bpf: add xBPF ISA
[deliverable/binutils-gdb.git] / cpu / bpf.cpu
1 ;; Linux BPF CPU description -*- Scheme -*-
2 ;; Copyright (C) 2019 Free Software Foundation, Inc.
3 ;;
4 ;; Contributed by Oracle Inc.
5 ;;
6 ;; This file is part of the GNU Binutils and of GDB.
7 ;;
8 ;; This program is free software; you can redistribute it and/or
9 ;; modify it under the terms of the GNU General Public License as
10 ;; published by the Free Software Foundation; either version 3 of the
11 ;; License, or (at your option) any later version.
12 ;;
13 ;; This program is distributed in the hope that it will be useful, but
14 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
15 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 ;; General Public License for more details.
17 ;;
18 ;; You should have received a copy of the GNU General Public License
19 ;; along with this program; if not, write to the Free Software
20 ;; Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
21 ;; 02110-1301, USA.
22
23 ;; This file contains a CGEN CPU description for the Linux kernel eBPF
24 ;; instruction set. eBPF is documented in the linux kernel source
25 ;; tree. See linux/Documentation/networking/filter.txt, and also the
26 ;; sources in the networking subsystem, notably
27 ;; linux/net/core/filter.c.
28
29 (include "simplify.inc")
30
31 (define-arch
32 (name bpf)
33 (comment "Linux kernel BPF")
34 (insn-lsb0? #t)
35 ;; XXX explain the default-alignment setting is for the simulator.
36 ;; It is confusing that the simulator follows the emulated memory
37 ;; access conventions for fetching instructions by pieces...
38 (default-alignment unaligned)
39 (machs bpf xbpf)
40 (isas ebpfle ebpfbe xbpfle xbpfbe))
41
42 ;;;; The ISAs
43
44 ;; Logically, eBPF comforms a single instruction set featuring two
45 ;; kind of instructions: 64-bit instructions and 128-bit instructions.
46 ;;
47 ;; The 64-bit instructions have the form:
48 ;;
49 ;; code:8 regs:8 offset:16 imm:32
50 ;;
51 ;; Whereas the 128-bit instructions (at the moment there is only one
52 ;; of such instructions, lddw) have the form:
53 ;;
54 ;; code:8 regs:8 offset:16 imm:32 unused:32 imm:32
55 ;;
56 ;; In both formats `regs' is itself composed by two fields:
57 ;;
58 ;; dst:4 src:4
59 ;;
60 ;; The ISA is supposed to be orthogonal to endianness: the endianness
61 ;; of the instruction fields follow the endianness of the host running
62 ;; the eBPF program, and that's all. However, this is not entirely
63 ;; true. The definition of an eBPF code in the Linux kernel is:
64 ;;
65 ;; struct bpf_insn {
66 ;; __u8 code; /* opcode */
67 ;; __u8 dst_reg:4; /* dest register */
68 ;; __u8 src_reg:4; /* source register */
69 ;; __s16 off; /* signed offset */
70 ;; __s32 imm; /* signed immediate constant */
71 ;; };
72 ;;
73 ;; Since the ordering of fields in C bitmaps is defined by the
74 ;; implementation, the impact of endianness in the encoding of eBPF
75 ;; instructions is effectively defined by GCC. In particular, GCC
76 ;; places dst_reg before src_reg in little-endian code, and the other
77 ;; way around in big-endian code.
78 ;;
79 ;; So, in reality, eBPF comprises two instruction sets: one for
80 ;; little-endian with instructions like:
81 ;;
82 ;; code:8 src:4 dst:4 offset:16 imm:32 [unused:32 imm:32]
83 ;;
84 ;; and another for big-endian with instructions like:
85 ;;
86 ;; code:8 dst:4 src:4 offset:16 imm:32 [unused:32 imm:32]
87 ;;
88 ;; where `offset' and the immediate fields are encoded in
89 ;; little-endian and big-endian byte-order, respectively.
90
91 (define-pmacro (define-bpf-isa x-endian)
92 (define-isa
93 (name (.sym ebpf x-endian))
94 (comment "The eBPF instruction set")
95 ;; Default length to record in ifields. This is used in
96 ;; calculations involving bit numbers.
97 (default-insn-word-bitsize 64)
98 ;; Length of an unknown instruction. Used by disassembly and by the
99 ;; simulator's invalid insn handler.
100 (default-insn-bitsize 64)
101 ;; Number of bits of insn that can be initially fetched. This is
102 ;; the size of the smallest insn.
103 (base-insn-bitsize 64)))
104
105 (define-bpf-isa le)
106 (define-bpf-isa be)
107
108 (define-pmacro (define-xbpf-isa x-endian)
109 (define-isa
110 (name (.sym xbpf x-endian))
111 (comment "The xBPF instruction set")
112 (default-insn-word-bitsize 64)
113 (default-insn-bitsize 64)
114 (base-insn-bitsize 64)))
115
116 (define-xbpf-isa le)
117 (define-xbpf-isa be)
118
119 (define-pmacro all-isas () (ISA ebpfle,ebpfbe,xbpfle,xbpfbe))
120 (define-pmacro xbpf-isas () (ISA xbpfle,xbpfbe))
121
122 (define-pmacro (endian-isas x-endian)
123 ((ISA (.sym ebpf x-endian) (.sym xbpf x-endian))))
124
125 ;;;; Hardware Hierarchy
126
127 ;;
128 ;; bpf architecture
129 ;; |
130 ;; bpfbf cpu-family
131 ;; / \
132 ;; bpf xbpf machine
133 ;; | |
134 ;; bpf-def xbpf-def model
135
136 (define-cpu
137 (name bpfbf)
138 (comment "Linux kernel eBPF virtual CPU")
139 (insn-endian big)
140 (word-bitsize 64))
141
142 (define-mach
143 (name bpf)
144 (comment "Linux eBPF")
145 (cpu bpfbf)
146 (isas ebpfle ebpfbe))
147
148 (define-model
149 (name bpf-def)
150 (comment "Linux eBPF default model")
151 (mach bpf)
152 (unit u-exec "execution unit" ()
153 1 ; issue
154 1 ; done
155 () ; state
156 () ; inputs
157 () ; outputs
158 () ; profile action (default)
159 ))
160
161 (define-mach
162 (name xbpf)
163 (comment "Experimental BPF")
164 (cpu bpfbf)
165 (isas ebpfle ebpfbe xbpfle xbpfbe))
166
167 (define-model
168 (name xbpf-def)
169 (comment "xBPF default model")
170 (mach xbpf)
171 (unit u-exec "execution unit" ()
172 1 ; issue
173 1 ; done
174 () ; state
175 () ; inputs
176 () ; outputs
177 () ; profile action (default)
178 ))
179
180 ;;;; Hardware Elements
181
182 ;; eBPF programs can access 10 general-purpose registers which are
183 ;; 64-bit.
184
185 (define-hardware
186 (name h-gpr)
187 (comment "General Purpose Registers")
188 (attrs all-isas (MACH bpf xbpf))
189 (type register DI (16))
190 (indices keyword "%"
191 ;; XXX the frame pointer fp is read-only, so it should
192 ;; go in a different hardware.
193 (;; ABI names. Take priority when disassembling.
194 (r0 0) (r1 1) (r2 2) (r3 3) (r4 4) (r5 5) (r6 6)
195 (r7 7) (r8 8) (r9 9) (fp 10)
196 ;; Additional names recognized when assembling.
197 (r0 0) (r6 6) (r10 10))))
198
199 ;; The program counter. CGEN requires it, even if it is not visible
200 ;; to eBPF programs.
201
202 (define-hardware
203 (name h-pc)
204 (comment "program counter")
205 (attrs PC PROFILE all-isas)
206 (type pc UDI)
207 (get () (raw-reg h-pc))
208 (set (newval) (set (raw-reg h-pc) newval)))
209
210 ;; A 64-bit h-sint to be used by the imm64 operand below. XXX this
211 ;; shouldn't be needed, as h-sint is supposed to be able to hold
212 ;; 64-bit values. However, in practice CGEN limits h-sint to 32 bits
213 ;; in 32-bit hosts. To be fixed in CGEN.
214
215 (dnh h-sint64 "signed 64-bit integer" (all-isas) (immediate DI)
216 () () ())
217
218 ;;;; The Instruction Sets
219
220 ;;; Fields and Opcodes
221
222 ;; Convenience macro to shorten the definition of the fields below.
223 (define-pmacro (dwf x-name x-comment x-attrs
224 x-word-offset x-word-length x-start x-length
225 x-mode)
226 "Define a field including its containing word."
227 (define-ifield
228 (name x-name)
229 (comment x-comment)
230 (.splice attrs (.unsplice x-attrs))
231 (word-offset x-word-offset)
232 (word-length x-word-length)
233 (start x-start)
234 (length x-length)
235 (mode x-mode)))
236
237 ;; For arithmetic and jump instructions the 8-bit code field is
238 ;; subdivided in:
239 ;;
240 ;; op-code:4 op-src:1 op-class:3
241
242 (dwf f-op-code "eBPF opcode code" (all-isas) 0 8 7 4 UINT)
243 (dwf f-op-src "eBPF opcode source" (all-isas) 0 8 3 1 UINT)
244 (dwf f-op-class "eBPF opcode instruction class" (all-isas) 0 8 2 3 UINT)
245
246 (define-normal-insn-enum insn-op-code-alu "eBPF instruction codes"
247 (all-isas) OP_CODE_ f-op-code
248 (;; Codes for OP_CLASS_ALU and OP_CLASS_ALU64
249 (ADD #x0) (SUB #x1) (MUL #x2) (DIV #x3) (OR #x4) (AND #x5)
250 (LSH #x6) (RSH #x7) (NEG #x8) (MOD #x9) (XOR #xa) (MOV #xb)
251 (ARSH #xc) (END #xd)
252 ;; Codes for OP_CLASS_JMP
253 (JA #x0) (JEQ #x1) (JGT #x2) (JGE #x3) (JSET #x4)
254 (JNE #x5) (JSGT #x6) (JSGE #x7) (CALL #x8) (EXIT #x9)
255 (JLT #xa) (JLE #xb) (JSLT #xc) (JSLE #xd)))
256
257 (define-normal-insn-enum insn-op-src "eBPF instruction source"
258 (all-isas) OP_SRC_ f-op-src
259 ;; X => use `src' as source operand.
260 ;; K => use `imm32' as source operand.
261 ((K #b0) (X #b1)))
262
263 (define-normal-insn-enum insn-op-class "eBPF instruction class"
264 (all-isas) OP_CLASS_ f-op-class
265 ((LD #b000) (LDX #b001) (ST #b010) (STX #b011)
266 (ALU #b100) (JMP #b101) (JMP32 #b110) (ALU64 #b111)))
267
268 ;; For load/store instructions, the 8-bit code field is subdivided in:
269 ;;
270 ;; op-mode:3 op-size:2 op-class:3
271
272 (dwf f-op-mode "eBPF opcode mode" (all-isas) 0 8 7 3 UINT)
273 (dwf f-op-size "eBPF opcode size" (all-isas) 0 8 4 2 UINT)
274
275 (define-normal-insn-enum insn-op-mode "eBPF load/store instruction modes"
276 (all-isas) OP_MODE_ f-op-mode
277 ((IMM #b000) (ABS #b001) (IND #b010) (MEM #b011)
278 ;; #b100 and #b101 are used in classic BPF only, reserved in eBPF.
279 (XADD #b110)))
280
281 (define-normal-insn-enum insn-op-size "eBPF load/store instruction sizes"
282 (all-isas) OP_SIZE_ f-op-size
283 ((W #b00) ;; Word: 4 byte
284 (H #b01) ;; Half-word: 2 byte
285 (B #b10) ;; Byte: 1 byte
286 (DW #b11))) ;; Double-word: 8 byte
287
288 ;; The fields for the source and destination registers are a bit
289 ;; tricky. Due to the bizarre nibble swap between little-endian and
290 ;; big-endian ISAs we need to keep different variants of the fields.
291 ;;
292 ;; Note that f-regs is used in the format spec of instructions that do
293 ;; NOT use registers, where endianness is irrelevant i.e. f-regs is a
294 ;; constant 0 opcode.
295
296 (dwf f-dstle "eBPF dst register field" ((ISA ebpfle xbpfle)) 8 8 3 4 UINT)
297 (dwf f-srcle "eBPF source register field" ((ISA ebpfle xbpfle)) 8 8 7 4 UINT)
298
299 (dwf f-dstbe "eBPF dst register field" ((ISA ebpfbe xbpfbe)) 8 8 7 4 UINT)
300 (dwf f-srcbe "eBPF source register field" ((ISA ebpfbe xbpfbe)) 8 8 3 4 UINT)
301
302 (dwf f-regs "eBPF registers field" (all-isas) 8 8 7 8 UINT)
303
304 ;; Finally, the fields for the immediates.
305 ;;
306 ;; The 16-bit offsets and 32-bit immediates do not present any special
307 ;; difficulty: we put them in their own instruction word so the
308 ;; byte-endianness will be properly applied.
309
310 (dwf f-offset16 "eBPF offset field" (all-isas) 16 16 15 16 HI)
311 (dwf f-imm32 "eBPF 32-bit immediate field" (all-isas) 32 32 31 32 INT)
312
313 ;; For the disjoint 64-bit signed immediate, however, we need to use a
314 ;; multi-ifield.
315
316 (dwf f-imm64-a "eBPF 64-bit immediate a" (all-isas) 32 32 31 32 UINT)
317 (dwf f-imm64-b "eBPF 64-bit immediate b" (all-isas) 64 32 31 32 UINT)
318 (dwf f-imm64-c "eBPF 64-bit immediate c" (all-isas) 96 32 31 32 UINT)
319
320 (define-multi-ifield
321 (name f-imm64)
322 (comment "eBPF 64-bit immediate field")
323 (attrs all-isas)
324 (mode DI)
325 (subfields f-imm64-a f-imm64-b f-imm64-c)
326 (insert (sequence ()
327 (set (ifield f-imm64-b) (const 0))
328 (set (ifield f-imm64-c) (srl (ifield f-imm64) (const 32)))
329 (set (ifield f-imm64-a) (and (ifield f-imm64) (const #xffffffff)))))
330 (extract (sequence ()
331 (set (ifield f-imm64)
332 (or (sll UDI (zext UDI (ifield f-imm64-c)) (const 32))
333 (zext UDI (ifield f-imm64-a)))))))
334
335 ;;; Operands
336
337 ;; A couple of source and destination register operands are defined
338 ;; for each ISA: ebpfle and ebpfbe.
339
340 (dno dstle "destination register" ((ISA ebpfle xbpfle)) h-gpr f-dstle)
341 (dno srcle "source register" ((ISA ebpfle xbpfle)) h-gpr f-srcle)
342
343 (dno dstbe "destination register" ((ISA ebpfbe xbpfbe)) h-gpr f-dstbe)
344 (dno srcbe "source register" ((ISA ebpfbe xbpfbe)) h-gpr f-srcbe)
345
346 ;; Jump instructions have a 16-bit PC-relative address.
347 ;; CALL instructions have a 32-bit PC-relative address.
348
349 (dno disp16 "16-bit PC-relative address" (all-isas PCREL-ADDR) h-sint
350 f-offset16)
351 (dno disp32 "32-bit PC-relative address" (all-isas PCREL-ADDR) h-sint
352 f-imm32)
353
354 ;; Immediate operands in eBPF are signed, and we want the disassembler
355 ;; to print negative values in a sane way. Therefore we use the macro
356 ;; below to register a printer, which is itself defined as a C
357 ;; function in bpf.opc.
358
359 ;; define-normal-signed-immediate-operand
360 (define-pmacro (dnsio x-name x-comment x-attrs x-type x-index)
361 (define-operand
362 (name x-name)
363 (comment x-comment)
364 (.splice attrs (.unsplice x-attrs))
365 (type x-type)
366 (index x-index)
367 (handlers (print "immediate"))))
368
369 (dnsio imm32 "32-bit immediate" (all-isas) h-sint f-imm32)
370 (dnsio offset16 "16-bit offset" (all-isas) h-sint f-offset16)
371
372 ;; The 64-bit immediate cannot use the default
373 ;; cgen_parse_signed_integer, because it assumes operands are at much
374 ;; 32-bit wide. Use our own.
375
376 (define-operand
377 (name imm64)
378 (comment "64-bit immediate")
379 (attrs all-isas)
380 (type h-sint64)
381 (index f-imm64)
382 (handlers (parse "imm64") (print "immediate")))
383
384 ;; The endle/endbe instructions take an operand to specify the word
385 ;; width in endianness conversions. We use both a parser and printer,
386 ;; which are defined as C functions in bpf.opc.
387
388 (define-operand
389 (name endsize)
390 (comment "endianness size immediate: 16, 32 or 64")
391 (attrs all-isas)
392 (type h-uint)
393 (index f-imm32)
394 (handlers (parse "endsize") (print "endsize")))
395
396 ;;; ALU instructions
397
398 ;; For each opcode in insn-op-code-alu representing and integer
399 ;; arithmetic instruction (ADD, SUB, etc) we define a bunch of
400 ;; instruction variants:
401 ;;
402 ;; ADD[32]{i,r}le for the little-endian ISA
403 ;; ADD[32]{i,r}be for the big-endian ISA
404 ;;
405 ;; The `i' variants perform `dst OP imm32 -> dst' operations.
406 ;; The `r' variants perform `dst OP src -> dst' operations.
407 ;;
408 ;; The variants with 32 in their name are of ALU class. Otherwise
409 ;; they are ALU64 class.
410
411 (define-pmacro (define-alu-insn-un x-basename x-suffix x-op-class x-op-code
412 x-endian x-mode x-semop)
413 (dni (.sym x-basename x-suffix x-endian)
414 (.str x-basename x-suffix)
415 (endian-isas x-endian)
416 (.str x-basename x-suffix " $dst" x-endian)
417 (+ (f-imm32 0) (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
418 x-op-class OP_SRC_K x-op-code)
419 (set x-mode (.sym dst x-endian) (x-semop x-mode (.sym dst x-endian)))
420 ()))
421
422 (define-pmacro (define-alu-insn-bin x-basename x-suffix x-op-class x-op-code
423 x-endian x-mode x-semop)
424 (begin
425 ;; dst = dst OP immediate
426 (dni (.sym x-basename x-suffix "i" x-endian)
427 (.str x-basename x-suffix " immediate")
428 (endian-isas x-endian)
429 (.str x-basename x-suffix " $dst" x-endian ",$imm32")
430 (+ imm32 (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
431 x-op-class OP_SRC_K x-op-code)
432 (set x-mode (.sym dst x-endian) (x-semop x-mode (.sym dst x-endian) imm32))
433 ())
434 ;; dst = dst OP src
435 (dni (.sym x-basename x-suffix "r" x-endian)
436 (.str x-basename x-suffix " register")
437 (endian-isas x-endian)
438 (.str x-basename x-suffix " $dst" x-endian ",$src" x-endian)
439 (+ (f-imm32 0) (f-offset16 0) (.sym src x-endian) (.sym dst x-endian)
440 x-op-class OP_SRC_X x-op-code)
441 (set x-mode (.sym dst x-endian)
442 (x-semop x-mode (.sym dst x-endian) (.sym src x-endian)))
443 ())))
444
445 (define-pmacro (define-alu-insn-mov x-basename x-suffix x-op-class x-op-code
446 x-endian x-mode)
447 (begin
448 (dni (.sym mov x-suffix "i" x-endian)
449 (.str mov x-suffix " immediate")
450 (endian-isas x-endian)
451 (.str x-basename x-suffix " $dst" x-endian ",$imm32")
452 (+ imm32 (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
453 x-op-class OP_SRC_K x-op-code)
454 (set x-mode (.sym dst x-endian) imm32)
455 ())
456 (dni (.sym mov x-suffix "r" x-endian)
457 (.str mov x-suffix " register")
458 (endian-isas x-endian)
459 (.str x-basename x-suffix " $dst" x-endian ",$src" x-endian)
460 (+ (f-imm32 0) (f-offset16 0) (.sym src x-endian) (.sym dst x-endian)
461 x-op-class OP_SRC_X x-op-code)
462 (set x-mode (.sym dst x-endian) (.sym src x-endian))
463 ())))
464
465
466 ;; Unary ALU instructions (neg)
467 (define-pmacro (daiu x-basename x-op-code x-endian x-semop)
468 (begin
469 (define-alu-insn-un x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI x-semop)
470 (define-alu-insn-un x-basename "32" OP_CLASS_ALU x-op-code x-endian USI x-semop)))
471
472 ;; Binary ALU instructions (all the others)
473 ;; For ALU32: DST = (u32) DST OP (u32) SRC is correct semantics
474 (define-pmacro (daib x-basename x-op-code x-endian x-semop)
475 (begin
476 (define-alu-insn-bin x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI x-semop)
477 (define-alu-insn-bin x-basename "32" OP_CLASS_ALU x-op-code x-endian USI x-semop)))
478
479 ;; Move ALU instructions (mov)
480 (define-pmacro (daim x-basename x-op-code x-endian)
481 (begin
482 (define-alu-insn-mov x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI)
483 (define-alu-insn-mov x-basename "32" OP_CLASS_ALU x-op-code x-endian USI)))
484
485 (define-pmacro (define-alu-instructions x-endian)
486 (begin
487 (daib add OP_CODE_ADD x-endian add)
488 (daib sub OP_CODE_SUB x-endian sub)
489 (daib mul OP_CODE_MUL x-endian mul)
490 (daib div OP_CODE_DIV x-endian div)
491 (daib or OP_CODE_OR x-endian or)
492 (daib and OP_CODE_AND x-endian and)
493 (daib lsh OP_CODE_LSH x-endian sll)
494 (daib rsh OP_CODE_RSH x-endian srl)
495 (daib mod OP_CODE_MOD x-endian mod)
496 (daib xor OP_CODE_XOR x-endian xor)
497 (daib arsh OP_CODE_ARSH x-endian sra)
498 (daiu neg OP_CODE_NEG x-endian neg)
499 (daim mov OP_CODE_MOV x-endian)))
500
501 (define-alu-instructions le)
502 (define-alu-instructions be)
503
504 ;;; Endianness conversion instructions
505
506 ;; The endianness conversion instructions come in several variants:
507 ;;
508 ;; END{le,be}le for the little-endian ISA
509 ;; END{le,be}be for the big-endian ISA
510 ;;
511 ;; Please do not be confused by the repeated `be' and `le' here. Each
512 ;; ISA has both endle and endbe instructions. It is the disposition
513 ;; of the source and destination register fields that change between
514 ;; ISAs, not the semantics of the instructions themselves (see section
515 ;; "The ISAs" above in this very file.)
516
517 (define-pmacro (define-endian-insn x-suffix x-op-src x-endian)
518 (dni (.sym "end" x-suffix x-endian)
519 (.str "end" x-suffix " register")
520 (endian-isas x-endian)
521 (.str "end" x-suffix " $dst" x-endian ",$endsize")
522 (+ (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian) endsize
523 OP_CLASS_ALU x-op-src OP_CODE_END)
524 (set (.sym dst x-endian)
525 (c-call DI (.str "bpfbf_end" x-suffix) (.sym dst x-endian) endsize))
526 ()))
527
528 (define-endian-insn "le" OP_SRC_K le)
529 (define-endian-insn "be" OP_SRC_X le)
530 (define-endian-insn "le" OP_SRC_K be)
531 (define-endian-insn "be" OP_SRC_X be)
532
533 ;;; Load/Store instructions
534
535 ;; The lddw instruction takes a 64-bit immediate as an operand. Since
536 ;; this instruction also takes a `dst' operand, we need to define a
537 ;; variant for each ISA:
538 ;;
539 ;; LDDWle for the little-endian ISA
540 ;; LDDWbe for the big-endian ISA
541
542 (define-pmacro (define-lddw x-endian)
543 (dni (.sym lddw x-endian)
544 (.str "lddw" x-endian)
545 (endian-isas x-endian)
546 (.str "lddw $dst" x-endian ",$imm64")
547 (+ imm64 (f-offset16 0) ((.sym f-src x-endian) 0)
548 (.sym dst x-endian)
549 OP_CLASS_LD OP_SIZE_DW OP_MODE_IMM)
550 (set DI (.sym dst x-endian) imm64)
551 ()))
552
553 (define-lddw le)
554 (define-lddw be)
555
556 ;; The absolute load instructions are non-generic loads designed to be
557 ;; used in socket filters. They come in several variants:
558 ;;
559 ;; LDABS{w,h,b,dw}
560
561 (define-pmacro (dlabs x-suffix x-size x-smode)
562 (dni (.sym "ldabs" x-suffix)
563 (.str "ldabs" x-suffix)
564 (all-isas)
565 (.str "ldabs" x-suffix " $imm32")
566 (+ imm32 (f-offset16 0) (f-regs 0)
567 OP_CLASS_LD OP_MODE_ABS (.sym OP_SIZE_ x-size))
568 (set x-smode
569 (reg x-smode h-gpr 0)
570 (mem x-smode
571 (add DI
572 (mem DI
573 (add DI
574 (reg DI h-gpr 6) ;; Pointer to struct sk_buff
575 (c-call "bpfbf_skb_data_offset")))
576 imm32)))
577 ;; XXX this clobbers R1-R5
578 ()))
579
580 (dlabs "w" W SI)
581 (dlabs "h" H HI)
582 (dlabs "b" B QI)
583 (dlabs "dw" DW DI)
584
585 ;; The indirect load instructions are non-generic loads designed to be
586 ;; used in socket filters. They come in several variants:
587 ;;
588 ;; LDIND{w,h,b,dw}le for the little-endian ISA
589 ;; LDIND[w,h,b,dw}be for the big-endian ISA
590
591 (define-pmacro (dlind x-suffix x-size x-endian x-smode)
592 (dni (.sym "ldind" x-suffix x-endian)
593 (.str "ldind" x-suffix)
594 (endian-isas x-endian)
595 (.str "ldind" x-suffix " $src" x-endian ",$imm32")
596 (+ imm32 (f-offset16 0) ((.sym f-dst x-endian) 0) (.sym src x-endian)
597 OP_CLASS_LD OP_MODE_IND (.sym OP_SIZE_ x-size))
598 (set x-smode
599 (reg x-smode h-gpr 0)
600 (mem x-smode
601 (add DI
602 (mem DI
603 (add DI
604 (reg DI h-gpr 6) ;; Pointer to struct sk_buff
605 (c-call "bpfbf_skb_data_offset")))
606 (add DI
607 (.sym src x-endian)
608 imm32))))
609 ;; XXX this clobbers R1-R5
610 ()))
611
612 (define-pmacro (define-ldind x-endian)
613 (begin
614 (dlind "w" W x-endian SI)
615 (dlind "h" H x-endian HI)
616 (dlind "b" B x-endian QI)
617 (dlind "dw" DW x-endian DI)))
618
619 (define-ldind le)
620 (define-ldind be)
621
622 ;; Generic load and store instructions are provided for several word
623 ;; sizes. They come in several variants:
624 ;;
625 ;; LDX{b,h,w,dw}le, STX{b,h,w,dw}le for the little-endian ISA
626 ;;
627 ;; LDX{b,h,w,dw}be, STX{b,h,w,dw}be for the big-endian ISA
628 ;;
629 ;; Loads operate on [$SRC+-OFFSET] -> $DST
630 ;; Stores operate on $SRC -> [$DST+-OFFSET]
631
632 (define-pmacro (dxli x-basename x-suffix x-size x-endian x-mode)
633 (dni (.sym x-basename x-suffix x-endian)
634 (.str x-basename x-suffix)
635 (endian-isas x-endian)
636 (.str x-basename x-suffix " $dst" x-endian ",[$src" x-endian "+$offset16]")
637 (+ (f-imm32 0) offset16 (.sym src x-endian) (.sym dst x-endian)
638 OP_CLASS_LDX (.sym OP_SIZE_ x-size) OP_MODE_MEM)
639 (set x-mode
640 (.sym dst x-endian)
641 (mem x-mode (add DI (.sym src x-endian) offset16)))
642 ()))
643
644 (define-pmacro (dxsi x-basename x-suffix x-size x-endian x-mode)
645 (dni (.sym x-basename x-suffix x-endian)
646 (.str x-basename x-suffix)
647 (endian-isas x-endian)
648 (.str x-basename x-suffix " [$dst" x-endian "+$offset16],$src" x-endian)
649 (+ (f-imm32 0) offset16 (.sym src x-endian) (.sym dst x-endian)
650 OP_CLASS_STX (.sym OP_SIZE_ x-size) OP_MODE_MEM)
651 (set x-mode
652 (mem x-mode (add DI (.sym dst x-endian) offset16))
653 (.sym src x-endian)) ;; XXX address is section-relative
654 ()))
655
656 (define-pmacro (define-ldstx-insns x-endian)
657 (begin
658 (dxli "ldx" "w" W x-endian SI)
659 (dxli "ldx" "h" H x-endian HI)
660 (dxli "ldx" "b" B x-endian QI)
661 (dxli "ldx" "dw" DW x-endian DI)
662
663 (dxsi "stx" "w" W x-endian SI)
664 (dxsi "stx" "h" H x-endian HI)
665 (dxsi "stx" "b" B x-endian QI)
666 (dxsi "stx" "dw" DW x-endian DI)))
667
668 (define-ldstx-insns le)
669 (define-ldstx-insns be)
670
671 ;; Generic store instructions of the form IMM32 -> [$DST+OFFSET] are
672 ;; provided in several variants:
673 ;;
674 ;; ST{b,h,w,dw}le for the little-endian ISA
675 ;; ST{b,h,w,dw}be for the big-endian ISA
676
677 (define-pmacro (dsti x-suffix x-size x-endian x-mode)
678 (dni (.sym "st" x-suffix x-endian)
679 (.str "st" x-suffix)
680 (endian-isas x-endian)
681 (.str "st" x-suffix " [$dst" x-endian "+$offset16],$imm32")
682 (+ imm32 offset16 ((.sym f-src x-endian) 0) (.sym dst x-endian)
683 OP_CLASS_ST (.sym OP_SIZE_ x-size) OP_MODE_MEM)
684 (set x-mode
685 (mem x-mode (add DI (.sym dst x-endian) offset16))
686 imm32) ;; XXX address is section-relative
687 ()))
688
689 (define-pmacro (define-st-insns x-endian)
690 (begin
691 (dsti "b" B x-endian QI)
692 (dsti "h" H x-endian HI)
693 (dsti "w" W x-endian SI)
694 (dsti "dw" DW x-endian DI)))
695
696 (define-st-insns le)
697 (define-st-insns be)
698
699 ;;; Jump instructions
700
701 ;; Compare-and-jump instructions, on the other hand, make use of
702 ;; registers. Therefore, we need to define several variants in both
703 ;; ISAs:
704 ;;
705 ;; J{eq,gt,ge,lt,le,set,ne,sgt,sge,slt,sle}[32]{i,r}le for the
706 ;; little-endian ISA.
707 ;; J{eq,gt,ge,lt,le,set,ne.sgt,sge,slt,sle}[32]{i,r}be for the
708 ;; big-endian ISA.
709
710 (define-pmacro (define-cond-jump-insn x-cond x-suffix x-op-class x-op-code x-endian x-mode x-semop)
711 (begin
712 (dni (.sym j x-cond x-suffix i x-endian)
713 (.str j x-cond x-suffix " i")
714 (endian-isas x-endian)
715 (.str "j" x-cond x-suffix " $dst" x-endian ",$imm32,$disp16")
716 (+ imm32 disp16 ((.sym f-src x-endian) 0) (.sym dst x-endian)
717 x-op-class OP_SRC_K (.sym OP_CODE_ x-op-code))
718 (if VOID (x-semop x-mode (.sym dst x-endian) imm32)
719 (set DI
720 (reg DI h-pc) (add DI (reg DI h-pc)
721 (mul DI (add HI disp16 1) 8))))
722 ())
723 (dni (.sym j x-cond x-suffix r x-endian)
724 (.str j x-cond x-suffix " r")
725 (endian-isas x-endian)
726 (.str "j" x-cond x-suffix " $dst" x-endian ",$src" x-endian ",$disp16")
727 (+ (f-imm32 0) disp16 (.sym src x-endian) (.sym dst x-endian)
728 x-op-class OP_SRC_X (.sym OP_CODE_ x-op-code))
729 (if VOID (x-semop x-mode (.sym dst x-endian) (.sym src x-endian))
730 (set DI
731 (reg DI h-pc) (add DI (reg DI h-pc)
732 (mul DI (add HI disp16 1) 8))))
733 ())))
734
735 (define-pmacro (dcji x-cond x-op-code x-endian x-semop)
736 (begin
737 (define-cond-jump-insn x-cond "" OP_CLASS_JMP x-op-code x-endian DI x-semop)
738 (define-cond-jump-insn x-cond "32" OP_CLASS_JMP32 x-op-code x-endian SI x-semop )))
739
740 (define-pmacro (define-condjump-insns x-endian)
741 (begin
742 (dcji "eq" JEQ x-endian eq)
743 (dcji "gt" JGT x-endian gtu)
744 (dcji "ge" JGE x-endian geu)
745 (dcji "lt" JLT x-endian ltu)
746 (dcji "le" JLE x-endian leu)
747 (dcji "set" JSET x-endian and)
748 (dcji "ne" JNE x-endian ne)
749 (dcji "sgt" JSGT x-endian gt)
750 (dcji "sge" JSGE x-endian ge)
751 (dcji "slt" JSLT x-endian lt)
752 (dcji "sle" JSLE x-endian le)))
753
754 (define-condjump-insns le)
755 (define-condjump-insns be)
756
757 ;; The `call' instruction doesn't make use of registers, but the
758 ;; semantic routine should have access to the src register in order to
759 ;; properly interpret the meaning of disp32. Therefore we need one
760 ;; version per ISA.
761
762 (define-pmacro (define-call-insn x-endian)
763 (dni (.sym call x-endian)
764 "call"
765 (endian-isas x-endian)
766 "call $disp32"
767 (+ disp32 (f-offset16 0) (f-regs 0)
768 OP_CLASS_JMP OP_SRC_K OP_CODE_CALL)
769 (c-call VOID
770 "bpfbf_call" disp32 (ifield (.sym f-src x-endian)))
771 ()))
772
773 (define-call-insn le)
774 (define-call-insn be)
775
776 (define-pmacro (define-callr-insn x-endian)
777 (dni (.sym callr x-endian)
778 "callr"
779 ((ISA (.sym xbpf x-endian)))
780 (.str "call $dst" x-endian)
781 (+ (f-imm32 0) (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
782 OP_CLASS_JMP OP_SRC_X OP_CODE_CALL)
783 (c-call VOID
784 "bpfbf_callr" (ifield (.sym f-dst x-endian)))
785 ()))
786
787 (define-callr-insn le)
788 (define-callr-insn be)
789
790 ;; The jump-always and `exit' instructions dont make use of either
791 ;; source nor destination registers, so only one variant per
792 ;; instruction is defined.
793
794 (dni ja "ja" (all-isas) "ja $disp16"
795 (+ (f-imm32 0) disp16 (f-regs 0)
796 OP_CLASS_JMP OP_SRC_K OP_CODE_JA)
797 (set DI (reg DI h-pc) (add DI (reg DI h-pc)
798 (mul DI (add HI disp16 1) 8)))
799 ())
800
801 (dni "exit" "exit" (all-isas) "exit"
802 (+ (f-imm32 0) (f-offset16 0) (f-regs 0)
803 OP_CLASS_JMP (f-op-src 0) OP_CODE_EXIT)
804 (c-call VOID "bpfbf_exit")
805 ())
806
807 ;;; Atomic instructions
808
809 ;; The atomic exchange-and-add instructions come in two flavors: one
810 ;; for swapping 64-bit quantities and another for 32-bit quantities.
811
812 (define-pmacro (sem-exchange-and-add x-endian x-mode)
813 (sequence VOID ((x-mode tmp))
814 ;; XXX acquire lock in simulator... as a hardware element?
815 (set x-mode tmp (mem x-mode (add DI (.sym dst x-endian) offset16)))
816 (set x-mode
817 (mem x-mode (add DI (.sym dst x-endian) offset16))
818 (add x-mode tmp (.sym src x-endian)))))
819
820 (define-pmacro (define-atomic-insns x-endian)
821 (begin
822 (dni (.str "xadddw" x-endian)
823 "xadddw"
824 (endian-isas x-endian)
825 (.str "xadddw [$dst" x-endian "+$offset16],$src" x-endian)
826 (+ (f-imm32 0) (.sym src x-endian) (.sym dst x-endian)
827 offset16 OP_MODE_XADD OP_SIZE_DW OP_CLASS_STX)
828 (sem-exchange-and-add x-endian DI)
829 ())
830 (dni (.str "xaddw" x-endian)
831 "xaddw"
832 (endian-isas x-endian)
833 (.str "xaddw [$dst" x-endian "+$offset16],$src" x-endian)
834 (+ (f-imm32 0) (.sym src x-endian) (.sym dst x-endian)
835 offset16 OP_MODE_XADD OP_SIZE_W OP_CLASS_STX)
836 (sem-exchange-and-add x-endian SI)
837 ())))
838
839 (define-atomic-insns le)
840 (define-atomic-insns be)
841
842 ;;; Breakpoint instruction
843
844 ;; The brkpt instruction is used by the BPF simulator and it doesn't
845 ;; really belong to the eBPF instruction set.
846
847 (dni "brkpt" "brkpt" (all-isas) "brkpt"
848 (+ (f-imm32 0) (f-offset16 0) (f-regs 0)
849 OP_CLASS_ALU OP_SRC_X OP_CODE_NEG)
850 (c-call VOID "bpfbf_breakpoint")
851 ())
This page took 0.046354 seconds and 4 git commands to generate.