Merge branch 'master'
[deliverable/linux.git] / arch / x86_64 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
38 */
39
40
41 #include <linux/init.h>
42
43 #include <linux/mm.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/smp_lock.h>
46 #include <linux/bootmem.h>
47 #include <linux/thread_info.h>
48 #include <linux/module.h>
49
50 #include <linux/delay.h>
51 #include <linux/mc146818rtc.h>
52 #include <asm/mtrr.h>
53 #include <asm/pgalloc.h>
54 #include <asm/desc.h>
55 #include <asm/kdebug.h>
56 #include <asm/tlbflush.h>
57 #include <asm/proto.h>
58 #include <asm/nmi.h>
59 #include <asm/irq.h>
60 #include <asm/hw_irq.h>
61 #include <asm/numa.h>
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 EXPORT_SYMBOL(smp_num_siblings);
66
67 /* Last level cache ID of each logical CPU */
68 u8 cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
69 EXPORT_SYMBOL(cpu_llc_id);
70
71 /* Bitmask of currently online CPUs */
72 cpumask_t cpu_online_map __read_mostly;
73
74 EXPORT_SYMBOL(cpu_online_map);
75
76 /*
77 * Private maps to synchronize booting between AP and BP.
78 * Probably not needed anymore, but it makes for easier debugging. -AK
79 */
80 cpumask_t cpu_callin_map;
81 cpumask_t cpu_callout_map;
82 EXPORT_SYMBOL(cpu_callout_map);
83
84 cpumask_t cpu_possible_map;
85 EXPORT_SYMBOL(cpu_possible_map);
86
87 /* Per CPU bogomips and other parameters */
88 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
89 EXPORT_SYMBOL(cpu_data);
90
91 /* Set when the idlers are all forked */
92 int smp_threads_ready;
93
94 /* representing HT siblings of each logical CPU */
95 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
96 EXPORT_SYMBOL(cpu_sibling_map);
97
98 /* representing HT and core siblings of each logical CPU */
99 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
100 EXPORT_SYMBOL(cpu_core_map);
101
102 /*
103 * Trampoline 80x86 program as an array.
104 */
105
106 extern unsigned char trampoline_data[];
107 extern unsigned char trampoline_end[];
108
109 /* State of each CPU */
110 DEFINE_PER_CPU(int, cpu_state) = { 0 };
111
112 /*
113 * Store all idle threads, this can be reused instead of creating
114 * a new thread. Also avoids complicated thread destroy functionality
115 * for idle threads.
116 */
117 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
118
119 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
120 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
121
122 /*
123 * Currently trivial. Write the real->protected mode
124 * bootstrap into the page concerned. The caller
125 * has made sure it's suitably aligned.
126 */
127
128 static unsigned long __cpuinit setup_trampoline(void)
129 {
130 void *tramp = __va(SMP_TRAMPOLINE_BASE);
131 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
132 return virt_to_phys(tramp);
133 }
134
135 /*
136 * The bootstrap kernel entry code has set these up. Save them for
137 * a given CPU
138 */
139
140 static void __cpuinit smp_store_cpu_info(int id)
141 {
142 struct cpuinfo_x86 *c = cpu_data + id;
143
144 *c = boot_cpu_data;
145 identify_cpu(c);
146 print_cpu_info(c);
147 }
148
149 /*
150 * New Funky TSC sync algorithm borrowed from IA64.
151 * Main advantage is that it doesn't reset the TSCs fully and
152 * in general looks more robust and it works better than my earlier
153 * attempts. I believe it was written by David Mosberger. Some minor
154 * adjustments for x86-64 by me -AK
155 *
156 * Original comment reproduced below.
157 *
158 * Synchronize TSC of the current (slave) CPU with the TSC of the
159 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
160 * eliminate the possibility of unaccounted-for errors (such as
161 * getting a machine check in the middle of a calibration step). The
162 * basic idea is for the slave to ask the master what itc value it has
163 * and to read its own itc before and after the master responds. Each
164 * iteration gives us three timestamps:
165 *
166 * slave master
167 *
168 * t0 ---\
169 * ---\
170 * --->
171 * tm
172 * /---
173 * /---
174 * t1 <---
175 *
176 *
177 * The goal is to adjust the slave's TSC such that tm falls exactly
178 * half-way between t0 and t1. If we achieve this, the clocks are
179 * synchronized provided the interconnect between the slave and the
180 * master is symmetric. Even if the interconnect were asymmetric, we
181 * would still know that the synchronization error is smaller than the
182 * roundtrip latency (t0 - t1).
183 *
184 * When the interconnect is quiet and symmetric, this lets us
185 * synchronize the TSC to within one or two cycles. However, we can
186 * only *guarantee* that the synchronization is accurate to within a
187 * round-trip time, which is typically in the range of several hundred
188 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
189 * are usually almost perfectly synchronized, but we shouldn't assume
190 * that the accuracy is much better than half a micro second or so.
191 *
192 * [there are other errors like the latency of RDTSC and of the
193 * WRMSR. These can also account to hundreds of cycles. So it's
194 * probably worse. It claims 153 cycles error on a dual Opteron,
195 * but I suspect the numbers are actually somewhat worse -AK]
196 */
197
198 #define MASTER 0
199 #define SLAVE (SMP_CACHE_BYTES/8)
200
201 /* Intentionally don't use cpu_relax() while TSC synchronization
202 because we don't want to go into funky power save modi or cause
203 hypervisors to schedule us away. Going to sleep would likely affect
204 latency and low latency is the primary objective here. -AK */
205 #define no_cpu_relax() barrier()
206
207 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
208 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
209 static int notscsync __cpuinitdata;
210
211 #undef DEBUG_TSC_SYNC
212
213 #define NUM_ROUNDS 64 /* magic value */
214 #define NUM_ITERS 5 /* likewise */
215
216 /* Callback on boot CPU */
217 static __cpuinit void sync_master(void *arg)
218 {
219 unsigned long flags, i;
220
221 go[MASTER] = 0;
222
223 local_irq_save(flags);
224 {
225 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
226 while (!go[MASTER])
227 no_cpu_relax();
228 go[MASTER] = 0;
229 rdtscll(go[SLAVE]);
230 }
231 }
232 local_irq_restore(flags);
233 }
234
235 /*
236 * Return the number of cycles by which our tsc differs from the tsc
237 * on the master (time-keeper) CPU. A positive number indicates our
238 * tsc is ahead of the master, negative that it is behind.
239 */
240 static inline long
241 get_delta(long *rt, long *master)
242 {
243 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
244 unsigned long tcenter, t0, t1, tm;
245 int i;
246
247 for (i = 0; i < NUM_ITERS; ++i) {
248 rdtscll(t0);
249 go[MASTER] = 1;
250 while (!(tm = go[SLAVE]))
251 no_cpu_relax();
252 go[SLAVE] = 0;
253 rdtscll(t1);
254
255 if (t1 - t0 < best_t1 - best_t0)
256 best_t0 = t0, best_t1 = t1, best_tm = tm;
257 }
258
259 *rt = best_t1 - best_t0;
260 *master = best_tm - best_t0;
261
262 /* average best_t0 and best_t1 without overflow: */
263 tcenter = (best_t0/2 + best_t1/2);
264 if (best_t0 % 2 + best_t1 % 2 == 2)
265 ++tcenter;
266 return tcenter - best_tm;
267 }
268
269 static __cpuinit void sync_tsc(unsigned int master)
270 {
271 int i, done = 0;
272 long delta, adj, adjust_latency = 0;
273 unsigned long flags, rt, master_time_stamp, bound;
274 #ifdef DEBUG_TSC_SYNC
275 static struct syncdebug {
276 long rt; /* roundtrip time */
277 long master; /* master's timestamp */
278 long diff; /* difference between midpoint and master's timestamp */
279 long lat; /* estimate of tsc adjustment latency */
280 } t[NUM_ROUNDS] __cpuinitdata;
281 #endif
282
283 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
284 smp_processor_id(), master);
285
286 go[MASTER] = 1;
287
288 /* It is dangerous to broadcast IPI as cpus are coming up,
289 * as they may not be ready to accept them. So since
290 * we only need to send the ipi to the boot cpu direct
291 * the message, and avoid the race.
292 */
293 smp_call_function_single(master, sync_master, NULL, 1, 0);
294
295 while (go[MASTER]) /* wait for master to be ready */
296 no_cpu_relax();
297
298 spin_lock_irqsave(&tsc_sync_lock, flags);
299 {
300 for (i = 0; i < NUM_ROUNDS; ++i) {
301 delta = get_delta(&rt, &master_time_stamp);
302 if (delta == 0) {
303 done = 1; /* let's lock on to this... */
304 bound = rt;
305 }
306
307 if (!done) {
308 unsigned long t;
309 if (i > 0) {
310 adjust_latency += -delta;
311 adj = -delta + adjust_latency/4;
312 } else
313 adj = -delta;
314
315 rdtscll(t);
316 wrmsrl(MSR_IA32_TSC, t + adj);
317 }
318 #ifdef DEBUG_TSC_SYNC
319 t[i].rt = rt;
320 t[i].master = master_time_stamp;
321 t[i].diff = delta;
322 t[i].lat = adjust_latency/4;
323 #endif
324 }
325 }
326 spin_unlock_irqrestore(&tsc_sync_lock, flags);
327
328 #ifdef DEBUG_TSC_SYNC
329 for (i = 0; i < NUM_ROUNDS; ++i)
330 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
331 t[i].rt, t[i].master, t[i].diff, t[i].lat);
332 #endif
333
334 printk(KERN_INFO
335 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
336 "maxerr %lu cycles)\n",
337 smp_processor_id(), master, delta, rt);
338 }
339
340 static void __cpuinit tsc_sync_wait(void)
341 {
342 /*
343 * When the CPU has synchronized TSCs assume the BIOS
344 * or the hardware already synced. Otherwise we could
345 * mess up a possible perfect synchronization with a
346 * not-quite-perfect algorithm.
347 */
348 if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
349 return;
350 sync_tsc(0);
351 }
352
353 static __init int notscsync_setup(char *s)
354 {
355 notscsync = 1;
356 return 1;
357 }
358 __setup("notscsync", notscsync_setup);
359
360 static atomic_t init_deasserted __cpuinitdata;
361
362 /*
363 * Report back to the Boot Processor.
364 * Running on AP.
365 */
366 void __cpuinit smp_callin(void)
367 {
368 int cpuid, phys_id;
369 unsigned long timeout;
370
371 /*
372 * If waken up by an INIT in an 82489DX configuration
373 * we may get here before an INIT-deassert IPI reaches
374 * our local APIC. We have to wait for the IPI or we'll
375 * lock up on an APIC access.
376 */
377 while (!atomic_read(&init_deasserted))
378 cpu_relax();
379
380 /*
381 * (This works even if the APIC is not enabled.)
382 */
383 phys_id = GET_APIC_ID(apic_read(APIC_ID));
384 cpuid = smp_processor_id();
385 if (cpu_isset(cpuid, cpu_callin_map)) {
386 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
387 phys_id, cpuid);
388 }
389 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
390
391 /*
392 * STARTUP IPIs are fragile beasts as they might sometimes
393 * trigger some glue motherboard logic. Complete APIC bus
394 * silence for 1 second, this overestimates the time the
395 * boot CPU is spending to send the up to 2 STARTUP IPIs
396 * by a factor of two. This should be enough.
397 */
398
399 /*
400 * Waiting 2s total for startup (udelay is not yet working)
401 */
402 timeout = jiffies + 2*HZ;
403 while (time_before(jiffies, timeout)) {
404 /*
405 * Has the boot CPU finished it's STARTUP sequence?
406 */
407 if (cpu_isset(cpuid, cpu_callout_map))
408 break;
409 cpu_relax();
410 }
411
412 if (!time_before(jiffies, timeout)) {
413 panic("smp_callin: CPU%d started up but did not get a callout!\n",
414 cpuid);
415 }
416
417 /*
418 * the boot CPU has finished the init stage and is spinning
419 * on callin_map until we finish. We are free to set up this
420 * CPU, first the APIC. (this is probably redundant on most
421 * boards)
422 */
423
424 Dprintk("CALLIN, before setup_local_APIC().\n");
425 setup_local_APIC();
426
427 /*
428 * Get our bogomips.
429 *
430 * Need to enable IRQs because it can take longer and then
431 * the NMI watchdog might kill us.
432 */
433 local_irq_enable();
434 calibrate_delay();
435 local_irq_disable();
436 Dprintk("Stack at about %p\n",&cpuid);
437
438 disable_APIC_timer();
439
440 /*
441 * Save our processor parameters
442 */
443 smp_store_cpu_info(cpuid);
444
445 /*
446 * Allow the master to continue.
447 */
448 cpu_set(cpuid, cpu_callin_map);
449 }
450
451 /* maps the cpu to the sched domain representing multi-core */
452 cpumask_t cpu_coregroup_map(int cpu)
453 {
454 struct cpuinfo_x86 *c = cpu_data + cpu;
455 /*
456 * For perf, we return last level cache shared map.
457 * And for power savings, we return cpu_core_map
458 */
459 if (sched_mc_power_savings || sched_smt_power_savings)
460 return cpu_core_map[cpu];
461 else
462 return c->llc_shared_map;
463 }
464
465 /* representing cpus for which sibling maps can be computed */
466 static cpumask_t cpu_sibling_setup_map;
467
468 static inline void set_cpu_sibling_map(int cpu)
469 {
470 int i;
471 struct cpuinfo_x86 *c = cpu_data;
472
473 cpu_set(cpu, cpu_sibling_setup_map);
474
475 if (smp_num_siblings > 1) {
476 for_each_cpu_mask(i, cpu_sibling_setup_map) {
477 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
478 c[cpu].cpu_core_id == c[i].cpu_core_id) {
479 cpu_set(i, cpu_sibling_map[cpu]);
480 cpu_set(cpu, cpu_sibling_map[i]);
481 cpu_set(i, cpu_core_map[cpu]);
482 cpu_set(cpu, cpu_core_map[i]);
483 cpu_set(i, c[cpu].llc_shared_map);
484 cpu_set(cpu, c[i].llc_shared_map);
485 }
486 }
487 } else {
488 cpu_set(cpu, cpu_sibling_map[cpu]);
489 }
490
491 cpu_set(cpu, c[cpu].llc_shared_map);
492
493 if (current_cpu_data.x86_max_cores == 1) {
494 cpu_core_map[cpu] = cpu_sibling_map[cpu];
495 c[cpu].booted_cores = 1;
496 return;
497 }
498
499 for_each_cpu_mask(i, cpu_sibling_setup_map) {
500 if (cpu_llc_id[cpu] != BAD_APICID &&
501 cpu_llc_id[cpu] == cpu_llc_id[i]) {
502 cpu_set(i, c[cpu].llc_shared_map);
503 cpu_set(cpu, c[i].llc_shared_map);
504 }
505 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
506 cpu_set(i, cpu_core_map[cpu]);
507 cpu_set(cpu, cpu_core_map[i]);
508 /*
509 * Does this new cpu bringup a new core?
510 */
511 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
512 /*
513 * for each core in package, increment
514 * the booted_cores for this new cpu
515 */
516 if (first_cpu(cpu_sibling_map[i]) == i)
517 c[cpu].booted_cores++;
518 /*
519 * increment the core count for all
520 * the other cpus in this package
521 */
522 if (i != cpu)
523 c[i].booted_cores++;
524 } else if (i != cpu && !c[cpu].booted_cores)
525 c[cpu].booted_cores = c[i].booted_cores;
526 }
527 }
528 }
529
530 /*
531 * Setup code on secondary processor (after comming out of the trampoline)
532 */
533 void __cpuinit start_secondary(void)
534 {
535 /*
536 * Dont put anything before smp_callin(), SMP
537 * booting is too fragile that we want to limit the
538 * things done here to the most necessary things.
539 */
540 cpu_init();
541 preempt_disable();
542 smp_callin();
543
544 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
545 barrier();
546
547 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
548 setup_secondary_APIC_clock();
549
550 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
551
552 if (nmi_watchdog == NMI_IO_APIC) {
553 disable_8259A_irq(0);
554 enable_NMI_through_LVT0(NULL);
555 enable_8259A_irq(0);
556 }
557
558 enable_APIC_timer();
559
560 /*
561 * The sibling maps must be set before turing the online map on for
562 * this cpu
563 */
564 set_cpu_sibling_map(smp_processor_id());
565
566 /*
567 * Wait for TSC sync to not schedule things before.
568 * We still process interrupts, which could see an inconsistent
569 * time in that window unfortunately.
570 * Do this here because TSC sync has global unprotected state.
571 */
572 tsc_sync_wait();
573
574 /*
575 * We need to hold call_lock, so there is no inconsistency
576 * between the time smp_call_function() determines number of
577 * IPI receipients, and the time when the determination is made
578 * for which cpus receive the IPI in genapic_flat.c. Holding this
579 * lock helps us to not include this cpu in a currently in progress
580 * smp_call_function().
581 */
582 lock_ipi_call_lock();
583
584 /*
585 * Allow the master to continue.
586 */
587 cpu_set(smp_processor_id(), cpu_online_map);
588 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
589 unlock_ipi_call_lock();
590
591 cpu_idle();
592 }
593
594 extern volatile unsigned long init_rsp;
595 extern void (*initial_code)(void);
596
597 #ifdef APIC_DEBUG
598 static void inquire_remote_apic(int apicid)
599 {
600 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
601 char *names[] = { "ID", "VERSION", "SPIV" };
602 int timeout, status;
603
604 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
605
606 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
607 printk("... APIC #%d %s: ", apicid, names[i]);
608
609 /*
610 * Wait for idle.
611 */
612 apic_wait_icr_idle();
613
614 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
615 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
616
617 timeout = 0;
618 do {
619 udelay(100);
620 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
621 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
622
623 switch (status) {
624 case APIC_ICR_RR_VALID:
625 status = apic_read(APIC_RRR);
626 printk("%08x\n", status);
627 break;
628 default:
629 printk("failed\n");
630 }
631 }
632 }
633 #endif
634
635 /*
636 * Kick the secondary to wake up.
637 */
638 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
639 {
640 unsigned long send_status = 0, accept_status = 0;
641 int maxlvt, timeout, num_starts, j;
642
643 Dprintk("Asserting INIT.\n");
644
645 /*
646 * Turn INIT on target chip
647 */
648 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
649
650 /*
651 * Send IPI
652 */
653 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
654 | APIC_DM_INIT);
655
656 Dprintk("Waiting for send to finish...\n");
657 timeout = 0;
658 do {
659 Dprintk("+");
660 udelay(100);
661 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
662 } while (send_status && (timeout++ < 1000));
663
664 mdelay(10);
665
666 Dprintk("Deasserting INIT.\n");
667
668 /* Target chip */
669 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
670
671 /* Send IPI */
672 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
673
674 Dprintk("Waiting for send to finish...\n");
675 timeout = 0;
676 do {
677 Dprintk("+");
678 udelay(100);
679 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
680 } while (send_status && (timeout++ < 1000));
681
682 mb();
683 atomic_set(&init_deasserted, 1);
684
685 num_starts = 2;
686
687 /*
688 * Run STARTUP IPI loop.
689 */
690 Dprintk("#startup loops: %d.\n", num_starts);
691
692 maxlvt = get_maxlvt();
693
694 for (j = 1; j <= num_starts; j++) {
695 Dprintk("Sending STARTUP #%d.\n",j);
696 apic_write(APIC_ESR, 0);
697 apic_read(APIC_ESR);
698 Dprintk("After apic_write.\n");
699
700 /*
701 * STARTUP IPI
702 */
703
704 /* Target chip */
705 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
706
707 /* Boot on the stack */
708 /* Kick the second */
709 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
710
711 /*
712 * Give the other CPU some time to accept the IPI.
713 */
714 udelay(300);
715
716 Dprintk("Startup point 1.\n");
717
718 Dprintk("Waiting for send to finish...\n");
719 timeout = 0;
720 do {
721 Dprintk("+");
722 udelay(100);
723 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
724 } while (send_status && (timeout++ < 1000));
725
726 /*
727 * Give the other CPU some time to accept the IPI.
728 */
729 udelay(200);
730 /*
731 * Due to the Pentium erratum 3AP.
732 */
733 if (maxlvt > 3) {
734 apic_write(APIC_ESR, 0);
735 }
736 accept_status = (apic_read(APIC_ESR) & 0xEF);
737 if (send_status || accept_status)
738 break;
739 }
740 Dprintk("After Startup.\n");
741
742 if (send_status)
743 printk(KERN_ERR "APIC never delivered???\n");
744 if (accept_status)
745 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
746
747 return (send_status | accept_status);
748 }
749
750 struct create_idle {
751 struct task_struct *idle;
752 struct completion done;
753 int cpu;
754 };
755
756 void do_fork_idle(void *_c_idle)
757 {
758 struct create_idle *c_idle = _c_idle;
759
760 c_idle->idle = fork_idle(c_idle->cpu);
761 complete(&c_idle->done);
762 }
763
764 /*
765 * Boot one CPU.
766 */
767 static int __cpuinit do_boot_cpu(int cpu, int apicid)
768 {
769 unsigned long boot_error;
770 int timeout;
771 unsigned long start_rip;
772 struct create_idle c_idle = {
773 .cpu = cpu,
774 .done = COMPLETION_INITIALIZER(c_idle.done),
775 };
776 DECLARE_WORK(work, do_fork_idle, &c_idle);
777
778 lockdep_set_class(&c_idle.done.wait.lock, &waitqueue_lock_key);
779
780 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
781 if (!cpu_gdt_descr[cpu].address &&
782 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
783 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
784 return -1;
785 }
786
787 /* Allocate node local memory for AP pdas */
788 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
789 struct x8664_pda *newpda, *pda;
790 int node = cpu_to_node(cpu);
791 pda = cpu_pda(cpu);
792 newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
793 node);
794 if (newpda) {
795 memcpy(newpda, pda, sizeof (struct x8664_pda));
796 cpu_pda(cpu) = newpda;
797 } else
798 printk(KERN_ERR
799 "Could not allocate node local PDA for CPU %d on node %d\n",
800 cpu, node);
801 }
802
803
804 alternatives_smp_switch(1);
805
806 c_idle.idle = get_idle_for_cpu(cpu);
807
808 if (c_idle.idle) {
809 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
810 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
811 init_idle(c_idle.idle, cpu);
812 goto do_rest;
813 }
814
815 /*
816 * During cold boot process, keventd thread is not spun up yet.
817 * When we do cpu hot-add, we create idle threads on the fly, we should
818 * not acquire any attributes from the calling context. Hence the clean
819 * way to create kernel_threads() is to do that from keventd().
820 * We do the current_is_keventd() due to the fact that ACPI notifier
821 * was also queuing to keventd() and when the caller is already running
822 * in context of keventd(), we would end up with locking up the keventd
823 * thread.
824 */
825 if (!keventd_up() || current_is_keventd())
826 work.func(work.data);
827 else {
828 schedule_work(&work);
829 wait_for_completion(&c_idle.done);
830 }
831
832 if (IS_ERR(c_idle.idle)) {
833 printk("failed fork for CPU %d\n", cpu);
834 return PTR_ERR(c_idle.idle);
835 }
836
837 set_idle_for_cpu(cpu, c_idle.idle);
838
839 do_rest:
840
841 cpu_pda(cpu)->pcurrent = c_idle.idle;
842
843 start_rip = setup_trampoline();
844
845 init_rsp = c_idle.idle->thread.rsp;
846 per_cpu(init_tss,cpu).rsp0 = init_rsp;
847 initial_code = start_secondary;
848 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
849
850 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
851 cpus_weight(cpu_present_map),
852 apicid);
853
854 /*
855 * This grunge runs the startup process for
856 * the targeted processor.
857 */
858
859 atomic_set(&init_deasserted, 0);
860
861 Dprintk("Setting warm reset code and vector.\n");
862
863 CMOS_WRITE(0xa, 0xf);
864 local_flush_tlb();
865 Dprintk("1.\n");
866 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
867 Dprintk("2.\n");
868 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
869 Dprintk("3.\n");
870
871 /*
872 * Be paranoid about clearing APIC errors.
873 */
874 apic_write(APIC_ESR, 0);
875 apic_read(APIC_ESR);
876
877 /*
878 * Status is now clean
879 */
880 boot_error = 0;
881
882 /*
883 * Starting actual IPI sequence...
884 */
885 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
886
887 if (!boot_error) {
888 /*
889 * allow APs to start initializing.
890 */
891 Dprintk("Before Callout %d.\n", cpu);
892 cpu_set(cpu, cpu_callout_map);
893 Dprintk("After Callout %d.\n", cpu);
894
895 /*
896 * Wait 5s total for a response
897 */
898 for (timeout = 0; timeout < 50000; timeout++) {
899 if (cpu_isset(cpu, cpu_callin_map))
900 break; /* It has booted */
901 udelay(100);
902 }
903
904 if (cpu_isset(cpu, cpu_callin_map)) {
905 /* number CPUs logically, starting from 1 (BSP is 0) */
906 Dprintk("CPU has booted.\n");
907 } else {
908 boot_error = 1;
909 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
910 == 0xA5)
911 /* trampoline started but...? */
912 printk("Stuck ??\n");
913 else
914 /* trampoline code not run */
915 printk("Not responding.\n");
916 #ifdef APIC_DEBUG
917 inquire_remote_apic(apicid);
918 #endif
919 }
920 }
921 if (boot_error) {
922 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
923 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
924 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
925 cpu_clear(cpu, cpu_present_map);
926 cpu_clear(cpu, cpu_possible_map);
927 x86_cpu_to_apicid[cpu] = BAD_APICID;
928 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
929 return -EIO;
930 }
931
932 return 0;
933 }
934
935 cycles_t cacheflush_time;
936 unsigned long cache_decay_ticks;
937
938 /*
939 * Cleanup possible dangling ends...
940 */
941 static __cpuinit void smp_cleanup_boot(void)
942 {
943 /*
944 * Paranoid: Set warm reset code and vector here back
945 * to default values.
946 */
947 CMOS_WRITE(0, 0xf);
948
949 /*
950 * Reset trampoline flag
951 */
952 *((volatile int *) phys_to_virt(0x467)) = 0;
953 }
954
955 /*
956 * Fall back to non SMP mode after errors.
957 *
958 * RED-PEN audit/test this more. I bet there is more state messed up here.
959 */
960 static __init void disable_smp(void)
961 {
962 cpu_present_map = cpumask_of_cpu(0);
963 cpu_possible_map = cpumask_of_cpu(0);
964 if (smp_found_config)
965 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
966 else
967 phys_cpu_present_map = physid_mask_of_physid(0);
968 cpu_set(0, cpu_sibling_map[0]);
969 cpu_set(0, cpu_core_map[0]);
970 }
971
972 #ifdef CONFIG_HOTPLUG_CPU
973
974 int additional_cpus __initdata = -1;
975
976 /*
977 * cpu_possible_map should be static, it cannot change as cpu's
978 * are onlined, or offlined. The reason is per-cpu data-structures
979 * are allocated by some modules at init time, and dont expect to
980 * do this dynamically on cpu arrival/departure.
981 * cpu_present_map on the other hand can change dynamically.
982 * In case when cpu_hotplug is not compiled, then we resort to current
983 * behaviour, which is cpu_possible == cpu_present.
984 * - Ashok Raj
985 *
986 * Three ways to find out the number of additional hotplug CPUs:
987 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
988 * - The user can overwrite it with additional_cpus=NUM
989 * - Otherwise don't reserve additional CPUs.
990 * We do this because additional CPUs waste a lot of memory.
991 * -AK
992 */
993 __init void prefill_possible_map(void)
994 {
995 int i;
996 int possible;
997
998 if (additional_cpus == -1) {
999 if (disabled_cpus > 0)
1000 additional_cpus = disabled_cpus;
1001 else
1002 additional_cpus = 0;
1003 }
1004 possible = num_processors + additional_cpus;
1005 if (possible > NR_CPUS)
1006 possible = NR_CPUS;
1007
1008 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1009 possible,
1010 max_t(int, possible - num_processors, 0));
1011
1012 for (i = 0; i < possible; i++)
1013 cpu_set(i, cpu_possible_map);
1014 }
1015 #endif
1016
1017 /*
1018 * Various sanity checks.
1019 */
1020 static int __init smp_sanity_check(unsigned max_cpus)
1021 {
1022 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1023 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1024 hard_smp_processor_id());
1025 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1026 }
1027
1028 /*
1029 * If we couldn't find an SMP configuration at boot time,
1030 * get out of here now!
1031 */
1032 if (!smp_found_config) {
1033 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1034 disable_smp();
1035 if (APIC_init_uniprocessor())
1036 printk(KERN_NOTICE "Local APIC not detected."
1037 " Using dummy APIC emulation.\n");
1038 return -1;
1039 }
1040
1041 /*
1042 * Should not be necessary because the MP table should list the boot
1043 * CPU too, but we do it for the sake of robustness anyway.
1044 */
1045 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
1046 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
1047 boot_cpu_id);
1048 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1049 }
1050
1051 /*
1052 * If we couldn't find a local APIC, then get out of here now!
1053 */
1054 if (!cpu_has_apic) {
1055 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1056 boot_cpu_id);
1057 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1058 nr_ioapics = 0;
1059 return -1;
1060 }
1061
1062 /*
1063 * If SMP should be disabled, then really disable it!
1064 */
1065 if (!max_cpus) {
1066 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1067 nr_ioapics = 0;
1068 return -1;
1069 }
1070
1071 return 0;
1072 }
1073
1074 /*
1075 * Prepare for SMP bootup. The MP table or ACPI has been read
1076 * earlier. Just do some sanity checking here and enable APIC mode.
1077 */
1078 void __init smp_prepare_cpus(unsigned int max_cpus)
1079 {
1080 nmi_watchdog_default();
1081 current_cpu_data = boot_cpu_data;
1082 current_thread_info()->cpu = 0; /* needed? */
1083 set_cpu_sibling_map(0);
1084
1085 if (smp_sanity_check(max_cpus) < 0) {
1086 printk(KERN_INFO "SMP disabled\n");
1087 disable_smp();
1088 return;
1089 }
1090
1091
1092 /*
1093 * Switch from PIC to APIC mode.
1094 */
1095 connect_bsp_APIC();
1096 setup_local_APIC();
1097
1098 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1099 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1100 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1101 /* Or can we switch back to PIC here? */
1102 }
1103
1104 /*
1105 * Now start the IO-APICs
1106 */
1107 if (!skip_ioapic_setup && nr_ioapics)
1108 setup_IO_APIC();
1109 else
1110 nr_ioapics = 0;
1111
1112 /*
1113 * Set up local APIC timer on boot CPU.
1114 */
1115
1116 setup_boot_APIC_clock();
1117 }
1118
1119 /*
1120 * Early setup to make printk work.
1121 */
1122 void __init smp_prepare_boot_cpu(void)
1123 {
1124 int me = smp_processor_id();
1125 cpu_set(me, cpu_online_map);
1126 cpu_set(me, cpu_callout_map);
1127 per_cpu(cpu_state, me) = CPU_ONLINE;
1128 }
1129
1130 /*
1131 * Entry point to boot a CPU.
1132 */
1133 int __cpuinit __cpu_up(unsigned int cpu)
1134 {
1135 int err;
1136 int apicid = cpu_present_to_apicid(cpu);
1137
1138 WARN_ON(irqs_disabled());
1139
1140 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1141
1142 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1143 !physid_isset(apicid, phys_cpu_present_map)) {
1144 printk("__cpu_up: bad cpu %d\n", cpu);
1145 return -EINVAL;
1146 }
1147
1148 /*
1149 * Already booted CPU?
1150 */
1151 if (cpu_isset(cpu, cpu_callin_map)) {
1152 Dprintk("do_boot_cpu %d Already started\n", cpu);
1153 return -ENOSYS;
1154 }
1155
1156 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1157 /* Boot it! */
1158 err = do_boot_cpu(cpu, apicid);
1159 if (err < 0) {
1160 Dprintk("do_boot_cpu failed %d\n", err);
1161 return err;
1162 }
1163
1164 /* Unleash the CPU! */
1165 Dprintk("waiting for cpu %d\n", cpu);
1166
1167 while (!cpu_isset(cpu, cpu_online_map))
1168 cpu_relax();
1169 err = 0;
1170
1171 return err;
1172 }
1173
1174 /*
1175 * Finish the SMP boot.
1176 */
1177 void __init smp_cpus_done(unsigned int max_cpus)
1178 {
1179 smp_cleanup_boot();
1180
1181 #ifdef CONFIG_X86_IO_APIC
1182 setup_ioapic_dest();
1183 #endif
1184
1185 check_nmi_watchdog();
1186 }
1187
1188 #ifdef CONFIG_HOTPLUG_CPU
1189
1190 static void remove_siblinginfo(int cpu)
1191 {
1192 int sibling;
1193 struct cpuinfo_x86 *c = cpu_data;
1194
1195 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1196 cpu_clear(cpu, cpu_core_map[sibling]);
1197 /*
1198 * last thread sibling in this cpu core going down
1199 */
1200 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1201 c[sibling].booted_cores--;
1202 }
1203
1204 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1205 cpu_clear(cpu, cpu_sibling_map[sibling]);
1206 cpus_clear(cpu_sibling_map[cpu]);
1207 cpus_clear(cpu_core_map[cpu]);
1208 c[cpu].phys_proc_id = 0;
1209 c[cpu].cpu_core_id = 0;
1210 cpu_clear(cpu, cpu_sibling_setup_map);
1211 }
1212
1213 void remove_cpu_from_maps(void)
1214 {
1215 int cpu = smp_processor_id();
1216
1217 cpu_clear(cpu, cpu_callout_map);
1218 cpu_clear(cpu, cpu_callin_map);
1219 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1220 clear_node_cpumask(cpu);
1221 }
1222
1223 int __cpu_disable(void)
1224 {
1225 int cpu = smp_processor_id();
1226
1227 /*
1228 * Perhaps use cpufreq to drop frequency, but that could go
1229 * into generic code.
1230 *
1231 * We won't take down the boot processor on i386 due to some
1232 * interrupts only being able to be serviced by the BSP.
1233 * Especially so if we're not using an IOAPIC -zwane
1234 */
1235 if (cpu == 0)
1236 return -EBUSY;
1237
1238 clear_local_APIC();
1239
1240 /*
1241 * HACK:
1242 * Allow any queued timer interrupts to get serviced
1243 * This is only a temporary solution until we cleanup
1244 * fixup_irqs as we do for IA64.
1245 */
1246 local_irq_enable();
1247 mdelay(1);
1248
1249 local_irq_disable();
1250 remove_siblinginfo(cpu);
1251
1252 /* It's now safe to remove this processor from the online map */
1253 cpu_clear(cpu, cpu_online_map);
1254 remove_cpu_from_maps();
1255 fixup_irqs(cpu_online_map);
1256 return 0;
1257 }
1258
1259 void __cpu_die(unsigned int cpu)
1260 {
1261 /* We don't do anything here: idle task is faking death itself. */
1262 unsigned int i;
1263
1264 for (i = 0; i < 10; i++) {
1265 /* They ack this in play_dead by setting CPU_DEAD */
1266 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1267 printk ("CPU %d is now offline\n", cpu);
1268 if (1 == num_online_cpus())
1269 alternatives_smp_switch(0);
1270 return;
1271 }
1272 msleep(100);
1273 }
1274 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1275 }
1276
1277 __init int setup_additional_cpus(char *s)
1278 {
1279 return get_option(&s, &additional_cpus);
1280 }
1281 __setup("additional_cpus=", setup_additional_cpus);
1282
1283 #else /* ... !CONFIG_HOTPLUG_CPU */
1284
1285 int __cpu_disable(void)
1286 {
1287 return -ENOSYS;
1288 }
1289
1290 void __cpu_die(unsigned int cpu)
1291 {
1292 /* We said "no" in __cpu_disable */
1293 BUG();
1294 }
1295 #endif /* CONFIG_HOTPLUG_CPU */
This page took 0.061609 seconds and 6 git commands to generate.