Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-rc-fixes-2.6
[deliverable/linux.git] / arch / x86_64 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
38 */
39
40
41 #include <linux/init.h>
42
43 #include <linux/mm.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/smp_lock.h>
46 #include <linux/bootmem.h>
47 #include <linux/thread_info.h>
48 #include <linux/module.h>
49
50 #include <linux/delay.h>
51 #include <linux/mc146818rtc.h>
52 #include <asm/mtrr.h>
53 #include <asm/pgalloc.h>
54 #include <asm/desc.h>
55 #include <asm/kdebug.h>
56 #include <asm/tlbflush.h>
57 #include <asm/proto.h>
58 #include <asm/nmi.h>
59 #include <asm/irq.h>
60 #include <asm/hw_irq.h>
61 #include <asm/numa.h>
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 EXPORT_SYMBOL(smp_num_siblings);
66
67 /* Last level cache ID of each logical CPU */
68 u8 cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
69 EXPORT_SYMBOL(cpu_llc_id);
70
71 /* Bitmask of currently online CPUs */
72 cpumask_t cpu_online_map __read_mostly;
73
74 EXPORT_SYMBOL(cpu_online_map);
75
76 /*
77 * Private maps to synchronize booting between AP and BP.
78 * Probably not needed anymore, but it makes for easier debugging. -AK
79 */
80 cpumask_t cpu_callin_map;
81 cpumask_t cpu_callout_map;
82 EXPORT_SYMBOL(cpu_callout_map);
83
84 cpumask_t cpu_possible_map;
85 EXPORT_SYMBOL(cpu_possible_map);
86
87 /* Per CPU bogomips and other parameters */
88 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
89 EXPORT_SYMBOL(cpu_data);
90
91 /* Set when the idlers are all forked */
92 int smp_threads_ready;
93
94 /* representing HT siblings of each logical CPU */
95 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
96 EXPORT_SYMBOL(cpu_sibling_map);
97
98 /* representing HT and core siblings of each logical CPU */
99 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
100 EXPORT_SYMBOL(cpu_core_map);
101
102 /*
103 * Trampoline 80x86 program as an array.
104 */
105
106 extern unsigned char trampoline_data[];
107 extern unsigned char trampoline_end[];
108
109 /* State of each CPU */
110 DEFINE_PER_CPU(int, cpu_state) = { 0 };
111
112 /*
113 * Store all idle threads, this can be reused instead of creating
114 * a new thread. Also avoids complicated thread destroy functionality
115 * for idle threads.
116 */
117 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
118
119 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
120 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
121
122 /*
123 * Currently trivial. Write the real->protected mode
124 * bootstrap into the page concerned. The caller
125 * has made sure it's suitably aligned.
126 */
127
128 static unsigned long __cpuinit setup_trampoline(void)
129 {
130 void *tramp = __va(SMP_TRAMPOLINE_BASE);
131 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
132 return virt_to_phys(tramp);
133 }
134
135 /*
136 * The bootstrap kernel entry code has set these up. Save them for
137 * a given CPU
138 */
139
140 static void __cpuinit smp_store_cpu_info(int id)
141 {
142 struct cpuinfo_x86 *c = cpu_data + id;
143
144 *c = boot_cpu_data;
145 identify_cpu(c);
146 print_cpu_info(c);
147 }
148
149 /*
150 * New Funky TSC sync algorithm borrowed from IA64.
151 * Main advantage is that it doesn't reset the TSCs fully and
152 * in general looks more robust and it works better than my earlier
153 * attempts. I believe it was written by David Mosberger. Some minor
154 * adjustments for x86-64 by me -AK
155 *
156 * Original comment reproduced below.
157 *
158 * Synchronize TSC of the current (slave) CPU with the TSC of the
159 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
160 * eliminate the possibility of unaccounted-for errors (such as
161 * getting a machine check in the middle of a calibration step). The
162 * basic idea is for the slave to ask the master what itc value it has
163 * and to read its own itc before and after the master responds. Each
164 * iteration gives us three timestamps:
165 *
166 * slave master
167 *
168 * t0 ---\
169 * ---\
170 * --->
171 * tm
172 * /---
173 * /---
174 * t1 <---
175 *
176 *
177 * The goal is to adjust the slave's TSC such that tm falls exactly
178 * half-way between t0 and t1. If we achieve this, the clocks are
179 * synchronized provided the interconnect between the slave and the
180 * master is symmetric. Even if the interconnect were asymmetric, we
181 * would still know that the synchronization error is smaller than the
182 * roundtrip latency (t0 - t1).
183 *
184 * When the interconnect is quiet and symmetric, this lets us
185 * synchronize the TSC to within one or two cycles. However, we can
186 * only *guarantee* that the synchronization is accurate to within a
187 * round-trip time, which is typically in the range of several hundred
188 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
189 * are usually almost perfectly synchronized, but we shouldn't assume
190 * that the accuracy is much better than half a micro second or so.
191 *
192 * [there are other errors like the latency of RDTSC and of the
193 * WRMSR. These can also account to hundreds of cycles. So it's
194 * probably worse. It claims 153 cycles error on a dual Opteron,
195 * but I suspect the numbers are actually somewhat worse -AK]
196 */
197
198 #define MASTER 0
199 #define SLAVE (SMP_CACHE_BYTES/8)
200
201 /* Intentionally don't use cpu_relax() while TSC synchronization
202 because we don't want to go into funky power save modi or cause
203 hypervisors to schedule us away. Going to sleep would likely affect
204 latency and low latency is the primary objective here. -AK */
205 #define no_cpu_relax() barrier()
206
207 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
208 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
209 static int notscsync __cpuinitdata;
210
211 #undef DEBUG_TSC_SYNC
212
213 #define NUM_ROUNDS 64 /* magic value */
214 #define NUM_ITERS 5 /* likewise */
215
216 /* Callback on boot CPU */
217 static __cpuinit void sync_master(void *arg)
218 {
219 unsigned long flags, i;
220
221 go[MASTER] = 0;
222
223 local_irq_save(flags);
224 {
225 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
226 while (!go[MASTER])
227 no_cpu_relax();
228 go[MASTER] = 0;
229 rdtscll(go[SLAVE]);
230 }
231 }
232 local_irq_restore(flags);
233 }
234
235 /*
236 * Return the number of cycles by which our tsc differs from the tsc
237 * on the master (time-keeper) CPU. A positive number indicates our
238 * tsc is ahead of the master, negative that it is behind.
239 */
240 static inline long
241 get_delta(long *rt, long *master)
242 {
243 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
244 unsigned long tcenter, t0, t1, tm;
245 int i;
246
247 for (i = 0; i < NUM_ITERS; ++i) {
248 rdtscll(t0);
249 go[MASTER] = 1;
250 while (!(tm = go[SLAVE]))
251 no_cpu_relax();
252 go[SLAVE] = 0;
253 rdtscll(t1);
254
255 if (t1 - t0 < best_t1 - best_t0)
256 best_t0 = t0, best_t1 = t1, best_tm = tm;
257 }
258
259 *rt = best_t1 - best_t0;
260 *master = best_tm - best_t0;
261
262 /* average best_t0 and best_t1 without overflow: */
263 tcenter = (best_t0/2 + best_t1/2);
264 if (best_t0 % 2 + best_t1 % 2 == 2)
265 ++tcenter;
266 return tcenter - best_tm;
267 }
268
269 static __cpuinit void sync_tsc(unsigned int master)
270 {
271 int i, done = 0;
272 long delta, adj, adjust_latency = 0;
273 unsigned long flags, rt, master_time_stamp, bound;
274 #ifdef DEBUG_TSC_SYNC
275 static struct syncdebug {
276 long rt; /* roundtrip time */
277 long master; /* master's timestamp */
278 long diff; /* difference between midpoint and master's timestamp */
279 long lat; /* estimate of tsc adjustment latency */
280 } t[NUM_ROUNDS] __cpuinitdata;
281 #endif
282
283 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
284 smp_processor_id(), master);
285
286 go[MASTER] = 1;
287
288 /* It is dangerous to broadcast IPI as cpus are coming up,
289 * as they may not be ready to accept them. So since
290 * we only need to send the ipi to the boot cpu direct
291 * the message, and avoid the race.
292 */
293 smp_call_function_single(master, sync_master, NULL, 1, 0);
294
295 while (go[MASTER]) /* wait for master to be ready */
296 no_cpu_relax();
297
298 spin_lock_irqsave(&tsc_sync_lock, flags);
299 {
300 for (i = 0; i < NUM_ROUNDS; ++i) {
301 delta = get_delta(&rt, &master_time_stamp);
302 if (delta == 0) {
303 done = 1; /* let's lock on to this... */
304 bound = rt;
305 }
306
307 if (!done) {
308 unsigned long t;
309 if (i > 0) {
310 adjust_latency += -delta;
311 adj = -delta + adjust_latency/4;
312 } else
313 adj = -delta;
314
315 rdtscll(t);
316 wrmsrl(MSR_IA32_TSC, t + adj);
317 }
318 #ifdef DEBUG_TSC_SYNC
319 t[i].rt = rt;
320 t[i].master = master_time_stamp;
321 t[i].diff = delta;
322 t[i].lat = adjust_latency/4;
323 #endif
324 }
325 }
326 spin_unlock_irqrestore(&tsc_sync_lock, flags);
327
328 #ifdef DEBUG_TSC_SYNC
329 for (i = 0; i < NUM_ROUNDS; ++i)
330 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
331 t[i].rt, t[i].master, t[i].diff, t[i].lat);
332 #endif
333
334 printk(KERN_INFO
335 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
336 "maxerr %lu cycles)\n",
337 smp_processor_id(), master, delta, rt);
338 }
339
340 static void __cpuinit tsc_sync_wait(void)
341 {
342 /*
343 * When the CPU has synchronized TSCs assume the BIOS
344 * or the hardware already synced. Otherwise we could
345 * mess up a possible perfect synchronization with a
346 * not-quite-perfect algorithm.
347 */
348 if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
349 return;
350 sync_tsc(0);
351 }
352
353 static __init int notscsync_setup(char *s)
354 {
355 notscsync = 1;
356 return 1;
357 }
358 __setup("notscsync", notscsync_setup);
359
360 static atomic_t init_deasserted __cpuinitdata;
361
362 /*
363 * Report back to the Boot Processor.
364 * Running on AP.
365 */
366 void __cpuinit smp_callin(void)
367 {
368 int cpuid, phys_id;
369 unsigned long timeout;
370
371 /*
372 * If waken up by an INIT in an 82489DX configuration
373 * we may get here before an INIT-deassert IPI reaches
374 * our local APIC. We have to wait for the IPI or we'll
375 * lock up on an APIC access.
376 */
377 while (!atomic_read(&init_deasserted))
378 cpu_relax();
379
380 /*
381 * (This works even if the APIC is not enabled.)
382 */
383 phys_id = GET_APIC_ID(apic_read(APIC_ID));
384 cpuid = smp_processor_id();
385 if (cpu_isset(cpuid, cpu_callin_map)) {
386 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
387 phys_id, cpuid);
388 }
389 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
390
391 /*
392 * STARTUP IPIs are fragile beasts as they might sometimes
393 * trigger some glue motherboard logic. Complete APIC bus
394 * silence for 1 second, this overestimates the time the
395 * boot CPU is spending to send the up to 2 STARTUP IPIs
396 * by a factor of two. This should be enough.
397 */
398
399 /*
400 * Waiting 2s total for startup (udelay is not yet working)
401 */
402 timeout = jiffies + 2*HZ;
403 while (time_before(jiffies, timeout)) {
404 /*
405 * Has the boot CPU finished it's STARTUP sequence?
406 */
407 if (cpu_isset(cpuid, cpu_callout_map))
408 break;
409 cpu_relax();
410 }
411
412 if (!time_before(jiffies, timeout)) {
413 panic("smp_callin: CPU%d started up but did not get a callout!\n",
414 cpuid);
415 }
416
417 /*
418 * the boot CPU has finished the init stage and is spinning
419 * on callin_map until we finish. We are free to set up this
420 * CPU, first the APIC. (this is probably redundant on most
421 * boards)
422 */
423
424 Dprintk("CALLIN, before setup_local_APIC().\n");
425 setup_local_APIC();
426
427 /*
428 * Get our bogomips.
429 *
430 * Need to enable IRQs because it can take longer and then
431 * the NMI watchdog might kill us.
432 */
433 local_irq_enable();
434 calibrate_delay();
435 local_irq_disable();
436 Dprintk("Stack at about %p\n",&cpuid);
437
438 disable_APIC_timer();
439
440 /*
441 * Save our processor parameters
442 */
443 smp_store_cpu_info(cpuid);
444
445 /*
446 * Allow the master to continue.
447 */
448 cpu_set(cpuid, cpu_callin_map);
449 }
450
451 /* maps the cpu to the sched domain representing multi-core */
452 cpumask_t cpu_coregroup_map(int cpu)
453 {
454 struct cpuinfo_x86 *c = cpu_data + cpu;
455 /*
456 * For perf, we return last level cache shared map.
457 * And for power savings, we return cpu_core_map
458 */
459 if (sched_mc_power_savings || sched_smt_power_savings)
460 return cpu_core_map[cpu];
461 else
462 return c->llc_shared_map;
463 }
464
465 /* representing cpus for which sibling maps can be computed */
466 static cpumask_t cpu_sibling_setup_map;
467
468 static inline void set_cpu_sibling_map(int cpu)
469 {
470 int i;
471 struct cpuinfo_x86 *c = cpu_data;
472
473 cpu_set(cpu, cpu_sibling_setup_map);
474
475 if (smp_num_siblings > 1) {
476 for_each_cpu_mask(i, cpu_sibling_setup_map) {
477 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
478 c[cpu].cpu_core_id == c[i].cpu_core_id) {
479 cpu_set(i, cpu_sibling_map[cpu]);
480 cpu_set(cpu, cpu_sibling_map[i]);
481 cpu_set(i, cpu_core_map[cpu]);
482 cpu_set(cpu, cpu_core_map[i]);
483 cpu_set(i, c[cpu].llc_shared_map);
484 cpu_set(cpu, c[i].llc_shared_map);
485 }
486 }
487 } else {
488 cpu_set(cpu, cpu_sibling_map[cpu]);
489 }
490
491 cpu_set(cpu, c[cpu].llc_shared_map);
492
493 if (current_cpu_data.x86_max_cores == 1) {
494 cpu_core_map[cpu] = cpu_sibling_map[cpu];
495 c[cpu].booted_cores = 1;
496 return;
497 }
498
499 for_each_cpu_mask(i, cpu_sibling_setup_map) {
500 if (cpu_llc_id[cpu] != BAD_APICID &&
501 cpu_llc_id[cpu] == cpu_llc_id[i]) {
502 cpu_set(i, c[cpu].llc_shared_map);
503 cpu_set(cpu, c[i].llc_shared_map);
504 }
505 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
506 cpu_set(i, cpu_core_map[cpu]);
507 cpu_set(cpu, cpu_core_map[i]);
508 /*
509 * Does this new cpu bringup a new core?
510 */
511 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
512 /*
513 * for each core in package, increment
514 * the booted_cores for this new cpu
515 */
516 if (first_cpu(cpu_sibling_map[i]) == i)
517 c[cpu].booted_cores++;
518 /*
519 * increment the core count for all
520 * the other cpus in this package
521 */
522 if (i != cpu)
523 c[i].booted_cores++;
524 } else if (i != cpu && !c[cpu].booted_cores)
525 c[cpu].booted_cores = c[i].booted_cores;
526 }
527 }
528 }
529
530 /*
531 * Setup code on secondary processor (after comming out of the trampoline)
532 */
533 void __cpuinit start_secondary(void)
534 {
535 /*
536 * Dont put anything before smp_callin(), SMP
537 * booting is too fragile that we want to limit the
538 * things done here to the most necessary things.
539 */
540 cpu_init();
541 preempt_disable();
542 smp_callin();
543
544 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
545 barrier();
546
547 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
548 setup_secondary_APIC_clock();
549
550 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
551
552 if (nmi_watchdog == NMI_IO_APIC) {
553 disable_8259A_irq(0);
554 enable_NMI_through_LVT0(NULL);
555 enable_8259A_irq(0);
556 }
557
558 enable_APIC_timer();
559
560 /*
561 * The sibling maps must be set before turing the online map on for
562 * this cpu
563 */
564 set_cpu_sibling_map(smp_processor_id());
565
566 /*
567 * Wait for TSC sync to not schedule things before.
568 * We still process interrupts, which could see an inconsistent
569 * time in that window unfortunately.
570 * Do this here because TSC sync has global unprotected state.
571 */
572 tsc_sync_wait();
573
574 /*
575 * We need to hold call_lock, so there is no inconsistency
576 * between the time smp_call_function() determines number of
577 * IPI receipients, and the time when the determination is made
578 * for which cpus receive the IPI in genapic_flat.c. Holding this
579 * lock helps us to not include this cpu in a currently in progress
580 * smp_call_function().
581 */
582 lock_ipi_call_lock();
583
584 /*
585 * Allow the master to continue.
586 */
587 cpu_set(smp_processor_id(), cpu_online_map);
588 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
589 unlock_ipi_call_lock();
590
591 cpu_idle();
592 }
593
594 extern volatile unsigned long init_rsp;
595 extern void (*initial_code)(void);
596
597 #ifdef APIC_DEBUG
598 static void inquire_remote_apic(int apicid)
599 {
600 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
601 char *names[] = { "ID", "VERSION", "SPIV" };
602 int timeout, status;
603
604 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
605
606 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
607 printk("... APIC #%d %s: ", apicid, names[i]);
608
609 /*
610 * Wait for idle.
611 */
612 apic_wait_icr_idle();
613
614 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
615 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
616
617 timeout = 0;
618 do {
619 udelay(100);
620 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
621 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
622
623 switch (status) {
624 case APIC_ICR_RR_VALID:
625 status = apic_read(APIC_RRR);
626 printk("%08x\n", status);
627 break;
628 default:
629 printk("failed\n");
630 }
631 }
632 }
633 #endif
634
635 /*
636 * Kick the secondary to wake up.
637 */
638 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
639 {
640 unsigned long send_status = 0, accept_status = 0;
641 int maxlvt, timeout, num_starts, j;
642
643 Dprintk("Asserting INIT.\n");
644
645 /*
646 * Turn INIT on target chip
647 */
648 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
649
650 /*
651 * Send IPI
652 */
653 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
654 | APIC_DM_INIT);
655
656 Dprintk("Waiting for send to finish...\n");
657 timeout = 0;
658 do {
659 Dprintk("+");
660 udelay(100);
661 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
662 } while (send_status && (timeout++ < 1000));
663
664 mdelay(10);
665
666 Dprintk("Deasserting INIT.\n");
667
668 /* Target chip */
669 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
670
671 /* Send IPI */
672 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
673
674 Dprintk("Waiting for send to finish...\n");
675 timeout = 0;
676 do {
677 Dprintk("+");
678 udelay(100);
679 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
680 } while (send_status && (timeout++ < 1000));
681
682 mb();
683 atomic_set(&init_deasserted, 1);
684
685 num_starts = 2;
686
687 /*
688 * Run STARTUP IPI loop.
689 */
690 Dprintk("#startup loops: %d.\n", num_starts);
691
692 maxlvt = get_maxlvt();
693
694 for (j = 1; j <= num_starts; j++) {
695 Dprintk("Sending STARTUP #%d.\n",j);
696 apic_write(APIC_ESR, 0);
697 apic_read(APIC_ESR);
698 Dprintk("After apic_write.\n");
699
700 /*
701 * STARTUP IPI
702 */
703
704 /* Target chip */
705 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
706
707 /* Boot on the stack */
708 /* Kick the second */
709 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
710
711 /*
712 * Give the other CPU some time to accept the IPI.
713 */
714 udelay(300);
715
716 Dprintk("Startup point 1.\n");
717
718 Dprintk("Waiting for send to finish...\n");
719 timeout = 0;
720 do {
721 Dprintk("+");
722 udelay(100);
723 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
724 } while (send_status && (timeout++ < 1000));
725
726 /*
727 * Give the other CPU some time to accept the IPI.
728 */
729 udelay(200);
730 /*
731 * Due to the Pentium erratum 3AP.
732 */
733 if (maxlvt > 3) {
734 apic_write(APIC_ESR, 0);
735 }
736 accept_status = (apic_read(APIC_ESR) & 0xEF);
737 if (send_status || accept_status)
738 break;
739 }
740 Dprintk("After Startup.\n");
741
742 if (send_status)
743 printk(KERN_ERR "APIC never delivered???\n");
744 if (accept_status)
745 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
746
747 return (send_status | accept_status);
748 }
749
750 struct create_idle {
751 struct task_struct *idle;
752 struct completion done;
753 int cpu;
754 };
755
756 void do_fork_idle(void *_c_idle)
757 {
758 struct create_idle *c_idle = _c_idle;
759
760 c_idle->idle = fork_idle(c_idle->cpu);
761 complete(&c_idle->done);
762 }
763
764 /*
765 * Boot one CPU.
766 */
767 static int __cpuinit do_boot_cpu(int cpu, int apicid)
768 {
769 unsigned long boot_error;
770 int timeout;
771 unsigned long start_rip;
772 struct create_idle c_idle = {
773 .cpu = cpu,
774 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
775 };
776 DECLARE_WORK(work, do_fork_idle, &c_idle);
777
778 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
779 if (!cpu_gdt_descr[cpu].address &&
780 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
781 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
782 return -1;
783 }
784
785 /* Allocate node local memory for AP pdas */
786 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
787 struct x8664_pda *newpda, *pda;
788 int node = cpu_to_node(cpu);
789 pda = cpu_pda(cpu);
790 newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
791 node);
792 if (newpda) {
793 memcpy(newpda, pda, sizeof (struct x8664_pda));
794 cpu_pda(cpu) = newpda;
795 } else
796 printk(KERN_ERR
797 "Could not allocate node local PDA for CPU %d on node %d\n",
798 cpu, node);
799 }
800
801
802 alternatives_smp_switch(1);
803
804 c_idle.idle = get_idle_for_cpu(cpu);
805
806 if (c_idle.idle) {
807 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
808 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
809 init_idle(c_idle.idle, cpu);
810 goto do_rest;
811 }
812
813 /*
814 * During cold boot process, keventd thread is not spun up yet.
815 * When we do cpu hot-add, we create idle threads on the fly, we should
816 * not acquire any attributes from the calling context. Hence the clean
817 * way to create kernel_threads() is to do that from keventd().
818 * We do the current_is_keventd() due to the fact that ACPI notifier
819 * was also queuing to keventd() and when the caller is already running
820 * in context of keventd(), we would end up with locking up the keventd
821 * thread.
822 */
823 if (!keventd_up() || current_is_keventd())
824 work.func(work.data);
825 else {
826 schedule_work(&work);
827 wait_for_completion(&c_idle.done);
828 }
829
830 if (IS_ERR(c_idle.idle)) {
831 printk("failed fork for CPU %d\n", cpu);
832 return PTR_ERR(c_idle.idle);
833 }
834
835 set_idle_for_cpu(cpu, c_idle.idle);
836
837 do_rest:
838
839 cpu_pda(cpu)->pcurrent = c_idle.idle;
840
841 start_rip = setup_trampoline();
842
843 init_rsp = c_idle.idle->thread.rsp;
844 per_cpu(init_tss,cpu).rsp0 = init_rsp;
845 initial_code = start_secondary;
846 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
847
848 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
849 cpus_weight(cpu_present_map),
850 apicid);
851
852 /*
853 * This grunge runs the startup process for
854 * the targeted processor.
855 */
856
857 atomic_set(&init_deasserted, 0);
858
859 Dprintk("Setting warm reset code and vector.\n");
860
861 CMOS_WRITE(0xa, 0xf);
862 local_flush_tlb();
863 Dprintk("1.\n");
864 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
865 Dprintk("2.\n");
866 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
867 Dprintk("3.\n");
868
869 /*
870 * Be paranoid about clearing APIC errors.
871 */
872 apic_write(APIC_ESR, 0);
873 apic_read(APIC_ESR);
874
875 /*
876 * Status is now clean
877 */
878 boot_error = 0;
879
880 /*
881 * Starting actual IPI sequence...
882 */
883 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
884
885 if (!boot_error) {
886 /*
887 * allow APs to start initializing.
888 */
889 Dprintk("Before Callout %d.\n", cpu);
890 cpu_set(cpu, cpu_callout_map);
891 Dprintk("After Callout %d.\n", cpu);
892
893 /*
894 * Wait 5s total for a response
895 */
896 for (timeout = 0; timeout < 50000; timeout++) {
897 if (cpu_isset(cpu, cpu_callin_map))
898 break; /* It has booted */
899 udelay(100);
900 }
901
902 if (cpu_isset(cpu, cpu_callin_map)) {
903 /* number CPUs logically, starting from 1 (BSP is 0) */
904 Dprintk("CPU has booted.\n");
905 } else {
906 boot_error = 1;
907 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
908 == 0xA5)
909 /* trampoline started but...? */
910 printk("Stuck ??\n");
911 else
912 /* trampoline code not run */
913 printk("Not responding.\n");
914 #ifdef APIC_DEBUG
915 inquire_remote_apic(apicid);
916 #endif
917 }
918 }
919 if (boot_error) {
920 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
921 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
922 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
923 cpu_clear(cpu, cpu_present_map);
924 cpu_clear(cpu, cpu_possible_map);
925 x86_cpu_to_apicid[cpu] = BAD_APICID;
926 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
927 return -EIO;
928 }
929
930 return 0;
931 }
932
933 cycles_t cacheflush_time;
934 unsigned long cache_decay_ticks;
935
936 /*
937 * Cleanup possible dangling ends...
938 */
939 static __cpuinit void smp_cleanup_boot(void)
940 {
941 /*
942 * Paranoid: Set warm reset code and vector here back
943 * to default values.
944 */
945 CMOS_WRITE(0, 0xf);
946
947 /*
948 * Reset trampoline flag
949 */
950 *((volatile int *) phys_to_virt(0x467)) = 0;
951 }
952
953 /*
954 * Fall back to non SMP mode after errors.
955 *
956 * RED-PEN audit/test this more. I bet there is more state messed up here.
957 */
958 static __init void disable_smp(void)
959 {
960 cpu_present_map = cpumask_of_cpu(0);
961 cpu_possible_map = cpumask_of_cpu(0);
962 if (smp_found_config)
963 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
964 else
965 phys_cpu_present_map = physid_mask_of_physid(0);
966 cpu_set(0, cpu_sibling_map[0]);
967 cpu_set(0, cpu_core_map[0]);
968 }
969
970 #ifdef CONFIG_HOTPLUG_CPU
971
972 int additional_cpus __initdata = -1;
973
974 /*
975 * cpu_possible_map should be static, it cannot change as cpu's
976 * are onlined, or offlined. The reason is per-cpu data-structures
977 * are allocated by some modules at init time, and dont expect to
978 * do this dynamically on cpu arrival/departure.
979 * cpu_present_map on the other hand can change dynamically.
980 * In case when cpu_hotplug is not compiled, then we resort to current
981 * behaviour, which is cpu_possible == cpu_present.
982 * - Ashok Raj
983 *
984 * Three ways to find out the number of additional hotplug CPUs:
985 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
986 * - The user can overwrite it with additional_cpus=NUM
987 * - Otherwise don't reserve additional CPUs.
988 * We do this because additional CPUs waste a lot of memory.
989 * -AK
990 */
991 __init void prefill_possible_map(void)
992 {
993 int i;
994 int possible;
995
996 if (additional_cpus == -1) {
997 if (disabled_cpus > 0)
998 additional_cpus = disabled_cpus;
999 else
1000 additional_cpus = 0;
1001 }
1002 possible = num_processors + additional_cpus;
1003 if (possible > NR_CPUS)
1004 possible = NR_CPUS;
1005
1006 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1007 possible,
1008 max_t(int, possible - num_processors, 0));
1009
1010 for (i = 0; i < possible; i++)
1011 cpu_set(i, cpu_possible_map);
1012 }
1013 #endif
1014
1015 /*
1016 * Various sanity checks.
1017 */
1018 static int __init smp_sanity_check(unsigned max_cpus)
1019 {
1020 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1021 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1022 hard_smp_processor_id());
1023 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1024 }
1025
1026 /*
1027 * If we couldn't find an SMP configuration at boot time,
1028 * get out of here now!
1029 */
1030 if (!smp_found_config) {
1031 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1032 disable_smp();
1033 if (APIC_init_uniprocessor())
1034 printk(KERN_NOTICE "Local APIC not detected."
1035 " Using dummy APIC emulation.\n");
1036 return -1;
1037 }
1038
1039 /*
1040 * Should not be necessary because the MP table should list the boot
1041 * CPU too, but we do it for the sake of robustness anyway.
1042 */
1043 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
1044 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
1045 boot_cpu_id);
1046 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1047 }
1048
1049 /*
1050 * If we couldn't find a local APIC, then get out of here now!
1051 */
1052 if (!cpu_has_apic) {
1053 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1054 boot_cpu_id);
1055 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1056 nr_ioapics = 0;
1057 return -1;
1058 }
1059
1060 /*
1061 * If SMP should be disabled, then really disable it!
1062 */
1063 if (!max_cpus) {
1064 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1065 nr_ioapics = 0;
1066 return -1;
1067 }
1068
1069 return 0;
1070 }
1071
1072 /*
1073 * Prepare for SMP bootup. The MP table or ACPI has been read
1074 * earlier. Just do some sanity checking here and enable APIC mode.
1075 */
1076 void __init smp_prepare_cpus(unsigned int max_cpus)
1077 {
1078 nmi_watchdog_default();
1079 current_cpu_data = boot_cpu_data;
1080 current_thread_info()->cpu = 0; /* needed? */
1081 set_cpu_sibling_map(0);
1082
1083 if (smp_sanity_check(max_cpus) < 0) {
1084 printk(KERN_INFO "SMP disabled\n");
1085 disable_smp();
1086 return;
1087 }
1088
1089
1090 /*
1091 * Switch from PIC to APIC mode.
1092 */
1093 connect_bsp_APIC();
1094 setup_local_APIC();
1095
1096 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1097 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1098 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1099 /* Or can we switch back to PIC here? */
1100 }
1101
1102 /*
1103 * Now start the IO-APICs
1104 */
1105 if (!skip_ioapic_setup && nr_ioapics)
1106 setup_IO_APIC();
1107 else
1108 nr_ioapics = 0;
1109
1110 /*
1111 * Set up local APIC timer on boot CPU.
1112 */
1113
1114 setup_boot_APIC_clock();
1115 }
1116
1117 /*
1118 * Early setup to make printk work.
1119 */
1120 void __init smp_prepare_boot_cpu(void)
1121 {
1122 int me = smp_processor_id();
1123 cpu_set(me, cpu_online_map);
1124 cpu_set(me, cpu_callout_map);
1125 per_cpu(cpu_state, me) = CPU_ONLINE;
1126 }
1127
1128 /*
1129 * Entry point to boot a CPU.
1130 */
1131 int __cpuinit __cpu_up(unsigned int cpu)
1132 {
1133 int err;
1134 int apicid = cpu_present_to_apicid(cpu);
1135
1136 WARN_ON(irqs_disabled());
1137
1138 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1139
1140 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1141 !physid_isset(apicid, phys_cpu_present_map)) {
1142 printk("__cpu_up: bad cpu %d\n", cpu);
1143 return -EINVAL;
1144 }
1145
1146 /*
1147 * Already booted CPU?
1148 */
1149 if (cpu_isset(cpu, cpu_callin_map)) {
1150 Dprintk("do_boot_cpu %d Already started\n", cpu);
1151 return -ENOSYS;
1152 }
1153
1154 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1155 /* Boot it! */
1156 err = do_boot_cpu(cpu, apicid);
1157 if (err < 0) {
1158 Dprintk("do_boot_cpu failed %d\n", err);
1159 return err;
1160 }
1161
1162 /* Unleash the CPU! */
1163 Dprintk("waiting for cpu %d\n", cpu);
1164
1165 while (!cpu_isset(cpu, cpu_online_map))
1166 cpu_relax();
1167 err = 0;
1168
1169 return err;
1170 }
1171
1172 /*
1173 * Finish the SMP boot.
1174 */
1175 void __init smp_cpus_done(unsigned int max_cpus)
1176 {
1177 smp_cleanup_boot();
1178
1179 #ifdef CONFIG_X86_IO_APIC
1180 setup_ioapic_dest();
1181 #endif
1182
1183 check_nmi_watchdog();
1184 }
1185
1186 #ifdef CONFIG_HOTPLUG_CPU
1187
1188 static void remove_siblinginfo(int cpu)
1189 {
1190 int sibling;
1191 struct cpuinfo_x86 *c = cpu_data;
1192
1193 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1194 cpu_clear(cpu, cpu_core_map[sibling]);
1195 /*
1196 * last thread sibling in this cpu core going down
1197 */
1198 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1199 c[sibling].booted_cores--;
1200 }
1201
1202 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1203 cpu_clear(cpu, cpu_sibling_map[sibling]);
1204 cpus_clear(cpu_sibling_map[cpu]);
1205 cpus_clear(cpu_core_map[cpu]);
1206 c[cpu].phys_proc_id = 0;
1207 c[cpu].cpu_core_id = 0;
1208 cpu_clear(cpu, cpu_sibling_setup_map);
1209 }
1210
1211 void remove_cpu_from_maps(void)
1212 {
1213 int cpu = smp_processor_id();
1214
1215 cpu_clear(cpu, cpu_callout_map);
1216 cpu_clear(cpu, cpu_callin_map);
1217 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1218 clear_node_cpumask(cpu);
1219 }
1220
1221 int __cpu_disable(void)
1222 {
1223 int cpu = smp_processor_id();
1224
1225 /*
1226 * Perhaps use cpufreq to drop frequency, but that could go
1227 * into generic code.
1228 *
1229 * We won't take down the boot processor on i386 due to some
1230 * interrupts only being able to be serviced by the BSP.
1231 * Especially so if we're not using an IOAPIC -zwane
1232 */
1233 if (cpu == 0)
1234 return -EBUSY;
1235
1236 clear_local_APIC();
1237
1238 /*
1239 * HACK:
1240 * Allow any queued timer interrupts to get serviced
1241 * This is only a temporary solution until we cleanup
1242 * fixup_irqs as we do for IA64.
1243 */
1244 local_irq_enable();
1245 mdelay(1);
1246
1247 local_irq_disable();
1248 remove_siblinginfo(cpu);
1249
1250 /* It's now safe to remove this processor from the online map */
1251 cpu_clear(cpu, cpu_online_map);
1252 remove_cpu_from_maps();
1253 fixup_irqs(cpu_online_map);
1254 return 0;
1255 }
1256
1257 void __cpu_die(unsigned int cpu)
1258 {
1259 /* We don't do anything here: idle task is faking death itself. */
1260 unsigned int i;
1261
1262 for (i = 0; i < 10; i++) {
1263 /* They ack this in play_dead by setting CPU_DEAD */
1264 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1265 printk ("CPU %d is now offline\n", cpu);
1266 if (1 == num_online_cpus())
1267 alternatives_smp_switch(0);
1268 return;
1269 }
1270 msleep(100);
1271 }
1272 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1273 }
1274
1275 __init int setup_additional_cpus(char *s)
1276 {
1277 return get_option(&s, &additional_cpus);
1278 }
1279 __setup("additional_cpus=", setup_additional_cpus);
1280
1281 #else /* ... !CONFIG_HOTPLUG_CPU */
1282
1283 int __cpu_disable(void)
1284 {
1285 return -ENOSYS;
1286 }
1287
1288 void __cpu_die(unsigned int cpu)
1289 {
1290 /* We said "no" in __cpu_disable */
1291 BUG();
1292 }
1293 #endif /* CONFIG_HOTPLUG_CPU */
This page took 0.057953 seconds and 6 git commands to generate.