block: Implement support for WRITE SAME
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
36
37 #include "blk.h"
38 #include "blk-cgroup.h"
39
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43
44 DEFINE_IDA(blk_queue_ida);
45
46 /*
47 * For the allocated request tables
48 */
49 static struct kmem_cache *request_cachep;
50
51 /*
52 * For queue allocation
53 */
54 struct kmem_cache *blk_requestq_cachep;
55
56 /*
57 * Controlling structure to kblockd
58 */
59 static struct workqueue_struct *kblockd_workqueue;
60
61 static void drive_stat_acct(struct request *rq, int new_io)
62 {
63 struct hd_struct *part;
64 int rw = rq_data_dir(rq);
65 int cpu;
66
67 if (!blk_do_io_stat(rq))
68 return;
69
70 cpu = part_stat_lock();
71
72 if (!new_io) {
73 part = rq->part;
74 part_stat_inc(cpu, part, merges[rw]);
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 if (!hd_struct_try_get(part)) {
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
87 hd_struct_get(part);
88 }
89 part_round_stats(cpu, part);
90 part_inc_in_flight(part, rw);
91 rq->part = part;
92 }
93
94 part_stat_unlock();
95 }
96
97 void blk_queue_congestion_threshold(struct request_queue *q)
98 {
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110 }
111
112 /**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 {
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129 }
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
131
132 void blk_rq_init(struct request_queue *q, struct request *rq)
133 {
134 memset(rq, 0, sizeof(*rq));
135
136 INIT_LIST_HEAD(&rq->queuelist);
137 INIT_LIST_HEAD(&rq->timeout_list);
138 rq->cpu = -1;
139 rq->q = q;
140 rq->__sector = (sector_t) -1;
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
143 rq->cmd = rq->__cmd;
144 rq->cmd_len = BLK_MAX_CDB;
145 rq->tag = -1;
146 rq->ref_count = 1;
147 rq->start_time = jiffies;
148 set_start_time_ns(rq);
149 rq->part = NULL;
150 }
151 EXPORT_SYMBOL(blk_rq_init);
152
153 static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
155 {
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
160
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
165 }
166
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
169
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
172
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
175
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
179 }
180
181 void blk_dump_rq_flags(struct request *rq, char *msg)
182 {
183 int bit;
184
185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
188
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194
195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201 }
202 EXPORT_SYMBOL(blk_dump_rq_flags);
203
204 static void blk_delay_work(struct work_struct *work)
205 {
206 struct request_queue *q;
207
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
210 __blk_run_queue(q);
211 spin_unlock_irq(q->queue_lock);
212 }
213
214 /**
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
218 *
219 * Description:
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225 {
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
228 }
229 EXPORT_SYMBOL(blk_delay_queue);
230
231 /**
232 * blk_start_queue - restart a previously stopped queue
233 * @q: The &struct request_queue in question
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
240 void blk_start_queue(struct request_queue *q)
241 {
242 WARN_ON(!irqs_disabled());
243
244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 __blk_run_queue(q);
246 }
247 EXPORT_SYMBOL(blk_start_queue);
248
249 /**
250 * blk_stop_queue - stop a queue
251 * @q: The &struct request_queue in question
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
263 void blk_stop_queue(struct request_queue *q)
264 {
265 __cancel_delayed_work(&q->delay_work);
266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
267 }
268 EXPORT_SYMBOL(blk_stop_queue);
269
270 /**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
279 * that the callbacks might use. The caller must already have made sure
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
285 * and blkcg_exit_queue() to be called with queue lock initialized.
286 *
287 */
288 void blk_sync_queue(struct request_queue *q)
289 {
290 del_timer_sync(&q->timeout);
291 cancel_delayed_work_sync(&q->delay_work);
292 }
293 EXPORT_SYMBOL(blk_sync_queue);
294
295 /**
296 * __blk_run_queue - run a single device queue
297 * @q: The queue to run
298 *
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
301 * held and interrupts disabled.
302 */
303 void __blk_run_queue(struct request_queue *q)
304 {
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
308 q->request_fn(q);
309 }
310 EXPORT_SYMBOL(__blk_run_queue);
311
312 /**
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
315 *
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
319 */
320 void blk_run_queue_async(struct request_queue *q)
321 {
322 if (likely(!blk_queue_stopped(q))) {
323 __cancel_delayed_work(&q->delay_work);
324 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
325 }
326 }
327 EXPORT_SYMBOL(blk_run_queue_async);
328
329 /**
330 * blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * Invoke request handling on this queue, if it has pending work to do.
335 * May be used to restart queueing when a request has completed.
336 */
337 void blk_run_queue(struct request_queue *q)
338 {
339 unsigned long flags;
340
341 spin_lock_irqsave(q->queue_lock, flags);
342 __blk_run_queue(q);
343 spin_unlock_irqrestore(q->queue_lock, flags);
344 }
345 EXPORT_SYMBOL(blk_run_queue);
346
347 void blk_put_queue(struct request_queue *q)
348 {
349 kobject_put(&q->kobj);
350 }
351 EXPORT_SYMBOL(blk_put_queue);
352
353 /**
354 * blk_drain_queue - drain requests from request_queue
355 * @q: queue to drain
356 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
357 *
358 * Drain requests from @q. If @drain_all is set, all requests are drained.
359 * If not, only ELVPRIV requests are drained. The caller is responsible
360 * for ensuring that no new requests which need to be drained are queued.
361 */
362 void blk_drain_queue(struct request_queue *q, bool drain_all)
363 {
364 int i;
365
366 while (true) {
367 bool drain = false;
368
369 spin_lock_irq(q->queue_lock);
370
371 /*
372 * The caller might be trying to drain @q before its
373 * elevator is initialized.
374 */
375 if (q->elevator)
376 elv_drain_elevator(q);
377
378 blkcg_drain_queue(q);
379
380 /*
381 * This function might be called on a queue which failed
382 * driver init after queue creation or is not yet fully
383 * active yet. Some drivers (e.g. fd and loop) get unhappy
384 * in such cases. Kick queue iff dispatch queue has
385 * something on it and @q has request_fn set.
386 */
387 if (!list_empty(&q->queue_head) && q->request_fn)
388 __blk_run_queue(q);
389
390 drain |= q->nr_rqs_elvpriv;
391
392 /*
393 * Unfortunately, requests are queued at and tracked from
394 * multiple places and there's no single counter which can
395 * be drained. Check all the queues and counters.
396 */
397 if (drain_all) {
398 drain |= !list_empty(&q->queue_head);
399 for (i = 0; i < 2; i++) {
400 drain |= q->nr_rqs[i];
401 drain |= q->in_flight[i];
402 drain |= !list_empty(&q->flush_queue[i]);
403 }
404 }
405
406 spin_unlock_irq(q->queue_lock);
407
408 if (!drain)
409 break;
410 msleep(10);
411 }
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
419 struct request_list *rl;
420
421 spin_lock_irq(q->queue_lock);
422
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
426
427 spin_unlock_irq(q->queue_lock);
428 }
429 }
430
431 /**
432 * blk_queue_bypass_start - enter queue bypass mode
433 * @q: queue of interest
434 *
435 * In bypass mode, only the dispatch FIFO queue of @q is used. This
436 * function makes @q enter bypass mode and drains all requests which were
437 * throttled or issued before. On return, it's guaranteed that no request
438 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
439 * inside queue or RCU read lock.
440 */
441 void blk_queue_bypass_start(struct request_queue *q)
442 {
443 bool drain;
444
445 spin_lock_irq(q->queue_lock);
446 drain = !q->bypass_depth++;
447 queue_flag_set(QUEUE_FLAG_BYPASS, q);
448 spin_unlock_irq(q->queue_lock);
449
450 if (drain) {
451 blk_drain_queue(q, false);
452 /* ensure blk_queue_bypass() is %true inside RCU read lock */
453 synchronize_rcu();
454 }
455 }
456 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457
458 /**
459 * blk_queue_bypass_end - leave queue bypass mode
460 * @q: queue of interest
461 *
462 * Leave bypass mode and restore the normal queueing behavior.
463 */
464 void blk_queue_bypass_end(struct request_queue *q)
465 {
466 spin_lock_irq(q->queue_lock);
467 if (!--q->bypass_depth)
468 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
469 WARN_ON_ONCE(q->bypass_depth < 0);
470 spin_unlock_irq(q->queue_lock);
471 }
472 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473
474 /**
475 * blk_cleanup_queue - shutdown a request queue
476 * @q: request queue to shutdown
477 *
478 * Mark @q DEAD, drain all pending requests, destroy and put it. All
479 * future requests will be failed immediately with -ENODEV.
480 */
481 void blk_cleanup_queue(struct request_queue *q)
482 {
483 spinlock_t *lock = q->queue_lock;
484
485 /* mark @q DEAD, no new request or merges will be allowed afterwards */
486 mutex_lock(&q->sysfs_lock);
487 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
488 spin_lock_irq(lock);
489
490 /*
491 * Dead queue is permanently in bypass mode till released. Note
492 * that, unlike blk_queue_bypass_start(), we aren't performing
493 * synchronize_rcu() after entering bypass mode to avoid the delay
494 * as some drivers create and destroy a lot of queues while
495 * probing. This is still safe because blk_release_queue() will be
496 * called only after the queue refcnt drops to zero and nothing,
497 * RCU or not, would be traversing the queue by then.
498 */
499 q->bypass_depth++;
500 queue_flag_set(QUEUE_FLAG_BYPASS, q);
501
502 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
503 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
504 queue_flag_set(QUEUE_FLAG_DEAD, q);
505 spin_unlock_irq(lock);
506 mutex_unlock(&q->sysfs_lock);
507
508 /* drain all requests queued before DEAD marking */
509 blk_drain_queue(q, true);
510
511 /* @q won't process any more request, flush async actions */
512 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
513 blk_sync_queue(q);
514
515 spin_lock_irq(lock);
516 if (q->queue_lock != &q->__queue_lock)
517 q->queue_lock = &q->__queue_lock;
518 spin_unlock_irq(lock);
519
520 /* @q is and will stay empty, shutdown and put */
521 blk_put_queue(q);
522 }
523 EXPORT_SYMBOL(blk_cleanup_queue);
524
525 int blk_init_rl(struct request_list *rl, struct request_queue *q,
526 gfp_t gfp_mask)
527 {
528 if (unlikely(rl->rq_pool))
529 return 0;
530
531 rl->q = q;
532 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
533 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
534 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
535 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
536
537 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
538 mempool_free_slab, request_cachep,
539 gfp_mask, q->node);
540 if (!rl->rq_pool)
541 return -ENOMEM;
542
543 return 0;
544 }
545
546 void blk_exit_rl(struct request_list *rl)
547 {
548 if (rl->rq_pool)
549 mempool_destroy(rl->rq_pool);
550 }
551
552 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
553 {
554 return blk_alloc_queue_node(gfp_mask, -1);
555 }
556 EXPORT_SYMBOL(blk_alloc_queue);
557
558 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
559 {
560 struct request_queue *q;
561 int err;
562
563 q = kmem_cache_alloc_node(blk_requestq_cachep,
564 gfp_mask | __GFP_ZERO, node_id);
565 if (!q)
566 return NULL;
567
568 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
569 if (q->id < 0)
570 goto fail_q;
571
572 q->backing_dev_info.ra_pages =
573 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
574 q->backing_dev_info.state = 0;
575 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
576 q->backing_dev_info.name = "block";
577 q->node = node_id;
578
579 err = bdi_init(&q->backing_dev_info);
580 if (err)
581 goto fail_id;
582
583 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
584 laptop_mode_timer_fn, (unsigned long) q);
585 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
586 INIT_LIST_HEAD(&q->queue_head);
587 INIT_LIST_HEAD(&q->timeout_list);
588 INIT_LIST_HEAD(&q->icq_list);
589 #ifdef CONFIG_BLK_CGROUP
590 INIT_LIST_HEAD(&q->blkg_list);
591 #endif
592 INIT_LIST_HEAD(&q->flush_queue[0]);
593 INIT_LIST_HEAD(&q->flush_queue[1]);
594 INIT_LIST_HEAD(&q->flush_data_in_flight);
595 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
596
597 kobject_init(&q->kobj, &blk_queue_ktype);
598
599 mutex_init(&q->sysfs_lock);
600 spin_lock_init(&q->__queue_lock);
601
602 /*
603 * By default initialize queue_lock to internal lock and driver can
604 * override it later if need be.
605 */
606 q->queue_lock = &q->__queue_lock;
607
608 /*
609 * A queue starts its life with bypass turned on to avoid
610 * unnecessary bypass on/off overhead and nasty surprises during
611 * init. The initial bypass will be finished at the end of
612 * blk_init_allocated_queue().
613 */
614 q->bypass_depth = 1;
615 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
616
617 if (blkcg_init_queue(q))
618 goto fail_id;
619
620 return q;
621
622 fail_id:
623 ida_simple_remove(&blk_queue_ida, q->id);
624 fail_q:
625 kmem_cache_free(blk_requestq_cachep, q);
626 return NULL;
627 }
628 EXPORT_SYMBOL(blk_alloc_queue_node);
629
630 /**
631 * blk_init_queue - prepare a request queue for use with a block device
632 * @rfn: The function to be called to process requests that have been
633 * placed on the queue.
634 * @lock: Request queue spin lock
635 *
636 * Description:
637 * If a block device wishes to use the standard request handling procedures,
638 * which sorts requests and coalesces adjacent requests, then it must
639 * call blk_init_queue(). The function @rfn will be called when there
640 * are requests on the queue that need to be processed. If the device
641 * supports plugging, then @rfn may not be called immediately when requests
642 * are available on the queue, but may be called at some time later instead.
643 * Plugged queues are generally unplugged when a buffer belonging to one
644 * of the requests on the queue is needed, or due to memory pressure.
645 *
646 * @rfn is not required, or even expected, to remove all requests off the
647 * queue, but only as many as it can handle at a time. If it does leave
648 * requests on the queue, it is responsible for arranging that the requests
649 * get dealt with eventually.
650 *
651 * The queue spin lock must be held while manipulating the requests on the
652 * request queue; this lock will be taken also from interrupt context, so irq
653 * disabling is needed for it.
654 *
655 * Function returns a pointer to the initialized request queue, or %NULL if
656 * it didn't succeed.
657 *
658 * Note:
659 * blk_init_queue() must be paired with a blk_cleanup_queue() call
660 * when the block device is deactivated (such as at module unload).
661 **/
662
663 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
664 {
665 return blk_init_queue_node(rfn, lock, -1);
666 }
667 EXPORT_SYMBOL(blk_init_queue);
668
669 struct request_queue *
670 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
671 {
672 struct request_queue *uninit_q, *q;
673
674 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
675 if (!uninit_q)
676 return NULL;
677
678 q = blk_init_allocated_queue(uninit_q, rfn, lock);
679 if (!q)
680 blk_cleanup_queue(uninit_q);
681
682 return q;
683 }
684 EXPORT_SYMBOL(blk_init_queue_node);
685
686 struct request_queue *
687 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
688 spinlock_t *lock)
689 {
690 if (!q)
691 return NULL;
692
693 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
694 return NULL;
695
696 q->request_fn = rfn;
697 q->prep_rq_fn = NULL;
698 q->unprep_rq_fn = NULL;
699 q->queue_flags = QUEUE_FLAG_DEFAULT;
700
701 /* Override internal queue lock with supplied lock pointer */
702 if (lock)
703 q->queue_lock = lock;
704
705 /*
706 * This also sets hw/phys segments, boundary and size
707 */
708 blk_queue_make_request(q, blk_queue_bio);
709
710 q->sg_reserved_size = INT_MAX;
711
712 /* init elevator */
713 if (elevator_init(q, NULL))
714 return NULL;
715
716 /* all done, end the initial bypass */
717 blk_queue_bypass_end(q);
718 return q;
719 }
720 EXPORT_SYMBOL(blk_init_allocated_queue);
721
722 bool blk_get_queue(struct request_queue *q)
723 {
724 if (likely(!blk_queue_dead(q))) {
725 __blk_get_queue(q);
726 return true;
727 }
728
729 return false;
730 }
731 EXPORT_SYMBOL(blk_get_queue);
732
733 static inline void blk_free_request(struct request_list *rl, struct request *rq)
734 {
735 if (rq->cmd_flags & REQ_ELVPRIV) {
736 elv_put_request(rl->q, rq);
737 if (rq->elv.icq)
738 put_io_context(rq->elv.icq->ioc);
739 }
740
741 mempool_free(rq, rl->rq_pool);
742 }
743
744 /*
745 * ioc_batching returns true if the ioc is a valid batching request and
746 * should be given priority access to a request.
747 */
748 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
749 {
750 if (!ioc)
751 return 0;
752
753 /*
754 * Make sure the process is able to allocate at least 1 request
755 * even if the batch times out, otherwise we could theoretically
756 * lose wakeups.
757 */
758 return ioc->nr_batch_requests == q->nr_batching ||
759 (ioc->nr_batch_requests > 0
760 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
761 }
762
763 /*
764 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
765 * will cause the process to be a "batcher" on all queues in the system. This
766 * is the behaviour we want though - once it gets a wakeup it should be given
767 * a nice run.
768 */
769 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
770 {
771 if (!ioc || ioc_batching(q, ioc))
772 return;
773
774 ioc->nr_batch_requests = q->nr_batching;
775 ioc->last_waited = jiffies;
776 }
777
778 static void __freed_request(struct request_list *rl, int sync)
779 {
780 struct request_queue *q = rl->q;
781
782 /*
783 * bdi isn't aware of blkcg yet. As all async IOs end up root
784 * blkcg anyway, just use root blkcg state.
785 */
786 if (rl == &q->root_rl &&
787 rl->count[sync] < queue_congestion_off_threshold(q))
788 blk_clear_queue_congested(q, sync);
789
790 if (rl->count[sync] + 1 <= q->nr_requests) {
791 if (waitqueue_active(&rl->wait[sync]))
792 wake_up(&rl->wait[sync]);
793
794 blk_clear_rl_full(rl, sync);
795 }
796 }
797
798 /*
799 * A request has just been released. Account for it, update the full and
800 * congestion status, wake up any waiters. Called under q->queue_lock.
801 */
802 static void freed_request(struct request_list *rl, unsigned int flags)
803 {
804 struct request_queue *q = rl->q;
805 int sync = rw_is_sync(flags);
806
807 q->nr_rqs[sync]--;
808 rl->count[sync]--;
809 if (flags & REQ_ELVPRIV)
810 q->nr_rqs_elvpriv--;
811
812 __freed_request(rl, sync);
813
814 if (unlikely(rl->starved[sync ^ 1]))
815 __freed_request(rl, sync ^ 1);
816 }
817
818 /*
819 * Determine if elevator data should be initialized when allocating the
820 * request associated with @bio.
821 */
822 static bool blk_rq_should_init_elevator(struct bio *bio)
823 {
824 if (!bio)
825 return true;
826
827 /*
828 * Flush requests do not use the elevator so skip initialization.
829 * This allows a request to share the flush and elevator data.
830 */
831 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
832 return false;
833
834 return true;
835 }
836
837 /**
838 * rq_ioc - determine io_context for request allocation
839 * @bio: request being allocated is for this bio (can be %NULL)
840 *
841 * Determine io_context to use for request allocation for @bio. May return
842 * %NULL if %current->io_context doesn't exist.
843 */
844 static struct io_context *rq_ioc(struct bio *bio)
845 {
846 #ifdef CONFIG_BLK_CGROUP
847 if (bio && bio->bi_ioc)
848 return bio->bi_ioc;
849 #endif
850 return current->io_context;
851 }
852
853 /**
854 * __get_request - get a free request
855 * @rl: request list to allocate from
856 * @rw_flags: RW and SYNC flags
857 * @bio: bio to allocate request for (can be %NULL)
858 * @gfp_mask: allocation mask
859 *
860 * Get a free request from @q. This function may fail under memory
861 * pressure or if @q is dead.
862 *
863 * Must be callled with @q->queue_lock held and,
864 * Returns %NULL on failure, with @q->queue_lock held.
865 * Returns !%NULL on success, with @q->queue_lock *not held*.
866 */
867 static struct request *__get_request(struct request_list *rl, int rw_flags,
868 struct bio *bio, gfp_t gfp_mask)
869 {
870 struct request_queue *q = rl->q;
871 struct request *rq;
872 struct elevator_type *et = q->elevator->type;
873 struct io_context *ioc = rq_ioc(bio);
874 struct io_cq *icq = NULL;
875 const bool is_sync = rw_is_sync(rw_flags) != 0;
876 int may_queue;
877
878 if (unlikely(blk_queue_dead(q)))
879 return NULL;
880
881 may_queue = elv_may_queue(q, rw_flags);
882 if (may_queue == ELV_MQUEUE_NO)
883 goto rq_starved;
884
885 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
886 if (rl->count[is_sync]+1 >= q->nr_requests) {
887 /*
888 * The queue will fill after this allocation, so set
889 * it as full, and mark this process as "batching".
890 * This process will be allowed to complete a batch of
891 * requests, others will be blocked.
892 */
893 if (!blk_rl_full(rl, is_sync)) {
894 ioc_set_batching(q, ioc);
895 blk_set_rl_full(rl, is_sync);
896 } else {
897 if (may_queue != ELV_MQUEUE_MUST
898 && !ioc_batching(q, ioc)) {
899 /*
900 * The queue is full and the allocating
901 * process is not a "batcher", and not
902 * exempted by the IO scheduler
903 */
904 return NULL;
905 }
906 }
907 }
908 /*
909 * bdi isn't aware of blkcg yet. As all async IOs end up
910 * root blkcg anyway, just use root blkcg state.
911 */
912 if (rl == &q->root_rl)
913 blk_set_queue_congested(q, is_sync);
914 }
915
916 /*
917 * Only allow batching queuers to allocate up to 50% over the defined
918 * limit of requests, otherwise we could have thousands of requests
919 * allocated with any setting of ->nr_requests
920 */
921 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
922 return NULL;
923
924 q->nr_rqs[is_sync]++;
925 rl->count[is_sync]++;
926 rl->starved[is_sync] = 0;
927
928 /*
929 * Decide whether the new request will be managed by elevator. If
930 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
931 * prevent the current elevator from being destroyed until the new
932 * request is freed. This guarantees icq's won't be destroyed and
933 * makes creating new ones safe.
934 *
935 * Also, lookup icq while holding queue_lock. If it doesn't exist,
936 * it will be created after releasing queue_lock.
937 */
938 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
939 rw_flags |= REQ_ELVPRIV;
940 q->nr_rqs_elvpriv++;
941 if (et->icq_cache && ioc)
942 icq = ioc_lookup_icq(ioc, q);
943 }
944
945 if (blk_queue_io_stat(q))
946 rw_flags |= REQ_IO_STAT;
947 spin_unlock_irq(q->queue_lock);
948
949 /* allocate and init request */
950 rq = mempool_alloc(rl->rq_pool, gfp_mask);
951 if (!rq)
952 goto fail_alloc;
953
954 blk_rq_init(q, rq);
955 blk_rq_set_rl(rq, rl);
956 rq->cmd_flags = rw_flags | REQ_ALLOCED;
957
958 /* init elvpriv */
959 if (rw_flags & REQ_ELVPRIV) {
960 if (unlikely(et->icq_cache && !icq)) {
961 if (ioc)
962 icq = ioc_create_icq(ioc, q, gfp_mask);
963 if (!icq)
964 goto fail_elvpriv;
965 }
966
967 rq->elv.icq = icq;
968 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
969 goto fail_elvpriv;
970
971 /* @rq->elv.icq holds io_context until @rq is freed */
972 if (icq)
973 get_io_context(icq->ioc);
974 }
975 out:
976 /*
977 * ioc may be NULL here, and ioc_batching will be false. That's
978 * OK, if the queue is under the request limit then requests need
979 * not count toward the nr_batch_requests limit. There will always
980 * be some limit enforced by BLK_BATCH_TIME.
981 */
982 if (ioc_batching(q, ioc))
983 ioc->nr_batch_requests--;
984
985 trace_block_getrq(q, bio, rw_flags & 1);
986 return rq;
987
988 fail_elvpriv:
989 /*
990 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
991 * and may fail indefinitely under memory pressure and thus
992 * shouldn't stall IO. Treat this request as !elvpriv. This will
993 * disturb iosched and blkcg but weird is bettern than dead.
994 */
995 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
996 dev_name(q->backing_dev_info.dev));
997
998 rq->cmd_flags &= ~REQ_ELVPRIV;
999 rq->elv.icq = NULL;
1000
1001 spin_lock_irq(q->queue_lock);
1002 q->nr_rqs_elvpriv--;
1003 spin_unlock_irq(q->queue_lock);
1004 goto out;
1005
1006 fail_alloc:
1007 /*
1008 * Allocation failed presumably due to memory. Undo anything we
1009 * might have messed up.
1010 *
1011 * Allocating task should really be put onto the front of the wait
1012 * queue, but this is pretty rare.
1013 */
1014 spin_lock_irq(q->queue_lock);
1015 freed_request(rl, rw_flags);
1016
1017 /*
1018 * in the very unlikely event that allocation failed and no
1019 * requests for this direction was pending, mark us starved so that
1020 * freeing of a request in the other direction will notice
1021 * us. another possible fix would be to split the rq mempool into
1022 * READ and WRITE
1023 */
1024 rq_starved:
1025 if (unlikely(rl->count[is_sync] == 0))
1026 rl->starved[is_sync] = 1;
1027 return NULL;
1028 }
1029
1030 /**
1031 * get_request - get a free request
1032 * @q: request_queue to allocate request from
1033 * @rw_flags: RW and SYNC flags
1034 * @bio: bio to allocate request for (can be %NULL)
1035 * @gfp_mask: allocation mask
1036 *
1037 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1038 * function keeps retrying under memory pressure and fails iff @q is dead.
1039 *
1040 * Must be callled with @q->queue_lock held and,
1041 * Returns %NULL on failure, with @q->queue_lock held.
1042 * Returns !%NULL on success, with @q->queue_lock *not held*.
1043 */
1044 static struct request *get_request(struct request_queue *q, int rw_flags,
1045 struct bio *bio, gfp_t gfp_mask)
1046 {
1047 const bool is_sync = rw_is_sync(rw_flags) != 0;
1048 DEFINE_WAIT(wait);
1049 struct request_list *rl;
1050 struct request *rq;
1051
1052 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1053 retry:
1054 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1055 if (rq)
1056 return rq;
1057
1058 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q))) {
1059 blk_put_rl(rl);
1060 return NULL;
1061 }
1062
1063 /* wait on @rl and retry */
1064 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1065 TASK_UNINTERRUPTIBLE);
1066
1067 trace_block_sleeprq(q, bio, rw_flags & 1);
1068
1069 spin_unlock_irq(q->queue_lock);
1070 io_schedule();
1071
1072 /*
1073 * After sleeping, we become a "batching" process and will be able
1074 * to allocate at least one request, and up to a big batch of them
1075 * for a small period time. See ioc_batching, ioc_set_batching
1076 */
1077 ioc_set_batching(q, current->io_context);
1078
1079 spin_lock_irq(q->queue_lock);
1080 finish_wait(&rl->wait[is_sync], &wait);
1081
1082 goto retry;
1083 }
1084
1085 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1086 {
1087 struct request *rq;
1088
1089 BUG_ON(rw != READ && rw != WRITE);
1090
1091 /* create ioc upfront */
1092 create_io_context(gfp_mask, q->node);
1093
1094 spin_lock_irq(q->queue_lock);
1095 rq = get_request(q, rw, NULL, gfp_mask);
1096 if (!rq)
1097 spin_unlock_irq(q->queue_lock);
1098 /* q->queue_lock is unlocked at this point */
1099
1100 return rq;
1101 }
1102 EXPORT_SYMBOL(blk_get_request);
1103
1104 /**
1105 * blk_make_request - given a bio, allocate a corresponding struct request.
1106 * @q: target request queue
1107 * @bio: The bio describing the memory mappings that will be submitted for IO.
1108 * It may be a chained-bio properly constructed by block/bio layer.
1109 * @gfp_mask: gfp flags to be used for memory allocation
1110 *
1111 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1112 * type commands. Where the struct request needs to be farther initialized by
1113 * the caller. It is passed a &struct bio, which describes the memory info of
1114 * the I/O transfer.
1115 *
1116 * The caller of blk_make_request must make sure that bi_io_vec
1117 * are set to describe the memory buffers. That bio_data_dir() will return
1118 * the needed direction of the request. (And all bio's in the passed bio-chain
1119 * are properly set accordingly)
1120 *
1121 * If called under none-sleepable conditions, mapped bio buffers must not
1122 * need bouncing, by calling the appropriate masked or flagged allocator,
1123 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1124 * BUG.
1125 *
1126 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1127 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1128 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1129 * completion of a bio that hasn't been submitted yet, thus resulting in a
1130 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1131 * of bio_alloc(), as that avoids the mempool deadlock.
1132 * If possible a big IO should be split into smaller parts when allocation
1133 * fails. Partial allocation should not be an error, or you risk a live-lock.
1134 */
1135 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1136 gfp_t gfp_mask)
1137 {
1138 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1139
1140 if (unlikely(!rq))
1141 return ERR_PTR(-ENOMEM);
1142
1143 for_each_bio(bio) {
1144 struct bio *bounce_bio = bio;
1145 int ret;
1146
1147 blk_queue_bounce(q, &bounce_bio);
1148 ret = blk_rq_append_bio(q, rq, bounce_bio);
1149 if (unlikely(ret)) {
1150 blk_put_request(rq);
1151 return ERR_PTR(ret);
1152 }
1153 }
1154
1155 return rq;
1156 }
1157 EXPORT_SYMBOL(blk_make_request);
1158
1159 /**
1160 * blk_requeue_request - put a request back on queue
1161 * @q: request queue where request should be inserted
1162 * @rq: request to be inserted
1163 *
1164 * Description:
1165 * Drivers often keep queueing requests until the hardware cannot accept
1166 * more, when that condition happens we need to put the request back
1167 * on the queue. Must be called with queue lock held.
1168 */
1169 void blk_requeue_request(struct request_queue *q, struct request *rq)
1170 {
1171 blk_delete_timer(rq);
1172 blk_clear_rq_complete(rq);
1173 trace_block_rq_requeue(q, rq);
1174
1175 if (blk_rq_tagged(rq))
1176 blk_queue_end_tag(q, rq);
1177
1178 BUG_ON(blk_queued_rq(rq));
1179
1180 elv_requeue_request(q, rq);
1181 }
1182 EXPORT_SYMBOL(blk_requeue_request);
1183
1184 static void add_acct_request(struct request_queue *q, struct request *rq,
1185 int where)
1186 {
1187 drive_stat_acct(rq, 1);
1188 __elv_add_request(q, rq, where);
1189 }
1190
1191 static void part_round_stats_single(int cpu, struct hd_struct *part,
1192 unsigned long now)
1193 {
1194 if (now == part->stamp)
1195 return;
1196
1197 if (part_in_flight(part)) {
1198 __part_stat_add(cpu, part, time_in_queue,
1199 part_in_flight(part) * (now - part->stamp));
1200 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1201 }
1202 part->stamp = now;
1203 }
1204
1205 /**
1206 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1207 * @cpu: cpu number for stats access
1208 * @part: target partition
1209 *
1210 * The average IO queue length and utilisation statistics are maintained
1211 * by observing the current state of the queue length and the amount of
1212 * time it has been in this state for.
1213 *
1214 * Normally, that accounting is done on IO completion, but that can result
1215 * in more than a second's worth of IO being accounted for within any one
1216 * second, leading to >100% utilisation. To deal with that, we call this
1217 * function to do a round-off before returning the results when reading
1218 * /proc/diskstats. This accounts immediately for all queue usage up to
1219 * the current jiffies and restarts the counters again.
1220 */
1221 void part_round_stats(int cpu, struct hd_struct *part)
1222 {
1223 unsigned long now = jiffies;
1224
1225 if (part->partno)
1226 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1227 part_round_stats_single(cpu, part, now);
1228 }
1229 EXPORT_SYMBOL_GPL(part_round_stats);
1230
1231 /*
1232 * queue lock must be held
1233 */
1234 void __blk_put_request(struct request_queue *q, struct request *req)
1235 {
1236 if (unlikely(!q))
1237 return;
1238 if (unlikely(--req->ref_count))
1239 return;
1240
1241 elv_completed_request(q, req);
1242
1243 /* this is a bio leak */
1244 WARN_ON(req->bio != NULL);
1245
1246 /*
1247 * Request may not have originated from ll_rw_blk. if not,
1248 * it didn't come out of our reserved rq pools
1249 */
1250 if (req->cmd_flags & REQ_ALLOCED) {
1251 unsigned int flags = req->cmd_flags;
1252 struct request_list *rl = blk_rq_rl(req);
1253
1254 BUG_ON(!list_empty(&req->queuelist));
1255 BUG_ON(!hlist_unhashed(&req->hash));
1256
1257 blk_free_request(rl, req);
1258 freed_request(rl, flags);
1259 blk_put_rl(rl);
1260 }
1261 }
1262 EXPORT_SYMBOL_GPL(__blk_put_request);
1263
1264 void blk_put_request(struct request *req)
1265 {
1266 unsigned long flags;
1267 struct request_queue *q = req->q;
1268
1269 spin_lock_irqsave(q->queue_lock, flags);
1270 __blk_put_request(q, req);
1271 spin_unlock_irqrestore(q->queue_lock, flags);
1272 }
1273 EXPORT_SYMBOL(blk_put_request);
1274
1275 /**
1276 * blk_add_request_payload - add a payload to a request
1277 * @rq: request to update
1278 * @page: page backing the payload
1279 * @len: length of the payload.
1280 *
1281 * This allows to later add a payload to an already submitted request by
1282 * a block driver. The driver needs to take care of freeing the payload
1283 * itself.
1284 *
1285 * Note that this is a quite horrible hack and nothing but handling of
1286 * discard requests should ever use it.
1287 */
1288 void blk_add_request_payload(struct request *rq, struct page *page,
1289 unsigned int len)
1290 {
1291 struct bio *bio = rq->bio;
1292
1293 bio->bi_io_vec->bv_page = page;
1294 bio->bi_io_vec->bv_offset = 0;
1295 bio->bi_io_vec->bv_len = len;
1296
1297 bio->bi_size = len;
1298 bio->bi_vcnt = 1;
1299 bio->bi_phys_segments = 1;
1300
1301 rq->__data_len = rq->resid_len = len;
1302 rq->nr_phys_segments = 1;
1303 rq->buffer = bio_data(bio);
1304 }
1305 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1306
1307 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1308 struct bio *bio)
1309 {
1310 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1311
1312 if (!ll_back_merge_fn(q, req, bio))
1313 return false;
1314
1315 trace_block_bio_backmerge(q, bio);
1316
1317 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1318 blk_rq_set_mixed_merge(req);
1319
1320 req->biotail->bi_next = bio;
1321 req->biotail = bio;
1322 req->__data_len += bio->bi_size;
1323 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1324
1325 drive_stat_acct(req, 0);
1326 return true;
1327 }
1328
1329 static bool bio_attempt_front_merge(struct request_queue *q,
1330 struct request *req, struct bio *bio)
1331 {
1332 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1333
1334 if (!ll_front_merge_fn(q, req, bio))
1335 return false;
1336
1337 trace_block_bio_frontmerge(q, bio);
1338
1339 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1340 blk_rq_set_mixed_merge(req);
1341
1342 bio->bi_next = req->bio;
1343 req->bio = bio;
1344
1345 /*
1346 * may not be valid. if the low level driver said
1347 * it didn't need a bounce buffer then it better
1348 * not touch req->buffer either...
1349 */
1350 req->buffer = bio_data(bio);
1351 req->__sector = bio->bi_sector;
1352 req->__data_len += bio->bi_size;
1353 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1354
1355 drive_stat_acct(req, 0);
1356 return true;
1357 }
1358
1359 /**
1360 * attempt_plug_merge - try to merge with %current's plugged list
1361 * @q: request_queue new bio is being queued at
1362 * @bio: new bio being queued
1363 * @request_count: out parameter for number of traversed plugged requests
1364 *
1365 * Determine whether @bio being queued on @q can be merged with a request
1366 * on %current's plugged list. Returns %true if merge was successful,
1367 * otherwise %false.
1368 *
1369 * Plugging coalesces IOs from the same issuer for the same purpose without
1370 * going through @q->queue_lock. As such it's more of an issuing mechanism
1371 * than scheduling, and the request, while may have elvpriv data, is not
1372 * added on the elevator at this point. In addition, we don't have
1373 * reliable access to the elevator outside queue lock. Only check basic
1374 * merging parameters without querying the elevator.
1375 */
1376 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1377 unsigned int *request_count)
1378 {
1379 struct blk_plug *plug;
1380 struct request *rq;
1381 bool ret = false;
1382
1383 plug = current->plug;
1384 if (!plug)
1385 goto out;
1386 *request_count = 0;
1387
1388 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1389 int el_ret;
1390
1391 if (rq->q == q)
1392 (*request_count)++;
1393
1394 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1395 continue;
1396
1397 el_ret = blk_try_merge(rq, bio);
1398 if (el_ret == ELEVATOR_BACK_MERGE) {
1399 ret = bio_attempt_back_merge(q, rq, bio);
1400 if (ret)
1401 break;
1402 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1403 ret = bio_attempt_front_merge(q, rq, bio);
1404 if (ret)
1405 break;
1406 }
1407 }
1408 out:
1409 return ret;
1410 }
1411
1412 void init_request_from_bio(struct request *req, struct bio *bio)
1413 {
1414 req->cmd_type = REQ_TYPE_FS;
1415
1416 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1417 if (bio->bi_rw & REQ_RAHEAD)
1418 req->cmd_flags |= REQ_FAILFAST_MASK;
1419
1420 req->errors = 0;
1421 req->__sector = bio->bi_sector;
1422 req->ioprio = bio_prio(bio);
1423 blk_rq_bio_prep(req->q, req, bio);
1424 }
1425
1426 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1427 {
1428 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1429 struct blk_plug *plug;
1430 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1431 struct request *req;
1432 unsigned int request_count = 0;
1433
1434 /*
1435 * low level driver can indicate that it wants pages above a
1436 * certain limit bounced to low memory (ie for highmem, or even
1437 * ISA dma in theory)
1438 */
1439 blk_queue_bounce(q, &bio);
1440
1441 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1442 spin_lock_irq(q->queue_lock);
1443 where = ELEVATOR_INSERT_FLUSH;
1444 goto get_rq;
1445 }
1446
1447 /*
1448 * Check if we can merge with the plugged list before grabbing
1449 * any locks.
1450 */
1451 if (attempt_plug_merge(q, bio, &request_count))
1452 return;
1453
1454 spin_lock_irq(q->queue_lock);
1455
1456 el_ret = elv_merge(q, &req, bio);
1457 if (el_ret == ELEVATOR_BACK_MERGE) {
1458 if (bio_attempt_back_merge(q, req, bio)) {
1459 elv_bio_merged(q, req, bio);
1460 if (!attempt_back_merge(q, req))
1461 elv_merged_request(q, req, el_ret);
1462 goto out_unlock;
1463 }
1464 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1465 if (bio_attempt_front_merge(q, req, bio)) {
1466 elv_bio_merged(q, req, bio);
1467 if (!attempt_front_merge(q, req))
1468 elv_merged_request(q, req, el_ret);
1469 goto out_unlock;
1470 }
1471 }
1472
1473 get_rq:
1474 /*
1475 * This sync check and mask will be re-done in init_request_from_bio(),
1476 * but we need to set it earlier to expose the sync flag to the
1477 * rq allocator and io schedulers.
1478 */
1479 rw_flags = bio_data_dir(bio);
1480 if (sync)
1481 rw_flags |= REQ_SYNC;
1482
1483 /*
1484 * Grab a free request. This is might sleep but can not fail.
1485 * Returns with the queue unlocked.
1486 */
1487 req = get_request(q, rw_flags, bio, GFP_NOIO);
1488 if (unlikely(!req)) {
1489 bio_endio(bio, -ENODEV); /* @q is dead */
1490 goto out_unlock;
1491 }
1492
1493 /*
1494 * After dropping the lock and possibly sleeping here, our request
1495 * may now be mergeable after it had proven unmergeable (above).
1496 * We don't worry about that case for efficiency. It won't happen
1497 * often, and the elevators are able to handle it.
1498 */
1499 init_request_from_bio(req, bio);
1500
1501 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1502 req->cpu = raw_smp_processor_id();
1503
1504 plug = current->plug;
1505 if (plug) {
1506 /*
1507 * If this is the first request added after a plug, fire
1508 * of a plug trace. If others have been added before, check
1509 * if we have multiple devices in this plug. If so, make a
1510 * note to sort the list before dispatch.
1511 */
1512 if (list_empty(&plug->list))
1513 trace_block_plug(q);
1514 else {
1515 if (!plug->should_sort) {
1516 struct request *__rq;
1517
1518 __rq = list_entry_rq(plug->list.prev);
1519 if (__rq->q != q)
1520 plug->should_sort = 1;
1521 }
1522 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1523 blk_flush_plug_list(plug, false);
1524 trace_block_plug(q);
1525 }
1526 }
1527 list_add_tail(&req->queuelist, &plug->list);
1528 drive_stat_acct(req, 1);
1529 } else {
1530 spin_lock_irq(q->queue_lock);
1531 add_acct_request(q, req, where);
1532 __blk_run_queue(q);
1533 out_unlock:
1534 spin_unlock_irq(q->queue_lock);
1535 }
1536 }
1537 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1538
1539 /*
1540 * If bio->bi_dev is a partition, remap the location
1541 */
1542 static inline void blk_partition_remap(struct bio *bio)
1543 {
1544 struct block_device *bdev = bio->bi_bdev;
1545
1546 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1547 struct hd_struct *p = bdev->bd_part;
1548
1549 bio->bi_sector += p->start_sect;
1550 bio->bi_bdev = bdev->bd_contains;
1551
1552 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1553 bdev->bd_dev,
1554 bio->bi_sector - p->start_sect);
1555 }
1556 }
1557
1558 static void handle_bad_sector(struct bio *bio)
1559 {
1560 char b[BDEVNAME_SIZE];
1561
1562 printk(KERN_INFO "attempt to access beyond end of device\n");
1563 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1564 bdevname(bio->bi_bdev, b),
1565 bio->bi_rw,
1566 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1567 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1568
1569 set_bit(BIO_EOF, &bio->bi_flags);
1570 }
1571
1572 #ifdef CONFIG_FAIL_MAKE_REQUEST
1573
1574 static DECLARE_FAULT_ATTR(fail_make_request);
1575
1576 static int __init setup_fail_make_request(char *str)
1577 {
1578 return setup_fault_attr(&fail_make_request, str);
1579 }
1580 __setup("fail_make_request=", setup_fail_make_request);
1581
1582 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1583 {
1584 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1585 }
1586
1587 static int __init fail_make_request_debugfs(void)
1588 {
1589 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1590 NULL, &fail_make_request);
1591
1592 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1593 }
1594
1595 late_initcall(fail_make_request_debugfs);
1596
1597 #else /* CONFIG_FAIL_MAKE_REQUEST */
1598
1599 static inline bool should_fail_request(struct hd_struct *part,
1600 unsigned int bytes)
1601 {
1602 return false;
1603 }
1604
1605 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1606
1607 /*
1608 * Check whether this bio extends beyond the end of the device.
1609 */
1610 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1611 {
1612 sector_t maxsector;
1613
1614 if (!nr_sectors)
1615 return 0;
1616
1617 /* Test device or partition size, when known. */
1618 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1619 if (maxsector) {
1620 sector_t sector = bio->bi_sector;
1621
1622 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1623 /*
1624 * This may well happen - the kernel calls bread()
1625 * without checking the size of the device, e.g., when
1626 * mounting a device.
1627 */
1628 handle_bad_sector(bio);
1629 return 1;
1630 }
1631 }
1632
1633 return 0;
1634 }
1635
1636 static noinline_for_stack bool
1637 generic_make_request_checks(struct bio *bio)
1638 {
1639 struct request_queue *q;
1640 int nr_sectors = bio_sectors(bio);
1641 int err = -EIO;
1642 char b[BDEVNAME_SIZE];
1643 struct hd_struct *part;
1644
1645 might_sleep();
1646
1647 if (bio_check_eod(bio, nr_sectors))
1648 goto end_io;
1649
1650 q = bdev_get_queue(bio->bi_bdev);
1651 if (unlikely(!q)) {
1652 printk(KERN_ERR
1653 "generic_make_request: Trying to access "
1654 "nonexistent block-device %s (%Lu)\n",
1655 bdevname(bio->bi_bdev, b),
1656 (long long) bio->bi_sector);
1657 goto end_io;
1658 }
1659
1660 if (likely(bio_is_rw(bio) &&
1661 nr_sectors > queue_max_hw_sectors(q))) {
1662 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1663 bdevname(bio->bi_bdev, b),
1664 bio_sectors(bio),
1665 queue_max_hw_sectors(q));
1666 goto end_io;
1667 }
1668
1669 part = bio->bi_bdev->bd_part;
1670 if (should_fail_request(part, bio->bi_size) ||
1671 should_fail_request(&part_to_disk(part)->part0,
1672 bio->bi_size))
1673 goto end_io;
1674
1675 /*
1676 * If this device has partitions, remap block n
1677 * of partition p to block n+start(p) of the disk.
1678 */
1679 blk_partition_remap(bio);
1680
1681 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1682 goto end_io;
1683
1684 if (bio_check_eod(bio, nr_sectors))
1685 goto end_io;
1686
1687 /*
1688 * Filter flush bio's early so that make_request based
1689 * drivers without flush support don't have to worry
1690 * about them.
1691 */
1692 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1693 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1694 if (!nr_sectors) {
1695 err = 0;
1696 goto end_io;
1697 }
1698 }
1699
1700 if ((bio->bi_rw & REQ_DISCARD) &&
1701 (!blk_queue_discard(q) ||
1702 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1703 err = -EOPNOTSUPP;
1704 goto end_io;
1705 }
1706
1707 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1708 err = -EOPNOTSUPP;
1709 goto end_io;
1710 }
1711
1712 /*
1713 * Various block parts want %current->io_context and lazy ioc
1714 * allocation ends up trading a lot of pain for a small amount of
1715 * memory. Just allocate it upfront. This may fail and block
1716 * layer knows how to live with it.
1717 */
1718 create_io_context(GFP_ATOMIC, q->node);
1719
1720 if (blk_throtl_bio(q, bio))
1721 return false; /* throttled, will be resubmitted later */
1722
1723 trace_block_bio_queue(q, bio);
1724 return true;
1725
1726 end_io:
1727 bio_endio(bio, err);
1728 return false;
1729 }
1730
1731 /**
1732 * generic_make_request - hand a buffer to its device driver for I/O
1733 * @bio: The bio describing the location in memory and on the device.
1734 *
1735 * generic_make_request() is used to make I/O requests of block
1736 * devices. It is passed a &struct bio, which describes the I/O that needs
1737 * to be done.
1738 *
1739 * generic_make_request() does not return any status. The
1740 * success/failure status of the request, along with notification of
1741 * completion, is delivered asynchronously through the bio->bi_end_io
1742 * function described (one day) else where.
1743 *
1744 * The caller of generic_make_request must make sure that bi_io_vec
1745 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1746 * set to describe the device address, and the
1747 * bi_end_io and optionally bi_private are set to describe how
1748 * completion notification should be signaled.
1749 *
1750 * generic_make_request and the drivers it calls may use bi_next if this
1751 * bio happens to be merged with someone else, and may resubmit the bio to
1752 * a lower device by calling into generic_make_request recursively, which
1753 * means the bio should NOT be touched after the call to ->make_request_fn.
1754 */
1755 void generic_make_request(struct bio *bio)
1756 {
1757 struct bio_list bio_list_on_stack;
1758
1759 if (!generic_make_request_checks(bio))
1760 return;
1761
1762 /*
1763 * We only want one ->make_request_fn to be active at a time, else
1764 * stack usage with stacked devices could be a problem. So use
1765 * current->bio_list to keep a list of requests submited by a
1766 * make_request_fn function. current->bio_list is also used as a
1767 * flag to say if generic_make_request is currently active in this
1768 * task or not. If it is NULL, then no make_request is active. If
1769 * it is non-NULL, then a make_request is active, and new requests
1770 * should be added at the tail
1771 */
1772 if (current->bio_list) {
1773 bio_list_add(current->bio_list, bio);
1774 return;
1775 }
1776
1777 /* following loop may be a bit non-obvious, and so deserves some
1778 * explanation.
1779 * Before entering the loop, bio->bi_next is NULL (as all callers
1780 * ensure that) so we have a list with a single bio.
1781 * We pretend that we have just taken it off a longer list, so
1782 * we assign bio_list to a pointer to the bio_list_on_stack,
1783 * thus initialising the bio_list of new bios to be
1784 * added. ->make_request() may indeed add some more bios
1785 * through a recursive call to generic_make_request. If it
1786 * did, we find a non-NULL value in bio_list and re-enter the loop
1787 * from the top. In this case we really did just take the bio
1788 * of the top of the list (no pretending) and so remove it from
1789 * bio_list, and call into ->make_request() again.
1790 */
1791 BUG_ON(bio->bi_next);
1792 bio_list_init(&bio_list_on_stack);
1793 current->bio_list = &bio_list_on_stack;
1794 do {
1795 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1796
1797 q->make_request_fn(q, bio);
1798
1799 bio = bio_list_pop(current->bio_list);
1800 } while (bio);
1801 current->bio_list = NULL; /* deactivate */
1802 }
1803 EXPORT_SYMBOL(generic_make_request);
1804
1805 /**
1806 * submit_bio - submit a bio to the block device layer for I/O
1807 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1808 * @bio: The &struct bio which describes the I/O
1809 *
1810 * submit_bio() is very similar in purpose to generic_make_request(), and
1811 * uses that function to do most of the work. Both are fairly rough
1812 * interfaces; @bio must be presetup and ready for I/O.
1813 *
1814 */
1815 void submit_bio(int rw, struct bio *bio)
1816 {
1817 bio->bi_rw |= rw;
1818
1819 /*
1820 * If it's a regular read/write or a barrier with data attached,
1821 * go through the normal accounting stuff before submission.
1822 */
1823 if (bio_has_data(bio)) {
1824 unsigned int count;
1825
1826 if (unlikely(rw & REQ_WRITE_SAME))
1827 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1828 else
1829 count = bio_sectors(bio);
1830
1831 if (rw & WRITE) {
1832 count_vm_events(PGPGOUT, count);
1833 } else {
1834 task_io_account_read(bio->bi_size);
1835 count_vm_events(PGPGIN, count);
1836 }
1837
1838 if (unlikely(block_dump)) {
1839 char b[BDEVNAME_SIZE];
1840 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1841 current->comm, task_pid_nr(current),
1842 (rw & WRITE) ? "WRITE" : "READ",
1843 (unsigned long long)bio->bi_sector,
1844 bdevname(bio->bi_bdev, b),
1845 count);
1846 }
1847 }
1848
1849 generic_make_request(bio);
1850 }
1851 EXPORT_SYMBOL(submit_bio);
1852
1853 /**
1854 * blk_rq_check_limits - Helper function to check a request for the queue limit
1855 * @q: the queue
1856 * @rq: the request being checked
1857 *
1858 * Description:
1859 * @rq may have been made based on weaker limitations of upper-level queues
1860 * in request stacking drivers, and it may violate the limitation of @q.
1861 * Since the block layer and the underlying device driver trust @rq
1862 * after it is inserted to @q, it should be checked against @q before
1863 * the insertion using this generic function.
1864 *
1865 * This function should also be useful for request stacking drivers
1866 * in some cases below, so export this function.
1867 * Request stacking drivers like request-based dm may change the queue
1868 * limits while requests are in the queue (e.g. dm's table swapping).
1869 * Such request stacking drivers should check those requests agaist
1870 * the new queue limits again when they dispatch those requests,
1871 * although such checkings are also done against the old queue limits
1872 * when submitting requests.
1873 */
1874 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1875 {
1876 if (!rq_mergeable(rq))
1877 return 0;
1878
1879 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1880 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1881 return -EIO;
1882 }
1883
1884 /*
1885 * queue's settings related to segment counting like q->bounce_pfn
1886 * may differ from that of other stacking queues.
1887 * Recalculate it to check the request correctly on this queue's
1888 * limitation.
1889 */
1890 blk_recalc_rq_segments(rq);
1891 if (rq->nr_phys_segments > queue_max_segments(q)) {
1892 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1893 return -EIO;
1894 }
1895
1896 return 0;
1897 }
1898 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1899
1900 /**
1901 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1902 * @q: the queue to submit the request
1903 * @rq: the request being queued
1904 */
1905 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1906 {
1907 unsigned long flags;
1908 int where = ELEVATOR_INSERT_BACK;
1909
1910 if (blk_rq_check_limits(q, rq))
1911 return -EIO;
1912
1913 if (rq->rq_disk &&
1914 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1915 return -EIO;
1916
1917 spin_lock_irqsave(q->queue_lock, flags);
1918 if (unlikely(blk_queue_dead(q))) {
1919 spin_unlock_irqrestore(q->queue_lock, flags);
1920 return -ENODEV;
1921 }
1922
1923 /*
1924 * Submitting request must be dequeued before calling this function
1925 * because it will be linked to another request_queue
1926 */
1927 BUG_ON(blk_queued_rq(rq));
1928
1929 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1930 where = ELEVATOR_INSERT_FLUSH;
1931
1932 add_acct_request(q, rq, where);
1933 if (where == ELEVATOR_INSERT_FLUSH)
1934 __blk_run_queue(q);
1935 spin_unlock_irqrestore(q->queue_lock, flags);
1936
1937 return 0;
1938 }
1939 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1940
1941 /**
1942 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1943 * @rq: request to examine
1944 *
1945 * Description:
1946 * A request could be merge of IOs which require different failure
1947 * handling. This function determines the number of bytes which
1948 * can be failed from the beginning of the request without
1949 * crossing into area which need to be retried further.
1950 *
1951 * Return:
1952 * The number of bytes to fail.
1953 *
1954 * Context:
1955 * queue_lock must be held.
1956 */
1957 unsigned int blk_rq_err_bytes(const struct request *rq)
1958 {
1959 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1960 unsigned int bytes = 0;
1961 struct bio *bio;
1962
1963 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1964 return blk_rq_bytes(rq);
1965
1966 /*
1967 * Currently the only 'mixing' which can happen is between
1968 * different fastfail types. We can safely fail portions
1969 * which have all the failfast bits that the first one has -
1970 * the ones which are at least as eager to fail as the first
1971 * one.
1972 */
1973 for (bio = rq->bio; bio; bio = bio->bi_next) {
1974 if ((bio->bi_rw & ff) != ff)
1975 break;
1976 bytes += bio->bi_size;
1977 }
1978
1979 /* this could lead to infinite loop */
1980 BUG_ON(blk_rq_bytes(rq) && !bytes);
1981 return bytes;
1982 }
1983 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1984
1985 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1986 {
1987 if (blk_do_io_stat(req)) {
1988 const int rw = rq_data_dir(req);
1989 struct hd_struct *part;
1990 int cpu;
1991
1992 cpu = part_stat_lock();
1993 part = req->part;
1994 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1995 part_stat_unlock();
1996 }
1997 }
1998
1999 static void blk_account_io_done(struct request *req)
2000 {
2001 /*
2002 * Account IO completion. flush_rq isn't accounted as a
2003 * normal IO on queueing nor completion. Accounting the
2004 * containing request is enough.
2005 */
2006 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2007 unsigned long duration = jiffies - req->start_time;
2008 const int rw = rq_data_dir(req);
2009 struct hd_struct *part;
2010 int cpu;
2011
2012 cpu = part_stat_lock();
2013 part = req->part;
2014
2015 part_stat_inc(cpu, part, ios[rw]);
2016 part_stat_add(cpu, part, ticks[rw], duration);
2017 part_round_stats(cpu, part);
2018 part_dec_in_flight(part, rw);
2019
2020 hd_struct_put(part);
2021 part_stat_unlock();
2022 }
2023 }
2024
2025 /**
2026 * blk_peek_request - peek at the top of a request queue
2027 * @q: request queue to peek at
2028 *
2029 * Description:
2030 * Return the request at the top of @q. The returned request
2031 * should be started using blk_start_request() before LLD starts
2032 * processing it.
2033 *
2034 * Return:
2035 * Pointer to the request at the top of @q if available. Null
2036 * otherwise.
2037 *
2038 * Context:
2039 * queue_lock must be held.
2040 */
2041 struct request *blk_peek_request(struct request_queue *q)
2042 {
2043 struct request *rq;
2044 int ret;
2045
2046 while ((rq = __elv_next_request(q)) != NULL) {
2047 if (!(rq->cmd_flags & REQ_STARTED)) {
2048 /*
2049 * This is the first time the device driver
2050 * sees this request (possibly after
2051 * requeueing). Notify IO scheduler.
2052 */
2053 if (rq->cmd_flags & REQ_SORTED)
2054 elv_activate_rq(q, rq);
2055
2056 /*
2057 * just mark as started even if we don't start
2058 * it, a request that has been delayed should
2059 * not be passed by new incoming requests
2060 */
2061 rq->cmd_flags |= REQ_STARTED;
2062 trace_block_rq_issue(q, rq);
2063 }
2064
2065 if (!q->boundary_rq || q->boundary_rq == rq) {
2066 q->end_sector = rq_end_sector(rq);
2067 q->boundary_rq = NULL;
2068 }
2069
2070 if (rq->cmd_flags & REQ_DONTPREP)
2071 break;
2072
2073 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2074 /*
2075 * make sure space for the drain appears we
2076 * know we can do this because max_hw_segments
2077 * has been adjusted to be one fewer than the
2078 * device can handle
2079 */
2080 rq->nr_phys_segments++;
2081 }
2082
2083 if (!q->prep_rq_fn)
2084 break;
2085
2086 ret = q->prep_rq_fn(q, rq);
2087 if (ret == BLKPREP_OK) {
2088 break;
2089 } else if (ret == BLKPREP_DEFER) {
2090 /*
2091 * the request may have been (partially) prepped.
2092 * we need to keep this request in the front to
2093 * avoid resource deadlock. REQ_STARTED will
2094 * prevent other fs requests from passing this one.
2095 */
2096 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2097 !(rq->cmd_flags & REQ_DONTPREP)) {
2098 /*
2099 * remove the space for the drain we added
2100 * so that we don't add it again
2101 */
2102 --rq->nr_phys_segments;
2103 }
2104
2105 rq = NULL;
2106 break;
2107 } else if (ret == BLKPREP_KILL) {
2108 rq->cmd_flags |= REQ_QUIET;
2109 /*
2110 * Mark this request as started so we don't trigger
2111 * any debug logic in the end I/O path.
2112 */
2113 blk_start_request(rq);
2114 __blk_end_request_all(rq, -EIO);
2115 } else {
2116 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2117 break;
2118 }
2119 }
2120
2121 return rq;
2122 }
2123 EXPORT_SYMBOL(blk_peek_request);
2124
2125 void blk_dequeue_request(struct request *rq)
2126 {
2127 struct request_queue *q = rq->q;
2128
2129 BUG_ON(list_empty(&rq->queuelist));
2130 BUG_ON(ELV_ON_HASH(rq));
2131
2132 list_del_init(&rq->queuelist);
2133
2134 /*
2135 * the time frame between a request being removed from the lists
2136 * and to it is freed is accounted as io that is in progress at
2137 * the driver side.
2138 */
2139 if (blk_account_rq(rq)) {
2140 q->in_flight[rq_is_sync(rq)]++;
2141 set_io_start_time_ns(rq);
2142 }
2143 }
2144
2145 /**
2146 * blk_start_request - start request processing on the driver
2147 * @req: request to dequeue
2148 *
2149 * Description:
2150 * Dequeue @req and start timeout timer on it. This hands off the
2151 * request to the driver.
2152 *
2153 * Block internal functions which don't want to start timer should
2154 * call blk_dequeue_request().
2155 *
2156 * Context:
2157 * queue_lock must be held.
2158 */
2159 void blk_start_request(struct request *req)
2160 {
2161 blk_dequeue_request(req);
2162
2163 /*
2164 * We are now handing the request to the hardware, initialize
2165 * resid_len to full count and add the timeout handler.
2166 */
2167 req->resid_len = blk_rq_bytes(req);
2168 if (unlikely(blk_bidi_rq(req)))
2169 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2170
2171 blk_add_timer(req);
2172 }
2173 EXPORT_SYMBOL(blk_start_request);
2174
2175 /**
2176 * blk_fetch_request - fetch a request from a request queue
2177 * @q: request queue to fetch a request from
2178 *
2179 * Description:
2180 * Return the request at the top of @q. The request is started on
2181 * return and LLD can start processing it immediately.
2182 *
2183 * Return:
2184 * Pointer to the request at the top of @q if available. Null
2185 * otherwise.
2186 *
2187 * Context:
2188 * queue_lock must be held.
2189 */
2190 struct request *blk_fetch_request(struct request_queue *q)
2191 {
2192 struct request *rq;
2193
2194 rq = blk_peek_request(q);
2195 if (rq)
2196 blk_start_request(rq);
2197 return rq;
2198 }
2199 EXPORT_SYMBOL(blk_fetch_request);
2200
2201 /**
2202 * blk_update_request - Special helper function for request stacking drivers
2203 * @req: the request being processed
2204 * @error: %0 for success, < %0 for error
2205 * @nr_bytes: number of bytes to complete @req
2206 *
2207 * Description:
2208 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2209 * the request structure even if @req doesn't have leftover.
2210 * If @req has leftover, sets it up for the next range of segments.
2211 *
2212 * This special helper function is only for request stacking drivers
2213 * (e.g. request-based dm) so that they can handle partial completion.
2214 * Actual device drivers should use blk_end_request instead.
2215 *
2216 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2217 * %false return from this function.
2218 *
2219 * Return:
2220 * %false - this request doesn't have any more data
2221 * %true - this request has more data
2222 **/
2223 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2224 {
2225 int total_bytes, bio_nbytes, next_idx = 0;
2226 struct bio *bio;
2227
2228 if (!req->bio)
2229 return false;
2230
2231 trace_block_rq_complete(req->q, req);
2232
2233 /*
2234 * For fs requests, rq is just carrier of independent bio's
2235 * and each partial completion should be handled separately.
2236 * Reset per-request error on each partial completion.
2237 *
2238 * TODO: tj: This is too subtle. It would be better to let
2239 * low level drivers do what they see fit.
2240 */
2241 if (req->cmd_type == REQ_TYPE_FS)
2242 req->errors = 0;
2243
2244 if (error && req->cmd_type == REQ_TYPE_FS &&
2245 !(req->cmd_flags & REQ_QUIET)) {
2246 char *error_type;
2247
2248 switch (error) {
2249 case -ENOLINK:
2250 error_type = "recoverable transport";
2251 break;
2252 case -EREMOTEIO:
2253 error_type = "critical target";
2254 break;
2255 case -EBADE:
2256 error_type = "critical nexus";
2257 break;
2258 case -EIO:
2259 default:
2260 error_type = "I/O";
2261 break;
2262 }
2263 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2264 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2265 (unsigned long long)blk_rq_pos(req));
2266 }
2267
2268 blk_account_io_completion(req, nr_bytes);
2269
2270 total_bytes = bio_nbytes = 0;
2271 while ((bio = req->bio) != NULL) {
2272 int nbytes;
2273
2274 if (nr_bytes >= bio->bi_size) {
2275 req->bio = bio->bi_next;
2276 nbytes = bio->bi_size;
2277 req_bio_endio(req, bio, nbytes, error);
2278 next_idx = 0;
2279 bio_nbytes = 0;
2280 } else {
2281 int idx = bio->bi_idx + next_idx;
2282
2283 if (unlikely(idx >= bio->bi_vcnt)) {
2284 blk_dump_rq_flags(req, "__end_that");
2285 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2286 __func__, idx, bio->bi_vcnt);
2287 break;
2288 }
2289
2290 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2291 BIO_BUG_ON(nbytes > bio->bi_size);
2292
2293 /*
2294 * not a complete bvec done
2295 */
2296 if (unlikely(nbytes > nr_bytes)) {
2297 bio_nbytes += nr_bytes;
2298 total_bytes += nr_bytes;
2299 break;
2300 }
2301
2302 /*
2303 * advance to the next vector
2304 */
2305 next_idx++;
2306 bio_nbytes += nbytes;
2307 }
2308
2309 total_bytes += nbytes;
2310 nr_bytes -= nbytes;
2311
2312 bio = req->bio;
2313 if (bio) {
2314 /*
2315 * end more in this run, or just return 'not-done'
2316 */
2317 if (unlikely(nr_bytes <= 0))
2318 break;
2319 }
2320 }
2321
2322 /*
2323 * completely done
2324 */
2325 if (!req->bio) {
2326 /*
2327 * Reset counters so that the request stacking driver
2328 * can find how many bytes remain in the request
2329 * later.
2330 */
2331 req->__data_len = 0;
2332 return false;
2333 }
2334
2335 /*
2336 * if the request wasn't completed, update state
2337 */
2338 if (bio_nbytes) {
2339 req_bio_endio(req, bio, bio_nbytes, error);
2340 bio->bi_idx += next_idx;
2341 bio_iovec(bio)->bv_offset += nr_bytes;
2342 bio_iovec(bio)->bv_len -= nr_bytes;
2343 }
2344
2345 req->__data_len -= total_bytes;
2346 req->buffer = bio_data(req->bio);
2347
2348 /* update sector only for requests with clear definition of sector */
2349 if (req->cmd_type == REQ_TYPE_FS)
2350 req->__sector += total_bytes >> 9;
2351
2352 /* mixed attributes always follow the first bio */
2353 if (req->cmd_flags & REQ_MIXED_MERGE) {
2354 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2355 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2356 }
2357
2358 /*
2359 * If total number of sectors is less than the first segment
2360 * size, something has gone terribly wrong.
2361 */
2362 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2363 blk_dump_rq_flags(req, "request botched");
2364 req->__data_len = blk_rq_cur_bytes(req);
2365 }
2366
2367 /* recalculate the number of segments */
2368 blk_recalc_rq_segments(req);
2369
2370 return true;
2371 }
2372 EXPORT_SYMBOL_GPL(blk_update_request);
2373
2374 static bool blk_update_bidi_request(struct request *rq, int error,
2375 unsigned int nr_bytes,
2376 unsigned int bidi_bytes)
2377 {
2378 if (blk_update_request(rq, error, nr_bytes))
2379 return true;
2380
2381 /* Bidi request must be completed as a whole */
2382 if (unlikely(blk_bidi_rq(rq)) &&
2383 blk_update_request(rq->next_rq, error, bidi_bytes))
2384 return true;
2385
2386 if (blk_queue_add_random(rq->q))
2387 add_disk_randomness(rq->rq_disk);
2388
2389 return false;
2390 }
2391
2392 /**
2393 * blk_unprep_request - unprepare a request
2394 * @req: the request
2395 *
2396 * This function makes a request ready for complete resubmission (or
2397 * completion). It happens only after all error handling is complete,
2398 * so represents the appropriate moment to deallocate any resources
2399 * that were allocated to the request in the prep_rq_fn. The queue
2400 * lock is held when calling this.
2401 */
2402 void blk_unprep_request(struct request *req)
2403 {
2404 struct request_queue *q = req->q;
2405
2406 req->cmd_flags &= ~REQ_DONTPREP;
2407 if (q->unprep_rq_fn)
2408 q->unprep_rq_fn(q, req);
2409 }
2410 EXPORT_SYMBOL_GPL(blk_unprep_request);
2411
2412 /*
2413 * queue lock must be held
2414 */
2415 static void blk_finish_request(struct request *req, int error)
2416 {
2417 if (blk_rq_tagged(req))
2418 blk_queue_end_tag(req->q, req);
2419
2420 BUG_ON(blk_queued_rq(req));
2421
2422 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2423 laptop_io_completion(&req->q->backing_dev_info);
2424
2425 blk_delete_timer(req);
2426
2427 if (req->cmd_flags & REQ_DONTPREP)
2428 blk_unprep_request(req);
2429
2430
2431 blk_account_io_done(req);
2432
2433 if (req->end_io)
2434 req->end_io(req, error);
2435 else {
2436 if (blk_bidi_rq(req))
2437 __blk_put_request(req->next_rq->q, req->next_rq);
2438
2439 __blk_put_request(req->q, req);
2440 }
2441 }
2442
2443 /**
2444 * blk_end_bidi_request - Complete a bidi request
2445 * @rq: the request to complete
2446 * @error: %0 for success, < %0 for error
2447 * @nr_bytes: number of bytes to complete @rq
2448 * @bidi_bytes: number of bytes to complete @rq->next_rq
2449 *
2450 * Description:
2451 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2452 * Drivers that supports bidi can safely call this member for any
2453 * type of request, bidi or uni. In the later case @bidi_bytes is
2454 * just ignored.
2455 *
2456 * Return:
2457 * %false - we are done with this request
2458 * %true - still buffers pending for this request
2459 **/
2460 static bool blk_end_bidi_request(struct request *rq, int error,
2461 unsigned int nr_bytes, unsigned int bidi_bytes)
2462 {
2463 struct request_queue *q = rq->q;
2464 unsigned long flags;
2465
2466 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2467 return true;
2468
2469 spin_lock_irqsave(q->queue_lock, flags);
2470 blk_finish_request(rq, error);
2471 spin_unlock_irqrestore(q->queue_lock, flags);
2472
2473 return false;
2474 }
2475
2476 /**
2477 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2478 * @rq: the request to complete
2479 * @error: %0 for success, < %0 for error
2480 * @nr_bytes: number of bytes to complete @rq
2481 * @bidi_bytes: number of bytes to complete @rq->next_rq
2482 *
2483 * Description:
2484 * Identical to blk_end_bidi_request() except that queue lock is
2485 * assumed to be locked on entry and remains so on return.
2486 *
2487 * Return:
2488 * %false - we are done with this request
2489 * %true - still buffers pending for this request
2490 **/
2491 bool __blk_end_bidi_request(struct request *rq, int error,
2492 unsigned int nr_bytes, unsigned int bidi_bytes)
2493 {
2494 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2495 return true;
2496
2497 blk_finish_request(rq, error);
2498
2499 return false;
2500 }
2501
2502 /**
2503 * blk_end_request - Helper function for drivers to complete the request.
2504 * @rq: the request being processed
2505 * @error: %0 for success, < %0 for error
2506 * @nr_bytes: number of bytes to complete
2507 *
2508 * Description:
2509 * Ends I/O on a number of bytes attached to @rq.
2510 * If @rq has leftover, sets it up for the next range of segments.
2511 *
2512 * Return:
2513 * %false - we are done with this request
2514 * %true - still buffers pending for this request
2515 **/
2516 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2517 {
2518 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2519 }
2520 EXPORT_SYMBOL(blk_end_request);
2521
2522 /**
2523 * blk_end_request_all - Helper function for drives to finish the request.
2524 * @rq: the request to finish
2525 * @error: %0 for success, < %0 for error
2526 *
2527 * Description:
2528 * Completely finish @rq.
2529 */
2530 void blk_end_request_all(struct request *rq, int error)
2531 {
2532 bool pending;
2533 unsigned int bidi_bytes = 0;
2534
2535 if (unlikely(blk_bidi_rq(rq)))
2536 bidi_bytes = blk_rq_bytes(rq->next_rq);
2537
2538 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2539 BUG_ON(pending);
2540 }
2541 EXPORT_SYMBOL(blk_end_request_all);
2542
2543 /**
2544 * blk_end_request_cur - Helper function to finish the current request chunk.
2545 * @rq: the request to finish the current chunk for
2546 * @error: %0 for success, < %0 for error
2547 *
2548 * Description:
2549 * Complete the current consecutively mapped chunk from @rq.
2550 *
2551 * Return:
2552 * %false - we are done with this request
2553 * %true - still buffers pending for this request
2554 */
2555 bool blk_end_request_cur(struct request *rq, int error)
2556 {
2557 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2558 }
2559 EXPORT_SYMBOL(blk_end_request_cur);
2560
2561 /**
2562 * blk_end_request_err - Finish a request till the next failure boundary.
2563 * @rq: the request to finish till the next failure boundary for
2564 * @error: must be negative errno
2565 *
2566 * Description:
2567 * Complete @rq till the next failure boundary.
2568 *
2569 * Return:
2570 * %false - we are done with this request
2571 * %true - still buffers pending for this request
2572 */
2573 bool blk_end_request_err(struct request *rq, int error)
2574 {
2575 WARN_ON(error >= 0);
2576 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2577 }
2578 EXPORT_SYMBOL_GPL(blk_end_request_err);
2579
2580 /**
2581 * __blk_end_request - Helper function for drivers to complete the request.
2582 * @rq: the request being processed
2583 * @error: %0 for success, < %0 for error
2584 * @nr_bytes: number of bytes to complete
2585 *
2586 * Description:
2587 * Must be called with queue lock held unlike blk_end_request().
2588 *
2589 * Return:
2590 * %false - we are done with this request
2591 * %true - still buffers pending for this request
2592 **/
2593 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2594 {
2595 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2596 }
2597 EXPORT_SYMBOL(__blk_end_request);
2598
2599 /**
2600 * __blk_end_request_all - Helper function for drives to finish the request.
2601 * @rq: the request to finish
2602 * @error: %0 for success, < %0 for error
2603 *
2604 * Description:
2605 * Completely finish @rq. Must be called with queue lock held.
2606 */
2607 void __blk_end_request_all(struct request *rq, int error)
2608 {
2609 bool pending;
2610 unsigned int bidi_bytes = 0;
2611
2612 if (unlikely(blk_bidi_rq(rq)))
2613 bidi_bytes = blk_rq_bytes(rq->next_rq);
2614
2615 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2616 BUG_ON(pending);
2617 }
2618 EXPORT_SYMBOL(__blk_end_request_all);
2619
2620 /**
2621 * __blk_end_request_cur - Helper function to finish the current request chunk.
2622 * @rq: the request to finish the current chunk for
2623 * @error: %0 for success, < %0 for error
2624 *
2625 * Description:
2626 * Complete the current consecutively mapped chunk from @rq. Must
2627 * be called with queue lock held.
2628 *
2629 * Return:
2630 * %false - we are done with this request
2631 * %true - still buffers pending for this request
2632 */
2633 bool __blk_end_request_cur(struct request *rq, int error)
2634 {
2635 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2636 }
2637 EXPORT_SYMBOL(__blk_end_request_cur);
2638
2639 /**
2640 * __blk_end_request_err - Finish a request till the next failure boundary.
2641 * @rq: the request to finish till the next failure boundary for
2642 * @error: must be negative errno
2643 *
2644 * Description:
2645 * Complete @rq till the next failure boundary. Must be called
2646 * with queue lock held.
2647 *
2648 * Return:
2649 * %false - we are done with this request
2650 * %true - still buffers pending for this request
2651 */
2652 bool __blk_end_request_err(struct request *rq, int error)
2653 {
2654 WARN_ON(error >= 0);
2655 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2656 }
2657 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2658
2659 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2660 struct bio *bio)
2661 {
2662 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2663 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2664
2665 if (bio_has_data(bio)) {
2666 rq->nr_phys_segments = bio_phys_segments(q, bio);
2667 rq->buffer = bio_data(bio);
2668 }
2669 rq->__data_len = bio->bi_size;
2670 rq->bio = rq->biotail = bio;
2671
2672 if (bio->bi_bdev)
2673 rq->rq_disk = bio->bi_bdev->bd_disk;
2674 }
2675
2676 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2677 /**
2678 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2679 * @rq: the request to be flushed
2680 *
2681 * Description:
2682 * Flush all pages in @rq.
2683 */
2684 void rq_flush_dcache_pages(struct request *rq)
2685 {
2686 struct req_iterator iter;
2687 struct bio_vec *bvec;
2688
2689 rq_for_each_segment(bvec, rq, iter)
2690 flush_dcache_page(bvec->bv_page);
2691 }
2692 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2693 #endif
2694
2695 /**
2696 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2697 * @q : the queue of the device being checked
2698 *
2699 * Description:
2700 * Check if underlying low-level drivers of a device are busy.
2701 * If the drivers want to export their busy state, they must set own
2702 * exporting function using blk_queue_lld_busy() first.
2703 *
2704 * Basically, this function is used only by request stacking drivers
2705 * to stop dispatching requests to underlying devices when underlying
2706 * devices are busy. This behavior helps more I/O merging on the queue
2707 * of the request stacking driver and prevents I/O throughput regression
2708 * on burst I/O load.
2709 *
2710 * Return:
2711 * 0 - Not busy (The request stacking driver should dispatch request)
2712 * 1 - Busy (The request stacking driver should stop dispatching request)
2713 */
2714 int blk_lld_busy(struct request_queue *q)
2715 {
2716 if (q->lld_busy_fn)
2717 return q->lld_busy_fn(q);
2718
2719 return 0;
2720 }
2721 EXPORT_SYMBOL_GPL(blk_lld_busy);
2722
2723 /**
2724 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2725 * @rq: the clone request to be cleaned up
2726 *
2727 * Description:
2728 * Free all bios in @rq for a cloned request.
2729 */
2730 void blk_rq_unprep_clone(struct request *rq)
2731 {
2732 struct bio *bio;
2733
2734 while ((bio = rq->bio) != NULL) {
2735 rq->bio = bio->bi_next;
2736
2737 bio_put(bio);
2738 }
2739 }
2740 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2741
2742 /*
2743 * Copy attributes of the original request to the clone request.
2744 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2745 */
2746 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2747 {
2748 dst->cpu = src->cpu;
2749 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2750 dst->cmd_type = src->cmd_type;
2751 dst->__sector = blk_rq_pos(src);
2752 dst->__data_len = blk_rq_bytes(src);
2753 dst->nr_phys_segments = src->nr_phys_segments;
2754 dst->ioprio = src->ioprio;
2755 dst->extra_len = src->extra_len;
2756 }
2757
2758 /**
2759 * blk_rq_prep_clone - Helper function to setup clone request
2760 * @rq: the request to be setup
2761 * @rq_src: original request to be cloned
2762 * @bs: bio_set that bios for clone are allocated from
2763 * @gfp_mask: memory allocation mask for bio
2764 * @bio_ctr: setup function to be called for each clone bio.
2765 * Returns %0 for success, non %0 for failure.
2766 * @data: private data to be passed to @bio_ctr
2767 *
2768 * Description:
2769 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2770 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2771 * are not copied, and copying such parts is the caller's responsibility.
2772 * Also, pages which the original bios are pointing to are not copied
2773 * and the cloned bios just point same pages.
2774 * So cloned bios must be completed before original bios, which means
2775 * the caller must complete @rq before @rq_src.
2776 */
2777 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2778 struct bio_set *bs, gfp_t gfp_mask,
2779 int (*bio_ctr)(struct bio *, struct bio *, void *),
2780 void *data)
2781 {
2782 struct bio *bio, *bio_src;
2783
2784 if (!bs)
2785 bs = fs_bio_set;
2786
2787 blk_rq_init(NULL, rq);
2788
2789 __rq_for_each_bio(bio_src, rq_src) {
2790 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2791 if (!bio)
2792 goto free_and_out;
2793
2794 if (bio_ctr && bio_ctr(bio, bio_src, data))
2795 goto free_and_out;
2796
2797 if (rq->bio) {
2798 rq->biotail->bi_next = bio;
2799 rq->biotail = bio;
2800 } else
2801 rq->bio = rq->biotail = bio;
2802 }
2803
2804 __blk_rq_prep_clone(rq, rq_src);
2805
2806 return 0;
2807
2808 free_and_out:
2809 if (bio)
2810 bio_put(bio);
2811 blk_rq_unprep_clone(rq);
2812
2813 return -ENOMEM;
2814 }
2815 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2816
2817 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2818 {
2819 return queue_work(kblockd_workqueue, work);
2820 }
2821 EXPORT_SYMBOL(kblockd_schedule_work);
2822
2823 int kblockd_schedule_delayed_work(struct request_queue *q,
2824 struct delayed_work *dwork, unsigned long delay)
2825 {
2826 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2827 }
2828 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2829
2830 #define PLUG_MAGIC 0x91827364
2831
2832 /**
2833 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2834 * @plug: The &struct blk_plug that needs to be initialized
2835 *
2836 * Description:
2837 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2838 * pending I/O should the task end up blocking between blk_start_plug() and
2839 * blk_finish_plug(). This is important from a performance perspective, but
2840 * also ensures that we don't deadlock. For instance, if the task is blocking
2841 * for a memory allocation, memory reclaim could end up wanting to free a
2842 * page belonging to that request that is currently residing in our private
2843 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2844 * this kind of deadlock.
2845 */
2846 void blk_start_plug(struct blk_plug *plug)
2847 {
2848 struct task_struct *tsk = current;
2849
2850 plug->magic = PLUG_MAGIC;
2851 INIT_LIST_HEAD(&plug->list);
2852 INIT_LIST_HEAD(&plug->cb_list);
2853 plug->should_sort = 0;
2854
2855 /*
2856 * If this is a nested plug, don't actually assign it. It will be
2857 * flushed on its own.
2858 */
2859 if (!tsk->plug) {
2860 /*
2861 * Store ordering should not be needed here, since a potential
2862 * preempt will imply a full memory barrier
2863 */
2864 tsk->plug = plug;
2865 }
2866 }
2867 EXPORT_SYMBOL(blk_start_plug);
2868
2869 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2870 {
2871 struct request *rqa = container_of(a, struct request, queuelist);
2872 struct request *rqb = container_of(b, struct request, queuelist);
2873
2874 return !(rqa->q <= rqb->q);
2875 }
2876
2877 /*
2878 * If 'from_schedule' is true, then postpone the dispatch of requests
2879 * until a safe kblockd context. We due this to avoid accidental big
2880 * additional stack usage in driver dispatch, in places where the originally
2881 * plugger did not intend it.
2882 */
2883 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2884 bool from_schedule)
2885 __releases(q->queue_lock)
2886 {
2887 trace_block_unplug(q, depth, !from_schedule);
2888
2889 /*
2890 * Don't mess with dead queue.
2891 */
2892 if (unlikely(blk_queue_dead(q))) {
2893 spin_unlock(q->queue_lock);
2894 return;
2895 }
2896
2897 /*
2898 * If we are punting this to kblockd, then we can safely drop
2899 * the queue_lock before waking kblockd (which needs to take
2900 * this lock).
2901 */
2902 if (from_schedule) {
2903 spin_unlock(q->queue_lock);
2904 blk_run_queue_async(q);
2905 } else {
2906 __blk_run_queue(q);
2907 spin_unlock(q->queue_lock);
2908 }
2909
2910 }
2911
2912 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2913 {
2914 LIST_HEAD(callbacks);
2915
2916 while (!list_empty(&plug->cb_list)) {
2917 list_splice_init(&plug->cb_list, &callbacks);
2918
2919 while (!list_empty(&callbacks)) {
2920 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2921 struct blk_plug_cb,
2922 list);
2923 list_del(&cb->list);
2924 cb->callback(cb, from_schedule);
2925 }
2926 }
2927 }
2928
2929 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2930 int size)
2931 {
2932 struct blk_plug *plug = current->plug;
2933 struct blk_plug_cb *cb;
2934
2935 if (!plug)
2936 return NULL;
2937
2938 list_for_each_entry(cb, &plug->cb_list, list)
2939 if (cb->callback == unplug && cb->data == data)
2940 return cb;
2941
2942 /* Not currently on the callback list */
2943 BUG_ON(size < sizeof(*cb));
2944 cb = kzalloc(size, GFP_ATOMIC);
2945 if (cb) {
2946 cb->data = data;
2947 cb->callback = unplug;
2948 list_add(&cb->list, &plug->cb_list);
2949 }
2950 return cb;
2951 }
2952 EXPORT_SYMBOL(blk_check_plugged);
2953
2954 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2955 {
2956 struct request_queue *q;
2957 unsigned long flags;
2958 struct request *rq;
2959 LIST_HEAD(list);
2960 unsigned int depth;
2961
2962 BUG_ON(plug->magic != PLUG_MAGIC);
2963
2964 flush_plug_callbacks(plug, from_schedule);
2965 if (list_empty(&plug->list))
2966 return;
2967
2968 list_splice_init(&plug->list, &list);
2969
2970 if (plug->should_sort) {
2971 list_sort(NULL, &list, plug_rq_cmp);
2972 plug->should_sort = 0;
2973 }
2974
2975 q = NULL;
2976 depth = 0;
2977
2978 /*
2979 * Save and disable interrupts here, to avoid doing it for every
2980 * queue lock we have to take.
2981 */
2982 local_irq_save(flags);
2983 while (!list_empty(&list)) {
2984 rq = list_entry_rq(list.next);
2985 list_del_init(&rq->queuelist);
2986 BUG_ON(!rq->q);
2987 if (rq->q != q) {
2988 /*
2989 * This drops the queue lock
2990 */
2991 if (q)
2992 queue_unplugged(q, depth, from_schedule);
2993 q = rq->q;
2994 depth = 0;
2995 spin_lock(q->queue_lock);
2996 }
2997
2998 /*
2999 * Short-circuit if @q is dead
3000 */
3001 if (unlikely(blk_queue_dead(q))) {
3002 __blk_end_request_all(rq, -ENODEV);
3003 continue;
3004 }
3005
3006 /*
3007 * rq is already accounted, so use raw insert
3008 */
3009 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3010 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3011 else
3012 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3013
3014 depth++;
3015 }
3016
3017 /*
3018 * This drops the queue lock
3019 */
3020 if (q)
3021 queue_unplugged(q, depth, from_schedule);
3022
3023 local_irq_restore(flags);
3024 }
3025
3026 void blk_finish_plug(struct blk_plug *plug)
3027 {
3028 blk_flush_plug_list(plug, false);
3029
3030 if (plug == current->plug)
3031 current->plug = NULL;
3032 }
3033 EXPORT_SYMBOL(blk_finish_plug);
3034
3035 int __init blk_dev_init(void)
3036 {
3037 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3038 sizeof(((struct request *)0)->cmd_flags));
3039
3040 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3041 kblockd_workqueue = alloc_workqueue("kblockd",
3042 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3043 if (!kblockd_workqueue)
3044 panic("Failed to create kblockd\n");
3045
3046 request_cachep = kmem_cache_create("blkdev_requests",
3047 sizeof(struct request), 0, SLAB_PANIC, NULL);
3048
3049 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3050 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3051
3052 return 0;
3053 }
This page took 0.094518 seconds and 5 git commands to generate.