[PATCH] powerpc: merge code values for identifying platforms
[deliverable/linux.git] / arch / powerpc / platforms / pseries / eeh.c
1 /*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
29 #include <asm/eeh.h>
30 #include <asm/eeh_event.h>
31 #include <asm/io.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/rtas.h>
35
36 #undef DEBUG
37
38 /** Overview:
39 * EEH, or "Extended Error Handling" is a PCI bridge technology for
40 * dealing with PCI bus errors that can't be dealt with within the
41 * usual PCI framework, except by check-stopping the CPU. Systems
42 * that are designed for high-availability/reliability cannot afford
43 * to crash due to a "mere" PCI error, thus the need for EEH.
44 * An EEH-capable bridge operates by converting a detected error
45 * into a "slot freeze", taking the PCI adapter off-line, making
46 * the slot behave, from the OS'es point of view, as if the slot
47 * were "empty": all reads return 0xff's and all writes are silently
48 * ignored. EEH slot isolation events can be triggered by parity
49 * errors on the address or data busses (e.g. during posted writes),
50 * which in turn might be caused by low voltage on the bus, dust,
51 * vibration, humidity, radioactivity or plain-old failed hardware.
52 *
53 * Note, however, that one of the leading causes of EEH slot
54 * freeze events are buggy device drivers, buggy device microcode,
55 * or buggy device hardware. This is because any attempt by the
56 * device to bus-master data to a memory address that is not
57 * assigned to the device will trigger a slot freeze. (The idea
58 * is to prevent devices-gone-wild from corrupting system memory).
59 * Buggy hardware/drivers will have a miserable time co-existing
60 * with EEH.
61 *
62 * Ideally, a PCI device driver, when suspecting that an isolation
63 * event has occured (e.g. by reading 0xff's), will then ask EEH
64 * whether this is the case, and then take appropriate steps to
65 * reset the PCI slot, the PCI device, and then resume operations.
66 * However, until that day, the checking is done here, with the
67 * eeh_check_failure() routine embedded in the MMIO macros. If
68 * the slot is found to be isolated, an "EEH Event" is synthesized
69 * and sent out for processing.
70 */
71
72 /* If a device driver keeps reading an MMIO register in an interrupt
73 * handler after a slot isolation event has occurred, we assume it
74 * is broken and panic. This sets the threshold for how many read
75 * attempts we allow before panicking.
76 */
77 #define EEH_MAX_FAILS 100000
78
79 /* Misc forward declaraions */
80 static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn);
81
82 /* RTAS tokens */
83 static int ibm_set_eeh_option;
84 static int ibm_set_slot_reset;
85 static int ibm_read_slot_reset_state;
86 static int ibm_read_slot_reset_state2;
87 static int ibm_slot_error_detail;
88
89 static int eeh_subsystem_enabled;
90
91 /* Lock to avoid races due to multiple reports of an error */
92 static DEFINE_SPINLOCK(confirm_error_lock);
93
94 /* Buffer for reporting slot-error-detail rtas calls */
95 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
96 static DEFINE_SPINLOCK(slot_errbuf_lock);
97 static int eeh_error_buf_size;
98
99 /* System monitoring statistics */
100 static DEFINE_PER_CPU(unsigned long, no_device);
101 static DEFINE_PER_CPU(unsigned long, no_dn);
102 static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
103 static DEFINE_PER_CPU(unsigned long, ignored_check);
104 static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
105 static DEFINE_PER_CPU(unsigned long, false_positives);
106 static DEFINE_PER_CPU(unsigned long, ignored_failures);
107 static DEFINE_PER_CPU(unsigned long, slot_resets);
108
109 /**
110 * The pci address cache subsystem. This subsystem places
111 * PCI device address resources into a red-black tree, sorted
112 * according to the address range, so that given only an i/o
113 * address, the corresponding PCI device can be **quickly**
114 * found. It is safe to perform an address lookup in an interrupt
115 * context; this ability is an important feature.
116 *
117 * Currently, the only customer of this code is the EEH subsystem;
118 * thus, this code has been somewhat tailored to suit EEH better.
119 * In particular, the cache does *not* hold the addresses of devices
120 * for which EEH is not enabled.
121 *
122 * (Implementation Note: The RB tree seems to be better/faster
123 * than any hash algo I could think of for this problem, even
124 * with the penalty of slow pointer chases for d-cache misses).
125 */
126 struct pci_io_addr_range
127 {
128 struct rb_node rb_node;
129 unsigned long addr_lo;
130 unsigned long addr_hi;
131 struct pci_dev *pcidev;
132 unsigned int flags;
133 };
134
135 static struct pci_io_addr_cache
136 {
137 struct rb_root rb_root;
138 spinlock_t piar_lock;
139 } pci_io_addr_cache_root;
140
141 static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
142 {
143 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
144
145 while (n) {
146 struct pci_io_addr_range *piar;
147 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
148
149 if (addr < piar->addr_lo) {
150 n = n->rb_left;
151 } else {
152 if (addr > piar->addr_hi) {
153 n = n->rb_right;
154 } else {
155 pci_dev_get(piar->pcidev);
156 return piar->pcidev;
157 }
158 }
159 }
160
161 return NULL;
162 }
163
164 /**
165 * pci_get_device_by_addr - Get device, given only address
166 * @addr: mmio (PIO) phys address or i/o port number
167 *
168 * Given an mmio phys address, or a port number, find a pci device
169 * that implements this address. Be sure to pci_dev_put the device
170 * when finished. I/O port numbers are assumed to be offset
171 * from zero (that is, they do *not* have pci_io_addr added in).
172 * It is safe to call this function within an interrupt.
173 */
174 static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
175 {
176 struct pci_dev *dev;
177 unsigned long flags;
178
179 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
180 dev = __pci_get_device_by_addr(addr);
181 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
182 return dev;
183 }
184
185 #ifdef DEBUG
186 /*
187 * Handy-dandy debug print routine, does nothing more
188 * than print out the contents of our addr cache.
189 */
190 static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
191 {
192 struct rb_node *n;
193 int cnt = 0;
194
195 n = rb_first(&cache->rb_root);
196 while (n) {
197 struct pci_io_addr_range *piar;
198 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
199 printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
200 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
201 piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
202 cnt++;
203 n = rb_next(n);
204 }
205 }
206 #endif
207
208 /* Insert address range into the rb tree. */
209 static struct pci_io_addr_range *
210 pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
211 unsigned long ahi, unsigned int flags)
212 {
213 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
214 struct rb_node *parent = NULL;
215 struct pci_io_addr_range *piar;
216
217 /* Walk tree, find a place to insert into tree */
218 while (*p) {
219 parent = *p;
220 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
221 if (ahi < piar->addr_lo) {
222 p = &parent->rb_left;
223 } else if (alo > piar->addr_hi) {
224 p = &parent->rb_right;
225 } else {
226 if (dev != piar->pcidev ||
227 alo != piar->addr_lo || ahi != piar->addr_hi) {
228 printk(KERN_WARNING "PIAR: overlapping address range\n");
229 }
230 return piar;
231 }
232 }
233 piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
234 if (!piar)
235 return NULL;
236
237 piar->addr_lo = alo;
238 piar->addr_hi = ahi;
239 piar->pcidev = dev;
240 piar->flags = flags;
241
242 #ifdef DEBUG
243 printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
244 alo, ahi, pci_name (dev));
245 #endif
246
247 rb_link_node(&piar->rb_node, parent, p);
248 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
249
250 return piar;
251 }
252
253 static void __pci_addr_cache_insert_device(struct pci_dev *dev)
254 {
255 struct device_node *dn;
256 struct pci_dn *pdn;
257 int i;
258 int inserted = 0;
259
260 dn = pci_device_to_OF_node(dev);
261 if (!dn) {
262 printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
263 return;
264 }
265
266 /* Skip any devices for which EEH is not enabled. */
267 pdn = PCI_DN(dn);
268 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
269 pdn->eeh_mode & EEH_MODE_NOCHECK) {
270 #ifdef DEBUG
271 printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
272 pci_name(dev), pdn->node->full_name);
273 #endif
274 return;
275 }
276
277 /* The cache holds a reference to the device... */
278 pci_dev_get(dev);
279
280 /* Walk resources on this device, poke them into the tree */
281 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
282 unsigned long start = pci_resource_start(dev,i);
283 unsigned long end = pci_resource_end(dev,i);
284 unsigned int flags = pci_resource_flags(dev,i);
285
286 /* We are interested only bus addresses, not dma or other stuff */
287 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
288 continue;
289 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
290 continue;
291 pci_addr_cache_insert(dev, start, end, flags);
292 inserted = 1;
293 }
294
295 /* If there was nothing to add, the cache has no reference... */
296 if (!inserted)
297 pci_dev_put(dev);
298 }
299
300 /**
301 * pci_addr_cache_insert_device - Add a device to the address cache
302 * @dev: PCI device whose I/O addresses we are interested in.
303 *
304 * In order to support the fast lookup of devices based on addresses,
305 * we maintain a cache of devices that can be quickly searched.
306 * This routine adds a device to that cache.
307 */
308 static void pci_addr_cache_insert_device(struct pci_dev *dev)
309 {
310 unsigned long flags;
311
312 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
313 __pci_addr_cache_insert_device(dev);
314 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
315 }
316
317 static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
318 {
319 struct rb_node *n;
320 int removed = 0;
321
322 restart:
323 n = rb_first(&pci_io_addr_cache_root.rb_root);
324 while (n) {
325 struct pci_io_addr_range *piar;
326 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
327
328 if (piar->pcidev == dev) {
329 rb_erase(n, &pci_io_addr_cache_root.rb_root);
330 removed = 1;
331 kfree(piar);
332 goto restart;
333 }
334 n = rb_next(n);
335 }
336
337 /* The cache no longer holds its reference to this device... */
338 if (removed)
339 pci_dev_put(dev);
340 }
341
342 /**
343 * pci_addr_cache_remove_device - remove pci device from addr cache
344 * @dev: device to remove
345 *
346 * Remove a device from the addr-cache tree.
347 * This is potentially expensive, since it will walk
348 * the tree multiple times (once per resource).
349 * But so what; device removal doesn't need to be that fast.
350 */
351 static void pci_addr_cache_remove_device(struct pci_dev *dev)
352 {
353 unsigned long flags;
354
355 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
356 __pci_addr_cache_remove_device(dev);
357 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
358 }
359
360 /**
361 * pci_addr_cache_build - Build a cache of I/O addresses
362 *
363 * Build a cache of pci i/o addresses. This cache will be used to
364 * find the pci device that corresponds to a given address.
365 * This routine scans all pci busses to build the cache.
366 * Must be run late in boot process, after the pci controllers
367 * have been scaned for devices (after all device resources are known).
368 */
369 void __init pci_addr_cache_build(void)
370 {
371 struct device_node *dn;
372 struct pci_dev *dev = NULL;
373
374 if (!eeh_subsystem_enabled)
375 return;
376
377 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
378
379 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
380 /* Ignore PCI bridges ( XXX why ??) */
381 if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
382 continue;
383 }
384 pci_addr_cache_insert_device(dev);
385
386 /* Save the BAR's; firmware doesn't restore these after EEH reset */
387 dn = pci_device_to_OF_node(dev);
388 eeh_save_bars(dev, PCI_DN(dn));
389 }
390
391 #ifdef DEBUG
392 /* Verify tree built up above, echo back the list of addrs. */
393 pci_addr_cache_print(&pci_io_addr_cache_root);
394 #endif
395 }
396
397 /* --------------------------------------------------------------- */
398 /* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
399
400 void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
401 {
402 unsigned long flags;
403 int rc;
404
405 /* Log the error with the rtas logger */
406 spin_lock_irqsave(&slot_errbuf_lock, flags);
407 memset(slot_errbuf, 0, eeh_error_buf_size);
408
409 rc = rtas_call(ibm_slot_error_detail,
410 8, 1, NULL, pdn->eeh_config_addr,
411 BUID_HI(pdn->phb->buid),
412 BUID_LO(pdn->phb->buid), NULL, 0,
413 virt_to_phys(slot_errbuf),
414 eeh_error_buf_size,
415 severity);
416
417 if (rc == 0)
418 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
419 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
420 }
421
422 /**
423 * read_slot_reset_state - Read the reset state of a device node's slot
424 * @dn: device node to read
425 * @rets: array to return results in
426 */
427 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
428 {
429 int token, outputs;
430
431 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
432 token = ibm_read_slot_reset_state2;
433 outputs = 4;
434 } else {
435 token = ibm_read_slot_reset_state;
436 rets[2] = 0; /* fake PE Unavailable info */
437 outputs = 3;
438 }
439
440 return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
441 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
442 }
443
444 /**
445 * eeh_token_to_phys - convert EEH address token to phys address
446 * @token i/o token, should be address in the form 0xA....
447 */
448 static inline unsigned long eeh_token_to_phys(unsigned long token)
449 {
450 pte_t *ptep;
451 unsigned long pa;
452
453 ptep = find_linux_pte(init_mm.pgd, token);
454 if (!ptep)
455 return token;
456 pa = pte_pfn(*ptep) << PAGE_SHIFT;
457
458 return pa | (token & (PAGE_SIZE-1));
459 }
460
461 /**
462 * Return the "partitionable endpoint" (pe) under which this device lies
463 */
464 static struct device_node * find_device_pe(struct device_node *dn)
465 {
466 while ((dn->parent) && PCI_DN(dn->parent) &&
467 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
468 dn = dn->parent;
469 }
470 return dn;
471 }
472
473 /** Mark all devices that are peers of this device as failed.
474 * Mark the device driver too, so that it can see the failure
475 * immediately; this is critical, since some drivers poll
476 * status registers in interrupts ... If a driver is polling,
477 * and the slot is frozen, then the driver can deadlock in
478 * an interrupt context, which is bad.
479 */
480
481 static inline void __eeh_mark_slot (struct device_node *dn)
482 {
483 while (dn) {
484 PCI_DN(dn)->eeh_mode |= EEH_MODE_ISOLATED;
485
486 if (dn->child)
487 __eeh_mark_slot (dn->child);
488 dn = dn->sibling;
489 }
490 }
491
492 static inline void __eeh_clear_slot (struct device_node *dn)
493 {
494 while (dn) {
495 PCI_DN(dn)->eeh_mode &= ~EEH_MODE_ISOLATED;
496 if (dn->child)
497 __eeh_clear_slot (dn->child);
498 dn = dn->sibling;
499 }
500 }
501
502 static inline void eeh_clear_slot (struct device_node *dn)
503 {
504 unsigned long flags;
505 spin_lock_irqsave(&confirm_error_lock, flags);
506 __eeh_clear_slot (dn);
507 spin_unlock_irqrestore(&confirm_error_lock, flags);
508 }
509
510 /**
511 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
512 * @dn device node
513 * @dev pci device, if known
514 *
515 * Check for an EEH failure for the given device node. Call this
516 * routine if the result of a read was all 0xff's and you want to
517 * find out if this is due to an EEH slot freeze. This routine
518 * will query firmware for the EEH status.
519 *
520 * Returns 0 if there has not been an EEH error; otherwise returns
521 * a non-zero value and queues up a slot isolation event notification.
522 *
523 * It is safe to call this routine in an interrupt context.
524 */
525 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
526 {
527 int ret;
528 int rets[3];
529 unsigned long flags;
530 struct pci_dn *pdn;
531 struct device_node *pe_dn;
532 int rc = 0;
533
534 __get_cpu_var(total_mmio_ffs)++;
535
536 if (!eeh_subsystem_enabled)
537 return 0;
538
539 if (!dn) {
540 __get_cpu_var(no_dn)++;
541 return 0;
542 }
543 pdn = PCI_DN(dn);
544
545 /* Access to IO BARs might get this far and still not want checking. */
546 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
547 pdn->eeh_mode & EEH_MODE_NOCHECK) {
548 __get_cpu_var(ignored_check)++;
549 #ifdef DEBUG
550 printk ("EEH:ignored check (%x) for %s %s\n",
551 pdn->eeh_mode, pci_name (dev), dn->full_name);
552 #endif
553 return 0;
554 }
555
556 if (!pdn->eeh_config_addr) {
557 __get_cpu_var(no_cfg_addr)++;
558 return 0;
559 }
560
561 /* If we already have a pending isolation event for this
562 * slot, we know it's bad already, we don't need to check.
563 * Do this checking under a lock; as multiple PCI devices
564 * in one slot might report errors simultaneously, and we
565 * only want one error recovery routine running.
566 */
567 spin_lock_irqsave(&confirm_error_lock, flags);
568 rc = 1;
569 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
570 pdn->eeh_check_count ++;
571 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
572 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
573 pdn->eeh_check_count);
574 dump_stack();
575
576 /* re-read the slot reset state */
577 if (read_slot_reset_state(pdn, rets) != 0)
578 rets[0] = -1; /* reset state unknown */
579
580 /* If we are here, then we hit an infinite loop. Stop. */
581 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
582 }
583 goto dn_unlock;
584 }
585
586 /*
587 * Now test for an EEH failure. This is VERY expensive.
588 * Note that the eeh_config_addr may be a parent device
589 * in the case of a device behind a bridge, or it may be
590 * function zero of a multi-function device.
591 * In any case they must share a common PHB.
592 */
593 ret = read_slot_reset_state(pdn, rets);
594
595 /* If the call to firmware failed, punt */
596 if (ret != 0) {
597 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
598 ret, dn->full_name);
599 __get_cpu_var(false_positives)++;
600 rc = 0;
601 goto dn_unlock;
602 }
603
604 /* If EEH is not supported on this device, punt. */
605 if (rets[1] != 1) {
606 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
607 ret, dn->full_name);
608 __get_cpu_var(false_positives)++;
609 rc = 0;
610 goto dn_unlock;
611 }
612
613 /* If not the kind of error we know about, punt. */
614 if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
615 __get_cpu_var(false_positives)++;
616 rc = 0;
617 goto dn_unlock;
618 }
619
620 /* Note that config-io to empty slots may fail;
621 * we recognize empty because they don't have children. */
622 if ((rets[0] == 5) && (dn->child == NULL)) {
623 __get_cpu_var(false_positives)++;
624 rc = 0;
625 goto dn_unlock;
626 }
627
628 __get_cpu_var(slot_resets)++;
629
630 /* Avoid repeated reports of this failure, including problems
631 * with other functions on this device, and functions under
632 * bridges. */
633 pe_dn = find_device_pe (dn);
634 __eeh_mark_slot (pe_dn);
635 spin_unlock_irqrestore(&confirm_error_lock, flags);
636
637 eeh_send_failure_event (dn, dev, rets[0], rets[2]);
638
639 /* Most EEH events are due to device driver bugs. Having
640 * a stack trace will help the device-driver authors figure
641 * out what happened. So print that out. */
642 if (rets[0] != 5) dump_stack();
643 return 1;
644
645 dn_unlock:
646 spin_unlock_irqrestore(&confirm_error_lock, flags);
647 return rc;
648 }
649
650 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
651
652 /**
653 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
654 * @token i/o token, should be address in the form 0xA....
655 * @val value, should be all 1's (XXX why do we need this arg??)
656 *
657 * Check for an EEH failure at the given token address. Call this
658 * routine if the result of a read was all 0xff's and you want to
659 * find out if this is due to an EEH slot freeze event. This routine
660 * will query firmware for the EEH status.
661 *
662 * Note this routine is safe to call in an interrupt context.
663 */
664 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
665 {
666 unsigned long addr;
667 struct pci_dev *dev;
668 struct device_node *dn;
669
670 /* Finding the phys addr + pci device; this is pretty quick. */
671 addr = eeh_token_to_phys((unsigned long __force) token);
672 dev = pci_get_device_by_addr(addr);
673 if (!dev) {
674 __get_cpu_var(no_device)++;
675 return val;
676 }
677
678 dn = pci_device_to_OF_node(dev);
679 eeh_dn_check_failure (dn, dev);
680
681 pci_dev_put(dev);
682 return val;
683 }
684
685 EXPORT_SYMBOL(eeh_check_failure);
686
687 /* ------------------------------------------------------------- */
688 /* The code below deals with error recovery */
689
690 /** Return negative value if a permanent error, else return
691 * a number of milliseconds to wait until the PCI slot is
692 * ready to be used.
693 */
694 static int
695 eeh_slot_availability(struct pci_dn *pdn)
696 {
697 int rc;
698 int rets[3];
699
700 rc = read_slot_reset_state(pdn, rets);
701
702 if (rc) return rc;
703
704 if (rets[1] == 0) return -1; /* EEH is not supported */
705 if (rets[0] == 0) return 0; /* Oll Korrect */
706 if (rets[0] == 5) {
707 if (rets[2] == 0) return -1; /* permanently unavailable */
708 return rets[2]; /* number of millisecs to wait */
709 }
710 return -1;
711 }
712
713 /** rtas_pci_slot_reset raises/lowers the pci #RST line
714 * state: 1/0 to raise/lower the #RST
715 *
716 * Clear the EEH-frozen condition on a slot. This routine
717 * asserts the PCI #RST line if the 'state' argument is '1',
718 * and drops the #RST line if 'state is '0'. This routine is
719 * safe to call in an interrupt context.
720 *
721 */
722
723 static void
724 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
725 {
726 int rc;
727
728 BUG_ON (pdn==NULL);
729
730 if (!pdn->phb) {
731 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
732 pdn->node->full_name);
733 return;
734 }
735
736 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
737 pdn->eeh_config_addr,
738 BUID_HI(pdn->phb->buid),
739 BUID_LO(pdn->phb->buid),
740 state);
741 if (rc) {
742 printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n",
743 rc, state, pdn->node->full_name);
744 return;
745 }
746
747 if (state == 0)
748 eeh_clear_slot (pdn->node->parent->child);
749 }
750
751 /** rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
752 * dn -- device node to be reset.
753 */
754
755 void
756 rtas_set_slot_reset(struct pci_dn *pdn)
757 {
758 int i, rc;
759
760 rtas_pci_slot_reset (pdn, 1);
761
762 /* The PCI bus requires that the reset be held high for at least
763 * a 100 milliseconds. We wait a bit longer 'just in case'. */
764
765 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
766 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
767 rtas_pci_slot_reset (pdn, 0);
768
769 /* After a PCI slot has been reset, the PCI Express spec requires
770 * a 1.5 second idle time for the bus to stabilize, before starting
771 * up traffic. */
772 #define PCI_BUS_SETTLE_TIME_MSEC 1800
773 msleep (PCI_BUS_SETTLE_TIME_MSEC);
774
775 /* Now double check with the firmware to make sure the device is
776 * ready to be used; if not, wait for recovery. */
777 for (i=0; i<10; i++) {
778 rc = eeh_slot_availability (pdn);
779 if (rc <= 0) break;
780
781 msleep (rc+100);
782 }
783 }
784
785 /* ------------------------------------------------------- */
786 /** Save and restore of PCI BARs
787 *
788 * Although firmware will set up BARs during boot, it doesn't
789 * set up device BAR's after a device reset, although it will,
790 * if requested, set up bridge configuration. Thus, we need to
791 * configure the PCI devices ourselves.
792 */
793
794 /**
795 * __restore_bars - Restore the Base Address Registers
796 * Loads the PCI configuration space base address registers,
797 * the expansion ROM base address, the latency timer, and etc.
798 * from the saved values in the device node.
799 */
800 static inline void __restore_bars (struct pci_dn *pdn)
801 {
802 int i;
803
804 if (NULL==pdn->phb) return;
805 for (i=4; i<10; i++) {
806 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
807 }
808
809 /* 12 == Expansion ROM Address */
810 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
811
812 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
813 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
814
815 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
816 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
817
818 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
819 SAVED_BYTE(PCI_LATENCY_TIMER));
820
821 /* max latency, min grant, interrupt pin and line */
822 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
823 }
824
825 /**
826 * eeh_restore_bars - restore the PCI config space info
827 *
828 * This routine performs a recursive walk to the children
829 * of this device as well.
830 */
831 void eeh_restore_bars(struct pci_dn *pdn)
832 {
833 struct device_node *dn;
834 if (!pdn)
835 return;
836
837 if (! pdn->eeh_is_bridge)
838 __restore_bars (pdn);
839
840 dn = pdn->node->child;
841 while (dn) {
842 eeh_restore_bars (PCI_DN(dn));
843 dn = dn->sibling;
844 }
845 }
846
847 /**
848 * eeh_save_bars - save device bars
849 *
850 * Save the values of the device bars. Unlike the restore
851 * routine, this routine is *not* recursive. This is because
852 * PCI devices are added individuallly; but, for the restore,
853 * an entire slot is reset at a time.
854 */
855 static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
856 {
857 int i;
858
859 if (!pdev || !pdn )
860 return;
861
862 for (i = 0; i < 16; i++)
863 pci_read_config_dword(pdev, i * 4, &pdn->config_space[i]);
864
865 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
866 pdn->eeh_is_bridge = 1;
867 }
868
869 void
870 rtas_configure_bridge(struct pci_dn *pdn)
871 {
872 int token = rtas_token ("ibm,configure-bridge");
873 int rc;
874
875 if (token == RTAS_UNKNOWN_SERVICE)
876 return;
877 rc = rtas_call(token,3,1, NULL,
878 pdn->eeh_config_addr,
879 BUID_HI(pdn->phb->buid),
880 BUID_LO(pdn->phb->buid));
881 if (rc) {
882 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
883 rc, pdn->node->full_name);
884 }
885 }
886
887 /* ------------------------------------------------------------- */
888 /* The code below deals with enabling EEH for devices during the
889 * early boot sequence. EEH must be enabled before any PCI probing
890 * can be done.
891 */
892
893 #define EEH_ENABLE 1
894
895 struct eeh_early_enable_info {
896 unsigned int buid_hi;
897 unsigned int buid_lo;
898 };
899
900 /* Enable eeh for the given device node. */
901 static void *early_enable_eeh(struct device_node *dn, void *data)
902 {
903 struct eeh_early_enable_info *info = data;
904 int ret;
905 char *status = get_property(dn, "status", NULL);
906 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
907 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
908 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
909 u32 *regs;
910 int enable;
911 struct pci_dn *pdn = PCI_DN(dn);
912
913 pdn->eeh_mode = 0;
914 pdn->eeh_check_count = 0;
915 pdn->eeh_freeze_count = 0;
916
917 if (status && strcmp(status, "ok") != 0)
918 return NULL; /* ignore devices with bad status */
919
920 /* Ignore bad nodes. */
921 if (!class_code || !vendor_id || !device_id)
922 return NULL;
923
924 /* There is nothing to check on PCI to ISA bridges */
925 if (dn->type && !strcmp(dn->type, "isa")) {
926 pdn->eeh_mode |= EEH_MODE_NOCHECK;
927 return NULL;
928 }
929
930 /*
931 * Now decide if we are going to "Disable" EEH checking
932 * for this device. We still run with the EEH hardware active,
933 * but we won't be checking for ff's. This means a driver
934 * could return bad data (very bad!), an interrupt handler could
935 * hang waiting on status bits that won't change, etc.
936 * But there are a few cases like display devices that make sense.
937 */
938 enable = 1; /* i.e. we will do checking */
939 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
940 enable = 0;
941
942 if (!enable)
943 pdn->eeh_mode |= EEH_MODE_NOCHECK;
944
945 /* Ok... see if this device supports EEH. Some do, some don't,
946 * and the only way to find out is to check each and every one. */
947 regs = (u32 *)get_property(dn, "reg", NULL);
948 if (regs) {
949 /* First register entry is addr (00BBSS00) */
950 /* Try to enable eeh */
951 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
952 regs[0], info->buid_hi, info->buid_lo,
953 EEH_ENABLE);
954
955 if (ret == 0) {
956 eeh_subsystem_enabled = 1;
957 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
958 pdn->eeh_config_addr = regs[0];
959 #ifdef DEBUG
960 printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
961 #endif
962 } else {
963
964 /* This device doesn't support EEH, but it may have an
965 * EEH parent, in which case we mark it as supported. */
966 if (dn->parent && PCI_DN(dn->parent)
967 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
968 /* Parent supports EEH. */
969 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
970 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
971 return NULL;
972 }
973 }
974 } else {
975 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
976 dn->full_name);
977 }
978
979 return NULL;
980 }
981
982 /*
983 * Initialize EEH by trying to enable it for all of the adapters in the system.
984 * As a side effect we can determine here if eeh is supported at all.
985 * Note that we leave EEH on so failed config cycles won't cause a machine
986 * check. If a user turns off EEH for a particular adapter they are really
987 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
988 * grant access to a slot if EEH isn't enabled, and so we always enable
989 * EEH for all slots/all devices.
990 *
991 * The eeh-force-off option disables EEH checking globally, for all slots.
992 * Even if force-off is set, the EEH hardware is still enabled, so that
993 * newer systems can boot.
994 */
995 void __init eeh_init(void)
996 {
997 struct device_node *phb, *np;
998 struct eeh_early_enable_info info;
999
1000 spin_lock_init(&confirm_error_lock);
1001 spin_lock_init(&slot_errbuf_lock);
1002
1003 np = of_find_node_by_path("/rtas");
1004 if (np == NULL)
1005 return;
1006
1007 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1008 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1009 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1010 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1011 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1012
1013 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1014 return;
1015
1016 eeh_error_buf_size = rtas_token("rtas-error-log-max");
1017 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1018 eeh_error_buf_size = 1024;
1019 }
1020 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1021 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1022 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1023 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1024 }
1025
1026 /* Enable EEH for all adapters. Note that eeh requires buid's */
1027 for (phb = of_find_node_by_name(NULL, "pci"); phb;
1028 phb = of_find_node_by_name(phb, "pci")) {
1029 unsigned long buid;
1030
1031 buid = get_phb_buid(phb);
1032 if (buid == 0 || PCI_DN(phb) == NULL)
1033 continue;
1034
1035 info.buid_lo = BUID_LO(buid);
1036 info.buid_hi = BUID_HI(buid);
1037 traverse_pci_devices(phb, early_enable_eeh, &info);
1038 }
1039
1040 if (eeh_subsystem_enabled)
1041 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
1042 else
1043 printk(KERN_WARNING "EEH: No capable adapters found\n");
1044 }
1045
1046 /**
1047 * eeh_add_device_early - enable EEH for the indicated device_node
1048 * @dn: device node for which to set up EEH
1049 *
1050 * This routine must be used to perform EEH initialization for PCI
1051 * devices that were added after system boot (e.g. hotplug, dlpar).
1052 * This routine must be called before any i/o is performed to the
1053 * adapter (inluding any config-space i/o).
1054 * Whether this actually enables EEH or not for this device depends
1055 * on the CEC architecture, type of the device, on earlier boot
1056 * command-line arguments & etc.
1057 */
1058 void eeh_add_device_early(struct device_node *dn)
1059 {
1060 struct pci_controller *phb;
1061 struct eeh_early_enable_info info;
1062
1063 if (!dn || !PCI_DN(dn))
1064 return;
1065 phb = PCI_DN(dn)->phb;
1066 if (NULL == phb || 0 == phb->buid) {
1067 printk(KERN_WARNING "EEH: Expected buid but found none for %s\n",
1068 dn->full_name);
1069 dump_stack();
1070 return;
1071 }
1072
1073 info.buid_hi = BUID_HI(phb->buid);
1074 info.buid_lo = BUID_LO(phb->buid);
1075 early_enable_eeh(dn, &info);
1076 }
1077 EXPORT_SYMBOL_GPL(eeh_add_device_early);
1078
1079 /**
1080 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1081 * @dev: pci device for which to set up EEH
1082 *
1083 * This routine must be used to complete EEH initialization for PCI
1084 * devices that were added after system boot (e.g. hotplug, dlpar).
1085 */
1086 void eeh_add_device_late(struct pci_dev *dev)
1087 {
1088 struct device_node *dn;
1089 struct pci_dn *pdn;
1090
1091 if (!dev || !eeh_subsystem_enabled)
1092 return;
1093
1094 #ifdef DEBUG
1095 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
1096 #endif
1097
1098 pci_dev_get (dev);
1099 dn = pci_device_to_OF_node(dev);
1100 pdn = PCI_DN(dn);
1101 pdn->pcidev = dev;
1102
1103 pci_addr_cache_insert_device (dev);
1104 eeh_save_bars(dev, pdn);
1105 }
1106 EXPORT_SYMBOL_GPL(eeh_add_device_late);
1107
1108 /**
1109 * eeh_remove_device - undo EEH setup for the indicated pci device
1110 * @dev: pci device to be removed
1111 *
1112 * This routine should be when a device is removed from a running
1113 * system (e.g. by hotplug or dlpar).
1114 */
1115 void eeh_remove_device(struct pci_dev *dev)
1116 {
1117 struct device_node *dn;
1118 if (!dev || !eeh_subsystem_enabled)
1119 return;
1120
1121 /* Unregister the device with the EEH/PCI address search system */
1122 #ifdef DEBUG
1123 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
1124 #endif
1125 pci_addr_cache_remove_device(dev);
1126
1127 dn = pci_device_to_OF_node(dev);
1128 PCI_DN(dn)->pcidev = NULL;
1129 pci_dev_put (dev);
1130 }
1131 EXPORT_SYMBOL_GPL(eeh_remove_device);
1132
1133 static int proc_eeh_show(struct seq_file *m, void *v)
1134 {
1135 unsigned int cpu;
1136 unsigned long ffs = 0, positives = 0, failures = 0;
1137 unsigned long resets = 0;
1138 unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
1139
1140 for_each_cpu(cpu) {
1141 ffs += per_cpu(total_mmio_ffs, cpu);
1142 positives += per_cpu(false_positives, cpu);
1143 failures += per_cpu(ignored_failures, cpu);
1144 resets += per_cpu(slot_resets, cpu);
1145 no_dev += per_cpu(no_device, cpu);
1146 no_dn += per_cpu(no_dn, cpu);
1147 no_cfg += per_cpu(no_cfg_addr, cpu);
1148 no_check += per_cpu(ignored_check, cpu);
1149 }
1150
1151 if (0 == eeh_subsystem_enabled) {
1152 seq_printf(m, "EEH Subsystem is globally disabled\n");
1153 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
1154 } else {
1155 seq_printf(m, "EEH Subsystem is enabled\n");
1156 seq_printf(m,
1157 "no device=%ld\n"
1158 "no device node=%ld\n"
1159 "no config address=%ld\n"
1160 "check not wanted=%ld\n"
1161 "eeh_total_mmio_ffs=%ld\n"
1162 "eeh_false_positives=%ld\n"
1163 "eeh_ignored_failures=%ld\n"
1164 "eeh_slot_resets=%ld\n",
1165 no_dev, no_dn, no_cfg, no_check,
1166 ffs, positives, failures, resets);
1167 }
1168
1169 return 0;
1170 }
1171
1172 static int proc_eeh_open(struct inode *inode, struct file *file)
1173 {
1174 return single_open(file, proc_eeh_show, NULL);
1175 }
1176
1177 static struct file_operations proc_eeh_operations = {
1178 .open = proc_eeh_open,
1179 .read = seq_read,
1180 .llseek = seq_lseek,
1181 .release = single_release,
1182 };
1183
1184 static int __init eeh_init_proc(void)
1185 {
1186 struct proc_dir_entry *e;
1187
1188 if (platform_is_pseries()) {
1189 e = create_proc_entry("ppc64/eeh", 0, NULL);
1190 if (e)
1191 e->proc_fops = &proc_eeh_operations;
1192 }
1193
1194 return 0;
1195 }
1196 __initcall(eeh_init_proc);
This page took 0.05647 seconds and 6 git commands to generate.