Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / arch / x86 / kernel / apic_64.c
1 /*
2 * Local APIC handling, local APIC timers
3 *
4 * (c) 1999, 2000 Ingo Molnar <mingo@redhat.com>
5 *
6 * Fixes
7 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
8 * thanks to Eric Gilmore
9 * and Rolf G. Tews
10 * for testing these extensively.
11 * Maciej W. Rozycki : Various updates and fixes.
12 * Mikael Pettersson : Power Management for UP-APIC.
13 * Pavel Machek and
14 * Mikael Pettersson : PM converted to driver model.
15 */
16
17 #include <linux/init.h>
18
19 #include <linux/mm.h>
20 #include <linux/delay.h>
21 #include <linux/bootmem.h>
22 #include <linux/interrupt.h>
23 #include <linux/mc146818rtc.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/sysdev.h>
26 #include <linux/ioport.h>
27 #include <linux/clockchips.h>
28 #include <linux/acpi_pmtmr.h>
29 #include <linux/module.h>
30
31 #include <asm/atomic.h>
32 #include <asm/smp.h>
33 #include <asm/mtrr.h>
34 #include <asm/mpspec.h>
35 #include <asm/hpet.h>
36 #include <asm/pgalloc.h>
37 #include <asm/nmi.h>
38 #include <asm/idle.h>
39 #include <asm/proto.h>
40 #include <asm/timex.h>
41 #include <asm/apic.h>
42
43 #include <mach_ipi.h>
44 #include <mach_apic.h>
45
46 int disable_apic_timer __cpuinitdata;
47 static int apic_calibrate_pmtmr __initdata;
48 int disable_apic;
49
50 /* Local APIC timer works in C2 */
51 int local_apic_timer_c2_ok;
52 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
53
54 /*
55 * Debug level, exported for io_apic.c
56 */
57 int apic_verbosity;
58
59 static struct resource lapic_resource = {
60 .name = "Local APIC",
61 .flags = IORESOURCE_MEM | IORESOURCE_BUSY,
62 };
63
64 static unsigned int calibration_result;
65
66 static int lapic_next_event(unsigned long delta,
67 struct clock_event_device *evt);
68 static void lapic_timer_setup(enum clock_event_mode mode,
69 struct clock_event_device *evt);
70 static void lapic_timer_broadcast(cpumask_t mask);
71 static void apic_pm_activate(void);
72
73 static struct clock_event_device lapic_clockevent = {
74 .name = "lapic",
75 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT
76 | CLOCK_EVT_FEAT_C3STOP | CLOCK_EVT_FEAT_DUMMY,
77 .shift = 32,
78 .set_mode = lapic_timer_setup,
79 .set_next_event = lapic_next_event,
80 .broadcast = lapic_timer_broadcast,
81 .rating = 100,
82 .irq = -1,
83 };
84 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
85
86 static unsigned long apic_phys;
87
88 unsigned long mp_lapic_addr;
89
90 DEFINE_PER_CPU(u16, x86_bios_cpu_apicid) = BAD_APICID;
91 EXPORT_PER_CPU_SYMBOL(x86_bios_cpu_apicid);
92
93 unsigned int __cpuinitdata maxcpus = NR_CPUS;
94 /*
95 * Get the LAPIC version
96 */
97 static inline int lapic_get_version(void)
98 {
99 return GET_APIC_VERSION(apic_read(APIC_LVR));
100 }
101
102 /*
103 * Check, if the APIC is integrated or a seperate chip
104 */
105 static inline int lapic_is_integrated(void)
106 {
107 return 1;
108 }
109
110 /*
111 * Check, whether this is a modern or a first generation APIC
112 */
113 static int modern_apic(void)
114 {
115 /* AMD systems use old APIC versions, so check the CPU */
116 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
117 boot_cpu_data.x86 >= 0xf)
118 return 1;
119 return lapic_get_version() >= 0x14;
120 }
121
122 void apic_wait_icr_idle(void)
123 {
124 while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
125 cpu_relax();
126 }
127
128 u32 safe_apic_wait_icr_idle(void)
129 {
130 u32 send_status;
131 int timeout;
132
133 timeout = 0;
134 do {
135 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
136 if (!send_status)
137 break;
138 udelay(100);
139 } while (timeout++ < 1000);
140
141 return send_status;
142 }
143
144 /**
145 * enable_NMI_through_LVT0 - enable NMI through local vector table 0
146 */
147 void __cpuinit enable_NMI_through_LVT0(void)
148 {
149 unsigned int v;
150
151 /* unmask and set to NMI */
152 v = APIC_DM_NMI;
153 apic_write(APIC_LVT0, v);
154 }
155
156 /**
157 * lapic_get_maxlvt - get the maximum number of local vector table entries
158 */
159 int lapic_get_maxlvt(void)
160 {
161 unsigned int v, maxlvt;
162
163 v = apic_read(APIC_LVR);
164 maxlvt = GET_APIC_MAXLVT(v);
165 return maxlvt;
166 }
167
168 /*
169 * This function sets up the local APIC timer, with a timeout of
170 * 'clocks' APIC bus clock. During calibration we actually call
171 * this function twice on the boot CPU, once with a bogus timeout
172 * value, second time for real. The other (noncalibrating) CPUs
173 * call this function only once, with the real, calibrated value.
174 *
175 * We do reads before writes even if unnecessary, to get around the
176 * P5 APIC double write bug.
177 */
178
179 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
180 {
181 unsigned int lvtt_value, tmp_value;
182
183 lvtt_value = LOCAL_TIMER_VECTOR;
184 if (!oneshot)
185 lvtt_value |= APIC_LVT_TIMER_PERIODIC;
186 if (!irqen)
187 lvtt_value |= APIC_LVT_MASKED;
188
189 apic_write(APIC_LVTT, lvtt_value);
190
191 /*
192 * Divide PICLK by 16
193 */
194 tmp_value = apic_read(APIC_TDCR);
195 apic_write(APIC_TDCR, (tmp_value
196 & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE))
197 | APIC_TDR_DIV_16);
198
199 if (!oneshot)
200 apic_write(APIC_TMICT, clocks);
201 }
202
203 /*
204 * Setup extended LVT, AMD specific (K8, family 10h)
205 *
206 * Vector mappings are hard coded. On K8 only offset 0 (APIC500) and
207 * MCE interrupts are supported. Thus MCE offset must be set to 0.
208 */
209
210 #define APIC_EILVT_LVTOFF_MCE 0
211 #define APIC_EILVT_LVTOFF_IBS 1
212
213 static void setup_APIC_eilvt(u8 lvt_off, u8 vector, u8 msg_type, u8 mask)
214 {
215 unsigned long reg = (lvt_off << 4) + APIC_EILVT0;
216 unsigned int v = (mask << 16) | (msg_type << 8) | vector;
217
218 apic_write(reg, v);
219 }
220
221 u8 setup_APIC_eilvt_mce(u8 vector, u8 msg_type, u8 mask)
222 {
223 setup_APIC_eilvt(APIC_EILVT_LVTOFF_MCE, vector, msg_type, mask);
224 return APIC_EILVT_LVTOFF_MCE;
225 }
226
227 u8 setup_APIC_eilvt_ibs(u8 vector, u8 msg_type, u8 mask)
228 {
229 setup_APIC_eilvt(APIC_EILVT_LVTOFF_IBS, vector, msg_type, mask);
230 return APIC_EILVT_LVTOFF_IBS;
231 }
232
233 /*
234 * Program the next event, relative to now
235 */
236 static int lapic_next_event(unsigned long delta,
237 struct clock_event_device *evt)
238 {
239 apic_write(APIC_TMICT, delta);
240 return 0;
241 }
242
243 /*
244 * Setup the lapic timer in periodic or oneshot mode
245 */
246 static void lapic_timer_setup(enum clock_event_mode mode,
247 struct clock_event_device *evt)
248 {
249 unsigned long flags;
250 unsigned int v;
251
252 /* Lapic used as dummy for broadcast ? */
253 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
254 return;
255
256 local_irq_save(flags);
257
258 switch (mode) {
259 case CLOCK_EVT_MODE_PERIODIC:
260 case CLOCK_EVT_MODE_ONESHOT:
261 __setup_APIC_LVTT(calibration_result,
262 mode != CLOCK_EVT_MODE_PERIODIC, 1);
263 break;
264 case CLOCK_EVT_MODE_UNUSED:
265 case CLOCK_EVT_MODE_SHUTDOWN:
266 v = apic_read(APIC_LVTT);
267 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
268 apic_write(APIC_LVTT, v);
269 break;
270 case CLOCK_EVT_MODE_RESUME:
271 /* Nothing to do here */
272 break;
273 }
274
275 local_irq_restore(flags);
276 }
277
278 /*
279 * Local APIC timer broadcast function
280 */
281 static void lapic_timer_broadcast(cpumask_t mask)
282 {
283 #ifdef CONFIG_SMP
284 send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
285 #endif
286 }
287
288 /*
289 * Setup the local APIC timer for this CPU. Copy the initilized values
290 * of the boot CPU and register the clock event in the framework.
291 */
292 static void setup_APIC_timer(void)
293 {
294 struct clock_event_device *levt = &__get_cpu_var(lapic_events);
295
296 memcpy(levt, &lapic_clockevent, sizeof(*levt));
297 levt->cpumask = cpumask_of_cpu(smp_processor_id());
298
299 clockevents_register_device(levt);
300 }
301
302 /*
303 * In this function we calibrate APIC bus clocks to the external
304 * timer. Unfortunately we cannot use jiffies and the timer irq
305 * to calibrate, since some later bootup code depends on getting
306 * the first irq? Ugh.
307 *
308 * We want to do the calibration only once since we
309 * want to have local timer irqs syncron. CPUs connected
310 * by the same APIC bus have the very same bus frequency.
311 * And we want to have irqs off anyways, no accidental
312 * APIC irq that way.
313 */
314
315 #define TICK_COUNT 100000000
316
317 static void __init calibrate_APIC_clock(void)
318 {
319 unsigned apic, apic_start;
320 unsigned long tsc, tsc_start;
321 int result;
322
323 local_irq_disable();
324
325 /*
326 * Put whatever arbitrary (but long enough) timeout
327 * value into the APIC clock, we just want to get the
328 * counter running for calibration.
329 *
330 * No interrupt enable !
331 */
332 __setup_APIC_LVTT(250000000, 0, 0);
333
334 apic_start = apic_read(APIC_TMCCT);
335 #ifdef CONFIG_X86_PM_TIMER
336 if (apic_calibrate_pmtmr && pmtmr_ioport) {
337 pmtimer_wait(5000); /* 5ms wait */
338 apic = apic_read(APIC_TMCCT);
339 result = (apic_start - apic) * 1000L / 5;
340 } else
341 #endif
342 {
343 rdtscll(tsc_start);
344
345 do {
346 apic = apic_read(APIC_TMCCT);
347 rdtscll(tsc);
348 } while ((tsc - tsc_start) < TICK_COUNT &&
349 (apic_start - apic) < TICK_COUNT);
350
351 result = (apic_start - apic) * 1000L * tsc_khz /
352 (tsc - tsc_start);
353 }
354
355 local_irq_enable();
356
357 printk(KERN_DEBUG "APIC timer calibration result %d\n", result);
358
359 printk(KERN_INFO "Detected %d.%03d MHz APIC timer.\n",
360 result / 1000 / 1000, result / 1000 % 1000);
361
362 /* Calculate the scaled math multiplication factor */
363 lapic_clockevent.mult = div_sc(result, NSEC_PER_SEC, 32);
364 lapic_clockevent.max_delta_ns =
365 clockevent_delta2ns(0x7FFFFF, &lapic_clockevent);
366 lapic_clockevent.min_delta_ns =
367 clockevent_delta2ns(0xF, &lapic_clockevent);
368
369 calibration_result = result / HZ;
370 }
371
372 /*
373 * Setup the boot APIC
374 *
375 * Calibrate and verify the result.
376 */
377 void __init setup_boot_APIC_clock(void)
378 {
379 /*
380 * The local apic timer can be disabled via the kernel commandline.
381 * Register the lapic timer as a dummy clock event source on SMP
382 * systems, so the broadcast mechanism is used. On UP systems simply
383 * ignore it.
384 */
385 if (disable_apic_timer) {
386 printk(KERN_INFO "Disabling APIC timer\n");
387 /* No broadcast on UP ! */
388 if (num_possible_cpus() > 1) {
389 lapic_clockevent.mult = 1;
390 setup_APIC_timer();
391 }
392 return;
393 }
394
395 printk(KERN_INFO "Using local APIC timer interrupts.\n");
396 calibrate_APIC_clock();
397
398 /*
399 * Do a sanity check on the APIC calibration result
400 */
401 if (calibration_result < (1000000 / HZ)) {
402 printk(KERN_WARNING
403 "APIC frequency too slow, disabling apic timer\n");
404 /* No broadcast on UP ! */
405 if (num_possible_cpus() > 1)
406 setup_APIC_timer();
407 return;
408 }
409
410 /*
411 * If nmi_watchdog is set to IO_APIC, we need the
412 * PIT/HPET going. Otherwise register lapic as a dummy
413 * device.
414 */
415 if (nmi_watchdog != NMI_IO_APIC)
416 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
417 else
418 printk(KERN_WARNING "APIC timer registered as dummy,"
419 " due to nmi_watchdog=1!\n");
420
421 setup_APIC_timer();
422 }
423
424 /*
425 * AMD C1E enabled CPUs have a real nasty problem: Some BIOSes set the
426 * C1E flag only in the secondary CPU, so when we detect the wreckage
427 * we already have enabled the boot CPU local apic timer. Check, if
428 * disable_apic_timer is set and the DUMMY flag is cleared. If yes,
429 * set the DUMMY flag again and force the broadcast mode in the
430 * clockevents layer.
431 */
432 void __cpuinit check_boot_apic_timer_broadcast(void)
433 {
434 if (!disable_apic_timer ||
435 (lapic_clockevent.features & CLOCK_EVT_FEAT_DUMMY))
436 return;
437
438 printk(KERN_INFO "AMD C1E detected late. Force timer broadcast.\n");
439 lapic_clockevent.features |= CLOCK_EVT_FEAT_DUMMY;
440
441 local_irq_enable();
442 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
443 &boot_cpu_physical_apicid);
444 local_irq_disable();
445 }
446
447 void __cpuinit setup_secondary_APIC_clock(void)
448 {
449 check_boot_apic_timer_broadcast();
450 setup_APIC_timer();
451 }
452
453 /*
454 * The guts of the apic timer interrupt
455 */
456 static void local_apic_timer_interrupt(void)
457 {
458 int cpu = smp_processor_id();
459 struct clock_event_device *evt = &per_cpu(lapic_events, cpu);
460
461 /*
462 * Normally we should not be here till LAPIC has been initialized but
463 * in some cases like kdump, its possible that there is a pending LAPIC
464 * timer interrupt from previous kernel's context and is delivered in
465 * new kernel the moment interrupts are enabled.
466 *
467 * Interrupts are enabled early and LAPIC is setup much later, hence
468 * its possible that when we get here evt->event_handler is NULL.
469 * Check for event_handler being NULL and discard the interrupt as
470 * spurious.
471 */
472 if (!evt->event_handler) {
473 printk(KERN_WARNING
474 "Spurious LAPIC timer interrupt on cpu %d\n", cpu);
475 /* Switch it off */
476 lapic_timer_setup(CLOCK_EVT_MODE_SHUTDOWN, evt);
477 return;
478 }
479
480 /*
481 * the NMI deadlock-detector uses this.
482 */
483 add_pda(apic_timer_irqs, 1);
484
485 evt->event_handler(evt);
486 }
487
488 /*
489 * Local APIC timer interrupt. This is the most natural way for doing
490 * local interrupts, but local timer interrupts can be emulated by
491 * broadcast interrupts too. [in case the hw doesn't support APIC timers]
492 *
493 * [ if a single-CPU system runs an SMP kernel then we call the local
494 * interrupt as well. Thus we cannot inline the local irq ... ]
495 */
496 void smp_apic_timer_interrupt(struct pt_regs *regs)
497 {
498 struct pt_regs *old_regs = set_irq_regs(regs);
499
500 /*
501 * NOTE! We'd better ACK the irq immediately,
502 * because timer handling can be slow.
503 */
504 ack_APIC_irq();
505 /*
506 * update_process_times() expects us to have done irq_enter().
507 * Besides, if we don't timer interrupts ignore the global
508 * interrupt lock, which is the WrongThing (tm) to do.
509 */
510 exit_idle();
511 irq_enter();
512 local_apic_timer_interrupt();
513 irq_exit();
514 set_irq_regs(old_regs);
515 }
516
517 int setup_profiling_timer(unsigned int multiplier)
518 {
519 return -EINVAL;
520 }
521
522
523 /*
524 * Local APIC start and shutdown
525 */
526
527 /**
528 * clear_local_APIC - shutdown the local APIC
529 *
530 * This is called, when a CPU is disabled and before rebooting, so the state of
531 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
532 * leftovers during boot.
533 */
534 void clear_local_APIC(void)
535 {
536 int maxlvt = lapic_get_maxlvt();
537 u32 v;
538
539 /* APIC hasn't been mapped yet */
540 if (!apic_phys)
541 return;
542
543 maxlvt = lapic_get_maxlvt();
544 /*
545 * Masking an LVT entry can trigger a local APIC error
546 * if the vector is zero. Mask LVTERR first to prevent this.
547 */
548 if (maxlvt >= 3) {
549 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
550 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
551 }
552 /*
553 * Careful: we have to set masks only first to deassert
554 * any level-triggered sources.
555 */
556 v = apic_read(APIC_LVTT);
557 apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
558 v = apic_read(APIC_LVT0);
559 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
560 v = apic_read(APIC_LVT1);
561 apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
562 if (maxlvt >= 4) {
563 v = apic_read(APIC_LVTPC);
564 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
565 }
566
567 /*
568 * Clean APIC state for other OSs:
569 */
570 apic_write(APIC_LVTT, APIC_LVT_MASKED);
571 apic_write(APIC_LVT0, APIC_LVT_MASKED);
572 apic_write(APIC_LVT1, APIC_LVT_MASKED);
573 if (maxlvt >= 3)
574 apic_write(APIC_LVTERR, APIC_LVT_MASKED);
575 if (maxlvt >= 4)
576 apic_write(APIC_LVTPC, APIC_LVT_MASKED);
577 apic_write(APIC_ESR, 0);
578 apic_read(APIC_ESR);
579 }
580
581 /**
582 * disable_local_APIC - clear and disable the local APIC
583 */
584 void disable_local_APIC(void)
585 {
586 unsigned int value;
587
588 clear_local_APIC();
589
590 /*
591 * Disable APIC (implies clearing of registers
592 * for 82489DX!).
593 */
594 value = apic_read(APIC_SPIV);
595 value &= ~APIC_SPIV_APIC_ENABLED;
596 apic_write(APIC_SPIV, value);
597 }
598
599 void lapic_shutdown(void)
600 {
601 unsigned long flags;
602
603 if (!cpu_has_apic)
604 return;
605
606 local_irq_save(flags);
607
608 disable_local_APIC();
609
610 local_irq_restore(flags);
611 }
612
613 /*
614 * This is to verify that we're looking at a real local APIC.
615 * Check these against your board if the CPUs aren't getting
616 * started for no apparent reason.
617 */
618 int __init verify_local_APIC(void)
619 {
620 unsigned int reg0, reg1;
621
622 /*
623 * The version register is read-only in a real APIC.
624 */
625 reg0 = apic_read(APIC_LVR);
626 apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg0);
627 apic_write(APIC_LVR, reg0 ^ APIC_LVR_MASK);
628 reg1 = apic_read(APIC_LVR);
629 apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg1);
630
631 /*
632 * The two version reads above should print the same
633 * numbers. If the second one is different, then we
634 * poke at a non-APIC.
635 */
636 if (reg1 != reg0)
637 return 0;
638
639 /*
640 * Check if the version looks reasonably.
641 */
642 reg1 = GET_APIC_VERSION(reg0);
643 if (reg1 == 0x00 || reg1 == 0xff)
644 return 0;
645 reg1 = lapic_get_maxlvt();
646 if (reg1 < 0x02 || reg1 == 0xff)
647 return 0;
648
649 /*
650 * The ID register is read/write in a real APIC.
651 */
652 reg0 = read_apic_id();
653 apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg0);
654 apic_write(APIC_ID, reg0 ^ APIC_ID_MASK);
655 reg1 = read_apic_id();
656 apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg1);
657 apic_write(APIC_ID, reg0);
658 if (reg1 != (reg0 ^ APIC_ID_MASK))
659 return 0;
660
661 /*
662 * The next two are just to see if we have sane values.
663 * They're only really relevant if we're in Virtual Wire
664 * compatibility mode, but most boxes are anymore.
665 */
666 reg0 = apic_read(APIC_LVT0);
667 apic_printk(APIC_DEBUG, "Getting LVT0: %x\n", reg0);
668 reg1 = apic_read(APIC_LVT1);
669 apic_printk(APIC_DEBUG, "Getting LVT1: %x\n", reg1);
670
671 return 1;
672 }
673
674 /**
675 * sync_Arb_IDs - synchronize APIC bus arbitration IDs
676 */
677 void __init sync_Arb_IDs(void)
678 {
679 /* Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 */
680 if (modern_apic())
681 return;
682
683 /*
684 * Wait for idle.
685 */
686 apic_wait_icr_idle();
687
688 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
689 apic_write(APIC_ICR, APIC_DEST_ALLINC | APIC_INT_LEVELTRIG
690 | APIC_DM_INIT);
691 }
692
693 /*
694 * An initial setup of the virtual wire mode.
695 */
696 void __init init_bsp_APIC(void)
697 {
698 unsigned int value;
699
700 /*
701 * Don't do the setup now if we have a SMP BIOS as the
702 * through-I/O-APIC virtual wire mode might be active.
703 */
704 if (smp_found_config || !cpu_has_apic)
705 return;
706
707 value = apic_read(APIC_LVR);
708
709 /*
710 * Do not trust the local APIC being empty at bootup.
711 */
712 clear_local_APIC();
713
714 /*
715 * Enable APIC.
716 */
717 value = apic_read(APIC_SPIV);
718 value &= ~APIC_VECTOR_MASK;
719 value |= APIC_SPIV_APIC_ENABLED;
720 value |= APIC_SPIV_FOCUS_DISABLED;
721 value |= SPURIOUS_APIC_VECTOR;
722 apic_write(APIC_SPIV, value);
723
724 /*
725 * Set up the virtual wire mode.
726 */
727 apic_write(APIC_LVT0, APIC_DM_EXTINT);
728 value = APIC_DM_NMI;
729 apic_write(APIC_LVT1, value);
730 }
731
732 /**
733 * setup_local_APIC - setup the local APIC
734 */
735 void __cpuinit setup_local_APIC(void)
736 {
737 unsigned int value;
738 int i, j;
739
740 preempt_disable();
741 value = apic_read(APIC_LVR);
742
743 BUILD_BUG_ON((SPURIOUS_APIC_VECTOR & 0x0f) != 0x0f);
744
745 /*
746 * Double-check whether this APIC is really registered.
747 * This is meaningless in clustered apic mode, so we skip it.
748 */
749 if (!apic_id_registered())
750 BUG();
751
752 /*
753 * Intel recommends to set DFR, LDR and TPR before enabling
754 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel
755 * document number 292116). So here it goes...
756 */
757 init_apic_ldr();
758
759 /*
760 * Set Task Priority to 'accept all'. We never change this
761 * later on.
762 */
763 value = apic_read(APIC_TASKPRI);
764 value &= ~APIC_TPRI_MASK;
765 apic_write(APIC_TASKPRI, value);
766
767 /*
768 * After a crash, we no longer service the interrupts and a pending
769 * interrupt from previous kernel might still have ISR bit set.
770 *
771 * Most probably by now CPU has serviced that pending interrupt and
772 * it might not have done the ack_APIC_irq() because it thought,
773 * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it
774 * does not clear the ISR bit and cpu thinks it has already serivced
775 * the interrupt. Hence a vector might get locked. It was noticed
776 * for timer irq (vector 0x31). Issue an extra EOI to clear ISR.
777 */
778 for (i = APIC_ISR_NR - 1; i >= 0; i--) {
779 value = apic_read(APIC_ISR + i*0x10);
780 for (j = 31; j >= 0; j--) {
781 if (value & (1<<j))
782 ack_APIC_irq();
783 }
784 }
785
786 /*
787 * Now that we are all set up, enable the APIC
788 */
789 value = apic_read(APIC_SPIV);
790 value &= ~APIC_VECTOR_MASK;
791 /*
792 * Enable APIC
793 */
794 value |= APIC_SPIV_APIC_ENABLED;
795
796 /* We always use processor focus */
797
798 /*
799 * Set spurious IRQ vector
800 */
801 value |= SPURIOUS_APIC_VECTOR;
802 apic_write(APIC_SPIV, value);
803
804 /*
805 * Set up LVT0, LVT1:
806 *
807 * set up through-local-APIC on the BP's LINT0. This is not
808 * strictly necessary in pure symmetric-IO mode, but sometimes
809 * we delegate interrupts to the 8259A.
810 */
811 /*
812 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
813 */
814 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
815 if (!smp_processor_id() && !value) {
816 value = APIC_DM_EXTINT;
817 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n",
818 smp_processor_id());
819 } else {
820 value = APIC_DM_EXTINT | APIC_LVT_MASKED;
821 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n",
822 smp_processor_id());
823 }
824 apic_write(APIC_LVT0, value);
825
826 /*
827 * only the BP should see the LINT1 NMI signal, obviously.
828 */
829 if (!smp_processor_id())
830 value = APIC_DM_NMI;
831 else
832 value = APIC_DM_NMI | APIC_LVT_MASKED;
833 apic_write(APIC_LVT1, value);
834 preempt_enable();
835 }
836
837 void __cpuinit lapic_setup_esr(void)
838 {
839 unsigned maxlvt = lapic_get_maxlvt();
840
841 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR);
842 /*
843 * spec says clear errors after enabling vector.
844 */
845 if (maxlvt > 3)
846 apic_write(APIC_ESR, 0);
847 }
848
849 void __cpuinit end_local_APIC_setup(void)
850 {
851 lapic_setup_esr();
852 nmi_watchdog_default();
853 setup_apic_nmi_watchdog(NULL);
854 apic_pm_activate();
855 }
856
857 /*
858 * Detect and enable local APICs on non-SMP boards.
859 * Original code written by Keir Fraser.
860 * On AMD64 we trust the BIOS - if it says no APIC it is likely
861 * not correctly set up (usually the APIC timer won't work etc.)
862 */
863 static int __init detect_init_APIC(void)
864 {
865 if (!cpu_has_apic) {
866 printk(KERN_INFO "No local APIC present\n");
867 return -1;
868 }
869
870 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
871 boot_cpu_physical_apicid = 0;
872 return 0;
873 }
874
875 void __init early_init_lapic_mapping(void)
876 {
877 unsigned long apic_phys;
878
879 /*
880 * If no local APIC can be found then go out
881 * : it means there is no mpatable and MADT
882 */
883 if (!smp_found_config)
884 return;
885
886 apic_phys = mp_lapic_addr;
887
888 set_fixmap_nocache(FIX_APIC_BASE, apic_phys);
889 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
890 APIC_BASE, apic_phys);
891
892 /*
893 * Fetch the APIC ID of the BSP in case we have a
894 * default configuration (or the MP table is broken).
895 */
896 boot_cpu_physical_apicid = GET_APIC_ID(read_apic_id());
897 }
898
899 /**
900 * init_apic_mappings - initialize APIC mappings
901 */
902 void __init init_apic_mappings(void)
903 {
904 /*
905 * If no local APIC can be found then set up a fake all
906 * zeroes page to simulate the local APIC and another
907 * one for the IO-APIC.
908 */
909 if (!smp_found_config && detect_init_APIC()) {
910 apic_phys = (unsigned long) alloc_bootmem_pages(PAGE_SIZE);
911 apic_phys = __pa(apic_phys);
912 } else
913 apic_phys = mp_lapic_addr;
914
915 set_fixmap_nocache(FIX_APIC_BASE, apic_phys);
916 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
917 APIC_BASE, apic_phys);
918
919 /*
920 * Fetch the APIC ID of the BSP in case we have a
921 * default configuration (or the MP table is broken).
922 */
923 boot_cpu_physical_apicid = GET_APIC_ID(read_apic_id());
924 }
925
926 /*
927 * This initializes the IO-APIC and APIC hardware if this is
928 * a UP kernel.
929 */
930 int __init APIC_init_uniprocessor(void)
931 {
932 if (disable_apic) {
933 printk(KERN_INFO "Apic disabled\n");
934 return -1;
935 }
936 if (!cpu_has_apic) {
937 disable_apic = 1;
938 printk(KERN_INFO "Apic disabled by BIOS\n");
939 return -1;
940 }
941
942 verify_local_APIC();
943
944 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_physical_apicid);
945 apic_write(APIC_ID, SET_APIC_ID(boot_cpu_physical_apicid));
946
947 setup_local_APIC();
948
949 /*
950 * Now enable IO-APICs, actually call clear_IO_APIC
951 * We need clear_IO_APIC before enabling vector on BP
952 */
953 if (!skip_ioapic_setup && nr_ioapics)
954 enable_IO_APIC();
955
956 end_local_APIC_setup();
957
958 if (smp_found_config && !skip_ioapic_setup && nr_ioapics)
959 setup_IO_APIC();
960 else
961 nr_ioapics = 0;
962 setup_boot_APIC_clock();
963 check_nmi_watchdog();
964 return 0;
965 }
966
967 /*
968 * Local APIC interrupts
969 */
970
971 /*
972 * This interrupt should _never_ happen with our APIC/SMP architecture
973 */
974 asmlinkage void smp_spurious_interrupt(void)
975 {
976 unsigned int v;
977 exit_idle();
978 irq_enter();
979 /*
980 * Check if this really is a spurious interrupt and ACK it
981 * if it is a vectored one. Just in case...
982 * Spurious interrupts should not be ACKed.
983 */
984 v = apic_read(APIC_ISR + ((SPURIOUS_APIC_VECTOR & ~0x1f) >> 1));
985 if (v & (1 << (SPURIOUS_APIC_VECTOR & 0x1f)))
986 ack_APIC_irq();
987
988 add_pda(irq_spurious_count, 1);
989 irq_exit();
990 }
991
992 /*
993 * This interrupt should never happen with our APIC/SMP architecture
994 */
995 asmlinkage void smp_error_interrupt(void)
996 {
997 unsigned int v, v1;
998
999 exit_idle();
1000 irq_enter();
1001 /* First tickle the hardware, only then report what went on. -- REW */
1002 v = apic_read(APIC_ESR);
1003 apic_write(APIC_ESR, 0);
1004 v1 = apic_read(APIC_ESR);
1005 ack_APIC_irq();
1006 atomic_inc(&irq_err_count);
1007
1008 /* Here is what the APIC error bits mean:
1009 0: Send CS error
1010 1: Receive CS error
1011 2: Send accept error
1012 3: Receive accept error
1013 4: Reserved
1014 5: Send illegal vector
1015 6: Received illegal vector
1016 7: Illegal register address
1017 */
1018 printk(KERN_DEBUG "APIC error on CPU%d: %02x(%02x)\n",
1019 smp_processor_id(), v , v1);
1020 irq_exit();
1021 }
1022
1023 void disconnect_bsp_APIC(int virt_wire_setup)
1024 {
1025 /* Go back to Virtual Wire compatibility mode */
1026 unsigned long value;
1027
1028 /* For the spurious interrupt use vector F, and enable it */
1029 value = apic_read(APIC_SPIV);
1030 value &= ~APIC_VECTOR_MASK;
1031 value |= APIC_SPIV_APIC_ENABLED;
1032 value |= 0xf;
1033 apic_write(APIC_SPIV, value);
1034
1035 if (!virt_wire_setup) {
1036 /*
1037 * For LVT0 make it edge triggered, active high,
1038 * external and enabled
1039 */
1040 value = apic_read(APIC_LVT0);
1041 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
1042 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
1043 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
1044 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
1045 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
1046 apic_write(APIC_LVT0, value);
1047 } else {
1048 /* Disable LVT0 */
1049 apic_write(APIC_LVT0, APIC_LVT_MASKED);
1050 }
1051
1052 /* For LVT1 make it edge triggered, active high, nmi and enabled */
1053 value = apic_read(APIC_LVT1);
1054 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
1055 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
1056 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
1057 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
1058 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
1059 apic_write(APIC_LVT1, value);
1060 }
1061
1062 void __cpuinit generic_processor_info(int apicid, int version)
1063 {
1064 int cpu;
1065 cpumask_t tmp_map;
1066
1067 if (num_processors >= NR_CPUS) {
1068 printk(KERN_WARNING "WARNING: NR_CPUS limit of %i reached."
1069 " Processor ignored.\n", NR_CPUS);
1070 return;
1071 }
1072
1073 if (num_processors >= maxcpus) {
1074 printk(KERN_WARNING "WARNING: maxcpus limit of %i reached."
1075 " Processor ignored.\n", maxcpus);
1076 return;
1077 }
1078
1079 num_processors++;
1080 cpus_complement(tmp_map, cpu_present_map);
1081 cpu = first_cpu(tmp_map);
1082
1083 physid_set(apicid, phys_cpu_present_map);
1084 if (apicid == boot_cpu_physical_apicid) {
1085 /*
1086 * x86_bios_cpu_apicid is required to have processors listed
1087 * in same order as logical cpu numbers. Hence the first
1088 * entry is BSP, and so on.
1089 */
1090 cpu = 0;
1091 }
1092 /* are we being called early in kernel startup? */
1093 if (x86_cpu_to_apicid_early_ptr) {
1094 u16 *cpu_to_apicid = x86_cpu_to_apicid_early_ptr;
1095 u16 *bios_cpu_apicid = x86_bios_cpu_apicid_early_ptr;
1096
1097 cpu_to_apicid[cpu] = apicid;
1098 bios_cpu_apicid[cpu] = apicid;
1099 } else {
1100 per_cpu(x86_cpu_to_apicid, cpu) = apicid;
1101 per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
1102 }
1103
1104 cpu_set(cpu, cpu_possible_map);
1105 cpu_set(cpu, cpu_present_map);
1106 }
1107
1108 /*
1109 * Power management
1110 */
1111 #ifdef CONFIG_PM
1112
1113 static struct {
1114 /* 'active' is true if the local APIC was enabled by us and
1115 not the BIOS; this signifies that we are also responsible
1116 for disabling it before entering apm/acpi suspend */
1117 int active;
1118 /* r/w apic fields */
1119 unsigned int apic_id;
1120 unsigned int apic_taskpri;
1121 unsigned int apic_ldr;
1122 unsigned int apic_dfr;
1123 unsigned int apic_spiv;
1124 unsigned int apic_lvtt;
1125 unsigned int apic_lvtpc;
1126 unsigned int apic_lvt0;
1127 unsigned int apic_lvt1;
1128 unsigned int apic_lvterr;
1129 unsigned int apic_tmict;
1130 unsigned int apic_tdcr;
1131 unsigned int apic_thmr;
1132 } apic_pm_state;
1133
1134 static int lapic_suspend(struct sys_device *dev, pm_message_t state)
1135 {
1136 unsigned long flags;
1137 int maxlvt;
1138
1139 if (!apic_pm_state.active)
1140 return 0;
1141
1142 maxlvt = lapic_get_maxlvt();
1143
1144 apic_pm_state.apic_id = read_apic_id();
1145 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
1146 apic_pm_state.apic_ldr = apic_read(APIC_LDR);
1147 apic_pm_state.apic_dfr = apic_read(APIC_DFR);
1148 apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
1149 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
1150 if (maxlvt >= 4)
1151 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
1152 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
1153 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
1154 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
1155 apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
1156 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
1157 #ifdef CONFIG_X86_MCE_INTEL
1158 if (maxlvt >= 5)
1159 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
1160 #endif
1161 local_irq_save(flags);
1162 disable_local_APIC();
1163 local_irq_restore(flags);
1164 return 0;
1165 }
1166
1167 static int lapic_resume(struct sys_device *dev)
1168 {
1169 unsigned int l, h;
1170 unsigned long flags;
1171 int maxlvt;
1172
1173 if (!apic_pm_state.active)
1174 return 0;
1175
1176 maxlvt = lapic_get_maxlvt();
1177
1178 local_irq_save(flags);
1179 rdmsr(MSR_IA32_APICBASE, l, h);
1180 l &= ~MSR_IA32_APICBASE_BASE;
1181 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
1182 wrmsr(MSR_IA32_APICBASE, l, h);
1183 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
1184 apic_write(APIC_ID, apic_pm_state.apic_id);
1185 apic_write(APIC_DFR, apic_pm_state.apic_dfr);
1186 apic_write(APIC_LDR, apic_pm_state.apic_ldr);
1187 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
1188 apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
1189 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
1190 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
1191 #ifdef CONFIG_X86_MCE_INTEL
1192 if (maxlvt >= 5)
1193 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
1194 #endif
1195 if (maxlvt >= 4)
1196 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
1197 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
1198 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
1199 apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
1200 apic_write(APIC_ESR, 0);
1201 apic_read(APIC_ESR);
1202 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
1203 apic_write(APIC_ESR, 0);
1204 apic_read(APIC_ESR);
1205 local_irq_restore(flags);
1206 return 0;
1207 }
1208
1209 static struct sysdev_class lapic_sysclass = {
1210 .name = "lapic",
1211 .resume = lapic_resume,
1212 .suspend = lapic_suspend,
1213 };
1214
1215 static struct sys_device device_lapic = {
1216 .id = 0,
1217 .cls = &lapic_sysclass,
1218 };
1219
1220 static void __cpuinit apic_pm_activate(void)
1221 {
1222 apic_pm_state.active = 1;
1223 }
1224
1225 static int __init init_lapic_sysfs(void)
1226 {
1227 int error;
1228
1229 if (!cpu_has_apic)
1230 return 0;
1231 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */
1232
1233 error = sysdev_class_register(&lapic_sysclass);
1234 if (!error)
1235 error = sysdev_register(&device_lapic);
1236 return error;
1237 }
1238 device_initcall(init_lapic_sysfs);
1239
1240 #else /* CONFIG_PM */
1241
1242 static void apic_pm_activate(void) { }
1243
1244 #endif /* CONFIG_PM */
1245
1246 /*
1247 * apic_is_clustered_box() -- Check if we can expect good TSC
1248 *
1249 * Thus far, the major user of this is IBM's Summit2 series:
1250 *
1251 * Clustered boxes may have unsynced TSC problems if they are
1252 * multi-chassis. Use available data to take a good guess.
1253 * If in doubt, go HPET.
1254 */
1255 __cpuinit int apic_is_clustered_box(void)
1256 {
1257 int i, clusters, zeros;
1258 unsigned id;
1259 u16 *bios_cpu_apicid;
1260 DECLARE_BITMAP(clustermap, NUM_APIC_CLUSTERS);
1261
1262 /*
1263 * there is not this kind of box with AMD CPU yet.
1264 * Some AMD box with quadcore cpu and 8 sockets apicid
1265 * will be [4, 0x23] or [8, 0x27] could be thought to
1266 * vsmp box still need checking...
1267 */
1268 if ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && !is_vsmp_box())
1269 return 0;
1270
1271 bios_cpu_apicid = x86_bios_cpu_apicid_early_ptr;
1272 bitmap_zero(clustermap, NUM_APIC_CLUSTERS);
1273
1274 for (i = 0; i < NR_CPUS; i++) {
1275 /* are we being called early in kernel startup? */
1276 if (bios_cpu_apicid) {
1277 id = bios_cpu_apicid[i];
1278 }
1279 else if (i < nr_cpu_ids) {
1280 if (cpu_present(i))
1281 id = per_cpu(x86_bios_cpu_apicid, i);
1282 else
1283 continue;
1284 }
1285 else
1286 break;
1287
1288 if (id != BAD_APICID)
1289 __set_bit(APIC_CLUSTERID(id), clustermap);
1290 }
1291
1292 /* Problem: Partially populated chassis may not have CPUs in some of
1293 * the APIC clusters they have been allocated. Only present CPUs have
1294 * x86_bios_cpu_apicid entries, thus causing zeroes in the bitmap.
1295 * Since clusters are allocated sequentially, count zeros only if
1296 * they are bounded by ones.
1297 */
1298 clusters = 0;
1299 zeros = 0;
1300 for (i = 0; i < NUM_APIC_CLUSTERS; i++) {
1301 if (test_bit(i, clustermap)) {
1302 clusters += 1 + zeros;
1303 zeros = 0;
1304 } else
1305 ++zeros;
1306 }
1307
1308 /* ScaleMP vSMPowered boxes have one cluster per board and TSCs are
1309 * not guaranteed to be synced between boards
1310 */
1311 if (is_vsmp_box() && clusters > 1)
1312 return 1;
1313
1314 /*
1315 * If clusters > 2, then should be multi-chassis.
1316 * May have to revisit this when multi-core + hyperthreaded CPUs come
1317 * out, but AFAIK this will work even for them.
1318 */
1319 return (clusters > 2);
1320 }
1321
1322 /*
1323 * APIC command line parameters
1324 */
1325 static int __init apic_set_verbosity(char *str)
1326 {
1327 if (str == NULL) {
1328 skip_ioapic_setup = 0;
1329 ioapic_force = 1;
1330 return 0;
1331 }
1332 if (strcmp("debug", str) == 0)
1333 apic_verbosity = APIC_DEBUG;
1334 else if (strcmp("verbose", str) == 0)
1335 apic_verbosity = APIC_VERBOSE;
1336 else {
1337 printk(KERN_WARNING "APIC Verbosity level %s not recognised"
1338 " use apic=verbose or apic=debug\n", str);
1339 return -EINVAL;
1340 }
1341
1342 return 0;
1343 }
1344 early_param("apic", apic_set_verbosity);
1345
1346 static __init int setup_disableapic(char *str)
1347 {
1348 disable_apic = 1;
1349 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1350 return 0;
1351 }
1352 early_param("disableapic", setup_disableapic);
1353
1354 /* same as disableapic, for compatibility */
1355 static __init int setup_nolapic(char *str)
1356 {
1357 return setup_disableapic(str);
1358 }
1359 early_param("nolapic", setup_nolapic);
1360
1361 static int __init parse_lapic_timer_c2_ok(char *arg)
1362 {
1363 local_apic_timer_c2_ok = 1;
1364 return 0;
1365 }
1366 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
1367
1368 static __init int setup_noapictimer(char *str)
1369 {
1370 if (str[0] != ' ' && str[0] != 0)
1371 return 0;
1372 disable_apic_timer = 1;
1373 return 1;
1374 }
1375 __setup("noapictimer", setup_noapictimer);
1376
1377 static __init int setup_apicpmtimer(char *s)
1378 {
1379 apic_calibrate_pmtmr = 1;
1380 notsc_setup(NULL);
1381 return 0;
1382 }
1383 __setup("apicpmtimer", setup_apicpmtimer);
1384
1385 static int __init lapic_insert_resource(void)
1386 {
1387 if (!apic_phys)
1388 return -1;
1389
1390 /* Put local APIC into the resource map. */
1391 lapic_resource.start = apic_phys;
1392 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
1393 insert_resource(&iomem_resource, &lapic_resource);
1394
1395 return 0;
1396 }
1397
1398 /*
1399 * need call insert after e820_reserve_resources()
1400 * that is using request_resource
1401 */
1402 late_initcall(lapic_insert_resource);
This page took 0.057997 seconds and 6 git commands to generate.