[PATCH] powerpc: Remove duplicate code
[deliverable/linux.git] / arch / powerpc / platforms / pseries / eeh.c
1 /*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
29 #include <asm/eeh.h>
30 #include <asm/eeh_event.h>
31 #include <asm/io.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/rtas.h>
35
36 #undef DEBUG
37
38 /** Overview:
39 * EEH, or "Extended Error Handling" is a PCI bridge technology for
40 * dealing with PCI bus errors that can't be dealt with within the
41 * usual PCI framework, except by check-stopping the CPU. Systems
42 * that are designed for high-availability/reliability cannot afford
43 * to crash due to a "mere" PCI error, thus the need for EEH.
44 * An EEH-capable bridge operates by converting a detected error
45 * into a "slot freeze", taking the PCI adapter off-line, making
46 * the slot behave, from the OS'es point of view, as if the slot
47 * were "empty": all reads return 0xff's and all writes are silently
48 * ignored. EEH slot isolation events can be triggered by parity
49 * errors on the address or data busses (e.g. during posted writes),
50 * which in turn might be caused by low voltage on the bus, dust,
51 * vibration, humidity, radioactivity or plain-old failed hardware.
52 *
53 * Note, however, that one of the leading causes of EEH slot
54 * freeze events are buggy device drivers, buggy device microcode,
55 * or buggy device hardware. This is because any attempt by the
56 * device to bus-master data to a memory address that is not
57 * assigned to the device will trigger a slot freeze. (The idea
58 * is to prevent devices-gone-wild from corrupting system memory).
59 * Buggy hardware/drivers will have a miserable time co-existing
60 * with EEH.
61 *
62 * Ideally, a PCI device driver, when suspecting that an isolation
63 * event has occured (e.g. by reading 0xff's), will then ask EEH
64 * whether this is the case, and then take appropriate steps to
65 * reset the PCI slot, the PCI device, and then resume operations.
66 * However, until that day, the checking is done here, with the
67 * eeh_check_failure() routine embedded in the MMIO macros. If
68 * the slot is found to be isolated, an "EEH Event" is synthesized
69 * and sent out for processing.
70 */
71
72 /* If a device driver keeps reading an MMIO register in an interrupt
73 * handler after a slot isolation event has occurred, we assume it
74 * is broken and panic. This sets the threshold for how many read
75 * attempts we allow before panicking.
76 */
77 #define EEH_MAX_FAILS 100000
78
79 /* RTAS tokens */
80 static int ibm_set_eeh_option;
81 static int ibm_set_slot_reset;
82 static int ibm_read_slot_reset_state;
83 static int ibm_read_slot_reset_state2;
84 static int ibm_slot_error_detail;
85 static int ibm_get_config_addr_info;
86
87 int eeh_subsystem_enabled;
88 EXPORT_SYMBOL(eeh_subsystem_enabled);
89
90 /* Lock to avoid races due to multiple reports of an error */
91 static DEFINE_SPINLOCK(confirm_error_lock);
92
93 /* Buffer for reporting slot-error-detail rtas calls */
94 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
95 static DEFINE_SPINLOCK(slot_errbuf_lock);
96 static int eeh_error_buf_size;
97
98 /* System monitoring statistics */
99 static DEFINE_PER_CPU(unsigned long, no_device);
100 static DEFINE_PER_CPU(unsigned long, no_dn);
101 static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
102 static DEFINE_PER_CPU(unsigned long, ignored_check);
103 static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
104 static DEFINE_PER_CPU(unsigned long, false_positives);
105 static DEFINE_PER_CPU(unsigned long, ignored_failures);
106 static DEFINE_PER_CPU(unsigned long, slot_resets);
107
108 /* --------------------------------------------------------------- */
109 /* Below lies the EEH event infrastructure */
110
111 void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
112 {
113 unsigned long flags;
114 int rc;
115
116 /* Log the error with the rtas logger */
117 spin_lock_irqsave(&slot_errbuf_lock, flags);
118 memset(slot_errbuf, 0, eeh_error_buf_size);
119
120 rc = rtas_call(ibm_slot_error_detail,
121 8, 1, NULL, pdn->eeh_config_addr,
122 BUID_HI(pdn->phb->buid),
123 BUID_LO(pdn->phb->buid), NULL, 0,
124 virt_to_phys(slot_errbuf),
125 eeh_error_buf_size,
126 severity);
127
128 if (rc == 0)
129 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
130 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
131 }
132
133 /**
134 * read_slot_reset_state - Read the reset state of a device node's slot
135 * @dn: device node to read
136 * @rets: array to return results in
137 */
138 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
139 {
140 int token, outputs;
141
142 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
143 token = ibm_read_slot_reset_state2;
144 outputs = 4;
145 } else {
146 token = ibm_read_slot_reset_state;
147 rets[2] = 0; /* fake PE Unavailable info */
148 outputs = 3;
149 }
150
151 return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
152 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
153 }
154
155 /**
156 * eeh_token_to_phys - convert EEH address token to phys address
157 * @token i/o token, should be address in the form 0xA....
158 */
159 static inline unsigned long eeh_token_to_phys(unsigned long token)
160 {
161 pte_t *ptep;
162 unsigned long pa;
163
164 ptep = find_linux_pte(init_mm.pgd, token);
165 if (!ptep)
166 return token;
167 pa = pte_pfn(*ptep) << PAGE_SHIFT;
168
169 return pa | (token & (PAGE_SIZE-1));
170 }
171
172 /**
173 * Return the "partitionable endpoint" (pe) under which this device lies
174 */
175 struct device_node * find_device_pe(struct device_node *dn)
176 {
177 while ((dn->parent) && PCI_DN(dn->parent) &&
178 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
179 dn = dn->parent;
180 }
181 return dn;
182 }
183
184 /** Mark all devices that are peers of this device as failed.
185 * Mark the device driver too, so that it can see the failure
186 * immediately; this is critical, since some drivers poll
187 * status registers in interrupts ... If a driver is polling,
188 * and the slot is frozen, then the driver can deadlock in
189 * an interrupt context, which is bad.
190 */
191
192 static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
193 {
194 while (dn) {
195 if (PCI_DN(dn)) {
196 PCI_DN(dn)->eeh_mode |= mode_flag;
197
198 /* Mark the pci device driver too */
199 struct pci_dev *dev = PCI_DN(dn)->pcidev;
200 if (dev && dev->driver)
201 dev->error_state = pci_channel_io_frozen;
202
203 if (dn->child)
204 __eeh_mark_slot (dn->child, mode_flag);
205 }
206 dn = dn->sibling;
207 }
208 }
209
210 void eeh_mark_slot (struct device_node *dn, int mode_flag)
211 {
212 dn = find_device_pe (dn);
213 PCI_DN(dn)->eeh_mode |= mode_flag;
214 __eeh_mark_slot (dn->child, mode_flag);
215 }
216
217 static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
218 {
219 while (dn) {
220 if (PCI_DN(dn)) {
221 PCI_DN(dn)->eeh_mode &= ~mode_flag;
222 PCI_DN(dn)->eeh_check_count = 0;
223 if (dn->child)
224 __eeh_clear_slot (dn->child, mode_flag);
225 }
226 dn = dn->sibling;
227 }
228 }
229
230 void eeh_clear_slot (struct device_node *dn, int mode_flag)
231 {
232 unsigned long flags;
233 spin_lock_irqsave(&confirm_error_lock, flags);
234 dn = find_device_pe (dn);
235 PCI_DN(dn)->eeh_mode &= ~mode_flag;
236 PCI_DN(dn)->eeh_check_count = 0;
237 __eeh_clear_slot (dn->child, mode_flag);
238 spin_unlock_irqrestore(&confirm_error_lock, flags);
239 }
240
241 /**
242 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
243 * @dn device node
244 * @dev pci device, if known
245 *
246 * Check for an EEH failure for the given device node. Call this
247 * routine if the result of a read was all 0xff's and you want to
248 * find out if this is due to an EEH slot freeze. This routine
249 * will query firmware for the EEH status.
250 *
251 * Returns 0 if there has not been an EEH error; otherwise returns
252 * a non-zero value and queues up a slot isolation event notification.
253 *
254 * It is safe to call this routine in an interrupt context.
255 */
256 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
257 {
258 int ret;
259 int rets[3];
260 unsigned long flags;
261 struct pci_dn *pdn;
262 enum pci_channel_state state;
263 int rc = 0;
264
265 __get_cpu_var(total_mmio_ffs)++;
266
267 if (!eeh_subsystem_enabled)
268 return 0;
269
270 if (!dn) {
271 __get_cpu_var(no_dn)++;
272 return 0;
273 }
274 pdn = PCI_DN(dn);
275
276 /* Access to IO BARs might get this far and still not want checking. */
277 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
278 pdn->eeh_mode & EEH_MODE_NOCHECK) {
279 __get_cpu_var(ignored_check)++;
280 #ifdef DEBUG
281 printk ("EEH:ignored check (%x) for %s %s\n",
282 pdn->eeh_mode, pci_name (dev), dn->full_name);
283 #endif
284 return 0;
285 }
286
287 if (!pdn->eeh_config_addr) {
288 __get_cpu_var(no_cfg_addr)++;
289 return 0;
290 }
291
292 /* If we already have a pending isolation event for this
293 * slot, we know it's bad already, we don't need to check.
294 * Do this checking under a lock; as multiple PCI devices
295 * in one slot might report errors simultaneously, and we
296 * only want one error recovery routine running.
297 */
298 spin_lock_irqsave(&confirm_error_lock, flags);
299 rc = 1;
300 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
301 pdn->eeh_check_count ++;
302 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
303 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
304 pdn->eeh_check_count);
305 dump_stack();
306
307 /* re-read the slot reset state */
308 if (read_slot_reset_state(pdn, rets) != 0)
309 rets[0] = -1; /* reset state unknown */
310
311 /* If we are here, then we hit an infinite loop. Stop. */
312 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
313 }
314 goto dn_unlock;
315 }
316
317 /*
318 * Now test for an EEH failure. This is VERY expensive.
319 * Note that the eeh_config_addr may be a parent device
320 * in the case of a device behind a bridge, or it may be
321 * function zero of a multi-function device.
322 * In any case they must share a common PHB.
323 */
324 ret = read_slot_reset_state(pdn, rets);
325
326 /* If the call to firmware failed, punt */
327 if (ret != 0) {
328 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
329 ret, dn->full_name);
330 __get_cpu_var(false_positives)++;
331 rc = 0;
332 goto dn_unlock;
333 }
334
335 /* If EEH is not supported on this device, punt. */
336 if (rets[1] != 1) {
337 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
338 ret, dn->full_name);
339 __get_cpu_var(false_positives)++;
340 rc = 0;
341 goto dn_unlock;
342 }
343
344 /* If not the kind of error we know about, punt. */
345 if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
346 __get_cpu_var(false_positives)++;
347 rc = 0;
348 goto dn_unlock;
349 }
350
351 /* Note that config-io to empty slots may fail;
352 * we recognize empty because they don't have children. */
353 if ((rets[0] == 5) && (dn->child == NULL)) {
354 __get_cpu_var(false_positives)++;
355 rc = 0;
356 goto dn_unlock;
357 }
358
359 __get_cpu_var(slot_resets)++;
360
361 /* Avoid repeated reports of this failure, including problems
362 * with other functions on this device, and functions under
363 * bridges. */
364 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
365 spin_unlock_irqrestore(&confirm_error_lock, flags);
366
367 state = pci_channel_io_normal;
368 if ((rets[0] == 2) || (rets[0] == 4))
369 state = pci_channel_io_frozen;
370 if (rets[0] == 5)
371 state = pci_channel_io_perm_failure;
372 eeh_send_failure_event (dn, dev, state, rets[2]);
373
374 /* Most EEH events are due to device driver bugs. Having
375 * a stack trace will help the device-driver authors figure
376 * out what happened. So print that out. */
377 if (rets[0] != 5) dump_stack();
378 return 1;
379
380 dn_unlock:
381 spin_unlock_irqrestore(&confirm_error_lock, flags);
382 return rc;
383 }
384
385 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
386
387 /**
388 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
389 * @token i/o token, should be address in the form 0xA....
390 * @val value, should be all 1's (XXX why do we need this arg??)
391 *
392 * Check for an EEH failure at the given token address. Call this
393 * routine if the result of a read was all 0xff's and you want to
394 * find out if this is due to an EEH slot freeze event. This routine
395 * will query firmware for the EEH status.
396 *
397 * Note this routine is safe to call in an interrupt context.
398 */
399 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
400 {
401 unsigned long addr;
402 struct pci_dev *dev;
403 struct device_node *dn;
404
405 /* Finding the phys addr + pci device; this is pretty quick. */
406 addr = eeh_token_to_phys((unsigned long __force) token);
407 dev = pci_get_device_by_addr(addr);
408 if (!dev) {
409 __get_cpu_var(no_device)++;
410 return val;
411 }
412
413 dn = pci_device_to_OF_node(dev);
414 eeh_dn_check_failure (dn, dev);
415
416 pci_dev_put(dev);
417 return val;
418 }
419
420 EXPORT_SYMBOL(eeh_check_failure);
421
422 /* ------------------------------------------------------------- */
423 /* The code below deals with error recovery */
424
425 /** Return negative value if a permanent error, else return
426 * a number of milliseconds to wait until the PCI slot is
427 * ready to be used.
428 */
429 static int
430 eeh_slot_availability(struct pci_dn *pdn)
431 {
432 int rc;
433 int rets[3];
434
435 rc = read_slot_reset_state(pdn, rets);
436
437 if (rc) return rc;
438
439 if (rets[1] == 0) return -1; /* EEH is not supported */
440 if (rets[0] == 0) return 0; /* Oll Korrect */
441 if (rets[0] == 5) {
442 if (rets[2] == 0) return -1; /* permanently unavailable */
443 return rets[2]; /* number of millisecs to wait */
444 }
445 return -1;
446 }
447
448 /** rtas_pci_slot_reset raises/lowers the pci #RST line
449 * state: 1/0 to raise/lower the #RST
450 *
451 * Clear the EEH-frozen condition on a slot. This routine
452 * asserts the PCI #RST line if the 'state' argument is '1',
453 * and drops the #RST line if 'state is '0'. This routine is
454 * safe to call in an interrupt context.
455 *
456 */
457
458 static void
459 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
460 {
461 int config_addr;
462 int rc;
463
464 BUG_ON (pdn==NULL);
465
466 if (!pdn->phb) {
467 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
468 pdn->node->full_name);
469 return;
470 }
471
472 /* Use PE configuration address, if present */
473 config_addr = pdn->eeh_config_addr;
474 if (pdn->eeh_pe_config_addr)
475 config_addr = pdn->eeh_pe_config_addr;
476
477 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
478 config_addr,
479 BUID_HI(pdn->phb->buid),
480 BUID_LO(pdn->phb->buid),
481 state);
482 if (rc) {
483 printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n",
484 rc, state, pdn->node->full_name);
485 return;
486 }
487 }
488
489 /** rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
490 * dn -- device node to be reset.
491 */
492
493 void
494 rtas_set_slot_reset(struct pci_dn *pdn)
495 {
496 int i, rc;
497
498 rtas_pci_slot_reset (pdn, 1);
499
500 /* The PCI bus requires that the reset be held high for at least
501 * a 100 milliseconds. We wait a bit longer 'just in case'. */
502
503 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
504 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
505
506 /* We might get hit with another EEH freeze as soon as the
507 * pci slot reset line is dropped. Make sure we don't miss
508 * these, and clear the flag now. */
509 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
510
511 rtas_pci_slot_reset (pdn, 0);
512
513 /* After a PCI slot has been reset, the PCI Express spec requires
514 * a 1.5 second idle time for the bus to stabilize, before starting
515 * up traffic. */
516 #define PCI_BUS_SETTLE_TIME_MSEC 1800
517 msleep (PCI_BUS_SETTLE_TIME_MSEC);
518
519 /* Now double check with the firmware to make sure the device is
520 * ready to be used; if not, wait for recovery. */
521 for (i=0; i<10; i++) {
522 rc = eeh_slot_availability (pdn);
523 if (rc <= 0) break;
524
525 msleep (rc+100);
526 }
527 }
528
529 /* ------------------------------------------------------- */
530 /** Save and restore of PCI BARs
531 *
532 * Although firmware will set up BARs during boot, it doesn't
533 * set up device BAR's after a device reset, although it will,
534 * if requested, set up bridge configuration. Thus, we need to
535 * configure the PCI devices ourselves.
536 */
537
538 /**
539 * __restore_bars - Restore the Base Address Registers
540 * Loads the PCI configuration space base address registers,
541 * the expansion ROM base address, the latency timer, and etc.
542 * from the saved values in the device node.
543 */
544 static inline void __restore_bars (struct pci_dn *pdn)
545 {
546 int i;
547
548 if (NULL==pdn->phb) return;
549 for (i=4; i<10; i++) {
550 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
551 }
552
553 /* 12 == Expansion ROM Address */
554 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
555
556 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
557 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
558
559 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
560 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
561
562 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
563 SAVED_BYTE(PCI_LATENCY_TIMER));
564
565 /* max latency, min grant, interrupt pin and line */
566 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
567 }
568
569 /**
570 * eeh_restore_bars - restore the PCI config space info
571 *
572 * This routine performs a recursive walk to the children
573 * of this device as well.
574 */
575 void eeh_restore_bars(struct pci_dn *pdn)
576 {
577 struct device_node *dn;
578 if (!pdn)
579 return;
580
581 if (! pdn->eeh_is_bridge)
582 __restore_bars (pdn);
583
584 dn = pdn->node->child;
585 while (dn) {
586 eeh_restore_bars (PCI_DN(dn));
587 dn = dn->sibling;
588 }
589 }
590
591 /**
592 * eeh_save_bars - save device bars
593 *
594 * Save the values of the device bars. Unlike the restore
595 * routine, this routine is *not* recursive. This is because
596 * PCI devices are added individuallly; but, for the restore,
597 * an entire slot is reset at a time.
598 */
599 void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
600 {
601 int i;
602
603 if (!pdev || !pdn )
604 return;
605
606 for (i = 0; i < 16; i++)
607 pci_read_config_dword(pdev, i * 4, &pdn->config_space[i]);
608
609 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
610 pdn->eeh_is_bridge = 1;
611 }
612
613 void
614 rtas_configure_bridge(struct pci_dn *pdn)
615 {
616 int token = rtas_token ("ibm,configure-bridge");
617 int rc;
618
619 if (token == RTAS_UNKNOWN_SERVICE)
620 return;
621 rc = rtas_call(token,3,1, NULL,
622 pdn->eeh_config_addr,
623 BUID_HI(pdn->phb->buid),
624 BUID_LO(pdn->phb->buid));
625 if (rc) {
626 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
627 rc, pdn->node->full_name);
628 }
629 }
630
631 /* ------------------------------------------------------------- */
632 /* The code below deals with enabling EEH for devices during the
633 * early boot sequence. EEH must be enabled before any PCI probing
634 * can be done.
635 */
636
637 #define EEH_ENABLE 1
638
639 struct eeh_early_enable_info {
640 unsigned int buid_hi;
641 unsigned int buid_lo;
642 };
643
644 /* Enable eeh for the given device node. */
645 static void *early_enable_eeh(struct device_node *dn, void *data)
646 {
647 struct eeh_early_enable_info *info = data;
648 int ret;
649 char *status = get_property(dn, "status", NULL);
650 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
651 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
652 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
653 u32 *regs;
654 int enable;
655 struct pci_dn *pdn = PCI_DN(dn);
656
657 pdn->eeh_mode = 0;
658 pdn->eeh_check_count = 0;
659 pdn->eeh_freeze_count = 0;
660
661 if (status && strcmp(status, "ok") != 0)
662 return NULL; /* ignore devices with bad status */
663
664 /* Ignore bad nodes. */
665 if (!class_code || !vendor_id || !device_id)
666 return NULL;
667
668 /* There is nothing to check on PCI to ISA bridges */
669 if (dn->type && !strcmp(dn->type, "isa")) {
670 pdn->eeh_mode |= EEH_MODE_NOCHECK;
671 return NULL;
672 }
673
674 /*
675 * Now decide if we are going to "Disable" EEH checking
676 * for this device. We still run with the EEH hardware active,
677 * but we won't be checking for ff's. This means a driver
678 * could return bad data (very bad!), an interrupt handler could
679 * hang waiting on status bits that won't change, etc.
680 * But there are a few cases like display devices that make sense.
681 */
682 enable = 1; /* i.e. we will do checking */
683 #if 0
684 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
685 enable = 0;
686 #endif
687
688 if (!enable)
689 pdn->eeh_mode |= EEH_MODE_NOCHECK;
690
691 /* Ok... see if this device supports EEH. Some do, some don't,
692 * and the only way to find out is to check each and every one. */
693 regs = (u32 *)get_property(dn, "reg", NULL);
694 if (regs) {
695 /* First register entry is addr (00BBSS00) */
696 /* Try to enable eeh */
697 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
698 regs[0], info->buid_hi, info->buid_lo,
699 EEH_ENABLE);
700
701 if (ret == 0) {
702 eeh_subsystem_enabled = 1;
703 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
704 pdn->eeh_config_addr = regs[0];
705
706 /* If the newer, better, ibm,get-config-addr-info is supported,
707 * then use that instead. */
708 pdn->eeh_pe_config_addr = 0;
709 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
710 unsigned int rets[2];
711 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
712 pdn->eeh_config_addr,
713 info->buid_hi, info->buid_lo,
714 0);
715 if (ret == 0)
716 pdn->eeh_pe_config_addr = rets[0];
717 }
718 #ifdef DEBUG
719 printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
720 dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
721 #endif
722 } else {
723
724 /* This device doesn't support EEH, but it may have an
725 * EEH parent, in which case we mark it as supported. */
726 if (dn->parent && PCI_DN(dn->parent)
727 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
728 /* Parent supports EEH. */
729 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
730 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
731 return NULL;
732 }
733 }
734 } else {
735 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
736 dn->full_name);
737 }
738
739 return NULL;
740 }
741
742 /*
743 * Initialize EEH by trying to enable it for all of the adapters in the system.
744 * As a side effect we can determine here if eeh is supported at all.
745 * Note that we leave EEH on so failed config cycles won't cause a machine
746 * check. If a user turns off EEH for a particular adapter they are really
747 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
748 * grant access to a slot if EEH isn't enabled, and so we always enable
749 * EEH for all slots/all devices.
750 *
751 * The eeh-force-off option disables EEH checking globally, for all slots.
752 * Even if force-off is set, the EEH hardware is still enabled, so that
753 * newer systems can boot.
754 */
755 void __init eeh_init(void)
756 {
757 struct device_node *phb, *np;
758 struct eeh_early_enable_info info;
759
760 spin_lock_init(&confirm_error_lock);
761 spin_lock_init(&slot_errbuf_lock);
762
763 np = of_find_node_by_path("/rtas");
764 if (np == NULL)
765 return;
766
767 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
768 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
769 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
770 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
771 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
772 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
773
774 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
775 return;
776
777 eeh_error_buf_size = rtas_token("rtas-error-log-max");
778 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
779 eeh_error_buf_size = 1024;
780 }
781 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
782 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
783 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
784 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
785 }
786
787 /* Enable EEH for all adapters. Note that eeh requires buid's */
788 for (phb = of_find_node_by_name(NULL, "pci"); phb;
789 phb = of_find_node_by_name(phb, "pci")) {
790 unsigned long buid;
791
792 buid = get_phb_buid(phb);
793 if (buid == 0 || PCI_DN(phb) == NULL)
794 continue;
795
796 info.buid_lo = BUID_LO(buid);
797 info.buid_hi = BUID_HI(buid);
798 traverse_pci_devices(phb, early_enable_eeh, &info);
799 }
800
801 if (eeh_subsystem_enabled)
802 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
803 else
804 printk(KERN_WARNING "EEH: No capable adapters found\n");
805 }
806
807 /**
808 * eeh_add_device_early - enable EEH for the indicated device_node
809 * @dn: device node for which to set up EEH
810 *
811 * This routine must be used to perform EEH initialization for PCI
812 * devices that were added after system boot (e.g. hotplug, dlpar).
813 * This routine must be called before any i/o is performed to the
814 * adapter (inluding any config-space i/o).
815 * Whether this actually enables EEH or not for this device depends
816 * on the CEC architecture, type of the device, on earlier boot
817 * command-line arguments & etc.
818 */
819 void eeh_add_device_early(struct device_node *dn)
820 {
821 struct pci_controller *phb;
822 struct eeh_early_enable_info info;
823
824 if (!dn || !PCI_DN(dn))
825 return;
826 phb = PCI_DN(dn)->phb;
827
828 /* USB Bus children of PCI devices will not have BUID's */
829 if (NULL == phb || 0 == phb->buid)
830 return;
831
832 info.buid_hi = BUID_HI(phb->buid);
833 info.buid_lo = BUID_LO(phb->buid);
834 early_enable_eeh(dn, &info);
835 }
836 EXPORT_SYMBOL_GPL(eeh_add_device_early);
837
838 void eeh_add_device_tree_early(struct device_node *dn)
839 {
840 struct device_node *sib;
841 for (sib = dn->child; sib; sib = sib->sibling)
842 eeh_add_device_tree_early(sib);
843 eeh_add_device_early(dn);
844 }
845 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
846
847 /**
848 * eeh_add_device_late - perform EEH initialization for the indicated pci device
849 * @dev: pci device for which to set up EEH
850 *
851 * This routine must be used to complete EEH initialization for PCI
852 * devices that were added after system boot (e.g. hotplug, dlpar).
853 */
854 void eeh_add_device_late(struct pci_dev *dev)
855 {
856 struct device_node *dn;
857 struct pci_dn *pdn;
858
859 if (!dev || !eeh_subsystem_enabled)
860 return;
861
862 #ifdef DEBUG
863 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
864 #endif
865
866 pci_dev_get (dev);
867 dn = pci_device_to_OF_node(dev);
868 pdn = PCI_DN(dn);
869 pdn->pcidev = dev;
870
871 pci_addr_cache_insert_device (dev);
872 eeh_save_bars(dev, pdn);
873 }
874 EXPORT_SYMBOL_GPL(eeh_add_device_late);
875
876 /**
877 * eeh_remove_device - undo EEH setup for the indicated pci device
878 * @dev: pci device to be removed
879 *
880 * This routine should be when a device is removed from a running
881 * system (e.g. by hotplug or dlpar).
882 */
883 void eeh_remove_device(struct pci_dev *dev)
884 {
885 struct device_node *dn;
886 if (!dev || !eeh_subsystem_enabled)
887 return;
888
889 /* Unregister the device with the EEH/PCI address search system */
890 #ifdef DEBUG
891 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
892 #endif
893 pci_addr_cache_remove_device(dev);
894
895 dn = pci_device_to_OF_node(dev);
896 PCI_DN(dn)->pcidev = NULL;
897 pci_dev_put (dev);
898 }
899 EXPORT_SYMBOL_GPL(eeh_remove_device);
900
901 void eeh_remove_bus_device(struct pci_dev *dev)
902 {
903 eeh_remove_device(dev);
904 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
905 struct pci_bus *bus = dev->subordinate;
906 struct list_head *ln;
907 if (!bus)
908 return;
909 for (ln = bus->devices.next; ln != &bus->devices; ln = ln->next) {
910 struct pci_dev *pdev = pci_dev_b(ln);
911 if (pdev)
912 eeh_remove_bus_device(pdev);
913 }
914 }
915 }
916 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
917
918 static int proc_eeh_show(struct seq_file *m, void *v)
919 {
920 unsigned int cpu;
921 unsigned long ffs = 0, positives = 0, failures = 0;
922 unsigned long resets = 0;
923 unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
924
925 for_each_cpu(cpu) {
926 ffs += per_cpu(total_mmio_ffs, cpu);
927 positives += per_cpu(false_positives, cpu);
928 failures += per_cpu(ignored_failures, cpu);
929 resets += per_cpu(slot_resets, cpu);
930 no_dev += per_cpu(no_device, cpu);
931 no_dn += per_cpu(no_dn, cpu);
932 no_cfg += per_cpu(no_cfg_addr, cpu);
933 no_check += per_cpu(ignored_check, cpu);
934 }
935
936 if (0 == eeh_subsystem_enabled) {
937 seq_printf(m, "EEH Subsystem is globally disabled\n");
938 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
939 } else {
940 seq_printf(m, "EEH Subsystem is enabled\n");
941 seq_printf(m,
942 "no device=%ld\n"
943 "no device node=%ld\n"
944 "no config address=%ld\n"
945 "check not wanted=%ld\n"
946 "eeh_total_mmio_ffs=%ld\n"
947 "eeh_false_positives=%ld\n"
948 "eeh_ignored_failures=%ld\n"
949 "eeh_slot_resets=%ld\n",
950 no_dev, no_dn, no_cfg, no_check,
951 ffs, positives, failures, resets);
952 }
953
954 return 0;
955 }
956
957 static int proc_eeh_open(struct inode *inode, struct file *file)
958 {
959 return single_open(file, proc_eeh_show, NULL);
960 }
961
962 static struct file_operations proc_eeh_operations = {
963 .open = proc_eeh_open,
964 .read = seq_read,
965 .llseek = seq_lseek,
966 .release = single_release,
967 };
968
969 static int __init eeh_init_proc(void)
970 {
971 struct proc_dir_entry *e;
972
973 if (platform_is_pseries()) {
974 e = create_proc_entry("ppc64/eeh", 0, NULL);
975 if (e)
976 e->proc_fops = &proc_eeh_operations;
977 }
978
979 return 0;
980 }
981 __initcall(eeh_init_proc);
This page took 0.059544 seconds and 6 git commands to generate.