return false;
3443
3444 intel_prepare_page_flip(dev, plane);
3445
3446 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3447 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3448 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3449 * the flip is completed (no longer pending). Since this doesn't raise
3450 * an interrupt per se, we watch for the change at vblank.
3451 */
3452 if (I915_READ16(ISR) & flip_pending)
3453 return false;
3454
3455 intel_finish_page_flip(dev, pipe);
3456
3457 return true;
3458}
3459
3460static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3461{
3462 struct drm_device *dev = (struct drm_device *) arg;
3463 struct drm_i915_private *dev_priv = dev->dev_private;
3464 u16 iir, new_iir;
3465 u32 pipe_stats[2];
3466 unsigned long irqflags;
3467 int pipe;
3468 u16 flip_mask =
3469 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3470 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3471
3472 iir = I915_READ16(IIR);
3473 if (iir == 0)
3474 return IRQ_NONE;
3475
3476 while (iir & ~flip_mask) {
3477 /* Can't rely on pipestat interrupt bit in iir as it might
3478 * have been cleared after the pipestat interrupt was received.
3479 * It doesn't set the bit in iir again, but it still produces
3480 * interrupts (for non-MSI).
3481 */
3482 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3483 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3484 i915_handle_error(dev, false,
3485 "Command parser error, iir 0x%08x",
3486 iir);
3487
3488 for_each_pipe(pipe) {
3489 int reg = PIPESTAT(pipe);
3490 pipe_stats[pipe] = I915_READ(reg);
3491
3492 /*
3493 * Clear the PIPE*STAT regs before the IIR
3494 */
3495 if (pipe_stats[pipe] & 0x8000ffff)
3496 I915_WRITE(reg, pipe_stats[pipe]);
3497 }
3498 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3499
3500 I915_WRITE16(IIR, iir & ~flip_mask);
3501 new_iir = I915_READ16(IIR); /* Flush posted writes */
3502
3503 i915_update_dri1_breadcrumb(dev);
3504
3505 if (iir & I915_USER_INTERRUPT)
3506 notify_ring(dev, &dev_priv->ring[RCS]);
3507
3508 for_each_pipe(pipe) {
3509 int plane = pipe;
3510 if (HAS_FBC(dev))
3511 plane = !plane;
3512
3513 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3514 i8xx_handle_vblank(dev, plane, pipe, iir))
3515 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3516
3517 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3518 i9xx_pipe_crc_irq_handler(dev, pipe);
3519
3520 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3521 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3522 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3523 }
3524
3525 iir = new_iir;
3526 }
3527
3528 return IRQ_HANDLED;
3529}
3530
3531static void i8xx_irq_uninstall(struct drm_device * dev)
3532{
3533 struct drm_i915_private *dev_priv = dev->dev_private;
3534 int pipe;
3535
3536 for_each_pipe(pipe) {
3537 /* Clear enable bits; then clear status bits */
3538 I915_WRITE(PIPESTAT(pipe), 0);
3539 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3540 }
3541 I915_WRITE16(IMR, 0xffff);
3542 I915_WRITE16(IER, 0x0);
3543 I915_WRITE16(IIR, I915_READ16(IIR));
3544}
3545
3546static void i915_irq_preinstall(struct drm_device * dev)
3547{
3548 struct drm_i915_private *dev_priv = dev->dev_private;
3549 int pipe;
3550
3551 if (I915_HAS_HOTPLUG(dev)) {
3552 I915_WRITE(PORT_HOTPLUG_EN, 0);
3553 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3554 }
3555
3556 I915_WRITE16(HWSTAM, 0xeffe);
3557 for_each_pipe(pipe)
3558 I915_WRITE(PIPESTAT(pipe), 0);
3559 I915_WRITE(IMR, 0xffffffff);
3560 I915_WRITE(IER, 0x0);
3561 POSTING_READ(IER);
3562}
3563
3564static int i915_irq_postinstall(struct drm_device *dev)
3565{
3566 struct drm_i915_private *dev_priv = dev->dev_private;
3567 u32 enable_mask;
3568 unsigned long irqflags;
3569
3570 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3571
3572 /* Unmask the interrupts that we always want on. */
3573 dev_priv->irq_mask =
3574 ~(I915_ASLE_INTERRUPT |
3575 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3576 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3577 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3578 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3579 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3580
3581 enable_mask =
3582 I915_ASLE_INTERRUPT |
3583 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3584 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3585 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3586 I915_USER_INTERRUPT;
3587
3588 if (I915_HAS_HOTPLUG(dev)) {
3589 I915_WRITE(PORT_HOTPLUG_EN, 0);
3590 POSTING_READ(PORT_HOTPLUG_EN);
3591
3592 /* Enable in IER... */
3593 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3594 /* and unmask in IMR */
3595 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3596 }
3597
3598 I915_WRITE(IMR, dev_priv->irq_mask);
3599 I915_WRITE(IER, enable_mask);
3600 POSTING_READ(IER);
3601
3602 i915_enable_asle_pipestat(dev);
3603
3604 /* Interrupt setup is already guaranteed to be single-threaded, this is
3605 * just to make the assert_spin_locked check happy. */
3606 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3607 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3608 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3609 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3610
3611 return 0;
3612}
3613
3614/*
3615 * Returns true when a page flip has completed.
3616 */
3617static bool i915_handle_vblank(struct drm_device *dev,
3618 int plane, int pipe, u32 iir)
3619{
3620 struct drm_i915_private *dev_priv = dev->dev_private;
3621 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3622
3623 if (!drm_handle_vblank(dev, pipe))
3624 return false;
3625
3626 if ((iir & flip_pending) == 0)
3627 return false;
3628
3629 intel_prepare_page_flip(dev, plane);
3630
3631 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3632 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3633 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3634 * the flip is completed (no longer pending). Since this doesn't raise
3635 * an interrupt per se, we watch for the change at vblank.
3636 */
3637 if (I915_READ(ISR) & flip_pending)
3638 return false;
3639
3640 intel_finish_page_flip(dev, pipe);
3641
3642 return true;
3643}
3644
3645static irqreturn_t i915_irq_handler(int irq, void *arg)
3646{
3647 struct drm_device *dev = (struct drm_device *) arg;
3648 struct drm_i915_private *dev_priv = dev->dev_private;
3649 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3650 unsigned long irqflags;
3651 u32 flip_mask =
3652 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3653 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3654 int pipe, ret = IRQ_NONE;
3655
3656 iir = I915_READ(IIR);
3657 do {
3658 bool irq_received = (iir & ~flip_mask) != 0;
3659 bool blc_event = false;
3660
3661 /* Can't rely on pipestat interrupt bit in iir as it might
3662 * have been cleared after the pipestat interrupt was received.
3663 * It doesn't set the bit in iir again, but it still produces
3664 * interrupts (for non-MSI).
3665 */
3666 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3667 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3668 i915_handle_error(dev, false,
3669 "Command parser error, iir 0x%08x",
3670 iir);
3671
3672 for_each_pipe(pipe) {
3673 int reg = PIPESTAT(pipe);
3674 pipe_stats[pipe] = I915_READ(reg);
3675
3676 /* Clear the PIPE*STAT regs before the IIR */
3677 if (pipe_stats[pipe] & 0x8000ffff) {
3678 I915_WRITE(reg, pipe_stats[pipe]);
3679 irq_received = true;
3680 }
3681 }
3682 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3683
3684 if (!irq_received)
3685 break;
3686
3687 /* Consume port. Then clear IIR or we'll miss events */
3688 if (I915_HAS_HOTPLUG(dev) &&
3689 iir & I915_DISPLAY_PORT_INTERRUPT)
3690 i9xx_hpd_irq_handler(dev);
3691
3692 I915_WRITE(IIR, iir & ~flip_mask);
3693 new_iir = I915_READ(IIR); /* Flush posted writes */
3694
3695 if (iir & I915_USER_INTERRUPT)
3696 notify_ring(dev, &dev_priv->ring[RCS]);
3697
3698 for_each_pipe(pipe) {
3699 int plane = pipe;
3700 if (HAS_FBC(dev))
3701 plane = !plane;
3702
3703 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3704 i915_handle_vblank(dev, plane, pipe, iir))
3705 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3706
3707 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3708 blc_event = true;
3709
3710 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3711 i9xx_pipe_crc_irq_handler(dev, pipe);
3712
3713 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3714 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3715 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3716 }
3717
3718 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3719 intel_opregion_asle_intr(dev);
3720
3721 /* With MSI, interrupts are only generated when iir
3722 * transitions from zero to nonzero. If another bit got
3723 * set while we were handling the existing iir bits, then
3724 * we would never get another interrupt.
3725 *
3726 * This is fine on non-MSI as well, as if we hit this path
3727 * we avoid exiting the interrupt handler only to generate
3728 * another one.
3729 *
3730 * Note that for MSI this could cause a stray interrupt report
3731 * if an interrupt landed in the time between writing IIR and
3732 * the posting read. This should be rare enough to never
3733 * trigger the 99% of 100,000 interrupts test for disabling
3734 * stray interrupts.
3735 */
3736 ret = IRQ_HANDLED;
3737 iir = new_iir;
3738 } while (iir & ~flip_mask);
3739
3740 i915_update_dri1_breadcrumb(dev);
3741
3742 return ret;
3743}
3744
3745static void i915_irq_uninstall(struct drm_device * dev)
3746{
3747 struct drm_i915_private *dev_priv = dev->dev_private;
3748 int pipe;
3749
3750 intel_hpd_irq_uninstall(dev_priv);
3751
3752 if (I915_HAS_HOTPLUG(dev)) {
3753 I915_WRITE(PORT_HOTPLUG_EN, 0);
3754 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3755 }
3756
3757 I915_WRITE16(HWSTAM, 0xffff);
3758 for_each_pipe(pipe) {
3759 /* Clear enable bits; then clear status bits */
3760 I915_WRITE(PIPESTAT(pipe), 0);
3761 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3762 }
3763 I915_WRITE(IMR, 0xffffffff);
3764 I915_WRITE(IER, 0x0);
3765
3766 I915_WRITE(IIR, I915_READ(IIR));
3767}
3768
3769static void i965_irq_preinstall(struct drm_device * dev)
3770{
3771 struct drm_i915_private *dev_priv = dev->dev_private;
3772 int pipe;
3773
3774 I915_WRITE(PORT_HOTPLUG_EN, 0);
3775 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3776
3777 I915_WRITE(HWSTAM, 0xeffe);
3778 for_each_pipe(pipe)
3779 I915_WRITE(PIPESTAT(pipe), 0);
3780 I915_WRITE(IMR, 0xffffffff);
3781 I915_WRITE(IER, 0x0);
3782 POSTING_READ(IER);
3783}
3784
3785static int i965_irq_postinstall(struct drm_device *dev)
3786{
3787 struct drm_i915_private *dev_priv = dev->dev_private;
3788 u32 enable_mask;
3789 u32 error_mask;
3790 unsigned long irqflags;
3791
3792 /* Unmask the interrupts that we always want on. */
3793 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3794 I915_DISPLAY_PORT_INTERRUPT |
3795 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3796 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3797 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3798 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3799 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3800
3801 enable_mask = ~dev_priv->irq_mask;
3802 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3803 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3804 enable_mask |= I915_USER_INTERRUPT;
3805
3806 if (IS_G4X(dev))
3807 enable_mask |= I915_BSD_USER_INTERRUPT;
3808
3809 /* Interrupt setup is already guaranteed to be single-threaded, this is
3810 * just to make the assert_spin_locked check happy. */
3811 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3812 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3813 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3814 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3815 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3816
3817 /*
3818 * Enable some error detection, note the instruction error mask
3819 * bit is reserved, so we leave it masked.
3820 */
3821 if (IS_G4X(dev)) {
3822 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3823 GM45_ERROR_MEM_PRIV |
3824 GM45_ERROR_CP_PRIV |
3825 I915_ERROR_MEMORY_REFRESH);
3826 } else {
3827 error_mask = ~(I915_ERROR_PAGE_TABLE |
3828 I915_ERROR_MEMORY_REFRESH);
3829 }
3830 I915_WRITE(EMR, error_mask);
3831
3832 I915_WRITE(IMR, dev_priv->irq_mask);
3833 I915_WRITE(IER, enable_mask);
3834 POSTING_READ(IER);
3835
3836 I915_WRITE(PORT_HOTPLUG_EN, 0);
3837 POSTING_READ(PORT_HOTPLUG_EN);
3838
3839 i915_enable_asle_pipestat(dev);
3840
3841 return 0;
3842}
3843
3844static void i915_hpd_irq_setup(struct drm_device *dev)
3845{
3846 struct drm_i915_private *dev_priv = dev->dev_private;
3847 struct drm_mode_config *mode_config = &dev->mode_config;
3848 struct intel_encoder *intel_encoder;
3849 u32 hotplug_en;
3850
3851 assert_spin_locked(&dev_priv->irq_lock);
3852
3853 if (I915_HAS_HOTPLUG(dev)) {
3854 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3855 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3856 /* Note HDMI and DP share hotplug bits */
3857 /* enable bits are the same for all generations */
3858 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3859 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3860 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3861 /* Programming the CRT detection parameters tends
3862 to generate a spurious hotplug event about three
3863 seconds later. So just do it once.
3864 */
3865 if (IS_G4X(dev))
3866 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3867 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3868 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3869
3870 /* Ignore TV since it's buggy */
3871 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3872 }
3873}
3874
3875static irqreturn_t i965_irq_handler(int irq, void *arg)
3876{
3877 struct drm_device *dev = (struct drm_device *) arg;
3878 struct drm_i915_private *dev_priv = dev->dev_private;
3879 u32 iir, new_iir;
3880 u32 pipe_stats[I915_MAX_PIPES];
3881 unsigned long irqflags;
3882 int ret = IRQ_NONE, pipe;
3883 u32 flip_mask =
3884 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3885 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3886
3887 iir = I915_READ(IIR);
3888
3889 for (;;) {
3890 bool irq_received = (iir & ~flip_mask) != 0;
3891 bool blc_event = false;
3892
3893 /* Can't rely on pipestat interrupt bit in iir as it might
3894 * have been cleared after the pipestat interrupt was received.
3895 * It doesn't set the bit in iir again, but it still produces
3896 * interrupts (for non-MSI).
3897 */
3898 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3899 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3900 i915_handle_error(dev, false,
3901 "Command parser error, iir 0x%08x",
3902 iir);
3903
3904 for_each_pipe(pipe) {
3905 int reg = PIPESTAT(pipe);
3906 pipe_stats[pipe] = I915_READ(reg);
3907
3908 /*
3909 * Clear the PIPE*STAT regs before the IIR
3910 */
3911 if (pipe_stats[pipe] & 0x8000ffff) {
3912 I915_WRITE(reg, pipe_stats[pipe]);
3913 irq_received = true;
3914 }
3915 }
3916 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3917
3918 if (!irq_received)
3919 break;
3920
3921 ret = IRQ_HANDLED;
3922
3923 /* Consume port. Then clear IIR or we'll miss events */
3924 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3925 i9xx_hpd_irq_handler(dev);
3926
3927 I915_WRITE(IIR, iir & ~flip_mask);
3928 new_iir = I915_READ(IIR); /* Flush posted writes */
3929
3930 if (iir & I915_USER_INTERRUPT)
3931 notify_ring(dev, &dev_priv->ring[RCS]);
3932 if (iir & I915_BSD_USER_INTERRUPT)
3933 notify_ring(dev, &dev_priv->ring[VCS]);
3934
3935 for_each_pipe(pipe) {
3936 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3937 i915_handle_vblank(dev, pipe, pipe, iir))
3938 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3939
3940 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3941 blc_event = true;
3942
3943 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3944 i9xx_pipe_crc_irq_handler(dev, pipe);
3945
3946 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3947 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3948 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3949 }
3950
3951 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3952 intel_opregion_asle_intr(dev);
3953
3954 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3955 gmbus_irq_handler(dev);
3956
3957 /* With MSI, interrupts are only generated when iir
3958 * transitions from zero to nonzero. If another bit got
3959 * set while we were handling the existing iir bits, then
3960 * we would never get another interrupt.
3961 *
3962 * This is fine on non-MSI as well, as if we hit this path
3963 * we avoid exiting the interrupt handler only to generate
3964 * another one.
3965 *
3966 * Note that for MSI this could cause a stray interrupt report
3967 * if an interrupt landed in the time between writing IIR and
3968 * the posting read. This should be rare enough to never
3969 * trigger the 99% of 100,000 interrupts test for disabling
3970 * stray interrupts.
3971 */
3972 iir = new_iir;
3973 }
3974
3975 i915_update_dri1_breadcrumb(dev);
3976
3977 return ret;
3978}
3979
3980static void i965_irq_uninstall(struct drm_device * dev)
3981{
3982 struct drm_i915_private *dev_priv = dev->dev_private;
3983 int pipe;
3984
3985 if (!dev_priv)
3986 return;
3987
3988 intel_hpd_irq_uninstall(dev_priv);
3989
3990 I915_WRITE(PORT_HOTPLUG_EN, 0);
3991 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3992
3993 I915_WRITE(HWSTAM, 0xffffffff);
3994 for_each_pipe(pipe)
3995 I915_WRITE(PIPESTAT(pipe), 0);
3996 I915_WRITE(IMR, 0xffffffff);
3997 I915_WRITE(IER, 0x0);
3998
3999 for_each_pipe(pipe)
4000 I915_WRITE(PIPESTAT(pipe),
4001 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4002 I915_WRITE(IIR, I915_READ(IIR));
4003}
4004
4005static void intel_hpd_irq_reenable(unsigned long data)
4006{
4007 struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
4008 struct drm_device *dev = dev_priv->dev;
4009 struct drm_mode_config *mode_config = &dev->mode_config;
4010 unsigned long irqflags;
4011 int i;
4012
4013 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4014 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4015 struct drm_connector *connector;
4016
4017 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4018 continue;
4019
4020 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4021
4022 list_for_each_entry(connector, &mode_config->connector_list, head) {
4023 struct intel_connector *intel_connector = to_intel_connector(connector);
4024
4025 if (intel_connector->encoder->hpd_pin == i) {
4026 if (connector->polled != intel_connector->polled)
4027 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4028 drm_get_connector_name(connector));
4029 connector->polled = intel_connector->polled;
4030 if (!connector->polled)
4031 connector->polled = DRM_CONNECTOR_POLL_HPD;
4032 }
4033 }
4034 }
4035 if (dev_priv->display.hpd_irq_setup)
4036 dev_priv->display.hpd_irq_setup(dev);
4037 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4038}
4039
4040void intel_irq_init(struct drm_device *dev)
4041{
4042 struct drm_i915_private *dev_priv = dev->dev_private;
4043
4044 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4045 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4046 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4047 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4048
4049 /* Let's track the enabled rps events */
4050 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4051
4052 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4053 i915_hangcheck_elapsed,
4054 (unsigned long) dev);
4055 setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4056 (unsigned long) dev_priv);
4057
4058 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4059
4060 if (IS_GEN2(dev)) {
4061 dev->max_vblank_count = 0;
4062 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4063 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4064 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4065 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4066 } else {
4067 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4068 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4069 }
4070
4071 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4072 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4073 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4074 }
4075
4076 if (IS_VALLEYVIEW(dev)) {
4077 dev->driver->irq_handler = valleyview_irq_handler;
4078 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4079 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4080 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4081 dev->driver->enable_vblank = valleyview_enable_vblank;
4082 dev->driver->disable_vblank = valleyview_disable_vblank;
4083 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4084 } else if (IS_GEN8(dev)) {
4085 dev->driver->irq_handler = gen8_irq_handler;
4086 dev->driver->irq_preinstall = gen8_irq_preinstall;
4087 dev->driver->irq_postinstall = gen8_irq_postinstall;
4088 dev->driver->irq_uninstall = gen8_irq_uninstall;
4089 dev->driver->enable_vblank = gen8_enable_vblank;
4090 dev->driver->disable_vblank = gen8_disable_vblank;
4091 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4092 } else if (HAS_PCH_SPLIT(dev)) {
4093 dev->driver->irq_handler = ironlake_irq_handler;
4094 dev->driver->irq_preinstall = ironlake_irq_preinstall;
4095 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4096 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4097 dev->driver->enable_vblank = ironlake_enable_vblank;
4098 dev->driver->disable_vblank = ironlake_disable_vblank;
4099 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4100 } else {
4101 if (INTEL_INFO(dev)->gen == 2) {
4102 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4103 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4104 dev->driver->irq_handler = i8xx_irq_handler;
4105 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4106 } else if (INTEL_INFO(dev)->gen == 3) {
4107 dev->driver->irq_preinstall = i915_irq_preinstall;
4108 dev->driver->irq_postinstall = i915_irq_postinstall;
4109 dev->driver->irq_uninstall = i915_irq_uninstall;
4110 dev->driver->irq_handler = i915_irq_handler;
4111 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4112 } else {
4113 dev->driver->irq_preinstall = i965_irq_preinstall;
4114 dev->driver->irq_postinstall = i965_irq_postinstall;
4115 dev->driver->irq_uninstall = i965_irq_uninstall;
4116 dev->driver->irq_handler = i965_irq_handler;
4117 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4118 }
4119 dev->driver->enable_vblank = i915_enable_vblank;
4120 dev->driver->disable_vblank = i915_disable_vblank;
4121 }
4122}
4123
4124void intel_hpd_init(struct drm_device *dev)
4125{
4126 struct drm_i915_private *dev_priv = dev->dev_private;
4127 struct drm_mode_config *mode_config = &dev->mode_config;
4128 struct drm_connector *connector;
4129 unsigned long irqflags;
4130 int i;
4131
4132 for (i = 1; i < HPD_NUM_PINS; i++) {
4133 dev_priv->hpd_stats[i].hpd_cnt = 0;
4134 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4135 }
4136 list_for_each_entry(connector, &mode_config->connector_list, head) {
4137 struct intel_connector *intel_connector = to_intel_connector(connector);
4138 connector->polled = intel_connector->polled;
4139 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4140 connector->polled = DRM_CONNECTOR_POLL_HPD;
4141 }
4142
4143 /* Interrupt setup is already guaranteed to be single-threaded, this is
4144 * just to make the assert_spin_locked checks happy. */
4145 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4146 if (dev_priv->display.hpd_irq_setup)
4147 dev_priv->display.hpd_irq_setup(dev);
4148 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4149}
4150
4151/* Disable interrupts so we can allow runtime PM. */
4152void hsw_runtime_pm_disable_interrupts(struct drm_device *dev)
4153{
4154 struct drm_i915_private *dev_priv = dev->dev_private;
4155 unsigned long irqflags;
4156
4157 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4158
4159 dev_priv->pm.regsave.deimr = I915_READ(DEIMR);
4160 dev_priv->pm.regsave.sdeimr = I915_READ(SDEIMR);
4161 dev_priv->pm.regsave.gtimr = I915_READ(GTIMR);
4162 dev_priv->pm.regsave.gtier = I915_READ(GTIER);
4163 dev_priv->pm.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
4164
4165 ironlake_disable_display_irq(dev_priv, 0xffffffff);
4166 ibx_disable_display_interrupt(dev_priv, 0xffffffff);
4167 ilk_disable_gt_irq(dev_priv, 0xffffffff);
4168 snb_disable_pm_irq(dev_priv, 0xffffffff);
4169
4170 dev_priv->pm.irqs_disabled = true;
4171
4172 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4173}
4174
4175/* Restore interrupts so we can recover from runtime PM. */
4176void hsw_runtime_pm_restore_interrupts(struct drm_device *dev)
4177{
4178 struct drm_i915_private *dev_priv = dev->dev_private;
4179 unsigned long irqflags;
4180 uint32_t val;
4181
4182 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4183
4184 val = I915_READ(DEIMR);
4185 WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
4186
4187 val = I915_READ(SDEIMR);
4188 WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
4189
4190 val = I915_READ(GTIMR);
4191 WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
4192
4193 val = I915_READ(GEN6_PMIMR);
4194 WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
4195
4196 dev_priv->pm.irqs_disabled = false;
4197
4198 ironlake_enable_display_irq(dev_priv, ~dev_priv->pm.regsave.deimr);
4199 ibx_enable_display_interrupt(dev_priv, ~dev_priv->pm.regsave.sdeimr);
4200 ilk_enable_gt_irq(dev_priv, ~dev_priv->pm.regsave.gtimr);
4201 snb_enable_pm_irq(dev_priv, ~dev_priv->pm.regsave.gen6_pmimr);
4202 I915_WRITE(GTIER, dev_priv->pm.regsave.gtier);
4203
4204 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4205}
This page took 0.038308 seconds and 5 git commands to generate.