Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[deliverable/linux.git] / arch / i386 / kernel / traps.c
1 /*
2 * linux/arch/i386/traps.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10 /*
11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'.
13 */
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/errno.h>
18 #include <linux/timer.h>
19 #include <linux/mm.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/highmem.h>
25 #include <linux/kallsyms.h>
26 #include <linux/ptrace.h>
27 #include <linux/utsname.h>
28 #include <linux/kprobes.h>
29 #include <linux/kexec.h>
30 #include <linux/unwind.h>
31
32 #ifdef CONFIG_EISA
33 #include <linux/ioport.h>
34 #include <linux/eisa.h>
35 #endif
36
37 #ifdef CONFIG_MCA
38 #include <linux/mca.h>
39 #endif
40
41 #include <asm/processor.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/atomic.h>
46 #include <asm/debugreg.h>
47 #include <asm/desc.h>
48 #include <asm/i387.h>
49 #include <asm/nmi.h>
50 #include <asm/unwind.h>
51 #include <asm/smp.h>
52 #include <asm/arch_hooks.h>
53 #include <asm/kdebug.h>
54
55 #include <linux/module.h>
56
57 #include "mach_traps.h"
58
59 asmlinkage int system_call(void);
60
61 struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
62 { 0, 0 }, { 0, 0 } };
63
64 /* Do we ignore FPU interrupts ? */
65 char ignore_fpu_irq = 0;
66
67 /*
68 * The IDT has to be page-aligned to simplify the Pentium
69 * F0 0F bug workaround.. We have a special link segment
70 * for this.
71 */
72 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
73
74 asmlinkage void divide_error(void);
75 asmlinkage void debug(void);
76 asmlinkage void nmi(void);
77 asmlinkage void int3(void);
78 asmlinkage void overflow(void);
79 asmlinkage void bounds(void);
80 asmlinkage void invalid_op(void);
81 asmlinkage void device_not_available(void);
82 asmlinkage void coprocessor_segment_overrun(void);
83 asmlinkage void invalid_TSS(void);
84 asmlinkage void segment_not_present(void);
85 asmlinkage void stack_segment(void);
86 asmlinkage void general_protection(void);
87 asmlinkage void page_fault(void);
88 asmlinkage void coprocessor_error(void);
89 asmlinkage void simd_coprocessor_error(void);
90 asmlinkage void alignment_check(void);
91 asmlinkage void spurious_interrupt_bug(void);
92 asmlinkage void machine_check(void);
93
94 static int kstack_depth_to_print = 24;
95 static int call_trace = 1;
96 ATOMIC_NOTIFIER_HEAD(i386die_chain);
97
98 int register_die_notifier(struct notifier_block *nb)
99 {
100 vmalloc_sync_all();
101 return atomic_notifier_chain_register(&i386die_chain, nb);
102 }
103 EXPORT_SYMBOL(register_die_notifier); /* used modular by kdb */
104
105 int unregister_die_notifier(struct notifier_block *nb)
106 {
107 return atomic_notifier_chain_unregister(&i386die_chain, nb);
108 }
109 EXPORT_SYMBOL(unregister_die_notifier); /* used modular by kdb */
110
111 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
112 {
113 return p > (void *)tinfo &&
114 p < (void *)tinfo + THREAD_SIZE - 3;
115 }
116
117 /*
118 * Print one address/symbol entries per line.
119 */
120 static inline void print_addr_and_symbol(unsigned long addr, char *log_lvl)
121 {
122 printk(" [<%08lx>] ", addr);
123
124 print_symbol("%s\n", addr);
125 }
126
127 static inline unsigned long print_context_stack(struct thread_info *tinfo,
128 unsigned long *stack, unsigned long ebp,
129 char *log_lvl)
130 {
131 unsigned long addr;
132
133 #ifdef CONFIG_FRAME_POINTER
134 while (valid_stack_ptr(tinfo, (void *)ebp)) {
135 addr = *(unsigned long *)(ebp + 4);
136 print_addr_and_symbol(addr, log_lvl);
137 /*
138 * break out of recursive entries (such as
139 * end_of_stack_stop_unwind_function):
140 */
141 if (ebp == *(unsigned long *)ebp)
142 break;
143 ebp = *(unsigned long *)ebp;
144 }
145 #else
146 while (valid_stack_ptr(tinfo, stack)) {
147 addr = *stack++;
148 if (__kernel_text_address(addr))
149 print_addr_and_symbol(addr, log_lvl);
150 }
151 #endif
152 return ebp;
153 }
154
155 static asmlinkage int
156 show_trace_unwind(struct unwind_frame_info *info, void *log_lvl)
157 {
158 int n = 0;
159
160 while (unwind(info) == 0 && UNW_PC(info)) {
161 n++;
162 print_addr_and_symbol(UNW_PC(info), log_lvl);
163 if (arch_unw_user_mode(info))
164 break;
165 }
166 return n;
167 }
168
169 static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
170 unsigned long *stack, char *log_lvl)
171 {
172 unsigned long ebp;
173
174 if (!task)
175 task = current;
176
177 if (call_trace >= 0) {
178 int unw_ret = 0;
179 struct unwind_frame_info info;
180
181 if (regs) {
182 if (unwind_init_frame_info(&info, task, regs) == 0)
183 unw_ret = show_trace_unwind(&info, log_lvl);
184 } else if (task == current)
185 unw_ret = unwind_init_running(&info, show_trace_unwind, log_lvl);
186 else {
187 if (unwind_init_blocked(&info, task) == 0)
188 unw_ret = show_trace_unwind(&info, log_lvl);
189 }
190 if (unw_ret > 0 && !arch_unw_user_mode(&info)) {
191 #ifdef CONFIG_STACK_UNWIND
192 print_symbol("DWARF2 unwinder stuck at %s\n",
193 UNW_PC(&info));
194 if (call_trace == 1) {
195 printk("Leftover inexact backtrace:\n");
196 if (UNW_SP(&info))
197 stack = (void *)UNW_SP(&info);
198 } else if (call_trace > 1)
199 return;
200 else
201 printk("Full inexact backtrace again:\n");
202 #else
203 printk("Inexact backtrace:\n");
204 #endif
205 }
206 }
207
208 if (task == current) {
209 /* Grab ebp right from our regs */
210 asm ("movl %%ebp, %0" : "=r" (ebp) : );
211 } else {
212 /* ebp is the last reg pushed by switch_to */
213 ebp = *(unsigned long *) task->thread.esp;
214 }
215
216 while (1) {
217 struct thread_info *context;
218 context = (struct thread_info *)
219 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
220 ebp = print_context_stack(context, stack, ebp, log_lvl);
221 stack = (unsigned long*)context->previous_esp;
222 if (!stack)
223 break;
224 printk("%s =======================\n", log_lvl);
225 }
226 }
227
228 void show_trace(struct task_struct *task, struct pt_regs *regs, unsigned long * stack)
229 {
230 show_trace_log_lvl(task, regs, stack, "");
231 }
232
233 static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
234 unsigned long *esp, char *log_lvl)
235 {
236 unsigned long *stack;
237 int i;
238
239 if (esp == NULL) {
240 if (task)
241 esp = (unsigned long*)task->thread.esp;
242 else
243 esp = (unsigned long *)&esp;
244 }
245
246 stack = esp;
247 for(i = 0; i < kstack_depth_to_print; i++) {
248 if (kstack_end(stack))
249 break;
250 if (i && ((i % 8) == 0))
251 printk("\n%s ", log_lvl);
252 printk("%08lx ", *stack++);
253 }
254 printk("\n%sCall Trace:\n", log_lvl);
255 show_trace_log_lvl(task, regs, esp, log_lvl);
256 }
257
258 void show_stack(struct task_struct *task, unsigned long *esp)
259 {
260 printk(" ");
261 show_stack_log_lvl(task, NULL, esp, "");
262 }
263
264 /*
265 * The architecture-independent dump_stack generator
266 */
267 void dump_stack(void)
268 {
269 unsigned long stack;
270
271 show_trace(current, NULL, &stack);
272 }
273
274 EXPORT_SYMBOL(dump_stack);
275
276 void show_registers(struct pt_regs *regs)
277 {
278 int i;
279 int in_kernel = 1;
280 unsigned long esp;
281 unsigned short ss;
282
283 esp = (unsigned long) (&regs->esp);
284 savesegment(ss, ss);
285 if (user_mode_vm(regs)) {
286 in_kernel = 0;
287 esp = regs->esp;
288 ss = regs->xss & 0xffff;
289 }
290 print_modules();
291 printk(KERN_EMERG "CPU: %d\nEIP: %04x:[<%08lx>] %s VLI\n"
292 "EFLAGS: %08lx (%s %.*s) \n",
293 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
294 print_tainted(), regs->eflags, system_utsname.release,
295 (int)strcspn(system_utsname.version, " "),
296 system_utsname.version);
297 print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
298 printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
299 regs->eax, regs->ebx, regs->ecx, regs->edx);
300 printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
301 regs->esi, regs->edi, regs->ebp, esp);
302 printk(KERN_EMERG "ds: %04x es: %04x ss: %04x\n",
303 regs->xds & 0xffff, regs->xes & 0xffff, ss);
304 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
305 TASK_COMM_LEN, current->comm, current->pid,
306 current_thread_info(), current, current->thread_info);
307 /*
308 * When in-kernel, we also print out the stack and code at the
309 * time of the fault..
310 */
311 if (in_kernel) {
312 u8 __user *eip;
313
314 printk("\n" KERN_EMERG "Stack: ");
315 show_stack_log_lvl(NULL, regs, (unsigned long *)esp, KERN_EMERG);
316
317 printk(KERN_EMERG "Code: ");
318
319 eip = (u8 __user *)regs->eip - 43;
320 for (i = 0; i < 64; i++, eip++) {
321 unsigned char c;
322
323 if (eip < (u8 __user *)PAGE_OFFSET || __get_user(c, eip)) {
324 printk(" Bad EIP value.");
325 break;
326 }
327 if (eip == (u8 __user *)regs->eip)
328 printk("<%02x> ", c);
329 else
330 printk("%02x ", c);
331 }
332 }
333 printk("\n");
334 }
335
336 static void handle_BUG(struct pt_regs *regs)
337 {
338 unsigned long eip = regs->eip;
339 unsigned short ud2;
340
341 if (eip < PAGE_OFFSET)
342 return;
343 if (__get_user(ud2, (unsigned short __user *)eip))
344 return;
345 if (ud2 != 0x0b0f)
346 return;
347
348 printk(KERN_EMERG "------------[ cut here ]------------\n");
349
350 #ifdef CONFIG_DEBUG_BUGVERBOSE
351 do {
352 unsigned short line;
353 char *file;
354 char c;
355
356 if (__get_user(line, (unsigned short __user *)(eip + 2)))
357 break;
358 if (__get_user(file, (char * __user *)(eip + 4)) ||
359 (unsigned long)file < PAGE_OFFSET || __get_user(c, file))
360 file = "<bad filename>";
361
362 printk(KERN_EMERG "kernel BUG at %s:%d!\n", file, line);
363 return;
364 } while (0);
365 #endif
366 printk(KERN_EMERG "Kernel BUG at [verbose debug info unavailable]\n");
367 }
368
369 /* This is gone through when something in the kernel
370 * has done something bad and is about to be terminated.
371 */
372 void die(const char * str, struct pt_regs * regs, long err)
373 {
374 static struct {
375 spinlock_t lock;
376 u32 lock_owner;
377 int lock_owner_depth;
378 } die = {
379 .lock = SPIN_LOCK_UNLOCKED,
380 .lock_owner = -1,
381 .lock_owner_depth = 0
382 };
383 static int die_counter;
384 unsigned long flags;
385
386 oops_enter();
387
388 if (die.lock_owner != raw_smp_processor_id()) {
389 console_verbose();
390 spin_lock_irqsave(&die.lock, flags);
391 die.lock_owner = smp_processor_id();
392 die.lock_owner_depth = 0;
393 bust_spinlocks(1);
394 }
395 else
396 local_save_flags(flags);
397
398 if (++die.lock_owner_depth < 3) {
399 int nl = 0;
400 unsigned long esp;
401 unsigned short ss;
402
403 handle_BUG(regs);
404 printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
405 #ifdef CONFIG_PREEMPT
406 printk(KERN_EMERG "PREEMPT ");
407 nl = 1;
408 #endif
409 #ifdef CONFIG_SMP
410 if (!nl)
411 printk(KERN_EMERG);
412 printk("SMP ");
413 nl = 1;
414 #endif
415 #ifdef CONFIG_DEBUG_PAGEALLOC
416 if (!nl)
417 printk(KERN_EMERG);
418 printk("DEBUG_PAGEALLOC");
419 nl = 1;
420 #endif
421 if (nl)
422 printk("\n");
423 if (notify_die(DIE_OOPS, str, regs, err,
424 current->thread.trap_no, SIGSEGV) !=
425 NOTIFY_STOP) {
426 show_registers(regs);
427 /* Executive summary in case the oops scrolled away */
428 esp = (unsigned long) (&regs->esp);
429 savesegment(ss, ss);
430 if (user_mode(regs)) {
431 esp = regs->esp;
432 ss = regs->xss & 0xffff;
433 }
434 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip);
435 print_symbol("%s", regs->eip);
436 printk(" SS:ESP %04x:%08lx\n", ss, esp);
437 }
438 else
439 regs = NULL;
440 } else
441 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
442
443 bust_spinlocks(0);
444 die.lock_owner = -1;
445 spin_unlock_irqrestore(&die.lock, flags);
446
447 if (!regs)
448 return;
449
450 if (kexec_should_crash(current))
451 crash_kexec(regs);
452
453 if (in_interrupt())
454 panic("Fatal exception in interrupt");
455
456 if (panic_on_oops)
457 panic("Fatal exception: panic_on_oops");
458
459 oops_exit();
460 do_exit(SIGSEGV);
461 }
462
463 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
464 {
465 if (!user_mode_vm(regs))
466 die(str, regs, err);
467 }
468
469 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
470 struct pt_regs * regs, long error_code,
471 siginfo_t *info)
472 {
473 struct task_struct *tsk = current;
474 tsk->thread.error_code = error_code;
475 tsk->thread.trap_no = trapnr;
476
477 if (regs->eflags & VM_MASK) {
478 if (vm86)
479 goto vm86_trap;
480 goto trap_signal;
481 }
482
483 if (!user_mode(regs))
484 goto kernel_trap;
485
486 trap_signal: {
487 if (info)
488 force_sig_info(signr, info, tsk);
489 else
490 force_sig(signr, tsk);
491 return;
492 }
493
494 kernel_trap: {
495 if (!fixup_exception(regs))
496 die(str, regs, error_code);
497 return;
498 }
499
500 vm86_trap: {
501 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
502 if (ret) goto trap_signal;
503 return;
504 }
505 }
506
507 #define DO_ERROR(trapnr, signr, str, name) \
508 fastcall void do_##name(struct pt_regs * regs, long error_code) \
509 { \
510 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
511 == NOTIFY_STOP) \
512 return; \
513 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
514 }
515
516 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
517 fastcall void do_##name(struct pt_regs * regs, long error_code) \
518 { \
519 siginfo_t info; \
520 info.si_signo = signr; \
521 info.si_errno = 0; \
522 info.si_code = sicode; \
523 info.si_addr = (void __user *)siaddr; \
524 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
525 == NOTIFY_STOP) \
526 return; \
527 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
528 }
529
530 #define DO_VM86_ERROR(trapnr, signr, str, name) \
531 fastcall void do_##name(struct pt_regs * regs, long error_code) \
532 { \
533 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
534 == NOTIFY_STOP) \
535 return; \
536 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
537 }
538
539 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
540 fastcall void do_##name(struct pt_regs * regs, long error_code) \
541 { \
542 siginfo_t info; \
543 info.si_signo = signr; \
544 info.si_errno = 0; \
545 info.si_code = sicode; \
546 info.si_addr = (void __user *)siaddr; \
547 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
548 == NOTIFY_STOP) \
549 return; \
550 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
551 }
552
553 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
554 #ifndef CONFIG_KPROBES
555 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
556 #endif
557 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
558 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
559 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip)
560 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
561 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
562 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
563 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
564 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
565 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
566
567 fastcall void __kprobes do_general_protection(struct pt_regs * regs,
568 long error_code)
569 {
570 int cpu = get_cpu();
571 struct tss_struct *tss = &per_cpu(init_tss, cpu);
572 struct thread_struct *thread = &current->thread;
573
574 /*
575 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
576 * invalid offset set (the LAZY one) and the faulting thread has
577 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
578 * and we set the offset field correctly. Then we let the CPU to
579 * restart the faulting instruction.
580 */
581 if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
582 thread->io_bitmap_ptr) {
583 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
584 thread->io_bitmap_max);
585 /*
586 * If the previously set map was extending to higher ports
587 * than the current one, pad extra space with 0xff (no access).
588 */
589 if (thread->io_bitmap_max < tss->io_bitmap_max)
590 memset((char *) tss->io_bitmap +
591 thread->io_bitmap_max, 0xff,
592 tss->io_bitmap_max - thread->io_bitmap_max);
593 tss->io_bitmap_max = thread->io_bitmap_max;
594 tss->io_bitmap_base = IO_BITMAP_OFFSET;
595 tss->io_bitmap_owner = thread;
596 put_cpu();
597 return;
598 }
599 put_cpu();
600
601 current->thread.error_code = error_code;
602 current->thread.trap_no = 13;
603
604 if (regs->eflags & VM_MASK)
605 goto gp_in_vm86;
606
607 if (!user_mode(regs))
608 goto gp_in_kernel;
609
610 current->thread.error_code = error_code;
611 current->thread.trap_no = 13;
612 force_sig(SIGSEGV, current);
613 return;
614
615 gp_in_vm86:
616 local_irq_enable();
617 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
618 return;
619
620 gp_in_kernel:
621 if (!fixup_exception(regs)) {
622 if (notify_die(DIE_GPF, "general protection fault", regs,
623 error_code, 13, SIGSEGV) == NOTIFY_STOP)
624 return;
625 die("general protection fault", regs, error_code);
626 }
627 }
628
629 static void mem_parity_error(unsigned char reason, struct pt_regs * regs)
630 {
631 printk(KERN_EMERG "Uhhuh. NMI received. Dazed and confused, but trying "
632 "to continue\n");
633 printk(KERN_EMERG "You probably have a hardware problem with your RAM "
634 "chips\n");
635
636 /* Clear and disable the memory parity error line. */
637 clear_mem_error(reason);
638 }
639
640 static void io_check_error(unsigned char reason, struct pt_regs * regs)
641 {
642 unsigned long i;
643
644 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
645 show_registers(regs);
646
647 /* Re-enable the IOCK line, wait for a few seconds */
648 reason = (reason & 0xf) | 8;
649 outb(reason, 0x61);
650 i = 2000;
651 while (--i) udelay(1000);
652 reason &= ~8;
653 outb(reason, 0x61);
654 }
655
656 static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
657 {
658 #ifdef CONFIG_MCA
659 /* Might actually be able to figure out what the guilty party
660 * is. */
661 if( MCA_bus ) {
662 mca_handle_nmi();
663 return;
664 }
665 #endif
666 printk("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
667 reason, smp_processor_id());
668 printk("Dazed and confused, but trying to continue\n");
669 printk("Do you have a strange power saving mode enabled?\n");
670 }
671
672 static DEFINE_SPINLOCK(nmi_print_lock);
673
674 void die_nmi (struct pt_regs *regs, const char *msg)
675 {
676 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
677 NOTIFY_STOP)
678 return;
679
680 spin_lock(&nmi_print_lock);
681 /*
682 * We are in trouble anyway, lets at least try
683 * to get a message out.
684 */
685 bust_spinlocks(1);
686 printk(KERN_EMERG "%s", msg);
687 printk(" on CPU%d, eip %08lx, registers:\n",
688 smp_processor_id(), regs->eip);
689 show_registers(regs);
690 printk(KERN_EMERG "console shuts up ...\n");
691 console_silent();
692 spin_unlock(&nmi_print_lock);
693 bust_spinlocks(0);
694
695 /* If we are in kernel we are probably nested up pretty bad
696 * and might aswell get out now while we still can.
697 */
698 if (!user_mode_vm(regs)) {
699 current->thread.trap_no = 2;
700 crash_kexec(regs);
701 }
702
703 do_exit(SIGSEGV);
704 }
705
706 static void default_do_nmi(struct pt_regs * regs)
707 {
708 unsigned char reason = 0;
709
710 /* Only the BSP gets external NMIs from the system. */
711 if (!smp_processor_id())
712 reason = get_nmi_reason();
713
714 if (!(reason & 0xc0)) {
715 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
716 == NOTIFY_STOP)
717 return;
718 #ifdef CONFIG_X86_LOCAL_APIC
719 /*
720 * Ok, so this is none of the documented NMI sources,
721 * so it must be the NMI watchdog.
722 */
723 if (nmi_watchdog) {
724 nmi_watchdog_tick(regs);
725 return;
726 }
727 #endif
728 unknown_nmi_error(reason, regs);
729 return;
730 }
731 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
732 return;
733 if (reason & 0x80)
734 mem_parity_error(reason, regs);
735 if (reason & 0x40)
736 io_check_error(reason, regs);
737 /*
738 * Reassert NMI in case it became active meanwhile
739 * as it's edge-triggered.
740 */
741 reassert_nmi();
742 }
743
744 static int dummy_nmi_callback(struct pt_regs * regs, int cpu)
745 {
746 return 0;
747 }
748
749 static nmi_callback_t nmi_callback = dummy_nmi_callback;
750
751 fastcall void do_nmi(struct pt_regs * regs, long error_code)
752 {
753 int cpu;
754
755 nmi_enter();
756
757 cpu = smp_processor_id();
758
759 ++nmi_count(cpu);
760
761 if (!rcu_dereference(nmi_callback)(regs, cpu))
762 default_do_nmi(regs);
763
764 nmi_exit();
765 }
766
767 void set_nmi_callback(nmi_callback_t callback)
768 {
769 vmalloc_sync_all();
770 rcu_assign_pointer(nmi_callback, callback);
771 }
772 EXPORT_SYMBOL_GPL(set_nmi_callback);
773
774 void unset_nmi_callback(void)
775 {
776 nmi_callback = dummy_nmi_callback;
777 }
778 EXPORT_SYMBOL_GPL(unset_nmi_callback);
779
780 #ifdef CONFIG_KPROBES
781 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
782 {
783 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
784 == NOTIFY_STOP)
785 return;
786 /* This is an interrupt gate, because kprobes wants interrupts
787 disabled. Normal trap handlers don't. */
788 restore_interrupts(regs);
789 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
790 }
791 #endif
792
793 /*
794 * Our handling of the processor debug registers is non-trivial.
795 * We do not clear them on entry and exit from the kernel. Therefore
796 * it is possible to get a watchpoint trap here from inside the kernel.
797 * However, the code in ./ptrace.c has ensured that the user can
798 * only set watchpoints on userspace addresses. Therefore the in-kernel
799 * watchpoint trap can only occur in code which is reading/writing
800 * from user space. Such code must not hold kernel locks (since it
801 * can equally take a page fault), therefore it is safe to call
802 * force_sig_info even though that claims and releases locks.
803 *
804 * Code in ./signal.c ensures that the debug control register
805 * is restored before we deliver any signal, and therefore that
806 * user code runs with the correct debug control register even though
807 * we clear it here.
808 *
809 * Being careful here means that we don't have to be as careful in a
810 * lot of more complicated places (task switching can be a bit lazy
811 * about restoring all the debug state, and ptrace doesn't have to
812 * find every occurrence of the TF bit that could be saved away even
813 * by user code)
814 */
815 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
816 {
817 unsigned int condition;
818 struct task_struct *tsk = current;
819
820 get_debugreg(condition, 6);
821
822 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
823 SIGTRAP) == NOTIFY_STOP)
824 return;
825 /* It's safe to allow irq's after DR6 has been saved */
826 if (regs->eflags & X86_EFLAGS_IF)
827 local_irq_enable();
828
829 /* Mask out spurious debug traps due to lazy DR7 setting */
830 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
831 if (!tsk->thread.debugreg[7])
832 goto clear_dr7;
833 }
834
835 if (regs->eflags & VM_MASK)
836 goto debug_vm86;
837
838 /* Save debug status register where ptrace can see it */
839 tsk->thread.debugreg[6] = condition;
840
841 /*
842 * Single-stepping through TF: make sure we ignore any events in
843 * kernel space (but re-enable TF when returning to user mode).
844 */
845 if (condition & DR_STEP) {
846 /*
847 * We already checked v86 mode above, so we can
848 * check for kernel mode by just checking the CPL
849 * of CS.
850 */
851 if (!user_mode(regs))
852 goto clear_TF_reenable;
853 }
854
855 /* Ok, finally something we can handle */
856 send_sigtrap(tsk, regs, error_code);
857
858 /* Disable additional traps. They'll be re-enabled when
859 * the signal is delivered.
860 */
861 clear_dr7:
862 set_debugreg(0, 7);
863 return;
864
865 debug_vm86:
866 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
867 return;
868
869 clear_TF_reenable:
870 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
871 regs->eflags &= ~TF_MASK;
872 return;
873 }
874
875 /*
876 * Note that we play around with the 'TS' bit in an attempt to get
877 * the correct behaviour even in the presence of the asynchronous
878 * IRQ13 behaviour
879 */
880 void math_error(void __user *eip)
881 {
882 struct task_struct * task;
883 siginfo_t info;
884 unsigned short cwd, swd;
885
886 /*
887 * Save the info for the exception handler and clear the error.
888 */
889 task = current;
890 save_init_fpu(task);
891 task->thread.trap_no = 16;
892 task->thread.error_code = 0;
893 info.si_signo = SIGFPE;
894 info.si_errno = 0;
895 info.si_code = __SI_FAULT;
896 info.si_addr = eip;
897 /*
898 * (~cwd & swd) will mask out exceptions that are not set to unmasked
899 * status. 0x3f is the exception bits in these regs, 0x200 is the
900 * C1 reg you need in case of a stack fault, 0x040 is the stack
901 * fault bit. We should only be taking one exception at a time,
902 * so if this combination doesn't produce any single exception,
903 * then we have a bad program that isn't syncronizing its FPU usage
904 * and it will suffer the consequences since we won't be able to
905 * fully reproduce the context of the exception
906 */
907 cwd = get_fpu_cwd(task);
908 swd = get_fpu_swd(task);
909 switch (swd & ~cwd & 0x3f) {
910 case 0x000: /* No unmasked exception */
911 return;
912 default: /* Multiple exceptions */
913 break;
914 case 0x001: /* Invalid Op */
915 /*
916 * swd & 0x240 == 0x040: Stack Underflow
917 * swd & 0x240 == 0x240: Stack Overflow
918 * User must clear the SF bit (0x40) if set
919 */
920 info.si_code = FPE_FLTINV;
921 break;
922 case 0x002: /* Denormalize */
923 case 0x010: /* Underflow */
924 info.si_code = FPE_FLTUND;
925 break;
926 case 0x004: /* Zero Divide */
927 info.si_code = FPE_FLTDIV;
928 break;
929 case 0x008: /* Overflow */
930 info.si_code = FPE_FLTOVF;
931 break;
932 case 0x020: /* Precision */
933 info.si_code = FPE_FLTRES;
934 break;
935 }
936 force_sig_info(SIGFPE, &info, task);
937 }
938
939 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
940 {
941 ignore_fpu_irq = 1;
942 math_error((void __user *)regs->eip);
943 }
944
945 static void simd_math_error(void __user *eip)
946 {
947 struct task_struct * task;
948 siginfo_t info;
949 unsigned short mxcsr;
950
951 /*
952 * Save the info for the exception handler and clear the error.
953 */
954 task = current;
955 save_init_fpu(task);
956 task->thread.trap_no = 19;
957 task->thread.error_code = 0;
958 info.si_signo = SIGFPE;
959 info.si_errno = 0;
960 info.si_code = __SI_FAULT;
961 info.si_addr = eip;
962 /*
963 * The SIMD FPU exceptions are handled a little differently, as there
964 * is only a single status/control register. Thus, to determine which
965 * unmasked exception was caught we must mask the exception mask bits
966 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
967 */
968 mxcsr = get_fpu_mxcsr(task);
969 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
970 case 0x000:
971 default:
972 break;
973 case 0x001: /* Invalid Op */
974 info.si_code = FPE_FLTINV;
975 break;
976 case 0x002: /* Denormalize */
977 case 0x010: /* Underflow */
978 info.si_code = FPE_FLTUND;
979 break;
980 case 0x004: /* Zero Divide */
981 info.si_code = FPE_FLTDIV;
982 break;
983 case 0x008: /* Overflow */
984 info.si_code = FPE_FLTOVF;
985 break;
986 case 0x020: /* Precision */
987 info.si_code = FPE_FLTRES;
988 break;
989 }
990 force_sig_info(SIGFPE, &info, task);
991 }
992
993 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
994 long error_code)
995 {
996 if (cpu_has_xmm) {
997 /* Handle SIMD FPU exceptions on PIII+ processors. */
998 ignore_fpu_irq = 1;
999 simd_math_error((void __user *)regs->eip);
1000 } else {
1001 /*
1002 * Handle strange cache flush from user space exception
1003 * in all other cases. This is undocumented behaviour.
1004 */
1005 if (regs->eflags & VM_MASK) {
1006 handle_vm86_fault((struct kernel_vm86_regs *)regs,
1007 error_code);
1008 return;
1009 }
1010 current->thread.trap_no = 19;
1011 current->thread.error_code = error_code;
1012 die_if_kernel("cache flush denied", regs, error_code);
1013 force_sig(SIGSEGV, current);
1014 }
1015 }
1016
1017 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
1018 long error_code)
1019 {
1020 #if 0
1021 /* No need to warn about this any longer. */
1022 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1023 #endif
1024 }
1025
1026 fastcall void setup_x86_bogus_stack(unsigned char * stk)
1027 {
1028 unsigned long *switch16_ptr, *switch32_ptr;
1029 struct pt_regs *regs;
1030 unsigned long stack_top, stack_bot;
1031 unsigned short iret_frame16_off;
1032 int cpu = smp_processor_id();
1033 /* reserve the space on 32bit stack for the magic switch16 pointer */
1034 memmove(stk, stk + 8, sizeof(struct pt_regs));
1035 switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs));
1036 regs = (struct pt_regs *)stk;
1037 /* now the switch32 on 16bit stack */
1038 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
1039 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
1040 switch32_ptr = (unsigned long *)(stack_top - 8);
1041 iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20;
1042 /* copy iret frame on 16bit stack */
1043 memcpy((void *)(stack_bot + iret_frame16_off), &regs->eip, 20);
1044 /* fill in the switch pointers */
1045 switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off;
1046 switch16_ptr[1] = __ESPFIX_SS;
1047 switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) +
1048 8 - CPU_16BIT_STACK_SIZE;
1049 switch32_ptr[1] = __KERNEL_DS;
1050 }
1051
1052 fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp)
1053 {
1054 unsigned long *switch32_ptr;
1055 unsigned char *stack16, *stack32;
1056 unsigned long stack_top, stack_bot;
1057 int len;
1058 int cpu = smp_processor_id();
1059 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
1060 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
1061 switch32_ptr = (unsigned long *)(stack_top - 8);
1062 /* copy the data from 16bit stack to 32bit stack */
1063 len = CPU_16BIT_STACK_SIZE - 8 - sp;
1064 stack16 = (unsigned char *)(stack_bot + sp);
1065 stack32 = (unsigned char *)
1066 (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len);
1067 memcpy(stack32, stack16, len);
1068 return stack32;
1069 }
1070
1071 /*
1072 * 'math_state_restore()' saves the current math information in the
1073 * old math state array, and gets the new ones from the current task
1074 *
1075 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1076 * Don't touch unless you *really* know how it works.
1077 *
1078 * Must be called with kernel preemption disabled (in this case,
1079 * local interrupts are disabled at the call-site in entry.S).
1080 */
1081 asmlinkage void math_state_restore(struct pt_regs regs)
1082 {
1083 struct thread_info *thread = current_thread_info();
1084 struct task_struct *tsk = thread->task;
1085
1086 clts(); /* Allow maths ops (or we recurse) */
1087 if (!tsk_used_math(tsk))
1088 init_fpu(tsk);
1089 restore_fpu(tsk);
1090 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1091 }
1092
1093 #ifndef CONFIG_MATH_EMULATION
1094
1095 asmlinkage void math_emulate(long arg)
1096 {
1097 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1098 printk(KERN_EMERG "killing %s.\n",current->comm);
1099 force_sig(SIGFPE,current);
1100 schedule();
1101 }
1102
1103 #endif /* CONFIG_MATH_EMULATION */
1104
1105 #ifdef CONFIG_X86_F00F_BUG
1106 void __init trap_init_f00f_bug(void)
1107 {
1108 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
1109
1110 /*
1111 * Update the IDT descriptor and reload the IDT so that
1112 * it uses the read-only mapped virtual address.
1113 */
1114 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
1115 load_idt(&idt_descr);
1116 }
1117 #endif
1118
1119 #define _set_gate(gate_addr,type,dpl,addr,seg) \
1120 do { \
1121 int __d0, __d1; \
1122 __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \
1123 "movw %4,%%dx\n\t" \
1124 "movl %%eax,%0\n\t" \
1125 "movl %%edx,%1" \
1126 :"=m" (*((long *) (gate_addr))), \
1127 "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \
1128 :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
1129 "3" ((char *) (addr)),"2" ((seg) << 16)); \
1130 } while (0)
1131
1132
1133 /*
1134 * This needs to use 'idt_table' rather than 'idt', and
1135 * thus use the _nonmapped_ version of the IDT, as the
1136 * Pentium F0 0F bugfix can have resulted in the mapped
1137 * IDT being write-protected.
1138 */
1139 void set_intr_gate(unsigned int n, void *addr)
1140 {
1141 _set_gate(idt_table+n,14,0,addr,__KERNEL_CS);
1142 }
1143
1144 /*
1145 * This routine sets up an interrupt gate at directory privilege level 3.
1146 */
1147 static inline void set_system_intr_gate(unsigned int n, void *addr)
1148 {
1149 _set_gate(idt_table+n, 14, 3, addr, __KERNEL_CS);
1150 }
1151
1152 static void __init set_trap_gate(unsigned int n, void *addr)
1153 {
1154 _set_gate(idt_table+n,15,0,addr,__KERNEL_CS);
1155 }
1156
1157 static void __init set_system_gate(unsigned int n, void *addr)
1158 {
1159 _set_gate(idt_table+n,15,3,addr,__KERNEL_CS);
1160 }
1161
1162 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1163 {
1164 _set_gate(idt_table+n,5,0,0,(gdt_entry<<3));
1165 }
1166
1167
1168 void __init trap_init(void)
1169 {
1170 #ifdef CONFIG_EISA
1171 void __iomem *p = ioremap(0x0FFFD9, 4);
1172 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1173 EISA_bus = 1;
1174 }
1175 iounmap(p);
1176 #endif
1177
1178 #ifdef CONFIG_X86_LOCAL_APIC
1179 init_apic_mappings();
1180 #endif
1181
1182 set_trap_gate(0,&divide_error);
1183 set_intr_gate(1,&debug);
1184 set_intr_gate(2,&nmi);
1185 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1186 set_system_gate(4,&overflow);
1187 set_trap_gate(5,&bounds);
1188 set_trap_gate(6,&invalid_op);
1189 set_trap_gate(7,&device_not_available);
1190 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1191 set_trap_gate(9,&coprocessor_segment_overrun);
1192 set_trap_gate(10,&invalid_TSS);
1193 set_trap_gate(11,&segment_not_present);
1194 set_trap_gate(12,&stack_segment);
1195 set_trap_gate(13,&general_protection);
1196 set_intr_gate(14,&page_fault);
1197 set_trap_gate(15,&spurious_interrupt_bug);
1198 set_trap_gate(16,&coprocessor_error);
1199 set_trap_gate(17,&alignment_check);
1200 #ifdef CONFIG_X86_MCE
1201 set_trap_gate(18,&machine_check);
1202 #endif
1203 set_trap_gate(19,&simd_coprocessor_error);
1204
1205 if (cpu_has_fxsr) {
1206 /*
1207 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1208 * Generates a compile-time "error: zero width for bit-field" if
1209 * the alignment is wrong.
1210 */
1211 struct fxsrAlignAssert {
1212 int _:!(offsetof(struct task_struct,
1213 thread.i387.fxsave) & 15);
1214 };
1215
1216 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1217 set_in_cr4(X86_CR4_OSFXSR);
1218 printk("done.\n");
1219 }
1220 if (cpu_has_xmm) {
1221 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1222 "support... ");
1223 set_in_cr4(X86_CR4_OSXMMEXCPT);
1224 printk("done.\n");
1225 }
1226
1227 set_system_gate(SYSCALL_VECTOR,&system_call);
1228
1229 /*
1230 * Should be a barrier for any external CPU state.
1231 */
1232 cpu_init();
1233
1234 trap_init_hook();
1235 }
1236
1237 static int __init kstack_setup(char *s)
1238 {
1239 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1240 return 1;
1241 }
1242 __setup("kstack=", kstack_setup);
1243
1244 static int __init call_trace_setup(char *s)
1245 {
1246 if (strcmp(s, "old") == 0)
1247 call_trace = -1;
1248 else if (strcmp(s, "both") == 0)
1249 call_trace = 0;
1250 else if (strcmp(s, "newfallback") == 0)
1251 call_trace = 1;
1252 else if (strcmp(s, "new") == 2)
1253 call_trace = 2;
1254 return 1;
1255 }
1256 __setup("call_trace=", call_trace_setup);
This page took 0.094794 seconds and 6 git commands to generate.