Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[deliverable/linux.git] / arch / x86_64 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
38 */
39
40
41 #include <linux/init.h>
42
43 #include <linux/mm.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/smp_lock.h>
46 #include <linux/bootmem.h>
47 #include <linux/thread_info.h>
48 #include <linux/module.h>
49 #include <linux/delay.h>
50 #include <linux/mc146818rtc.h>
51 #include <linux/smp.h>
52
53 #include <asm/mtrr.h>
54 #include <asm/pgalloc.h>
55 #include <asm/desc.h>
56 #include <asm/kdebug.h>
57 #include <asm/tlbflush.h>
58 #include <asm/proto.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/hw_irq.h>
62 #include <asm/numa.h>
63
64 /* Number of siblings per CPU package */
65 int smp_num_siblings = 1;
66 EXPORT_SYMBOL(smp_num_siblings);
67
68 /* Last level cache ID of each logical CPU */
69 u8 cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
70 EXPORT_SYMBOL(cpu_llc_id);
71
72 /* Bitmask of currently online CPUs */
73 cpumask_t cpu_online_map __read_mostly;
74
75 EXPORT_SYMBOL(cpu_online_map);
76
77 /*
78 * Private maps to synchronize booting between AP and BP.
79 * Probably not needed anymore, but it makes for easier debugging. -AK
80 */
81 cpumask_t cpu_callin_map;
82 cpumask_t cpu_callout_map;
83 EXPORT_SYMBOL(cpu_callout_map);
84
85 cpumask_t cpu_possible_map;
86 EXPORT_SYMBOL(cpu_possible_map);
87
88 /* Per CPU bogomips and other parameters */
89 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
90 EXPORT_SYMBOL(cpu_data);
91
92 /* Set when the idlers are all forked */
93 int smp_threads_ready;
94
95 /* representing HT siblings of each logical CPU */
96 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
97 EXPORT_SYMBOL(cpu_sibling_map);
98
99 /* representing HT and core siblings of each logical CPU */
100 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
101 EXPORT_SYMBOL(cpu_core_map);
102
103 /*
104 * Trampoline 80x86 program as an array.
105 */
106
107 extern unsigned char trampoline_data[];
108 extern unsigned char trampoline_end[];
109
110 /* State of each CPU */
111 DEFINE_PER_CPU(int, cpu_state) = { 0 };
112
113 /*
114 * Store all idle threads, this can be reused instead of creating
115 * a new thread. Also avoids complicated thread destroy functionality
116 * for idle threads.
117 */
118 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
119
120 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
121 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
122
123 /*
124 * Currently trivial. Write the real->protected mode
125 * bootstrap into the page concerned. The caller
126 * has made sure it's suitably aligned.
127 */
128
129 static unsigned long __cpuinit setup_trampoline(void)
130 {
131 void *tramp = __va(SMP_TRAMPOLINE_BASE);
132 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
133 return virt_to_phys(tramp);
134 }
135
136 /*
137 * The bootstrap kernel entry code has set these up. Save them for
138 * a given CPU
139 */
140
141 static void __cpuinit smp_store_cpu_info(int id)
142 {
143 struct cpuinfo_x86 *c = cpu_data + id;
144
145 *c = boot_cpu_data;
146 identify_cpu(c);
147 print_cpu_info(c);
148 }
149
150 /*
151 * New Funky TSC sync algorithm borrowed from IA64.
152 * Main advantage is that it doesn't reset the TSCs fully and
153 * in general looks more robust and it works better than my earlier
154 * attempts. I believe it was written by David Mosberger. Some minor
155 * adjustments for x86-64 by me -AK
156 *
157 * Original comment reproduced below.
158 *
159 * Synchronize TSC of the current (slave) CPU with the TSC of the
160 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
161 * eliminate the possibility of unaccounted-for errors (such as
162 * getting a machine check in the middle of a calibration step). The
163 * basic idea is for the slave to ask the master what itc value it has
164 * and to read its own itc before and after the master responds. Each
165 * iteration gives us three timestamps:
166 *
167 * slave master
168 *
169 * t0 ---\
170 * ---\
171 * --->
172 * tm
173 * /---
174 * /---
175 * t1 <---
176 *
177 *
178 * The goal is to adjust the slave's TSC such that tm falls exactly
179 * half-way between t0 and t1. If we achieve this, the clocks are
180 * synchronized provided the interconnect between the slave and the
181 * master is symmetric. Even if the interconnect were asymmetric, we
182 * would still know that the synchronization error is smaller than the
183 * roundtrip latency (t0 - t1).
184 *
185 * When the interconnect is quiet and symmetric, this lets us
186 * synchronize the TSC to within one or two cycles. However, we can
187 * only *guarantee* that the synchronization is accurate to within a
188 * round-trip time, which is typically in the range of several hundred
189 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
190 * are usually almost perfectly synchronized, but we shouldn't assume
191 * that the accuracy is much better than half a micro second or so.
192 *
193 * [there are other errors like the latency of RDTSC and of the
194 * WRMSR. These can also account to hundreds of cycles. So it's
195 * probably worse. It claims 153 cycles error on a dual Opteron,
196 * but I suspect the numbers are actually somewhat worse -AK]
197 */
198
199 #define MASTER 0
200 #define SLAVE (SMP_CACHE_BYTES/8)
201
202 /* Intentionally don't use cpu_relax() while TSC synchronization
203 because we don't want to go into funky power save modi or cause
204 hypervisors to schedule us away. Going to sleep would likely affect
205 latency and low latency is the primary objective here. -AK */
206 #define no_cpu_relax() barrier()
207
208 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
209 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
210 static int notscsync __cpuinitdata;
211
212 #undef DEBUG_TSC_SYNC
213
214 #define NUM_ROUNDS 64 /* magic value */
215 #define NUM_ITERS 5 /* likewise */
216
217 /* Callback on boot CPU */
218 static __cpuinit void sync_master(void *arg)
219 {
220 unsigned long flags, i;
221
222 go[MASTER] = 0;
223
224 local_irq_save(flags);
225 {
226 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
227 while (!go[MASTER])
228 no_cpu_relax();
229 go[MASTER] = 0;
230 rdtscll(go[SLAVE]);
231 }
232 }
233 local_irq_restore(flags);
234 }
235
236 /*
237 * Return the number of cycles by which our tsc differs from the tsc
238 * on the master (time-keeper) CPU. A positive number indicates our
239 * tsc is ahead of the master, negative that it is behind.
240 */
241 static inline long
242 get_delta(long *rt, long *master)
243 {
244 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
245 unsigned long tcenter, t0, t1, tm;
246 int i;
247
248 for (i = 0; i < NUM_ITERS; ++i) {
249 rdtscll(t0);
250 go[MASTER] = 1;
251 while (!(tm = go[SLAVE]))
252 no_cpu_relax();
253 go[SLAVE] = 0;
254 rdtscll(t1);
255
256 if (t1 - t0 < best_t1 - best_t0)
257 best_t0 = t0, best_t1 = t1, best_tm = tm;
258 }
259
260 *rt = best_t1 - best_t0;
261 *master = best_tm - best_t0;
262
263 /* average best_t0 and best_t1 without overflow: */
264 tcenter = (best_t0/2 + best_t1/2);
265 if (best_t0 % 2 + best_t1 % 2 == 2)
266 ++tcenter;
267 return tcenter - best_tm;
268 }
269
270 static __cpuinit void sync_tsc(unsigned int master)
271 {
272 int i, done = 0;
273 long delta, adj, adjust_latency = 0;
274 unsigned long flags, rt, master_time_stamp, bound;
275 #ifdef DEBUG_TSC_SYNC
276 static struct syncdebug {
277 long rt; /* roundtrip time */
278 long master; /* master's timestamp */
279 long diff; /* difference between midpoint and master's timestamp */
280 long lat; /* estimate of tsc adjustment latency */
281 } t[NUM_ROUNDS] __cpuinitdata;
282 #endif
283
284 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
285 smp_processor_id(), master);
286
287 go[MASTER] = 1;
288
289 /* It is dangerous to broadcast IPI as cpus are coming up,
290 * as they may not be ready to accept them. So since
291 * we only need to send the ipi to the boot cpu direct
292 * the message, and avoid the race.
293 */
294 smp_call_function_single(master, sync_master, NULL, 1, 0);
295
296 while (go[MASTER]) /* wait for master to be ready */
297 no_cpu_relax();
298
299 spin_lock_irqsave(&tsc_sync_lock, flags);
300 {
301 for (i = 0; i < NUM_ROUNDS; ++i) {
302 delta = get_delta(&rt, &master_time_stamp);
303 if (delta == 0) {
304 done = 1; /* let's lock on to this... */
305 bound = rt;
306 }
307
308 if (!done) {
309 unsigned long t;
310 if (i > 0) {
311 adjust_latency += -delta;
312 adj = -delta + adjust_latency/4;
313 } else
314 adj = -delta;
315
316 rdtscll(t);
317 wrmsrl(MSR_IA32_TSC, t + adj);
318 }
319 #ifdef DEBUG_TSC_SYNC
320 t[i].rt = rt;
321 t[i].master = master_time_stamp;
322 t[i].diff = delta;
323 t[i].lat = adjust_latency/4;
324 #endif
325 }
326 }
327 spin_unlock_irqrestore(&tsc_sync_lock, flags);
328
329 #ifdef DEBUG_TSC_SYNC
330 for (i = 0; i < NUM_ROUNDS; ++i)
331 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
332 t[i].rt, t[i].master, t[i].diff, t[i].lat);
333 #endif
334
335 printk(KERN_INFO
336 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
337 "maxerr %lu cycles)\n",
338 smp_processor_id(), master, delta, rt);
339 }
340
341 static void __cpuinit tsc_sync_wait(void)
342 {
343 /*
344 * When the CPU has synchronized TSCs assume the BIOS
345 * or the hardware already synced. Otherwise we could
346 * mess up a possible perfect synchronization with a
347 * not-quite-perfect algorithm.
348 */
349 if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
350 return;
351 sync_tsc(0);
352 }
353
354 static __init int notscsync_setup(char *s)
355 {
356 notscsync = 1;
357 return 1;
358 }
359 __setup("notscsync", notscsync_setup);
360
361 static atomic_t init_deasserted __cpuinitdata;
362
363 /*
364 * Report back to the Boot Processor.
365 * Running on AP.
366 */
367 void __cpuinit smp_callin(void)
368 {
369 int cpuid, phys_id;
370 unsigned long timeout;
371
372 /*
373 * If waken up by an INIT in an 82489DX configuration
374 * we may get here before an INIT-deassert IPI reaches
375 * our local APIC. We have to wait for the IPI or we'll
376 * lock up on an APIC access.
377 */
378 while (!atomic_read(&init_deasserted))
379 cpu_relax();
380
381 /*
382 * (This works even if the APIC is not enabled.)
383 */
384 phys_id = GET_APIC_ID(apic_read(APIC_ID));
385 cpuid = smp_processor_id();
386 if (cpu_isset(cpuid, cpu_callin_map)) {
387 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
388 phys_id, cpuid);
389 }
390 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
391
392 /*
393 * STARTUP IPIs are fragile beasts as they might sometimes
394 * trigger some glue motherboard logic. Complete APIC bus
395 * silence for 1 second, this overestimates the time the
396 * boot CPU is spending to send the up to 2 STARTUP IPIs
397 * by a factor of two. This should be enough.
398 */
399
400 /*
401 * Waiting 2s total for startup (udelay is not yet working)
402 */
403 timeout = jiffies + 2*HZ;
404 while (time_before(jiffies, timeout)) {
405 /*
406 * Has the boot CPU finished it's STARTUP sequence?
407 */
408 if (cpu_isset(cpuid, cpu_callout_map))
409 break;
410 cpu_relax();
411 }
412
413 if (!time_before(jiffies, timeout)) {
414 panic("smp_callin: CPU%d started up but did not get a callout!\n",
415 cpuid);
416 }
417
418 /*
419 * the boot CPU has finished the init stage and is spinning
420 * on callin_map until we finish. We are free to set up this
421 * CPU, first the APIC. (this is probably redundant on most
422 * boards)
423 */
424
425 Dprintk("CALLIN, before setup_local_APIC().\n");
426 setup_local_APIC();
427
428 /*
429 * Get our bogomips.
430 *
431 * Need to enable IRQs because it can take longer and then
432 * the NMI watchdog might kill us.
433 */
434 local_irq_enable();
435 calibrate_delay();
436 local_irq_disable();
437 Dprintk("Stack at about %p\n",&cpuid);
438
439 disable_APIC_timer();
440
441 /*
442 * Save our processor parameters
443 */
444 smp_store_cpu_info(cpuid);
445
446 /*
447 * Allow the master to continue.
448 */
449 cpu_set(cpuid, cpu_callin_map);
450 }
451
452 /* maps the cpu to the sched domain representing multi-core */
453 cpumask_t cpu_coregroup_map(int cpu)
454 {
455 struct cpuinfo_x86 *c = cpu_data + cpu;
456 /*
457 * For perf, we return last level cache shared map.
458 * And for power savings, we return cpu_core_map
459 */
460 if (sched_mc_power_savings || sched_smt_power_savings)
461 return cpu_core_map[cpu];
462 else
463 return c->llc_shared_map;
464 }
465
466 /* representing cpus for which sibling maps can be computed */
467 static cpumask_t cpu_sibling_setup_map;
468
469 static inline void set_cpu_sibling_map(int cpu)
470 {
471 int i;
472 struct cpuinfo_x86 *c = cpu_data;
473
474 cpu_set(cpu, cpu_sibling_setup_map);
475
476 if (smp_num_siblings > 1) {
477 for_each_cpu_mask(i, cpu_sibling_setup_map) {
478 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
479 c[cpu].cpu_core_id == c[i].cpu_core_id) {
480 cpu_set(i, cpu_sibling_map[cpu]);
481 cpu_set(cpu, cpu_sibling_map[i]);
482 cpu_set(i, cpu_core_map[cpu]);
483 cpu_set(cpu, cpu_core_map[i]);
484 cpu_set(i, c[cpu].llc_shared_map);
485 cpu_set(cpu, c[i].llc_shared_map);
486 }
487 }
488 } else {
489 cpu_set(cpu, cpu_sibling_map[cpu]);
490 }
491
492 cpu_set(cpu, c[cpu].llc_shared_map);
493
494 if (current_cpu_data.x86_max_cores == 1) {
495 cpu_core_map[cpu] = cpu_sibling_map[cpu];
496 c[cpu].booted_cores = 1;
497 return;
498 }
499
500 for_each_cpu_mask(i, cpu_sibling_setup_map) {
501 if (cpu_llc_id[cpu] != BAD_APICID &&
502 cpu_llc_id[cpu] == cpu_llc_id[i]) {
503 cpu_set(i, c[cpu].llc_shared_map);
504 cpu_set(cpu, c[i].llc_shared_map);
505 }
506 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
507 cpu_set(i, cpu_core_map[cpu]);
508 cpu_set(cpu, cpu_core_map[i]);
509 /*
510 * Does this new cpu bringup a new core?
511 */
512 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
513 /*
514 * for each core in package, increment
515 * the booted_cores for this new cpu
516 */
517 if (first_cpu(cpu_sibling_map[i]) == i)
518 c[cpu].booted_cores++;
519 /*
520 * increment the core count for all
521 * the other cpus in this package
522 */
523 if (i != cpu)
524 c[i].booted_cores++;
525 } else if (i != cpu && !c[cpu].booted_cores)
526 c[cpu].booted_cores = c[i].booted_cores;
527 }
528 }
529 }
530
531 /*
532 * Setup code on secondary processor (after comming out of the trampoline)
533 */
534 void __cpuinit start_secondary(void)
535 {
536 /*
537 * Dont put anything before smp_callin(), SMP
538 * booting is too fragile that we want to limit the
539 * things done here to the most necessary things.
540 */
541 cpu_init();
542 preempt_disable();
543 smp_callin();
544
545 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
546 barrier();
547
548 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
549 setup_secondary_APIC_clock();
550
551 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
552
553 if (nmi_watchdog == NMI_IO_APIC) {
554 disable_8259A_irq(0);
555 enable_NMI_through_LVT0(NULL);
556 enable_8259A_irq(0);
557 }
558
559 enable_APIC_timer();
560
561 /*
562 * The sibling maps must be set before turing the online map on for
563 * this cpu
564 */
565 set_cpu_sibling_map(smp_processor_id());
566
567 /*
568 * Wait for TSC sync to not schedule things before.
569 * We still process interrupts, which could see an inconsistent
570 * time in that window unfortunately.
571 * Do this here because TSC sync has global unprotected state.
572 */
573 tsc_sync_wait();
574
575 /*
576 * We need to hold call_lock, so there is no inconsistency
577 * between the time smp_call_function() determines number of
578 * IPI receipients, and the time when the determination is made
579 * for which cpus receive the IPI in genapic_flat.c. Holding this
580 * lock helps us to not include this cpu in a currently in progress
581 * smp_call_function().
582 */
583 lock_ipi_call_lock();
584
585 /*
586 * Allow the master to continue.
587 */
588 cpu_set(smp_processor_id(), cpu_online_map);
589 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
590 unlock_ipi_call_lock();
591
592 cpu_idle();
593 }
594
595 extern volatile unsigned long init_rsp;
596 extern void (*initial_code)(void);
597
598 #ifdef APIC_DEBUG
599 static void inquire_remote_apic(int apicid)
600 {
601 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
602 char *names[] = { "ID", "VERSION", "SPIV" };
603 int timeout, status;
604
605 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
606
607 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
608 printk("... APIC #%d %s: ", apicid, names[i]);
609
610 /*
611 * Wait for idle.
612 */
613 apic_wait_icr_idle();
614
615 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
616 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
617
618 timeout = 0;
619 do {
620 udelay(100);
621 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
622 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
623
624 switch (status) {
625 case APIC_ICR_RR_VALID:
626 status = apic_read(APIC_RRR);
627 printk("%08x\n", status);
628 break;
629 default:
630 printk("failed\n");
631 }
632 }
633 }
634 #endif
635
636 /*
637 * Kick the secondary to wake up.
638 */
639 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
640 {
641 unsigned long send_status = 0, accept_status = 0;
642 int maxlvt, timeout, num_starts, j;
643
644 Dprintk("Asserting INIT.\n");
645
646 /*
647 * Turn INIT on target chip
648 */
649 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
650
651 /*
652 * Send IPI
653 */
654 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
655 | APIC_DM_INIT);
656
657 Dprintk("Waiting for send to finish...\n");
658 timeout = 0;
659 do {
660 Dprintk("+");
661 udelay(100);
662 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
663 } while (send_status && (timeout++ < 1000));
664
665 mdelay(10);
666
667 Dprintk("Deasserting INIT.\n");
668
669 /* Target chip */
670 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
671
672 /* Send IPI */
673 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
674
675 Dprintk("Waiting for send to finish...\n");
676 timeout = 0;
677 do {
678 Dprintk("+");
679 udelay(100);
680 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
681 } while (send_status && (timeout++ < 1000));
682
683 mb();
684 atomic_set(&init_deasserted, 1);
685
686 num_starts = 2;
687
688 /*
689 * Run STARTUP IPI loop.
690 */
691 Dprintk("#startup loops: %d.\n", num_starts);
692
693 maxlvt = get_maxlvt();
694
695 for (j = 1; j <= num_starts; j++) {
696 Dprintk("Sending STARTUP #%d.\n",j);
697 apic_write(APIC_ESR, 0);
698 apic_read(APIC_ESR);
699 Dprintk("After apic_write.\n");
700
701 /*
702 * STARTUP IPI
703 */
704
705 /* Target chip */
706 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
707
708 /* Boot on the stack */
709 /* Kick the second */
710 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
711
712 /*
713 * Give the other CPU some time to accept the IPI.
714 */
715 udelay(300);
716
717 Dprintk("Startup point 1.\n");
718
719 Dprintk("Waiting for send to finish...\n");
720 timeout = 0;
721 do {
722 Dprintk("+");
723 udelay(100);
724 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
725 } while (send_status && (timeout++ < 1000));
726
727 /*
728 * Give the other CPU some time to accept the IPI.
729 */
730 udelay(200);
731 /*
732 * Due to the Pentium erratum 3AP.
733 */
734 if (maxlvt > 3) {
735 apic_write(APIC_ESR, 0);
736 }
737 accept_status = (apic_read(APIC_ESR) & 0xEF);
738 if (send_status || accept_status)
739 break;
740 }
741 Dprintk("After Startup.\n");
742
743 if (send_status)
744 printk(KERN_ERR "APIC never delivered???\n");
745 if (accept_status)
746 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
747
748 return (send_status | accept_status);
749 }
750
751 struct create_idle {
752 struct task_struct *idle;
753 struct completion done;
754 int cpu;
755 };
756
757 void do_fork_idle(void *_c_idle)
758 {
759 struct create_idle *c_idle = _c_idle;
760
761 c_idle->idle = fork_idle(c_idle->cpu);
762 complete(&c_idle->done);
763 }
764
765 /*
766 * Boot one CPU.
767 */
768 static int __cpuinit do_boot_cpu(int cpu, int apicid)
769 {
770 unsigned long boot_error;
771 int timeout;
772 unsigned long start_rip;
773 struct create_idle c_idle = {
774 .cpu = cpu,
775 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
776 };
777 DECLARE_WORK(work, do_fork_idle, &c_idle);
778
779 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
780 if (!cpu_gdt_descr[cpu].address &&
781 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
782 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
783 return -1;
784 }
785
786 /* Allocate node local memory for AP pdas */
787 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
788 struct x8664_pda *newpda, *pda;
789 int node = cpu_to_node(cpu);
790 pda = cpu_pda(cpu);
791 newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
792 node);
793 if (newpda) {
794 memcpy(newpda, pda, sizeof (struct x8664_pda));
795 cpu_pda(cpu) = newpda;
796 } else
797 printk(KERN_ERR
798 "Could not allocate node local PDA for CPU %d on node %d\n",
799 cpu, node);
800 }
801
802
803 alternatives_smp_switch(1);
804
805 c_idle.idle = get_idle_for_cpu(cpu);
806
807 if (c_idle.idle) {
808 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
809 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
810 init_idle(c_idle.idle, cpu);
811 goto do_rest;
812 }
813
814 /*
815 * During cold boot process, keventd thread is not spun up yet.
816 * When we do cpu hot-add, we create idle threads on the fly, we should
817 * not acquire any attributes from the calling context. Hence the clean
818 * way to create kernel_threads() is to do that from keventd().
819 * We do the current_is_keventd() due to the fact that ACPI notifier
820 * was also queuing to keventd() and when the caller is already running
821 * in context of keventd(), we would end up with locking up the keventd
822 * thread.
823 */
824 if (!keventd_up() || current_is_keventd())
825 work.func(work.data);
826 else {
827 schedule_work(&work);
828 wait_for_completion(&c_idle.done);
829 }
830
831 if (IS_ERR(c_idle.idle)) {
832 printk("failed fork for CPU %d\n", cpu);
833 return PTR_ERR(c_idle.idle);
834 }
835
836 set_idle_for_cpu(cpu, c_idle.idle);
837
838 do_rest:
839
840 cpu_pda(cpu)->pcurrent = c_idle.idle;
841
842 start_rip = setup_trampoline();
843
844 init_rsp = c_idle.idle->thread.rsp;
845 per_cpu(init_tss,cpu).rsp0 = init_rsp;
846 initial_code = start_secondary;
847 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
848
849 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
850 cpus_weight(cpu_present_map),
851 apicid);
852
853 /*
854 * This grunge runs the startup process for
855 * the targeted processor.
856 */
857
858 atomic_set(&init_deasserted, 0);
859
860 Dprintk("Setting warm reset code and vector.\n");
861
862 CMOS_WRITE(0xa, 0xf);
863 local_flush_tlb();
864 Dprintk("1.\n");
865 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
866 Dprintk("2.\n");
867 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
868 Dprintk("3.\n");
869
870 /*
871 * Be paranoid about clearing APIC errors.
872 */
873 apic_write(APIC_ESR, 0);
874 apic_read(APIC_ESR);
875
876 /*
877 * Status is now clean
878 */
879 boot_error = 0;
880
881 /*
882 * Starting actual IPI sequence...
883 */
884 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
885
886 if (!boot_error) {
887 /*
888 * allow APs to start initializing.
889 */
890 Dprintk("Before Callout %d.\n", cpu);
891 cpu_set(cpu, cpu_callout_map);
892 Dprintk("After Callout %d.\n", cpu);
893
894 /*
895 * Wait 5s total for a response
896 */
897 for (timeout = 0; timeout < 50000; timeout++) {
898 if (cpu_isset(cpu, cpu_callin_map))
899 break; /* It has booted */
900 udelay(100);
901 }
902
903 if (cpu_isset(cpu, cpu_callin_map)) {
904 /* number CPUs logically, starting from 1 (BSP is 0) */
905 Dprintk("CPU has booted.\n");
906 } else {
907 boot_error = 1;
908 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
909 == 0xA5)
910 /* trampoline started but...? */
911 printk("Stuck ??\n");
912 else
913 /* trampoline code not run */
914 printk("Not responding.\n");
915 #ifdef APIC_DEBUG
916 inquire_remote_apic(apicid);
917 #endif
918 }
919 }
920 if (boot_error) {
921 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
922 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
923 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
924 cpu_clear(cpu, cpu_present_map);
925 cpu_clear(cpu, cpu_possible_map);
926 x86_cpu_to_apicid[cpu] = BAD_APICID;
927 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
928 return -EIO;
929 }
930
931 return 0;
932 }
933
934 cycles_t cacheflush_time;
935 unsigned long cache_decay_ticks;
936
937 /*
938 * Cleanup possible dangling ends...
939 */
940 static __cpuinit void smp_cleanup_boot(void)
941 {
942 /*
943 * Paranoid: Set warm reset code and vector here back
944 * to default values.
945 */
946 CMOS_WRITE(0, 0xf);
947
948 /*
949 * Reset trampoline flag
950 */
951 *((volatile int *) phys_to_virt(0x467)) = 0;
952 }
953
954 /*
955 * Fall back to non SMP mode after errors.
956 *
957 * RED-PEN audit/test this more. I bet there is more state messed up here.
958 */
959 static __init void disable_smp(void)
960 {
961 cpu_present_map = cpumask_of_cpu(0);
962 cpu_possible_map = cpumask_of_cpu(0);
963 if (smp_found_config)
964 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
965 else
966 phys_cpu_present_map = physid_mask_of_physid(0);
967 cpu_set(0, cpu_sibling_map[0]);
968 cpu_set(0, cpu_core_map[0]);
969 }
970
971 #ifdef CONFIG_HOTPLUG_CPU
972
973 int additional_cpus __initdata = -1;
974
975 /*
976 * cpu_possible_map should be static, it cannot change as cpu's
977 * are onlined, or offlined. The reason is per-cpu data-structures
978 * are allocated by some modules at init time, and dont expect to
979 * do this dynamically on cpu arrival/departure.
980 * cpu_present_map on the other hand can change dynamically.
981 * In case when cpu_hotplug is not compiled, then we resort to current
982 * behaviour, which is cpu_possible == cpu_present.
983 * - Ashok Raj
984 *
985 * Three ways to find out the number of additional hotplug CPUs:
986 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
987 * - The user can overwrite it with additional_cpus=NUM
988 * - Otherwise don't reserve additional CPUs.
989 * We do this because additional CPUs waste a lot of memory.
990 * -AK
991 */
992 __init void prefill_possible_map(void)
993 {
994 int i;
995 int possible;
996
997 if (additional_cpus == -1) {
998 if (disabled_cpus > 0)
999 additional_cpus = disabled_cpus;
1000 else
1001 additional_cpus = 0;
1002 }
1003 possible = num_processors + additional_cpus;
1004 if (possible > NR_CPUS)
1005 possible = NR_CPUS;
1006
1007 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1008 possible,
1009 max_t(int, possible - num_processors, 0));
1010
1011 for (i = 0; i < possible; i++)
1012 cpu_set(i, cpu_possible_map);
1013 }
1014 #endif
1015
1016 /*
1017 * Various sanity checks.
1018 */
1019 static int __init smp_sanity_check(unsigned max_cpus)
1020 {
1021 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1022 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1023 hard_smp_processor_id());
1024 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1025 }
1026
1027 /*
1028 * If we couldn't find an SMP configuration at boot time,
1029 * get out of here now!
1030 */
1031 if (!smp_found_config) {
1032 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1033 disable_smp();
1034 if (APIC_init_uniprocessor())
1035 printk(KERN_NOTICE "Local APIC not detected."
1036 " Using dummy APIC emulation.\n");
1037 return -1;
1038 }
1039
1040 /*
1041 * Should not be necessary because the MP table should list the boot
1042 * CPU too, but we do it for the sake of robustness anyway.
1043 */
1044 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
1045 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
1046 boot_cpu_id);
1047 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1048 }
1049
1050 /*
1051 * If we couldn't find a local APIC, then get out of here now!
1052 */
1053 if (!cpu_has_apic) {
1054 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1055 boot_cpu_id);
1056 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1057 nr_ioapics = 0;
1058 return -1;
1059 }
1060
1061 /*
1062 * If SMP should be disabled, then really disable it!
1063 */
1064 if (!max_cpus) {
1065 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1066 nr_ioapics = 0;
1067 return -1;
1068 }
1069
1070 return 0;
1071 }
1072
1073 /*
1074 * Prepare for SMP bootup. The MP table or ACPI has been read
1075 * earlier. Just do some sanity checking here and enable APIC mode.
1076 */
1077 void __init smp_prepare_cpus(unsigned int max_cpus)
1078 {
1079 nmi_watchdog_default();
1080 current_cpu_data = boot_cpu_data;
1081 current_thread_info()->cpu = 0; /* needed? */
1082 set_cpu_sibling_map(0);
1083
1084 if (smp_sanity_check(max_cpus) < 0) {
1085 printk(KERN_INFO "SMP disabled\n");
1086 disable_smp();
1087 return;
1088 }
1089
1090
1091 /*
1092 * Switch from PIC to APIC mode.
1093 */
1094 setup_local_APIC();
1095
1096 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1097 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1098 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1099 /* Or can we switch back to PIC here? */
1100 }
1101
1102 /*
1103 * Now start the IO-APICs
1104 */
1105 if (!skip_ioapic_setup && nr_ioapics)
1106 setup_IO_APIC();
1107 else
1108 nr_ioapics = 0;
1109
1110 /*
1111 * Set up local APIC timer on boot CPU.
1112 */
1113
1114 setup_boot_APIC_clock();
1115 }
1116
1117 /*
1118 * Early setup to make printk work.
1119 */
1120 void __init smp_prepare_boot_cpu(void)
1121 {
1122 int me = smp_processor_id();
1123 cpu_set(me, cpu_online_map);
1124 cpu_set(me, cpu_callout_map);
1125 per_cpu(cpu_state, me) = CPU_ONLINE;
1126 }
1127
1128 /*
1129 * Entry point to boot a CPU.
1130 */
1131 int __cpuinit __cpu_up(unsigned int cpu)
1132 {
1133 int err;
1134 int apicid = cpu_present_to_apicid(cpu);
1135
1136 WARN_ON(irqs_disabled());
1137
1138 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1139
1140 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1141 !physid_isset(apicid, phys_cpu_present_map)) {
1142 printk("__cpu_up: bad cpu %d\n", cpu);
1143 return -EINVAL;
1144 }
1145
1146 /*
1147 * Already booted CPU?
1148 */
1149 if (cpu_isset(cpu, cpu_callin_map)) {
1150 Dprintk("do_boot_cpu %d Already started\n", cpu);
1151 return -ENOSYS;
1152 }
1153
1154 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1155 /* Boot it! */
1156 err = do_boot_cpu(cpu, apicid);
1157 if (err < 0) {
1158 Dprintk("do_boot_cpu failed %d\n", err);
1159 return err;
1160 }
1161
1162 /* Unleash the CPU! */
1163 Dprintk("waiting for cpu %d\n", cpu);
1164
1165 while (!cpu_isset(cpu, cpu_online_map))
1166 cpu_relax();
1167 err = 0;
1168
1169 return err;
1170 }
1171
1172 /*
1173 * Finish the SMP boot.
1174 */
1175 void __init smp_cpus_done(unsigned int max_cpus)
1176 {
1177 smp_cleanup_boot();
1178 setup_ioapic_dest();
1179 check_nmi_watchdog();
1180 time_init_gtod();
1181 }
1182
1183 #ifdef CONFIG_HOTPLUG_CPU
1184
1185 static void remove_siblinginfo(int cpu)
1186 {
1187 int sibling;
1188 struct cpuinfo_x86 *c = cpu_data;
1189
1190 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1191 cpu_clear(cpu, cpu_core_map[sibling]);
1192 /*
1193 * last thread sibling in this cpu core going down
1194 */
1195 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1196 c[sibling].booted_cores--;
1197 }
1198
1199 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1200 cpu_clear(cpu, cpu_sibling_map[sibling]);
1201 cpus_clear(cpu_sibling_map[cpu]);
1202 cpus_clear(cpu_core_map[cpu]);
1203 c[cpu].phys_proc_id = 0;
1204 c[cpu].cpu_core_id = 0;
1205 cpu_clear(cpu, cpu_sibling_setup_map);
1206 }
1207
1208 void remove_cpu_from_maps(void)
1209 {
1210 int cpu = smp_processor_id();
1211
1212 cpu_clear(cpu, cpu_callout_map);
1213 cpu_clear(cpu, cpu_callin_map);
1214 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1215 clear_node_cpumask(cpu);
1216 }
1217
1218 int __cpu_disable(void)
1219 {
1220 int cpu = smp_processor_id();
1221
1222 /*
1223 * Perhaps use cpufreq to drop frequency, but that could go
1224 * into generic code.
1225 *
1226 * We won't take down the boot processor on i386 due to some
1227 * interrupts only being able to be serviced by the BSP.
1228 * Especially so if we're not using an IOAPIC -zwane
1229 */
1230 if (cpu == 0)
1231 return -EBUSY;
1232
1233 if (nmi_watchdog == NMI_LOCAL_APIC)
1234 stop_apic_nmi_watchdog(NULL);
1235 clear_local_APIC();
1236
1237 /*
1238 * HACK:
1239 * Allow any queued timer interrupts to get serviced
1240 * This is only a temporary solution until we cleanup
1241 * fixup_irqs as we do for IA64.
1242 */
1243 local_irq_enable();
1244 mdelay(1);
1245
1246 local_irq_disable();
1247 remove_siblinginfo(cpu);
1248
1249 /* It's now safe to remove this processor from the online map */
1250 cpu_clear(cpu, cpu_online_map);
1251 remove_cpu_from_maps();
1252 fixup_irqs(cpu_online_map);
1253 return 0;
1254 }
1255
1256 void __cpu_die(unsigned int cpu)
1257 {
1258 /* We don't do anything here: idle task is faking death itself. */
1259 unsigned int i;
1260
1261 for (i = 0; i < 10; i++) {
1262 /* They ack this in play_dead by setting CPU_DEAD */
1263 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1264 printk ("CPU %d is now offline\n", cpu);
1265 if (1 == num_online_cpus())
1266 alternatives_smp_switch(0);
1267 return;
1268 }
1269 msleep(100);
1270 }
1271 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1272 }
1273
1274 static __init int setup_additional_cpus(char *s)
1275 {
1276 return s && get_option(&s, &additional_cpus) ? 0 : -EINVAL;
1277 }
1278 early_param("additional_cpus", setup_additional_cpus);
1279
1280 #else /* ... !CONFIG_HOTPLUG_CPU */
1281
1282 int __cpu_disable(void)
1283 {
1284 return -ENOSYS;
1285 }
1286
1287 void __cpu_die(unsigned int cpu)
1288 {
1289 /* We said "no" in __cpu_disable */
1290 BUG();
1291 }
1292 #endif /* CONFIG_HOTPLUG_CPU */
This page took 0.060642 seconds and 6 git commands to generate.