drm/i915/gen9: Add framework to whitelist specific GPU registers
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
... / ...
CommitLineData
1/*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30#include <linux/log2.h>
31#include <drm/drmP.h>
32#include "i915_drv.h"
33#include <drm/i915_drm.h>
34#include "i915_trace.h"
35#include "intel_drv.h"
36
37int __intel_ring_space(int head, int tail, int size)
38{
39 int space = head - tail;
40 if (space <= 0)
41 space += size;
42 return space - I915_RING_FREE_SPACE;
43}
44
45void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46{
47 if (ringbuf->last_retired_head != -1) {
48 ringbuf->head = ringbuf->last_retired_head;
49 ringbuf->last_retired_head = -1;
50 }
51
52 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 ringbuf->tail, ringbuf->size);
54}
55
56int intel_ring_space(struct intel_ringbuffer *ringbuf)
57{
58 intel_ring_update_space(ringbuf);
59 return ringbuf->space;
60}
61
62bool intel_ring_stopped(struct intel_engine_cs *ring)
63{
64 struct drm_i915_private *dev_priv = ring->dev->dev_private;
65 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
66}
67
68static void __intel_ring_advance(struct intel_engine_cs *ring)
69{
70 struct intel_ringbuffer *ringbuf = ring->buffer;
71 ringbuf->tail &= ringbuf->size - 1;
72 if (intel_ring_stopped(ring))
73 return;
74 ring->write_tail(ring, ringbuf->tail);
75}
76
77static int
78gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 u32 invalidate_domains,
80 u32 flush_domains)
81{
82 struct intel_engine_cs *ring = req->ring;
83 u32 cmd;
84 int ret;
85
86 cmd = MI_FLUSH;
87 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 cmd |= MI_NO_WRITE_FLUSH;
89
90 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91 cmd |= MI_READ_FLUSH;
92
93 ret = intel_ring_begin(req, 2);
94 if (ret)
95 return ret;
96
97 intel_ring_emit(ring, cmd);
98 intel_ring_emit(ring, MI_NOOP);
99 intel_ring_advance(ring);
100
101 return 0;
102}
103
104static int
105gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 u32 invalidate_domains,
107 u32 flush_domains)
108{
109 struct intel_engine_cs *ring = req->ring;
110 struct drm_device *dev = ring->dev;
111 u32 cmd;
112 int ret;
113
114 /*
115 * read/write caches:
116 *
117 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
119 * also flushed at 2d versus 3d pipeline switches.
120 *
121 * read-only caches:
122 *
123 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124 * MI_READ_FLUSH is set, and is always flushed on 965.
125 *
126 * I915_GEM_DOMAIN_COMMAND may not exist?
127 *
128 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129 * invalidated when MI_EXE_FLUSH is set.
130 *
131 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132 * invalidated with every MI_FLUSH.
133 *
134 * TLBs:
135 *
136 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139 * are flushed at any MI_FLUSH.
140 */
141
142 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 cmd &= ~MI_NO_WRITE_FLUSH;
145 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146 cmd |= MI_EXE_FLUSH;
147
148 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149 (IS_G4X(dev) || IS_GEN5(dev)))
150 cmd |= MI_INVALIDATE_ISP;
151
152 ret = intel_ring_begin(req, 2);
153 if (ret)
154 return ret;
155
156 intel_ring_emit(ring, cmd);
157 intel_ring_emit(ring, MI_NOOP);
158 intel_ring_advance(ring);
159
160 return 0;
161}
162
163/**
164 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165 * implementing two workarounds on gen6. From section 1.4.7.1
166 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167 *
168 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169 * produced by non-pipelined state commands), software needs to first
170 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171 * 0.
172 *
173 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175 *
176 * And the workaround for these two requires this workaround first:
177 *
178 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179 * BEFORE the pipe-control with a post-sync op and no write-cache
180 * flushes.
181 *
182 * And this last workaround is tricky because of the requirements on
183 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184 * volume 2 part 1:
185 *
186 * "1 of the following must also be set:
187 * - Render Target Cache Flush Enable ([12] of DW1)
188 * - Depth Cache Flush Enable ([0] of DW1)
189 * - Stall at Pixel Scoreboard ([1] of DW1)
190 * - Depth Stall ([13] of DW1)
191 * - Post-Sync Operation ([13] of DW1)
192 * - Notify Enable ([8] of DW1)"
193 *
194 * The cache flushes require the workaround flush that triggered this
195 * one, so we can't use it. Depth stall would trigger the same.
196 * Post-sync nonzero is what triggered this second workaround, so we
197 * can't use that one either. Notify enable is IRQs, which aren't
198 * really our business. That leaves only stall at scoreboard.
199 */
200static int
201intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202{
203 struct intel_engine_cs *ring = req->ring;
204 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 int ret;
206
207 ret = intel_ring_begin(req, 6);
208 if (ret)
209 return ret;
210
211 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
212 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
213 PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215 intel_ring_emit(ring, 0); /* low dword */
216 intel_ring_emit(ring, 0); /* high dword */
217 intel_ring_emit(ring, MI_NOOP);
218 intel_ring_advance(ring);
219
220 ret = intel_ring_begin(req, 6);
221 if (ret)
222 return ret;
223
224 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
226 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227 intel_ring_emit(ring, 0);
228 intel_ring_emit(ring, 0);
229 intel_ring_emit(ring, MI_NOOP);
230 intel_ring_advance(ring);
231
232 return 0;
233}
234
235static int
236gen6_render_ring_flush(struct drm_i915_gem_request *req,
237 u32 invalidate_domains, u32 flush_domains)
238{
239 struct intel_engine_cs *ring = req->ring;
240 u32 flags = 0;
241 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 int ret;
243
244 /* Force SNB workarounds for PIPE_CONTROL flushes */
245 ret = intel_emit_post_sync_nonzero_flush(req);
246 if (ret)
247 return ret;
248
249 /* Just flush everything. Experiments have shown that reducing the
250 * number of bits based on the write domains has little performance
251 * impact.
252 */
253 if (flush_domains) {
254 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256 /*
257 * Ensure that any following seqno writes only happen
258 * when the render cache is indeed flushed.
259 */
260 flags |= PIPE_CONTROL_CS_STALL;
261 }
262 if (invalidate_domains) {
263 flags |= PIPE_CONTROL_TLB_INVALIDATE;
264 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269 /*
270 * TLB invalidate requires a post-sync write.
271 */
272 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273 }
274
275 ret = intel_ring_begin(req, 4);
276 if (ret)
277 return ret;
278
279 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
280 intel_ring_emit(ring, flags);
281 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282 intel_ring_emit(ring, 0);
283 intel_ring_advance(ring);
284
285 return 0;
286}
287
288static int
289gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290{
291 struct intel_engine_cs *ring = req->ring;
292 int ret;
293
294 ret = intel_ring_begin(req, 4);
295 if (ret)
296 return ret;
297
298 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
299 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
300 PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 intel_ring_emit(ring, 0);
302 intel_ring_emit(ring, 0);
303 intel_ring_advance(ring);
304
305 return 0;
306}
307
308static int
309gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 u32 invalidate_domains, u32 flush_domains)
311{
312 struct intel_engine_cs *ring = req->ring;
313 u32 flags = 0;
314 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 int ret;
316
317 /*
318 * Ensure that any following seqno writes only happen when the render
319 * cache is indeed flushed.
320 *
321 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323 * don't try to be clever and just set it unconditionally.
324 */
325 flags |= PIPE_CONTROL_CS_STALL;
326
327 /* Just flush everything. Experiments have shown that reducing the
328 * number of bits based on the write domains has little performance
329 * impact.
330 */
331 if (flush_domains) {
332 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335 flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 }
337 if (invalidate_domains) {
338 flags |= PIPE_CONTROL_TLB_INVALIDATE;
339 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 /*
346 * TLB invalidate requires a post-sync write.
347 */
348 flags |= PIPE_CONTROL_QW_WRITE;
349 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350
351 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352
353 /* Workaround: we must issue a pipe_control with CS-stall bit
354 * set before a pipe_control command that has the state cache
355 * invalidate bit set. */
356 gen7_render_ring_cs_stall_wa(req);
357 }
358
359 ret = intel_ring_begin(req, 4);
360 if (ret)
361 return ret;
362
363 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
364 intel_ring_emit(ring, flags);
365 intel_ring_emit(ring, scratch_addr);
366 intel_ring_emit(ring, 0);
367 intel_ring_advance(ring);
368
369 return 0;
370}
371
372static int
373gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 u32 flags, u32 scratch_addr)
375{
376 struct intel_engine_cs *ring = req->ring;
377 int ret;
378
379 ret = intel_ring_begin(req, 6);
380 if (ret)
381 return ret;
382
383 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
384 intel_ring_emit(ring, flags);
385 intel_ring_emit(ring, scratch_addr);
386 intel_ring_emit(ring, 0);
387 intel_ring_emit(ring, 0);
388 intel_ring_emit(ring, 0);
389 intel_ring_advance(ring);
390
391 return 0;
392}
393
394static int
395gen8_render_ring_flush(struct drm_i915_gem_request *req,
396 u32 invalidate_domains, u32 flush_domains)
397{
398 u32 flags = 0;
399 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400 int ret;
401
402 flags |= PIPE_CONTROL_CS_STALL;
403
404 if (flush_domains) {
405 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408 flags |= PIPE_CONTROL_FLUSH_ENABLE;
409 }
410 if (invalidate_domains) {
411 flags |= PIPE_CONTROL_TLB_INVALIDATE;
412 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417 flags |= PIPE_CONTROL_QW_WRITE;
418 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419
420 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421 ret = gen8_emit_pipe_control(req,
422 PIPE_CONTROL_CS_STALL |
423 PIPE_CONTROL_STALL_AT_SCOREBOARD,
424 0);
425 if (ret)
426 return ret;
427 }
428
429 return gen8_emit_pipe_control(req, flags, scratch_addr);
430}
431
432static void ring_write_tail(struct intel_engine_cs *ring,
433 u32 value)
434{
435 struct drm_i915_private *dev_priv = ring->dev->dev_private;
436 I915_WRITE_TAIL(ring, value);
437}
438
439u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
440{
441 struct drm_i915_private *dev_priv = ring->dev->dev_private;
442 u64 acthd;
443
444 if (INTEL_INFO(ring->dev)->gen >= 8)
445 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
446 RING_ACTHD_UDW(ring->mmio_base));
447 else if (INTEL_INFO(ring->dev)->gen >= 4)
448 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
449 else
450 acthd = I915_READ(ACTHD);
451
452 return acthd;
453}
454
455static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
456{
457 struct drm_i915_private *dev_priv = ring->dev->dev_private;
458 u32 addr;
459
460 addr = dev_priv->status_page_dmah->busaddr;
461 if (INTEL_INFO(ring->dev)->gen >= 4)
462 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463 I915_WRITE(HWS_PGA, addr);
464}
465
466static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
467{
468 struct drm_device *dev = ring->dev;
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 i915_reg_t mmio;
471
472 /* The ring status page addresses are no longer next to the rest of
473 * the ring registers as of gen7.
474 */
475 if (IS_GEN7(dev)) {
476 switch (ring->id) {
477 case RCS:
478 mmio = RENDER_HWS_PGA_GEN7;
479 break;
480 case BCS:
481 mmio = BLT_HWS_PGA_GEN7;
482 break;
483 /*
484 * VCS2 actually doesn't exist on Gen7. Only shut up
485 * gcc switch check warning
486 */
487 case VCS2:
488 case VCS:
489 mmio = BSD_HWS_PGA_GEN7;
490 break;
491 case VECS:
492 mmio = VEBOX_HWS_PGA_GEN7;
493 break;
494 }
495 } else if (IS_GEN6(ring->dev)) {
496 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
497 } else {
498 /* XXX: gen8 returns to sanity */
499 mmio = RING_HWS_PGA(ring->mmio_base);
500 }
501
502 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
503 POSTING_READ(mmio);
504
505 /*
506 * Flush the TLB for this page
507 *
508 * FIXME: These two bits have disappeared on gen8, so a question
509 * arises: do we still need this and if so how should we go about
510 * invalidating the TLB?
511 */
512 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513 i915_reg_t reg = RING_INSTPM(ring->mmio_base);
514
515 /* ring should be idle before issuing a sync flush*/
516 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
517
518 I915_WRITE(reg,
519 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520 INSTPM_SYNC_FLUSH));
521 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522 1000))
523 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524 ring->name);
525 }
526}
527
528static bool stop_ring(struct intel_engine_cs *ring)
529{
530 struct drm_i915_private *dev_priv = to_i915(ring->dev);
531
532 if (!IS_GEN2(ring->dev)) {
533 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
534 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
535 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
536 /* Sometimes we observe that the idle flag is not
537 * set even though the ring is empty. So double
538 * check before giving up.
539 */
540 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
541 return false;
542 }
543 }
544
545 I915_WRITE_CTL(ring, 0);
546 I915_WRITE_HEAD(ring, 0);
547 ring->write_tail(ring, 0);
548
549 if (!IS_GEN2(ring->dev)) {
550 (void)I915_READ_CTL(ring);
551 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
552 }
553
554 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
555}
556
557static int init_ring_common(struct intel_engine_cs *ring)
558{
559 struct drm_device *dev = ring->dev;
560 struct drm_i915_private *dev_priv = dev->dev_private;
561 struct intel_ringbuffer *ringbuf = ring->buffer;
562 struct drm_i915_gem_object *obj = ringbuf->obj;
563 int ret = 0;
564
565 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
566
567 if (!stop_ring(ring)) {
568 /* G45 ring initialization often fails to reset head to zero */
569 DRM_DEBUG_KMS("%s head not reset to zero "
570 "ctl %08x head %08x tail %08x start %08x\n",
571 ring->name,
572 I915_READ_CTL(ring),
573 I915_READ_HEAD(ring),
574 I915_READ_TAIL(ring),
575 I915_READ_START(ring));
576
577 if (!stop_ring(ring)) {
578 DRM_ERROR("failed to set %s head to zero "
579 "ctl %08x head %08x tail %08x start %08x\n",
580 ring->name,
581 I915_READ_CTL(ring),
582 I915_READ_HEAD(ring),
583 I915_READ_TAIL(ring),
584 I915_READ_START(ring));
585 ret = -EIO;
586 goto out;
587 }
588 }
589
590 if (I915_NEED_GFX_HWS(dev))
591 intel_ring_setup_status_page(ring);
592 else
593 ring_setup_phys_status_page(ring);
594
595 /* Enforce ordering by reading HEAD register back */
596 I915_READ_HEAD(ring);
597
598 /* Initialize the ring. This must happen _after_ we've cleared the ring
599 * registers with the above sequence (the readback of the HEAD registers
600 * also enforces ordering), otherwise the hw might lose the new ring
601 * register values. */
602 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
603
604 /* WaClearRingBufHeadRegAtInit:ctg,elk */
605 if (I915_READ_HEAD(ring))
606 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607 ring->name, I915_READ_HEAD(ring));
608 I915_WRITE_HEAD(ring, 0);
609 (void)I915_READ_HEAD(ring);
610
611 I915_WRITE_CTL(ring,
612 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613 | RING_VALID);
614
615 /* If the head is still not zero, the ring is dead */
616 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
617 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
618 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
619 DRM_ERROR("%s initialization failed "
620 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621 ring->name,
622 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
623 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
624 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
625 ret = -EIO;
626 goto out;
627 }
628
629 ringbuf->last_retired_head = -1;
630 ringbuf->head = I915_READ_HEAD(ring);
631 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
632 intel_ring_update_space(ringbuf);
633
634 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
635
636out:
637 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
638
639 return ret;
640}
641
642void
643intel_fini_pipe_control(struct intel_engine_cs *ring)
644{
645 struct drm_device *dev = ring->dev;
646
647 if (ring->scratch.obj == NULL)
648 return;
649
650 if (INTEL_INFO(dev)->gen >= 5) {
651 kunmap(sg_page(ring->scratch.obj->pages->sgl));
652 i915_gem_object_ggtt_unpin(ring->scratch.obj);
653 }
654
655 drm_gem_object_unreference(&ring->scratch.obj->base);
656 ring->scratch.obj = NULL;
657}
658
659int
660intel_init_pipe_control(struct intel_engine_cs *ring)
661{
662 int ret;
663
664 WARN_ON(ring->scratch.obj);
665
666 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
667 if (ring->scratch.obj == NULL) {
668 DRM_ERROR("Failed to allocate seqno page\n");
669 ret = -ENOMEM;
670 goto err;
671 }
672
673 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
674 if (ret)
675 goto err_unref;
676
677 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
678 if (ret)
679 goto err_unref;
680
681 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
682 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
683 if (ring->scratch.cpu_page == NULL) {
684 ret = -ENOMEM;
685 goto err_unpin;
686 }
687
688 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
689 ring->name, ring->scratch.gtt_offset);
690 return 0;
691
692err_unpin:
693 i915_gem_object_ggtt_unpin(ring->scratch.obj);
694err_unref:
695 drm_gem_object_unreference(&ring->scratch.obj->base);
696err:
697 return ret;
698}
699
700static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
701{
702 int ret, i;
703 struct intel_engine_cs *ring = req->ring;
704 struct drm_device *dev = ring->dev;
705 struct drm_i915_private *dev_priv = dev->dev_private;
706 struct i915_workarounds *w = &dev_priv->workarounds;
707
708 if (w->count == 0)
709 return 0;
710
711 ring->gpu_caches_dirty = true;
712 ret = intel_ring_flush_all_caches(req);
713 if (ret)
714 return ret;
715
716 ret = intel_ring_begin(req, (w->count * 2 + 2));
717 if (ret)
718 return ret;
719
720 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
721 for (i = 0; i < w->count; i++) {
722 intel_ring_emit_reg(ring, w->reg[i].addr);
723 intel_ring_emit(ring, w->reg[i].value);
724 }
725 intel_ring_emit(ring, MI_NOOP);
726
727 intel_ring_advance(ring);
728
729 ring->gpu_caches_dirty = true;
730 ret = intel_ring_flush_all_caches(req);
731 if (ret)
732 return ret;
733
734 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
735
736 return 0;
737}
738
739static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
740{
741 int ret;
742
743 ret = intel_ring_workarounds_emit(req);
744 if (ret != 0)
745 return ret;
746
747 ret = i915_gem_render_state_init(req);
748 if (ret)
749 DRM_ERROR("init render state: %d\n", ret);
750
751 return ret;
752}
753
754static int wa_add(struct drm_i915_private *dev_priv,
755 i915_reg_t addr,
756 const u32 mask, const u32 val)
757{
758 const u32 idx = dev_priv->workarounds.count;
759
760 if (WARN_ON(idx >= I915_MAX_WA_REGS))
761 return -ENOSPC;
762
763 dev_priv->workarounds.reg[idx].addr = addr;
764 dev_priv->workarounds.reg[idx].value = val;
765 dev_priv->workarounds.reg[idx].mask = mask;
766
767 dev_priv->workarounds.count++;
768
769 return 0;
770}
771
772#define WA_REG(addr, mask, val) do { \
773 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
774 if (r) \
775 return r; \
776 } while (0)
777
778#define WA_SET_BIT_MASKED(addr, mask) \
779 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
780
781#define WA_CLR_BIT_MASKED(addr, mask) \
782 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
783
784#define WA_SET_FIELD_MASKED(addr, mask, value) \
785 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
786
787#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
788#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
789
790#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
791
792static int wa_ring_whitelist_reg(struct intel_engine_cs *ring, i915_reg_t reg)
793{
794 struct drm_i915_private *dev_priv = ring->dev->dev_private;
795 struct i915_workarounds *wa = &dev_priv->workarounds;
796 const uint32_t index = wa->hw_whitelist_count[ring->id];
797
798 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
799 return -EINVAL;
800
801 WA_WRITE(RING_FORCE_TO_NONPRIV(ring->mmio_base, index),
802 i915_mmio_reg_offset(reg));
803 wa->hw_whitelist_count[ring->id]++;
804
805 return 0;
806}
807
808static int gen8_init_workarounds(struct intel_engine_cs *ring)
809{
810 struct drm_device *dev = ring->dev;
811 struct drm_i915_private *dev_priv = dev->dev_private;
812
813 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
814
815 /* WaDisableAsyncFlipPerfMode:bdw,chv */
816 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
817
818 /* WaDisablePartialInstShootdown:bdw,chv */
819 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
820 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
821
822 /* Use Force Non-Coherent whenever executing a 3D context. This is a
823 * workaround for for a possible hang in the unlikely event a TLB
824 * invalidation occurs during a PSD flush.
825 */
826 /* WaForceEnableNonCoherent:bdw,chv */
827 /* WaHdcDisableFetchWhenMasked:bdw,chv */
828 WA_SET_BIT_MASKED(HDC_CHICKEN0,
829 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
830 HDC_FORCE_NON_COHERENT);
831
832 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
833 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
834 * polygons in the same 8x4 pixel/sample area to be processed without
835 * stalling waiting for the earlier ones to write to Hierarchical Z
836 * buffer."
837 *
838 * This optimization is off by default for BDW and CHV; turn it on.
839 */
840 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
841
842 /* Wa4x4STCOptimizationDisable:bdw,chv */
843 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
844
845 /*
846 * BSpec recommends 8x4 when MSAA is used,
847 * however in practice 16x4 seems fastest.
848 *
849 * Note that PS/WM thread counts depend on the WIZ hashing
850 * disable bit, which we don't touch here, but it's good
851 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
852 */
853 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
854 GEN6_WIZ_HASHING_MASK,
855 GEN6_WIZ_HASHING_16x4);
856
857 return 0;
858}
859
860static int bdw_init_workarounds(struct intel_engine_cs *ring)
861{
862 int ret;
863 struct drm_device *dev = ring->dev;
864 struct drm_i915_private *dev_priv = dev->dev_private;
865
866 ret = gen8_init_workarounds(ring);
867 if (ret)
868 return ret;
869
870 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
871 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
872
873 /* WaDisableDopClockGating:bdw */
874 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
875 DOP_CLOCK_GATING_DISABLE);
876
877 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
878 GEN8_SAMPLER_POWER_BYPASS_DIS);
879
880 WA_SET_BIT_MASKED(HDC_CHICKEN0,
881 /* WaForceContextSaveRestoreNonCoherent:bdw */
882 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
883 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
884 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
885
886 return 0;
887}
888
889static int chv_init_workarounds(struct intel_engine_cs *ring)
890{
891 int ret;
892 struct drm_device *dev = ring->dev;
893 struct drm_i915_private *dev_priv = dev->dev_private;
894
895 ret = gen8_init_workarounds(ring);
896 if (ret)
897 return ret;
898
899 /* WaDisableThreadStallDopClockGating:chv */
900 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
901
902 /* Improve HiZ throughput on CHV. */
903 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
904
905 return 0;
906}
907
908static int gen9_init_workarounds(struct intel_engine_cs *ring)
909{
910 struct drm_device *dev = ring->dev;
911 struct drm_i915_private *dev_priv = dev->dev_private;
912 uint32_t tmp;
913
914 /* WaEnableLbsSlaRetryTimerDecrement:skl */
915 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
916 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
917
918 /* WaDisableKillLogic:bxt,skl */
919 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
920 ECOCHK_DIS_TLB);
921
922 /* WaDisablePartialInstShootdown:skl,bxt */
923 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
924 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
925
926 /* Syncing dependencies between camera and graphics:skl,bxt */
927 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
928 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
929
930 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
931 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
932 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
933 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
934 GEN9_DG_MIRROR_FIX_ENABLE);
935
936 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
937 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
938 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
939 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
940 GEN9_RHWO_OPTIMIZATION_DISABLE);
941 /*
942 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
943 * but we do that in per ctx batchbuffer as there is an issue
944 * with this register not getting restored on ctx restore
945 */
946 }
947
948 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
949 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
950 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
951 GEN9_ENABLE_YV12_BUGFIX);
952
953 /* Wa4x4STCOptimizationDisable:skl,bxt */
954 /* WaDisablePartialResolveInVc:skl,bxt */
955 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
956 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
957
958 /* WaCcsTlbPrefetchDisable:skl,bxt */
959 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
960 GEN9_CCS_TLB_PREFETCH_ENABLE);
961
962 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
963 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
964 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
965 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
966 PIXEL_MASK_CAMMING_DISABLE);
967
968 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
969 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
970 if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
971 IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
972 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
973 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
974
975 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
976 if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
977 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
978 GEN8_SAMPLER_POWER_BYPASS_DIS);
979
980 /* WaDisableSTUnitPowerOptimization:skl,bxt */
981 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
982
983 return 0;
984}
985
986static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
987{
988 struct drm_device *dev = ring->dev;
989 struct drm_i915_private *dev_priv = dev->dev_private;
990 u8 vals[3] = { 0, 0, 0 };
991 unsigned int i;
992
993 for (i = 0; i < 3; i++) {
994 u8 ss;
995
996 /*
997 * Only consider slices where one, and only one, subslice has 7
998 * EUs
999 */
1000 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1001 continue;
1002
1003 /*
1004 * subslice_7eu[i] != 0 (because of the check above) and
1005 * ss_max == 4 (maximum number of subslices possible per slice)
1006 *
1007 * -> 0 <= ss <= 3;
1008 */
1009 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1010 vals[i] = 3 - ss;
1011 }
1012
1013 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1014 return 0;
1015
1016 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1017 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1018 GEN9_IZ_HASHING_MASK(2) |
1019 GEN9_IZ_HASHING_MASK(1) |
1020 GEN9_IZ_HASHING_MASK(0),
1021 GEN9_IZ_HASHING(2, vals[2]) |
1022 GEN9_IZ_HASHING(1, vals[1]) |
1023 GEN9_IZ_HASHING(0, vals[0]));
1024
1025 return 0;
1026}
1027
1028static int skl_init_workarounds(struct intel_engine_cs *ring)
1029{
1030 int ret;
1031 struct drm_device *dev = ring->dev;
1032 struct drm_i915_private *dev_priv = dev->dev_private;
1033
1034 ret = gen9_init_workarounds(ring);
1035 if (ret)
1036 return ret;
1037
1038 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1039 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1040 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1041 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1042 }
1043
1044 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1045 * involving this register should also be added to WA batch as required.
1046 */
1047 if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1048 /* WaDisableLSQCROPERFforOCL:skl */
1049 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1050 GEN8_LQSC_RO_PERF_DIS);
1051
1052 /* WaEnableGapsTsvCreditFix:skl */
1053 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1054 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1055 GEN9_GAPS_TSV_CREDIT_DISABLE));
1056 }
1057
1058 /* WaDisablePowerCompilerClockGating:skl */
1059 if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1060 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1061 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1062
1063 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
1064 /*
1065 *Use Force Non-Coherent whenever executing a 3D context. This
1066 * is a workaround for a possible hang in the unlikely event
1067 * a TLB invalidation occurs during a PSD flush.
1068 */
1069 /* WaForceEnableNonCoherent:skl */
1070 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1071 HDC_FORCE_NON_COHERENT);
1072
1073 /* WaDisableHDCInvalidation:skl */
1074 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1075 BDW_DISABLE_HDC_INVALIDATION);
1076 }
1077
1078 /* WaBarrierPerformanceFixDisable:skl */
1079 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1080 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1081 HDC_FENCE_DEST_SLM_DISABLE |
1082 HDC_BARRIER_PERFORMANCE_DISABLE);
1083
1084 /* WaDisableSbeCacheDispatchPortSharing:skl */
1085 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1086 WA_SET_BIT_MASKED(
1087 GEN7_HALF_SLICE_CHICKEN1,
1088 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1089
1090 return skl_tune_iz_hashing(ring);
1091}
1092
1093static int bxt_init_workarounds(struct intel_engine_cs *ring)
1094{
1095 int ret;
1096 struct drm_device *dev = ring->dev;
1097 struct drm_i915_private *dev_priv = dev->dev_private;
1098
1099 ret = gen9_init_workarounds(ring);
1100 if (ret)
1101 return ret;
1102
1103 /* WaStoreMultiplePTEenable:bxt */
1104 /* This is a requirement according to Hardware specification */
1105 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1106 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1107
1108 /* WaSetClckGatingDisableMedia:bxt */
1109 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1110 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1111 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1112 }
1113
1114 /* WaDisableThreadStallDopClockGating:bxt */
1115 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1116 STALL_DOP_GATING_DISABLE);
1117
1118 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1119 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1120 WA_SET_BIT_MASKED(
1121 GEN7_HALF_SLICE_CHICKEN1,
1122 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1123 }
1124
1125 return 0;
1126}
1127
1128int init_workarounds_ring(struct intel_engine_cs *ring)
1129{
1130 struct drm_device *dev = ring->dev;
1131 struct drm_i915_private *dev_priv = dev->dev_private;
1132
1133 WARN_ON(ring->id != RCS);
1134
1135 dev_priv->workarounds.count = 0;
1136 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1137
1138 if (IS_BROADWELL(dev))
1139 return bdw_init_workarounds(ring);
1140
1141 if (IS_CHERRYVIEW(dev))
1142 return chv_init_workarounds(ring);
1143
1144 if (IS_SKYLAKE(dev))
1145 return skl_init_workarounds(ring);
1146
1147 if (IS_BROXTON(dev))
1148 return bxt_init_workarounds(ring);
1149
1150 return 0;
1151}
1152
1153static int init_render_ring(struct intel_engine_cs *ring)
1154{
1155 struct drm_device *dev = ring->dev;
1156 struct drm_i915_private *dev_priv = dev->dev_private;
1157 int ret = init_ring_common(ring);
1158 if (ret)
1159 return ret;
1160
1161 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1162 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1163 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1164
1165 /* We need to disable the AsyncFlip performance optimisations in order
1166 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1167 * programmed to '1' on all products.
1168 *
1169 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1170 */
1171 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1172 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1173
1174 /* Required for the hardware to program scanline values for waiting */
1175 /* WaEnableFlushTlbInvalidationMode:snb */
1176 if (INTEL_INFO(dev)->gen == 6)
1177 I915_WRITE(GFX_MODE,
1178 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1179
1180 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1181 if (IS_GEN7(dev))
1182 I915_WRITE(GFX_MODE_GEN7,
1183 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1184 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1185
1186 if (IS_GEN6(dev)) {
1187 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1188 * "If this bit is set, STCunit will have LRA as replacement
1189 * policy. [...] This bit must be reset. LRA replacement
1190 * policy is not supported."
1191 */
1192 I915_WRITE(CACHE_MODE_0,
1193 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1194 }
1195
1196 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1197 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1198
1199 if (HAS_L3_DPF(dev))
1200 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1201
1202 return init_workarounds_ring(ring);
1203}
1204
1205static void render_ring_cleanup(struct intel_engine_cs *ring)
1206{
1207 struct drm_device *dev = ring->dev;
1208 struct drm_i915_private *dev_priv = dev->dev_private;
1209
1210 if (dev_priv->semaphore_obj) {
1211 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1212 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1213 dev_priv->semaphore_obj = NULL;
1214 }
1215
1216 intel_fini_pipe_control(ring);
1217}
1218
1219static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1220 unsigned int num_dwords)
1221{
1222#define MBOX_UPDATE_DWORDS 8
1223 struct intel_engine_cs *signaller = signaller_req->ring;
1224 struct drm_device *dev = signaller->dev;
1225 struct drm_i915_private *dev_priv = dev->dev_private;
1226 struct intel_engine_cs *waiter;
1227 int i, ret, num_rings;
1228
1229 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1230 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1231#undef MBOX_UPDATE_DWORDS
1232
1233 ret = intel_ring_begin(signaller_req, num_dwords);
1234 if (ret)
1235 return ret;
1236
1237 for_each_ring(waiter, dev_priv, i) {
1238 u32 seqno;
1239 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1240 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1241 continue;
1242
1243 seqno = i915_gem_request_get_seqno(signaller_req);
1244 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1245 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1246 PIPE_CONTROL_QW_WRITE |
1247 PIPE_CONTROL_FLUSH_ENABLE);
1248 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1249 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1250 intel_ring_emit(signaller, seqno);
1251 intel_ring_emit(signaller, 0);
1252 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1253 MI_SEMAPHORE_TARGET(waiter->id));
1254 intel_ring_emit(signaller, 0);
1255 }
1256
1257 return 0;
1258}
1259
1260static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1261 unsigned int num_dwords)
1262{
1263#define MBOX_UPDATE_DWORDS 6
1264 struct intel_engine_cs *signaller = signaller_req->ring;
1265 struct drm_device *dev = signaller->dev;
1266 struct drm_i915_private *dev_priv = dev->dev_private;
1267 struct intel_engine_cs *waiter;
1268 int i, ret, num_rings;
1269
1270 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1271 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1272#undef MBOX_UPDATE_DWORDS
1273
1274 ret = intel_ring_begin(signaller_req, num_dwords);
1275 if (ret)
1276 return ret;
1277
1278 for_each_ring(waiter, dev_priv, i) {
1279 u32 seqno;
1280 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1281 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1282 continue;
1283
1284 seqno = i915_gem_request_get_seqno(signaller_req);
1285 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1286 MI_FLUSH_DW_OP_STOREDW);
1287 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1288 MI_FLUSH_DW_USE_GTT);
1289 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1290 intel_ring_emit(signaller, seqno);
1291 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1292 MI_SEMAPHORE_TARGET(waiter->id));
1293 intel_ring_emit(signaller, 0);
1294 }
1295
1296 return 0;
1297}
1298
1299static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1300 unsigned int num_dwords)
1301{
1302 struct intel_engine_cs *signaller = signaller_req->ring;
1303 struct drm_device *dev = signaller->dev;
1304 struct drm_i915_private *dev_priv = dev->dev_private;
1305 struct intel_engine_cs *useless;
1306 int i, ret, num_rings;
1307
1308#define MBOX_UPDATE_DWORDS 3
1309 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1310 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1311#undef MBOX_UPDATE_DWORDS
1312
1313 ret = intel_ring_begin(signaller_req, num_dwords);
1314 if (ret)
1315 return ret;
1316
1317 for_each_ring(useless, dev_priv, i) {
1318 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1319
1320 if (i915_mmio_reg_valid(mbox_reg)) {
1321 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1322
1323 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1324 intel_ring_emit_reg(signaller, mbox_reg);
1325 intel_ring_emit(signaller, seqno);
1326 }
1327 }
1328
1329 /* If num_dwords was rounded, make sure the tail pointer is correct */
1330 if (num_rings % 2 == 0)
1331 intel_ring_emit(signaller, MI_NOOP);
1332
1333 return 0;
1334}
1335
1336/**
1337 * gen6_add_request - Update the semaphore mailbox registers
1338 *
1339 * @request - request to write to the ring
1340 *
1341 * Update the mailbox registers in the *other* rings with the current seqno.
1342 * This acts like a signal in the canonical semaphore.
1343 */
1344static int
1345gen6_add_request(struct drm_i915_gem_request *req)
1346{
1347 struct intel_engine_cs *ring = req->ring;
1348 int ret;
1349
1350 if (ring->semaphore.signal)
1351 ret = ring->semaphore.signal(req, 4);
1352 else
1353 ret = intel_ring_begin(req, 4);
1354
1355 if (ret)
1356 return ret;
1357
1358 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1359 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1360 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1361 intel_ring_emit(ring, MI_USER_INTERRUPT);
1362 __intel_ring_advance(ring);
1363
1364 return 0;
1365}
1366
1367static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1368 u32 seqno)
1369{
1370 struct drm_i915_private *dev_priv = dev->dev_private;
1371 return dev_priv->last_seqno < seqno;
1372}
1373
1374/**
1375 * intel_ring_sync - sync the waiter to the signaller on seqno
1376 *
1377 * @waiter - ring that is waiting
1378 * @signaller - ring which has, or will signal
1379 * @seqno - seqno which the waiter will block on
1380 */
1381
1382static int
1383gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1384 struct intel_engine_cs *signaller,
1385 u32 seqno)
1386{
1387 struct intel_engine_cs *waiter = waiter_req->ring;
1388 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1389 int ret;
1390
1391 ret = intel_ring_begin(waiter_req, 4);
1392 if (ret)
1393 return ret;
1394
1395 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1396 MI_SEMAPHORE_GLOBAL_GTT |
1397 MI_SEMAPHORE_POLL |
1398 MI_SEMAPHORE_SAD_GTE_SDD);
1399 intel_ring_emit(waiter, seqno);
1400 intel_ring_emit(waiter,
1401 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1402 intel_ring_emit(waiter,
1403 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1404 intel_ring_advance(waiter);
1405 return 0;
1406}
1407
1408static int
1409gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1410 struct intel_engine_cs *signaller,
1411 u32 seqno)
1412{
1413 struct intel_engine_cs *waiter = waiter_req->ring;
1414 u32 dw1 = MI_SEMAPHORE_MBOX |
1415 MI_SEMAPHORE_COMPARE |
1416 MI_SEMAPHORE_REGISTER;
1417 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1418 int ret;
1419
1420 /* Throughout all of the GEM code, seqno passed implies our current
1421 * seqno is >= the last seqno executed. However for hardware the
1422 * comparison is strictly greater than.
1423 */
1424 seqno -= 1;
1425
1426 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1427
1428 ret = intel_ring_begin(waiter_req, 4);
1429 if (ret)
1430 return ret;
1431
1432 /* If seqno wrap happened, omit the wait with no-ops */
1433 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1434 intel_ring_emit(waiter, dw1 | wait_mbox);
1435 intel_ring_emit(waiter, seqno);
1436 intel_ring_emit(waiter, 0);
1437 intel_ring_emit(waiter, MI_NOOP);
1438 } else {
1439 intel_ring_emit(waiter, MI_NOOP);
1440 intel_ring_emit(waiter, MI_NOOP);
1441 intel_ring_emit(waiter, MI_NOOP);
1442 intel_ring_emit(waiter, MI_NOOP);
1443 }
1444 intel_ring_advance(waiter);
1445
1446 return 0;
1447}
1448
1449#define PIPE_CONTROL_FLUSH(ring__, addr__) \
1450do { \
1451 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1452 PIPE_CONTROL_DEPTH_STALL); \
1453 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1454 intel_ring_emit(ring__, 0); \
1455 intel_ring_emit(ring__, 0); \
1456} while (0)
1457
1458static int
1459pc_render_add_request(struct drm_i915_gem_request *req)
1460{
1461 struct intel_engine_cs *ring = req->ring;
1462 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1463 int ret;
1464
1465 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1466 * incoherent with writes to memory, i.e. completely fubar,
1467 * so we need to use PIPE_NOTIFY instead.
1468 *
1469 * However, we also need to workaround the qword write
1470 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1471 * memory before requesting an interrupt.
1472 */
1473 ret = intel_ring_begin(req, 32);
1474 if (ret)
1475 return ret;
1476
1477 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1478 PIPE_CONTROL_WRITE_FLUSH |
1479 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1480 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1481 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1482 intel_ring_emit(ring, 0);
1483 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1484 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1485 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1486 scratch_addr += 2 * CACHELINE_BYTES;
1487 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1488 scratch_addr += 2 * CACHELINE_BYTES;
1489 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1490 scratch_addr += 2 * CACHELINE_BYTES;
1491 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1492 scratch_addr += 2 * CACHELINE_BYTES;
1493 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1494
1495 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1496 PIPE_CONTROL_WRITE_FLUSH |
1497 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1498 PIPE_CONTROL_NOTIFY);
1499 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1500 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1501 intel_ring_emit(ring, 0);
1502 __intel_ring_advance(ring);
1503
1504 return 0;
1505}
1506
1507static u32
1508gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1509{
1510 /* Workaround to force correct ordering between irq and seqno writes on
1511 * ivb (and maybe also on snb) by reading from a CS register (like
1512 * ACTHD) before reading the status page. */
1513 if (!lazy_coherency) {
1514 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1515 POSTING_READ(RING_ACTHD(ring->mmio_base));
1516 }
1517
1518 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1519}
1520
1521static u32
1522ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1523{
1524 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1525}
1526
1527static void
1528ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1529{
1530 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1531}
1532
1533static u32
1534pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1535{
1536 return ring->scratch.cpu_page[0];
1537}
1538
1539static void
1540pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1541{
1542 ring->scratch.cpu_page[0] = seqno;
1543}
1544
1545static bool
1546gen5_ring_get_irq(struct intel_engine_cs *ring)
1547{
1548 struct drm_device *dev = ring->dev;
1549 struct drm_i915_private *dev_priv = dev->dev_private;
1550 unsigned long flags;
1551
1552 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1553 return false;
1554
1555 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1556 if (ring->irq_refcount++ == 0)
1557 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1558 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1559
1560 return true;
1561}
1562
1563static void
1564gen5_ring_put_irq(struct intel_engine_cs *ring)
1565{
1566 struct drm_device *dev = ring->dev;
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568 unsigned long flags;
1569
1570 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1571 if (--ring->irq_refcount == 0)
1572 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1573 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1574}
1575
1576static bool
1577i9xx_ring_get_irq(struct intel_engine_cs *ring)
1578{
1579 struct drm_device *dev = ring->dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 unsigned long flags;
1582
1583 if (!intel_irqs_enabled(dev_priv))
1584 return false;
1585
1586 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1587 if (ring->irq_refcount++ == 0) {
1588 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1589 I915_WRITE(IMR, dev_priv->irq_mask);
1590 POSTING_READ(IMR);
1591 }
1592 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1593
1594 return true;
1595}
1596
1597static void
1598i9xx_ring_put_irq(struct intel_engine_cs *ring)
1599{
1600 struct drm_device *dev = ring->dev;
1601 struct drm_i915_private *dev_priv = dev->dev_private;
1602 unsigned long flags;
1603
1604 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1605 if (--ring->irq_refcount == 0) {
1606 dev_priv->irq_mask |= ring->irq_enable_mask;
1607 I915_WRITE(IMR, dev_priv->irq_mask);
1608 POSTING_READ(IMR);
1609 }
1610 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1611}
1612
1613static bool
1614i8xx_ring_get_irq(struct intel_engine_cs *ring)
1615{
1616 struct drm_device *dev = ring->dev;
1617 struct drm_i915_private *dev_priv = dev->dev_private;
1618 unsigned long flags;
1619
1620 if (!intel_irqs_enabled(dev_priv))
1621 return false;
1622
1623 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1624 if (ring->irq_refcount++ == 0) {
1625 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1626 I915_WRITE16(IMR, dev_priv->irq_mask);
1627 POSTING_READ16(IMR);
1628 }
1629 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1630
1631 return true;
1632}
1633
1634static void
1635i8xx_ring_put_irq(struct intel_engine_cs *ring)
1636{
1637 struct drm_device *dev = ring->dev;
1638 struct drm_i915_private *dev_priv = dev->dev_private;
1639 unsigned long flags;
1640
1641 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1642 if (--ring->irq_refcount == 0) {
1643 dev_priv->irq_mask |= ring->irq_enable_mask;
1644 I915_WRITE16(IMR, dev_priv->irq_mask);
1645 POSTING_READ16(IMR);
1646 }
1647 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1648}
1649
1650static int
1651bsd_ring_flush(struct drm_i915_gem_request *req,
1652 u32 invalidate_domains,
1653 u32 flush_domains)
1654{
1655 struct intel_engine_cs *ring = req->ring;
1656 int ret;
1657
1658 ret = intel_ring_begin(req, 2);
1659 if (ret)
1660 return ret;
1661
1662 intel_ring_emit(ring, MI_FLUSH);
1663 intel_ring_emit(ring, MI_NOOP);
1664 intel_ring_advance(ring);
1665 return 0;
1666}
1667
1668static int
1669i9xx_add_request(struct drm_i915_gem_request *req)
1670{
1671 struct intel_engine_cs *ring = req->ring;
1672 int ret;
1673
1674 ret = intel_ring_begin(req, 4);
1675 if (ret)
1676 return ret;
1677
1678 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1679 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1680 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1681 intel_ring_emit(ring, MI_USER_INTERRUPT);
1682 __intel_ring_advance(ring);
1683
1684 return 0;
1685}
1686
1687static bool
1688gen6_ring_get_irq(struct intel_engine_cs *ring)
1689{
1690 struct drm_device *dev = ring->dev;
1691 struct drm_i915_private *dev_priv = dev->dev_private;
1692 unsigned long flags;
1693
1694 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1695 return false;
1696
1697 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1698 if (ring->irq_refcount++ == 0) {
1699 if (HAS_L3_DPF(dev) && ring->id == RCS)
1700 I915_WRITE_IMR(ring,
1701 ~(ring->irq_enable_mask |
1702 GT_PARITY_ERROR(dev)));
1703 else
1704 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1705 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1706 }
1707 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1708
1709 return true;
1710}
1711
1712static void
1713gen6_ring_put_irq(struct intel_engine_cs *ring)
1714{
1715 struct drm_device *dev = ring->dev;
1716 struct drm_i915_private *dev_priv = dev->dev_private;
1717 unsigned long flags;
1718
1719 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1720 if (--ring->irq_refcount == 0) {
1721 if (HAS_L3_DPF(dev) && ring->id == RCS)
1722 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1723 else
1724 I915_WRITE_IMR(ring, ~0);
1725 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1726 }
1727 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1728}
1729
1730static bool
1731hsw_vebox_get_irq(struct intel_engine_cs *ring)
1732{
1733 struct drm_device *dev = ring->dev;
1734 struct drm_i915_private *dev_priv = dev->dev_private;
1735 unsigned long flags;
1736
1737 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1738 return false;
1739
1740 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1741 if (ring->irq_refcount++ == 0) {
1742 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1743 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1744 }
1745 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1746
1747 return true;
1748}
1749
1750static void
1751hsw_vebox_put_irq(struct intel_engine_cs *ring)
1752{
1753 struct drm_device *dev = ring->dev;
1754 struct drm_i915_private *dev_priv = dev->dev_private;
1755 unsigned long flags;
1756
1757 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1758 if (--ring->irq_refcount == 0) {
1759 I915_WRITE_IMR(ring, ~0);
1760 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1761 }
1762 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1763}
1764
1765static bool
1766gen8_ring_get_irq(struct intel_engine_cs *ring)
1767{
1768 struct drm_device *dev = ring->dev;
1769 struct drm_i915_private *dev_priv = dev->dev_private;
1770 unsigned long flags;
1771
1772 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1773 return false;
1774
1775 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1776 if (ring->irq_refcount++ == 0) {
1777 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1778 I915_WRITE_IMR(ring,
1779 ~(ring->irq_enable_mask |
1780 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1781 } else {
1782 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1783 }
1784 POSTING_READ(RING_IMR(ring->mmio_base));
1785 }
1786 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1787
1788 return true;
1789}
1790
1791static void
1792gen8_ring_put_irq(struct intel_engine_cs *ring)
1793{
1794 struct drm_device *dev = ring->dev;
1795 struct drm_i915_private *dev_priv = dev->dev_private;
1796 unsigned long flags;
1797
1798 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1799 if (--ring->irq_refcount == 0) {
1800 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1801 I915_WRITE_IMR(ring,
1802 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1803 } else {
1804 I915_WRITE_IMR(ring, ~0);
1805 }
1806 POSTING_READ(RING_IMR(ring->mmio_base));
1807 }
1808 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1809}
1810
1811static int
1812i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1813 u64 offset, u32 length,
1814 unsigned dispatch_flags)
1815{
1816 struct intel_engine_cs *ring = req->ring;
1817 int ret;
1818
1819 ret = intel_ring_begin(req, 2);
1820 if (ret)
1821 return ret;
1822
1823 intel_ring_emit(ring,
1824 MI_BATCH_BUFFER_START |
1825 MI_BATCH_GTT |
1826 (dispatch_flags & I915_DISPATCH_SECURE ?
1827 0 : MI_BATCH_NON_SECURE_I965));
1828 intel_ring_emit(ring, offset);
1829 intel_ring_advance(ring);
1830
1831 return 0;
1832}
1833
1834/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1835#define I830_BATCH_LIMIT (256*1024)
1836#define I830_TLB_ENTRIES (2)
1837#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1838static int
1839i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1840 u64 offset, u32 len,
1841 unsigned dispatch_flags)
1842{
1843 struct intel_engine_cs *ring = req->ring;
1844 u32 cs_offset = ring->scratch.gtt_offset;
1845 int ret;
1846
1847 ret = intel_ring_begin(req, 6);
1848 if (ret)
1849 return ret;
1850
1851 /* Evict the invalid PTE TLBs */
1852 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1853 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1854 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1855 intel_ring_emit(ring, cs_offset);
1856 intel_ring_emit(ring, 0xdeadbeef);
1857 intel_ring_emit(ring, MI_NOOP);
1858 intel_ring_advance(ring);
1859
1860 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1861 if (len > I830_BATCH_LIMIT)
1862 return -ENOSPC;
1863
1864 ret = intel_ring_begin(req, 6 + 2);
1865 if (ret)
1866 return ret;
1867
1868 /* Blit the batch (which has now all relocs applied) to the
1869 * stable batch scratch bo area (so that the CS never
1870 * stumbles over its tlb invalidation bug) ...
1871 */
1872 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1873 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1874 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1875 intel_ring_emit(ring, cs_offset);
1876 intel_ring_emit(ring, 4096);
1877 intel_ring_emit(ring, offset);
1878
1879 intel_ring_emit(ring, MI_FLUSH);
1880 intel_ring_emit(ring, MI_NOOP);
1881 intel_ring_advance(ring);
1882
1883 /* ... and execute it. */
1884 offset = cs_offset;
1885 }
1886
1887 ret = intel_ring_begin(req, 2);
1888 if (ret)
1889 return ret;
1890
1891 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1892 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1893 0 : MI_BATCH_NON_SECURE));
1894 intel_ring_advance(ring);
1895
1896 return 0;
1897}
1898
1899static int
1900i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1901 u64 offset, u32 len,
1902 unsigned dispatch_flags)
1903{
1904 struct intel_engine_cs *ring = req->ring;
1905 int ret;
1906
1907 ret = intel_ring_begin(req, 2);
1908 if (ret)
1909 return ret;
1910
1911 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1912 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1913 0 : MI_BATCH_NON_SECURE));
1914 intel_ring_advance(ring);
1915
1916 return 0;
1917}
1918
1919static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1920{
1921 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1922
1923 if (!dev_priv->status_page_dmah)
1924 return;
1925
1926 drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1927 ring->status_page.page_addr = NULL;
1928}
1929
1930static void cleanup_status_page(struct intel_engine_cs *ring)
1931{
1932 struct drm_i915_gem_object *obj;
1933
1934 obj = ring->status_page.obj;
1935 if (obj == NULL)
1936 return;
1937
1938 kunmap(sg_page(obj->pages->sgl));
1939 i915_gem_object_ggtt_unpin(obj);
1940 drm_gem_object_unreference(&obj->base);
1941 ring->status_page.obj = NULL;
1942}
1943
1944static int init_status_page(struct intel_engine_cs *ring)
1945{
1946 struct drm_i915_gem_object *obj = ring->status_page.obj;
1947
1948 if (obj == NULL) {
1949 unsigned flags;
1950 int ret;
1951
1952 obj = i915_gem_alloc_object(ring->dev, 4096);
1953 if (obj == NULL) {
1954 DRM_ERROR("Failed to allocate status page\n");
1955 return -ENOMEM;
1956 }
1957
1958 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1959 if (ret)
1960 goto err_unref;
1961
1962 flags = 0;
1963 if (!HAS_LLC(ring->dev))
1964 /* On g33, we cannot place HWS above 256MiB, so
1965 * restrict its pinning to the low mappable arena.
1966 * Though this restriction is not documented for
1967 * gen4, gen5, or byt, they also behave similarly
1968 * and hang if the HWS is placed at the top of the
1969 * GTT. To generalise, it appears that all !llc
1970 * platforms have issues with us placing the HWS
1971 * above the mappable region (even though we never
1972 * actualy map it).
1973 */
1974 flags |= PIN_MAPPABLE;
1975 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1976 if (ret) {
1977err_unref:
1978 drm_gem_object_unreference(&obj->base);
1979 return ret;
1980 }
1981
1982 ring->status_page.obj = obj;
1983 }
1984
1985 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1986 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1987 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1988
1989 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1990 ring->name, ring->status_page.gfx_addr);
1991
1992 return 0;
1993}
1994
1995static int init_phys_status_page(struct intel_engine_cs *ring)
1996{
1997 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1998
1999 if (!dev_priv->status_page_dmah) {
2000 dev_priv->status_page_dmah =
2001 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2002 if (!dev_priv->status_page_dmah)
2003 return -ENOMEM;
2004 }
2005
2006 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2007 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2008
2009 return 0;
2010}
2011
2012void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2013{
2014 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2015 vunmap(ringbuf->virtual_start);
2016 else
2017 iounmap(ringbuf->virtual_start);
2018 ringbuf->virtual_start = NULL;
2019 ringbuf->vma = NULL;
2020 i915_gem_object_ggtt_unpin(ringbuf->obj);
2021}
2022
2023static u32 *vmap_obj(struct drm_i915_gem_object *obj)
2024{
2025 struct sg_page_iter sg_iter;
2026 struct page **pages;
2027 void *addr;
2028 int i;
2029
2030 pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2031 if (pages == NULL)
2032 return NULL;
2033
2034 i = 0;
2035 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2036 pages[i++] = sg_page_iter_page(&sg_iter);
2037
2038 addr = vmap(pages, i, 0, PAGE_KERNEL);
2039 drm_free_large(pages);
2040
2041 return addr;
2042}
2043
2044int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2045 struct intel_ringbuffer *ringbuf)
2046{
2047 struct drm_i915_private *dev_priv = to_i915(dev);
2048 struct drm_i915_gem_object *obj = ringbuf->obj;
2049 int ret;
2050
2051 if (HAS_LLC(dev_priv) && !obj->stolen) {
2052 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
2053 if (ret)
2054 return ret;
2055
2056 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2057 if (ret) {
2058 i915_gem_object_ggtt_unpin(obj);
2059 return ret;
2060 }
2061
2062 ringbuf->virtual_start = vmap_obj(obj);
2063 if (ringbuf->virtual_start == NULL) {
2064 i915_gem_object_ggtt_unpin(obj);
2065 return -ENOMEM;
2066 }
2067 } else {
2068 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2069 if (ret)
2070 return ret;
2071
2072 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2073 if (ret) {
2074 i915_gem_object_ggtt_unpin(obj);
2075 return ret;
2076 }
2077
2078 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2079 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2080 if (ringbuf->virtual_start == NULL) {
2081 i915_gem_object_ggtt_unpin(obj);
2082 return -EINVAL;
2083 }
2084 }
2085
2086 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2087
2088 return 0;
2089}
2090
2091static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2092{
2093 drm_gem_object_unreference(&ringbuf->obj->base);
2094 ringbuf->obj = NULL;
2095}
2096
2097static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2098 struct intel_ringbuffer *ringbuf)
2099{
2100 struct drm_i915_gem_object *obj;
2101
2102 obj = NULL;
2103 if (!HAS_LLC(dev))
2104 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2105 if (obj == NULL)
2106 obj = i915_gem_alloc_object(dev, ringbuf->size);
2107 if (obj == NULL)
2108 return -ENOMEM;
2109
2110 /* mark ring buffers as read-only from GPU side by default */
2111 obj->gt_ro = 1;
2112
2113 ringbuf->obj = obj;
2114
2115 return 0;
2116}
2117
2118struct intel_ringbuffer *
2119intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2120{
2121 struct intel_ringbuffer *ring;
2122 int ret;
2123
2124 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2125 if (ring == NULL) {
2126 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2127 engine->name);
2128 return ERR_PTR(-ENOMEM);
2129 }
2130
2131 ring->ring = engine;
2132 list_add(&ring->link, &engine->buffers);
2133
2134 ring->size = size;
2135 /* Workaround an erratum on the i830 which causes a hang if
2136 * the TAIL pointer points to within the last 2 cachelines
2137 * of the buffer.
2138 */
2139 ring->effective_size = size;
2140 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2141 ring->effective_size -= 2 * CACHELINE_BYTES;
2142
2143 ring->last_retired_head = -1;
2144 intel_ring_update_space(ring);
2145
2146 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2147 if (ret) {
2148 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2149 engine->name, ret);
2150 list_del(&ring->link);
2151 kfree(ring);
2152 return ERR_PTR(ret);
2153 }
2154
2155 return ring;
2156}
2157
2158void
2159intel_ringbuffer_free(struct intel_ringbuffer *ring)
2160{
2161 intel_destroy_ringbuffer_obj(ring);
2162 list_del(&ring->link);
2163 kfree(ring);
2164}
2165
2166static int intel_init_ring_buffer(struct drm_device *dev,
2167 struct intel_engine_cs *ring)
2168{
2169 struct intel_ringbuffer *ringbuf;
2170 int ret;
2171
2172 WARN_ON(ring->buffer);
2173
2174 ring->dev = dev;
2175 INIT_LIST_HEAD(&ring->active_list);
2176 INIT_LIST_HEAD(&ring->request_list);
2177 INIT_LIST_HEAD(&ring->execlist_queue);
2178 INIT_LIST_HEAD(&ring->buffers);
2179 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2180 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2181
2182 init_waitqueue_head(&ring->irq_queue);
2183
2184 ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2185 if (IS_ERR(ringbuf)) {
2186 ret = PTR_ERR(ringbuf);
2187 goto error;
2188 }
2189 ring->buffer = ringbuf;
2190
2191 if (I915_NEED_GFX_HWS(dev)) {
2192 ret = init_status_page(ring);
2193 if (ret)
2194 goto error;
2195 } else {
2196 WARN_ON(ring->id != RCS);
2197 ret = init_phys_status_page(ring);
2198 if (ret)
2199 goto error;
2200 }
2201
2202 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2203 if (ret) {
2204 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2205 ring->name, ret);
2206 intel_destroy_ringbuffer_obj(ringbuf);
2207 goto error;
2208 }
2209
2210 ret = i915_cmd_parser_init_ring(ring);
2211 if (ret)
2212 goto error;
2213
2214 return 0;
2215
2216error:
2217 intel_cleanup_ring_buffer(ring);
2218 return ret;
2219}
2220
2221void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2222{
2223 struct drm_i915_private *dev_priv;
2224
2225 if (!intel_ring_initialized(ring))
2226 return;
2227
2228 dev_priv = to_i915(ring->dev);
2229
2230 if (ring->buffer) {
2231 intel_stop_ring_buffer(ring);
2232 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2233
2234 intel_unpin_ringbuffer_obj(ring->buffer);
2235 intel_ringbuffer_free(ring->buffer);
2236 ring->buffer = NULL;
2237 }
2238
2239 if (ring->cleanup)
2240 ring->cleanup(ring);
2241
2242 if (I915_NEED_GFX_HWS(ring->dev)) {
2243 cleanup_status_page(ring);
2244 } else {
2245 WARN_ON(ring->id != RCS);
2246 cleanup_phys_status_page(ring);
2247 }
2248
2249 i915_cmd_parser_fini_ring(ring);
2250 i915_gem_batch_pool_fini(&ring->batch_pool);
2251 ring->dev = NULL;
2252}
2253
2254static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2255{
2256 struct intel_ringbuffer *ringbuf = ring->buffer;
2257 struct drm_i915_gem_request *request;
2258 unsigned space;
2259 int ret;
2260
2261 if (intel_ring_space(ringbuf) >= n)
2262 return 0;
2263
2264 /* The whole point of reserving space is to not wait! */
2265 WARN_ON(ringbuf->reserved_in_use);
2266
2267 list_for_each_entry(request, &ring->request_list, list) {
2268 space = __intel_ring_space(request->postfix, ringbuf->tail,
2269 ringbuf->size);
2270 if (space >= n)
2271 break;
2272 }
2273
2274 if (WARN_ON(&request->list == &ring->request_list))
2275 return -ENOSPC;
2276
2277 ret = i915_wait_request(request);
2278 if (ret)
2279 return ret;
2280
2281 ringbuf->space = space;
2282 return 0;
2283}
2284
2285static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2286{
2287 uint32_t __iomem *virt;
2288 int rem = ringbuf->size - ringbuf->tail;
2289
2290 virt = ringbuf->virtual_start + ringbuf->tail;
2291 rem /= 4;
2292 while (rem--)
2293 iowrite32(MI_NOOP, virt++);
2294
2295 ringbuf->tail = 0;
2296 intel_ring_update_space(ringbuf);
2297}
2298
2299int intel_ring_idle(struct intel_engine_cs *ring)
2300{
2301 struct drm_i915_gem_request *req;
2302
2303 /* Wait upon the last request to be completed */
2304 if (list_empty(&ring->request_list))
2305 return 0;
2306
2307 req = list_entry(ring->request_list.prev,
2308 struct drm_i915_gem_request,
2309 list);
2310
2311 /* Make sure we do not trigger any retires */
2312 return __i915_wait_request(req,
2313 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2314 to_i915(ring->dev)->mm.interruptible,
2315 NULL, NULL);
2316}
2317
2318int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2319{
2320 request->ringbuf = request->ring->buffer;
2321 return 0;
2322}
2323
2324int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2325{
2326 /*
2327 * The first call merely notes the reserve request and is common for
2328 * all back ends. The subsequent localised _begin() call actually
2329 * ensures that the reservation is available. Without the begin, if
2330 * the request creator immediately submitted the request without
2331 * adding any commands to it then there might not actually be
2332 * sufficient room for the submission commands.
2333 */
2334 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2335
2336 return intel_ring_begin(request, 0);
2337}
2338
2339void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2340{
2341 WARN_ON(ringbuf->reserved_size);
2342 WARN_ON(ringbuf->reserved_in_use);
2343
2344 ringbuf->reserved_size = size;
2345}
2346
2347void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2348{
2349 WARN_ON(ringbuf->reserved_in_use);
2350
2351 ringbuf->reserved_size = 0;
2352 ringbuf->reserved_in_use = false;
2353}
2354
2355void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2356{
2357 WARN_ON(ringbuf->reserved_in_use);
2358
2359 ringbuf->reserved_in_use = true;
2360 ringbuf->reserved_tail = ringbuf->tail;
2361}
2362
2363void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2364{
2365 WARN_ON(!ringbuf->reserved_in_use);
2366 if (ringbuf->tail > ringbuf->reserved_tail) {
2367 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2368 "request reserved size too small: %d vs %d!\n",
2369 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2370 } else {
2371 /*
2372 * The ring was wrapped while the reserved space was in use.
2373 * That means that some unknown amount of the ring tail was
2374 * no-op filled and skipped. Thus simply adding the ring size
2375 * to the tail and doing the above space check will not work.
2376 * Rather than attempt to track how much tail was skipped,
2377 * it is much simpler to say that also skipping the sanity
2378 * check every once in a while is not a big issue.
2379 */
2380 }
2381
2382 ringbuf->reserved_size = 0;
2383 ringbuf->reserved_in_use = false;
2384}
2385
2386static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2387{
2388 struct intel_ringbuffer *ringbuf = ring->buffer;
2389 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2390 int remain_actual = ringbuf->size - ringbuf->tail;
2391 int ret, total_bytes, wait_bytes = 0;
2392 bool need_wrap = false;
2393
2394 if (ringbuf->reserved_in_use)
2395 total_bytes = bytes;
2396 else
2397 total_bytes = bytes + ringbuf->reserved_size;
2398
2399 if (unlikely(bytes > remain_usable)) {
2400 /*
2401 * Not enough space for the basic request. So need to flush
2402 * out the remainder and then wait for base + reserved.
2403 */
2404 wait_bytes = remain_actual + total_bytes;
2405 need_wrap = true;
2406 } else {
2407 if (unlikely(total_bytes > remain_usable)) {
2408 /*
2409 * The base request will fit but the reserved space
2410 * falls off the end. So only need to to wait for the
2411 * reserved size after flushing out the remainder.
2412 */
2413 wait_bytes = remain_actual + ringbuf->reserved_size;
2414 need_wrap = true;
2415 } else if (total_bytes > ringbuf->space) {
2416 /* No wrapping required, just waiting. */
2417 wait_bytes = total_bytes;
2418 }
2419 }
2420
2421 if (wait_bytes) {
2422 ret = ring_wait_for_space(ring, wait_bytes);
2423 if (unlikely(ret))
2424 return ret;
2425
2426 if (need_wrap)
2427 __wrap_ring_buffer(ringbuf);
2428 }
2429
2430 return 0;
2431}
2432
2433int intel_ring_begin(struct drm_i915_gem_request *req,
2434 int num_dwords)
2435{
2436 struct intel_engine_cs *ring;
2437 struct drm_i915_private *dev_priv;
2438 int ret;
2439
2440 WARN_ON(req == NULL);
2441 ring = req->ring;
2442 dev_priv = ring->dev->dev_private;
2443
2444 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2445 dev_priv->mm.interruptible);
2446 if (ret)
2447 return ret;
2448
2449 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2450 if (ret)
2451 return ret;
2452
2453 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2454 return 0;
2455}
2456
2457/* Align the ring tail to a cacheline boundary */
2458int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2459{
2460 struct intel_engine_cs *ring = req->ring;
2461 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2462 int ret;
2463
2464 if (num_dwords == 0)
2465 return 0;
2466
2467 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2468 ret = intel_ring_begin(req, num_dwords);
2469 if (ret)
2470 return ret;
2471
2472 while (num_dwords--)
2473 intel_ring_emit(ring, MI_NOOP);
2474
2475 intel_ring_advance(ring);
2476
2477 return 0;
2478}
2479
2480void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2481{
2482 struct drm_device *dev = ring->dev;
2483 struct drm_i915_private *dev_priv = dev->dev_private;
2484
2485 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2486 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2487 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2488 if (HAS_VEBOX(dev))
2489 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2490 }
2491
2492 ring->set_seqno(ring, seqno);
2493 ring->hangcheck.seqno = seqno;
2494}
2495
2496static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2497 u32 value)
2498{
2499 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2500
2501 /* Every tail move must follow the sequence below */
2502
2503 /* Disable notification that the ring is IDLE. The GT
2504 * will then assume that it is busy and bring it out of rc6.
2505 */
2506 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2507 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2508
2509 /* Clear the context id. Here be magic! */
2510 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2511
2512 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2513 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2514 GEN6_BSD_SLEEP_INDICATOR) == 0,
2515 50))
2516 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2517
2518 /* Now that the ring is fully powered up, update the tail */
2519 I915_WRITE_TAIL(ring, value);
2520 POSTING_READ(RING_TAIL(ring->mmio_base));
2521
2522 /* Let the ring send IDLE messages to the GT again,
2523 * and so let it sleep to conserve power when idle.
2524 */
2525 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2526 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2527}
2528
2529static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2530 u32 invalidate, u32 flush)
2531{
2532 struct intel_engine_cs *ring = req->ring;
2533 uint32_t cmd;
2534 int ret;
2535
2536 ret = intel_ring_begin(req, 4);
2537 if (ret)
2538 return ret;
2539
2540 cmd = MI_FLUSH_DW;
2541 if (INTEL_INFO(ring->dev)->gen >= 8)
2542 cmd += 1;
2543
2544 /* We always require a command barrier so that subsequent
2545 * commands, such as breadcrumb interrupts, are strictly ordered
2546 * wrt the contents of the write cache being flushed to memory
2547 * (and thus being coherent from the CPU).
2548 */
2549 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2550
2551 /*
2552 * Bspec vol 1c.5 - video engine command streamer:
2553 * "If ENABLED, all TLBs will be invalidated once the flush
2554 * operation is complete. This bit is only valid when the
2555 * Post-Sync Operation field is a value of 1h or 3h."
2556 */
2557 if (invalidate & I915_GEM_GPU_DOMAINS)
2558 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2559
2560 intel_ring_emit(ring, cmd);
2561 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2562 if (INTEL_INFO(ring->dev)->gen >= 8) {
2563 intel_ring_emit(ring, 0); /* upper addr */
2564 intel_ring_emit(ring, 0); /* value */
2565 } else {
2566 intel_ring_emit(ring, 0);
2567 intel_ring_emit(ring, MI_NOOP);
2568 }
2569 intel_ring_advance(ring);
2570 return 0;
2571}
2572
2573static int
2574gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2575 u64 offset, u32 len,
2576 unsigned dispatch_flags)
2577{
2578 struct intel_engine_cs *ring = req->ring;
2579 bool ppgtt = USES_PPGTT(ring->dev) &&
2580 !(dispatch_flags & I915_DISPATCH_SECURE);
2581 int ret;
2582
2583 ret = intel_ring_begin(req, 4);
2584 if (ret)
2585 return ret;
2586
2587 /* FIXME(BDW): Address space and security selectors. */
2588 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2589 (dispatch_flags & I915_DISPATCH_RS ?
2590 MI_BATCH_RESOURCE_STREAMER : 0));
2591 intel_ring_emit(ring, lower_32_bits(offset));
2592 intel_ring_emit(ring, upper_32_bits(offset));
2593 intel_ring_emit(ring, MI_NOOP);
2594 intel_ring_advance(ring);
2595
2596 return 0;
2597}
2598
2599static int
2600hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2601 u64 offset, u32 len,
2602 unsigned dispatch_flags)
2603{
2604 struct intel_engine_cs *ring = req->ring;
2605 int ret;
2606
2607 ret = intel_ring_begin(req, 2);
2608 if (ret)
2609 return ret;
2610
2611 intel_ring_emit(ring,
2612 MI_BATCH_BUFFER_START |
2613 (dispatch_flags & I915_DISPATCH_SECURE ?
2614 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2615 (dispatch_flags & I915_DISPATCH_RS ?
2616 MI_BATCH_RESOURCE_STREAMER : 0));
2617 /* bit0-7 is the length on GEN6+ */
2618 intel_ring_emit(ring, offset);
2619 intel_ring_advance(ring);
2620
2621 return 0;
2622}
2623
2624static int
2625gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2626 u64 offset, u32 len,
2627 unsigned dispatch_flags)
2628{
2629 struct intel_engine_cs *ring = req->ring;
2630 int ret;
2631
2632 ret = intel_ring_begin(req, 2);
2633 if (ret)
2634 return ret;
2635
2636 intel_ring_emit(ring,
2637 MI_BATCH_BUFFER_START |
2638 (dispatch_flags & I915_DISPATCH_SECURE ?
2639 0 : MI_BATCH_NON_SECURE_I965));
2640 /* bit0-7 is the length on GEN6+ */
2641 intel_ring_emit(ring, offset);
2642 intel_ring_advance(ring);
2643
2644 return 0;
2645}
2646
2647/* Blitter support (SandyBridge+) */
2648
2649static int gen6_ring_flush(struct drm_i915_gem_request *req,
2650 u32 invalidate, u32 flush)
2651{
2652 struct intel_engine_cs *ring = req->ring;
2653 struct drm_device *dev = ring->dev;
2654 uint32_t cmd;
2655 int ret;
2656
2657 ret = intel_ring_begin(req, 4);
2658 if (ret)
2659 return ret;
2660
2661 cmd = MI_FLUSH_DW;
2662 if (INTEL_INFO(dev)->gen >= 8)
2663 cmd += 1;
2664
2665 /* We always require a command barrier so that subsequent
2666 * commands, such as breadcrumb interrupts, are strictly ordered
2667 * wrt the contents of the write cache being flushed to memory
2668 * (and thus being coherent from the CPU).
2669 */
2670 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2671
2672 /*
2673 * Bspec vol 1c.3 - blitter engine command streamer:
2674 * "If ENABLED, all TLBs will be invalidated once the flush
2675 * operation is complete. This bit is only valid when the
2676 * Post-Sync Operation field is a value of 1h or 3h."
2677 */
2678 if (invalidate & I915_GEM_DOMAIN_RENDER)
2679 cmd |= MI_INVALIDATE_TLB;
2680 intel_ring_emit(ring, cmd);
2681 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2682 if (INTEL_INFO(dev)->gen >= 8) {
2683 intel_ring_emit(ring, 0); /* upper addr */
2684 intel_ring_emit(ring, 0); /* value */
2685 } else {
2686 intel_ring_emit(ring, 0);
2687 intel_ring_emit(ring, MI_NOOP);
2688 }
2689 intel_ring_advance(ring);
2690
2691 return 0;
2692}
2693
2694int intel_init_render_ring_buffer(struct drm_device *dev)
2695{
2696 struct drm_i915_private *dev_priv = dev->dev_private;
2697 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2698 struct drm_i915_gem_object *obj;
2699 int ret;
2700
2701 ring->name = "render ring";
2702 ring->id = RCS;
2703 ring->exec_id = I915_EXEC_RENDER;
2704 ring->mmio_base = RENDER_RING_BASE;
2705
2706 if (INTEL_INFO(dev)->gen >= 8) {
2707 if (i915_semaphore_is_enabled(dev)) {
2708 obj = i915_gem_alloc_object(dev, 4096);
2709 if (obj == NULL) {
2710 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2711 i915.semaphores = 0;
2712 } else {
2713 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2714 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2715 if (ret != 0) {
2716 drm_gem_object_unreference(&obj->base);
2717 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2718 i915.semaphores = 0;
2719 } else
2720 dev_priv->semaphore_obj = obj;
2721 }
2722 }
2723
2724 ring->init_context = intel_rcs_ctx_init;
2725 ring->add_request = gen6_add_request;
2726 ring->flush = gen8_render_ring_flush;
2727 ring->irq_get = gen8_ring_get_irq;
2728 ring->irq_put = gen8_ring_put_irq;
2729 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2730 ring->get_seqno = gen6_ring_get_seqno;
2731 ring->set_seqno = ring_set_seqno;
2732 if (i915_semaphore_is_enabled(dev)) {
2733 WARN_ON(!dev_priv->semaphore_obj);
2734 ring->semaphore.sync_to = gen8_ring_sync;
2735 ring->semaphore.signal = gen8_rcs_signal;
2736 GEN8_RING_SEMAPHORE_INIT;
2737 }
2738 } else if (INTEL_INFO(dev)->gen >= 6) {
2739 ring->init_context = intel_rcs_ctx_init;
2740 ring->add_request = gen6_add_request;
2741 ring->flush = gen7_render_ring_flush;
2742 if (INTEL_INFO(dev)->gen == 6)
2743 ring->flush = gen6_render_ring_flush;
2744 ring->irq_get = gen6_ring_get_irq;
2745 ring->irq_put = gen6_ring_put_irq;
2746 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2747 ring->get_seqno = gen6_ring_get_seqno;
2748 ring->set_seqno = ring_set_seqno;
2749 if (i915_semaphore_is_enabled(dev)) {
2750 ring->semaphore.sync_to = gen6_ring_sync;
2751 ring->semaphore.signal = gen6_signal;
2752 /*
2753 * The current semaphore is only applied on pre-gen8
2754 * platform. And there is no VCS2 ring on the pre-gen8
2755 * platform. So the semaphore between RCS and VCS2 is
2756 * initialized as INVALID. Gen8 will initialize the
2757 * sema between VCS2 and RCS later.
2758 */
2759 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2760 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2761 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2762 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2763 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2764 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2765 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2766 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2767 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2768 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2769 }
2770 } else if (IS_GEN5(dev)) {
2771 ring->add_request = pc_render_add_request;
2772 ring->flush = gen4_render_ring_flush;
2773 ring->get_seqno = pc_render_get_seqno;
2774 ring->set_seqno = pc_render_set_seqno;
2775 ring->irq_get = gen5_ring_get_irq;
2776 ring->irq_put = gen5_ring_put_irq;
2777 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2778 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2779 } else {
2780 ring->add_request = i9xx_add_request;
2781 if (INTEL_INFO(dev)->gen < 4)
2782 ring->flush = gen2_render_ring_flush;
2783 else
2784 ring->flush = gen4_render_ring_flush;
2785 ring->get_seqno = ring_get_seqno;
2786 ring->set_seqno = ring_set_seqno;
2787 if (IS_GEN2(dev)) {
2788 ring->irq_get = i8xx_ring_get_irq;
2789 ring->irq_put = i8xx_ring_put_irq;
2790 } else {
2791 ring->irq_get = i9xx_ring_get_irq;
2792 ring->irq_put = i9xx_ring_put_irq;
2793 }
2794 ring->irq_enable_mask = I915_USER_INTERRUPT;
2795 }
2796 ring->write_tail = ring_write_tail;
2797
2798 if (IS_HASWELL(dev))
2799 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2800 else if (IS_GEN8(dev))
2801 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2802 else if (INTEL_INFO(dev)->gen >= 6)
2803 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2804 else if (INTEL_INFO(dev)->gen >= 4)
2805 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2806 else if (IS_I830(dev) || IS_845G(dev))
2807 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2808 else
2809 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2810 ring->init_hw = init_render_ring;
2811 ring->cleanup = render_ring_cleanup;
2812
2813 /* Workaround batchbuffer to combat CS tlb bug. */
2814 if (HAS_BROKEN_CS_TLB(dev)) {
2815 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2816 if (obj == NULL) {
2817 DRM_ERROR("Failed to allocate batch bo\n");
2818 return -ENOMEM;
2819 }
2820
2821 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2822 if (ret != 0) {
2823 drm_gem_object_unreference(&obj->base);
2824 DRM_ERROR("Failed to ping batch bo\n");
2825 return ret;
2826 }
2827
2828 ring->scratch.obj = obj;
2829 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2830 }
2831
2832 ret = intel_init_ring_buffer(dev, ring);
2833 if (ret)
2834 return ret;
2835
2836 if (INTEL_INFO(dev)->gen >= 5) {
2837 ret = intel_init_pipe_control(ring);
2838 if (ret)
2839 return ret;
2840 }
2841
2842 return 0;
2843}
2844
2845int intel_init_bsd_ring_buffer(struct drm_device *dev)
2846{
2847 struct drm_i915_private *dev_priv = dev->dev_private;
2848 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2849
2850 ring->name = "bsd ring";
2851 ring->id = VCS;
2852 ring->exec_id = I915_EXEC_BSD;
2853
2854 ring->write_tail = ring_write_tail;
2855 if (INTEL_INFO(dev)->gen >= 6) {
2856 ring->mmio_base = GEN6_BSD_RING_BASE;
2857 /* gen6 bsd needs a special wa for tail updates */
2858 if (IS_GEN6(dev))
2859 ring->write_tail = gen6_bsd_ring_write_tail;
2860 ring->flush = gen6_bsd_ring_flush;
2861 ring->add_request = gen6_add_request;
2862 ring->get_seqno = gen6_ring_get_seqno;
2863 ring->set_seqno = ring_set_seqno;
2864 if (INTEL_INFO(dev)->gen >= 8) {
2865 ring->irq_enable_mask =
2866 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2867 ring->irq_get = gen8_ring_get_irq;
2868 ring->irq_put = gen8_ring_put_irq;
2869 ring->dispatch_execbuffer =
2870 gen8_ring_dispatch_execbuffer;
2871 if (i915_semaphore_is_enabled(dev)) {
2872 ring->semaphore.sync_to = gen8_ring_sync;
2873 ring->semaphore.signal = gen8_xcs_signal;
2874 GEN8_RING_SEMAPHORE_INIT;
2875 }
2876 } else {
2877 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2878 ring->irq_get = gen6_ring_get_irq;
2879 ring->irq_put = gen6_ring_put_irq;
2880 ring->dispatch_execbuffer =
2881 gen6_ring_dispatch_execbuffer;
2882 if (i915_semaphore_is_enabled(dev)) {
2883 ring->semaphore.sync_to = gen6_ring_sync;
2884 ring->semaphore.signal = gen6_signal;
2885 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2886 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2887 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2888 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2889 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2890 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2891 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2892 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2893 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2894 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2895 }
2896 }
2897 } else {
2898 ring->mmio_base = BSD_RING_BASE;
2899 ring->flush = bsd_ring_flush;
2900 ring->add_request = i9xx_add_request;
2901 ring->get_seqno = ring_get_seqno;
2902 ring->set_seqno = ring_set_seqno;
2903 if (IS_GEN5(dev)) {
2904 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2905 ring->irq_get = gen5_ring_get_irq;
2906 ring->irq_put = gen5_ring_put_irq;
2907 } else {
2908 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2909 ring->irq_get = i9xx_ring_get_irq;
2910 ring->irq_put = i9xx_ring_put_irq;
2911 }
2912 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2913 }
2914 ring->init_hw = init_ring_common;
2915
2916 return intel_init_ring_buffer(dev, ring);
2917}
2918
2919/**
2920 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2921 */
2922int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2923{
2924 struct drm_i915_private *dev_priv = dev->dev_private;
2925 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2926
2927 ring->name = "bsd2 ring";
2928 ring->id = VCS2;
2929 ring->exec_id = I915_EXEC_BSD;
2930
2931 ring->write_tail = ring_write_tail;
2932 ring->mmio_base = GEN8_BSD2_RING_BASE;
2933 ring->flush = gen6_bsd_ring_flush;
2934 ring->add_request = gen6_add_request;
2935 ring->get_seqno = gen6_ring_get_seqno;
2936 ring->set_seqno = ring_set_seqno;
2937 ring->irq_enable_mask =
2938 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2939 ring->irq_get = gen8_ring_get_irq;
2940 ring->irq_put = gen8_ring_put_irq;
2941 ring->dispatch_execbuffer =
2942 gen8_ring_dispatch_execbuffer;
2943 if (i915_semaphore_is_enabled(dev)) {
2944 ring->semaphore.sync_to = gen8_ring_sync;
2945 ring->semaphore.signal = gen8_xcs_signal;
2946 GEN8_RING_SEMAPHORE_INIT;
2947 }
2948 ring->init_hw = init_ring_common;
2949
2950 return intel_init_ring_buffer(dev, ring);
2951}
2952
2953int intel_init_blt_ring_buffer(struct drm_device *dev)
2954{
2955 struct drm_i915_private *dev_priv = dev->dev_private;
2956 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2957
2958 ring->name = "blitter ring";
2959 ring->id = BCS;
2960 ring->exec_id = I915_EXEC_BLT;
2961
2962 ring->mmio_base = BLT_RING_BASE;
2963 ring->write_tail = ring_write_tail;
2964 ring->flush = gen6_ring_flush;
2965 ring->add_request = gen6_add_request;
2966 ring->get_seqno = gen6_ring_get_seqno;
2967 ring->set_seqno = ring_set_seqno;
2968 if (INTEL_INFO(dev)->gen >= 8) {
2969 ring->irq_enable_mask =
2970 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2971 ring->irq_get = gen8_ring_get_irq;
2972 ring->irq_put = gen8_ring_put_irq;
2973 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2974 if (i915_semaphore_is_enabled(dev)) {
2975 ring->semaphore.sync_to = gen8_ring_sync;
2976 ring->semaphore.signal = gen8_xcs_signal;
2977 GEN8_RING_SEMAPHORE_INIT;
2978 }
2979 } else {
2980 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2981 ring->irq_get = gen6_ring_get_irq;
2982 ring->irq_put = gen6_ring_put_irq;
2983 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2984 if (i915_semaphore_is_enabled(dev)) {
2985 ring->semaphore.signal = gen6_signal;
2986 ring->semaphore.sync_to = gen6_ring_sync;
2987 /*
2988 * The current semaphore is only applied on pre-gen8
2989 * platform. And there is no VCS2 ring on the pre-gen8
2990 * platform. So the semaphore between BCS and VCS2 is
2991 * initialized as INVALID. Gen8 will initialize the
2992 * sema between BCS and VCS2 later.
2993 */
2994 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2995 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2996 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2997 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2998 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2999 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3000 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3001 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3002 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3003 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3004 }
3005 }
3006 ring->init_hw = init_ring_common;
3007
3008 return intel_init_ring_buffer(dev, ring);
3009}
3010
3011int intel_init_vebox_ring_buffer(struct drm_device *dev)
3012{
3013 struct drm_i915_private *dev_priv = dev->dev_private;
3014 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
3015
3016 ring->name = "video enhancement ring";
3017 ring->id = VECS;
3018 ring->exec_id = I915_EXEC_VEBOX;
3019
3020 ring->mmio_base = VEBOX_RING_BASE;
3021 ring->write_tail = ring_write_tail;
3022 ring->flush = gen6_ring_flush;
3023 ring->add_request = gen6_add_request;
3024 ring->get_seqno = gen6_ring_get_seqno;
3025 ring->set_seqno = ring_set_seqno;
3026
3027 if (INTEL_INFO(dev)->gen >= 8) {
3028 ring->irq_enable_mask =
3029 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3030 ring->irq_get = gen8_ring_get_irq;
3031 ring->irq_put = gen8_ring_put_irq;
3032 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3033 if (i915_semaphore_is_enabled(dev)) {
3034 ring->semaphore.sync_to = gen8_ring_sync;
3035 ring->semaphore.signal = gen8_xcs_signal;
3036 GEN8_RING_SEMAPHORE_INIT;
3037 }
3038 } else {
3039 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3040 ring->irq_get = hsw_vebox_get_irq;
3041 ring->irq_put = hsw_vebox_put_irq;
3042 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3043 if (i915_semaphore_is_enabled(dev)) {
3044 ring->semaphore.sync_to = gen6_ring_sync;
3045 ring->semaphore.signal = gen6_signal;
3046 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3047 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3048 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3049 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3050 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3051 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3052 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3053 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3054 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3055 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3056 }
3057 }
3058 ring->init_hw = init_ring_common;
3059
3060 return intel_init_ring_buffer(dev, ring);
3061}
3062
3063int
3064intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3065{
3066 struct intel_engine_cs *ring = req->ring;
3067 int ret;
3068
3069 if (!ring->gpu_caches_dirty)
3070 return 0;
3071
3072 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3073 if (ret)
3074 return ret;
3075
3076 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3077
3078 ring->gpu_caches_dirty = false;
3079 return 0;
3080}
3081
3082int
3083intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3084{
3085 struct intel_engine_cs *ring = req->ring;
3086 uint32_t flush_domains;
3087 int ret;
3088
3089 flush_domains = 0;
3090 if (ring->gpu_caches_dirty)
3091 flush_domains = I915_GEM_GPU_DOMAINS;
3092
3093 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3094 if (ret)
3095 return ret;
3096
3097 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3098
3099 ring->gpu_caches_dirty = false;
3100 return 0;
3101}
3102
3103void
3104intel_stop_ring_buffer(struct intel_engine_cs *ring)
3105{
3106 int ret;
3107
3108 if (!intel_ring_initialized(ring))
3109 return;
3110
3111 ret = intel_ring_idle(ring);
3112 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3113 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3114 ring->name, ret);
3115
3116 stop_ring(ring);
3117}
This page took 0.034193 seconds and 5 git commands to generate.