10630eac68ec88193afa5b3887f853b68d2ed9d5
[deliverable/linux.git] / arch / powerpc / platforms / pseries / nvram.c
1 /*
2 * c 2001 PPC 64 Team, IBM Corp
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * /dev/nvram driver for PPC64
10 *
11 * This perhaps should live in drivers/char
12 */
13
14
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/kmsg_dump.h>
21 #include <linux/pstore.h>
22 #include <linux/ctype.h>
23 #include <linux/zlib.h>
24 #include <asm/uaccess.h>
25 #include <asm/nvram.h>
26 #include <asm/rtas.h>
27 #include <asm/prom.h>
28 #include <asm/machdep.h>
29
30 /* Max bytes to read/write in one go */
31 #define NVRW_CNT 0x20
32
33 /*
34 * Set oops header version to distinguish between old and new format header.
35 * lnx,oops-log partition max size is 4000, header version > 4000 will
36 * help in identifying new header.
37 */
38 #define OOPS_HDR_VERSION 5000
39
40 static unsigned int nvram_size;
41 static int nvram_fetch, nvram_store;
42 static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */
43 static DEFINE_SPINLOCK(nvram_lock);
44
45 struct err_log_info {
46 int error_type;
47 unsigned int seq_num;
48 };
49
50 struct nvram_os_partition {
51 const char *name;
52 int req_size; /* desired size, in bytes */
53 int min_size; /* minimum acceptable size (0 means req_size) */
54 long size; /* size of data portion (excluding err_log_info) */
55 long index; /* offset of data portion of partition */
56 bool os_partition; /* partition initialized by OS, not FW */
57 };
58
59 static struct nvram_os_partition rtas_log_partition = {
60 .name = "ibm,rtas-log",
61 .req_size = 2079,
62 .min_size = 1055,
63 .index = -1,
64 .os_partition = true
65 };
66
67 static struct nvram_os_partition oops_log_partition = {
68 .name = "lnx,oops-log",
69 .req_size = 4000,
70 .min_size = 2000,
71 .index = -1,
72 .os_partition = true
73 };
74
75 static const char *pseries_nvram_os_partitions[] = {
76 "ibm,rtas-log",
77 "lnx,oops-log",
78 NULL
79 };
80
81 struct oops_log_info {
82 u16 version;
83 u16 report_length;
84 u64 timestamp;
85 } __attribute__((packed));
86
87 static void oops_to_nvram(struct kmsg_dumper *dumper,
88 enum kmsg_dump_reason reason);
89
90 static struct kmsg_dumper nvram_kmsg_dumper = {
91 .dump = oops_to_nvram
92 };
93
94 /* See clobbering_unread_rtas_event() */
95 #define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */
96 static unsigned long last_unread_rtas_event; /* timestamp */
97
98 /*
99 * For capturing and compressing an oops or panic report...
100
101 * big_oops_buf[] holds the uncompressed text we're capturing.
102 *
103 * oops_buf[] holds the compressed text, preceded by a oops header.
104 * oops header has u16 holding the version of oops header (to differentiate
105 * between old and new format header) followed by u16 holding the length of
106 * the compressed* text (*Or uncompressed, if compression fails.) and u64
107 * holding the timestamp. oops_buf[] gets written to NVRAM.
108 *
109 * oops_log_info points to the header. oops_data points to the compressed text.
110 *
111 * +- oops_buf
112 * | +- oops_data
113 * v v
114 * +-----------+-----------+-----------+------------------------+
115 * | version | length | timestamp | text |
116 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) |
117 * +-----------+-----------+-----------+------------------------+
118 * ^
119 * +- oops_log_info
120 *
121 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
122 */
123 static size_t big_oops_buf_sz;
124 static char *big_oops_buf, *oops_buf;
125 static char *oops_data;
126 static size_t oops_data_sz;
127
128 /* Compression parameters */
129 #define COMPR_LEVEL 6
130 #define WINDOW_BITS 12
131 #define MEM_LEVEL 4
132 static struct z_stream_s stream;
133
134 #ifdef CONFIG_PSTORE
135 static struct nvram_os_partition of_config_partition = {
136 .name = "of-config",
137 .index = -1,
138 .os_partition = false
139 };
140
141 static struct nvram_os_partition common_partition = {
142 .name = "common",
143 .index = -1,
144 .os_partition = false
145 };
146
147 static enum pstore_type_id nvram_type_ids[] = {
148 PSTORE_TYPE_DMESG,
149 PSTORE_TYPE_PPC_RTAS,
150 PSTORE_TYPE_PPC_OF,
151 PSTORE_TYPE_PPC_COMMON,
152 -1
153 };
154 static int read_type;
155 static unsigned long last_rtas_event;
156 #endif
157
158 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
159 {
160 unsigned int i;
161 unsigned long len;
162 int done;
163 unsigned long flags;
164 char *p = buf;
165
166
167 if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
168 return -ENODEV;
169
170 if (*index >= nvram_size)
171 return 0;
172
173 i = *index;
174 if (i + count > nvram_size)
175 count = nvram_size - i;
176
177 spin_lock_irqsave(&nvram_lock, flags);
178
179 for (; count != 0; count -= len) {
180 len = count;
181 if (len > NVRW_CNT)
182 len = NVRW_CNT;
183
184 if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
185 len) != 0) || len != done) {
186 spin_unlock_irqrestore(&nvram_lock, flags);
187 return -EIO;
188 }
189
190 memcpy(p, nvram_buf, len);
191
192 p += len;
193 i += len;
194 }
195
196 spin_unlock_irqrestore(&nvram_lock, flags);
197
198 *index = i;
199 return p - buf;
200 }
201
202 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
203 {
204 unsigned int i;
205 unsigned long len;
206 int done;
207 unsigned long flags;
208 const char *p = buf;
209
210 if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
211 return -ENODEV;
212
213 if (*index >= nvram_size)
214 return 0;
215
216 i = *index;
217 if (i + count > nvram_size)
218 count = nvram_size - i;
219
220 spin_lock_irqsave(&nvram_lock, flags);
221
222 for (; count != 0; count -= len) {
223 len = count;
224 if (len > NVRW_CNT)
225 len = NVRW_CNT;
226
227 memcpy(nvram_buf, p, len);
228
229 if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
230 len) != 0) || len != done) {
231 spin_unlock_irqrestore(&nvram_lock, flags);
232 return -EIO;
233 }
234
235 p += len;
236 i += len;
237 }
238 spin_unlock_irqrestore(&nvram_lock, flags);
239
240 *index = i;
241 return p - buf;
242 }
243
244 static ssize_t pSeries_nvram_get_size(void)
245 {
246 return nvram_size ? nvram_size : -ENODEV;
247 }
248
249
250 /* nvram_write_os_partition, nvram_write_error_log
251 *
252 * We need to buffer the error logs into nvram to ensure that we have
253 * the failure information to decode. If we have a severe error there
254 * is no way to guarantee that the OS or the machine is in a state to
255 * get back to user land and write the error to disk. For example if
256 * the SCSI device driver causes a Machine Check by writing to a bad
257 * IO address, there is no way of guaranteeing that the device driver
258 * is in any state that is would also be able to write the error data
259 * captured to disk, thus we buffer it in NVRAM for analysis on the
260 * next boot.
261 *
262 * In NVRAM the partition containing the error log buffer will looks like:
263 * Header (in bytes):
264 * +-----------+----------+--------+------------+------------------+
265 * | signature | checksum | length | name | data |
266 * |0 |1 |2 3|4 15|16 length-1|
267 * +-----------+----------+--------+------------+------------------+
268 *
269 * The 'data' section would look like (in bytes):
270 * +--------------+------------+-----------------------------------+
271 * | event_logged | sequence # | error log |
272 * |0 3|4 7|8 error_log_size-1|
273 * +--------------+------------+-----------------------------------+
274 *
275 * event_logged: 0 if event has not been logged to syslog, 1 if it has
276 * sequence #: The unique sequence # for each event. (until it wraps)
277 * error log: The error log from event_scan
278 */
279 int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
280 int length, unsigned int err_type, unsigned int error_log_cnt)
281 {
282 int rc;
283 loff_t tmp_index;
284 struct err_log_info info;
285
286 if (part->index == -1) {
287 return -ESPIPE;
288 }
289
290 if (length > part->size) {
291 length = part->size;
292 }
293
294 info.error_type = err_type;
295 info.seq_num = error_log_cnt;
296
297 tmp_index = part->index;
298
299 rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
300 if (rc <= 0) {
301 pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
302 return rc;
303 }
304
305 rc = ppc_md.nvram_write(buff, length, &tmp_index);
306 if (rc <= 0) {
307 pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
308 return rc;
309 }
310
311 return 0;
312 }
313
314 int nvram_write_error_log(char * buff, int length,
315 unsigned int err_type, unsigned int error_log_cnt)
316 {
317 int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
318 err_type, error_log_cnt);
319 if (!rc) {
320 last_unread_rtas_event = get_seconds();
321 #ifdef CONFIG_PSTORE
322 last_rtas_event = get_seconds();
323 #endif
324 }
325
326 return rc;
327 }
328
329 /* nvram_read_partition
330 *
331 * Reads nvram partition for at most 'length'
332 */
333 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
334 int length, unsigned int *err_type,
335 unsigned int *error_log_cnt)
336 {
337 int rc;
338 loff_t tmp_index;
339 struct err_log_info info;
340
341 if (part->index == -1)
342 return -1;
343
344 if (length > part->size)
345 length = part->size;
346
347 tmp_index = part->index;
348
349 if (part->os_partition) {
350 rc = ppc_md.nvram_read((char *)&info,
351 sizeof(struct err_log_info),
352 &tmp_index);
353 if (rc <= 0) {
354 pr_err("%s: Failed nvram_read (%d)\n", __FUNCTION__,
355 rc);
356 return rc;
357 }
358 }
359
360 rc = ppc_md.nvram_read(buff, length, &tmp_index);
361 if (rc <= 0) {
362 pr_err("%s: Failed nvram_read (%d)\n", __FUNCTION__, rc);
363 return rc;
364 }
365
366 if (part->os_partition) {
367 *error_log_cnt = info.seq_num;
368 *err_type = info.error_type;
369 }
370
371 return 0;
372 }
373
374 /* nvram_read_error_log
375 *
376 * Reads nvram for error log for at most 'length'
377 */
378 int nvram_read_error_log(char *buff, int length,
379 unsigned int *err_type, unsigned int *error_log_cnt)
380 {
381 return nvram_read_partition(&rtas_log_partition, buff, length,
382 err_type, error_log_cnt);
383 }
384
385 /* This doesn't actually zero anything, but it sets the event_logged
386 * word to tell that this event is safely in syslog.
387 */
388 int nvram_clear_error_log(void)
389 {
390 loff_t tmp_index;
391 int clear_word = ERR_FLAG_ALREADY_LOGGED;
392 int rc;
393
394 if (rtas_log_partition.index == -1)
395 return -1;
396
397 tmp_index = rtas_log_partition.index;
398
399 rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
400 if (rc <= 0) {
401 printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
402 return rc;
403 }
404 last_unread_rtas_event = 0;
405
406 return 0;
407 }
408
409 /* pseries_nvram_init_os_partition
410 *
411 * This sets up a partition with an "OS" signature.
412 *
413 * The general strategy is the following:
414 * 1.) If a partition with the indicated name already exists...
415 * - If it's large enough, use it.
416 * - Otherwise, recycle it and keep going.
417 * 2.) Search for a free partition that is large enough.
418 * 3.) If there's not a free partition large enough, recycle any obsolete
419 * OS partitions and try again.
420 * 4.) Will first try getting a chunk that will satisfy the requested size.
421 * 5.) If a chunk of the requested size cannot be allocated, then try finding
422 * a chunk that will satisfy the minum needed.
423 *
424 * Returns 0 on success, else -1.
425 */
426 static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
427 *part)
428 {
429 loff_t p;
430 int size;
431
432 /* Scan nvram for partitions */
433 nvram_scan_partitions();
434
435 /* Look for ours */
436 p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
437
438 /* Found one but too small, remove it */
439 if (p && size < part->min_size) {
440 pr_info("nvram: Found too small %s partition,"
441 " removing it...\n", part->name);
442 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
443 p = 0;
444 }
445
446 /* Create one if we didn't find */
447 if (!p) {
448 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
449 part->req_size, part->min_size);
450 if (p == -ENOSPC) {
451 pr_info("nvram: No room to create %s partition, "
452 "deleting any obsolete OS partitions...\n",
453 part->name);
454 nvram_remove_partition(NULL, NVRAM_SIG_OS,
455 pseries_nvram_os_partitions);
456 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
457 part->req_size, part->min_size);
458 }
459 }
460
461 if (p <= 0) {
462 pr_err("nvram: Failed to find or create %s"
463 " partition, err %d\n", part->name, (int)p);
464 return -1;
465 }
466
467 part->index = p;
468 part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
469
470 return 0;
471 }
472
473 /*
474 * Are we using the ibm,rtas-log for oops/panic reports? And if so,
475 * would logging this oops/panic overwrite an RTAS event that rtas_errd
476 * hasn't had a chance to read and process? Return 1 if so, else 0.
477 *
478 * We assume that if rtas_errd hasn't read the RTAS event in
479 * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
480 */
481 static int clobbering_unread_rtas_event(void)
482 {
483 return (oops_log_partition.index == rtas_log_partition.index
484 && last_unread_rtas_event
485 && get_seconds() - last_unread_rtas_event <=
486 NVRAM_RTAS_READ_TIMEOUT);
487 }
488
489 /* Derived from logfs_compress() */
490 static int nvram_compress(const void *in, void *out, size_t inlen,
491 size_t outlen)
492 {
493 int err, ret;
494
495 ret = -EIO;
496 err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
497 MEM_LEVEL, Z_DEFAULT_STRATEGY);
498 if (err != Z_OK)
499 goto error;
500
501 stream.next_in = in;
502 stream.avail_in = inlen;
503 stream.total_in = 0;
504 stream.next_out = out;
505 stream.avail_out = outlen;
506 stream.total_out = 0;
507
508 err = zlib_deflate(&stream, Z_FINISH);
509 if (err != Z_STREAM_END)
510 goto error;
511
512 err = zlib_deflateEnd(&stream);
513 if (err != Z_OK)
514 goto error;
515
516 if (stream.total_out >= stream.total_in)
517 goto error;
518
519 ret = stream.total_out;
520 error:
521 return ret;
522 }
523
524 /* Compress the text from big_oops_buf into oops_buf. */
525 static int zip_oops(size_t text_len)
526 {
527 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
528 int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
529 oops_data_sz);
530 if (zipped_len < 0) {
531 pr_err("nvram: compression failed; returned %d\n", zipped_len);
532 pr_err("nvram: logging uncompressed oops/panic report\n");
533 return -1;
534 }
535 oops_hdr->version = OOPS_HDR_VERSION;
536 oops_hdr->report_length = (u16) zipped_len;
537 oops_hdr->timestamp = get_seconds();
538 return 0;
539 }
540
541 #ifdef CONFIG_PSTORE
542 static int nvram_pstore_open(struct pstore_info *psi)
543 {
544 /* Reset the iterator to start reading partitions again */
545 read_type = -1;
546 return 0;
547 }
548
549 /**
550 * nvram_pstore_write - pstore write callback for nvram
551 * @type: Type of message logged
552 * @reason: reason behind dump (oops/panic)
553 * @id: identifier to indicate the write performed
554 * @part: pstore writes data to registered buffer in parts,
555 * part number will indicate the same.
556 * @count: Indicates oops count
557 * @compressed: Flag to indicate the log is compressed
558 * @size: number of bytes written to the registered buffer
559 * @psi: registered pstore_info structure
560 *
561 * Called by pstore_dump() when an oops or panic report is logged in the
562 * printk buffer.
563 * Returns 0 on successful write.
564 */
565 static int nvram_pstore_write(enum pstore_type_id type,
566 enum kmsg_dump_reason reason,
567 u64 *id, unsigned int part, int count,
568 bool compressed, size_t size,
569 struct pstore_info *psi)
570 {
571 int rc;
572 unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
573 struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
574
575 /* part 1 has the recent messages from printk buffer */
576 if (part > 1 || type != PSTORE_TYPE_DMESG ||
577 clobbering_unread_rtas_event())
578 return -1;
579
580 oops_hdr->version = OOPS_HDR_VERSION;
581 oops_hdr->report_length = (u16) size;
582 oops_hdr->timestamp = get_seconds();
583
584 if (compressed)
585 err_type = ERR_TYPE_KERNEL_PANIC_GZ;
586
587 rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
588 (int) (sizeof(*oops_hdr) + size), err_type, count);
589
590 if (rc != 0)
591 return rc;
592
593 *id = part;
594 return 0;
595 }
596
597 /*
598 * Reads the oops/panic report, rtas, of-config and common partition.
599 * Returns the length of the data we read from each partition.
600 * Returns 0 if we've been called before.
601 */
602 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
603 int *count, struct timespec *time, char **buf,
604 bool *compressed, struct pstore_info *psi)
605 {
606 struct oops_log_info *oops_hdr;
607 unsigned int err_type, id_no, size = 0;
608 struct nvram_os_partition *part = NULL;
609 char *buff = NULL;
610 int sig = 0;
611 loff_t p;
612
613 read_type++;
614
615 switch (nvram_type_ids[read_type]) {
616 case PSTORE_TYPE_DMESG:
617 part = &oops_log_partition;
618 *type = PSTORE_TYPE_DMESG;
619 break;
620 case PSTORE_TYPE_PPC_RTAS:
621 part = &rtas_log_partition;
622 *type = PSTORE_TYPE_PPC_RTAS;
623 time->tv_sec = last_rtas_event;
624 time->tv_nsec = 0;
625 break;
626 case PSTORE_TYPE_PPC_OF:
627 sig = NVRAM_SIG_OF;
628 part = &of_config_partition;
629 *type = PSTORE_TYPE_PPC_OF;
630 *id = PSTORE_TYPE_PPC_OF;
631 time->tv_sec = 0;
632 time->tv_nsec = 0;
633 break;
634 case PSTORE_TYPE_PPC_COMMON:
635 sig = NVRAM_SIG_SYS;
636 part = &common_partition;
637 *type = PSTORE_TYPE_PPC_COMMON;
638 *id = PSTORE_TYPE_PPC_COMMON;
639 time->tv_sec = 0;
640 time->tv_nsec = 0;
641 break;
642 default:
643 return 0;
644 }
645
646 if (!part->os_partition) {
647 p = nvram_find_partition(part->name, sig, &size);
648 if (p <= 0) {
649 pr_err("nvram: Failed to find partition %s, "
650 "err %d\n", part->name, (int)p);
651 return 0;
652 }
653 part->index = p;
654 part->size = size;
655 }
656
657 buff = kmalloc(part->size, GFP_KERNEL);
658
659 if (!buff)
660 return -ENOMEM;
661
662 if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
663 kfree(buff);
664 return 0;
665 }
666
667 *count = 0;
668
669 if (part->os_partition)
670 *id = id_no;
671
672 if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
673 size_t length, hdr_size;
674
675 oops_hdr = (struct oops_log_info *)buff;
676 if (oops_hdr->version < OOPS_HDR_VERSION) {
677 /* Old format oops header had 2-byte record size */
678 hdr_size = sizeof(u16);
679 length = oops_hdr->version;
680 time->tv_sec = 0;
681 time->tv_nsec = 0;
682 } else {
683 hdr_size = sizeof(*oops_hdr);
684 length = oops_hdr->report_length;
685 time->tv_sec = oops_hdr->timestamp;
686 time->tv_nsec = 0;
687 }
688 *buf = kmalloc(length, GFP_KERNEL);
689 if (*buf == NULL)
690 return -ENOMEM;
691 memcpy(*buf, buff + hdr_size, length);
692 kfree(buff);
693
694 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
695 *compressed = true;
696 else
697 *compressed = false;
698 return length;
699 }
700
701 *buf = buff;
702 return part->size;
703 }
704
705 static struct pstore_info nvram_pstore_info = {
706 .owner = THIS_MODULE,
707 .name = "nvram",
708 .open = nvram_pstore_open,
709 .read = nvram_pstore_read,
710 .write = nvram_pstore_write,
711 };
712
713 static int nvram_pstore_init(void)
714 {
715 int rc = 0;
716
717 nvram_pstore_info.buf = oops_data;
718 nvram_pstore_info.bufsize = oops_data_sz;
719
720 rc = pstore_register(&nvram_pstore_info);
721 if (rc != 0)
722 pr_err("nvram: pstore_register() failed, defaults to "
723 "kmsg_dump; returned %d\n", rc);
724
725 return rc;
726 }
727 #else
728 static int nvram_pstore_init(void)
729 {
730 return -1;
731 }
732 #endif
733
734 static void __init nvram_init_oops_partition(int rtas_partition_exists)
735 {
736 int rc;
737
738 rc = pseries_nvram_init_os_partition(&oops_log_partition);
739 if (rc != 0) {
740 if (!rtas_partition_exists)
741 return;
742 pr_notice("nvram: Using %s partition to log both"
743 " RTAS errors and oops/panic reports\n",
744 rtas_log_partition.name);
745 memcpy(&oops_log_partition, &rtas_log_partition,
746 sizeof(rtas_log_partition));
747 }
748 oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
749 if (!oops_buf) {
750 pr_err("nvram: No memory for %s partition\n",
751 oops_log_partition.name);
752 return;
753 }
754 oops_data = oops_buf + sizeof(struct oops_log_info);
755 oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
756
757 rc = nvram_pstore_init();
758
759 if (!rc)
760 return;
761
762 /*
763 * Figure compression (preceded by elimination of each line's <n>
764 * severity prefix) will reduce the oops/panic report to at most
765 * 45% of its original size.
766 */
767 big_oops_buf_sz = (oops_data_sz * 100) / 45;
768 big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
769 if (big_oops_buf) {
770 stream.workspace = kmalloc(zlib_deflate_workspacesize(
771 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
772 if (!stream.workspace) {
773 pr_err("nvram: No memory for compression workspace; "
774 "skipping compression of %s partition data\n",
775 oops_log_partition.name);
776 kfree(big_oops_buf);
777 big_oops_buf = NULL;
778 }
779 } else {
780 pr_err("No memory for uncompressed %s data; "
781 "skipping compression\n", oops_log_partition.name);
782 stream.workspace = NULL;
783 }
784
785 rc = kmsg_dump_register(&nvram_kmsg_dumper);
786 if (rc != 0) {
787 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
788 kfree(oops_buf);
789 kfree(big_oops_buf);
790 kfree(stream.workspace);
791 }
792 }
793
794 static int __init pseries_nvram_init_log_partitions(void)
795 {
796 int rc;
797
798 rc = pseries_nvram_init_os_partition(&rtas_log_partition);
799 nvram_init_oops_partition(rc == 0);
800 return 0;
801 }
802 machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
803
804 int __init pSeries_nvram_init(void)
805 {
806 struct device_node *nvram;
807 const unsigned int *nbytes_p;
808 unsigned int proplen;
809
810 nvram = of_find_node_by_type(NULL, "nvram");
811 if (nvram == NULL)
812 return -ENODEV;
813
814 nbytes_p = of_get_property(nvram, "#bytes", &proplen);
815 if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
816 of_node_put(nvram);
817 return -EIO;
818 }
819
820 nvram_size = *nbytes_p;
821
822 nvram_fetch = rtas_token("nvram-fetch");
823 nvram_store = rtas_token("nvram-store");
824 printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
825 of_node_put(nvram);
826
827 ppc_md.nvram_read = pSeries_nvram_read;
828 ppc_md.nvram_write = pSeries_nvram_write;
829 ppc_md.nvram_size = pSeries_nvram_get_size;
830
831 return 0;
832 }
833
834
835 /*
836 * This is our kmsg_dump callback, called after an oops or panic report
837 * has been written to the printk buffer. We want to capture as much
838 * of the printk buffer as possible. First, capture as much as we can
839 * that we think will compress sufficiently to fit in the lnx,oops-log
840 * partition. If that's too much, go back and capture uncompressed text.
841 */
842 static void oops_to_nvram(struct kmsg_dumper *dumper,
843 enum kmsg_dump_reason reason)
844 {
845 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
846 static unsigned int oops_count = 0;
847 static bool panicking = false;
848 static DEFINE_SPINLOCK(lock);
849 unsigned long flags;
850 size_t text_len;
851 unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
852 int rc = -1;
853
854 switch (reason) {
855 case KMSG_DUMP_RESTART:
856 case KMSG_DUMP_HALT:
857 case KMSG_DUMP_POWEROFF:
858 /* These are almost always orderly shutdowns. */
859 return;
860 case KMSG_DUMP_OOPS:
861 break;
862 case KMSG_DUMP_PANIC:
863 panicking = true;
864 break;
865 case KMSG_DUMP_EMERG:
866 if (panicking)
867 /* Panic report already captured. */
868 return;
869 break;
870 default:
871 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
872 __FUNCTION__, (int) reason);
873 return;
874 }
875
876 if (clobbering_unread_rtas_event())
877 return;
878
879 if (!spin_trylock_irqsave(&lock, flags))
880 return;
881
882 if (big_oops_buf) {
883 kmsg_dump_get_buffer(dumper, false,
884 big_oops_buf, big_oops_buf_sz, &text_len);
885 rc = zip_oops(text_len);
886 }
887 if (rc != 0) {
888 kmsg_dump_rewind(dumper);
889 kmsg_dump_get_buffer(dumper, false,
890 oops_data, oops_data_sz, &text_len);
891 err_type = ERR_TYPE_KERNEL_PANIC;
892 oops_hdr->version = OOPS_HDR_VERSION;
893 oops_hdr->report_length = (u16) text_len;
894 oops_hdr->timestamp = get_seconds();
895 }
896
897 (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
898 (int) (sizeof(*oops_hdr) + oops_hdr->report_length), err_type,
899 ++oops_count);
900
901 spin_unlock_irqrestore(&lock, flags);
902 }
This page took 0.083917 seconds and 5 git commands to generate.