PM / clk: Add support for adding a specific clock from device-tree
[deliverable/linux.git] / arch / x86 / power / cpu.c
1 /*
2 * Suspend support specific for i386/x86-64.
3 *
4 * Distribute under GPLv2
5 *
6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
9 */
10
11 #include <linux/suspend.h>
12 #include <linux/export.h>
13 #include <linux/smp.h>
14 #include <linux/perf_event.h>
15
16 #include <asm/pgtable.h>
17 #include <asm/proto.h>
18 #include <asm/mtrr.h>
19 #include <asm/page.h>
20 #include <asm/mce.h>
21 #include <asm/suspend.h>
22 #include <asm/fpu/internal.h>
23 #include <asm/debugreg.h>
24 #include <asm/cpu.h>
25 #include <asm/mmu_context.h>
26 #include <linux/dmi.h>
27
28 #ifdef CONFIG_X86_32
29 __visible unsigned long saved_context_ebx;
30 __visible unsigned long saved_context_esp, saved_context_ebp;
31 __visible unsigned long saved_context_esi, saved_context_edi;
32 __visible unsigned long saved_context_eflags;
33 #endif
34 struct saved_context saved_context;
35
36 static void msr_save_context(struct saved_context *ctxt)
37 {
38 struct saved_msr *msr = ctxt->saved_msrs.array;
39 struct saved_msr *end = msr + ctxt->saved_msrs.num;
40
41 while (msr < end) {
42 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
43 msr++;
44 }
45 }
46
47 static void msr_restore_context(struct saved_context *ctxt)
48 {
49 struct saved_msr *msr = ctxt->saved_msrs.array;
50 struct saved_msr *end = msr + ctxt->saved_msrs.num;
51
52 while (msr < end) {
53 if (msr->valid)
54 wrmsrl(msr->info.msr_no, msr->info.reg.q);
55 msr++;
56 }
57 }
58
59 /**
60 * __save_processor_state - save CPU registers before creating a
61 * hibernation image and before restoring the memory state from it
62 * @ctxt - structure to store the registers contents in
63 *
64 * NOTE: If there is a CPU register the modification of which by the
65 * boot kernel (ie. the kernel used for loading the hibernation image)
66 * might affect the operations of the restored target kernel (ie. the one
67 * saved in the hibernation image), then its contents must be saved by this
68 * function. In other words, if kernel A is hibernated and different
69 * kernel B is used for loading the hibernation image into memory, the
70 * kernel A's __save_processor_state() function must save all registers
71 * needed by kernel A, so that it can operate correctly after the resume
72 * regardless of what kernel B does in the meantime.
73 */
74 static void __save_processor_state(struct saved_context *ctxt)
75 {
76 #ifdef CONFIG_X86_32
77 mtrr_save_fixed_ranges(NULL);
78 #endif
79 kernel_fpu_begin();
80
81 /*
82 * descriptor tables
83 */
84 #ifdef CONFIG_X86_32
85 store_idt(&ctxt->idt);
86 #else
87 /* CONFIG_X86_64 */
88 store_idt((struct desc_ptr *)&ctxt->idt_limit);
89 #endif
90 /*
91 * We save it here, but restore it only in the hibernate case.
92 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
93 * mode in "secondary_startup_64". In 32-bit mode it is done via
94 * 'pmode_gdt' in wakeup_start.
95 */
96 ctxt->gdt_desc.size = GDT_SIZE - 1;
97 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id());
98
99 store_tr(ctxt->tr);
100
101 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
102 /*
103 * segment registers
104 */
105 #ifdef CONFIG_X86_32
106 savesegment(es, ctxt->es);
107 savesegment(fs, ctxt->fs);
108 savesegment(gs, ctxt->gs);
109 savesegment(ss, ctxt->ss);
110 #else
111 /* CONFIG_X86_64 */
112 asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
113 asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
114 asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
115 asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
116 asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
117
118 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
119 rdmsrl(MSR_GS_BASE, ctxt->gs_base);
120 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
121 mtrr_save_fixed_ranges(NULL);
122
123 rdmsrl(MSR_EFER, ctxt->efer);
124 #endif
125
126 /*
127 * control registers
128 */
129 ctxt->cr0 = read_cr0();
130 ctxt->cr2 = read_cr2();
131 ctxt->cr3 = read_cr3();
132 ctxt->cr4 = __read_cr4_safe();
133 #ifdef CONFIG_X86_64
134 ctxt->cr8 = read_cr8();
135 #endif
136 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
137 &ctxt->misc_enable);
138 msr_save_context(ctxt);
139 }
140
141 /* Needed by apm.c */
142 void save_processor_state(void)
143 {
144 __save_processor_state(&saved_context);
145 x86_platform.save_sched_clock_state();
146 }
147 #ifdef CONFIG_X86_32
148 EXPORT_SYMBOL(save_processor_state);
149 #endif
150
151 static void do_fpu_end(void)
152 {
153 /*
154 * Restore FPU regs if necessary.
155 */
156 kernel_fpu_end();
157 }
158
159 static void fix_processor_context(void)
160 {
161 int cpu = smp_processor_id();
162 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
163 #ifdef CONFIG_X86_64
164 struct desc_struct *desc = get_cpu_gdt_table(cpu);
165 tss_desc tss;
166 #endif
167 set_tss_desc(cpu, t); /*
168 * This just modifies memory; should not be
169 * necessary. But... This is necessary, because
170 * 386 hardware has concept of busy TSS or some
171 * similar stupidity.
172 */
173
174 #ifdef CONFIG_X86_64
175 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
176 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
177 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
178
179 syscall_init(); /* This sets MSR_*STAR and related */
180 #endif
181 load_TR_desc(); /* This does ltr */
182 load_mm_ldt(current->active_mm); /* This does lldt */
183
184 fpu__resume_cpu();
185 }
186
187 /**
188 * __restore_processor_state - restore the contents of CPU registers saved
189 * by __save_processor_state()
190 * @ctxt - structure to load the registers contents from
191 */
192 static void notrace __restore_processor_state(struct saved_context *ctxt)
193 {
194 if (ctxt->misc_enable_saved)
195 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
196 /*
197 * control registers
198 */
199 /* cr4 was introduced in the Pentium CPU */
200 #ifdef CONFIG_X86_32
201 if (ctxt->cr4)
202 __write_cr4(ctxt->cr4);
203 #else
204 /* CONFIG X86_64 */
205 wrmsrl(MSR_EFER, ctxt->efer);
206 write_cr8(ctxt->cr8);
207 __write_cr4(ctxt->cr4);
208 #endif
209 write_cr3(ctxt->cr3);
210 write_cr2(ctxt->cr2);
211 write_cr0(ctxt->cr0);
212
213 /*
214 * now restore the descriptor tables to their proper values
215 * ltr is done i fix_processor_context().
216 */
217 #ifdef CONFIG_X86_32
218 load_idt(&ctxt->idt);
219 #else
220 /* CONFIG_X86_64 */
221 load_idt((const struct desc_ptr *)&ctxt->idt_limit);
222 #endif
223
224 /*
225 * segment registers
226 */
227 #ifdef CONFIG_X86_32
228 loadsegment(es, ctxt->es);
229 loadsegment(fs, ctxt->fs);
230 loadsegment(gs, ctxt->gs);
231 loadsegment(ss, ctxt->ss);
232
233 /*
234 * sysenter MSRs
235 */
236 if (boot_cpu_has(X86_FEATURE_SEP))
237 enable_sep_cpu();
238 #else
239 /* CONFIG_X86_64 */
240 asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
241 asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
242 asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
243 load_gs_index(ctxt->gs);
244 asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
245
246 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
247 wrmsrl(MSR_GS_BASE, ctxt->gs_base);
248 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
249 #endif
250
251 fix_processor_context();
252
253 do_fpu_end();
254 x86_platform.restore_sched_clock_state();
255 mtrr_bp_restore();
256 perf_restore_debug_store();
257 msr_restore_context(ctxt);
258 }
259
260 /* Needed by apm.c */
261 void notrace restore_processor_state(void)
262 {
263 __restore_processor_state(&saved_context);
264 }
265 #ifdef CONFIG_X86_32
266 EXPORT_SYMBOL(restore_processor_state);
267 #endif
268
269 /*
270 * When bsp_check() is called in hibernate and suspend, cpu hotplug
271 * is disabled already. So it's unnessary to handle race condition between
272 * cpumask query and cpu hotplug.
273 */
274 static int bsp_check(void)
275 {
276 if (cpumask_first(cpu_online_mask) != 0) {
277 pr_warn("CPU0 is offline.\n");
278 return -ENODEV;
279 }
280
281 return 0;
282 }
283
284 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
285 void *ptr)
286 {
287 int ret = 0;
288
289 switch (action) {
290 case PM_SUSPEND_PREPARE:
291 case PM_HIBERNATION_PREPARE:
292 ret = bsp_check();
293 break;
294 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
295 case PM_RESTORE_PREPARE:
296 /*
297 * When system resumes from hibernation, online CPU0 because
298 * 1. it's required for resume and
299 * 2. the CPU was online before hibernation
300 */
301 if (!cpu_online(0))
302 _debug_hotplug_cpu(0, 1);
303 break;
304 case PM_POST_RESTORE:
305 /*
306 * When a resume really happens, this code won't be called.
307 *
308 * This code is called only when user space hibernation software
309 * prepares for snapshot device during boot time. So we just
310 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
311 * preparing the snapshot device.
312 *
313 * This works for normal boot case in our CPU0 hotplug debug
314 * mode, i.e. CPU0 is offline and user mode hibernation
315 * software initializes during boot time.
316 *
317 * If CPU0 is online and user application accesses snapshot
318 * device after boot time, this will offline CPU0 and user may
319 * see different CPU0 state before and after accessing
320 * the snapshot device. But hopefully this is not a case when
321 * user debugging CPU0 hotplug. Even if users hit this case,
322 * they can easily online CPU0 back.
323 *
324 * To simplify this debug code, we only consider normal boot
325 * case. Otherwise we need to remember CPU0's state and restore
326 * to that state and resolve racy conditions etc.
327 */
328 _debug_hotplug_cpu(0, 0);
329 break;
330 #endif
331 default:
332 break;
333 }
334 return notifier_from_errno(ret);
335 }
336
337 static int __init bsp_pm_check_init(void)
338 {
339 /*
340 * Set this bsp_pm_callback as lower priority than
341 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
342 * earlier to disable cpu hotplug before bsp online check.
343 */
344 pm_notifier(bsp_pm_callback, -INT_MAX);
345 return 0;
346 }
347
348 core_initcall(bsp_pm_check_init);
349
350 static int msr_init_context(const u32 *msr_id, const int total_num)
351 {
352 int i = 0;
353 struct saved_msr *msr_array;
354
355 if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
356 pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
357 return -EINVAL;
358 }
359
360 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
361 if (!msr_array) {
362 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
363 return -ENOMEM;
364 }
365
366 for (i = 0; i < total_num; i++) {
367 msr_array[i].info.msr_no = msr_id[i];
368 msr_array[i].valid = false;
369 msr_array[i].info.reg.q = 0;
370 }
371 saved_context.saved_msrs.num = total_num;
372 saved_context.saved_msrs.array = msr_array;
373
374 return 0;
375 }
376
377 /*
378 * The following section is a quirk framework for problematic BIOSen:
379 * Sometimes MSRs are modified by the BIOSen after suspended to
380 * RAM, this might cause unexpected behavior after wakeup.
381 * Thus we save/restore these specified MSRs across suspend/resume
382 * in order to work around it.
383 *
384 * For any further problematic BIOSen/platforms,
385 * please add your own function similar to msr_initialize_bdw.
386 */
387 static int msr_initialize_bdw(const struct dmi_system_id *d)
388 {
389 /* Add any extra MSR ids into this array. */
390 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
391
392 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
393 return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
394 }
395
396 static struct dmi_system_id msr_save_dmi_table[] = {
397 {
398 .callback = msr_initialize_bdw,
399 .ident = "BROADWELL BDX_EP",
400 .matches = {
401 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
402 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
403 },
404 },
405 {}
406 };
407
408 static int pm_check_save_msr(void)
409 {
410 dmi_check_system(msr_save_dmi_table);
411 return 0;
412 }
413
414 device_initcall(pm_check_save_msr);
This page took 0.04061 seconds and 5 git commands to generate.