7e600c1962db0c77d2dcb66559b75aff79672580
[deliverable/linux.git] / arch / x86 / mm / pageattr.c
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15
16 #include <asm/e820.h>
17 #include <asm/processor.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 #include <asm/setup.h>
21 #include <asm/uaccess.h>
22 #include <asm/pgalloc.h>
23 #include <asm/proto.h>
24 #include <asm/pat.h>
25
26 /*
27 * The current flushing context - we pass it instead of 5 arguments:
28 */
29 struct cpa_data {
30 unsigned long *vaddr;
31 pgprot_t mask_set;
32 pgprot_t mask_clr;
33 int numpages;
34 int flags;
35 unsigned long pfn;
36 unsigned force_split : 1;
37 int curpage;
38 struct page **pages;
39 };
40
41 /*
42 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
43 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
44 * entries change the page attribute in parallel to some other cpu
45 * splitting a large page entry along with changing the attribute.
46 */
47 static DEFINE_SPINLOCK(cpa_lock);
48
49 #define CPA_FLUSHTLB 1
50 #define CPA_ARRAY 2
51 #define CPA_PAGES_ARRAY 4
52
53 #ifdef CONFIG_PROC_FS
54 static unsigned long direct_pages_count[PG_LEVEL_NUM];
55
56 void update_page_count(int level, unsigned long pages)
57 {
58 unsigned long flags;
59
60 /* Protect against CPA */
61 spin_lock_irqsave(&pgd_lock, flags);
62 direct_pages_count[level] += pages;
63 spin_unlock_irqrestore(&pgd_lock, flags);
64 }
65
66 static void split_page_count(int level)
67 {
68 direct_pages_count[level]--;
69 direct_pages_count[level - 1] += PTRS_PER_PTE;
70 }
71
72 void arch_report_meminfo(struct seq_file *m)
73 {
74 seq_printf(m, "DirectMap4k: %8lu kB\n",
75 direct_pages_count[PG_LEVEL_4K] << 2);
76 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
77 seq_printf(m, "DirectMap2M: %8lu kB\n",
78 direct_pages_count[PG_LEVEL_2M] << 11);
79 #else
80 seq_printf(m, "DirectMap4M: %8lu kB\n",
81 direct_pages_count[PG_LEVEL_2M] << 12);
82 #endif
83 #ifdef CONFIG_X86_64
84 if (direct_gbpages)
85 seq_printf(m, "DirectMap1G: %8lu kB\n",
86 direct_pages_count[PG_LEVEL_1G] << 20);
87 #endif
88 }
89 #else
90 static inline void split_page_count(int level) { }
91 #endif
92
93 #ifdef CONFIG_X86_64
94
95 static inline unsigned long highmap_start_pfn(void)
96 {
97 return __pa(_text) >> PAGE_SHIFT;
98 }
99
100 static inline unsigned long highmap_end_pfn(void)
101 {
102 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
103 }
104
105 #endif
106
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
109 #else
110 # define debug_pagealloc 0
111 #endif
112
113 static inline int
114 within(unsigned long addr, unsigned long start, unsigned long end)
115 {
116 return addr >= start && addr < end;
117 }
118
119 /*
120 * Flushing functions
121 */
122
123 /**
124 * clflush_cache_range - flush a cache range with clflush
125 * @addr: virtual start address
126 * @size: number of bytes to flush
127 *
128 * clflush is an unordered instruction which needs fencing with mfence
129 * to avoid ordering issues.
130 */
131 void clflush_cache_range(void *vaddr, unsigned int size)
132 {
133 void *vend = vaddr + size - 1;
134
135 mb();
136
137 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
138 clflush(vaddr);
139 /*
140 * Flush any possible final partial cacheline:
141 */
142 clflush(vend);
143
144 mb();
145 }
146
147 static void __cpa_flush_all(void *arg)
148 {
149 unsigned long cache = (unsigned long)arg;
150
151 /*
152 * Flush all to work around Errata in early athlons regarding
153 * large page flushing.
154 */
155 __flush_tlb_all();
156
157 if (cache && boot_cpu_data.x86 >= 4)
158 wbinvd();
159 }
160
161 static void cpa_flush_all(unsigned long cache)
162 {
163 BUG_ON(irqs_disabled());
164
165 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
166 }
167
168 static void __cpa_flush_range(void *arg)
169 {
170 /*
171 * We could optimize that further and do individual per page
172 * tlb invalidates for a low number of pages. Caveat: we must
173 * flush the high aliases on 64bit as well.
174 */
175 __flush_tlb_all();
176 }
177
178 static void cpa_flush_range(unsigned long start, int numpages, int cache)
179 {
180 unsigned int i, level;
181 unsigned long addr;
182
183 BUG_ON(irqs_disabled());
184 WARN_ON(PAGE_ALIGN(start) != start);
185
186 on_each_cpu(__cpa_flush_range, NULL, 1);
187
188 if (!cache)
189 return;
190
191 /*
192 * We only need to flush on one CPU,
193 * clflush is a MESI-coherent instruction that
194 * will cause all other CPUs to flush the same
195 * cachelines:
196 */
197 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
198 pte_t *pte = lookup_address(addr, &level);
199
200 /*
201 * Only flush present addresses:
202 */
203 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
204 clflush_cache_range((void *) addr, PAGE_SIZE);
205 }
206 }
207
208 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
209 int in_flags, struct page **pages)
210 {
211 unsigned int i, level;
212 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
213
214 BUG_ON(irqs_disabled());
215
216 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
217
218 if (!cache || do_wbinvd)
219 return;
220
221 /*
222 * We only need to flush on one CPU,
223 * clflush is a MESI-coherent instruction that
224 * will cause all other CPUs to flush the same
225 * cachelines:
226 */
227 for (i = 0; i < numpages; i++) {
228 unsigned long addr;
229 pte_t *pte;
230
231 if (in_flags & CPA_PAGES_ARRAY)
232 addr = (unsigned long)page_address(pages[i]);
233 else
234 addr = start[i];
235
236 pte = lookup_address(addr, &level);
237
238 /*
239 * Only flush present addresses:
240 */
241 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
242 clflush_cache_range((void *)addr, PAGE_SIZE);
243 }
244 }
245
246 /*
247 * Certain areas of memory on x86 require very specific protection flags,
248 * for example the BIOS area or kernel text. Callers don't always get this
249 * right (again, ioremap() on BIOS memory is not uncommon) so this function
250 * checks and fixes these known static required protection bits.
251 */
252 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
253 unsigned long pfn)
254 {
255 pgprot_t forbidden = __pgprot(0);
256
257 /*
258 * The BIOS area between 640k and 1Mb needs to be executable for
259 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
260 */
261 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
262 pgprot_val(forbidden) |= _PAGE_NX;
263
264 /*
265 * The kernel text needs to be executable for obvious reasons
266 * Does not cover __inittext since that is gone later on. On
267 * 64bit we do not enforce !NX on the low mapping
268 */
269 if (within(address, (unsigned long)_text, (unsigned long)_etext))
270 pgprot_val(forbidden) |= _PAGE_NX;
271
272 /*
273 * The .rodata section needs to be read-only. Using the pfn
274 * catches all aliases.
275 */
276 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
277 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
278 pgprot_val(forbidden) |= _PAGE_RW;
279
280 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
281
282 return prot;
283 }
284
285 /*
286 * Lookup the page table entry for a virtual address. Return a pointer
287 * to the entry and the level of the mapping.
288 *
289 * Note: We return pud and pmd either when the entry is marked large
290 * or when the present bit is not set. Otherwise we would return a
291 * pointer to a nonexisting mapping.
292 */
293 pte_t *lookup_address(unsigned long address, unsigned int *level)
294 {
295 pgd_t *pgd = pgd_offset_k(address);
296 pud_t *pud;
297 pmd_t *pmd;
298
299 *level = PG_LEVEL_NONE;
300
301 if (pgd_none(*pgd))
302 return NULL;
303
304 pud = pud_offset(pgd, address);
305 if (pud_none(*pud))
306 return NULL;
307
308 *level = PG_LEVEL_1G;
309 if (pud_large(*pud) || !pud_present(*pud))
310 return (pte_t *)pud;
311
312 pmd = pmd_offset(pud, address);
313 if (pmd_none(*pmd))
314 return NULL;
315
316 *level = PG_LEVEL_2M;
317 if (pmd_large(*pmd) || !pmd_present(*pmd))
318 return (pte_t *)pmd;
319
320 *level = PG_LEVEL_4K;
321
322 return pte_offset_kernel(pmd, address);
323 }
324 EXPORT_SYMBOL_GPL(lookup_address);
325
326 /*
327 * Set the new pmd in all the pgds we know about:
328 */
329 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
330 {
331 /* change init_mm */
332 set_pte_atomic(kpte, pte);
333 #ifdef CONFIG_X86_32
334 if (!SHARED_KERNEL_PMD) {
335 struct page *page;
336
337 list_for_each_entry(page, &pgd_list, lru) {
338 pgd_t *pgd;
339 pud_t *pud;
340 pmd_t *pmd;
341
342 pgd = (pgd_t *)page_address(page) + pgd_index(address);
343 pud = pud_offset(pgd, address);
344 pmd = pmd_offset(pud, address);
345 set_pte_atomic((pte_t *)pmd, pte);
346 }
347 }
348 #endif
349 }
350
351 static int
352 try_preserve_large_page(pte_t *kpte, unsigned long address,
353 struct cpa_data *cpa)
354 {
355 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
356 pte_t new_pte, old_pte, *tmp;
357 pgprot_t old_prot, new_prot;
358 int i, do_split = 1;
359 unsigned int level;
360
361 if (cpa->force_split)
362 return 1;
363
364 spin_lock_irqsave(&pgd_lock, flags);
365 /*
366 * Check for races, another CPU might have split this page
367 * up already:
368 */
369 tmp = lookup_address(address, &level);
370 if (tmp != kpte)
371 goto out_unlock;
372
373 switch (level) {
374 case PG_LEVEL_2M:
375 psize = PMD_PAGE_SIZE;
376 pmask = PMD_PAGE_MASK;
377 break;
378 #ifdef CONFIG_X86_64
379 case PG_LEVEL_1G:
380 psize = PUD_PAGE_SIZE;
381 pmask = PUD_PAGE_MASK;
382 break;
383 #endif
384 default:
385 do_split = -EINVAL;
386 goto out_unlock;
387 }
388
389 /*
390 * Calculate the number of pages, which fit into this large
391 * page starting at address:
392 */
393 nextpage_addr = (address + psize) & pmask;
394 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
395 if (numpages < cpa->numpages)
396 cpa->numpages = numpages;
397
398 /*
399 * We are safe now. Check whether the new pgprot is the same:
400 */
401 old_pte = *kpte;
402 old_prot = new_prot = pte_pgprot(old_pte);
403
404 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
405 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
406
407 /*
408 * old_pte points to the large page base address. So we need
409 * to add the offset of the virtual address:
410 */
411 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
412 cpa->pfn = pfn;
413
414 new_prot = static_protections(new_prot, address, pfn);
415
416 /*
417 * We need to check the full range, whether
418 * static_protection() requires a different pgprot for one of
419 * the pages in the range we try to preserve:
420 */
421 addr = address + PAGE_SIZE;
422 pfn++;
423 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
424 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
425
426 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
427 goto out_unlock;
428 }
429
430 /*
431 * If there are no changes, return. maxpages has been updated
432 * above:
433 */
434 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
435 do_split = 0;
436 goto out_unlock;
437 }
438
439 /*
440 * We need to change the attributes. Check, whether we can
441 * change the large page in one go. We request a split, when
442 * the address is not aligned and the number of pages is
443 * smaller than the number of pages in the large page. Note
444 * that we limited the number of possible pages already to
445 * the number of pages in the large page.
446 */
447 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
448 /*
449 * The address is aligned and the number of pages
450 * covers the full page.
451 */
452 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
453 __set_pmd_pte(kpte, address, new_pte);
454 cpa->flags |= CPA_FLUSHTLB;
455 do_split = 0;
456 }
457
458 out_unlock:
459 spin_unlock_irqrestore(&pgd_lock, flags);
460
461 return do_split;
462 }
463
464 static int split_large_page(pte_t *kpte, unsigned long address)
465 {
466 unsigned long flags, pfn, pfninc = 1;
467 unsigned int i, level;
468 pte_t *pbase, *tmp;
469 pgprot_t ref_prot;
470 struct page *base;
471
472 if (!debug_pagealloc)
473 spin_unlock(&cpa_lock);
474 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
475 if (!debug_pagealloc)
476 spin_lock(&cpa_lock);
477 if (!base)
478 return -ENOMEM;
479
480 spin_lock_irqsave(&pgd_lock, flags);
481 /*
482 * Check for races, another CPU might have split this page
483 * up for us already:
484 */
485 tmp = lookup_address(address, &level);
486 if (tmp != kpte)
487 goto out_unlock;
488
489 pbase = (pte_t *)page_address(base);
490 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
491 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
492 /*
493 * If we ever want to utilize the PAT bit, we need to
494 * update this function to make sure it's converted from
495 * bit 12 to bit 7 when we cross from the 2MB level to
496 * the 4K level:
497 */
498 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
499
500 #ifdef CONFIG_X86_64
501 if (level == PG_LEVEL_1G) {
502 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
503 pgprot_val(ref_prot) |= _PAGE_PSE;
504 }
505 #endif
506
507 /*
508 * Get the target pfn from the original entry:
509 */
510 pfn = pte_pfn(*kpte);
511 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
512 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
513
514 if (address >= (unsigned long)__va(0) &&
515 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
516 split_page_count(level);
517
518 #ifdef CONFIG_X86_64
519 if (address >= (unsigned long)__va(1UL<<32) &&
520 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
521 split_page_count(level);
522 #endif
523
524 /*
525 * Install the new, split up pagetable.
526 *
527 * We use the standard kernel pagetable protections for the new
528 * pagetable protections, the actual ptes set above control the
529 * primary protection behavior:
530 */
531 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
532
533 /*
534 * Intel Atom errata AAH41 workaround.
535 *
536 * The real fix should be in hw or in a microcode update, but
537 * we also probabilistically try to reduce the window of having
538 * a large TLB mixed with 4K TLBs while instruction fetches are
539 * going on.
540 */
541 __flush_tlb_all();
542
543 base = NULL;
544
545 out_unlock:
546 /*
547 * If we dropped out via the lookup_address check under
548 * pgd_lock then stick the page back into the pool:
549 */
550 if (base)
551 __free_page(base);
552 spin_unlock_irqrestore(&pgd_lock, flags);
553
554 return 0;
555 }
556
557 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
558 int primary)
559 {
560 /*
561 * Ignore all non primary paths.
562 */
563 if (!primary)
564 return 0;
565
566 /*
567 * Ignore the NULL PTE for kernel identity mapping, as it is expected
568 * to have holes.
569 * Also set numpages to '1' indicating that we processed cpa req for
570 * one virtual address page and its pfn. TBD: numpages can be set based
571 * on the initial value and the level returned by lookup_address().
572 */
573 if (within(vaddr, PAGE_OFFSET,
574 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
575 cpa->numpages = 1;
576 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
577 return 0;
578 } else {
579 WARN(1, KERN_WARNING "CPA: called for zero pte. "
580 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
581 *cpa->vaddr);
582
583 return -EFAULT;
584 }
585 }
586
587 static int __change_page_attr(struct cpa_data *cpa, int primary)
588 {
589 unsigned long address;
590 int do_split, err;
591 unsigned int level;
592 pte_t *kpte, old_pte;
593
594 if (cpa->flags & CPA_PAGES_ARRAY) {
595 struct page *page = cpa->pages[cpa->curpage];
596 if (unlikely(PageHighMem(page)))
597 return 0;
598 address = (unsigned long)page_address(page);
599 } else if (cpa->flags & CPA_ARRAY)
600 address = cpa->vaddr[cpa->curpage];
601 else
602 address = *cpa->vaddr;
603 repeat:
604 kpte = lookup_address(address, &level);
605 if (!kpte)
606 return __cpa_process_fault(cpa, address, primary);
607
608 old_pte = *kpte;
609 if (!pte_val(old_pte))
610 return __cpa_process_fault(cpa, address, primary);
611
612 if (level == PG_LEVEL_4K) {
613 pte_t new_pte;
614 pgprot_t new_prot = pte_pgprot(old_pte);
615 unsigned long pfn = pte_pfn(old_pte);
616
617 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
618 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
619
620 new_prot = static_protections(new_prot, address, pfn);
621
622 /*
623 * We need to keep the pfn from the existing PTE,
624 * after all we're only going to change it's attributes
625 * not the memory it points to
626 */
627 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
628 cpa->pfn = pfn;
629 /*
630 * Do we really change anything ?
631 */
632 if (pte_val(old_pte) != pte_val(new_pte)) {
633 set_pte_atomic(kpte, new_pte);
634 cpa->flags |= CPA_FLUSHTLB;
635 }
636 cpa->numpages = 1;
637 return 0;
638 }
639
640 /*
641 * Check, whether we can keep the large page intact
642 * and just change the pte:
643 */
644 do_split = try_preserve_large_page(kpte, address, cpa);
645 /*
646 * When the range fits into the existing large page,
647 * return. cp->numpages and cpa->tlbflush have been updated in
648 * try_large_page:
649 */
650 if (do_split <= 0)
651 return do_split;
652
653 /*
654 * We have to split the large page:
655 */
656 err = split_large_page(kpte, address);
657 if (!err) {
658 /*
659 * Do a global flush tlb after splitting the large page
660 * and before we do the actual change page attribute in the PTE.
661 *
662 * With out this, we violate the TLB application note, that says
663 * "The TLBs may contain both ordinary and large-page
664 * translations for a 4-KByte range of linear addresses. This
665 * may occur if software modifies the paging structures so that
666 * the page size used for the address range changes. If the two
667 * translations differ with respect to page frame or attributes
668 * (e.g., permissions), processor behavior is undefined and may
669 * be implementation-specific."
670 *
671 * We do this global tlb flush inside the cpa_lock, so that we
672 * don't allow any other cpu, with stale tlb entries change the
673 * page attribute in parallel, that also falls into the
674 * just split large page entry.
675 */
676 flush_tlb_all();
677 goto repeat;
678 }
679
680 return err;
681 }
682
683 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
684
685 static int cpa_process_alias(struct cpa_data *cpa)
686 {
687 struct cpa_data alias_cpa;
688 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
689 unsigned long vaddr, remapped;
690 int ret;
691
692 if (cpa->pfn >= max_pfn_mapped)
693 return 0;
694
695 #ifdef CONFIG_X86_64
696 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
697 return 0;
698 #endif
699 /*
700 * No need to redo, when the primary call touched the direct
701 * mapping already:
702 */
703 if (cpa->flags & CPA_PAGES_ARRAY) {
704 struct page *page = cpa->pages[cpa->curpage];
705 if (unlikely(PageHighMem(page)))
706 return 0;
707 vaddr = (unsigned long)page_address(page);
708 } else if (cpa->flags & CPA_ARRAY)
709 vaddr = cpa->vaddr[cpa->curpage];
710 else
711 vaddr = *cpa->vaddr;
712
713 if (!(within(vaddr, PAGE_OFFSET,
714 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
715
716 alias_cpa = *cpa;
717 alias_cpa.vaddr = &laddr;
718 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
719
720 ret = __change_page_attr_set_clr(&alias_cpa, 0);
721 if (ret)
722 return ret;
723 }
724
725 #ifdef CONFIG_X86_64
726 /*
727 * If the primary call didn't touch the high mapping already
728 * and the physical address is inside the kernel map, we need
729 * to touch the high mapped kernel as well:
730 */
731 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
732 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
733 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
734 __START_KERNEL_map - phys_base;
735 alias_cpa = *cpa;
736 alias_cpa.vaddr = &temp_cpa_vaddr;
737 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
738
739 /*
740 * The high mapping range is imprecise, so ignore the
741 * return value.
742 */
743 __change_page_attr_set_clr(&alias_cpa, 0);
744 }
745 #endif
746
747 /*
748 * If the PMD page was partially used for per-cpu remapping,
749 * the recycled area needs to be split and modified. Because
750 * the area is always proper subset of a PMD page
751 * cpa->numpages is guaranteed to be 1 for these areas, so
752 * there's no need to loop over and check for further remaps.
753 */
754 remapped = (unsigned long)pcpu_lpage_remapped((void *)laddr);
755 if (remapped) {
756 WARN_ON(cpa->numpages > 1);
757 alias_cpa = *cpa;
758 alias_cpa.vaddr = &remapped;
759 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
760 ret = __change_page_attr_set_clr(&alias_cpa, 0);
761 if (ret)
762 return ret;
763 }
764
765 return 0;
766 }
767
768 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
769 {
770 int ret, numpages = cpa->numpages;
771
772 while (numpages) {
773 /*
774 * Store the remaining nr of pages for the large page
775 * preservation check.
776 */
777 cpa->numpages = numpages;
778 /* for array changes, we can't use large page */
779 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
780 cpa->numpages = 1;
781
782 if (!debug_pagealloc)
783 spin_lock(&cpa_lock);
784 ret = __change_page_attr(cpa, checkalias);
785 if (!debug_pagealloc)
786 spin_unlock(&cpa_lock);
787 if (ret)
788 return ret;
789
790 if (checkalias) {
791 ret = cpa_process_alias(cpa);
792 if (ret)
793 return ret;
794 }
795
796 /*
797 * Adjust the number of pages with the result of the
798 * CPA operation. Either a large page has been
799 * preserved or a single page update happened.
800 */
801 BUG_ON(cpa->numpages > numpages);
802 numpages -= cpa->numpages;
803 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
804 cpa->curpage++;
805 else
806 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
807
808 }
809 return 0;
810 }
811
812 static inline int cache_attr(pgprot_t attr)
813 {
814 return pgprot_val(attr) &
815 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
816 }
817
818 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
819 pgprot_t mask_set, pgprot_t mask_clr,
820 int force_split, int in_flag,
821 struct page **pages)
822 {
823 struct cpa_data cpa;
824 int ret, cache, checkalias;
825
826 /*
827 * Check, if we are requested to change a not supported
828 * feature:
829 */
830 mask_set = canon_pgprot(mask_set);
831 mask_clr = canon_pgprot(mask_clr);
832 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
833 return 0;
834
835 /* Ensure we are PAGE_SIZE aligned */
836 if (in_flag & CPA_ARRAY) {
837 int i;
838 for (i = 0; i < numpages; i++) {
839 if (addr[i] & ~PAGE_MASK) {
840 addr[i] &= PAGE_MASK;
841 WARN_ON_ONCE(1);
842 }
843 }
844 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
845 /*
846 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
847 * No need to cehck in that case
848 */
849 if (*addr & ~PAGE_MASK) {
850 *addr &= PAGE_MASK;
851 /*
852 * People should not be passing in unaligned addresses:
853 */
854 WARN_ON_ONCE(1);
855 }
856 }
857
858 /* Must avoid aliasing mappings in the highmem code */
859 kmap_flush_unused();
860
861 vm_unmap_aliases();
862
863 cpa.vaddr = addr;
864 cpa.pages = pages;
865 cpa.numpages = numpages;
866 cpa.mask_set = mask_set;
867 cpa.mask_clr = mask_clr;
868 cpa.flags = 0;
869 cpa.curpage = 0;
870 cpa.force_split = force_split;
871
872 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
873 cpa.flags |= in_flag;
874
875 /* No alias checking for _NX bit modifications */
876 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
877
878 ret = __change_page_attr_set_clr(&cpa, checkalias);
879
880 /*
881 * Check whether we really changed something:
882 */
883 if (!(cpa.flags & CPA_FLUSHTLB))
884 goto out;
885
886 /*
887 * No need to flush, when we did not set any of the caching
888 * attributes:
889 */
890 cache = cache_attr(mask_set);
891
892 /*
893 * On success we use clflush, when the CPU supports it to
894 * avoid the wbindv. If the CPU does not support it and in the
895 * error case we fall back to cpa_flush_all (which uses
896 * wbindv):
897 */
898 if (!ret && cpu_has_clflush) {
899 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
900 cpa_flush_array(addr, numpages, cache,
901 cpa.flags, pages);
902 } else
903 cpa_flush_range(*addr, numpages, cache);
904 } else
905 cpa_flush_all(cache);
906
907 out:
908 return ret;
909 }
910
911 static inline int change_page_attr_set(unsigned long *addr, int numpages,
912 pgprot_t mask, int array)
913 {
914 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
915 (array ? CPA_ARRAY : 0), NULL);
916 }
917
918 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
919 pgprot_t mask, int array)
920 {
921 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
922 (array ? CPA_ARRAY : 0), NULL);
923 }
924
925 static inline int cpa_set_pages_array(struct page **pages, int numpages,
926 pgprot_t mask)
927 {
928 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
929 CPA_PAGES_ARRAY, pages);
930 }
931
932 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
933 pgprot_t mask)
934 {
935 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
936 CPA_PAGES_ARRAY, pages);
937 }
938
939 int _set_memory_uc(unsigned long addr, int numpages)
940 {
941 /*
942 * for now UC MINUS. see comments in ioremap_nocache()
943 */
944 return change_page_attr_set(&addr, numpages,
945 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
946 }
947
948 int set_memory_uc(unsigned long addr, int numpages)
949 {
950 int ret;
951
952 /*
953 * for now UC MINUS. see comments in ioremap_nocache()
954 */
955 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
956 _PAGE_CACHE_UC_MINUS, NULL);
957 if (ret)
958 goto out_err;
959
960 ret = _set_memory_uc(addr, numpages);
961 if (ret)
962 goto out_free;
963
964 return 0;
965
966 out_free:
967 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
968 out_err:
969 return ret;
970 }
971 EXPORT_SYMBOL(set_memory_uc);
972
973 int set_memory_array_uc(unsigned long *addr, int addrinarray)
974 {
975 int i, j;
976 int ret;
977
978 /*
979 * for now UC MINUS. see comments in ioremap_nocache()
980 */
981 for (i = 0; i < addrinarray; i++) {
982 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
983 _PAGE_CACHE_UC_MINUS, NULL);
984 if (ret)
985 goto out_free;
986 }
987
988 ret = change_page_attr_set(addr, addrinarray,
989 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
990 if (ret)
991 goto out_free;
992
993 return 0;
994
995 out_free:
996 for (j = 0; j < i; j++)
997 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
998
999 return ret;
1000 }
1001 EXPORT_SYMBOL(set_memory_array_uc);
1002
1003 int _set_memory_wc(unsigned long addr, int numpages)
1004 {
1005 int ret;
1006 unsigned long addr_copy = addr;
1007
1008 ret = change_page_attr_set(&addr, numpages,
1009 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1010 if (!ret) {
1011 ret = change_page_attr_set_clr(&addr_copy, numpages,
1012 __pgprot(_PAGE_CACHE_WC),
1013 __pgprot(_PAGE_CACHE_MASK),
1014 0, 0, NULL);
1015 }
1016 return ret;
1017 }
1018
1019 int set_memory_wc(unsigned long addr, int numpages)
1020 {
1021 int ret;
1022
1023 if (!pat_enabled)
1024 return set_memory_uc(addr, numpages);
1025
1026 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1027 _PAGE_CACHE_WC, NULL);
1028 if (ret)
1029 goto out_err;
1030
1031 ret = _set_memory_wc(addr, numpages);
1032 if (ret)
1033 goto out_free;
1034
1035 return 0;
1036
1037 out_free:
1038 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1039 out_err:
1040 return ret;
1041 }
1042 EXPORT_SYMBOL(set_memory_wc);
1043
1044 int _set_memory_wb(unsigned long addr, int numpages)
1045 {
1046 return change_page_attr_clear(&addr, numpages,
1047 __pgprot(_PAGE_CACHE_MASK), 0);
1048 }
1049
1050 int set_memory_wb(unsigned long addr, int numpages)
1051 {
1052 int ret;
1053
1054 ret = _set_memory_wb(addr, numpages);
1055 if (ret)
1056 return ret;
1057
1058 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1059 return 0;
1060 }
1061 EXPORT_SYMBOL(set_memory_wb);
1062
1063 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1064 {
1065 int i;
1066 int ret;
1067
1068 ret = change_page_attr_clear(addr, addrinarray,
1069 __pgprot(_PAGE_CACHE_MASK), 1);
1070 if (ret)
1071 return ret;
1072
1073 for (i = 0; i < addrinarray; i++)
1074 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1075
1076 return 0;
1077 }
1078 EXPORT_SYMBOL(set_memory_array_wb);
1079
1080 int set_memory_x(unsigned long addr, int numpages)
1081 {
1082 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1083 }
1084 EXPORT_SYMBOL(set_memory_x);
1085
1086 int set_memory_nx(unsigned long addr, int numpages)
1087 {
1088 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1089 }
1090 EXPORT_SYMBOL(set_memory_nx);
1091
1092 int set_memory_ro(unsigned long addr, int numpages)
1093 {
1094 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1095 }
1096 EXPORT_SYMBOL_GPL(set_memory_ro);
1097
1098 int set_memory_rw(unsigned long addr, int numpages)
1099 {
1100 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1101 }
1102 EXPORT_SYMBOL_GPL(set_memory_rw);
1103
1104 int set_memory_np(unsigned long addr, int numpages)
1105 {
1106 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1107 }
1108
1109 int set_memory_4k(unsigned long addr, int numpages)
1110 {
1111 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1112 __pgprot(0), 1, 0, NULL);
1113 }
1114
1115 int set_pages_uc(struct page *page, int numpages)
1116 {
1117 unsigned long addr = (unsigned long)page_address(page);
1118
1119 return set_memory_uc(addr, numpages);
1120 }
1121 EXPORT_SYMBOL(set_pages_uc);
1122
1123 int set_pages_array_uc(struct page **pages, int addrinarray)
1124 {
1125 unsigned long start;
1126 unsigned long end;
1127 int i;
1128 int free_idx;
1129
1130 for (i = 0; i < addrinarray; i++) {
1131 if (PageHighMem(pages[i]))
1132 continue;
1133 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1134 end = start + PAGE_SIZE;
1135 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1136 goto err_out;
1137 }
1138
1139 if (cpa_set_pages_array(pages, addrinarray,
1140 __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1141 return 0; /* Success */
1142 }
1143 err_out:
1144 free_idx = i;
1145 for (i = 0; i < free_idx; i++) {
1146 if (PageHighMem(pages[i]))
1147 continue;
1148 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1149 end = start + PAGE_SIZE;
1150 free_memtype(start, end);
1151 }
1152 return -EINVAL;
1153 }
1154 EXPORT_SYMBOL(set_pages_array_uc);
1155
1156 int set_pages_wb(struct page *page, int numpages)
1157 {
1158 unsigned long addr = (unsigned long)page_address(page);
1159
1160 return set_memory_wb(addr, numpages);
1161 }
1162 EXPORT_SYMBOL(set_pages_wb);
1163
1164 int set_pages_array_wb(struct page **pages, int addrinarray)
1165 {
1166 int retval;
1167 unsigned long start;
1168 unsigned long end;
1169 int i;
1170
1171 retval = cpa_clear_pages_array(pages, addrinarray,
1172 __pgprot(_PAGE_CACHE_MASK));
1173 if (retval)
1174 return retval;
1175
1176 for (i = 0; i < addrinarray; i++) {
1177 if (PageHighMem(pages[i]))
1178 continue;
1179 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1180 end = start + PAGE_SIZE;
1181 free_memtype(start, end);
1182 }
1183
1184 return 0;
1185 }
1186 EXPORT_SYMBOL(set_pages_array_wb);
1187
1188 int set_pages_x(struct page *page, int numpages)
1189 {
1190 unsigned long addr = (unsigned long)page_address(page);
1191
1192 return set_memory_x(addr, numpages);
1193 }
1194 EXPORT_SYMBOL(set_pages_x);
1195
1196 int set_pages_nx(struct page *page, int numpages)
1197 {
1198 unsigned long addr = (unsigned long)page_address(page);
1199
1200 return set_memory_nx(addr, numpages);
1201 }
1202 EXPORT_SYMBOL(set_pages_nx);
1203
1204 int set_pages_ro(struct page *page, int numpages)
1205 {
1206 unsigned long addr = (unsigned long)page_address(page);
1207
1208 return set_memory_ro(addr, numpages);
1209 }
1210
1211 int set_pages_rw(struct page *page, int numpages)
1212 {
1213 unsigned long addr = (unsigned long)page_address(page);
1214
1215 return set_memory_rw(addr, numpages);
1216 }
1217
1218 #ifdef CONFIG_DEBUG_PAGEALLOC
1219
1220 static int __set_pages_p(struct page *page, int numpages)
1221 {
1222 unsigned long tempaddr = (unsigned long) page_address(page);
1223 struct cpa_data cpa = { .vaddr = &tempaddr,
1224 .numpages = numpages,
1225 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1226 .mask_clr = __pgprot(0),
1227 .flags = 0};
1228
1229 /*
1230 * No alias checking needed for setting present flag. otherwise,
1231 * we may need to break large pages for 64-bit kernel text
1232 * mappings (this adds to complexity if we want to do this from
1233 * atomic context especially). Let's keep it simple!
1234 */
1235 return __change_page_attr_set_clr(&cpa, 0);
1236 }
1237
1238 static int __set_pages_np(struct page *page, int numpages)
1239 {
1240 unsigned long tempaddr = (unsigned long) page_address(page);
1241 struct cpa_data cpa = { .vaddr = &tempaddr,
1242 .numpages = numpages,
1243 .mask_set = __pgprot(0),
1244 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1245 .flags = 0};
1246
1247 /*
1248 * No alias checking needed for setting not present flag. otherwise,
1249 * we may need to break large pages for 64-bit kernel text
1250 * mappings (this adds to complexity if we want to do this from
1251 * atomic context especially). Let's keep it simple!
1252 */
1253 return __change_page_attr_set_clr(&cpa, 0);
1254 }
1255
1256 void kernel_map_pages(struct page *page, int numpages, int enable)
1257 {
1258 if (PageHighMem(page))
1259 return;
1260 if (!enable) {
1261 debug_check_no_locks_freed(page_address(page),
1262 numpages * PAGE_SIZE);
1263 }
1264
1265 /*
1266 * If page allocator is not up yet then do not call c_p_a():
1267 */
1268 if (!debug_pagealloc_enabled)
1269 return;
1270
1271 /*
1272 * The return value is ignored as the calls cannot fail.
1273 * Large pages for identity mappings are not used at boot time
1274 * and hence no memory allocations during large page split.
1275 */
1276 if (enable)
1277 __set_pages_p(page, numpages);
1278 else
1279 __set_pages_np(page, numpages);
1280
1281 /*
1282 * We should perform an IPI and flush all tlbs,
1283 * but that can deadlock->flush only current cpu:
1284 */
1285 __flush_tlb_all();
1286 }
1287
1288 #ifdef CONFIG_HIBERNATION
1289
1290 bool kernel_page_present(struct page *page)
1291 {
1292 unsigned int level;
1293 pte_t *pte;
1294
1295 if (PageHighMem(page))
1296 return false;
1297
1298 pte = lookup_address((unsigned long)page_address(page), &level);
1299 return (pte_val(*pte) & _PAGE_PRESENT);
1300 }
1301
1302 #endif /* CONFIG_HIBERNATION */
1303
1304 #endif /* CONFIG_DEBUG_PAGEALLOC */
1305
1306 /*
1307 * The testcases use internal knowledge of the implementation that shouldn't
1308 * be exposed to the rest of the kernel. Include these directly here.
1309 */
1310 #ifdef CONFIG_CPA_DEBUG
1311 #include "pageattr-test.c"
1312 #endif
This page took 0.079847 seconds and 4 git commands to generate.