thp: fix interrupt unsafe locking in split_huge_page()
[deliverable/linux.git] / fs / proc / task_mmu.c
... / ...
CommitLineData
1#include <linux/mm.h>
2#include <linux/vmacache.h>
3#include <linux/hugetlb.h>
4#include <linux/huge_mm.h>
5#include <linux/mount.h>
6#include <linux/seq_file.h>
7#include <linux/highmem.h>
8#include <linux/ptrace.h>
9#include <linux/slab.h>
10#include <linux/pagemap.h>
11#include <linux/mempolicy.h>
12#include <linux/rmap.h>
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/mmu_notifier.h>
16#include <linux/page_idle.h>
17#include <linux/shmem_fs.h>
18
19#include <asm/elf.h>
20#include <asm/uaccess.h>
21#include <asm/tlbflush.h>
22#include "internal.h"
23
24void task_mem(struct seq_file *m, struct mm_struct *mm)
25{
26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28
29 anon = get_mm_counter(mm, MM_ANONPAGES);
30 file = get_mm_counter(mm, MM_FILEPAGES);
31 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32
33 /*
34 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 * hiwater_rss only when about to *lower* total_vm or rss. Any
36 * collector of these hiwater stats must therefore get total_vm
37 * and rss too, which will usually be the higher. Barriers? not
38 * worth the effort, such snapshots can always be inconsistent.
39 */
40 hiwater_vm = total_vm = mm->total_vm;
41 if (hiwater_vm < mm->hiwater_vm)
42 hiwater_vm = mm->hiwater_vm;
43 hiwater_rss = total_rss = anon + file + shmem;
44 if (hiwater_rss < mm->hiwater_rss)
45 hiwater_rss = mm->hiwater_rss;
46
47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 swap = get_mm_counter(mm, MM_SWAPENTS);
50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 seq_printf(m,
53 "VmPeak:\t%8lu kB\n"
54 "VmSize:\t%8lu kB\n"
55 "VmLck:\t%8lu kB\n"
56 "VmPin:\t%8lu kB\n"
57 "VmHWM:\t%8lu kB\n"
58 "VmRSS:\t%8lu kB\n"
59 "RssAnon:\t%8lu kB\n"
60 "RssFile:\t%8lu kB\n"
61 "RssShmem:\t%8lu kB\n"
62 "VmData:\t%8lu kB\n"
63 "VmStk:\t%8lu kB\n"
64 "VmExe:\t%8lu kB\n"
65 "VmLib:\t%8lu kB\n"
66 "VmPTE:\t%8lu kB\n"
67 "VmPMD:\t%8lu kB\n"
68 "VmSwap:\t%8lu kB\n",
69 hiwater_vm << (PAGE_SHIFT-10),
70 total_vm << (PAGE_SHIFT-10),
71 mm->locked_vm << (PAGE_SHIFT-10),
72 mm->pinned_vm << (PAGE_SHIFT-10),
73 hiwater_rss << (PAGE_SHIFT-10),
74 total_rss << (PAGE_SHIFT-10),
75 anon << (PAGE_SHIFT-10),
76 file << (PAGE_SHIFT-10),
77 shmem << (PAGE_SHIFT-10),
78 mm->data_vm << (PAGE_SHIFT-10),
79 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 ptes >> 10,
81 pmds >> 10,
82 swap << (PAGE_SHIFT-10));
83 hugetlb_report_usage(m, mm);
84}
85
86unsigned long task_vsize(struct mm_struct *mm)
87{
88 return PAGE_SIZE * mm->total_vm;
89}
90
91unsigned long task_statm(struct mm_struct *mm,
92 unsigned long *shared, unsigned long *text,
93 unsigned long *data, unsigned long *resident)
94{
95 *shared = get_mm_counter(mm, MM_FILEPAGES) +
96 get_mm_counter(mm, MM_SHMEMPAGES);
97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 >> PAGE_SHIFT;
99 *data = mm->data_vm + mm->stack_vm;
100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 return mm->total_vm;
102}
103
104#ifdef CONFIG_NUMA
105/*
106 * Save get_task_policy() for show_numa_map().
107 */
108static void hold_task_mempolicy(struct proc_maps_private *priv)
109{
110 struct task_struct *task = priv->task;
111
112 task_lock(task);
113 priv->task_mempolicy = get_task_policy(task);
114 mpol_get(priv->task_mempolicy);
115 task_unlock(task);
116}
117static void release_task_mempolicy(struct proc_maps_private *priv)
118{
119 mpol_put(priv->task_mempolicy);
120}
121#else
122static void hold_task_mempolicy(struct proc_maps_private *priv)
123{
124}
125static void release_task_mempolicy(struct proc_maps_private *priv)
126{
127}
128#endif
129
130static void vma_stop(struct proc_maps_private *priv)
131{
132 struct mm_struct *mm = priv->mm;
133
134 release_task_mempolicy(priv);
135 up_read(&mm->mmap_sem);
136 mmput(mm);
137}
138
139static struct vm_area_struct *
140m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141{
142 if (vma == priv->tail_vma)
143 return NULL;
144 return vma->vm_next ?: priv->tail_vma;
145}
146
147static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148{
149 if (m->count < m->size) /* vma is copied successfully */
150 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
151}
152
153static void *m_start(struct seq_file *m, loff_t *ppos)
154{
155 struct proc_maps_private *priv = m->private;
156 unsigned long last_addr = m->version;
157 struct mm_struct *mm;
158 struct vm_area_struct *vma;
159 unsigned int pos = *ppos;
160
161 /* See m_cache_vma(). Zero at the start or after lseek. */
162 if (last_addr == -1UL)
163 return NULL;
164
165 priv->task = get_proc_task(priv->inode);
166 if (!priv->task)
167 return ERR_PTR(-ESRCH);
168
169 mm = priv->mm;
170 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171 return NULL;
172
173 down_read(&mm->mmap_sem);
174 hold_task_mempolicy(priv);
175 priv->tail_vma = get_gate_vma(mm);
176
177 if (last_addr) {
178 vma = find_vma(mm, last_addr);
179 if (vma && (vma = m_next_vma(priv, vma)))
180 return vma;
181 }
182
183 m->version = 0;
184 if (pos < mm->map_count) {
185 for (vma = mm->mmap; pos; pos--) {
186 m->version = vma->vm_start;
187 vma = vma->vm_next;
188 }
189 return vma;
190 }
191
192 /* we do not bother to update m->version in this case */
193 if (pos == mm->map_count && priv->tail_vma)
194 return priv->tail_vma;
195
196 vma_stop(priv);
197 return NULL;
198}
199
200static void *m_next(struct seq_file *m, void *v, loff_t *pos)
201{
202 struct proc_maps_private *priv = m->private;
203 struct vm_area_struct *next;
204
205 (*pos)++;
206 next = m_next_vma(priv, v);
207 if (!next)
208 vma_stop(priv);
209 return next;
210}
211
212static void m_stop(struct seq_file *m, void *v)
213{
214 struct proc_maps_private *priv = m->private;
215
216 if (!IS_ERR_OR_NULL(v))
217 vma_stop(priv);
218 if (priv->task) {
219 put_task_struct(priv->task);
220 priv->task = NULL;
221 }
222}
223
224static int proc_maps_open(struct inode *inode, struct file *file,
225 const struct seq_operations *ops, int psize)
226{
227 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
228
229 if (!priv)
230 return -ENOMEM;
231
232 priv->inode = inode;
233 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
234 if (IS_ERR(priv->mm)) {
235 int err = PTR_ERR(priv->mm);
236
237 seq_release_private(inode, file);
238 return err;
239 }
240
241 return 0;
242}
243
244static int proc_map_release(struct inode *inode, struct file *file)
245{
246 struct seq_file *seq = file->private_data;
247 struct proc_maps_private *priv = seq->private;
248
249 if (priv->mm)
250 mmdrop(priv->mm);
251
252 return seq_release_private(inode, file);
253}
254
255static int do_maps_open(struct inode *inode, struct file *file,
256 const struct seq_operations *ops)
257{
258 return proc_maps_open(inode, file, ops,
259 sizeof(struct proc_maps_private));
260}
261
262static pid_t pid_of_stack(struct proc_maps_private *priv,
263 struct vm_area_struct *vma, bool is_pid)
264{
265 struct inode *inode = priv->inode;
266 struct task_struct *task;
267 pid_t ret = 0;
268
269 rcu_read_lock();
270 task = pid_task(proc_pid(inode), PIDTYPE_PID);
271 if (task) {
272 task = task_of_stack(task, vma, is_pid);
273 if (task)
274 ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
275 }
276 rcu_read_unlock();
277
278 return ret;
279}
280
281static void
282show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
283{
284 struct mm_struct *mm = vma->vm_mm;
285 struct file *file = vma->vm_file;
286 struct proc_maps_private *priv = m->private;
287 vm_flags_t flags = vma->vm_flags;
288 unsigned long ino = 0;
289 unsigned long long pgoff = 0;
290 unsigned long start, end;
291 dev_t dev = 0;
292 const char *name = NULL;
293
294 if (file) {
295 struct inode *inode = file_inode(vma->vm_file);
296 dev = inode->i_sb->s_dev;
297 ino = inode->i_ino;
298 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
299 }
300
301 /* We don't show the stack guard page in /proc/maps */
302 start = vma->vm_start;
303 if (stack_guard_page_start(vma, start))
304 start += PAGE_SIZE;
305 end = vma->vm_end;
306 if (stack_guard_page_end(vma, end))
307 end -= PAGE_SIZE;
308
309 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
310 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
311 start,
312 end,
313 flags & VM_READ ? 'r' : '-',
314 flags & VM_WRITE ? 'w' : '-',
315 flags & VM_EXEC ? 'x' : '-',
316 flags & VM_MAYSHARE ? 's' : 'p',
317 pgoff,
318 MAJOR(dev), MINOR(dev), ino);
319
320 /*
321 * Print the dentry name for named mappings, and a
322 * special [heap] marker for the heap:
323 */
324 if (file) {
325 seq_pad(m, ' ');
326 seq_file_path(m, file, "\n");
327 goto done;
328 }
329
330 if (vma->vm_ops && vma->vm_ops->name) {
331 name = vma->vm_ops->name(vma);
332 if (name)
333 goto done;
334 }
335
336 name = arch_vma_name(vma);
337 if (!name) {
338 pid_t tid;
339
340 if (!mm) {
341 name = "[vdso]";
342 goto done;
343 }
344
345 if (vma->vm_start <= mm->brk &&
346 vma->vm_end >= mm->start_brk) {
347 name = "[heap]";
348 goto done;
349 }
350
351 tid = pid_of_stack(priv, vma, is_pid);
352 if (tid != 0) {
353 /*
354 * Thread stack in /proc/PID/task/TID/maps or
355 * the main process stack.
356 */
357 if (!is_pid || (vma->vm_start <= mm->start_stack &&
358 vma->vm_end >= mm->start_stack)) {
359 name = "[stack]";
360 } else {
361 /* Thread stack in /proc/PID/maps */
362 seq_pad(m, ' ');
363 seq_printf(m, "[stack:%d]", tid);
364 }
365 }
366 }
367
368done:
369 if (name) {
370 seq_pad(m, ' ');
371 seq_puts(m, name);
372 }
373 seq_putc(m, '\n');
374}
375
376static int show_map(struct seq_file *m, void *v, int is_pid)
377{
378 show_map_vma(m, v, is_pid);
379 m_cache_vma(m, v);
380 return 0;
381}
382
383static int show_pid_map(struct seq_file *m, void *v)
384{
385 return show_map(m, v, 1);
386}
387
388static int show_tid_map(struct seq_file *m, void *v)
389{
390 return show_map(m, v, 0);
391}
392
393static const struct seq_operations proc_pid_maps_op = {
394 .start = m_start,
395 .next = m_next,
396 .stop = m_stop,
397 .show = show_pid_map
398};
399
400static const struct seq_operations proc_tid_maps_op = {
401 .start = m_start,
402 .next = m_next,
403 .stop = m_stop,
404 .show = show_tid_map
405};
406
407static int pid_maps_open(struct inode *inode, struct file *file)
408{
409 return do_maps_open(inode, file, &proc_pid_maps_op);
410}
411
412static int tid_maps_open(struct inode *inode, struct file *file)
413{
414 return do_maps_open(inode, file, &proc_tid_maps_op);
415}
416
417const struct file_operations proc_pid_maps_operations = {
418 .open = pid_maps_open,
419 .read = seq_read,
420 .llseek = seq_lseek,
421 .release = proc_map_release,
422};
423
424const struct file_operations proc_tid_maps_operations = {
425 .open = tid_maps_open,
426 .read = seq_read,
427 .llseek = seq_lseek,
428 .release = proc_map_release,
429};
430
431/*
432 * Proportional Set Size(PSS): my share of RSS.
433 *
434 * PSS of a process is the count of pages it has in memory, where each
435 * page is divided by the number of processes sharing it. So if a
436 * process has 1000 pages all to itself, and 1000 shared with one other
437 * process, its PSS will be 1500.
438 *
439 * To keep (accumulated) division errors low, we adopt a 64bit
440 * fixed-point pss counter to minimize division errors. So (pss >>
441 * PSS_SHIFT) would be the real byte count.
442 *
443 * A shift of 12 before division means (assuming 4K page size):
444 * - 1M 3-user-pages add up to 8KB errors;
445 * - supports mapcount up to 2^24, or 16M;
446 * - supports PSS up to 2^52 bytes, or 4PB.
447 */
448#define PSS_SHIFT 12
449
450#ifdef CONFIG_PROC_PAGE_MONITOR
451struct mem_size_stats {
452 unsigned long resident;
453 unsigned long shared_clean;
454 unsigned long shared_dirty;
455 unsigned long private_clean;
456 unsigned long private_dirty;
457 unsigned long referenced;
458 unsigned long anonymous;
459 unsigned long anonymous_thp;
460 unsigned long swap;
461 unsigned long shared_hugetlb;
462 unsigned long private_hugetlb;
463 u64 pss;
464 u64 swap_pss;
465 bool check_shmem_swap;
466};
467
468static void smaps_account(struct mem_size_stats *mss, struct page *page,
469 bool compound, bool young, bool dirty)
470{
471 int i, nr = compound ? HPAGE_PMD_NR : 1;
472 unsigned long size = nr * PAGE_SIZE;
473
474 if (PageAnon(page))
475 mss->anonymous += size;
476
477 mss->resident += size;
478 /* Accumulate the size in pages that have been accessed. */
479 if (young || page_is_young(page) || PageReferenced(page))
480 mss->referenced += size;
481
482 /*
483 * page_count(page) == 1 guarantees the page is mapped exactly once.
484 * If any subpage of the compound page mapped with PTE it would elevate
485 * page_count().
486 */
487 if (page_count(page) == 1) {
488 if (dirty || PageDirty(page))
489 mss->private_dirty += size;
490 else
491 mss->private_clean += size;
492 mss->pss += (u64)size << PSS_SHIFT;
493 return;
494 }
495
496 for (i = 0; i < nr; i++, page++) {
497 int mapcount = page_mapcount(page);
498
499 if (mapcount >= 2) {
500 if (dirty || PageDirty(page))
501 mss->shared_dirty += PAGE_SIZE;
502 else
503 mss->shared_clean += PAGE_SIZE;
504 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
505 } else {
506 if (dirty || PageDirty(page))
507 mss->private_dirty += PAGE_SIZE;
508 else
509 mss->private_clean += PAGE_SIZE;
510 mss->pss += PAGE_SIZE << PSS_SHIFT;
511 }
512 }
513}
514
515#ifdef CONFIG_SHMEM
516static int smaps_pte_hole(unsigned long addr, unsigned long end,
517 struct mm_walk *walk)
518{
519 struct mem_size_stats *mss = walk->private;
520
521 mss->swap += shmem_partial_swap_usage(
522 walk->vma->vm_file->f_mapping, addr, end);
523
524 return 0;
525}
526#endif
527
528static void smaps_pte_entry(pte_t *pte, unsigned long addr,
529 struct mm_walk *walk)
530{
531 struct mem_size_stats *mss = walk->private;
532 struct vm_area_struct *vma = walk->vma;
533 struct page *page = NULL;
534
535 if (pte_present(*pte)) {
536 page = vm_normal_page(vma, addr, *pte);
537 } else if (is_swap_pte(*pte)) {
538 swp_entry_t swpent = pte_to_swp_entry(*pte);
539
540 if (!non_swap_entry(swpent)) {
541 int mapcount;
542
543 mss->swap += PAGE_SIZE;
544 mapcount = swp_swapcount(swpent);
545 if (mapcount >= 2) {
546 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
547
548 do_div(pss_delta, mapcount);
549 mss->swap_pss += pss_delta;
550 } else {
551 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
552 }
553 } else if (is_migration_entry(swpent))
554 page = migration_entry_to_page(swpent);
555 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
556 && pte_none(*pte))) {
557 page = find_get_entry(vma->vm_file->f_mapping,
558 linear_page_index(vma, addr));
559 if (!page)
560 return;
561
562 if (radix_tree_exceptional_entry(page))
563 mss->swap += PAGE_SIZE;
564 else
565 page_cache_release(page);
566
567 return;
568 }
569
570 if (!page)
571 return;
572
573 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
574}
575
576#ifdef CONFIG_TRANSPARENT_HUGEPAGE
577static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
578 struct mm_walk *walk)
579{
580 struct mem_size_stats *mss = walk->private;
581 struct vm_area_struct *vma = walk->vma;
582 struct page *page;
583
584 /* FOLL_DUMP will return -EFAULT on huge zero page */
585 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
586 if (IS_ERR_OR_NULL(page))
587 return;
588 mss->anonymous_thp += HPAGE_PMD_SIZE;
589 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
590}
591#else
592static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
593 struct mm_walk *walk)
594{
595}
596#endif
597
598static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
599 struct mm_walk *walk)
600{
601 struct vm_area_struct *vma = walk->vma;
602 pte_t *pte;
603 spinlock_t *ptl;
604
605 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
606 smaps_pmd_entry(pmd, addr, walk);
607 spin_unlock(ptl);
608 return 0;
609 }
610
611 if (pmd_trans_unstable(pmd))
612 return 0;
613 /*
614 * The mmap_sem held all the way back in m_start() is what
615 * keeps khugepaged out of here and from collapsing things
616 * in here.
617 */
618 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
619 for (; addr != end; pte++, addr += PAGE_SIZE)
620 smaps_pte_entry(pte, addr, walk);
621 pte_unmap_unlock(pte - 1, ptl);
622 cond_resched();
623 return 0;
624}
625
626static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
627{
628 /*
629 * Don't forget to update Documentation/ on changes.
630 */
631 static const char mnemonics[BITS_PER_LONG][2] = {
632 /*
633 * In case if we meet a flag we don't know about.
634 */
635 [0 ... (BITS_PER_LONG-1)] = "??",
636
637 [ilog2(VM_READ)] = "rd",
638 [ilog2(VM_WRITE)] = "wr",
639 [ilog2(VM_EXEC)] = "ex",
640 [ilog2(VM_SHARED)] = "sh",
641 [ilog2(VM_MAYREAD)] = "mr",
642 [ilog2(VM_MAYWRITE)] = "mw",
643 [ilog2(VM_MAYEXEC)] = "me",
644 [ilog2(VM_MAYSHARE)] = "ms",
645 [ilog2(VM_GROWSDOWN)] = "gd",
646 [ilog2(VM_PFNMAP)] = "pf",
647 [ilog2(VM_DENYWRITE)] = "dw",
648#ifdef CONFIG_X86_INTEL_MPX
649 [ilog2(VM_MPX)] = "mp",
650#endif
651 [ilog2(VM_LOCKED)] = "lo",
652 [ilog2(VM_IO)] = "io",
653 [ilog2(VM_SEQ_READ)] = "sr",
654 [ilog2(VM_RAND_READ)] = "rr",
655 [ilog2(VM_DONTCOPY)] = "dc",
656 [ilog2(VM_DONTEXPAND)] = "de",
657 [ilog2(VM_ACCOUNT)] = "ac",
658 [ilog2(VM_NORESERVE)] = "nr",
659 [ilog2(VM_HUGETLB)] = "ht",
660 [ilog2(VM_ARCH_1)] = "ar",
661 [ilog2(VM_DONTDUMP)] = "dd",
662#ifdef CONFIG_MEM_SOFT_DIRTY
663 [ilog2(VM_SOFTDIRTY)] = "sd",
664#endif
665 [ilog2(VM_MIXEDMAP)] = "mm",
666 [ilog2(VM_HUGEPAGE)] = "hg",
667 [ilog2(VM_NOHUGEPAGE)] = "nh",
668 [ilog2(VM_MERGEABLE)] = "mg",
669 [ilog2(VM_UFFD_MISSING)]= "um",
670 [ilog2(VM_UFFD_WP)] = "uw",
671 };
672 size_t i;
673
674 seq_puts(m, "VmFlags: ");
675 for (i = 0; i < BITS_PER_LONG; i++) {
676 if (vma->vm_flags & (1UL << i)) {
677 seq_printf(m, "%c%c ",
678 mnemonics[i][0], mnemonics[i][1]);
679 }
680 }
681 seq_putc(m, '\n');
682}
683
684#ifdef CONFIG_HUGETLB_PAGE
685static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
686 unsigned long addr, unsigned long end,
687 struct mm_walk *walk)
688{
689 struct mem_size_stats *mss = walk->private;
690 struct vm_area_struct *vma = walk->vma;
691 struct page *page = NULL;
692
693 if (pte_present(*pte)) {
694 page = vm_normal_page(vma, addr, *pte);
695 } else if (is_swap_pte(*pte)) {
696 swp_entry_t swpent = pte_to_swp_entry(*pte);
697
698 if (is_migration_entry(swpent))
699 page = migration_entry_to_page(swpent);
700 }
701 if (page) {
702 int mapcount = page_mapcount(page);
703
704 if (mapcount >= 2)
705 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
706 else
707 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
708 }
709 return 0;
710}
711#endif /* HUGETLB_PAGE */
712
713static int show_smap(struct seq_file *m, void *v, int is_pid)
714{
715 struct vm_area_struct *vma = v;
716 struct mem_size_stats mss;
717 struct mm_walk smaps_walk = {
718 .pmd_entry = smaps_pte_range,
719#ifdef CONFIG_HUGETLB_PAGE
720 .hugetlb_entry = smaps_hugetlb_range,
721#endif
722 .mm = vma->vm_mm,
723 .private = &mss,
724 };
725
726 memset(&mss, 0, sizeof mss);
727
728#ifdef CONFIG_SHMEM
729 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
730 /*
731 * For shared or readonly shmem mappings we know that all
732 * swapped out pages belong to the shmem object, and we can
733 * obtain the swap value much more efficiently. For private
734 * writable mappings, we might have COW pages that are
735 * not affected by the parent swapped out pages of the shmem
736 * object, so we have to distinguish them during the page walk.
737 * Unless we know that the shmem object (or the part mapped by
738 * our VMA) has no swapped out pages at all.
739 */
740 unsigned long shmem_swapped = shmem_swap_usage(vma);
741
742 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
743 !(vma->vm_flags & VM_WRITE)) {
744 mss.swap = shmem_swapped;
745 } else {
746 mss.check_shmem_swap = true;
747 smaps_walk.pte_hole = smaps_pte_hole;
748 }
749 }
750#endif
751
752 /* mmap_sem is held in m_start */
753 walk_page_vma(vma, &smaps_walk);
754
755 show_map_vma(m, vma, is_pid);
756
757 seq_printf(m,
758 "Size: %8lu kB\n"
759 "Rss: %8lu kB\n"
760 "Pss: %8lu kB\n"
761 "Shared_Clean: %8lu kB\n"
762 "Shared_Dirty: %8lu kB\n"
763 "Private_Clean: %8lu kB\n"
764 "Private_Dirty: %8lu kB\n"
765 "Referenced: %8lu kB\n"
766 "Anonymous: %8lu kB\n"
767 "AnonHugePages: %8lu kB\n"
768 "Shared_Hugetlb: %8lu kB\n"
769 "Private_Hugetlb: %7lu kB\n"
770 "Swap: %8lu kB\n"
771 "SwapPss: %8lu kB\n"
772 "KernelPageSize: %8lu kB\n"
773 "MMUPageSize: %8lu kB\n"
774 "Locked: %8lu kB\n",
775 (vma->vm_end - vma->vm_start) >> 10,
776 mss.resident >> 10,
777 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
778 mss.shared_clean >> 10,
779 mss.shared_dirty >> 10,
780 mss.private_clean >> 10,
781 mss.private_dirty >> 10,
782 mss.referenced >> 10,
783 mss.anonymous >> 10,
784 mss.anonymous_thp >> 10,
785 mss.shared_hugetlb >> 10,
786 mss.private_hugetlb >> 10,
787 mss.swap >> 10,
788 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
789 vma_kernel_pagesize(vma) >> 10,
790 vma_mmu_pagesize(vma) >> 10,
791 (vma->vm_flags & VM_LOCKED) ?
792 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
793
794 show_smap_vma_flags(m, vma);
795 m_cache_vma(m, vma);
796 return 0;
797}
798
799static int show_pid_smap(struct seq_file *m, void *v)
800{
801 return show_smap(m, v, 1);
802}
803
804static int show_tid_smap(struct seq_file *m, void *v)
805{
806 return show_smap(m, v, 0);
807}
808
809static const struct seq_operations proc_pid_smaps_op = {
810 .start = m_start,
811 .next = m_next,
812 .stop = m_stop,
813 .show = show_pid_smap
814};
815
816static const struct seq_operations proc_tid_smaps_op = {
817 .start = m_start,
818 .next = m_next,
819 .stop = m_stop,
820 .show = show_tid_smap
821};
822
823static int pid_smaps_open(struct inode *inode, struct file *file)
824{
825 return do_maps_open(inode, file, &proc_pid_smaps_op);
826}
827
828static int tid_smaps_open(struct inode *inode, struct file *file)
829{
830 return do_maps_open(inode, file, &proc_tid_smaps_op);
831}
832
833const struct file_operations proc_pid_smaps_operations = {
834 .open = pid_smaps_open,
835 .read = seq_read,
836 .llseek = seq_lseek,
837 .release = proc_map_release,
838};
839
840const struct file_operations proc_tid_smaps_operations = {
841 .open = tid_smaps_open,
842 .read = seq_read,
843 .llseek = seq_lseek,
844 .release = proc_map_release,
845};
846
847enum clear_refs_types {
848 CLEAR_REFS_ALL = 1,
849 CLEAR_REFS_ANON,
850 CLEAR_REFS_MAPPED,
851 CLEAR_REFS_SOFT_DIRTY,
852 CLEAR_REFS_MM_HIWATER_RSS,
853 CLEAR_REFS_LAST,
854};
855
856struct clear_refs_private {
857 enum clear_refs_types type;
858};
859
860#ifdef CONFIG_MEM_SOFT_DIRTY
861static inline void clear_soft_dirty(struct vm_area_struct *vma,
862 unsigned long addr, pte_t *pte)
863{
864 /*
865 * The soft-dirty tracker uses #PF-s to catch writes
866 * to pages, so write-protect the pte as well. See the
867 * Documentation/vm/soft-dirty.txt for full description
868 * of how soft-dirty works.
869 */
870 pte_t ptent = *pte;
871
872 if (pte_present(ptent)) {
873 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
874 ptent = pte_wrprotect(ptent);
875 ptent = pte_clear_soft_dirty(ptent);
876 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
877 } else if (is_swap_pte(ptent)) {
878 ptent = pte_swp_clear_soft_dirty(ptent);
879 set_pte_at(vma->vm_mm, addr, pte, ptent);
880 }
881}
882#else
883static inline void clear_soft_dirty(struct vm_area_struct *vma,
884 unsigned long addr, pte_t *pte)
885{
886}
887#endif
888
889#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
890static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
891 unsigned long addr, pmd_t *pmdp)
892{
893 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
894
895 pmd = pmd_wrprotect(pmd);
896 pmd = pmd_clear_soft_dirty(pmd);
897
898 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
899}
900#else
901static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
902 unsigned long addr, pmd_t *pmdp)
903{
904}
905#endif
906
907static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
908 unsigned long end, struct mm_walk *walk)
909{
910 struct clear_refs_private *cp = walk->private;
911 struct vm_area_struct *vma = walk->vma;
912 pte_t *pte, ptent;
913 spinlock_t *ptl;
914 struct page *page;
915
916 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
917 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
918 clear_soft_dirty_pmd(vma, addr, pmd);
919 goto out;
920 }
921
922 page = pmd_page(*pmd);
923
924 /* Clear accessed and referenced bits. */
925 pmdp_test_and_clear_young(vma, addr, pmd);
926 test_and_clear_page_young(page);
927 ClearPageReferenced(page);
928out:
929 spin_unlock(ptl);
930 return 0;
931 }
932
933 if (pmd_trans_unstable(pmd))
934 return 0;
935
936 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
937 for (; addr != end; pte++, addr += PAGE_SIZE) {
938 ptent = *pte;
939
940 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
941 clear_soft_dirty(vma, addr, pte);
942 continue;
943 }
944
945 if (!pte_present(ptent))
946 continue;
947
948 page = vm_normal_page(vma, addr, ptent);
949 if (!page)
950 continue;
951
952 /* Clear accessed and referenced bits. */
953 ptep_test_and_clear_young(vma, addr, pte);
954 test_and_clear_page_young(page);
955 ClearPageReferenced(page);
956 }
957 pte_unmap_unlock(pte - 1, ptl);
958 cond_resched();
959 return 0;
960}
961
962static int clear_refs_test_walk(unsigned long start, unsigned long end,
963 struct mm_walk *walk)
964{
965 struct clear_refs_private *cp = walk->private;
966 struct vm_area_struct *vma = walk->vma;
967
968 if (vma->vm_flags & VM_PFNMAP)
969 return 1;
970
971 /*
972 * Writing 1 to /proc/pid/clear_refs affects all pages.
973 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
974 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
975 * Writing 4 to /proc/pid/clear_refs affects all pages.
976 */
977 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
978 return 1;
979 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
980 return 1;
981 return 0;
982}
983
984static ssize_t clear_refs_write(struct file *file, const char __user *buf,
985 size_t count, loff_t *ppos)
986{
987 struct task_struct *task;
988 char buffer[PROC_NUMBUF];
989 struct mm_struct *mm;
990 struct vm_area_struct *vma;
991 enum clear_refs_types type;
992 int itype;
993 int rv;
994
995 memset(buffer, 0, sizeof(buffer));
996 if (count > sizeof(buffer) - 1)
997 count = sizeof(buffer) - 1;
998 if (copy_from_user(buffer, buf, count))
999 return -EFAULT;
1000 rv = kstrtoint(strstrip(buffer), 10, &itype);
1001 if (rv < 0)
1002 return rv;
1003 type = (enum clear_refs_types)itype;
1004 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1005 return -EINVAL;
1006
1007 task = get_proc_task(file_inode(file));
1008 if (!task)
1009 return -ESRCH;
1010 mm = get_task_mm(task);
1011 if (mm) {
1012 struct clear_refs_private cp = {
1013 .type = type,
1014 };
1015 struct mm_walk clear_refs_walk = {
1016 .pmd_entry = clear_refs_pte_range,
1017 .test_walk = clear_refs_test_walk,
1018 .mm = mm,
1019 .private = &cp,
1020 };
1021
1022 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1023 /*
1024 * Writing 5 to /proc/pid/clear_refs resets the peak
1025 * resident set size to this mm's current rss value.
1026 */
1027 down_write(&mm->mmap_sem);
1028 reset_mm_hiwater_rss(mm);
1029 up_write(&mm->mmap_sem);
1030 goto out_mm;
1031 }
1032
1033 down_read(&mm->mmap_sem);
1034 if (type == CLEAR_REFS_SOFT_DIRTY) {
1035 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1036 if (!(vma->vm_flags & VM_SOFTDIRTY))
1037 continue;
1038 up_read(&mm->mmap_sem);
1039 down_write(&mm->mmap_sem);
1040 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1041 vma->vm_flags &= ~VM_SOFTDIRTY;
1042 vma_set_page_prot(vma);
1043 }
1044 downgrade_write(&mm->mmap_sem);
1045 break;
1046 }
1047 mmu_notifier_invalidate_range_start(mm, 0, -1);
1048 }
1049 walk_page_range(0, ~0UL, &clear_refs_walk);
1050 if (type == CLEAR_REFS_SOFT_DIRTY)
1051 mmu_notifier_invalidate_range_end(mm, 0, -1);
1052 flush_tlb_mm(mm);
1053 up_read(&mm->mmap_sem);
1054out_mm:
1055 mmput(mm);
1056 }
1057 put_task_struct(task);
1058
1059 return count;
1060}
1061
1062const struct file_operations proc_clear_refs_operations = {
1063 .write = clear_refs_write,
1064 .llseek = noop_llseek,
1065};
1066
1067typedef struct {
1068 u64 pme;
1069} pagemap_entry_t;
1070
1071struct pagemapread {
1072 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1073 pagemap_entry_t *buffer;
1074 bool show_pfn;
1075};
1076
1077#define PAGEMAP_WALK_SIZE (PMD_SIZE)
1078#define PAGEMAP_WALK_MASK (PMD_MASK)
1079
1080#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1081#define PM_PFRAME_BITS 55
1082#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1083#define PM_SOFT_DIRTY BIT_ULL(55)
1084#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1085#define PM_FILE BIT_ULL(61)
1086#define PM_SWAP BIT_ULL(62)
1087#define PM_PRESENT BIT_ULL(63)
1088
1089#define PM_END_OF_BUFFER 1
1090
1091static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1092{
1093 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1094}
1095
1096static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1097 struct pagemapread *pm)
1098{
1099 pm->buffer[pm->pos++] = *pme;
1100 if (pm->pos >= pm->len)
1101 return PM_END_OF_BUFFER;
1102 return 0;
1103}
1104
1105static int pagemap_pte_hole(unsigned long start, unsigned long end,
1106 struct mm_walk *walk)
1107{
1108 struct pagemapread *pm = walk->private;
1109 unsigned long addr = start;
1110 int err = 0;
1111
1112 while (addr < end) {
1113 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1114 pagemap_entry_t pme = make_pme(0, 0);
1115 /* End of address space hole, which we mark as non-present. */
1116 unsigned long hole_end;
1117
1118 if (vma)
1119 hole_end = min(end, vma->vm_start);
1120 else
1121 hole_end = end;
1122
1123 for (; addr < hole_end; addr += PAGE_SIZE) {
1124 err = add_to_pagemap(addr, &pme, pm);
1125 if (err)
1126 goto out;
1127 }
1128
1129 if (!vma)
1130 break;
1131
1132 /* Addresses in the VMA. */
1133 if (vma->vm_flags & VM_SOFTDIRTY)
1134 pme = make_pme(0, PM_SOFT_DIRTY);
1135 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1136 err = add_to_pagemap(addr, &pme, pm);
1137 if (err)
1138 goto out;
1139 }
1140 }
1141out:
1142 return err;
1143}
1144
1145static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1146 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1147{
1148 u64 frame = 0, flags = 0;
1149 struct page *page = NULL;
1150
1151 if (pte_present(pte)) {
1152 if (pm->show_pfn)
1153 frame = pte_pfn(pte);
1154 flags |= PM_PRESENT;
1155 page = vm_normal_page(vma, addr, pte);
1156 if (pte_soft_dirty(pte))
1157 flags |= PM_SOFT_DIRTY;
1158 } else if (is_swap_pte(pte)) {
1159 swp_entry_t entry;
1160 if (pte_swp_soft_dirty(pte))
1161 flags |= PM_SOFT_DIRTY;
1162 entry = pte_to_swp_entry(pte);
1163 frame = swp_type(entry) |
1164 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1165 flags |= PM_SWAP;
1166 if (is_migration_entry(entry))
1167 page = migration_entry_to_page(entry);
1168 }
1169
1170 if (page && !PageAnon(page))
1171 flags |= PM_FILE;
1172 if (page && page_mapcount(page) == 1)
1173 flags |= PM_MMAP_EXCLUSIVE;
1174 if (vma->vm_flags & VM_SOFTDIRTY)
1175 flags |= PM_SOFT_DIRTY;
1176
1177 return make_pme(frame, flags);
1178}
1179
1180static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1181 struct mm_walk *walk)
1182{
1183 struct vm_area_struct *vma = walk->vma;
1184 struct pagemapread *pm = walk->private;
1185 spinlock_t *ptl;
1186 pte_t *pte, *orig_pte;
1187 int err = 0;
1188
1189#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1190 if (pmd_trans_huge_lock(pmdp, vma, &ptl)) {
1191 u64 flags = 0, frame = 0;
1192 pmd_t pmd = *pmdp;
1193
1194 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1195 flags |= PM_SOFT_DIRTY;
1196
1197 /*
1198 * Currently pmd for thp is always present because thp
1199 * can not be swapped-out, migrated, or HWPOISONed
1200 * (split in such cases instead.)
1201 * This if-check is just to prepare for future implementation.
1202 */
1203 if (pmd_present(pmd)) {
1204 struct page *page = pmd_page(pmd);
1205
1206 if (page_mapcount(page) == 1)
1207 flags |= PM_MMAP_EXCLUSIVE;
1208
1209 flags |= PM_PRESENT;
1210 if (pm->show_pfn)
1211 frame = pmd_pfn(pmd) +
1212 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1213 }
1214
1215 for (; addr != end; addr += PAGE_SIZE) {
1216 pagemap_entry_t pme = make_pme(frame, flags);
1217
1218 err = add_to_pagemap(addr, &pme, pm);
1219 if (err)
1220 break;
1221 if (pm->show_pfn && (flags & PM_PRESENT))
1222 frame++;
1223 }
1224 spin_unlock(ptl);
1225 return err;
1226 }
1227
1228 if (pmd_trans_unstable(pmdp))
1229 return 0;
1230#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1231
1232 /*
1233 * We can assume that @vma always points to a valid one and @end never
1234 * goes beyond vma->vm_end.
1235 */
1236 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1237 for (; addr < end; pte++, addr += PAGE_SIZE) {
1238 pagemap_entry_t pme;
1239
1240 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1241 err = add_to_pagemap(addr, &pme, pm);
1242 if (err)
1243 break;
1244 }
1245 pte_unmap_unlock(orig_pte, ptl);
1246
1247 cond_resched();
1248
1249 return err;
1250}
1251
1252#ifdef CONFIG_HUGETLB_PAGE
1253/* This function walks within one hugetlb entry in the single call */
1254static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1255 unsigned long addr, unsigned long end,
1256 struct mm_walk *walk)
1257{
1258 struct pagemapread *pm = walk->private;
1259 struct vm_area_struct *vma = walk->vma;
1260 u64 flags = 0, frame = 0;
1261 int err = 0;
1262 pte_t pte;
1263
1264 if (vma->vm_flags & VM_SOFTDIRTY)
1265 flags |= PM_SOFT_DIRTY;
1266
1267 pte = huge_ptep_get(ptep);
1268 if (pte_present(pte)) {
1269 struct page *page = pte_page(pte);
1270
1271 if (!PageAnon(page))
1272 flags |= PM_FILE;
1273
1274 if (page_mapcount(page) == 1)
1275 flags |= PM_MMAP_EXCLUSIVE;
1276
1277 flags |= PM_PRESENT;
1278 if (pm->show_pfn)
1279 frame = pte_pfn(pte) +
1280 ((addr & ~hmask) >> PAGE_SHIFT);
1281 }
1282
1283 for (; addr != end; addr += PAGE_SIZE) {
1284 pagemap_entry_t pme = make_pme(frame, flags);
1285
1286 err = add_to_pagemap(addr, &pme, pm);
1287 if (err)
1288 return err;
1289 if (pm->show_pfn && (flags & PM_PRESENT))
1290 frame++;
1291 }
1292
1293 cond_resched();
1294
1295 return err;
1296}
1297#endif /* HUGETLB_PAGE */
1298
1299/*
1300 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1301 *
1302 * For each page in the address space, this file contains one 64-bit entry
1303 * consisting of the following:
1304 *
1305 * Bits 0-54 page frame number (PFN) if present
1306 * Bits 0-4 swap type if swapped
1307 * Bits 5-54 swap offset if swapped
1308 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1309 * Bit 56 page exclusively mapped
1310 * Bits 57-60 zero
1311 * Bit 61 page is file-page or shared-anon
1312 * Bit 62 page swapped
1313 * Bit 63 page present
1314 *
1315 * If the page is not present but in swap, then the PFN contains an
1316 * encoding of the swap file number and the page's offset into the
1317 * swap. Unmapped pages return a null PFN. This allows determining
1318 * precisely which pages are mapped (or in swap) and comparing mapped
1319 * pages between processes.
1320 *
1321 * Efficient users of this interface will use /proc/pid/maps to
1322 * determine which areas of memory are actually mapped and llseek to
1323 * skip over unmapped regions.
1324 */
1325static ssize_t pagemap_read(struct file *file, char __user *buf,
1326 size_t count, loff_t *ppos)
1327{
1328 struct mm_struct *mm = file->private_data;
1329 struct pagemapread pm;
1330 struct mm_walk pagemap_walk = {};
1331 unsigned long src;
1332 unsigned long svpfn;
1333 unsigned long start_vaddr;
1334 unsigned long end_vaddr;
1335 int ret = 0, copied = 0;
1336
1337 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1338 goto out;
1339
1340 ret = -EINVAL;
1341 /* file position must be aligned */
1342 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1343 goto out_mm;
1344
1345 ret = 0;
1346 if (!count)
1347 goto out_mm;
1348
1349 /* do not disclose physical addresses: attack vector */
1350 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1351
1352 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1353 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1354 ret = -ENOMEM;
1355 if (!pm.buffer)
1356 goto out_mm;
1357
1358 pagemap_walk.pmd_entry = pagemap_pmd_range;
1359 pagemap_walk.pte_hole = pagemap_pte_hole;
1360#ifdef CONFIG_HUGETLB_PAGE
1361 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1362#endif
1363 pagemap_walk.mm = mm;
1364 pagemap_walk.private = &pm;
1365
1366 src = *ppos;
1367 svpfn = src / PM_ENTRY_BYTES;
1368 start_vaddr = svpfn << PAGE_SHIFT;
1369 end_vaddr = mm->task_size;
1370
1371 /* watch out for wraparound */
1372 if (svpfn > mm->task_size >> PAGE_SHIFT)
1373 start_vaddr = end_vaddr;
1374
1375 /*
1376 * The odds are that this will stop walking way
1377 * before end_vaddr, because the length of the
1378 * user buffer is tracked in "pm", and the walk
1379 * will stop when we hit the end of the buffer.
1380 */
1381 ret = 0;
1382 while (count && (start_vaddr < end_vaddr)) {
1383 int len;
1384 unsigned long end;
1385
1386 pm.pos = 0;
1387 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1388 /* overflow ? */
1389 if (end < start_vaddr || end > end_vaddr)
1390 end = end_vaddr;
1391 down_read(&mm->mmap_sem);
1392 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1393 up_read(&mm->mmap_sem);
1394 start_vaddr = end;
1395
1396 len = min(count, PM_ENTRY_BYTES * pm.pos);
1397 if (copy_to_user(buf, pm.buffer, len)) {
1398 ret = -EFAULT;
1399 goto out_free;
1400 }
1401 copied += len;
1402 buf += len;
1403 count -= len;
1404 }
1405 *ppos += copied;
1406 if (!ret || ret == PM_END_OF_BUFFER)
1407 ret = copied;
1408
1409out_free:
1410 kfree(pm.buffer);
1411out_mm:
1412 mmput(mm);
1413out:
1414 return ret;
1415}
1416
1417static int pagemap_open(struct inode *inode, struct file *file)
1418{
1419 struct mm_struct *mm;
1420
1421 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1422 if (IS_ERR(mm))
1423 return PTR_ERR(mm);
1424 file->private_data = mm;
1425 return 0;
1426}
1427
1428static int pagemap_release(struct inode *inode, struct file *file)
1429{
1430 struct mm_struct *mm = file->private_data;
1431
1432 if (mm)
1433 mmdrop(mm);
1434 return 0;
1435}
1436
1437const struct file_operations proc_pagemap_operations = {
1438 .llseek = mem_lseek, /* borrow this */
1439 .read = pagemap_read,
1440 .open = pagemap_open,
1441 .release = pagemap_release,
1442};
1443#endif /* CONFIG_PROC_PAGE_MONITOR */
1444
1445#ifdef CONFIG_NUMA
1446
1447struct numa_maps {
1448 unsigned long pages;
1449 unsigned long anon;
1450 unsigned long active;
1451 unsigned long writeback;
1452 unsigned long mapcount_max;
1453 unsigned long dirty;
1454 unsigned long swapcache;
1455 unsigned long node[MAX_NUMNODES];
1456};
1457
1458struct numa_maps_private {
1459 struct proc_maps_private proc_maps;
1460 struct numa_maps md;
1461};
1462
1463static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1464 unsigned long nr_pages)
1465{
1466 int count = page_mapcount(page);
1467
1468 md->pages += nr_pages;
1469 if (pte_dirty || PageDirty(page))
1470 md->dirty += nr_pages;
1471
1472 if (PageSwapCache(page))
1473 md->swapcache += nr_pages;
1474
1475 if (PageActive(page) || PageUnevictable(page))
1476 md->active += nr_pages;
1477
1478 if (PageWriteback(page))
1479 md->writeback += nr_pages;
1480
1481 if (PageAnon(page))
1482 md->anon += nr_pages;
1483
1484 if (count > md->mapcount_max)
1485 md->mapcount_max = count;
1486
1487 md->node[page_to_nid(page)] += nr_pages;
1488}
1489
1490static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1491 unsigned long addr)
1492{
1493 struct page *page;
1494 int nid;
1495
1496 if (!pte_present(pte))
1497 return NULL;
1498
1499 page = vm_normal_page(vma, addr, pte);
1500 if (!page)
1501 return NULL;
1502
1503 if (PageReserved(page))
1504 return NULL;
1505
1506 nid = page_to_nid(page);
1507 if (!node_isset(nid, node_states[N_MEMORY]))
1508 return NULL;
1509
1510 return page;
1511}
1512
1513static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1514 unsigned long end, struct mm_walk *walk)
1515{
1516 struct numa_maps *md = walk->private;
1517 struct vm_area_struct *vma = walk->vma;
1518 spinlock_t *ptl;
1519 pte_t *orig_pte;
1520 pte_t *pte;
1521
1522 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
1523 pte_t huge_pte = *(pte_t *)pmd;
1524 struct page *page;
1525
1526 page = can_gather_numa_stats(huge_pte, vma, addr);
1527 if (page)
1528 gather_stats(page, md, pte_dirty(huge_pte),
1529 HPAGE_PMD_SIZE/PAGE_SIZE);
1530 spin_unlock(ptl);
1531 return 0;
1532 }
1533
1534 if (pmd_trans_unstable(pmd))
1535 return 0;
1536 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1537 do {
1538 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1539 if (!page)
1540 continue;
1541 gather_stats(page, md, pte_dirty(*pte), 1);
1542
1543 } while (pte++, addr += PAGE_SIZE, addr != end);
1544 pte_unmap_unlock(orig_pte, ptl);
1545 return 0;
1546}
1547#ifdef CONFIG_HUGETLB_PAGE
1548static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1549 unsigned long addr, unsigned long end, struct mm_walk *walk)
1550{
1551 struct numa_maps *md;
1552 struct page *page;
1553
1554 if (!pte_present(*pte))
1555 return 0;
1556
1557 page = pte_page(*pte);
1558 if (!page)
1559 return 0;
1560
1561 md = walk->private;
1562 gather_stats(page, md, pte_dirty(*pte), 1);
1563 return 0;
1564}
1565
1566#else
1567static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1568 unsigned long addr, unsigned long end, struct mm_walk *walk)
1569{
1570 return 0;
1571}
1572#endif
1573
1574/*
1575 * Display pages allocated per node and memory policy via /proc.
1576 */
1577static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1578{
1579 struct numa_maps_private *numa_priv = m->private;
1580 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1581 struct vm_area_struct *vma = v;
1582 struct numa_maps *md = &numa_priv->md;
1583 struct file *file = vma->vm_file;
1584 struct mm_struct *mm = vma->vm_mm;
1585 struct mm_walk walk = {
1586 .hugetlb_entry = gather_hugetlb_stats,
1587 .pmd_entry = gather_pte_stats,
1588 .private = md,
1589 .mm = mm,
1590 };
1591 struct mempolicy *pol;
1592 char buffer[64];
1593 int nid;
1594
1595 if (!mm)
1596 return 0;
1597
1598 /* Ensure we start with an empty set of numa_maps statistics. */
1599 memset(md, 0, sizeof(*md));
1600
1601 pol = __get_vma_policy(vma, vma->vm_start);
1602 if (pol) {
1603 mpol_to_str(buffer, sizeof(buffer), pol);
1604 mpol_cond_put(pol);
1605 } else {
1606 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1607 }
1608
1609 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1610
1611 if (file) {
1612 seq_puts(m, " file=");
1613 seq_file_path(m, file, "\n\t= ");
1614 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1615 seq_puts(m, " heap");
1616 } else {
1617 pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1618 if (tid != 0) {
1619 /*
1620 * Thread stack in /proc/PID/task/TID/maps or
1621 * the main process stack.
1622 */
1623 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1624 vma->vm_end >= mm->start_stack))
1625 seq_puts(m, " stack");
1626 else
1627 seq_printf(m, " stack:%d", tid);
1628 }
1629 }
1630
1631 if (is_vm_hugetlb_page(vma))
1632 seq_puts(m, " huge");
1633
1634 /* mmap_sem is held by m_start */
1635 walk_page_vma(vma, &walk);
1636
1637 if (!md->pages)
1638 goto out;
1639
1640 if (md->anon)
1641 seq_printf(m, " anon=%lu", md->anon);
1642
1643 if (md->dirty)
1644 seq_printf(m, " dirty=%lu", md->dirty);
1645
1646 if (md->pages != md->anon && md->pages != md->dirty)
1647 seq_printf(m, " mapped=%lu", md->pages);
1648
1649 if (md->mapcount_max > 1)
1650 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1651
1652 if (md->swapcache)
1653 seq_printf(m, " swapcache=%lu", md->swapcache);
1654
1655 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1656 seq_printf(m, " active=%lu", md->active);
1657
1658 if (md->writeback)
1659 seq_printf(m, " writeback=%lu", md->writeback);
1660
1661 for_each_node_state(nid, N_MEMORY)
1662 if (md->node[nid])
1663 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1664
1665 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1666out:
1667 seq_putc(m, '\n');
1668 m_cache_vma(m, vma);
1669 return 0;
1670}
1671
1672static int show_pid_numa_map(struct seq_file *m, void *v)
1673{
1674 return show_numa_map(m, v, 1);
1675}
1676
1677static int show_tid_numa_map(struct seq_file *m, void *v)
1678{
1679 return show_numa_map(m, v, 0);
1680}
1681
1682static const struct seq_operations proc_pid_numa_maps_op = {
1683 .start = m_start,
1684 .next = m_next,
1685 .stop = m_stop,
1686 .show = show_pid_numa_map,
1687};
1688
1689static const struct seq_operations proc_tid_numa_maps_op = {
1690 .start = m_start,
1691 .next = m_next,
1692 .stop = m_stop,
1693 .show = show_tid_numa_map,
1694};
1695
1696static int numa_maps_open(struct inode *inode, struct file *file,
1697 const struct seq_operations *ops)
1698{
1699 return proc_maps_open(inode, file, ops,
1700 sizeof(struct numa_maps_private));
1701}
1702
1703static int pid_numa_maps_open(struct inode *inode, struct file *file)
1704{
1705 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1706}
1707
1708static int tid_numa_maps_open(struct inode *inode, struct file *file)
1709{
1710 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1711}
1712
1713const struct file_operations proc_pid_numa_maps_operations = {
1714 .open = pid_numa_maps_open,
1715 .read = seq_read,
1716 .llseek = seq_lseek,
1717 .release = proc_map_release,
1718};
1719
1720const struct file_operations proc_tid_numa_maps_operations = {
1721 .open = tid_numa_maps_open,
1722 .read = seq_read,
1723 .llseek = seq_lseek,
1724 .release = proc_map_release,
1725};
1726#endif /* CONFIG_NUMA */
This page took 0.031694 seconds and 5 git commands to generate.