drivers/net: fix up stale paths from driver reorg
[deliverable/linux.git] / drivers / net / ethernet / freescale / gianfar.c
... / ...
CommitLineData
1/*
2 * drivers/net/ethernet/freescale/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
20 *
21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2
23 * Dec +69 19 52
24 * V 3.84
25 * B-V +1.62
26 *
27 * Theory of operation
28 *
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
31 *
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
37 *
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
53 * skb.
54 *
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
63 */
64
65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66#define DEBUG
67
68#include <linux/kernel.h>
69#include <linux/string.h>
70#include <linux/errno.h>
71#include <linux/unistd.h>
72#include <linux/slab.h>
73#include <linux/interrupt.h>
74#include <linux/init.h>
75#include <linux/delay.h>
76#include <linux/netdevice.h>
77#include <linux/etherdevice.h>
78#include <linux/skbuff.h>
79#include <linux/if_vlan.h>
80#include <linux/spinlock.h>
81#include <linux/mm.h>
82#include <linux/of_mdio.h>
83#include <linux/of_platform.h>
84#include <linux/ip.h>
85#include <linux/tcp.h>
86#include <linux/udp.h>
87#include <linux/in.h>
88#include <linux/net_tstamp.h>
89
90#include <asm/io.h>
91#include <asm/reg.h>
92#include <asm/irq.h>
93#include <asm/uaccess.h>
94#include <linux/module.h>
95#include <linux/dma-mapping.h>
96#include <linux/crc32.h>
97#include <linux/mii.h>
98#include <linux/phy.h>
99#include <linux/phy_fixed.h>
100#include <linux/of.h>
101#include <linux/of_net.h>
102
103#include "gianfar.h"
104#include "fsl_pq_mdio.h"
105
106#define TX_TIMEOUT (1*HZ)
107#undef BRIEF_GFAR_ERRORS
108#undef VERBOSE_GFAR_ERRORS
109
110const char gfar_driver_name[] = "Gianfar Ethernet";
111const char gfar_driver_version[] = "1.3";
112
113static int gfar_enet_open(struct net_device *dev);
114static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
115static void gfar_reset_task(struct work_struct *work);
116static void gfar_timeout(struct net_device *dev);
117static int gfar_close(struct net_device *dev);
118struct sk_buff *gfar_new_skb(struct net_device *dev);
119static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
120 struct sk_buff *skb);
121static int gfar_set_mac_address(struct net_device *dev);
122static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123static irqreturn_t gfar_error(int irq, void *dev_id);
124static irqreturn_t gfar_transmit(int irq, void *dev_id);
125static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126static void adjust_link(struct net_device *dev);
127static void init_registers(struct net_device *dev);
128static int init_phy(struct net_device *dev);
129static int gfar_probe(struct platform_device *ofdev);
130static int gfar_remove(struct platform_device *ofdev);
131static void free_skb_resources(struct gfar_private *priv);
132static void gfar_set_multi(struct net_device *dev);
133static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134static void gfar_configure_serdes(struct net_device *dev);
135static int gfar_poll(struct napi_struct *napi, int budget);
136#ifdef CONFIG_NET_POLL_CONTROLLER
137static void gfar_netpoll(struct net_device *dev);
138#endif
139int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
140static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
141static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
142 int amount_pull);
143void gfar_halt(struct net_device *dev);
144static void gfar_halt_nodisable(struct net_device *dev);
145void gfar_start(struct net_device *dev);
146static void gfar_clear_exact_match(struct net_device *dev);
147static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151MODULE_AUTHOR("Freescale Semiconductor, Inc");
152MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153MODULE_LICENSE("GPL");
154
155static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
157{
158 u32 lstatus;
159
160 bdp->bufPtr = buf;
161
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166 eieio();
167
168 bdp->lstatus = lstatus;
169}
170
171static int gfar_init_bds(struct net_device *ndev)
172{
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar_priv_tx_q *tx_queue = NULL;
175 struct gfar_priv_rx_q *rx_queue = NULL;
176 struct txbd8 *txbdp;
177 struct rxbd8 *rxbdp;
178 int i, j;
179
180 for (i = 0; i < priv->num_tx_queues; i++) {
181 tx_queue = priv->tx_queue[i];
182 /* Initialize some variables in our dev structure */
183 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
184 tx_queue->dirty_tx = tx_queue->tx_bd_base;
185 tx_queue->cur_tx = tx_queue->tx_bd_base;
186 tx_queue->skb_curtx = 0;
187 tx_queue->skb_dirtytx = 0;
188
189 /* Initialize Transmit Descriptor Ring */
190 txbdp = tx_queue->tx_bd_base;
191 for (j = 0; j < tx_queue->tx_ring_size; j++) {
192 txbdp->lstatus = 0;
193 txbdp->bufPtr = 0;
194 txbdp++;
195 }
196
197 /* Set the last descriptor in the ring to indicate wrap */
198 txbdp--;
199 txbdp->status |= TXBD_WRAP;
200 }
201
202 for (i = 0; i < priv->num_rx_queues; i++) {
203 rx_queue = priv->rx_queue[i];
204 rx_queue->cur_rx = rx_queue->rx_bd_base;
205 rx_queue->skb_currx = 0;
206 rxbdp = rx_queue->rx_bd_base;
207
208 for (j = 0; j < rx_queue->rx_ring_size; j++) {
209 struct sk_buff *skb = rx_queue->rx_skbuff[j];
210
211 if (skb) {
212 gfar_init_rxbdp(rx_queue, rxbdp,
213 rxbdp->bufPtr);
214 } else {
215 skb = gfar_new_skb(ndev);
216 if (!skb) {
217 netdev_err(ndev, "Can't allocate RX buffers\n");
218 goto err_rxalloc_fail;
219 }
220 rx_queue->rx_skbuff[j] = skb;
221
222 gfar_new_rxbdp(rx_queue, rxbdp, skb);
223 }
224
225 rxbdp++;
226 }
227
228 }
229
230 return 0;
231
232err_rxalloc_fail:
233 free_skb_resources(priv);
234 return -ENOMEM;
235}
236
237static int gfar_alloc_skb_resources(struct net_device *ndev)
238{
239 void *vaddr;
240 dma_addr_t addr;
241 int i, j, k;
242 struct gfar_private *priv = netdev_priv(ndev);
243 struct device *dev = &priv->ofdev->dev;
244 struct gfar_priv_tx_q *tx_queue = NULL;
245 struct gfar_priv_rx_q *rx_queue = NULL;
246
247 priv->total_tx_ring_size = 0;
248 for (i = 0; i < priv->num_tx_queues; i++)
249 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
250
251 priv->total_rx_ring_size = 0;
252 for (i = 0; i < priv->num_rx_queues; i++)
253 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
254
255 /* Allocate memory for the buffer descriptors */
256 vaddr = dma_alloc_coherent(dev,
257 sizeof(struct txbd8) * priv->total_tx_ring_size +
258 sizeof(struct rxbd8) * priv->total_rx_ring_size,
259 &addr, GFP_KERNEL);
260 if (!vaddr) {
261 netif_err(priv, ifup, ndev,
262 "Could not allocate buffer descriptors!\n");
263 return -ENOMEM;
264 }
265
266 for (i = 0; i < priv->num_tx_queues; i++) {
267 tx_queue = priv->tx_queue[i];
268 tx_queue->tx_bd_base = vaddr;
269 tx_queue->tx_bd_dma_base = addr;
270 tx_queue->dev = ndev;
271 /* enet DMA only understands physical addresses */
272 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
274 }
275
276 /* Start the rx descriptor ring where the tx ring leaves off */
277 for (i = 0; i < priv->num_rx_queues; i++) {
278 rx_queue = priv->rx_queue[i];
279 rx_queue->rx_bd_base = vaddr;
280 rx_queue->rx_bd_dma_base = addr;
281 rx_queue->dev = ndev;
282 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
284 }
285
286 /* Setup the skbuff rings */
287 for (i = 0; i < priv->num_tx_queues; i++) {
288 tx_queue = priv->tx_queue[i];
289 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
290 tx_queue->tx_ring_size, GFP_KERNEL);
291 if (!tx_queue->tx_skbuff) {
292 netif_err(priv, ifup, ndev,
293 "Could not allocate tx_skbuff\n");
294 goto cleanup;
295 }
296
297 for (k = 0; k < tx_queue->tx_ring_size; k++)
298 tx_queue->tx_skbuff[k] = NULL;
299 }
300
301 for (i = 0; i < priv->num_rx_queues; i++) {
302 rx_queue = priv->rx_queue[i];
303 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
304 rx_queue->rx_ring_size, GFP_KERNEL);
305
306 if (!rx_queue->rx_skbuff) {
307 netif_err(priv, ifup, ndev,
308 "Could not allocate rx_skbuff\n");
309 goto cleanup;
310 }
311
312 for (j = 0; j < rx_queue->rx_ring_size; j++)
313 rx_queue->rx_skbuff[j] = NULL;
314 }
315
316 if (gfar_init_bds(ndev))
317 goto cleanup;
318
319 return 0;
320
321cleanup:
322 free_skb_resources(priv);
323 return -ENOMEM;
324}
325
326static void gfar_init_tx_rx_base(struct gfar_private *priv)
327{
328 struct gfar __iomem *regs = priv->gfargrp[0].regs;
329 u32 __iomem *baddr;
330 int i;
331
332 baddr = &regs->tbase0;
333 for(i = 0; i < priv->num_tx_queues; i++) {
334 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
335 baddr += 2;
336 }
337
338 baddr = &regs->rbase0;
339 for(i = 0; i < priv->num_rx_queues; i++) {
340 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
341 baddr += 2;
342 }
343}
344
345static void gfar_init_mac(struct net_device *ndev)
346{
347 struct gfar_private *priv = netdev_priv(ndev);
348 struct gfar __iomem *regs = priv->gfargrp[0].regs;
349 u32 rctrl = 0;
350 u32 tctrl = 0;
351 u32 attrs = 0;
352
353 /* write the tx/rx base registers */
354 gfar_init_tx_rx_base(priv);
355
356 /* Configure the coalescing support */
357 gfar_configure_coalescing(priv, 0xFF, 0xFF);
358
359 if (priv->rx_filer_enable) {
360 rctrl |= RCTRL_FILREN;
361 /* Program the RIR0 reg with the required distribution */
362 gfar_write(&regs->rir0, DEFAULT_RIR0);
363 }
364
365 if (ndev->features & NETIF_F_RXCSUM)
366 rctrl |= RCTRL_CHECKSUMMING;
367
368 if (priv->extended_hash) {
369 rctrl |= RCTRL_EXTHASH;
370
371 gfar_clear_exact_match(ndev);
372 rctrl |= RCTRL_EMEN;
373 }
374
375 if (priv->padding) {
376 rctrl &= ~RCTRL_PAL_MASK;
377 rctrl |= RCTRL_PADDING(priv->padding);
378 }
379
380 /* Insert receive time stamps into padding alignment bytes */
381 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
382 rctrl &= ~RCTRL_PAL_MASK;
383 rctrl |= RCTRL_PADDING(8);
384 priv->padding = 8;
385 }
386
387 /* Enable HW time stamping if requested from user space */
388 if (priv->hwts_rx_en)
389 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
390
391 if (ndev->features & NETIF_F_HW_VLAN_RX)
392 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
393
394 /* Init rctrl based on our settings */
395 gfar_write(&regs->rctrl, rctrl);
396
397 if (ndev->features & NETIF_F_IP_CSUM)
398 tctrl |= TCTRL_INIT_CSUM;
399
400 tctrl |= TCTRL_TXSCHED_PRIO;
401
402 gfar_write(&regs->tctrl, tctrl);
403
404 /* Set the extraction length and index */
405 attrs = ATTRELI_EL(priv->rx_stash_size) |
406 ATTRELI_EI(priv->rx_stash_index);
407
408 gfar_write(&regs->attreli, attrs);
409
410 /* Start with defaults, and add stashing or locking
411 * depending on the approprate variables */
412 attrs = ATTR_INIT_SETTINGS;
413
414 if (priv->bd_stash_en)
415 attrs |= ATTR_BDSTASH;
416
417 if (priv->rx_stash_size != 0)
418 attrs |= ATTR_BUFSTASH;
419
420 gfar_write(&regs->attr, attrs);
421
422 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
423 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
424 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
425}
426
427static struct net_device_stats *gfar_get_stats(struct net_device *dev)
428{
429 struct gfar_private *priv = netdev_priv(dev);
430 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
431 unsigned long tx_packets = 0, tx_bytes = 0;
432 int i = 0;
433
434 for (i = 0; i < priv->num_rx_queues; i++) {
435 rx_packets += priv->rx_queue[i]->stats.rx_packets;
436 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
437 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
438 }
439
440 dev->stats.rx_packets = rx_packets;
441 dev->stats.rx_bytes = rx_bytes;
442 dev->stats.rx_dropped = rx_dropped;
443
444 for (i = 0; i < priv->num_tx_queues; i++) {
445 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
446 tx_packets += priv->tx_queue[i]->stats.tx_packets;
447 }
448
449 dev->stats.tx_bytes = tx_bytes;
450 dev->stats.tx_packets = tx_packets;
451
452 return &dev->stats;
453}
454
455static const struct net_device_ops gfar_netdev_ops = {
456 .ndo_open = gfar_enet_open,
457 .ndo_start_xmit = gfar_start_xmit,
458 .ndo_stop = gfar_close,
459 .ndo_change_mtu = gfar_change_mtu,
460 .ndo_set_features = gfar_set_features,
461 .ndo_set_rx_mode = gfar_set_multi,
462 .ndo_tx_timeout = gfar_timeout,
463 .ndo_do_ioctl = gfar_ioctl,
464 .ndo_get_stats = gfar_get_stats,
465 .ndo_set_mac_address = eth_mac_addr,
466 .ndo_validate_addr = eth_validate_addr,
467#ifdef CONFIG_NET_POLL_CONTROLLER
468 .ndo_poll_controller = gfar_netpoll,
469#endif
470};
471
472void lock_rx_qs(struct gfar_private *priv)
473{
474 int i = 0x0;
475
476 for (i = 0; i < priv->num_rx_queues; i++)
477 spin_lock(&priv->rx_queue[i]->rxlock);
478}
479
480void lock_tx_qs(struct gfar_private *priv)
481{
482 int i = 0x0;
483
484 for (i = 0; i < priv->num_tx_queues; i++)
485 spin_lock(&priv->tx_queue[i]->txlock);
486}
487
488void unlock_rx_qs(struct gfar_private *priv)
489{
490 int i = 0x0;
491
492 for (i = 0; i < priv->num_rx_queues; i++)
493 spin_unlock(&priv->rx_queue[i]->rxlock);
494}
495
496void unlock_tx_qs(struct gfar_private *priv)
497{
498 int i = 0x0;
499
500 for (i = 0; i < priv->num_tx_queues; i++)
501 spin_unlock(&priv->tx_queue[i]->txlock);
502}
503
504static bool gfar_is_vlan_on(struct gfar_private *priv)
505{
506 return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
507 (priv->ndev->features & NETIF_F_HW_VLAN_TX);
508}
509
510/* Returns 1 if incoming frames use an FCB */
511static inline int gfar_uses_fcb(struct gfar_private *priv)
512{
513 return gfar_is_vlan_on(priv) ||
514 (priv->ndev->features & NETIF_F_RXCSUM) ||
515 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
516}
517
518static void free_tx_pointers(struct gfar_private *priv)
519{
520 int i = 0;
521
522 for (i = 0; i < priv->num_tx_queues; i++)
523 kfree(priv->tx_queue[i]);
524}
525
526static void free_rx_pointers(struct gfar_private *priv)
527{
528 int i = 0;
529
530 for (i = 0; i < priv->num_rx_queues; i++)
531 kfree(priv->rx_queue[i]);
532}
533
534static void unmap_group_regs(struct gfar_private *priv)
535{
536 int i = 0;
537
538 for (i = 0; i < MAXGROUPS; i++)
539 if (priv->gfargrp[i].regs)
540 iounmap(priv->gfargrp[i].regs);
541}
542
543static void disable_napi(struct gfar_private *priv)
544{
545 int i = 0;
546
547 for (i = 0; i < priv->num_grps; i++)
548 napi_disable(&priv->gfargrp[i].napi);
549}
550
551static void enable_napi(struct gfar_private *priv)
552{
553 int i = 0;
554
555 for (i = 0; i < priv->num_grps; i++)
556 napi_enable(&priv->gfargrp[i].napi);
557}
558
559static int gfar_parse_group(struct device_node *np,
560 struct gfar_private *priv, const char *model)
561{
562 u32 *queue_mask;
563
564 priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
565 if (!priv->gfargrp[priv->num_grps].regs)
566 return -ENOMEM;
567
568 priv->gfargrp[priv->num_grps].interruptTransmit =
569 irq_of_parse_and_map(np, 0);
570
571 /* If we aren't the FEC we have multiple interrupts */
572 if (model && strcasecmp(model, "FEC")) {
573 priv->gfargrp[priv->num_grps].interruptReceive =
574 irq_of_parse_and_map(np, 1);
575 priv->gfargrp[priv->num_grps].interruptError =
576 irq_of_parse_and_map(np,2);
577 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
578 priv->gfargrp[priv->num_grps].interruptReceive == NO_IRQ ||
579 priv->gfargrp[priv->num_grps].interruptError == NO_IRQ)
580 return -EINVAL;
581 }
582
583 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
584 priv->gfargrp[priv->num_grps].priv = priv;
585 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
586 if(priv->mode == MQ_MG_MODE) {
587 queue_mask = (u32 *)of_get_property(np,
588 "fsl,rx-bit-map", NULL);
589 priv->gfargrp[priv->num_grps].rx_bit_map =
590 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
591 queue_mask = (u32 *)of_get_property(np,
592 "fsl,tx-bit-map", NULL);
593 priv->gfargrp[priv->num_grps].tx_bit_map =
594 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
595 } else {
596 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
597 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
598 }
599 priv->num_grps++;
600
601 return 0;
602}
603
604static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
605{
606 const char *model;
607 const char *ctype;
608 const void *mac_addr;
609 int err = 0, i;
610 struct net_device *dev = NULL;
611 struct gfar_private *priv = NULL;
612 struct device_node *np = ofdev->dev.of_node;
613 struct device_node *child = NULL;
614 const u32 *stash;
615 const u32 *stash_len;
616 const u32 *stash_idx;
617 unsigned int num_tx_qs, num_rx_qs;
618 u32 *tx_queues, *rx_queues;
619
620 if (!np || !of_device_is_available(np))
621 return -ENODEV;
622
623 /* parse the num of tx and rx queues */
624 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
625 num_tx_qs = tx_queues ? *tx_queues : 1;
626
627 if (num_tx_qs > MAX_TX_QS) {
628 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
629 num_tx_qs, MAX_TX_QS);
630 pr_err("Cannot do alloc_etherdev, aborting\n");
631 return -EINVAL;
632 }
633
634 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
635 num_rx_qs = rx_queues ? *rx_queues : 1;
636
637 if (num_rx_qs > MAX_RX_QS) {
638 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
639 num_rx_qs, MAX_RX_QS);
640 pr_err("Cannot do alloc_etherdev, aborting\n");
641 return -EINVAL;
642 }
643
644 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
645 dev = *pdev;
646 if (NULL == dev)
647 return -ENOMEM;
648
649 priv = netdev_priv(dev);
650 priv->node = ofdev->dev.of_node;
651 priv->ndev = dev;
652
653 priv->num_tx_queues = num_tx_qs;
654 netif_set_real_num_rx_queues(dev, num_rx_qs);
655 priv->num_rx_queues = num_rx_qs;
656 priv->num_grps = 0x0;
657
658 /* Init Rx queue filer rule set linked list*/
659 INIT_LIST_HEAD(&priv->rx_list.list);
660 priv->rx_list.count = 0;
661 mutex_init(&priv->rx_queue_access);
662
663 model = of_get_property(np, "model", NULL);
664
665 for (i = 0; i < MAXGROUPS; i++)
666 priv->gfargrp[i].regs = NULL;
667
668 /* Parse and initialize group specific information */
669 if (of_device_is_compatible(np, "fsl,etsec2")) {
670 priv->mode = MQ_MG_MODE;
671 for_each_child_of_node(np, child) {
672 err = gfar_parse_group(child, priv, model);
673 if (err)
674 goto err_grp_init;
675 }
676 } else {
677 priv->mode = SQ_SG_MODE;
678 err = gfar_parse_group(np, priv, model);
679 if(err)
680 goto err_grp_init;
681 }
682
683 for (i = 0; i < priv->num_tx_queues; i++)
684 priv->tx_queue[i] = NULL;
685 for (i = 0; i < priv->num_rx_queues; i++)
686 priv->rx_queue[i] = NULL;
687
688 for (i = 0; i < priv->num_tx_queues; i++) {
689 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
690 GFP_KERNEL);
691 if (!priv->tx_queue[i]) {
692 err = -ENOMEM;
693 goto tx_alloc_failed;
694 }
695 priv->tx_queue[i]->tx_skbuff = NULL;
696 priv->tx_queue[i]->qindex = i;
697 priv->tx_queue[i]->dev = dev;
698 spin_lock_init(&(priv->tx_queue[i]->txlock));
699 }
700
701 for (i = 0; i < priv->num_rx_queues; i++) {
702 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
703 GFP_KERNEL);
704 if (!priv->rx_queue[i]) {
705 err = -ENOMEM;
706 goto rx_alloc_failed;
707 }
708 priv->rx_queue[i]->rx_skbuff = NULL;
709 priv->rx_queue[i]->qindex = i;
710 priv->rx_queue[i]->dev = dev;
711 spin_lock_init(&(priv->rx_queue[i]->rxlock));
712 }
713
714
715 stash = of_get_property(np, "bd-stash", NULL);
716
717 if (stash) {
718 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
719 priv->bd_stash_en = 1;
720 }
721
722 stash_len = of_get_property(np, "rx-stash-len", NULL);
723
724 if (stash_len)
725 priv->rx_stash_size = *stash_len;
726
727 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
728
729 if (stash_idx)
730 priv->rx_stash_index = *stash_idx;
731
732 if (stash_len || stash_idx)
733 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
734
735 mac_addr = of_get_mac_address(np);
736 if (mac_addr)
737 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
738
739 if (model && !strcasecmp(model, "TSEC"))
740 priv->device_flags =
741 FSL_GIANFAR_DEV_HAS_GIGABIT |
742 FSL_GIANFAR_DEV_HAS_COALESCE |
743 FSL_GIANFAR_DEV_HAS_RMON |
744 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
745 if (model && !strcasecmp(model, "eTSEC"))
746 priv->device_flags =
747 FSL_GIANFAR_DEV_HAS_GIGABIT |
748 FSL_GIANFAR_DEV_HAS_COALESCE |
749 FSL_GIANFAR_DEV_HAS_RMON |
750 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
751 FSL_GIANFAR_DEV_HAS_PADDING |
752 FSL_GIANFAR_DEV_HAS_CSUM |
753 FSL_GIANFAR_DEV_HAS_VLAN |
754 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
755 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
756 FSL_GIANFAR_DEV_HAS_TIMER;
757
758 ctype = of_get_property(np, "phy-connection-type", NULL);
759
760 /* We only care about rgmii-id. The rest are autodetected */
761 if (ctype && !strcmp(ctype, "rgmii-id"))
762 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
763 else
764 priv->interface = PHY_INTERFACE_MODE_MII;
765
766 if (of_get_property(np, "fsl,magic-packet", NULL))
767 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
768
769 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
770
771 /* Find the TBI PHY. If it's not there, we don't support SGMII */
772 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
773
774 return 0;
775
776rx_alloc_failed:
777 free_rx_pointers(priv);
778tx_alloc_failed:
779 free_tx_pointers(priv);
780err_grp_init:
781 unmap_group_regs(priv);
782 free_netdev(dev);
783 return err;
784}
785
786static int gfar_hwtstamp_ioctl(struct net_device *netdev,
787 struct ifreq *ifr, int cmd)
788{
789 struct hwtstamp_config config;
790 struct gfar_private *priv = netdev_priv(netdev);
791
792 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
793 return -EFAULT;
794
795 /* reserved for future extensions */
796 if (config.flags)
797 return -EINVAL;
798
799 switch (config.tx_type) {
800 case HWTSTAMP_TX_OFF:
801 priv->hwts_tx_en = 0;
802 break;
803 case HWTSTAMP_TX_ON:
804 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
805 return -ERANGE;
806 priv->hwts_tx_en = 1;
807 break;
808 default:
809 return -ERANGE;
810 }
811
812 switch (config.rx_filter) {
813 case HWTSTAMP_FILTER_NONE:
814 if (priv->hwts_rx_en) {
815 stop_gfar(netdev);
816 priv->hwts_rx_en = 0;
817 startup_gfar(netdev);
818 }
819 break;
820 default:
821 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
822 return -ERANGE;
823 if (!priv->hwts_rx_en) {
824 stop_gfar(netdev);
825 priv->hwts_rx_en = 1;
826 startup_gfar(netdev);
827 }
828 config.rx_filter = HWTSTAMP_FILTER_ALL;
829 break;
830 }
831
832 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
833 -EFAULT : 0;
834}
835
836/* Ioctl MII Interface */
837static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
838{
839 struct gfar_private *priv = netdev_priv(dev);
840
841 if (!netif_running(dev))
842 return -EINVAL;
843
844 if (cmd == SIOCSHWTSTAMP)
845 return gfar_hwtstamp_ioctl(dev, rq, cmd);
846
847 if (!priv->phydev)
848 return -ENODEV;
849
850 return phy_mii_ioctl(priv->phydev, rq, cmd);
851}
852
853static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
854{
855 unsigned int new_bit_map = 0x0;
856 int mask = 0x1 << (max_qs - 1), i;
857 for (i = 0; i < max_qs; i++) {
858 if (bit_map & mask)
859 new_bit_map = new_bit_map + (1 << i);
860 mask = mask >> 0x1;
861 }
862 return new_bit_map;
863}
864
865static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
866 u32 class)
867{
868 u32 rqfpr = FPR_FILER_MASK;
869 u32 rqfcr = 0x0;
870
871 rqfar--;
872 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
873 priv->ftp_rqfpr[rqfar] = rqfpr;
874 priv->ftp_rqfcr[rqfar] = rqfcr;
875 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
876
877 rqfar--;
878 rqfcr = RQFCR_CMP_NOMATCH;
879 priv->ftp_rqfpr[rqfar] = rqfpr;
880 priv->ftp_rqfcr[rqfar] = rqfcr;
881 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
882
883 rqfar--;
884 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
885 rqfpr = class;
886 priv->ftp_rqfcr[rqfar] = rqfcr;
887 priv->ftp_rqfpr[rqfar] = rqfpr;
888 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
889
890 rqfar--;
891 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
892 rqfpr = class;
893 priv->ftp_rqfcr[rqfar] = rqfcr;
894 priv->ftp_rqfpr[rqfar] = rqfpr;
895 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
896
897 return rqfar;
898}
899
900static void gfar_init_filer_table(struct gfar_private *priv)
901{
902 int i = 0x0;
903 u32 rqfar = MAX_FILER_IDX;
904 u32 rqfcr = 0x0;
905 u32 rqfpr = FPR_FILER_MASK;
906
907 /* Default rule */
908 rqfcr = RQFCR_CMP_MATCH;
909 priv->ftp_rqfcr[rqfar] = rqfcr;
910 priv->ftp_rqfpr[rqfar] = rqfpr;
911 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
912
913 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
914 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
915 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
916 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
917 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
918 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
919
920 /* cur_filer_idx indicated the first non-masked rule */
921 priv->cur_filer_idx = rqfar;
922
923 /* Rest are masked rules */
924 rqfcr = RQFCR_CMP_NOMATCH;
925 for (i = 0; i < rqfar; i++) {
926 priv->ftp_rqfcr[i] = rqfcr;
927 priv->ftp_rqfpr[i] = rqfpr;
928 gfar_write_filer(priv, i, rqfcr, rqfpr);
929 }
930}
931
932static void gfar_detect_errata(struct gfar_private *priv)
933{
934 struct device *dev = &priv->ofdev->dev;
935 unsigned int pvr = mfspr(SPRN_PVR);
936 unsigned int svr = mfspr(SPRN_SVR);
937 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
938 unsigned int rev = svr & 0xffff;
939
940 /* MPC8313 Rev 2.0 and higher; All MPC837x */
941 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
942 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
943 priv->errata |= GFAR_ERRATA_74;
944
945 /* MPC8313 and MPC837x all rev */
946 if ((pvr == 0x80850010 && mod == 0x80b0) ||
947 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
948 priv->errata |= GFAR_ERRATA_76;
949
950 /* MPC8313 and MPC837x all rev */
951 if ((pvr == 0x80850010 && mod == 0x80b0) ||
952 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953 priv->errata |= GFAR_ERRATA_A002;
954
955 /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
956 if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
957 (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
958 priv->errata |= GFAR_ERRATA_12;
959
960 if (priv->errata)
961 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
962 priv->errata);
963}
964
965/* Set up the ethernet device structure, private data,
966 * and anything else we need before we start */
967static int gfar_probe(struct platform_device *ofdev)
968{
969 u32 tempval;
970 struct net_device *dev = NULL;
971 struct gfar_private *priv = NULL;
972 struct gfar __iomem *regs = NULL;
973 int err = 0, i, grp_idx = 0;
974 int len_devname;
975 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
976 u32 isrg = 0;
977 u32 __iomem *baddr;
978
979 err = gfar_of_init(ofdev, &dev);
980
981 if (err)
982 return err;
983
984 priv = netdev_priv(dev);
985 priv->ndev = dev;
986 priv->ofdev = ofdev;
987 priv->node = ofdev->dev.of_node;
988 SET_NETDEV_DEV(dev, &ofdev->dev);
989
990 spin_lock_init(&priv->bflock);
991 INIT_WORK(&priv->reset_task, gfar_reset_task);
992
993 dev_set_drvdata(&ofdev->dev, priv);
994 regs = priv->gfargrp[0].regs;
995
996 gfar_detect_errata(priv);
997
998 /* Stop the DMA engine now, in case it was running before */
999 /* (The firmware could have used it, and left it running). */
1000 gfar_halt(dev);
1001
1002 /* Reset MAC layer */
1003 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1004
1005 /* We need to delay at least 3 TX clocks */
1006 udelay(2);
1007
1008 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1009 gfar_write(&regs->maccfg1, tempval);
1010
1011 /* Initialize MACCFG2. */
1012 tempval = MACCFG2_INIT_SETTINGS;
1013 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1014 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1015 gfar_write(&regs->maccfg2, tempval);
1016
1017 /* Initialize ECNTRL */
1018 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1019
1020 /* Set the dev->base_addr to the gfar reg region */
1021 dev->base_addr = (unsigned long) regs;
1022
1023 SET_NETDEV_DEV(dev, &ofdev->dev);
1024
1025 /* Fill in the dev structure */
1026 dev->watchdog_timeo = TX_TIMEOUT;
1027 dev->mtu = 1500;
1028 dev->netdev_ops = &gfar_netdev_ops;
1029 dev->ethtool_ops = &gfar_ethtool_ops;
1030
1031 /* Register for napi ...We are registering NAPI for each grp */
1032 for (i = 0; i < priv->num_grps; i++)
1033 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1034
1035 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1036 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1037 NETIF_F_RXCSUM;
1038 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1039 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1040 }
1041
1042 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1043 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1044 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1045 }
1046
1047 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1048 priv->extended_hash = 1;
1049 priv->hash_width = 9;
1050
1051 priv->hash_regs[0] = &regs->igaddr0;
1052 priv->hash_regs[1] = &regs->igaddr1;
1053 priv->hash_regs[2] = &regs->igaddr2;
1054 priv->hash_regs[3] = &regs->igaddr3;
1055 priv->hash_regs[4] = &regs->igaddr4;
1056 priv->hash_regs[5] = &regs->igaddr5;
1057 priv->hash_regs[6] = &regs->igaddr6;
1058 priv->hash_regs[7] = &regs->igaddr7;
1059 priv->hash_regs[8] = &regs->gaddr0;
1060 priv->hash_regs[9] = &regs->gaddr1;
1061 priv->hash_regs[10] = &regs->gaddr2;
1062 priv->hash_regs[11] = &regs->gaddr3;
1063 priv->hash_regs[12] = &regs->gaddr4;
1064 priv->hash_regs[13] = &regs->gaddr5;
1065 priv->hash_regs[14] = &regs->gaddr6;
1066 priv->hash_regs[15] = &regs->gaddr7;
1067
1068 } else {
1069 priv->extended_hash = 0;
1070 priv->hash_width = 8;
1071
1072 priv->hash_regs[0] = &regs->gaddr0;
1073 priv->hash_regs[1] = &regs->gaddr1;
1074 priv->hash_regs[2] = &regs->gaddr2;
1075 priv->hash_regs[3] = &regs->gaddr3;
1076 priv->hash_regs[4] = &regs->gaddr4;
1077 priv->hash_regs[5] = &regs->gaddr5;
1078 priv->hash_regs[6] = &regs->gaddr6;
1079 priv->hash_regs[7] = &regs->gaddr7;
1080 }
1081
1082 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1083 priv->padding = DEFAULT_PADDING;
1084 else
1085 priv->padding = 0;
1086
1087 if (dev->features & NETIF_F_IP_CSUM ||
1088 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1089 dev->hard_header_len += GMAC_FCB_LEN;
1090
1091 /* Program the isrg regs only if number of grps > 1 */
1092 if (priv->num_grps > 1) {
1093 baddr = &regs->isrg0;
1094 for (i = 0; i < priv->num_grps; i++) {
1095 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1096 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1097 gfar_write(baddr, isrg);
1098 baddr++;
1099 isrg = 0x0;
1100 }
1101 }
1102
1103 /* Need to reverse the bit maps as bit_map's MSB is q0
1104 * but, for_each_set_bit parses from right to left, which
1105 * basically reverses the queue numbers */
1106 for (i = 0; i< priv->num_grps; i++) {
1107 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1108 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1109 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1110 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1111 }
1112
1113 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1114 * also assign queues to groups */
1115 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1116 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1117 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1118 priv->num_rx_queues) {
1119 priv->gfargrp[grp_idx].num_rx_queues++;
1120 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1121 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1122 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1123 }
1124 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1125 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1126 priv->num_tx_queues) {
1127 priv->gfargrp[grp_idx].num_tx_queues++;
1128 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1129 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1130 tqueue = tqueue | (TQUEUE_EN0 >> i);
1131 }
1132 priv->gfargrp[grp_idx].rstat = rstat;
1133 priv->gfargrp[grp_idx].tstat = tstat;
1134 rstat = tstat =0;
1135 }
1136
1137 gfar_write(&regs->rqueue, rqueue);
1138 gfar_write(&regs->tqueue, tqueue);
1139
1140 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1141
1142 /* Initializing some of the rx/tx queue level parameters */
1143 for (i = 0; i < priv->num_tx_queues; i++) {
1144 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1145 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1146 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1147 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1148 }
1149
1150 for (i = 0; i < priv->num_rx_queues; i++) {
1151 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1152 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1153 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1154 }
1155
1156 /* always enable rx filer*/
1157 priv->rx_filer_enable = 1;
1158 /* Enable most messages by default */
1159 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1160
1161 /* Carrier starts down, phylib will bring it up */
1162 netif_carrier_off(dev);
1163
1164 err = register_netdev(dev);
1165
1166 if (err) {
1167 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1168 goto register_fail;
1169 }
1170
1171 device_init_wakeup(&dev->dev,
1172 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1173
1174 /* fill out IRQ number and name fields */
1175 len_devname = strlen(dev->name);
1176 for (i = 0; i < priv->num_grps; i++) {
1177 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1178 len_devname);
1179 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1180 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1181 "_g", sizeof("_g"));
1182 priv->gfargrp[i].int_name_tx[
1183 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1184 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1185 priv->gfargrp[i].int_name_tx)],
1186 "_tx", sizeof("_tx") + 1);
1187
1188 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1189 len_devname);
1190 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1191 "_g", sizeof("_g"));
1192 priv->gfargrp[i].int_name_rx[
1193 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1194 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1195 priv->gfargrp[i].int_name_rx)],
1196 "_rx", sizeof("_rx") + 1);
1197
1198 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1199 len_devname);
1200 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1201 "_g", sizeof("_g"));
1202 priv->gfargrp[i].int_name_er[strlen(
1203 priv->gfargrp[i].int_name_er)] = i+48;
1204 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1205 priv->gfargrp[i].int_name_er)],
1206 "_er", sizeof("_er") + 1);
1207 } else
1208 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1209 }
1210
1211 /* Initialize the filer table */
1212 gfar_init_filer_table(priv);
1213
1214 /* Create all the sysfs files */
1215 gfar_init_sysfs(dev);
1216
1217 /* Print out the device info */
1218 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1219
1220 /* Even more device info helps when determining which kernel */
1221 /* provided which set of benchmarks. */
1222 netdev_info(dev, "Running with NAPI enabled\n");
1223 for (i = 0; i < priv->num_rx_queues; i++)
1224 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1225 i, priv->rx_queue[i]->rx_ring_size);
1226 for(i = 0; i < priv->num_tx_queues; i++)
1227 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1228 i, priv->tx_queue[i]->tx_ring_size);
1229
1230 return 0;
1231
1232register_fail:
1233 unmap_group_regs(priv);
1234 free_tx_pointers(priv);
1235 free_rx_pointers(priv);
1236 if (priv->phy_node)
1237 of_node_put(priv->phy_node);
1238 if (priv->tbi_node)
1239 of_node_put(priv->tbi_node);
1240 free_netdev(dev);
1241 return err;
1242}
1243
1244static int gfar_remove(struct platform_device *ofdev)
1245{
1246 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1247
1248 if (priv->phy_node)
1249 of_node_put(priv->phy_node);
1250 if (priv->tbi_node)
1251 of_node_put(priv->tbi_node);
1252
1253 dev_set_drvdata(&ofdev->dev, NULL);
1254
1255 unregister_netdev(priv->ndev);
1256 unmap_group_regs(priv);
1257 free_netdev(priv->ndev);
1258
1259 return 0;
1260}
1261
1262#ifdef CONFIG_PM
1263
1264static int gfar_suspend(struct device *dev)
1265{
1266 struct gfar_private *priv = dev_get_drvdata(dev);
1267 struct net_device *ndev = priv->ndev;
1268 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1269 unsigned long flags;
1270 u32 tempval;
1271
1272 int magic_packet = priv->wol_en &&
1273 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1274
1275 netif_device_detach(ndev);
1276
1277 if (netif_running(ndev)) {
1278
1279 local_irq_save(flags);
1280 lock_tx_qs(priv);
1281 lock_rx_qs(priv);
1282
1283 gfar_halt_nodisable(ndev);
1284
1285 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1286 tempval = gfar_read(&regs->maccfg1);
1287
1288 tempval &= ~MACCFG1_TX_EN;
1289
1290 if (!magic_packet)
1291 tempval &= ~MACCFG1_RX_EN;
1292
1293 gfar_write(&regs->maccfg1, tempval);
1294
1295 unlock_rx_qs(priv);
1296 unlock_tx_qs(priv);
1297 local_irq_restore(flags);
1298
1299 disable_napi(priv);
1300
1301 if (magic_packet) {
1302 /* Enable interrupt on Magic Packet */
1303 gfar_write(&regs->imask, IMASK_MAG);
1304
1305 /* Enable Magic Packet mode */
1306 tempval = gfar_read(&regs->maccfg2);
1307 tempval |= MACCFG2_MPEN;
1308 gfar_write(&regs->maccfg2, tempval);
1309 } else {
1310 phy_stop(priv->phydev);
1311 }
1312 }
1313
1314 return 0;
1315}
1316
1317static int gfar_resume(struct device *dev)
1318{
1319 struct gfar_private *priv = dev_get_drvdata(dev);
1320 struct net_device *ndev = priv->ndev;
1321 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1322 unsigned long flags;
1323 u32 tempval;
1324 int magic_packet = priv->wol_en &&
1325 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1326
1327 if (!netif_running(ndev)) {
1328 netif_device_attach(ndev);
1329 return 0;
1330 }
1331
1332 if (!magic_packet && priv->phydev)
1333 phy_start(priv->phydev);
1334
1335 /* Disable Magic Packet mode, in case something
1336 * else woke us up.
1337 */
1338 local_irq_save(flags);
1339 lock_tx_qs(priv);
1340 lock_rx_qs(priv);
1341
1342 tempval = gfar_read(&regs->maccfg2);
1343 tempval &= ~MACCFG2_MPEN;
1344 gfar_write(&regs->maccfg2, tempval);
1345
1346 gfar_start(ndev);
1347
1348 unlock_rx_qs(priv);
1349 unlock_tx_qs(priv);
1350 local_irq_restore(flags);
1351
1352 netif_device_attach(ndev);
1353
1354 enable_napi(priv);
1355
1356 return 0;
1357}
1358
1359static int gfar_restore(struct device *dev)
1360{
1361 struct gfar_private *priv = dev_get_drvdata(dev);
1362 struct net_device *ndev = priv->ndev;
1363
1364 if (!netif_running(ndev))
1365 return 0;
1366
1367 gfar_init_bds(ndev);
1368 init_registers(ndev);
1369 gfar_set_mac_address(ndev);
1370 gfar_init_mac(ndev);
1371 gfar_start(ndev);
1372
1373 priv->oldlink = 0;
1374 priv->oldspeed = 0;
1375 priv->oldduplex = -1;
1376
1377 if (priv->phydev)
1378 phy_start(priv->phydev);
1379
1380 netif_device_attach(ndev);
1381 enable_napi(priv);
1382
1383 return 0;
1384}
1385
1386static struct dev_pm_ops gfar_pm_ops = {
1387 .suspend = gfar_suspend,
1388 .resume = gfar_resume,
1389 .freeze = gfar_suspend,
1390 .thaw = gfar_resume,
1391 .restore = gfar_restore,
1392};
1393
1394#define GFAR_PM_OPS (&gfar_pm_ops)
1395
1396#else
1397
1398#define GFAR_PM_OPS NULL
1399
1400#endif
1401
1402/* Reads the controller's registers to determine what interface
1403 * connects it to the PHY.
1404 */
1405static phy_interface_t gfar_get_interface(struct net_device *dev)
1406{
1407 struct gfar_private *priv = netdev_priv(dev);
1408 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1409 u32 ecntrl;
1410
1411 ecntrl = gfar_read(&regs->ecntrl);
1412
1413 if (ecntrl & ECNTRL_SGMII_MODE)
1414 return PHY_INTERFACE_MODE_SGMII;
1415
1416 if (ecntrl & ECNTRL_TBI_MODE) {
1417 if (ecntrl & ECNTRL_REDUCED_MODE)
1418 return PHY_INTERFACE_MODE_RTBI;
1419 else
1420 return PHY_INTERFACE_MODE_TBI;
1421 }
1422
1423 if (ecntrl & ECNTRL_REDUCED_MODE) {
1424 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1425 return PHY_INTERFACE_MODE_RMII;
1426 else {
1427 phy_interface_t interface = priv->interface;
1428
1429 /*
1430 * This isn't autodetected right now, so it must
1431 * be set by the device tree or platform code.
1432 */
1433 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1434 return PHY_INTERFACE_MODE_RGMII_ID;
1435
1436 return PHY_INTERFACE_MODE_RGMII;
1437 }
1438 }
1439
1440 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1441 return PHY_INTERFACE_MODE_GMII;
1442
1443 return PHY_INTERFACE_MODE_MII;
1444}
1445
1446
1447/* Initializes driver's PHY state, and attaches to the PHY.
1448 * Returns 0 on success.
1449 */
1450static int init_phy(struct net_device *dev)
1451{
1452 struct gfar_private *priv = netdev_priv(dev);
1453 uint gigabit_support =
1454 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1455 SUPPORTED_1000baseT_Full : 0;
1456 phy_interface_t interface;
1457
1458 priv->oldlink = 0;
1459 priv->oldspeed = 0;
1460 priv->oldduplex = -1;
1461
1462 interface = gfar_get_interface(dev);
1463
1464 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1465 interface);
1466 if (!priv->phydev)
1467 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1468 interface);
1469 if (!priv->phydev) {
1470 dev_err(&dev->dev, "could not attach to PHY\n");
1471 return -ENODEV;
1472 }
1473
1474 if (interface == PHY_INTERFACE_MODE_SGMII)
1475 gfar_configure_serdes(dev);
1476
1477 /* Remove any features not supported by the controller */
1478 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1479 priv->phydev->advertising = priv->phydev->supported;
1480
1481 return 0;
1482}
1483
1484/*
1485 * Initialize TBI PHY interface for communicating with the
1486 * SERDES lynx PHY on the chip. We communicate with this PHY
1487 * through the MDIO bus on each controller, treating it as a
1488 * "normal" PHY at the address found in the TBIPA register. We assume
1489 * that the TBIPA register is valid. Either the MDIO bus code will set
1490 * it to a value that doesn't conflict with other PHYs on the bus, or the
1491 * value doesn't matter, as there are no other PHYs on the bus.
1492 */
1493static void gfar_configure_serdes(struct net_device *dev)
1494{
1495 struct gfar_private *priv = netdev_priv(dev);
1496 struct phy_device *tbiphy;
1497
1498 if (!priv->tbi_node) {
1499 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1500 "device tree specify a tbi-handle\n");
1501 return;
1502 }
1503
1504 tbiphy = of_phy_find_device(priv->tbi_node);
1505 if (!tbiphy) {
1506 dev_err(&dev->dev, "error: Could not get TBI device\n");
1507 return;
1508 }
1509
1510 /*
1511 * If the link is already up, we must already be ok, and don't need to
1512 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1513 * everything for us? Resetting it takes the link down and requires
1514 * several seconds for it to come back.
1515 */
1516 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1517 return;
1518
1519 /* Single clk mode, mii mode off(for serdes communication) */
1520 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1521
1522 phy_write(tbiphy, MII_ADVERTISE,
1523 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1524 ADVERTISE_1000XPSE_ASYM);
1525
1526 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1527 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1528}
1529
1530static void init_registers(struct net_device *dev)
1531{
1532 struct gfar_private *priv = netdev_priv(dev);
1533 struct gfar __iomem *regs = NULL;
1534 int i = 0;
1535
1536 for (i = 0; i < priv->num_grps; i++) {
1537 regs = priv->gfargrp[i].regs;
1538 /* Clear IEVENT */
1539 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1540
1541 /* Initialize IMASK */
1542 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1543 }
1544
1545 regs = priv->gfargrp[0].regs;
1546 /* Init hash registers to zero */
1547 gfar_write(&regs->igaddr0, 0);
1548 gfar_write(&regs->igaddr1, 0);
1549 gfar_write(&regs->igaddr2, 0);
1550 gfar_write(&regs->igaddr3, 0);
1551 gfar_write(&regs->igaddr4, 0);
1552 gfar_write(&regs->igaddr5, 0);
1553 gfar_write(&regs->igaddr6, 0);
1554 gfar_write(&regs->igaddr7, 0);
1555
1556 gfar_write(&regs->gaddr0, 0);
1557 gfar_write(&regs->gaddr1, 0);
1558 gfar_write(&regs->gaddr2, 0);
1559 gfar_write(&regs->gaddr3, 0);
1560 gfar_write(&regs->gaddr4, 0);
1561 gfar_write(&regs->gaddr5, 0);
1562 gfar_write(&regs->gaddr6, 0);
1563 gfar_write(&regs->gaddr7, 0);
1564
1565 /* Zero out the rmon mib registers if it has them */
1566 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1567 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1568
1569 /* Mask off the CAM interrupts */
1570 gfar_write(&regs->rmon.cam1, 0xffffffff);
1571 gfar_write(&regs->rmon.cam2, 0xffffffff);
1572 }
1573
1574 /* Initialize the max receive buffer length */
1575 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1576
1577 /* Initialize the Minimum Frame Length Register */
1578 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1579}
1580
1581static int __gfar_is_rx_idle(struct gfar_private *priv)
1582{
1583 u32 res;
1584
1585 /*
1586 * Normaly TSEC should not hang on GRS commands, so we should
1587 * actually wait for IEVENT_GRSC flag.
1588 */
1589 if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1590 return 0;
1591
1592 /*
1593 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1594 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1595 * and the Rx can be safely reset.
1596 */
1597 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1598 res &= 0x7f807f80;
1599 if ((res & 0xffff) == (res >> 16))
1600 return 1;
1601
1602 return 0;
1603}
1604
1605/* Halt the receive and transmit queues */
1606static void gfar_halt_nodisable(struct net_device *dev)
1607{
1608 struct gfar_private *priv = netdev_priv(dev);
1609 struct gfar __iomem *regs = NULL;
1610 u32 tempval;
1611 int i = 0;
1612
1613 for (i = 0; i < priv->num_grps; i++) {
1614 regs = priv->gfargrp[i].regs;
1615 /* Mask all interrupts */
1616 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1617
1618 /* Clear all interrupts */
1619 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1620 }
1621
1622 regs = priv->gfargrp[0].regs;
1623 /* Stop the DMA, and wait for it to stop */
1624 tempval = gfar_read(&regs->dmactrl);
1625 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1626 != (DMACTRL_GRS | DMACTRL_GTS)) {
1627 int ret;
1628
1629 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1630 gfar_write(&regs->dmactrl, tempval);
1631
1632 do {
1633 ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1634 (IEVENT_GRSC | IEVENT_GTSC)) ==
1635 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1636 if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1637 ret = __gfar_is_rx_idle(priv);
1638 } while (!ret);
1639 }
1640}
1641
1642/* Halt the receive and transmit queues */
1643void gfar_halt(struct net_device *dev)
1644{
1645 struct gfar_private *priv = netdev_priv(dev);
1646 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1647 u32 tempval;
1648
1649 gfar_halt_nodisable(dev);
1650
1651 /* Disable Rx and Tx */
1652 tempval = gfar_read(&regs->maccfg1);
1653 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1654 gfar_write(&regs->maccfg1, tempval);
1655}
1656
1657static void free_grp_irqs(struct gfar_priv_grp *grp)
1658{
1659 free_irq(grp->interruptError, grp);
1660 free_irq(grp->interruptTransmit, grp);
1661 free_irq(grp->interruptReceive, grp);
1662}
1663
1664void stop_gfar(struct net_device *dev)
1665{
1666 struct gfar_private *priv = netdev_priv(dev);
1667 unsigned long flags;
1668 int i;
1669
1670 phy_stop(priv->phydev);
1671
1672
1673 /* Lock it down */
1674 local_irq_save(flags);
1675 lock_tx_qs(priv);
1676 lock_rx_qs(priv);
1677
1678 gfar_halt(dev);
1679
1680 unlock_rx_qs(priv);
1681 unlock_tx_qs(priv);
1682 local_irq_restore(flags);
1683
1684 /* Free the IRQs */
1685 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1686 for (i = 0; i < priv->num_grps; i++)
1687 free_grp_irqs(&priv->gfargrp[i]);
1688 } else {
1689 for (i = 0; i < priv->num_grps; i++)
1690 free_irq(priv->gfargrp[i].interruptTransmit,
1691 &priv->gfargrp[i]);
1692 }
1693
1694 free_skb_resources(priv);
1695}
1696
1697static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1698{
1699 struct txbd8 *txbdp;
1700 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1701 int i, j;
1702
1703 txbdp = tx_queue->tx_bd_base;
1704
1705 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1706 if (!tx_queue->tx_skbuff[i])
1707 continue;
1708
1709 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1710 txbdp->length, DMA_TO_DEVICE);
1711 txbdp->lstatus = 0;
1712 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1713 j++) {
1714 txbdp++;
1715 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1716 txbdp->length, DMA_TO_DEVICE);
1717 }
1718 txbdp++;
1719 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1720 tx_queue->tx_skbuff[i] = NULL;
1721 }
1722 kfree(tx_queue->tx_skbuff);
1723}
1724
1725static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1726{
1727 struct rxbd8 *rxbdp;
1728 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1729 int i;
1730
1731 rxbdp = rx_queue->rx_bd_base;
1732
1733 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1734 if (rx_queue->rx_skbuff[i]) {
1735 dma_unmap_single(&priv->ofdev->dev,
1736 rxbdp->bufPtr, priv->rx_buffer_size,
1737 DMA_FROM_DEVICE);
1738 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1739 rx_queue->rx_skbuff[i] = NULL;
1740 }
1741 rxbdp->lstatus = 0;
1742 rxbdp->bufPtr = 0;
1743 rxbdp++;
1744 }
1745 kfree(rx_queue->rx_skbuff);
1746}
1747
1748/* If there are any tx skbs or rx skbs still around, free them.
1749 * Then free tx_skbuff and rx_skbuff */
1750static void free_skb_resources(struct gfar_private *priv)
1751{
1752 struct gfar_priv_tx_q *tx_queue = NULL;
1753 struct gfar_priv_rx_q *rx_queue = NULL;
1754 int i;
1755
1756 /* Go through all the buffer descriptors and free their data buffers */
1757 for (i = 0; i < priv->num_tx_queues; i++) {
1758 tx_queue = priv->tx_queue[i];
1759 if(tx_queue->tx_skbuff)
1760 free_skb_tx_queue(tx_queue);
1761 }
1762
1763 for (i = 0; i < priv->num_rx_queues; i++) {
1764 rx_queue = priv->rx_queue[i];
1765 if(rx_queue->rx_skbuff)
1766 free_skb_rx_queue(rx_queue);
1767 }
1768
1769 dma_free_coherent(&priv->ofdev->dev,
1770 sizeof(struct txbd8) * priv->total_tx_ring_size +
1771 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1772 priv->tx_queue[0]->tx_bd_base,
1773 priv->tx_queue[0]->tx_bd_dma_base);
1774 skb_queue_purge(&priv->rx_recycle);
1775}
1776
1777void gfar_start(struct net_device *dev)
1778{
1779 struct gfar_private *priv = netdev_priv(dev);
1780 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1781 u32 tempval;
1782 int i = 0;
1783
1784 /* Enable Rx and Tx in MACCFG1 */
1785 tempval = gfar_read(&regs->maccfg1);
1786 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1787 gfar_write(&regs->maccfg1, tempval);
1788
1789 /* Initialize DMACTRL to have WWR and WOP */
1790 tempval = gfar_read(&regs->dmactrl);
1791 tempval |= DMACTRL_INIT_SETTINGS;
1792 gfar_write(&regs->dmactrl, tempval);
1793
1794 /* Make sure we aren't stopped */
1795 tempval = gfar_read(&regs->dmactrl);
1796 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1797 gfar_write(&regs->dmactrl, tempval);
1798
1799 for (i = 0; i < priv->num_grps; i++) {
1800 regs = priv->gfargrp[i].regs;
1801 /* Clear THLT/RHLT, so that the DMA starts polling now */
1802 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1803 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1804 /* Unmask the interrupts we look for */
1805 gfar_write(&regs->imask, IMASK_DEFAULT);
1806 }
1807
1808 dev->trans_start = jiffies; /* prevent tx timeout */
1809}
1810
1811void gfar_configure_coalescing(struct gfar_private *priv,
1812 unsigned long tx_mask, unsigned long rx_mask)
1813{
1814 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1815 u32 __iomem *baddr;
1816 int i = 0;
1817
1818 /* Backward compatible case ---- even if we enable
1819 * multiple queues, there's only single reg to program
1820 */
1821 gfar_write(&regs->txic, 0);
1822 if(likely(priv->tx_queue[0]->txcoalescing))
1823 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1824
1825 gfar_write(&regs->rxic, 0);
1826 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1827 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1828
1829 if (priv->mode == MQ_MG_MODE) {
1830 baddr = &regs->txic0;
1831 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1832 if (likely(priv->tx_queue[i]->txcoalescing)) {
1833 gfar_write(baddr + i, 0);
1834 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1835 }
1836 }
1837
1838 baddr = &regs->rxic0;
1839 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1840 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1841 gfar_write(baddr + i, 0);
1842 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1843 }
1844 }
1845 }
1846}
1847
1848static int register_grp_irqs(struct gfar_priv_grp *grp)
1849{
1850 struct gfar_private *priv = grp->priv;
1851 struct net_device *dev = priv->ndev;
1852 int err;
1853
1854 /* If the device has multiple interrupts, register for
1855 * them. Otherwise, only register for the one */
1856 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1857 /* Install our interrupt handlers for Error,
1858 * Transmit, and Receive */
1859 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1860 grp->int_name_er,grp)) < 0) {
1861 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1862 grp->interruptError);
1863
1864 goto err_irq_fail;
1865 }
1866
1867 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1868 0, grp->int_name_tx, grp)) < 0) {
1869 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1870 grp->interruptTransmit);
1871 goto tx_irq_fail;
1872 }
1873
1874 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1875 grp->int_name_rx, grp)) < 0) {
1876 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1877 grp->interruptReceive);
1878 goto rx_irq_fail;
1879 }
1880 } else {
1881 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1882 grp->int_name_tx, grp)) < 0) {
1883 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1884 grp->interruptTransmit);
1885 goto err_irq_fail;
1886 }
1887 }
1888
1889 return 0;
1890
1891rx_irq_fail:
1892 free_irq(grp->interruptTransmit, grp);
1893tx_irq_fail:
1894 free_irq(grp->interruptError, grp);
1895err_irq_fail:
1896 return err;
1897
1898}
1899
1900/* Bring the controller up and running */
1901int startup_gfar(struct net_device *ndev)
1902{
1903 struct gfar_private *priv = netdev_priv(ndev);
1904 struct gfar __iomem *regs = NULL;
1905 int err, i, j;
1906
1907 for (i = 0; i < priv->num_grps; i++) {
1908 regs= priv->gfargrp[i].regs;
1909 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1910 }
1911
1912 regs= priv->gfargrp[0].regs;
1913 err = gfar_alloc_skb_resources(ndev);
1914 if (err)
1915 return err;
1916
1917 gfar_init_mac(ndev);
1918
1919 for (i = 0; i < priv->num_grps; i++) {
1920 err = register_grp_irqs(&priv->gfargrp[i]);
1921 if (err) {
1922 for (j = 0; j < i; j++)
1923 free_grp_irqs(&priv->gfargrp[j]);
1924 goto irq_fail;
1925 }
1926 }
1927
1928 /* Start the controller */
1929 gfar_start(ndev);
1930
1931 phy_start(priv->phydev);
1932
1933 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1934
1935 return 0;
1936
1937irq_fail:
1938 free_skb_resources(priv);
1939 return err;
1940}
1941
1942/* Called when something needs to use the ethernet device */
1943/* Returns 0 for success. */
1944static int gfar_enet_open(struct net_device *dev)
1945{
1946 struct gfar_private *priv = netdev_priv(dev);
1947 int err;
1948
1949 enable_napi(priv);
1950
1951 skb_queue_head_init(&priv->rx_recycle);
1952
1953 /* Initialize a bunch of registers */
1954 init_registers(dev);
1955
1956 gfar_set_mac_address(dev);
1957
1958 err = init_phy(dev);
1959
1960 if (err) {
1961 disable_napi(priv);
1962 return err;
1963 }
1964
1965 err = startup_gfar(dev);
1966 if (err) {
1967 disable_napi(priv);
1968 return err;
1969 }
1970
1971 netif_tx_start_all_queues(dev);
1972
1973 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1974
1975 return err;
1976}
1977
1978static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1979{
1980 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1981
1982 memset(fcb, 0, GMAC_FCB_LEN);
1983
1984 return fcb;
1985}
1986
1987static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1988 int fcb_length)
1989{
1990 u8 flags = 0;
1991
1992 /* If we're here, it's a IP packet with a TCP or UDP
1993 * payload. We set it to checksum, using a pseudo-header
1994 * we provide
1995 */
1996 flags = TXFCB_DEFAULT;
1997
1998 /* Tell the controller what the protocol is */
1999 /* And provide the already calculated phcs */
2000 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2001 flags |= TXFCB_UDP;
2002 fcb->phcs = udp_hdr(skb)->check;
2003 } else
2004 fcb->phcs = tcp_hdr(skb)->check;
2005
2006 /* l3os is the distance between the start of the
2007 * frame (skb->data) and the start of the IP hdr.
2008 * l4os is the distance between the start of the
2009 * l3 hdr and the l4 hdr */
2010 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2011 fcb->l4os = skb_network_header_len(skb);
2012
2013 fcb->flags = flags;
2014}
2015
2016void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2017{
2018 fcb->flags |= TXFCB_VLN;
2019 fcb->vlctl = vlan_tx_tag_get(skb);
2020}
2021
2022static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2023 struct txbd8 *base, int ring_size)
2024{
2025 struct txbd8 *new_bd = bdp + stride;
2026
2027 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2028}
2029
2030static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2031 int ring_size)
2032{
2033 return skip_txbd(bdp, 1, base, ring_size);
2034}
2035
2036/* This is called by the kernel when a frame is ready for transmission. */
2037/* It is pointed to by the dev->hard_start_xmit function pointer */
2038static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2039{
2040 struct gfar_private *priv = netdev_priv(dev);
2041 struct gfar_priv_tx_q *tx_queue = NULL;
2042 struct netdev_queue *txq;
2043 struct gfar __iomem *regs = NULL;
2044 struct txfcb *fcb = NULL;
2045 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2046 u32 lstatus;
2047 int i, rq = 0, do_tstamp = 0;
2048 u32 bufaddr;
2049 unsigned long flags;
2050 unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2051
2052 /*
2053 * TOE=1 frames larger than 2500 bytes may see excess delays
2054 * before start of transmission.
2055 */
2056 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2057 skb->ip_summed == CHECKSUM_PARTIAL &&
2058 skb->len > 2500)) {
2059 int ret;
2060
2061 ret = skb_checksum_help(skb);
2062 if (ret)
2063 return ret;
2064 }
2065
2066 rq = skb->queue_mapping;
2067 tx_queue = priv->tx_queue[rq];
2068 txq = netdev_get_tx_queue(dev, rq);
2069 base = tx_queue->tx_bd_base;
2070 regs = tx_queue->grp->regs;
2071
2072 /* check if time stamp should be generated */
2073 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2074 priv->hwts_tx_en)) {
2075 do_tstamp = 1;
2076 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2077 }
2078
2079 /* make space for additional header when fcb is needed */
2080 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2081 vlan_tx_tag_present(skb) ||
2082 unlikely(do_tstamp)) &&
2083 (skb_headroom(skb) < fcb_length)) {
2084 struct sk_buff *skb_new;
2085
2086 skb_new = skb_realloc_headroom(skb, fcb_length);
2087 if (!skb_new) {
2088 dev->stats.tx_errors++;
2089 kfree_skb(skb);
2090 return NETDEV_TX_OK;
2091 }
2092
2093 /* Steal sock reference for processing TX time stamps */
2094 swap(skb_new->sk, skb->sk);
2095 swap(skb_new->destructor, skb->destructor);
2096 kfree_skb(skb);
2097 skb = skb_new;
2098 }
2099
2100 /* total number of fragments in the SKB */
2101 nr_frags = skb_shinfo(skb)->nr_frags;
2102
2103 /* calculate the required number of TxBDs for this skb */
2104 if (unlikely(do_tstamp))
2105 nr_txbds = nr_frags + 2;
2106 else
2107 nr_txbds = nr_frags + 1;
2108
2109 /* check if there is space to queue this packet */
2110 if (nr_txbds > tx_queue->num_txbdfree) {
2111 /* no space, stop the queue */
2112 netif_tx_stop_queue(txq);
2113 dev->stats.tx_fifo_errors++;
2114 return NETDEV_TX_BUSY;
2115 }
2116
2117 /* Update transmit stats */
2118 tx_queue->stats.tx_bytes += skb->len;
2119 tx_queue->stats.tx_packets++;
2120
2121 txbdp = txbdp_start = tx_queue->cur_tx;
2122 lstatus = txbdp->lstatus;
2123
2124 /* Time stamp insertion requires one additional TxBD */
2125 if (unlikely(do_tstamp))
2126 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2127 tx_queue->tx_ring_size);
2128
2129 if (nr_frags == 0) {
2130 if (unlikely(do_tstamp))
2131 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2132 TXBD_INTERRUPT);
2133 else
2134 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2135 } else {
2136 /* Place the fragment addresses and lengths into the TxBDs */
2137 for (i = 0; i < nr_frags; i++) {
2138 /* Point at the next BD, wrapping as needed */
2139 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2140
2141 length = skb_shinfo(skb)->frags[i].size;
2142
2143 lstatus = txbdp->lstatus | length |
2144 BD_LFLAG(TXBD_READY);
2145
2146 /* Handle the last BD specially */
2147 if (i == nr_frags - 1)
2148 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2149
2150 bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2151 &skb_shinfo(skb)->frags[i],
2152 0,
2153 length,
2154 DMA_TO_DEVICE);
2155
2156 /* set the TxBD length and buffer pointer */
2157 txbdp->bufPtr = bufaddr;
2158 txbdp->lstatus = lstatus;
2159 }
2160
2161 lstatus = txbdp_start->lstatus;
2162 }
2163
2164 /* Add TxPAL between FCB and frame if required */
2165 if (unlikely(do_tstamp)) {
2166 skb_push(skb, GMAC_TXPAL_LEN);
2167 memset(skb->data, 0, GMAC_TXPAL_LEN);
2168 }
2169
2170 /* Set up checksumming */
2171 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2172 fcb = gfar_add_fcb(skb);
2173 /* as specified by errata */
2174 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2175 && ((unsigned long)fcb % 0x20) > 0x18)) {
2176 __skb_pull(skb, GMAC_FCB_LEN);
2177 skb_checksum_help(skb);
2178 } else {
2179 lstatus |= BD_LFLAG(TXBD_TOE);
2180 gfar_tx_checksum(skb, fcb, fcb_length);
2181 }
2182 }
2183
2184 if (vlan_tx_tag_present(skb)) {
2185 if (unlikely(NULL == fcb)) {
2186 fcb = gfar_add_fcb(skb);
2187 lstatus |= BD_LFLAG(TXBD_TOE);
2188 }
2189
2190 gfar_tx_vlan(skb, fcb);
2191 }
2192
2193 /* Setup tx hardware time stamping if requested */
2194 if (unlikely(do_tstamp)) {
2195 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2196 if (fcb == NULL)
2197 fcb = gfar_add_fcb(skb);
2198 fcb->ptp = 1;
2199 lstatus |= BD_LFLAG(TXBD_TOE);
2200 }
2201
2202 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2203 skb_headlen(skb), DMA_TO_DEVICE);
2204
2205 /*
2206 * If time stamping is requested one additional TxBD must be set up. The
2207 * first TxBD points to the FCB and must have a data length of
2208 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2209 * the full frame length.
2210 */
2211 if (unlikely(do_tstamp)) {
2212 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2213 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2214 (skb_headlen(skb) - fcb_length);
2215 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2216 } else {
2217 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2218 }
2219
2220 /*
2221 * We can work in parallel with gfar_clean_tx_ring(), except
2222 * when modifying num_txbdfree. Note that we didn't grab the lock
2223 * when we were reading the num_txbdfree and checking for available
2224 * space, that's because outside of this function it can only grow,
2225 * and once we've got needed space, it cannot suddenly disappear.
2226 *
2227 * The lock also protects us from gfar_error(), which can modify
2228 * regs->tstat and thus retrigger the transfers, which is why we
2229 * also must grab the lock before setting ready bit for the first
2230 * to be transmitted BD.
2231 */
2232 spin_lock_irqsave(&tx_queue->txlock, flags);
2233
2234 /*
2235 * The powerpc-specific eieio() is used, as wmb() has too strong
2236 * semantics (it requires synchronization between cacheable and
2237 * uncacheable mappings, which eieio doesn't provide and which we
2238 * don't need), thus requiring a more expensive sync instruction. At
2239 * some point, the set of architecture-independent barrier functions
2240 * should be expanded to include weaker barriers.
2241 */
2242 eieio();
2243
2244 txbdp_start->lstatus = lstatus;
2245
2246 eieio(); /* force lstatus write before tx_skbuff */
2247
2248 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2249
2250 /* Update the current skb pointer to the next entry we will use
2251 * (wrapping if necessary) */
2252 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2253 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2254
2255 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2256
2257 /* reduce TxBD free count */
2258 tx_queue->num_txbdfree -= (nr_txbds);
2259
2260 /* If the next BD still needs to be cleaned up, then the bds
2261 are full. We need to tell the kernel to stop sending us stuff. */
2262 if (!tx_queue->num_txbdfree) {
2263 netif_tx_stop_queue(txq);
2264
2265 dev->stats.tx_fifo_errors++;
2266 }
2267
2268 /* Tell the DMA to go go go */
2269 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2270
2271 /* Unlock priv */
2272 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2273
2274 return NETDEV_TX_OK;
2275}
2276
2277/* Stops the kernel queue, and halts the controller */
2278static int gfar_close(struct net_device *dev)
2279{
2280 struct gfar_private *priv = netdev_priv(dev);
2281
2282 disable_napi(priv);
2283
2284 cancel_work_sync(&priv->reset_task);
2285 stop_gfar(dev);
2286
2287 /* Disconnect from the PHY */
2288 phy_disconnect(priv->phydev);
2289 priv->phydev = NULL;
2290
2291 netif_tx_stop_all_queues(dev);
2292
2293 return 0;
2294}
2295
2296/* Changes the mac address if the controller is not running. */
2297static int gfar_set_mac_address(struct net_device *dev)
2298{
2299 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2300
2301 return 0;
2302}
2303
2304/* Check if rx parser should be activated */
2305void gfar_check_rx_parser_mode(struct gfar_private *priv)
2306{
2307 struct gfar __iomem *regs;
2308 u32 tempval;
2309
2310 regs = priv->gfargrp[0].regs;
2311
2312 tempval = gfar_read(&regs->rctrl);
2313 /* If parse is no longer required, then disable parser */
2314 if (tempval & RCTRL_REQ_PARSER)
2315 tempval |= RCTRL_PRSDEP_INIT;
2316 else
2317 tempval &= ~RCTRL_PRSDEP_INIT;
2318 gfar_write(&regs->rctrl, tempval);
2319}
2320
2321/* Enables and disables VLAN insertion/extraction */
2322void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2323{
2324 struct gfar_private *priv = netdev_priv(dev);
2325 struct gfar __iomem *regs = NULL;
2326 unsigned long flags;
2327 u32 tempval;
2328
2329 regs = priv->gfargrp[0].regs;
2330 local_irq_save(flags);
2331 lock_rx_qs(priv);
2332
2333 if (features & NETIF_F_HW_VLAN_TX) {
2334 /* Enable VLAN tag insertion */
2335 tempval = gfar_read(&regs->tctrl);
2336 tempval |= TCTRL_VLINS;
2337 gfar_write(&regs->tctrl, tempval);
2338 } else {
2339 /* Disable VLAN tag insertion */
2340 tempval = gfar_read(&regs->tctrl);
2341 tempval &= ~TCTRL_VLINS;
2342 gfar_write(&regs->tctrl, tempval);
2343 }
2344
2345 if (features & NETIF_F_HW_VLAN_RX) {
2346 /* Enable VLAN tag extraction */
2347 tempval = gfar_read(&regs->rctrl);
2348 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2349 gfar_write(&regs->rctrl, tempval);
2350 } else {
2351 /* Disable VLAN tag extraction */
2352 tempval = gfar_read(&regs->rctrl);
2353 tempval &= ~RCTRL_VLEX;
2354 gfar_write(&regs->rctrl, tempval);
2355
2356 gfar_check_rx_parser_mode(priv);
2357 }
2358
2359 gfar_change_mtu(dev, dev->mtu);
2360
2361 unlock_rx_qs(priv);
2362 local_irq_restore(flags);
2363}
2364
2365static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2366{
2367 int tempsize, tempval;
2368 struct gfar_private *priv = netdev_priv(dev);
2369 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2370 int oldsize = priv->rx_buffer_size;
2371 int frame_size = new_mtu + ETH_HLEN;
2372
2373 if (gfar_is_vlan_on(priv))
2374 frame_size += VLAN_HLEN;
2375
2376 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2377 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2378 return -EINVAL;
2379 }
2380
2381 if (gfar_uses_fcb(priv))
2382 frame_size += GMAC_FCB_LEN;
2383
2384 frame_size += priv->padding;
2385
2386 tempsize =
2387 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2388 INCREMENTAL_BUFFER_SIZE;
2389
2390 /* Only stop and start the controller if it isn't already
2391 * stopped, and we changed something */
2392 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2393 stop_gfar(dev);
2394
2395 priv->rx_buffer_size = tempsize;
2396
2397 dev->mtu = new_mtu;
2398
2399 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2400 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2401
2402 /* If the mtu is larger than the max size for standard
2403 * ethernet frames (ie, a jumbo frame), then set maccfg2
2404 * to allow huge frames, and to check the length */
2405 tempval = gfar_read(&regs->maccfg2);
2406
2407 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2408 gfar_has_errata(priv, GFAR_ERRATA_74))
2409 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2410 else
2411 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2412
2413 gfar_write(&regs->maccfg2, tempval);
2414
2415 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2416 startup_gfar(dev);
2417
2418 return 0;
2419}
2420
2421/* gfar_reset_task gets scheduled when a packet has not been
2422 * transmitted after a set amount of time.
2423 * For now, assume that clearing out all the structures, and
2424 * starting over will fix the problem.
2425 */
2426static void gfar_reset_task(struct work_struct *work)
2427{
2428 struct gfar_private *priv = container_of(work, struct gfar_private,
2429 reset_task);
2430 struct net_device *dev = priv->ndev;
2431
2432 if (dev->flags & IFF_UP) {
2433 netif_tx_stop_all_queues(dev);
2434 stop_gfar(dev);
2435 startup_gfar(dev);
2436 netif_tx_start_all_queues(dev);
2437 }
2438
2439 netif_tx_schedule_all(dev);
2440}
2441
2442static void gfar_timeout(struct net_device *dev)
2443{
2444 struct gfar_private *priv = netdev_priv(dev);
2445
2446 dev->stats.tx_errors++;
2447 schedule_work(&priv->reset_task);
2448}
2449
2450static void gfar_align_skb(struct sk_buff *skb)
2451{
2452 /* We need the data buffer to be aligned properly. We will reserve
2453 * as many bytes as needed to align the data properly
2454 */
2455 skb_reserve(skb, RXBUF_ALIGNMENT -
2456 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2457}
2458
2459/* Interrupt Handler for Transmit complete */
2460static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2461{
2462 struct net_device *dev = tx_queue->dev;
2463 struct gfar_private *priv = netdev_priv(dev);
2464 struct gfar_priv_rx_q *rx_queue = NULL;
2465 struct txbd8 *bdp, *next = NULL;
2466 struct txbd8 *lbdp = NULL;
2467 struct txbd8 *base = tx_queue->tx_bd_base;
2468 struct sk_buff *skb;
2469 int skb_dirtytx;
2470 int tx_ring_size = tx_queue->tx_ring_size;
2471 int frags = 0, nr_txbds = 0;
2472 int i;
2473 int howmany = 0;
2474 u32 lstatus;
2475 size_t buflen;
2476
2477 rx_queue = priv->rx_queue[tx_queue->qindex];
2478 bdp = tx_queue->dirty_tx;
2479 skb_dirtytx = tx_queue->skb_dirtytx;
2480
2481 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2482 unsigned long flags;
2483
2484 frags = skb_shinfo(skb)->nr_frags;
2485
2486 /*
2487 * When time stamping, one additional TxBD must be freed.
2488 * Also, we need to dma_unmap_single() the TxPAL.
2489 */
2490 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2491 nr_txbds = frags + 2;
2492 else
2493 nr_txbds = frags + 1;
2494
2495 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2496
2497 lstatus = lbdp->lstatus;
2498
2499 /* Only clean completed frames */
2500 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2501 (lstatus & BD_LENGTH_MASK))
2502 break;
2503
2504 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2505 next = next_txbd(bdp, base, tx_ring_size);
2506 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2507 } else
2508 buflen = bdp->length;
2509
2510 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2511 buflen, DMA_TO_DEVICE);
2512
2513 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2514 struct skb_shared_hwtstamps shhwtstamps;
2515 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2516 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2517 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2518 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2519 skb_tstamp_tx(skb, &shhwtstamps);
2520 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2521 bdp = next;
2522 }
2523
2524 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2525 bdp = next_txbd(bdp, base, tx_ring_size);
2526
2527 for (i = 0; i < frags; i++) {
2528 dma_unmap_page(&priv->ofdev->dev,
2529 bdp->bufPtr,
2530 bdp->length,
2531 DMA_TO_DEVICE);
2532 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2533 bdp = next_txbd(bdp, base, tx_ring_size);
2534 }
2535
2536 /*
2537 * If there's room in the queue (limit it to rx_buffer_size)
2538 * we add this skb back into the pool, if it's the right size
2539 */
2540 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2541 skb_recycle_check(skb, priv->rx_buffer_size +
2542 RXBUF_ALIGNMENT)) {
2543 gfar_align_skb(skb);
2544 skb_queue_head(&priv->rx_recycle, skb);
2545 } else
2546 dev_kfree_skb_any(skb);
2547
2548 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2549
2550 skb_dirtytx = (skb_dirtytx + 1) &
2551 TX_RING_MOD_MASK(tx_ring_size);
2552
2553 howmany++;
2554 spin_lock_irqsave(&tx_queue->txlock, flags);
2555 tx_queue->num_txbdfree += nr_txbds;
2556 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2557 }
2558
2559 /* If we freed a buffer, we can restart transmission, if necessary */
2560 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2561 netif_wake_subqueue(dev, tx_queue->qindex);
2562
2563 /* Update dirty indicators */
2564 tx_queue->skb_dirtytx = skb_dirtytx;
2565 tx_queue->dirty_tx = bdp;
2566
2567 return howmany;
2568}
2569
2570static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2571{
2572 unsigned long flags;
2573
2574 spin_lock_irqsave(&gfargrp->grplock, flags);
2575 if (napi_schedule_prep(&gfargrp->napi)) {
2576 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2577 __napi_schedule(&gfargrp->napi);
2578 } else {
2579 /*
2580 * Clear IEVENT, so interrupts aren't called again
2581 * because of the packets that have already arrived.
2582 */
2583 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2584 }
2585 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2586
2587}
2588
2589/* Interrupt Handler for Transmit complete */
2590static irqreturn_t gfar_transmit(int irq, void *grp_id)
2591{
2592 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2593 return IRQ_HANDLED;
2594}
2595
2596static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2597 struct sk_buff *skb)
2598{
2599 struct net_device *dev = rx_queue->dev;
2600 struct gfar_private *priv = netdev_priv(dev);
2601 dma_addr_t buf;
2602
2603 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2604 priv->rx_buffer_size, DMA_FROM_DEVICE);
2605 gfar_init_rxbdp(rx_queue, bdp, buf);
2606}
2607
2608static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2609{
2610 struct gfar_private *priv = netdev_priv(dev);
2611 struct sk_buff *skb = NULL;
2612
2613 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2614 if (!skb)
2615 return NULL;
2616
2617 gfar_align_skb(skb);
2618
2619 return skb;
2620}
2621
2622struct sk_buff * gfar_new_skb(struct net_device *dev)
2623{
2624 struct gfar_private *priv = netdev_priv(dev);
2625 struct sk_buff *skb = NULL;
2626
2627 skb = skb_dequeue(&priv->rx_recycle);
2628 if (!skb)
2629 skb = gfar_alloc_skb(dev);
2630
2631 return skb;
2632}
2633
2634static inline void count_errors(unsigned short status, struct net_device *dev)
2635{
2636 struct gfar_private *priv = netdev_priv(dev);
2637 struct net_device_stats *stats = &dev->stats;
2638 struct gfar_extra_stats *estats = &priv->extra_stats;
2639
2640 /* If the packet was truncated, none of the other errors
2641 * matter */
2642 if (status & RXBD_TRUNCATED) {
2643 stats->rx_length_errors++;
2644
2645 estats->rx_trunc++;
2646
2647 return;
2648 }
2649 /* Count the errors, if there were any */
2650 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2651 stats->rx_length_errors++;
2652
2653 if (status & RXBD_LARGE)
2654 estats->rx_large++;
2655 else
2656 estats->rx_short++;
2657 }
2658 if (status & RXBD_NONOCTET) {
2659 stats->rx_frame_errors++;
2660 estats->rx_nonoctet++;
2661 }
2662 if (status & RXBD_CRCERR) {
2663 estats->rx_crcerr++;
2664 stats->rx_crc_errors++;
2665 }
2666 if (status & RXBD_OVERRUN) {
2667 estats->rx_overrun++;
2668 stats->rx_crc_errors++;
2669 }
2670}
2671
2672irqreturn_t gfar_receive(int irq, void *grp_id)
2673{
2674 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2675 return IRQ_HANDLED;
2676}
2677
2678static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2679{
2680 /* If valid headers were found, and valid sums
2681 * were verified, then we tell the kernel that no
2682 * checksumming is necessary. Otherwise, it is */
2683 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2684 skb->ip_summed = CHECKSUM_UNNECESSARY;
2685 else
2686 skb_checksum_none_assert(skb);
2687}
2688
2689
2690/* gfar_process_frame() -- handle one incoming packet if skb
2691 * isn't NULL. */
2692static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2693 int amount_pull)
2694{
2695 struct gfar_private *priv = netdev_priv(dev);
2696 struct rxfcb *fcb = NULL;
2697
2698 int ret;
2699
2700 /* fcb is at the beginning if exists */
2701 fcb = (struct rxfcb *)skb->data;
2702
2703 /* Remove the FCB from the skb */
2704 /* Remove the padded bytes, if there are any */
2705 if (amount_pull) {
2706 skb_record_rx_queue(skb, fcb->rq);
2707 skb_pull(skb, amount_pull);
2708 }
2709
2710 /* Get receive timestamp from the skb */
2711 if (priv->hwts_rx_en) {
2712 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2713 u64 *ns = (u64 *) skb->data;
2714 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2715 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2716 }
2717
2718 if (priv->padding)
2719 skb_pull(skb, priv->padding);
2720
2721 if (dev->features & NETIF_F_RXCSUM)
2722 gfar_rx_checksum(skb, fcb);
2723
2724 /* Tell the skb what kind of packet this is */
2725 skb->protocol = eth_type_trans(skb, dev);
2726
2727 /*
2728 * There's need to check for NETIF_F_HW_VLAN_RX here.
2729 * Even if vlan rx accel is disabled, on some chips
2730 * RXFCB_VLN is pseudo randomly set.
2731 */
2732 if (dev->features & NETIF_F_HW_VLAN_RX &&
2733 fcb->flags & RXFCB_VLN)
2734 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2735
2736 /* Send the packet up the stack */
2737 ret = netif_receive_skb(skb);
2738
2739 if (NET_RX_DROP == ret)
2740 priv->extra_stats.kernel_dropped++;
2741
2742 return 0;
2743}
2744
2745/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2746 * until the budget/quota has been reached. Returns the number
2747 * of frames handled
2748 */
2749int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2750{
2751 struct net_device *dev = rx_queue->dev;
2752 struct rxbd8 *bdp, *base;
2753 struct sk_buff *skb;
2754 int pkt_len;
2755 int amount_pull;
2756 int howmany = 0;
2757 struct gfar_private *priv = netdev_priv(dev);
2758
2759 /* Get the first full descriptor */
2760 bdp = rx_queue->cur_rx;
2761 base = rx_queue->rx_bd_base;
2762
2763 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2764
2765 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2766 struct sk_buff *newskb;
2767 rmb();
2768
2769 /* Add another skb for the future */
2770 newskb = gfar_new_skb(dev);
2771
2772 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2773
2774 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2775 priv->rx_buffer_size, DMA_FROM_DEVICE);
2776
2777 if (unlikely(!(bdp->status & RXBD_ERR) &&
2778 bdp->length > priv->rx_buffer_size))
2779 bdp->status = RXBD_LARGE;
2780
2781 /* We drop the frame if we failed to allocate a new buffer */
2782 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2783 bdp->status & RXBD_ERR)) {
2784 count_errors(bdp->status, dev);
2785
2786 if (unlikely(!newskb))
2787 newskb = skb;
2788 else if (skb)
2789 skb_queue_head(&priv->rx_recycle, skb);
2790 } else {
2791 /* Increment the number of packets */
2792 rx_queue->stats.rx_packets++;
2793 howmany++;
2794
2795 if (likely(skb)) {
2796 pkt_len = bdp->length - ETH_FCS_LEN;
2797 /* Remove the FCS from the packet length */
2798 skb_put(skb, pkt_len);
2799 rx_queue->stats.rx_bytes += pkt_len;
2800 skb_record_rx_queue(skb, rx_queue->qindex);
2801 gfar_process_frame(dev, skb, amount_pull);
2802
2803 } else {
2804 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2805 rx_queue->stats.rx_dropped++;
2806 priv->extra_stats.rx_skbmissing++;
2807 }
2808
2809 }
2810
2811 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2812
2813 /* Setup the new bdp */
2814 gfar_new_rxbdp(rx_queue, bdp, newskb);
2815
2816 /* Update to the next pointer */
2817 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2818
2819 /* update to point at the next skb */
2820 rx_queue->skb_currx =
2821 (rx_queue->skb_currx + 1) &
2822 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2823 }
2824
2825 /* Update the current rxbd pointer to be the next one */
2826 rx_queue->cur_rx = bdp;
2827
2828 return howmany;
2829}
2830
2831static int gfar_poll(struct napi_struct *napi, int budget)
2832{
2833 struct gfar_priv_grp *gfargrp = container_of(napi,
2834 struct gfar_priv_grp, napi);
2835 struct gfar_private *priv = gfargrp->priv;
2836 struct gfar __iomem *regs = gfargrp->regs;
2837 struct gfar_priv_tx_q *tx_queue = NULL;
2838 struct gfar_priv_rx_q *rx_queue = NULL;
2839 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2840 int tx_cleaned = 0, i, left_over_budget = budget;
2841 unsigned long serviced_queues = 0;
2842 int num_queues = 0;
2843
2844 num_queues = gfargrp->num_rx_queues;
2845 budget_per_queue = budget/num_queues;
2846
2847 /* Clear IEVENT, so interrupts aren't called again
2848 * because of the packets that have already arrived */
2849 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2850
2851 while (num_queues && left_over_budget) {
2852
2853 budget_per_queue = left_over_budget/num_queues;
2854 left_over_budget = 0;
2855
2856 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2857 if (test_bit(i, &serviced_queues))
2858 continue;
2859 rx_queue = priv->rx_queue[i];
2860 tx_queue = priv->tx_queue[rx_queue->qindex];
2861
2862 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2863 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2864 budget_per_queue);
2865 rx_cleaned += rx_cleaned_per_queue;
2866 if(rx_cleaned_per_queue < budget_per_queue) {
2867 left_over_budget = left_over_budget +
2868 (budget_per_queue - rx_cleaned_per_queue);
2869 set_bit(i, &serviced_queues);
2870 num_queues--;
2871 }
2872 }
2873 }
2874
2875 if (tx_cleaned)
2876 return budget;
2877
2878 if (rx_cleaned < budget) {
2879 napi_complete(napi);
2880
2881 /* Clear the halt bit in RSTAT */
2882 gfar_write(&regs->rstat, gfargrp->rstat);
2883
2884 gfar_write(&regs->imask, IMASK_DEFAULT);
2885
2886 /* If we are coalescing interrupts, update the timer */
2887 /* Otherwise, clear it */
2888 gfar_configure_coalescing(priv,
2889 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2890 }
2891
2892 return rx_cleaned;
2893}
2894
2895#ifdef CONFIG_NET_POLL_CONTROLLER
2896/*
2897 * Polling 'interrupt' - used by things like netconsole to send skbs
2898 * without having to re-enable interrupts. It's not called while
2899 * the interrupt routine is executing.
2900 */
2901static void gfar_netpoll(struct net_device *dev)
2902{
2903 struct gfar_private *priv = netdev_priv(dev);
2904 int i = 0;
2905
2906 /* If the device has multiple interrupts, run tx/rx */
2907 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2908 for (i = 0; i < priv->num_grps; i++) {
2909 disable_irq(priv->gfargrp[i].interruptTransmit);
2910 disable_irq(priv->gfargrp[i].interruptReceive);
2911 disable_irq(priv->gfargrp[i].interruptError);
2912 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2913 &priv->gfargrp[i]);
2914 enable_irq(priv->gfargrp[i].interruptError);
2915 enable_irq(priv->gfargrp[i].interruptReceive);
2916 enable_irq(priv->gfargrp[i].interruptTransmit);
2917 }
2918 } else {
2919 for (i = 0; i < priv->num_grps; i++) {
2920 disable_irq(priv->gfargrp[i].interruptTransmit);
2921 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2922 &priv->gfargrp[i]);
2923 enable_irq(priv->gfargrp[i].interruptTransmit);
2924 }
2925 }
2926}
2927#endif
2928
2929/* The interrupt handler for devices with one interrupt */
2930static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2931{
2932 struct gfar_priv_grp *gfargrp = grp_id;
2933
2934 /* Save ievent for future reference */
2935 u32 events = gfar_read(&gfargrp->regs->ievent);
2936
2937 /* Check for reception */
2938 if (events & IEVENT_RX_MASK)
2939 gfar_receive(irq, grp_id);
2940
2941 /* Check for transmit completion */
2942 if (events & IEVENT_TX_MASK)
2943 gfar_transmit(irq, grp_id);
2944
2945 /* Check for errors */
2946 if (events & IEVENT_ERR_MASK)
2947 gfar_error(irq, grp_id);
2948
2949 return IRQ_HANDLED;
2950}
2951
2952/* Called every time the controller might need to be made
2953 * aware of new link state. The PHY code conveys this
2954 * information through variables in the phydev structure, and this
2955 * function converts those variables into the appropriate
2956 * register values, and can bring down the device if needed.
2957 */
2958static void adjust_link(struct net_device *dev)
2959{
2960 struct gfar_private *priv = netdev_priv(dev);
2961 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2962 unsigned long flags;
2963 struct phy_device *phydev = priv->phydev;
2964 int new_state = 0;
2965
2966 local_irq_save(flags);
2967 lock_tx_qs(priv);
2968
2969 if (phydev->link) {
2970 u32 tempval = gfar_read(&regs->maccfg2);
2971 u32 ecntrl = gfar_read(&regs->ecntrl);
2972
2973 /* Now we make sure that we can be in full duplex mode.
2974 * If not, we operate in half-duplex mode. */
2975 if (phydev->duplex != priv->oldduplex) {
2976 new_state = 1;
2977 if (!(phydev->duplex))
2978 tempval &= ~(MACCFG2_FULL_DUPLEX);
2979 else
2980 tempval |= MACCFG2_FULL_DUPLEX;
2981
2982 priv->oldduplex = phydev->duplex;
2983 }
2984
2985 if (phydev->speed != priv->oldspeed) {
2986 new_state = 1;
2987 switch (phydev->speed) {
2988 case 1000:
2989 tempval =
2990 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2991
2992 ecntrl &= ~(ECNTRL_R100);
2993 break;
2994 case 100:
2995 case 10:
2996 tempval =
2997 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2998
2999 /* Reduced mode distinguishes
3000 * between 10 and 100 */
3001 if (phydev->speed == SPEED_100)
3002 ecntrl |= ECNTRL_R100;
3003 else
3004 ecntrl &= ~(ECNTRL_R100);
3005 break;
3006 default:
3007 netif_warn(priv, link, dev,
3008 "Ack! Speed (%d) is not 10/100/1000!\n",
3009 phydev->speed);
3010 break;
3011 }
3012
3013 priv->oldspeed = phydev->speed;
3014 }
3015
3016 gfar_write(&regs->maccfg2, tempval);
3017 gfar_write(&regs->ecntrl, ecntrl);
3018
3019 if (!priv->oldlink) {
3020 new_state = 1;
3021 priv->oldlink = 1;
3022 }
3023 } else if (priv->oldlink) {
3024 new_state = 1;
3025 priv->oldlink = 0;
3026 priv->oldspeed = 0;
3027 priv->oldduplex = -1;
3028 }
3029
3030 if (new_state && netif_msg_link(priv))
3031 phy_print_status(phydev);
3032 unlock_tx_qs(priv);
3033 local_irq_restore(flags);
3034}
3035
3036/* Update the hash table based on the current list of multicast
3037 * addresses we subscribe to. Also, change the promiscuity of
3038 * the device based on the flags (this function is called
3039 * whenever dev->flags is changed */
3040static void gfar_set_multi(struct net_device *dev)
3041{
3042 struct netdev_hw_addr *ha;
3043 struct gfar_private *priv = netdev_priv(dev);
3044 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3045 u32 tempval;
3046
3047 if (dev->flags & IFF_PROMISC) {
3048 /* Set RCTRL to PROM */
3049 tempval = gfar_read(&regs->rctrl);
3050 tempval |= RCTRL_PROM;
3051 gfar_write(&regs->rctrl, tempval);
3052 } else {
3053 /* Set RCTRL to not PROM */
3054 tempval = gfar_read(&regs->rctrl);
3055 tempval &= ~(RCTRL_PROM);
3056 gfar_write(&regs->rctrl, tempval);
3057 }
3058
3059 if (dev->flags & IFF_ALLMULTI) {
3060 /* Set the hash to rx all multicast frames */
3061 gfar_write(&regs->igaddr0, 0xffffffff);
3062 gfar_write(&regs->igaddr1, 0xffffffff);
3063 gfar_write(&regs->igaddr2, 0xffffffff);
3064 gfar_write(&regs->igaddr3, 0xffffffff);
3065 gfar_write(&regs->igaddr4, 0xffffffff);
3066 gfar_write(&regs->igaddr5, 0xffffffff);
3067 gfar_write(&regs->igaddr6, 0xffffffff);
3068 gfar_write(&regs->igaddr7, 0xffffffff);
3069 gfar_write(&regs->gaddr0, 0xffffffff);
3070 gfar_write(&regs->gaddr1, 0xffffffff);
3071 gfar_write(&regs->gaddr2, 0xffffffff);
3072 gfar_write(&regs->gaddr3, 0xffffffff);
3073 gfar_write(&regs->gaddr4, 0xffffffff);
3074 gfar_write(&regs->gaddr5, 0xffffffff);
3075 gfar_write(&regs->gaddr6, 0xffffffff);
3076 gfar_write(&regs->gaddr7, 0xffffffff);
3077 } else {
3078 int em_num;
3079 int idx;
3080
3081 /* zero out the hash */
3082 gfar_write(&regs->igaddr0, 0x0);
3083 gfar_write(&regs->igaddr1, 0x0);
3084 gfar_write(&regs->igaddr2, 0x0);
3085 gfar_write(&regs->igaddr3, 0x0);
3086 gfar_write(&regs->igaddr4, 0x0);
3087 gfar_write(&regs->igaddr5, 0x0);
3088 gfar_write(&regs->igaddr6, 0x0);
3089 gfar_write(&regs->igaddr7, 0x0);
3090 gfar_write(&regs->gaddr0, 0x0);
3091 gfar_write(&regs->gaddr1, 0x0);
3092 gfar_write(&regs->gaddr2, 0x0);
3093 gfar_write(&regs->gaddr3, 0x0);
3094 gfar_write(&regs->gaddr4, 0x0);
3095 gfar_write(&regs->gaddr5, 0x0);
3096 gfar_write(&regs->gaddr6, 0x0);
3097 gfar_write(&regs->gaddr7, 0x0);
3098
3099 /* If we have extended hash tables, we need to
3100 * clear the exact match registers to prepare for
3101 * setting them */
3102 if (priv->extended_hash) {
3103 em_num = GFAR_EM_NUM + 1;
3104 gfar_clear_exact_match(dev);
3105 idx = 1;
3106 } else {
3107 idx = 0;
3108 em_num = 0;
3109 }
3110
3111 if (netdev_mc_empty(dev))
3112 return;
3113
3114 /* Parse the list, and set the appropriate bits */
3115 netdev_for_each_mc_addr(ha, dev) {
3116 if (idx < em_num) {
3117 gfar_set_mac_for_addr(dev, idx, ha->addr);
3118 idx++;
3119 } else
3120 gfar_set_hash_for_addr(dev, ha->addr);
3121 }
3122 }
3123}
3124
3125
3126/* Clears each of the exact match registers to zero, so they
3127 * don't interfere with normal reception */
3128static void gfar_clear_exact_match(struct net_device *dev)
3129{
3130 int idx;
3131 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3132
3133 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3134 gfar_set_mac_for_addr(dev, idx, zero_arr);
3135}
3136
3137/* Set the appropriate hash bit for the given addr */
3138/* The algorithm works like so:
3139 * 1) Take the Destination Address (ie the multicast address), and
3140 * do a CRC on it (little endian), and reverse the bits of the
3141 * result.
3142 * 2) Use the 8 most significant bits as a hash into a 256-entry
3143 * table. The table is controlled through 8 32-bit registers:
3144 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3145 * gaddr7. This means that the 3 most significant bits in the
3146 * hash index which gaddr register to use, and the 5 other bits
3147 * indicate which bit (assuming an IBM numbering scheme, which
3148 * for PowerPC (tm) is usually the case) in the register holds
3149 * the entry. */
3150static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3151{
3152 u32 tempval;
3153 struct gfar_private *priv = netdev_priv(dev);
3154 u32 result = ether_crc(ETH_ALEN, addr);
3155 int width = priv->hash_width;
3156 u8 whichbit = (result >> (32 - width)) & 0x1f;
3157 u8 whichreg = result >> (32 - width + 5);
3158 u32 value = (1 << (31-whichbit));
3159
3160 tempval = gfar_read(priv->hash_regs[whichreg]);
3161 tempval |= value;
3162 gfar_write(priv->hash_regs[whichreg], tempval);
3163}
3164
3165
3166/* There are multiple MAC Address register pairs on some controllers
3167 * This function sets the numth pair to a given address
3168 */
3169static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3170 const u8 *addr)
3171{
3172 struct gfar_private *priv = netdev_priv(dev);
3173 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3174 int idx;
3175 char tmpbuf[ETH_ALEN];
3176 u32 tempval;
3177 u32 __iomem *macptr = &regs->macstnaddr1;
3178
3179 macptr += num*2;
3180
3181 /* Now copy it into the mac registers backwards, cuz */
3182 /* little endian is silly */
3183 for (idx = 0; idx < ETH_ALEN; idx++)
3184 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3185
3186 gfar_write(macptr, *((u32 *) (tmpbuf)));
3187
3188 tempval = *((u32 *) (tmpbuf + 4));
3189
3190 gfar_write(macptr+1, tempval);
3191}
3192
3193/* GFAR error interrupt handler */
3194static irqreturn_t gfar_error(int irq, void *grp_id)
3195{
3196 struct gfar_priv_grp *gfargrp = grp_id;
3197 struct gfar __iomem *regs = gfargrp->regs;
3198 struct gfar_private *priv= gfargrp->priv;
3199 struct net_device *dev = priv->ndev;
3200
3201 /* Save ievent for future reference */
3202 u32 events = gfar_read(&regs->ievent);
3203
3204 /* Clear IEVENT */
3205 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3206
3207 /* Magic Packet is not an error. */
3208 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3209 (events & IEVENT_MAG))
3210 events &= ~IEVENT_MAG;
3211
3212 /* Hmm... */
3213 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3214 netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3215 events, gfar_read(&regs->imask));
3216
3217 /* Update the error counters */
3218 if (events & IEVENT_TXE) {
3219 dev->stats.tx_errors++;
3220
3221 if (events & IEVENT_LC)
3222 dev->stats.tx_window_errors++;
3223 if (events & IEVENT_CRL)
3224 dev->stats.tx_aborted_errors++;
3225 if (events & IEVENT_XFUN) {
3226 unsigned long flags;
3227
3228 netif_dbg(priv, tx_err, dev,
3229 "TX FIFO underrun, packet dropped\n");
3230 dev->stats.tx_dropped++;
3231 priv->extra_stats.tx_underrun++;
3232
3233 local_irq_save(flags);
3234 lock_tx_qs(priv);
3235
3236 /* Reactivate the Tx Queues */
3237 gfar_write(&regs->tstat, gfargrp->tstat);
3238
3239 unlock_tx_qs(priv);
3240 local_irq_restore(flags);
3241 }
3242 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3243 }
3244 if (events & IEVENT_BSY) {
3245 dev->stats.rx_errors++;
3246 priv->extra_stats.rx_bsy++;
3247
3248 gfar_receive(irq, grp_id);
3249
3250 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3251 gfar_read(&regs->rstat));
3252 }
3253 if (events & IEVENT_BABR) {
3254 dev->stats.rx_errors++;
3255 priv->extra_stats.rx_babr++;
3256
3257 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3258 }
3259 if (events & IEVENT_EBERR) {
3260 priv->extra_stats.eberr++;
3261 netif_dbg(priv, rx_err, dev, "bus error\n");
3262 }
3263 if (events & IEVENT_RXC)
3264 netif_dbg(priv, rx_status, dev, "control frame\n");
3265
3266 if (events & IEVENT_BABT) {
3267 priv->extra_stats.tx_babt++;
3268 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3269 }
3270 return IRQ_HANDLED;
3271}
3272
3273static struct of_device_id gfar_match[] =
3274{
3275 {
3276 .type = "network",
3277 .compatible = "gianfar",
3278 },
3279 {
3280 .compatible = "fsl,etsec2",
3281 },
3282 {},
3283};
3284MODULE_DEVICE_TABLE(of, gfar_match);
3285
3286/* Structure for a device driver */
3287static struct platform_driver gfar_driver = {
3288 .driver = {
3289 .name = "fsl-gianfar",
3290 .owner = THIS_MODULE,
3291 .pm = GFAR_PM_OPS,
3292 .of_match_table = gfar_match,
3293 },
3294 .probe = gfar_probe,
3295 .remove = gfar_remove,
3296};
3297
3298module_platform_driver(gfar_driver);
This page took 0.036516 seconds and 5 git commands to generate.